WO2022079155A1 - Energy storage device having a temperature control device - Google Patents

Energy storage device having a temperature control device Download PDF

Info

Publication number
WO2022079155A1
WO2022079155A1 PCT/EP2021/078421 EP2021078421W WO2022079155A1 WO 2022079155 A1 WO2022079155 A1 WO 2022079155A1 EP 2021078421 W EP2021078421 W EP 2021078421W WO 2022079155 A1 WO2022079155 A1 WO 2022079155A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature control
energy storage
storage device
control element
pole
Prior art date
Application number
PCT/EP2021/078421
Other languages
German (de)
French (fr)
Inventor
Markus Eichler
Original Assignee
Liebherr-Components Biberach Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Liebherr-Components Biberach Gmbh filed Critical Liebherr-Components Biberach Gmbh
Publication of WO2022079155A1 publication Critical patent/WO2022079155A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/617Types of temperature control for achieving uniformity or desired distribution of temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/443Methods for charging or discharging in response to temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/64Heating or cooling; Temperature control characterised by the shape of the cells
    • H01M10/643Cylindrical cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/653Means for temperature control structurally associated with the cells characterised by electrically insulating or thermally conductive materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6554Rods or plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6556Solid parts with flow channel passages or pipes for heat exchange
    • H01M10/6557Solid parts with flow channel passages or pipes for heat exchange arranged between the cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6569Fluids undergoing a liquid-gas phase change or transition, e.g. evaporation or condensation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/514Methods for interconnecting adjacent batteries or cells
    • H01M50/516Methods for interconnecting adjacent batteries or cells by welding, soldering or brazing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to an energy storage device with at least one storage element and a temperature control device for temperature control of the storage element, which comprises at least one coolable and/or heatable temperature control element that is in contact with the storage element.
  • Modern energy stores such as lithium-ion batteries or supercapacitors or capacitor storage cells such as double-layer capacitors without an electrically insulating dielectric are very sensitive to temperature fluctuations or excessively high or low temperatures and should therefore be kept within a specified temperature range.
  • the service life and availability of such high-performance energy storage devices depends very much on their temperature during operation and during the charging process.
  • In order not to allow the storage cells or elements to have excessively high temperatures such energy storage devices are usually cooled.
  • the cooling not only has a beneficial effect on the lifetime of the energy storage device by Overheating is avoided, but also influences the charging time and thus the availability, since with sufficiently efficient cooling, charging can be carried out faster and therefore shorter with higher charging currents.
  • cooling or temperature control elements are usually attached to the side of the storage elements in order to extract the heat from the core of the cells or, in the opposite case, to warm the cells.
  • cooling or temperature control elements In lithium-ion car batteries, for example, it is known to helically attach cooling plates to the outer shell of the storage cell, but this results in relatively poor heat transfer from the core of the battery cell to the outer shell and an increase in the coolant temperature due to serial flow.
  • document DE 10 2005 017 648 B shows a liquid-cooled energy storage device for a motor vehicle, in which storage cells are positioned next to one another in a matrix-like arrangement and are placed on one side with their front ends on a cooling plate that has web-like projecting collars has, which surround the individual storage cells, and is flowed through by a cooling medium.
  • the other side of the storage cells remains uncooled since the pole connections are provided there.
  • DE 10 2013 009 823 A1 shows an energy storage device whose storage blocks include double-layer capacitors as storage elements and current controllers and control elements, the storage blocks being provided with coolant connections in order to be able to circulate coolant through the storage blocks.
  • a similar storage device with double-layer capacitors and current regulators is shown in document DE 10 2018 114 405 A1.
  • the present invention is based on the object of creating an improved energy storage device of the type mentioned which avoids the disadvantages of the prior art and further develops the latter in an advantageous manner.
  • efficient cooling or temperature control of the storage elements should be achieved in order to increase their service life, shorten the charging times and increase the availability of the energy storage device and the machine supplied by it, without having to buy this through complex manufacturing processes and having to incur high costs.
  • the at least one temperature control element of the temperature control device is attached to a pole connection of the at least one storage element.
  • the temperature control of the storage element via the pole connection is based on the consideration that the dissipation or supply of heat at the poles of storage elements has a very large influence on their service life.
  • the storage elements suffer significantly lower capacity losses over the number of charging cycles than with surface cooling of the storage elements.
  • the capacity losses can be many times higher and up to 9 times higher than with pole cooling.
  • the temperature control element attached to the pole connection can have a dual function in a further development of the invention and at the same time serve as a contact lug.
  • the temperature control element can have an electrically conductive surface and at the same time form an electrical contact connection of the storage element and/or the energy storage device.
  • the temperature control device can include a coolant or temperature control medium circuit and can guide a liquid and/or gaseous temperature control medium through the at least one temperature control element or cool and/or heat the named temperature control element with the temperature control medium.
  • the temperature control element can have at least one temperature control medium channel, through which a temperature control medium can be circulated through the temperature control element.
  • the temperature control medium provided in the temperature control medium channel of the temperature control element is designed to be electrically non-conductive.
  • the temperature control medium can also be made non-conductive and/or kept non-conductive continuously or cyclically by a treatment device by continuously or cyclically subjecting the temperature control medium to a conductivity-reducing treatment.
  • a larger range of temperature control means can be used, in which case, in particular, those temperature control means which have a high heat capacity and/or heat conductivity can also be used.
  • the temperature control medium can be or contain water, in which case, for example, a water-glycol mixture can be used as the temperature control medium.
  • the temperature control medium can be conditioned, for example by a deionization device, in such a way that the conductivity is kept at very low values and/or the temperature control medium is actually non-conductive.
  • the deionization device can treat the entire temperature control medium flow.
  • the treatment device in particular the deionization device mentioned, is arranged in a side or bypass arm of the temperature control medium circuit, so that when the temperature control medium is circulated, only part of the temperature control medium flows through the treatment device and the remaining part of the temperature control medium flows on flows past the treatment device.
  • a treatment device with a comparatively smaller capacity can be used, compared to an arrangement in which the entire temperature control medium flow is guided through the treatment device.
  • the temperature control medium can be kept at a sufficiently low conductivity.
  • a deionization device can be provided which can have a treatment bed through which the temperature control medium can flow, for example comprising resin beads.
  • a deionization bottle with resin beads can be provided, through which the temperature control medium or the branched-off part flows.
  • a smaller portion of the temperature control medium quantity can be conveyed through the deionization device in order to continuously keep the conductance of the temperature control medium low.
  • a refrigerant can also be used as the temperature control medium, as is the case, for. B. is used in refrigerators, such a refrigerant in liquid form through the electrically conductive temperature control can be rolled.
  • a refrigerant can be used here that is electrically non-conductive, such as e.g. B. the refrigerant R134A.
  • a temperature control medium can be used that at least partially evaporates at the intended operating temperature of the energy storage device in the temperature control element. If a phase transition occurs at the heat source and/or at the temperature control element as a result of partial evaporation of the temperature control medium, even larger amounts of heat can be dissipated and thus better cooling properties can be achieved.
  • the electrical resistances of the temperature control element which also serves as an electrical contact connection of the storage element and/or the energy storage device, are kept at low resistance values or a low electrical resistance by the cooling.
  • substitutes such as hexafluor can also be used as temperature control agents.
  • temperature control agents that have very good properties with regard to non-combustibility, non-flammability, low electrical conductivity, low viscosity and/or being inert.
  • a medium with fire-extinguishing properties can be used as the temperature control medium, which, particularly in the case of lithium-ion batteries, can also avoid a total loss in the event of a worst-case error and can make a significant contribution to safety.
  • the temperature control element can have a recess that is shaped to match the pole connection of the storage element and with which the temperature control element sits on the pole connection.
  • Said recess can be designed as a through hole or as a blind-hole-like depression whose diameter or cross-sectional contouring and/or dimensioning corresponds to the through- knife or which is adapted by cross-sectional contouring and/or dimensions of the pole connection, so that the recess of the tempering element can be placed precisely on the pole connection.
  • the temperature control element with the recess mentioned can at least partially encompass the pole connection on the peripheral side, as a result of which a greater heat transfer can be achieved than with contacting only at the front.
  • good heat transfer and a stable connection can also be achieved by welding the temperature control element to the pole connection.
  • a welded connection keeps the storage element stable on the temperature control element and at the same time contributes to good heat transfer.
  • the vibration and vibration resistance of the energy storage device can be increased by a welded connection and at the same time the use of materials and thus the weight can be reduced.
  • the temperature control element can be welded to the pole connection by means of a laser, as a result of which gentle welding with little heat input can be achieved on the one hand.
  • the depth or the position of the weld seam can also be controlled very precisely, which is advantageous, for example, when the tempering element with the recess mentioned is seated on the pole connection and the weld seam is to be placed in the area of the circumferential gripping.
  • ultrasound can also be used for welding in order to be able to achieve a high-strength welded connection with low temperature or heat input, in particular also with thin-walled temperature control elements.
  • Ultrasonic welding can be particularly advantageous when the temperature control element is seated on the end face of the pole connection, be it with the bottom of a blind hole-shaped recess or without a recess with the then flat outside. If, in the above-mentioned manner, a recess adapted to the pole connection of the storage element is provided on the temperature control element, with which the temperature control element sits on the pole connection, the welded connection can be provided in the area of the recess or connect the recess to the pole connection.
  • the weld connection mentioned can simultaneously form a seal that seals the hollow interior space or the temperature control medium channel of the temperature control element from the pole connection and from the environment . In this respect, it is not necessary to pay attention to whether the connection point of the storage element collides with a tempering medium channel. This is particularly advantageous when a large number of storage elements are connected to the temperature control element.
  • a single storage element can be attached to the temperature control element, but rather a group of several storage elements can be provided next to one another in a preferably matrix-like arrangement, with the temperature control element being attached to the pole connections of all storage elements of the group mentioned.
  • a storage block can be efficiently configured and manufactured from a plurality of storage elements, with the individual cells being fastened to the temperature control element in a simple frame made of plastic, for example, or even without a frame and being held together by it.
  • the temperature control element can form an at least approximately flat temperature control plate, which is fastened on one side to the pole connections of a plurality of storage elements, for example can be welded to the pole connections of the storage elements in the aforementioned manner.
  • such a tempering plate can have a preferably matrix-like pattern of recesses in the form of through and/or blind holes. point, with which the temperature plate can sit on the plan circuits of the storage elements.
  • the temperature control element can be designed as a roll bond plate, which can have temperature control medium cavities and/or one or more temperature control medium channels on the inside.
  • the roll-bonding material can be made thinner in such a roll-bond plate at the points intended for contacting the pole connections of the storage elements, with these thinner areas advantageously being bonded to the pole connections of the storage elements by ultrasonic welding and with minimal temperature input and also can be connected without welding spatter.
  • At least one meandering temperature control medium channel can be guided through the temperature control element.
  • temperature control elements in particular temperature control plates, can be provided on opposite sides of the package composed of a plurality of storage elements and can be connected, in particular welded, to the respective pole connections of the storage elements provided there. This results in a very stable storage block in which the storage elements are sandwiched between the two tempering plates.
  • a space between adjacent storage elements can be filled with a filling material which can preferably be thermally conductive and/or electrically non-conductive.
  • a thermally conductive but electrically non-conductive filling material can not only equalize the temperature conditions, but also electrically separate the storage elements or the pole connections and/or temperature control elements from one another.
  • the spaces between adjacent storage elements can be filled with foam or filled with a foam-like filling material.
  • the procedure can advantageously be such that the group of storage elements provided for a storage module is first fastened, in particular welded, to a tempering plate with their front sides or the terminal connections provided on the front side.
  • the subassembly that is already preassembled in this way can then be filled, in particular foamed, with the filling material mentioned in the spaces between the storage elements.
  • a second tempering plate can be fastened, in particular welded, to the pole connections that are still free on the opposite end face of the storage elements.
  • the filling material in the space between adjacent storage elements can advantageously be or comprise a heat-storing material, in particular a latent heat-storing material, in order to keep the storage elements at a temperature that is as constant as possible in the intended temperature window.
  • a latent heat storage material is characterized, among other things, by the fact that, from a certain temperature, the further rise in temperature that would otherwise occur is cushioned and averted by absorbing the thermal energy.
  • a material that stores latent heat can be used as filling material, which can store or release a large amount of heat through phase transformation in a temperature window that is below detrimental temperatures for the storage elements and/or in a preferred temperature range of the storage elements.
  • the material that stores latent heat can be configured to undergo a phase transition in the temperature range between 15° to 30° C. or 20° to 25° C. and thereby to be able to store large amounts of heat.
  • an excessive rise in temperature during operation of the energy storage device can be prevented.
  • the temperature of the storage elements can be prevented from dropping too much if they are out of operation at night, for example, since the thermal energy from the latent storage can be used here to supply the energy storage device with heat at low ambient temperatures, without the need for electrical energy would have to be removed from the energy storage device.
  • Fig. 1 a plan view of an energy storage device according to an advantageous embodiment of the invention, wherein several groups of storage elements are each combined to form a storage block and the several storage blocks are in turn connected to one another by connecting straps, the plan view showing the connection points between the plate-shaped temperature control elements and the pole connections as well as the tempering medium channels meandering through the tempering elements,
  • FIG. 3 a further side view of the energy storage device, which shows an arrangement of the storage blocks next to one another or one on top of the other.
  • the energy storage device 1 comprises a multiplicity of storage elements 2, which are advantageously arranged in a matrix-like arrangement. can be arranged next to each other in a field of several rows and columns.
  • Said storage elements 2 can be capacitor or supercapacitor elements or battery or accumulator cells such as lithium-ion cells. Alternatively or additionally, fuel cells can also be used as storage elements 2 .
  • the storage elements 2 can optionally also include different types of storage elements, for example combined supercapacitor elements and lithium-ion battery elements.
  • the storage elements 2 can each have a pole connection 10 on opposite end faces, to which a temperature control element 4 is fastened in order to extract the heat from the storage elements 2 directly via the pole connections 10 .
  • the storage elements 2 can each be combined in groups on a common temperature control element 4 or on two opposite temperature control elements 4, with the named temperature control elements 4 advantageously being plate-shaped or can form temperature control plates which, in terms of outline and/or area, essentially correspond to the respective Field or each matrix-like group of memory elements 2 can cover.
  • the named temperature control elements 4 advantageously being plate-shaped or can form temperature control plates which, in terms of outline and/or area, essentially correspond to the respective Field or each matrix-like group of memory elements 2 can cover.
  • 8 by 8 storage elements 2 can be connected to a common, for example square, temperature control element 4 that covers the entire end face of the 8 by 8 element arrangement.
  • the plate-shaped temperature control elements 4 are advantageously welded to the pole connections 10 of the storage elements 2 assigned to them, preferably preferably by laser welding or ultrasonic welding in order to achieve a stable connection between the pole connections 10 of the storage elements 2 and the temperature control elements 4 with little heat input.
  • the temperature control elements 2 can each have a temperature control medium channel 5 which leads through the respective temperature control element 4 .
  • the temperature control medium channel 5 can meander through a respective plate-shaped temperature control element 4, in particular in such a way that the temperature control medium channel 5 extends between the rows of pole connections 10 of the storage elements 2 and at the end of a respective row of pole connections 2 through a U-shaped bend in the next row or between the next rows.
  • the slightly protruding pole connections 10 can engage in shape-adapted recesses 12 which are formed in the respective temperature control element 4 and which can correspond in terms of arrangement to the pattern or the matrix-like arrangement of the storage elements 2 or their pole connections 10 .
  • Said recesses 12 can be adapted in shape to the pole connections 10 and can be designed, for example, as a through hole or also as a depression similar to a blind hole, with which the tempering element 4 sits on the protruding pole connection 10 . If such recesses 12 are provided, the welded connection can connect said recesses 12 to the respective pole connection 10 . In principle, however, it is also possible to work without such recesses 12 .
  • the named temperature control elements 4 can advantageously be roll bond plates. Irrespective of this, the temperature control elements 4 can consist of aluminum or an aluminum alloy, for example.
  • the storage elements 2 are sandwiched between two plate-shaped storage elements 4 in each case.
  • the remaining between the memory elements 2 gaps 13, which are strand-like from Storage element can extend to storage element and can be caused by the round cross-sectional shape of the storage elements 2 are advantageously expired by a filling material 14 in order to further stabilize the respective storage block and also to optimize it from a thermal point of view.
  • the gaps 13 mentioned between the storage elements 2 can be filled with a heat-conducting but electrically non-conductive foam material in order to achieve as full-surface contact as possible between the filling material and the walls of the storage elements 2 .
  • a filling material 14 that stores latent heat is used, which undergoes a phase change in an operating temperature window of, for example, 20° to 25° desired for the storage elements 2 and can thus absorb large amounts of heat in the temperature window without major temperature changes and, conversely, can also release it again.
  • the latent heat-storing filling material 14 can avoid a greater temperature rise and essentially keep the temperature within the said temperature window, in which a great deal of heat is absorbed by phase transformation or by the latent heat-storing property.
  • the latent heat-storing filling material 14 can return the previously absorbed heat to the storage elements 2 and keep them within the desired temperature window.
  • the temperature control element 4 is first welded onto one end face of the storage cell group and then the intermediate spaces 13 are foamed and then the second temperature control plate is welded onto the opposite end face of the storage cell group.
  • the memory blocks 15 to 20 that can be positioned next to each other can on the one hand be electrically conductively connected to one another at the storage elements 4 serving as an electrical contact connection and, moreover, be connected to one another in the region of the tempering medium channels 5 .
  • the temperature control elements 4 connected to the positive pole can be conductively connected to one another and the temperature control elements 4 connected to the negative pole can each be connected to one another.
  • the temperature control elements 4 can basically be connected in the same way as the connection to the pole connections 10.
  • the temperature control elements 4 can be welded to one another, in particular by laser or ultrasonic welding. Alternatively, however, connections can also be made with flexible strips in order to be able to better compensate for temperatures and tolerances.
  • insulating cooling hoses or tubes can also be pressed at the connection points.
  • the temperature control medium channels 5 meandering through the temperature control elements 4 can be connected to one another by preferably insulating channel connectors 21, so that a cooling circuit is routed through a number of temperature control elements 4 and requires only one temperature control medium inlet 6 and one temperature control medium outlet 7 overall will.
  • a circulating pump 22 can be connected to the named temperature control medium inlets and outlets 6 and 7 of the temperature control device 3 in order to circulate the temperature control medium through the temperature control medium channels 5 of the blocks 15 to 21 .
  • the temperature control device 3 can have a treatment device 8 which subjects the temperature control medium to a conductance-reducing treatment cyclically or continuously during operation.
  • the treatment device 8 can in particular comprise a deionization device 9 which deionizes the temperature control medium.
  • the deionization device 9 can be arranged in a bypass arm 11 of the temperature control medium circuit in order to allow part of the circulating temperature control medium to flow through the deionization device 9 .
  • the deionization device 9 can be or comprise a deionization bottle with an active material bed, for example in the form of small resin beads, which can be replaced and/or regenerated if necessary.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Secondary Cells (AREA)

Abstract

The invention relates to an energy storage device comprising at least one storage element and a temperature control device for controlling the temperature of the storage element, said temperature control device having at least one coolable and/or heatable temperature control element, the temperature control element being fastened to a terminal connection of the storage element.

Description

Energiespeichervorrichtung mit Temperiervorrichtung Energy storage device with temperature control device
Die vorliegende Erfindung betrifft eine Energiespeichervorrichtung mit zumindest einem Speicherelement sowie einer Temperiervorrichtung zum Temperieren des Speicherelements, die zumindest ein mit dem Speicherelement in Kontakt stehendes, kühl- und/oder beheizbares Temperierelement umfasst. The present invention relates to an energy storage device with at least one storage element and a temperature control device for temperature control of the storage element, which comprises at least one coolable and/or heatable temperature control element that is in contact with the storage element.
Moderne Energiespeicher wie Lithiumionen-Batterien oder Superkondensatoren bzw. kondensatorische Speicherzellen wie Doppelschicht-Kondensatoren ohne elektrisch isolierendes Dielektrikum sind hinsichtlich Temperaturschwankungen bzw. zu hohen und zu niedrigen Temperaturen recht empfindlich und sollten deshalb in einem bestimmungsgemäßen Temperaturfenster gehalten werden. Insbesondere hängt die Lebensdauer und Verfügbarkeit von solchen Hochleistungs- Energiespeichervorrichtungen sehr stark von deren Temperatur im Betrieb und während des Ladevorgangs ab. Um keine zu hohen Temperaturen der Speicherzellen bzw. -elemente zuzulassen, werden solche Energiespeichervorrichtungen üblicherweise gekühlt, wobei es umgekehrt bei Leerlaufzeiten bzw. der Lagerung in kalter Umgebung notwendig werden kann, die Speicherelemente zu wärmen, um sie im gewünschten Temperaturfenster zu halten. Dabei hat das Kühlen nicht nur eine günstige Wirkung auf die Lebenszeit der Energiespeichervorrichtung, indem Überhitzungen vermieden werden, sondern auch Einfluss auf die Ladezeit und damit die Verfügbarkeit, da bei ausreichend effizienter Kühlung mit höheren Ladeströmen schneller und damit kürzer geladen werden kann. Modern energy stores such as lithium-ion batteries or supercapacitors or capacitor storage cells such as double-layer capacitors without an electrically insulating dielectric are very sensitive to temperature fluctuations or excessively high or low temperatures and should therefore be kept within a specified temperature range. In particular, the service life and availability of such high-performance energy storage devices depends very much on their temperature during operation and during the charging process. In order not to allow the storage cells or elements to have excessively high temperatures, such energy storage devices are usually cooled. Conversely, during idle times or storage in a cold environment, it may be necessary to heat the storage elements in order to keep them within the desired temperature window. The cooling not only has a beneficial effect on the lifetime of the energy storage device by Overheating is avoided, but also influences the charging time and thus the availability, since with sufficiently efficient cooling, charging can be carried out faster and therefore shorter with higher charging currents.
Da die Stirnseiten der Speicherzellen üblicherweise für die Polanschlüsse benötigt werden, sind Kühl- bzw. Temperierelemente üblicherweise seitlich an den Speicherelementen angebracht, um die Wärme aus dem Kem der Zellen herauszuziehen bzw. im umgekehrten Fall die Zellen zu wärmen. Beispielsweise bei Lithiumio- nen-Autobatterien ist es bekannt, Kühlplatten wendeiförmig an die Außenhülle der Speicherzelle anzubringen, was jedoch zu einer relativ schlechten Wärmeübertragung aus dem Kem der Batteriezelle zur Außenhülle und eine Erhöhung der Kühlmitteltemperatur durch eine serielle Durchströmung mit sich bringt. Since the end faces of the storage cells are usually required for the terminal connections, cooling or temperature control elements are usually attached to the side of the storage elements in order to extract the heat from the core of the cells or, in the opposite case, to warm the cells. In lithium-ion car batteries, for example, it is known to helically attach cooling plates to the outer shell of the storage cell, but this results in relatively poor heat transfer from the core of the battery cell to the outer shell and an increase in the coolant temperature due to serial flow.
Beispielsweise zeigt die Schrift DE 10 2005 017 648 B eine flüssig gekühlte Ener- giespeichervorrichtung für ein Kraftfahrzeug, bei dem Speicherzellen in einer mat- rixartigen Anordnung nebeneinander positioniert sind und auf einer Seite mit ihren stirnseitigen Enden auf eine Kühlplatte gesetzt sind, die stegförmig vorspringende Krägen besitzt, die die einzelnen Speicherzellen umgreifen, und von einem Kühlmedium durchströmt wird. Die andere Seite der Speicherzellen bleibt ungekühlt, da dort die Polanschlüsse vorgesehen sind. For example, document DE 10 2005 017 648 B shows a liquid-cooled energy storage device for a motor vehicle, in which storage cells are positioned next to one another in a matrix-like arrangement and are placed on one side with their front ends on a cooling plate that has web-like projecting collars has, which surround the individual storage cells, and is flowed through by a cooling medium. The other side of the storage cells remains uncooled since the pole connections are provided there.
Die DE 10 2013 009 823 A1 zeigt eine Energiespeichervorrichtung, deren Speicherblöcke Doppelschichtkondensatoren als Speicherelemente sowie Stromstellerund -Steuerelemente umfassen, wobei die Speicherblöcke mit Kühlmittelanschlüssen versehen sind, um Kühlmittel durch die Speicherblöcke zirkulieren zu können. Eine ähnliche Speichervorrichtung mit Doppelschichtkondensatoren und Stromstel- lern zeigt die Schrift DE 10 2018 114 405 A1 . DE 10 2013 009 823 A1 shows an energy storage device whose storage blocks include double-layer capacitors as storage elements and current controllers and control elements, the storage blocks being provided with coolant connections in order to be able to circulate coolant through the storage blocks. A similar storage device with double-layer capacitors and current regulators is shown in document DE 10 2018 114 405 A1.
Bei den bislang bekannten Energiespeichervorrichtungen ist der Aufwand, die Speicherelemente in einem idealen Temperaturbereich zu halten, sehr hoch und damit auch kostenintensiv. Weitere Kosten entstehen durch aufwendiges Material für die Temperierelemente und die Produktionsprozesse, um diese Temperierelemente zu fertigen und anzubringen. In the case of the energy storage devices known to date, the effort required to keep the storage elements in an ideal temperature range is very high and therefore also cost-intensive. Additional costs arise from expensive material for the temperature control elements and the production processes to manufacture and attach these temperature control elements.
Der vorliegenden Erfindung liegt die Aufgabe zugrunde, eine verbesserte Energiespeichervorrichtung der genannten Art zu schaffen, die Nachteile des Standes der Technik vermeidet und letzteren in vorteilhafter Weise weiterbildet. Insbesondere soll eine effiziente Kühlung oder Temperierung der Speicherelemente erreicht werden, um deren Lebensdauer zu erhöhen, die Ladezeiten zu verkürzen und die Verfügbarkeit der Energiespeichervorrichtung und der hiervon versorgten Maschine zu erhöhen, ohne dies durch aufwendige Fertigungsprozesse zu erkaufen und hohe Kosten aufwenden zu müssen. The present invention is based on the object of creating an improved energy storage device of the type mentioned which avoids the disadvantages of the prior art and further develops the latter in an advantageous manner. In particular, efficient cooling or temperature control of the storage elements should be achieved in order to increase their service life, shorten the charging times and increase the availability of the energy storage device and the machine supplied by it, without having to buy this through complex manufacturing processes and having to incur high costs.
Erfindungsgemäß wird die genannte Aufgabe durch eine Energiespeichervorrichtung gemäß Anspruch 1 gelöst. Bevorzugte Ausgestaltungen der Erfindung sind Gegenstand der abhängigen Ansprüche. According to the invention, the stated object is achieved by an energy storage device according to claim 1 . Preferred developments of the invention are the subject matter of the dependent claims.
Es wird also vorgeschlagen, die Temperierung der Speicherelemente über deren Polanschlüsse zu bewerkstelligen und die Temperiervorrichtung wärmeübertragend an die Polanschlüsse anzubinden. Erfindungsgemäß ist das zumindest eine Temperierelement der Temperiervorrichtung an einem Polanschluss des zumindest einen Speicherelements befestigt. It is therefore proposed to bring about the temperature control of the storage elements via their pole connections and to connect the temperature control device to the pole connections in a heat-transferring manner. According to the invention, the at least one temperature control element of the temperature control device is attached to a pole connection of the at least one storage element.
Der Temperierung des Speicherelements über den Polanschluss liegt die Überlegung zugrunde, dass die Wärmeabfuhr bzw. ggf. -zufuhr an den Polen von Speicherelementen einen sehr großen Einfluss auf deren Lebensdauer hat. Bei Kühlung an den Polanschlüssen erleiden die Speicherelemente deutlich geringere Kapazi- tätsverluste über die Ladezyklenzahl als bei einer Oberflächenkühlung der Speicherelemente. Bei einer solchen Oberflächenkühlung der Mantelflächen der Zellen können die Kapazitätsverluste um ein Vielfaches höher ausfallen und bis zu 9 mal höher sein als bei einer Polkühlung. llm einerseits eine Polkühlung bzw. -temperierung vorsehen zu können, andererseits aber keine Platzprobleme oder schwierige Anbindungskonstruktionen zu erfordern, kann in Weiterbildung der Erfindung das am Polanschluss befestigte Temperierelement eine Doppelfunktion haben und gleichzeitig als Kontaktlasche dienen. Insbesondere kann das Temperierelement eine elektrisch leitende Oberfläche besitzen und gleichzeitig einen elektrischen Kontaktanschluss des Speicherelements und/oder der Energiespeichervorrichtung bilden. The temperature control of the storage element via the pole connection is based on the consideration that the dissipation or supply of heat at the poles of storage elements has a very large influence on their service life. With cooling at the pole connections, the storage elements suffer significantly lower capacity losses over the number of charging cycles than with surface cooling of the storage elements. With such a surface cooling of the lateral surfaces of the cells, the capacity losses can be many times higher and up to 9 times higher than with pole cooling. On the one hand, to be able to provide pole cooling or temperature control, but on the other hand not to require space problems or difficult connection constructions, the temperature control element attached to the pole connection can have a dual function in a further development of the invention and at the same time serve as a contact lug. In particular, the temperature control element can have an electrically conductive surface and at the same time form an electrical contact connection of the storage element and/or the energy storage device.
Unabhängig von der genannten Doppelfunktion kann die Temperiervorrichtung einen Kühlmittel- bzw. Temperiermittelkreislauf umfassen und ein flüssiges und/oder gasförmiges Temperiermittel durch das zumindest eine Temperierelement hindurchführen bzw. das genannte Temperierelement mit dem Temperiermittel kühlen und/oder wärmen. Insbesondere kann das Temperierelement zumindest einen Temperiermittelkanal aufweisen, durch den hindurch ein Temperiermittel durch das Temperierelement zirkuliert werden kann. Hierdurch kann eine deutlich effizientere Kühlung und/oder Wärmung erfolgen und sehr viel größere Wärmemengen abgeführt und/oder zugeführt werden als dies mit einer Vorrichtung der Fall wäre, die nur mit Oberflächenkonvektion arbeitet. Irrespective of the dual function mentioned, the temperature control device can include a coolant or temperature control medium circuit and can guide a liquid and/or gaseous temperature control medium through the at least one temperature control element or cool and/or heat the named temperature control element with the temperature control medium. In particular, the temperature control element can have at least one temperature control medium channel, through which a temperature control medium can be circulated through the temperature control element. As a result, significantly more efficient cooling and/or heating can take place and much larger amounts of heat can be removed and/or supplied than would be the case with a device that only works with surface convection.
Um die zuvor genannte Doppelfunktion des Temperierelements als elektrischer Kontaktanschluss für das Speicherelement nicht zu beeinträchtigen, ist das in dem Temperiermittelkanal des Temperierelements vorgesehene Temperiermittel elektrisch nichtleitend ausgebildet. Alternativ oder zusätzlich kann das Temperiermittel auch von einer Behandlungsvorrichtung kontinuierlich oder zyklisch nichtleitend gemacht und/oder nichtleitend gehalten werden, indem das Temperiermittel kontinuierlich oder zyklisch einer die Leitfähigkeit reduzierenden Behandlung unterworfen wird. Hierdurch wird eine größere Bandbreite an Temperiermitteln verwendbar, wobei insbesondere auch solche Temperiermittel verwendet werden können, die eine hohe Wärmekapazität und/oder -leitfähigkeit besitzen. In order not to impair the aforementioned dual function of the temperature control element as an electrical contact connection for the storage element, the temperature control medium provided in the temperature control medium channel of the temperature control element is designed to be electrically non-conductive. Alternatively or additionally, the temperature control medium can also be made non-conductive and/or kept non-conductive continuously or cyclically by a treatment device by continuously or cyclically subjecting the temperature control medium to a conductivity-reducing treatment. As a result, a larger range of temperature control means can be used, in which case, in particular, those temperature control means which have a high heat capacity and/or heat conductivity can also be used.
Beispielsweise kann das Temperiermittel Wasser sein oder enthalten, wobei beispielsweise ein Wasser-Glykol-Gemisch als Temperiermittel verwendet sein kann. llm den Leitwert eines solchen wasserhaltigen Temperiermittels niedrig zu halten, kann das Temperiermittel beispielsweise durch ein Entionisierungsgerät so konditioniert werden, dass der Leitwert auf sehr tiefen Werten gehalten wird und/oder das Temperiermittel faktisch nichtleitend ist. For example, the temperature control medium can be or contain water, in which case, for example, a water-glycol mixture can be used as the temperature control medium. In order to keep the conductance of such an aqueous temperature control medium low, the temperature control medium can be conditioned, for example by a deionization device, in such a way that the conductivity is kept at very low values and/or the temperature control medium is actually non-conductive.
Die Entionisierungseinrichtung kann dabei grundsätzlich den gesamten Temperiermittelstrom behandeln. Alternativ ist es aber auch ausreichend und insofern vorteilhaft, wenn die Behandlungsvorrichtung, insbesondere die genannte Entionisierungseinrichtung, in einem Seiten- oder Bypassarm des Temperiermittelkreises angeordnet ist, sodass beim Umwälzen des Temperiermittels nur ein Teil des Temperiermittels die Behandlungsvorrichtung durchströmt und der restliche Teil des Temperiermittels an der Behandlungsvorrichtung vorbeiströmt. Hierdurch kann eine Behandlungsvorrichtung mit vergleichsweise kleinerer Kapazität Verwendung finden, und zwar im Vergleich zu einer Anordnung, bei der der gesamte Temperiermittelstrom durch die Behandlungsvorrichtung geführt wird. Trotzdem kann das Temperiermittel auf einem ausreichend tiefen Leitwert gehalten werden. In principle, the deionization device can treat the entire temperature control medium flow. Alternatively, however, it is also sufficient and advantageous if the treatment device, in particular the deionization device mentioned, is arranged in a side or bypass arm of the temperature control medium circuit, so that when the temperature control medium is circulated, only part of the temperature control medium flows through the treatment device and the remaining part of the temperature control medium flows on flows past the treatment device. As a result, a treatment device with a comparatively smaller capacity can be used, compared to an arrangement in which the entire temperature control medium flow is guided through the treatment device. Despite this, the temperature control medium can be kept at a sufficiently low conductivity.
Beispielsweise kann eine Entionisierungseinrichtung vorgesehen sein, die ein vom Temperiermittel durchströmbares Behandlungsbett beispielsweise umfassend Harzkügelchen besitzen kann. Beispielsweise kann eine Entionisierungsflasche mit Harzkügelchen vorgesehen sein, die vom Temperiermittel bzw. dem abgezweigten Teil durchströmt wird. For example, a deionization device can be provided which can have a treatment bed through which the temperature control medium can flow, for example comprising resin beads. For example, a deionization bottle with resin beads can be provided, through which the temperature control medium or the branched-off part flows.
Vorteilhafterweise kann bei Betrieb einer Temperiermittelpumpe ein kleinerer Teil der Temperiermittelmenge durch die Entionisierungseinrichtung gefördert werden, um kontinuierlich den Leitwert des Temperiermittels tief zu halten. Advantageously, when a temperature control medium pump is in operation, a smaller portion of the temperature control medium quantity can be conveyed through the deionization device in order to continuously keep the conductance of the temperature control medium low.
In Weiterbildung der Erfindung kann als Temperiermittel auch ein Kältemittel Verwendung finden, wie es z. B. in Kühlschränken verwendet wird, wobei ein solches Kältemittel in flüssiger Form durch das elektrisch leitende Temperierelement um- gewälzt werden kann. Vorteilhafterweise kann hier ein Kältemittel Verwendung finden, das elektrisch nichtleitend ist, wie z. B. das Kältemittel R134A. In a further development of the invention, a refrigerant can also be used as the temperature control medium, as is the case, for. B. is used in refrigerators, such a refrigerant in liquid form through the electrically conductive temperature control can be rolled. Advantageously, a refrigerant can be used here that is electrically non-conductive, such as e.g. B. the refrigerant R134A.
Vorteilhafterweise kann dabei ein Temperiermittel verwendet werden, das bei bestimmungsgemäßer Betriebstemperatur der Energiespeichervorrichtung in dem Temperierelement zumindest teilweise verdampft. Tritt an der Wärmequelle und/oder an dem Temperierelement ein Phasenübergang durch teilweise Verdampfung des Temperiermittels auf, können noch größere Wärmemengen abgeführt und damit bessere Kühleigenschaften erreicht werden. Gleichzeitig werden die elektrischen Widerstände des Temperierelements, das gleichzeitig auch als elektrischer Kontaktanschluss des Speicherelements und/oder der Energiespeichervorrichtung dient, durch die Kühlung auf kleinen Widerstandswerten bzw. einem geringen elektrischen Widerstand gehalten. Advantageously, a temperature control medium can be used that at least partially evaporates at the intended operating temperature of the energy storage device in the temperature control element. If a phase transition occurs at the heat source and/or at the temperature control element as a result of partial evaporation of the temperature control medium, even larger amounts of heat can be dissipated and thus better cooling properties can be achieved. At the same time, the electrical resistances of the temperature control element, which also serves as an electrical contact connection of the storage element and/or the energy storage device, are kept at low resistance values or a low electrical resistance by the cooling.
Alternativ oder zusätzlich zu dem zuvor genannten Kältemittel R134A können als Temperiermittel aber auch Ersatzstoffe wie beispielsweise Hexafluor verwendet werden. Generell werden vorteilhafterweise Temperiermittel eingesetzt, die sehr gute Eigenschaft in Bezug auf Nicht-Brennbarkeit, Nicht-Entflammbarkeit, niedrige elektrische Leitfähigkeit, geringe Viskosität und/oder Inert-Sein besitzen. Alternatively or in addition to the aforementioned refrigerant R134A, substitutes such as hexafluor can also be used as temperature control agents. In general, it is advantageous to use temperature control agents that have very good properties with regard to non-combustibility, non-flammability, low electrical conductivity, low viscosity and/or being inert.
Insbesondere kann als Temperiermittel ein Medium mit brandlöschenden Eigenschaften verwendet werden, was insbesondere bei Lithiumionen-Batterien auch bei einem Worst-Case-Fehlerfall einen Totalschaden vermeiden und signifikant zur Sicherheit beitragen kann. In particular, a medium with fire-extinguishing properties can be used as the temperature control medium, which, particularly in the case of lithium-ion batteries, can also avoid a total loss in the event of a worst-case error and can make a significant contribution to safety.
Um einen hohen Wärmeübergang zwischen dem Polanschluss und dem Temperierelement zu schaffen und gleichzeitig eine stabile Verbindung zu ermöglichen, kann in Weiterbildung der Erfindung das Temperierelement eine an den Polanschluss des Speicherelements formangepasste Ausnehmung besitzen, mit der das Temperierelement auf dem Polanschluss sitzt. Die genannte Ausnehmung kann dabei als Durchgangsloch oder auch als sacklochartige Vertiefung ausgebildet sein, deren Durchmesser bzw. Querschnittskonturierung und/oder -bemaßung an den Durch- messer bzw. die durch Querschnittskonturierung und/oder -bemaßung des Polanschlusses angepasst ist, sodass die Ausnehmung des Temperierelements passgenau auf den Polanschluss setzbar ist. In order to create a high heat transfer between the pole connection and the temperature control element and at the same time enable a stable connection, in a further development of the invention the temperature control element can have a recess that is shaped to match the pole connection of the storage element and with which the temperature control element sits on the pole connection. Said recess can be designed as a through hole or as a blind-hole-like depression whose diameter or cross-sectional contouring and/or dimensioning corresponds to the through- knife or which is adapted by cross-sectional contouring and/or dimensions of the pole connection, so that the recess of the tempering element can be placed precisely on the pole connection.
Insbesondere kann das Temperierelement mit der genannten Ausnehmung den Polanschluss zumindest teilweise umfangsseitig umgreifen, wodurch ein größerer Wärmeübergang erzielt werden kann als bei einer nur stirnseitigen Kontaktierung. In particular, the temperature control element with the recess mentioned can at least partially encompass the pole connection on the peripheral side, as a result of which a greater heat transfer can be achieved than with contacting only at the front.
Unabhängig von einer solchen Ausnehmung am Temperierelement kann ein guter Wärmeübergang und eine stabile Verbindung auch dadurch erzielt werden, dass das Temperierelement mit dem Polanschluss verschweißt wird. Eine solche Schweißverbindung hält das Speicherelement stabil an dem Temperierelement und trägt gleichzeitig zu einer guten Wärmeübertragung bei. Insbesondere kann durch eine Schweißverbindung die Rüttel- und Schüttelfestigkeit der Energiespeichervorrichtung erhöht werden und gleichzeitig der Matenaleinsatz und damit auch das Gewicht verringert werden. Regardless of such a recess on the temperature control element, good heat transfer and a stable connection can also be achieved by welding the temperature control element to the pole connection. Such a welded connection keeps the storage element stable on the temperature control element and at the same time contributes to good heat transfer. In particular, the vibration and vibration resistance of the energy storage device can be increased by a welded connection and at the same time the use of materials and thus the weight can be reduced.
Vorteilhafterweise kann das Temperierelement mit dem Polanschluss mittels Laser verschweißt werden, wodurch einerseits eine schonende Verschweißung mit geringem Wärmeeintrag erreicht werden kann. Zum anderen kann auch die Tiefe bzw. die Position der Schweißnaht sehr exakt gesteuert werden, was beispielsweise von Vorteil ist, wenn das Temperierelement mit der genannten Ausnehmung auf dem Polanschluss sitzt und die Schweißnaht im Bereich des umfangsseitigen Umgreifens gelegt werden soll. Advantageously, the temperature control element can be welded to the pole connection by means of a laser, as a result of which gentle welding with little heat input can be achieved on the one hand. On the other hand, the depth or the position of the weld seam can also be controlled very precisely, which is advantageous, for example, when the tempering element with the recess mentioned is seated on the pole connection and the weld seam is to be placed in the area of the circumferential gripping.
Alternativ oder zusätzlich kann zum Verschweißen aber auch Ultraschall eingesetzt werden, um mit geringem Temperatur- bzw. Wärmeeintrag eine hochfeste Schweißverbindung erzielen zu können, insbesondere auch bei dünnwandigen Temperierelementen. Ein Ultraschweißen kann insbesondere dann vorteilhaft sein, wenn das Temperierelement stirnseitig auf dem Polanschluss sitzt, sei es mit dem Boden einer sacklochförmigen Ausnehmung oder ohne Ausnehmung mit der dann flachen Außenseite. Ist in der vorgenannten Weise am Temperierelement eine an den Polanschluss des Speicherelements formangepasste Ausnehmung vorgesehen, mit der das Temperierelement auf dem Polanschluss sitzt, kann die Schweißverbindung im Bereich der Ausnehmung vorgesehen sein bzw. die Ausnehmung mit dem Polanschluss verbinden. Ist das Temperierelement hohl ausgebildet bzw. besitzt es einen hohlen Innenraum und/oder einen im Bereich der Ausnehmung entlangführenden Temperiermittelkanal, kann die genannte Schweißverbindung gleichzeitig eine Abdichtung bilden, die den hohlen Innenraum bzw. den Temperiermittelkanal des Temperierelements gegenüber dem Polanschluss und zur Umgebung hin abdichtet. Insofern braucht nicht darauf geachtet zu werden, ob der Anbindungspunkt des Speicherelements mit einem Temperiermittelkanal kollidiert. Dies ist insbesondere von Vorteil, wenn eine Vielzahl an Speicherelementen mit dem Temperierelement verbunden wird. Alternatively or additionally, however, ultrasound can also be used for welding in order to be able to achieve a high-strength welded connection with low temperature or heat input, in particular also with thin-walled temperature control elements. Ultrasonic welding can be particularly advantageous when the temperature control element is seated on the end face of the pole connection, be it with the bottom of a blind hole-shaped recess or without a recess with the then flat outside. If, in the above-mentioned manner, a recess adapted to the pole connection of the storage element is provided on the temperature control element, with which the temperature control element sits on the pole connection, the welded connection can be provided in the area of the recess or connect the recess to the pole connection. If the temperature control element is hollow or has a hollow interior space and/or a temperature control medium channel running along the area of the recess, the weld connection mentioned can simultaneously form a seal that seals the hollow interior space or the temperature control medium channel of the temperature control element from the pole connection and from the environment . In this respect, it is not necessary to pay attention to whether the connection point of the storage element collides with a tempering medium channel. This is particularly advantageous when a large number of storage elements are connected to the temperature control element.
In vorteilhafter Weiterbildung der Erfindung kann nämlich nicht nur ein einzelnes Speicherelement an dem Temperierelement befestigt werden, sondern es kann eine Gruppe von mehreren Speicherelementen in einer vorzugsweise matrixartigen Anordnung nebeneinander vorgesehen sein, wobei das Temperierelement an den Polanschlüssen aller Speicherelemente der genannten Gruppe befestigt wird. Hierdurch kann in effizienter Weise ein Speicherblock aus mehreren Speicherelementen konfiguriert und gefertigt werden, wobei die einzelnen Zellen in einem einfachen Rahmen aus beispielsweise Kunststoff oder auch ganz ohne Rahmen an dem Temperierelement befestigt und von diesem zusammengehalten werden können. In an advantageous development of the invention, not only a single storage element can be attached to the temperature control element, but rather a group of several storage elements can be provided next to one another in a preferably matrix-like arrangement, with the temperature control element being attached to the pole connections of all storage elements of the group mentioned. As a result, a storage block can be efficiently configured and manufactured from a plurality of storage elements, with the individual cells being fastened to the temperature control element in a simple frame made of plastic, for example, or even without a frame and being held together by it.
Insbesondere kann das Temperierelement eine zumindest näherungsweise ebene Temperierplatte bilden, die mit einer Seite an den Polanschlüssen mehrerer Speicherelemente befestigt ist, beispielsweise in der vorgenannten Weise mit den Polanschlüssen der Speicherelemente verschweißt werden kann. In particular, the temperature control element can form an at least approximately flat temperature control plate, which is fastened on one side to the pole connections of a plurality of storage elements, for example can be welded to the pole connections of the storage elements in the aforementioned manner.
Vorteilhafterweise kann eine solche Temperierplatte ein vorzugsweise matrixartiges Muster von Ausnehmungen in Form von Durchgangs- und/oder Sacklöchern auf- weisen, mit denen die Temperaturplatte auf den Planschlüssen der Speicherelemente sitzen kann. Advantageously, such a tempering plate can have a preferably matrix-like pattern of recesses in the form of through and/or blind holes. point, with which the temperature plate can sit on the plan circuits of the storage elements.
Insbesondere kann das Temperierelement als Rollbondplatte ausgebildet sein, die im Inneren Temperiermittel-Hohlräume und/oder einen oder mehrere Temperiermittelkanäle aufweisen kann. In particular, the temperature control element can be designed as a roll bond plate, which can have temperature control medium cavities and/or one or more temperature control medium channels on the inside.
Bei einer solchen Rollbondplatte kann in Weiterbildung der Erfindung an den Stellen, die zur Kontaktierung mit den Polanschlüssen der Speicherelemente bestimmt sind, das Rollbondmaterial dünner ausgeführt werden, wobei diese dünner ausgeführten Bereiche vorteilhafterweise durch Ultraschallschweißen mit den Polanschlüssen der Speicherelemente hochfässt und mit minimalstem Temperatureintrag und auch ohne Schweißspritzer verbunden werden können. In a further development of the invention, the roll-bonding material can be made thinner in such a roll-bond plate at the points intended for contacting the pole connections of the storage elements, with these thinner areas advantageously being bonded to the pole connections of the storage elements by ultrasonic welding and with minimal temperature input and also can be connected without welding spatter.
Vorteilhafterweise kann zumindest ein mäanderförmiger Temperiermittelkanal durch das Temperierelement geführt sein. Advantageously, at least one meandering temperature control medium channel can be guided through the temperature control element.
Vorteilhafterweise können auf gegenüberliegenden Seiten des Pakets aus mehreren Speicherelementen Temperierelemente, insbesondere Temperierplatten vorgesehen und mit den dort jeweils vorgesehenen Polanschlüssen der Speicherelemente verbunden, insbesondere verschweißt sein. Hierdurch ergibt sich ein sehr stabiler Speicherblock, in dem die Speicherelemente sandwichartig zwischen den beiden Temperierplatten angeordnet sind. Advantageously, temperature control elements, in particular temperature control plates, can be provided on opposite sides of the package composed of a plurality of storage elements and can be connected, in particular welded, to the respective pole connections of the storage elements provided there. This results in a very stable storage block in which the storage elements are sandwiched between the two tempering plates.
Um die Anordnung mehrerer Speicherelemente zusätzlich zu stabilisieren und auch die Temperaturverhältnisse zu vergleichmäßigen, kann in Weiterbildung der Erfindung ein Zwischenraum zwischen benachbarten Speicherelementen mit einem Ver- füllmaterial verfällt sein, das vorzugsweise wärmeleitend und/oder elektrisch nichtleitend sein kann. Durch ein wärmeleitendes, elektrisch jedoch nichtleitendes Ver- füllmaterial können nicht nur die Temperaturverhältnisse vergleichmäßigt, sondern auch die Speicherelemente bzw. die Polanschlüsse und/oder Temperierelemente voneinander elektrisch separiert werden. Vorteilhafterweise können die Zwischenräume zwischen benachbarten Speicherelementen ausgeschäumt bzw. durch einen schaumartigen Verfüllstoff verfällt werden. In order to additionally stabilize the arrangement of several storage elements and also to equalize the temperature conditions, in a further development of the invention a space between adjacent storage elements can be filled with a filling material which can preferably be thermally conductive and/or electrically non-conductive. A thermally conductive but electrically non-conductive filling material can not only equalize the temperature conditions, but also electrically separate the storage elements or the pole connections and/or temperature control elements from one another. Advantageously, the spaces between adjacent storage elements can be filled with foam or filled with a foam-like filling material.
In herstellungstechnischer Hinsicht kann dabei vorteilhafterweise so vorgegangen werden, dass zunächst die für ein Speichermodul vorgesehene Gruppe von Speicherelementen mit ihren Stirnseiten bzw. den stirnseitig vorgesehenen Polanschlüssen an einer Temperierplatte befestigt, insbesondere angeschweißt werden. Die solchermaßen bereits vormontierte Baugruppe kann sodann in den Zwischenräumen zwischen den Speicherelementen mit dem genannten Verfüllmaterial verfüllt, insbesondere ausgeschäumt werden. In einem dann folgenden Verfahrensschritt kann eine zweite Temperierplatte auf den noch freien Polanschlüssen auf der gegenüberliegenden Stirnseite der Speicherelemente befestigt, insbesondere angeschweißt werden. In terms of manufacturing technology, the procedure can advantageously be such that the group of storage elements provided for a storage module is first fastened, in particular welded, to a tempering plate with their front sides or the terminal connections provided on the front side. The subassembly that is already preassembled in this way can then be filled, in particular foamed, with the filling material mentioned in the spaces between the storage elements. In a method step that then follows, a second tempering plate can be fastened, in particular welded, to the pole connections that are still free on the opposite end face of the storage elements.
Unabhängig von der Art und Weise der Befestigung bzw. Verfüllung kann das Verfüllmaterial im Zwischenraum zwischen benachbarten Speicherelementen vorteilhafterweise ein wärmespeicherndes, insbesondere ein latentwärmespeicherndes Material sein bzw. umfassen, um die Speicherelemente auf einer möglichst konstanten Temperatur im vorgesehenen Temperaturfenster zu halten. Ein solches latentes Wärmespeichermatenal zeichnet sich u.a. dadurch aus, dass ab einer bestimmten Temperatur das an sich sonst erfolgende weitere Ansteigen der Temperatur abgefedert und durch Aufnahme der Wärmeenergie abgewendet wird. Insbesondere kann als Verfüllmaterial ein latentwärmespeicherndes Material eingesetzt werden, das in einem Temperaturfenster, das unterhalb abträglicher Temperaturen für die Speicherelemente und/oder in einem bevorzugten Temperaturbereich der Speicherelemente liegt, eine große Wärmemenge durch Phasenumwandlung speichern bzw. freisetzen kann. Beispielsweise kann das latentwärmespeichernde Material dazu konfiguriert sein, im Temperaturbereich zwischen 15° bis 30° C oder 20° bis 25° C eine Phasenumwandung durchzumachen und hierdurch große Wärmemengen speichern zu können. Hierdurch kann einerseits im Betrieb der Energiespeichervorrichtung ein übermäßiges Ansteigen der Temperatur verhindert werden. Andererseits kann ein zu starkes Absinken der Temperatur der Speicherelemente, wenn diese beispielsweise nachts außer Betrieb sind, verhindert werden, da hier die Wärmeenergie aus dem Latentspeicher dazu genutzt werden kann, um die Energiespeichervorrichtung bei tiefen Umgebungstemperaturen mit Wärme zu versorgen, ohne dass hierzu elektrische Energie aus der Energiespeichervorrichtung entnommen werden müsste. Irrespective of the type of attachment or filling, the filling material in the space between adjacent storage elements can advantageously be or comprise a heat-storing material, in particular a latent heat-storing material, in order to keep the storage elements at a temperature that is as constant as possible in the intended temperature window. Such a latent heat storage material is characterized, among other things, by the fact that, from a certain temperature, the further rise in temperature that would otherwise occur is cushioned and averted by absorbing the thermal energy. In particular, a material that stores latent heat can be used as filling material, which can store or release a large amount of heat through phase transformation in a temperature window that is below detrimental temperatures for the storage elements and/or in a preferred temperature range of the storage elements. For example, the material that stores latent heat can be configured to undergo a phase transition in the temperature range between 15° to 30° C. or 20° to 25° C. and thereby to be able to store large amounts of heat. As a result, on the one hand, an excessive rise in temperature during operation of the energy storage device can be prevented. On the other hand, the temperature of the storage elements can be prevented from dropping too much if they are out of operation at night, for example, since the thermal energy from the latent storage can be used here to supply the energy storage device with heat at low ambient temperatures, without the need for electrical energy would have to be removed from the energy storage device.
Die Erfindung wird nachfolgend anhand eines bevorzugten Ausführungsbeispiels und zugehörigen Zeichnungen näher erläutert. In den Zeichnungen zeigen: The invention is explained in more detail below using a preferred exemplary embodiment and associated drawings. In the drawings show:
Fig. 1 : eine Draufsicht auf eine Energiespeichervorrichtung nach einer vorteilhaften Ausführung der Erfindung, wobei mehrere Gruppen von Speicherelementen jeweils zu einem Speicherblock zusammengefasst sind und die mehreren Speicherblöcke wiederum durch Verbindungslaschen miteinander verbunden sind, wobei die Draufsicht die Verbindungspunkte zwischen den plattenförmigen Temperierelementen und den Polanschlüssen sowie die durch die Temperierelemente mäandernden Temperiermittelkanäle zeigt, Fig. 1 : a plan view of an energy storage device according to an advantageous embodiment of the invention, wherein several groups of storage elements are each combined to form a storage block and the several storage blocks are in turn connected to one another by connecting straps, the plan view showing the connection points between the plate-shaped temperature control elements and the pole connections as well as the tempering medium channels meandering through the tempering elements,
Fig. 2: eine Seitenansicht der Energiespeichervorrichtung aus Fig. 1 , die die sandwichartige Aufnahme der matrixartig angeordneten Speicherelemente zwischen jeweils zwei plattenförmigen Temperierelementen und die überbrückende Verbindung der Temperiermittelkanäle zeigt, und 2: a side view of the energy storage device from FIG
Fig. 3: eine weitere Seitenansicht der Energiespeichervorrichtung, die eine nebeneinander bzw. aufeinandersitzende Anordnung der Speicherblöcke zeigt. 3: a further side view of the energy storage device, which shows an arrangement of the storage blocks next to one another or one on top of the other.
Wie die Figuren zeigen, umfasst die Energiespeichervorrichtung 1 eine Vielzahl an Speicherelementen 2, die vorteilhafterweise in einer matrixartigen Anordnung ne- beneinander in einem Feld von mehreren Reihen und Spalten angeordnet sein können. As the figures show, the energy storage device 1 comprises a multiplicity of storage elements 2, which are advantageously arranged in a matrix-like arrangement. can be arranged next to each other in a field of several rows and columns.
Die genannten Speicherelemente 2 können dabei Kondensator- bzw. Superkondensatorelemente oder Batterie- oder Akkuzellen wie beispielsweise Lithiumionen- zellen sein. Alternativ oder zusätzlich können als Speicherelemente 2 auch Brennstoffzellen Verwendung finden. Die Speicherelemente 2 können ggf. auch verschiedene Typen von Speicherelementen umfassen, beispielsweise kombiniert Superkondensatorelemente und Lithiumionen-Batterieelemente. Said storage elements 2 can be capacitor or supercapacitor elements or battery or accumulator cells such as lithium-ion cells. Alternatively or additionally, fuel cells can also be used as storage elements 2 . The storage elements 2 can optionally also include different types of storage elements, for example combined supercapacitor elements and lithium-ion battery elements.
Die Speicherelemente 2 können auf gegenüberliegenden Stirnseiten jeweils einen Polanschluss 10 besitzen, an denen jeweils ein Temperierelement 4 befestigt wird, um die Wärme aus den Speicherelementen 2 direkt über die Polanschlüsse 10 herauszuziehen. The storage elements 2 can each have a pole connection 10 on opposite end faces, to which a temperature control element 4 is fastened in order to extract the heat from the storage elements 2 directly via the pole connections 10 .
Dabei können die Speicherelemente 2 jeweils gruppenweise an einem gemeinsamen Temperierelement 4 bzw. an zwei gegenüberliegenden Temperierelementen 4 zusammengefasst werden, wobei die genannten Temperierelemente 4 vorteilhafterweise plattenförmig ausgebildet sein bzw. Temperierplatten bilden können, die vom Umriss und/oder der Fläche her im Wesentlichen das jeweilige Feld bzw. die jeweils matrixartige Gruppe von Speicherelementen 2 überdecken kann. Beispielsweise können, wie dies Fig. 1 zeigt, 8 mal 8 Speicherelemente 2 an ein gemeinsames, beispielsweise quadratisches Temperierelement 4 angebunden werden, das die gesamte Stirnfläche der 8 mal 8 Elementeanordnung überdeckt. Grundsätzlich ist es aber auch möglich, andere Anordnungen vorzusehen, beispielsweise mit voneinander abweichenden Reihen- und Spaltenzahlen und einem dann im Wesentlichen rechteckigen Temperierelement 4 oder einer näherungsweise kreisförmigen Anordnung der Speicherelemente mit einem dann kreisförmigen Temperie- relemente-Deckel. The storage elements 2 can each be combined in groups on a common temperature control element 4 or on two opposite temperature control elements 4, with the named temperature control elements 4 advantageously being plate-shaped or can form temperature control plates which, in terms of outline and/or area, essentially correspond to the respective Field or each matrix-like group of memory elements 2 can cover. For example, as shown in FIG. 1, 8 by 8 storage elements 2 can be connected to a common, for example square, temperature control element 4 that covers the entire end face of the 8 by 8 element arrangement. In principle, however, it is also possible to provide other arrangements, for example with differing numbers of rows and columns and a then essentially rectangular temperature control element 4 or an approximately circular arrangement of the storage elements with a then circular temperature control element cover.
Die plattenförmigen Temperierelemente 4 werden vorteilhafterweise an den Polanschlüssen 10 der ihnen zugeordneten Speicherelemente 2 festgeschweißt, vor- zugsweise durch Laserschweißen oder Ultraschallschweißen, um bei geringem Wärmeeintrag eine stabile Verbindung zwischen den Polanschlüssen 10 der Speicherelemente 2 und den Temperierelementen 4 zu erreichen. The plate-shaped temperature control elements 4 are advantageously welded to the pole connections 10 of the storage elements 2 assigned to them, preferably preferably by laser welding or ultrasonic welding in order to achieve a stable connection between the pole connections 10 of the storage elements 2 and the temperature control elements 4 with little heat input.
Wie Figur 1 zeigt, können die Temperierelemente 2 jeweils einen Temperiermittelkanal 5 aufweisen, der durch das jeweilige Temperierelement 4 hindurchführt. Beispielsweise kann der Temperiermittelkanal 5 mäanderförmig durch ein jeweiliges plattenförmiges Temperierelement 4 hindurchgeführt sein, insbesondere derart, dass sich der Temperiermittelkanal 5 zwischen den Reihen von Polanschlüssen 10 der Speicherelemente 2 erstreckt und am Ende einer jeweiligen Reihe von Polanschlüssen 2 durch eine U-förmige Biegung in die nächste Reihe bzw. zwischen die nächsten Reihen geführt ist. As FIG. 1 shows, the temperature control elements 2 can each have a temperature control medium channel 5 which leads through the respective temperature control element 4 . For example, the temperature control medium channel 5 can meander through a respective plate-shaped temperature control element 4, in particular in such a way that the temperature control medium channel 5 extends between the rows of pole connections 10 of the storage elements 2 and at the end of a respective row of pole connections 2 through a U-shaped bend in the next row or between the next rows.
Die leicht vorstehenden Polanschlüsse 10 können dabei in formangepasste Ausnehmungen 12 eingreifen, die in dem jeweiligen Temperierelement 4 ausgebildet sein und von der Anordnung her dem Muster bzw. der matrixartigen Anordnung der Speicherelemente 2 bzw. deren Polanschlüsse 10 entsprechen kann. Die genannten Ausnehmungen 12 können dabei an die Polanschlüsse 10 formangepasst sein und beispielsweise als Durchgangsloch oder auch als sacklochartige Vertiefung ausgebildet sein, mit der das Temperierelement 4 auf dem vorspringenden Polanschluss 10 sitzt. Sind solche Ausnehmungen 12 vorgesehen, kann die Schweißverbindung die genannten Ausnehmungen 12 mit dem jeweiligen Polanschluss 10 verbinden. Grundsätzlich ist es aber auch möglich, ohne solche Ausnehmungen 12 zu arbeiten. The slightly protruding pole connections 10 can engage in shape-adapted recesses 12 which are formed in the respective temperature control element 4 and which can correspond in terms of arrangement to the pattern or the matrix-like arrangement of the storage elements 2 or their pole connections 10 . Said recesses 12 can be adapted in shape to the pole connections 10 and can be designed, for example, as a through hole or also as a depression similar to a blind hole, with which the tempering element 4 sits on the protruding pole connection 10 . If such recesses 12 are provided, the welded connection can connect said recesses 12 to the respective pole connection 10 . In principle, however, it is also possible to work without such recesses 12 .
Die genannten Temperierelemente 4 können vorteilhafterweise Rollbondplatten sein. Unabhängig hiervon können die Temperierelemente 4 beispielsweise aus Aluminium oder einer Aluminiumlegierung bestehen. The named temperature control elements 4 can advantageously be roll bond plates. Irrespective of this, the temperature control elements 4 can consist of aluminum or an aluminum alloy, for example.
Wie die Figuren zeigen, sind die Speicherelemente 2 zwischen jeweils zwei plattenförmigen Speicherelementen 4 sandwichartig aufgenommen. Die zwischen den Speicherelementen 2 verbleibenden Zwischenräume 13, die sich strangartig von Speicherelement zu Speicherelement erstrecken können und durch die runde Querschnittsform der Speicherelemente 2 bedingt sein können, werden vorteilhafterweise durch ein Verfüllmaterial 14 verfallt, um den jeweiligen Speicherblock weiter zu stabilisieren und auch in thermischer Hinsicht zu optimieren. Insbesondere können die genannten Zwischenräume 13 zwischen den Speicherelementen 2 durch ein wärmeleitendes, elektrisch jedoch nichtleitendes Schaummaterial ausgeschäumt werden, um einen möglichst vollflächigen Kontakt zwischen dem Verfüllmaterial und den Wandungen der Speicherelemente 2 zu erzielen. As the figures show, the storage elements 2 are sandwiched between two plate-shaped storage elements 4 in each case. The remaining between the memory elements 2 gaps 13, which are strand-like from Storage element can extend to storage element and can be caused by the round cross-sectional shape of the storage elements 2 are advantageously expired by a filling material 14 in order to further stabilize the respective storage block and also to optimize it from a thermal point of view. In particular, the gaps 13 mentioned between the storage elements 2 can be filled with a heat-conducting but electrically non-conductive foam material in order to achieve as full-surface contact as possible between the filling material and the walls of the storage elements 2 .
Insbesondere wird dabei ein latentwärmespeicherndes Verfüllmaterial 14 verwendet, das in einem für die Speicherelemente 2 gewünschtem Betriebstemperaturfenster von beispielsweise 20° bis 25° eine Phasenumwandung durchmachen und hierdurch in dem Temperaturfenster ohne größere Temperaturveränderungen große Wärmemengen absorbieren kann und umgekehrt auch wieder freisetzen kann. Ergibt sich beispielsweise im Betrieb der Energiespeichervorrichtung 1 eine größere Wärmezufuhr, kann das latentwärmespeichernde Verfüllmaterial 14 einen größeren Temperaturanstieg vermeiden und die Temperatur im Wesentlichen in dem besagten Temperaturfenster halten, in dem durch Phasenumwandlung bzw. durch die latentwärmespeichernde Eigenschaft sehr viel Wärme aufgenommen wird. Fällt umgekehrt beispielsweise in der Nacht bei Nichtbetrieb die Temperatur ab, sodass die Speicherelemente 2 an sich zu sehr auskühlen würden, kann das latentwärme- speichernde Verfüllmaterial 14 die zuvor aufgenommene Wärme an die Speicherelemente 2 zurückgeben, und diese im gewünschten Temperaturfenster halten. In particular, a filling material 14 that stores latent heat is used, which undergoes a phase change in an operating temperature window of, for example, 20° to 25° desired for the storage elements 2 and can thus absorb large amounts of heat in the temperature window without major temperature changes and, conversely, can also release it again. If, for example, there is a greater supply of heat during operation of the energy storage device 1, the latent heat-storing filling material 14 can avoid a greater temperature rise and essentially keep the temperature within the said temperature window, in which a great deal of heat is absorbed by phase transformation or by the latent heat-storing property. Conversely, if the temperature drops at night when not in use, so that the storage elements 2 would cool down too much, the latent heat-storing filling material 14 can return the previously absorbed heat to the storage elements 2 and keep them within the desired temperature window.
Vorteilhafterweise wird dabei zuerst das Temperierelement 4 auf die eine Stirnseite der Speicherzellengruppe aufgeschweißt und sodann das Ausschäumen der Zwischenräume 13 vorgenommen und daraufhin auf der gegenüberliegenden Stirnseite der Speicherelementegruppe die zweite Temperierplatte angeschweißt. Advantageously, the temperature control element 4 is first welded onto one end face of the storage cell group and then the intermediate spaces 13 are foamed and then the second temperature control plate is welded onto the opposite end face of the storage cell group.
Wie die Figuren zeigen, können mehrere solche Speicherblöcke 15, 16, 17, 18, 19, 20 miteinander verbunden und zu der Energiespeichervorrichtung 1 zusammengeschlossen werden. Die nebeneinander positionierbaren Speicherblöcke 15 bis 20 können dabei einerseits an den als elektrischen Kontaktanschluss dienenden Speicherelemente 4 elektrisch leitend miteinander verbunden werden und darüber hinaus im Bereich der Temperiermittelkanäle 5 miteinander verbunden werden. Genauer gesagt können die mit dem Pluspol verbundenen Temperierelemente 4 miteinander leitend verbunden und die mit dem Minuspol verbundenen Temperierelemente 4 jeweils miteinander verbunden werden. Die Verbindung der Temperierelemente 4 kann hierbei grundsätzlich in derselben Weise erfolgen wie die Verbindung zu den Polanschlüssen 10. Insbesondere können die Temperierelemente 4 miteinander verschweißt werden, insbesondere durch Laser- oder Ultraschallschweißen. Alternativ können aber auch Verbindungen mit flexiblen Bändern hergestellt werden, um Temperaturen und Toleranzen besser ausgleichen zu können. As the figures show, several such storage blocks 15, 16, 17, 18, 19, 20 can be connected to one another and combined to form the energy storage device 1. The memory blocks 15 to 20 that can be positioned next to each other can on the one hand be electrically conductively connected to one another at the storage elements 4 serving as an electrical contact connection and, moreover, be connected to one another in the region of the tempering medium channels 5 . More precisely, the temperature control elements 4 connected to the positive pole can be conductively connected to one another and the temperature control elements 4 connected to the negative pole can each be connected to one another. The temperature control elements 4 can basically be connected in the same way as the connection to the pole connections 10. In particular, the temperature control elements 4 can be welded to one another, in particular by laser or ultrasonic welding. Alternatively, however, connections can also be made with flexible strips in order to be able to better compensate for temperatures and tolerances.
Um die Potenzialtrennung der einzelnen Blöcke 15 bis 20 sicherzustellen, können auch isolierende Kühlschläuche oder Röhrchen an den Verbindungsstellen verpresst werden. In order to ensure the potential separation of the individual blocks 15 to 20, insulating cooling hoses or tubes can also be pressed at the connection points.
Wie die Figuren 1 bis 3 zeigen, können die durch die Temperierelemente 4 mäandernden Temperiermittelkanäle 5 durch vorzugsweise isolierende Kanalverbinder 21 miteinander verbunden sein, sodass ein Kühlkreis durch mehrere Temperierelemente 4 hindurchgeführt wird und insgesamt nur ein Temperiermittel-Einlass 6 und ein Temperiermittel-Auslass 7 benötigt wird. As shown in Figures 1 to 3, the temperature control medium channels 5 meandering through the temperature control elements 4 can be connected to one another by preferably insulating channel connectors 21, so that a cooling circuit is routed through a number of temperature control elements 4 and requires only one temperature control medium inlet 6 and one temperature control medium outlet 7 overall will.
An die genannten Temperiermittel-Ein- und Auslässe 6 und 7 der Temperiervorrichtung 3 kann eine Umwälzpumpe 22 angeschlossen sein, um das Temperiermittel durch die Temperiermittelkanäle 5 der Blöcke 15 bis 21 umzuwälzen. A circulating pump 22 can be connected to the named temperature control medium inlets and outlets 6 and 7 of the temperature control device 3 in order to circulate the temperature control medium through the temperature control medium channels 5 of the blocks 15 to 21 .
Um den elektrischen Leitwert des Temperiermittels niedrig zu halten, kann die Temperiervorrichtung 3 eine Behandlungsvorrichtung 8 aufweisen, die das Temperiermittel im Betrieb zyklisch oder kontinuierlich einer leitwertreduzierenden Behandlung unterzieht. Die Behandlungsvorrichtung 8 kann insbesondere eine Entionisierungseinrichtung 9 umfassen, die das Temperiermittel entionisiert. Wie Figur 1 zeigt, kann die Entionisierungseinrichtung 9 in einem Bypassarm 11 des Temperiermittelkreises angeordnet sein, um einen Teil des zirkulierenden Temperiermittels durch die Entionisierungseinrichtung 9 hindurchströmen zu lassen. Wie eingangs erwähnt, kann die Entionisierungseinrichtung 9 eine Entionisierungsflasche mit einem Aktivmaterial-Bett beispielsweise in Form von Harzkügelchen sein bzw. umfassen, die ggf. ausgetauscht und/oder regeneriert werden kann. In order to keep the electrical conductance of the temperature control medium low, the temperature control device 3 can have a treatment device 8 which subjects the temperature control medium to a conductance-reducing treatment cyclically or continuously during operation. The treatment device 8 can in particular comprise a deionization device 9 which deionizes the temperature control medium. As FIG. 1 shows, the deionization device 9 can be arranged in a bypass arm 11 of the temperature control medium circuit in order to allow part of the circulating temperature control medium to flow through the deionization device 9 . As mentioned at the outset, the deionization device 9 can be or comprise a deionization bottle with an active material bed, for example in the form of small resin beads, which can be replaced and/or regenerated if necessary.

Claims

Patentansprüche Energiespeichervorrichtung mit zumindest einem Speicherelement (2) sowie einer Temperiervorrichtung (3) zum Temperieren des Speicherelements (2), die zumindest ein mit dem Speicherelement (2) in Kontakt stehendes, kühl- und/oder beheizbares Temperierelement (4) umfasst, dadurch gekennzeichnet, dass das Temperierelement (4) an einem Polanschluss (10) des Speicherelements (2) befestigt ist. Energiespeichervorrichtung nach dem vorhergehenden Anspruch, wobei das Temperierelement (4) eine elektrisch leitende Oberfläche besitzt und gleichzeitig einen elektrischen Kontaktanschluss des Speicherelements (2) und/oder der Energiespeichervorrichtung (1 ) bildet. Energiespeichervorrichtung nach einem der vorhergehenden Ansprüche, wobei das Temperierelement (4) zumindest einen Temperiermittelkanal (5) zum Zirkulieren eines Temperiermittels durch das Temperierelement aufweist. Energiespeichervorrichtung nach dem vorhergehenden Anspruch, wobei das in dem Temperiermittelkanal (5) vorgesehene Temperiermittel elektrisch nicht leitend ist oder von einer Behandlungsvorrichtung (8) im Betrieb der Energiespeichervorrichtung (1 ) kontinuierlich oder zyklisch nicht leitend machbar oder haltbar ist. Energiespeichervorrichtung nach dem vorhergehenden Anspruch, wobei die Behandlungsvorrichtung (8) eine Entionisierungseinrichtung (9) zum Entionisieren des Temperiermittels umfasst. Energiespeichervorrichtung nach einem der beiden vorhergehenden Ansprüche, wobei die Behandlungsvorrichtung (8) in einem Seiten- oder Bypassarm (11 ) des Temperiermittelkreises angeordnet ist, sodass beim Umwälzen des Temperiermittels ein Teil des Temperiermittels die Behandlungsvorrichtung (8) durchströmt und ein anderer Teil des Temperiermittels an der Behandlungsvorrichtung (1 ) vorbeiströmt. Energiespeichervorrichtung nach einem der Ansprüche 3 bis 6, wobei ein Temperiermittel vorgesehen ist, das bei bestimmungsgemäßer Betriebstemperatur der Energiespeichervorrichtung (1 ) in dem Temperierelement (4) zumindest teilweise verdampft. Energiespeichervorrichtung nach einem der vorhergehenden Ansprüche, wobei das Temperierelement (4) eine an den Polanschluss (10) des Speicherelements (2) formangepasste Ausnehmung (12) in Form eines Durchgangslochs oder einer sacklochartigen Vertiefung aufweist und mit der genannten Ausnehmung (12) auf dem Polanschluss (10) sitzt. Energiespeichervorrichtung nach einem der vorhergehenden Ansprüche, wobei zwischen dem Temperierelement (4) und dem Polanschluss (10) des Speicherelements (2) eine Schweißverbindung, insbesondere Laser- oder Ultraschweißverbindung, vorgesehen ist. 19 Energiespeichervorrichtung nach dem vorhergehenden Anspruch, wobei die Schweißverbindung einen hohlen Innenraum des Temperierelements (4) gegenüber dem Polanschluss (10) und zur Umgebung hin abdichtet. Energiespeichervorrichtung nach einem der vorhergehenden Ansprüche, wobei eine Gruppe von mehreren Speicherelementen (2) in einer vorzugsweise matrixartigen Anordnung nebeneinander vorgesehen sind, wobei das Temperierelement (4) an den Polanschlüssen (10) aller Speicherelemente (2) der genannten Gruppe befestigt ist. Energiespeichervorrichtung nach einem der vorhergehenden Ansprüche, wobei das Temperierelement (4) eine zumindest näherungsweise ebene Temperierplatte bildet, die mit einer Seite an den Polanschlüssen (10) mehrerer Speicherelemente (2) befestigt ist. Energiespeichervorrichtung nach dem vorhergehenden Anspruch, wobei die Temperierplatte ein vorzugsweise matrixartiges Muster von Ausnehmungen (12) in Form von Durchgangs- oder Sacklöchern aufweist, mit denen die Temperierplatte auf den Polanschlüssen (10) der Speicherelemente (2) sitzt. Energiespeichervorrichtung nach einem der vorhergehenden Ansprüche, wobei das Temperierelement (4) als Rollbondplatte ausgebildet ist. Energiespeichervorrichtung nach einem der vorhergehenden Ansprüche, wobei der zumindest eine Temperiermittelkanal (5) mäandernd durch das Temperierelement (4) geführt ist. Energiespeichervorrichtung nach einem der vorhergehenden Ansprüche, wobei ein Zwischenraum zwischen benachbarten Speicherelementen (2) mit einem wärmeleitenden, elektrisch nicht leitenden Material verfällt ist, insbesondere ausgeschäumt ist. Energiespeichervorrichtung nach dem vorhergehenden Anspruch, wobei das Verfüllmaterial ein latentwärmespeicherndes Material ist und einen Latentwärmespeicher bildet. 20 Verfahren zum Herstellen einer Energiespeichervorrichtung (1 ), bei dem zumindest ein Speicherelement (2) der Energiespeichervorrichtung (1 ) mit zumindest einem Temperierelement (4) einer Temperiervorrichtung (3) zum Temperieren des Speicherelements (2) in Kontakt gebracht wird, dadurch gekennzeichnet, dass das Temperierelement (4) an einem Polanschluss (10) des Speicherelements (2) starr befestigt wird und mit dem genannten Polanschluss (10) wärmeübertragend verbunden wird. Verfahren nach dem vorhergehenden Anspruch, wobei das Temperierelement (4) mit dem Polanschluss (10) verschweißt, insbesondere laserverschweißt oder ultraschallverschweißt wird. Verfahren nach einem der beiden vorhergehenden Ansprüche, wobei in dem Temperierelement (4) eine an den Polanschluss (10) formangepasste Ausnehmung (12) in Form eines Durchgangs- oder Sacklochs ausgebildet und das Temperierelement (4) mit der Ausnehmung (12) auf den Polanschluss (10) gesetzt wird. Verfahren nach einem der vorhergehenden Ansprüche, wobei eine Gruppe von Speicherelementen (2) jeweils mit einem Polanschluss (10) an einer Seite der Speicherelemente (2) an dem als Temperierplatte ausgebildeten Temperierelement (4) befestigt wird, wobei Zwischenräume zwischen benachbarten Speicherelementen (2) durch ein wärmeleitendes, elektrisch nicht leitendes Verfüllmaterial verfällt werden, und wobei die Speicherelemente (2) mit Polanschlüssen (10) an einer Seite, die dem genannten Temperierelement (4) gegenüberliegt, an einem zweiten, als Temperierplatte ausgebildeten Temperierelement (4) befestigt werden. Claims Energy storage device with at least one storage element (2) and a temperature control device (3) for temperature control of the storage element (2), which comprises at least one temperature control element (4) that is in contact with the storage element (2) and can be cooled and/or heated that the tempering element (4) is attached to a pole connection (10) of the storage element (2). Energy storage device according to the preceding claim, wherein the temperature control element (4) has an electrically conductive surface and at the same time forms an electrical contact connection of the storage element (2) and/or the energy storage device (1). Energy storage device according to one of the preceding claims, wherein the temperature control element (4) has at least one temperature control medium channel (5) for circulating a temperature control medium through the temperature control element. Energy storage device according to the preceding claim, wherein the temperature control medium provided in the temperature control medium channel (5) is electrically non-conductive or can be continuously or cyclically made non-conductive by a treatment device (8) during operation of the energy storage device (1). Energy storage device according to the preceding claim, wherein the treatment device (8) comprises a deionization device (9) for deionizing the temperature control medium. Energy storage device according to one of the two preceding claims, wherein the treatment device (8) is arranged in a side or bypass arm (11) of the temperature control medium circuit, so that when the temperature control medium is circulated, part of the temperature control medium flows through the treatment device (8) and another part of the temperature control medium flows on the treatment device (1) flows past. Energy storage device according to one of claims 3 to 6, wherein a temperature control agent is provided which at the intended operating temperature of the energy storage device (1) in the temperature control element (4) at least partially evaporates. Energy storage device according to one of the preceding claims, wherein the temperature control element (4) has a shape-adapted recess (12) to the pole connection (10) of the storage element (2) in the form of a through hole or a blind hole-like depression and with said recess (12) on the pole connection (10) sits. Energy storage device according to one of the preceding claims, wherein a welded connection, in particular a laser or ultra-welded connection, is provided between the temperature control element (4) and the pole connection (10) of the storage element (2). 19 Energy storage device according to the preceding claim, wherein the welded joint seals a hollow interior of the temperature control element (4) relative to the pole connection (10) and to the environment. Energy storage device according to one of the preceding claims, wherein a group of several storage elements (2) are provided next to one another in a preferably matrix-like arrangement, the temperature control element (4) being fastened to the pole connections (10) of all storage elements (2) of the said group. Energy storage device according to one of the preceding claims, wherein the temperature control element (4) forms an at least approximately flat temperature control plate which is fastened with one side to the pole connections (10) of a plurality of storage elements (2). Energy storage device according to the preceding claim, wherein the tempering plate has a preferably matrix-like pattern of recesses (12) in the form of through or blind holes, with which the tempering plate sits on the pole connections (10) of the storage elements (2). Energy storage device according to one of the preceding claims, wherein the temperature control element (4) is designed as a roll bond plate. Energy storage device according to one of the preceding claims, wherein the at least one temperature control medium channel (5) is meandering through the temperature control element (4). Energy storage device according to one of the preceding claims, wherein an intermediate space between adjacent storage elements (2) is filled with a thermally conductive, electrically non-conductive material, in particular is foamed. Energy storage device according to the preceding claim, wherein the filling material is a material that stores latent heat and forms a latent heat store. 20 Method for producing an energy storage device (1), in which at least one storage element (2) of the energy storage device (1) is brought into contact with at least one temperature control element (4) of a temperature control device (3) for temperature control of the storage element (2), characterized in that that the temperature control element (4) is rigidly attached to a pole connection (10) of the storage element (2) and is connected to said pole connection (10) in a heat-transferring manner. Method according to the preceding claim, wherein the temperature control element (4) is welded to the pole connection (10), in particular laser welded or ultrasonically welded. Method according to one of the two preceding claims, wherein a recess (12) adapted in shape to the pole connection (10) in the form of a through hole or blind hole is formed in the temperature control element (4) and the temperature control element (4) with the recess (12) on the pole connection (10) is set. Method according to one of the preceding claims, wherein a group of storage elements (2), each with a pole connection (10) on one side of the storage elements (2) is attached to the temperature control element (4) designed as a temperature control plate, with intermediate spaces between adjacent storage elements (2) by a thermally conductive, electrically non-conductive filling material, and wherein the storage elements (2) are fastened to a second temperature control element (4) designed as a temperature control plate with pole connections (10) on a side opposite the said temperature control element (4).
PCT/EP2021/078421 2020-10-14 2021-10-14 Energy storage device having a temperature control device WO2022079155A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102020126981.1 2020-10-14
DE102020126981.1A DE102020126981A1 (en) 2020-10-14 2020-10-14 Energy storage device with temperature control device

Publications (1)

Publication Number Publication Date
WO2022079155A1 true WO2022079155A1 (en) 2022-04-21

Family

ID=78463440

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2021/078421 WO2022079155A1 (en) 2020-10-14 2021-10-14 Energy storage device having a temperature control device

Country Status (2)

Country Link
DE (1) DE102020126981A1 (en)
WO (1) WO2022079155A1 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005017648A1 (en) 2005-04-15 2006-10-19 Daimlerchrysler Ag Liquid cooled battery and method of operating such
EP2398108A1 (en) * 2009-11-25 2011-12-21 Panasonic Corporation Battery module
EP2613379A1 (en) * 2010-08-31 2013-07-10 Panasonic Corporation Assembled battery
DE102013009823A1 (en) 2013-06-11 2014-12-11 Liebherr-Components Biberach Gmbh Electric drive system and energy storage device therefor
DE102013020960A1 (en) * 2013-12-12 2015-06-18 Daimler Ag High-voltage battery
EP3293792A1 (en) * 2016-09-07 2018-03-14 Thunder Power New Energy Vehicle Development Company Limited Battery system
DE102017212258A1 (en) * 2017-07-18 2019-01-24 Mahle International Gmbh Battery cell assembly
DE102018110528A1 (en) * 2018-05-02 2019-11-07 Witzenmann Gmbh Contacting and tempering device for a battery cell, battery cell, battery assembly and method for contacting and tempering
DE102018114405A1 (en) 2018-06-15 2019-12-19 Liebherr-Components Biberach Gmbh Energy storage device for electrical drive systems
JP2020107444A (en) * 2018-12-26 2020-07-09 株式会社デンソー Battery cooling system

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8273474B2 (en) 2000-02-29 2012-09-25 Illinois Institute Of Technology Battery system thermal management
DE102017114330A1 (en) 2017-06-28 2019-01-03 Deutsches Zentrum für Luft- und Raumfahrt e.V. Battery assembly and method for cooling a battery assembly
DE102018222212A1 (en) 2018-12-18 2020-06-18 Elringklinger Ag Temperature control element, battery storage device, method for producing a temperature control element and method for producing a battery storage device
DE202019107171U1 (en) 2019-12-20 2020-01-17 stoba e-Systems GmbH Battery pack with heat sink manufactured using the roll-bond process

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005017648A1 (en) 2005-04-15 2006-10-19 Daimlerchrysler Ag Liquid cooled battery and method of operating such
EP2398108A1 (en) * 2009-11-25 2011-12-21 Panasonic Corporation Battery module
EP2613379A1 (en) * 2010-08-31 2013-07-10 Panasonic Corporation Assembled battery
DE102013009823A1 (en) 2013-06-11 2014-12-11 Liebherr-Components Biberach Gmbh Electric drive system and energy storage device therefor
DE102013020960A1 (en) * 2013-12-12 2015-06-18 Daimler Ag High-voltage battery
EP3293792A1 (en) * 2016-09-07 2018-03-14 Thunder Power New Energy Vehicle Development Company Limited Battery system
DE102017212258A1 (en) * 2017-07-18 2019-01-24 Mahle International Gmbh Battery cell assembly
DE102018110528A1 (en) * 2018-05-02 2019-11-07 Witzenmann Gmbh Contacting and tempering device for a battery cell, battery cell, battery assembly and method for contacting and tempering
DE102018114405A1 (en) 2018-06-15 2019-12-19 Liebherr-Components Biberach Gmbh Energy storage device for electrical drive systems
JP2020107444A (en) * 2018-12-26 2020-07-09 株式会社デンソー Battery cooling system

Also Published As

Publication number Publication date
DE102020126981A1 (en) 2022-04-14

Similar Documents

Publication Publication Date Title
EP2511922B1 (en) Storage unit for storing electrical energy with a cooling element
EP0917230B1 (en) Battery with temperature conditionning system
EP2377184B1 (en) Device for power supply of a vehicle with optimized heat dissipation
DE102019122340A1 (en) BATTERY MODULE AND BATTERY WITH THIS MODULE
EP2380223B1 (en) Rechargeable battery having a heat transport device for heating and/or cooling the battery
WO2018024483A1 (en) Temperature-control device for a battery housing of a vehicle
DE102007045183A1 (en) Temperierte battery device and method for this purpose
DE102008056859A1 (en) Device for supplying power to a motor vehicle
EP2599153A1 (en) Device for supplying power, having a cooling assembly
EP2532044B1 (en) Battery system and method for heating the battery system
WO2011138156A1 (en) Electrical energy store and cooling device
DE102020121498A1 (en) Energy storage device with a battery cell module and a cooling device, preferably for an at least partially electrically driven vehicle, and method for producing the energy storage device
DE102012112926B4 (en) Cooling and heating cup holder
DE102008059954A1 (en) Battery for use in e.g. hybrid vehicle, has cooling device including heat exchanger with meandering-type molded cooling pipe, where planar side of upper surfaces of meander of pipe lies at surface of cooling plate
DE102021106125A1 (en) BATTERY PACK WITH MOLDED BUSBARS THAT PROVIDE PARALLEL COOLING WAYS
DE112016002611T5 (en) Automotive battery thermoelectric device with integrated cold plate assembly
DE112021004495T5 (en) components for batteries
DE112015001249B4 (en) Thermoelectric assembly and method for assembling a thermoelectric assembly
DE102016218140B4 (en) Fuel cell stack with heat pipes
DE102011082562A1 (en) Battery module e.g. lithium ion battery module for motor vehicle, has two coolant chambers that are provided in module housing in which coolant inlet and coolant outlet are provided
DE102014201220A1 (en) battery module
WO2022079155A1 (en) Energy storage device having a temperature control device
DE102019007812B4 (en) Battery cell for an electrical energy store and electrical energy store
DE102018006412A1 (en) Temperature control unit for a battery
EP2930782B1 (en) Cooling element and battery system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21801019

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21801019

Country of ref document: EP

Kind code of ref document: A1