WO2022078126A1 - 充电装置、控制充电装置充电的方法和车辆 - Google Patents

充电装置、控制充电装置充电的方法和车辆 Download PDF

Info

Publication number
WO2022078126A1
WO2022078126A1 PCT/CN2021/117465 CN2021117465W WO2022078126A1 WO 2022078126 A1 WO2022078126 A1 WO 2022078126A1 CN 2021117465 W CN2021117465 W CN 2021117465W WO 2022078126 A1 WO2022078126 A1 WO 2022078126A1
Authority
WO
WIPO (PCT)
Prior art keywords
switch tube
circuit unit
bridge llc
llc circuit
battery
Prior art date
Application number
PCT/CN2021/117465
Other languages
English (en)
French (fr)
Inventor
刘伟冬
王超
王兴辉
Original Assignee
比亚迪股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 比亚迪股份有限公司 filed Critical 比亚迪股份有限公司
Priority to EP21879172.1A priority Critical patent/EP4216397A4/en
Priority to JP2023522796A priority patent/JP2023545172A/ja
Publication of WO2022078126A1 publication Critical patent/WO2022078126A1/zh
Priority to US18/295,610 priority patent/US20230261492A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33573Full-bridge at primary side of an isolation transformer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/20Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by converters located in the vehicle
    • B60L53/22Constructional details or arrangements of charging converters specially adapted for charging electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/50Charging stations characterised by energy-storage or power-generation means
    • B60L53/53Batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • H02J1/08Three-wire systems; Systems having more than three wires
    • H02J1/082Plural DC voltage, e.g. DC supply voltage with at least two different DC voltage levels
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • H02J7/00714Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery charging or discharging current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/12Arrangements for reducing harmonics from ac input or output
    • H02M1/126Arrangements for reducing harmonics from ac input or output using passive filters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/14Arrangements for reducing ripples from dc input or output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/01Resonant DC/DC converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33571Half-bridge at primary side of an isolation transformer
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33576Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer
    • H02M3/33584Bidirectional converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/10DC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/30AC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/36Temperature of vehicle components or parts
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/20Charging or discharging characterised by the power electronics converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/40The network being an on-board power network, i.e. within a vehicle
    • H02J2310/48The network being an on-board power network, i.e. within a vehicle for electric vehicles [EV] or hybrid vehicles [HEV]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/42Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/285Single converters with a plurality of output stages connected in parallel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/92Energy efficient charging or discharging systems for batteries, ultracapacitors, supercapacitors or double-layer capacitors specially adapted for vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Definitions

  • DC-DC Direct current-Direct current converter
  • OBC On board charger
  • the power working range of the DC-DC converter is 0-2500W, and its switching devices are always in a high-frequency working state, and the switching loss is high, which affects the efficiency.
  • an object of the present disclosure is to provide a charging device, which can reduce switching loss and improve charging efficiency.
  • a second object of the present disclosure is to propose a vehicle.
  • a third object of the present disclosure is to provide a method for controlling charging of a charging device.
  • the first aspect of the present disclosure provides a charging device, the device includes: a first DC conversion module for converting a DC signal output by a power battery into a DC signal required by a battery, the first DC conversion module
  • the DC conversion module includes a first half-bridge LLC circuit unit and a second half-bridge LLC circuit unit arranged in parallel; a control module, the control module, the first half-bridge LLC circuit unit and the second half-bridge LLC circuit unit
  • the circuit units are respectively connected to obtain the total output current of the first DC conversion module, and when the total output current is less than a current threshold, control the first half-bridge LLC circuit unit and the second half-bridge LLC
  • the circuit units work alternately.
  • the first DC conversion module is provided with the first half-bridge LLC circuit unit and the second half-bridge LLC circuit unit connected in parallel, and the control module is based on the output total current of the first DC conversion module.
  • the working states of the two half-bridge LLC circuit units are controlled. When the total output current is less than the current threshold, the two half-bridge LLC circuit units are controlled to work alternately, that is, the two half-bridge LLC circuit units do not work at the same time, so that the entire LLC can be avoided.
  • the switch of the circuit unit is always in a high-frequency working state, which reduces the loss of the switching device in the circuit unit and improves the charging efficiency.
  • control module is configured to, when the first half-bridge LLC circuit unit and the second half-bridge LLC circuit unit work alternately, cyclically execute the following process: controlling the first half-bridge LLC circuit The unit works, the first working time of the first half-bridge LLC circuit unit is recorded, the first working time reaches the time threshold, the second half-bridge LLC circuit unit is switched to work, and the second half-bridge LLC circuit unit is recorded The second working time of the circuit unit, when the second working time reaches the time threshold, switches the first half-bridge LLC circuit unit to work.
  • the two half-bridge LLC circuit units can work alternately, so that the temperature of the two half-bridge LLC circuit units can be balanced, avoiding the temperature rise caused by one of the half-bridge LLC circuit units working for a long time, and ensuring charging Safety.
  • control module is further configured to control the operation of the first half-bridge LLC circuit unit and control the second half-bridge LLC circuit unit when the total output current is greater than or equal to the current threshold value work at the same time.
  • control module when the control module controls the first half-bridge LLC circuit unit to work and controls the second half-bridge LLC circuit unit to work simultaneously, the control module is configured to control the The switch tube of the half-bridge LLC circuit unit and the switch tube of the second half-bridge LLC circuit unit.
  • the switch of the first half-bridge LLC circuit unit and the switch of the second half-bridge LLC circuit unit are controlled to work alternately at a preset phase angle, so as to reduce the output ripple current.
  • the first half-bridge LLC circuit unit includes: a first switch tube and a second switch tube, a first end of the first switch tube is connected to a first end of a power battery, the first switch tube The second end of the switch tube is connected to the first end of the second switch tube, the control end of the first switch tube is connected to the control module, and the second end of the second switch tube is connected to the power battery is connected to the second end of the second switch tube, the control end of the second switch tube is connected to the control module, and there is a first node between the second end of the first switch tube and the first end of the second switch tube; a first capacitor and a first inductor, the first end of the first capacitor is connected to the first node, the second end of the first capacitor is connected to the first end of the first inductor; the first transformer, The first transformer includes a first primary coil, a first secondary coil and a second secondary coil, a first end of the first primary coil is connected to a second end of the first inductor, the first primary
  • the second end of the switch tube is connected to the first end of the battery, the control end of the third switch tube is connected to the control module, and the first end of the fourth switch tube is connected to the second secondary coil
  • the second end of the fourth switch tube is connected to the second end of the third switch tube and the first end of the battery, and the control end of the fourth switch tube is connected to the control Module connection.
  • the second half-bridge LLC circuit unit includes: a fifth switch tube and a sixth switch tube, the first end of the fifth switch tube is connected to the first end of the power battery, and the fifth switch tube is connected to the first end of the power battery.
  • the second end of the switch tube is connected to the first end of the sixth switch tube, the control end of the fifth switch tube is connected to the control module, and the second end of the sixth switch tube is connected to the power battery
  • the second end of the sixth switch tube is connected to the control module, and there is a second node between the second end of the fifth switch tube and the first end of the sixth switch tube; a second capacitor and a second inductor, the first end of the second capacitor is connected to the second node, the second end of the second capacitor is connected to the first end of the second inductor; the second transformer,
  • the second transformer includes a second primary coil, a third secondary coil and a fourth secondary coil, the first end of the second primary coil is connected to the second end of the second inductor, the second primary coil The second
  • each switch tube will not be in a working state, thereby reducing the loss of the switch tube in the half-bridge LLC circuit unit.
  • the charging device further includes: a filter module, the first end of the filter module is connected to the AC power supply; a PFC circuit module, configured to perform power factor correction on the input AC power, and output the power factor corrected DC signal, the PFC circuit module includes at least three-phase bridge arms, each phase bridge arm is connected to the second end of the filter module through a power inductor; the second DC conversion module, the input end of the second DC conversion module It is connected with the output end of the PFC circuit module, and the output end of the second DC conversion module is connected with the power battery.
  • the second aspect of the present disclosure provides a vehicle, which includes: a battery, a power battery, and the charging device described in the above embodiments, the charging device is connected to the battery and the power battery. connected separately.
  • the charging device mentioned in the above embodiment is used to charge the vehicle, and the two half-bridge LLC circuit units are controlled to work alternately. Even if the two half-bridge LLC circuit units do not work at the same time, the entire half-bridge LLC circuit unit can be avoided.
  • the switch of the circuit unit is always in a high-frequency working state, which reduces the loss of the switching device in the circuit unit and improves the charging efficiency.
  • a third aspect of the present disclosure provides a method for controlling the charging of a charging device, where the charging device includes a first DC conversion for converting an output DC signal of a power battery into a DC signal required by a battery module, the first DC conversion module includes a first half-bridge LLC circuit unit and a second half-bridge LLC circuit unit arranged in parallel, and the method includes: acquiring the total output current of the first DC conversion module; judging Whether the total output current is less than a current threshold; the total output current is less than the current threshold, and the first half-bridge LLC circuit unit and the second half-bridge LLC circuit unit are controlled to work alternately.
  • the first half-bridge LLC circuit unit and the second half-bridge LLC circuit unit are controlled to work alternately, that is, the two half-bridges
  • the LLC circuit units do not work at the same time, which can prevent the switches of the entire half-bridge LLC circuit unit from always being in a high-frequency working state, reduce the loss of the switching devices in the circuit unit, and improve the charging efficiency.
  • controlling the first half-bridge LLC circuit unit and the second half-bridge LLC circuit unit to work alternately includes: cyclically executing the following process: controlling the first half-bridge LLC circuit unit to work, recording all the The first working time of the first half-bridge LLC circuit unit, when the first working time reaches the time threshold, the second half-bridge LLC circuit unit is switched to work, and the second half-bridge LLC circuit unit is recorded. Working time, when the second working time reaches the time threshold, the first half-bridge LLC circuit unit is switched to work.
  • the method further includes: the total output current is greater than or equal to the current threshold, controlling the first half-bridge LLC circuit unit to operate and controlling the second half-bridge LLC circuit unit to operate simultaneously.
  • FIG. 1 is a schematic diagram of a charging device circuit according to an embodiment of the present disclosure
  • FIG. 2 is a schematic diagram of a charging device circuit according to an embodiment of the present disclosure
  • FIG. 3 is a block diagram of a vehicle according to one embodiment of the present disclosure.
  • FIG. 4 is a flowchart of a method for controlling charging of a charging device according to an embodiment of the present disclosure
  • FIG. 5 is a flowchart of a method of controlling charging of a charging device according to an embodiment of the present disclosure.
  • the charging device according to the embodiment of the present disclosure will be described below with reference to FIG. 1 .
  • FIG. 1 is a schematic diagram of a charging device and its connection according to an embodiment of the present disclosure.
  • the charging device 1 in the embodiment of the present disclosure includes a filter module 19 , a PFC circuit module 30 and a second DC conversion module 21 ,
  • the first end of the filter module 19 is connected to the AC power supply;
  • the PFC circuit module 30 is used to perform power factor correction on the input AC power and output the DC signal after the power factor correction.
  • the PFC circuit module 30 at least includes three-phase bridge arms, each The phase bridge arms are connected to the second end of the filter module 19 through the power inductor 23; the input end of the second DC conversion module 21 is connected to the output end of the PFC circuit module 30, and the output end of the second DC conversion module 21 is connected to the power battery 16. connect.
  • the AC power supply enters the filter module 19, and the filter module 19 performs filtering processing on the input AC power supply to filter out the excess interfering electrical signals in the AC power supply.
  • the PFC circuit module 30 includes switch tubes Q1-Q6, the PFC circuit module 30 performs power factor correction on the alternating current, and outputs a direct current signal, which enters the second direct current conversion module 21, the second direct current conversion module 21 includes switching tubes Q7-Q14, transformers and other devices, obtains the DC signal based on the second DC conversion module 21, and performs DC conversion processing on the DC signal, so as to provide the required DC signal for battery charging.
  • the charging device 1 in the embodiment of the present disclosure further includes a first DC conversion module 10 and a control module 20 .
  • the first DC conversion module 10 is used to convert the DC signal output by the power battery 16 into the DC signal required by the battery 15 .
  • the power battery 16 is charged.
  • the power battery 16 outputs a DC signal
  • the first DC conversion module 10 converts the DC signal output by the power battery 16 into a DC signal required by the battery to charge the battery 15 .
  • the output current of the first half-bridge LLC circuit unit 11 is, for example, IoutM1
  • the output current of the second half-bridge LLC circuit unit 12 is, for example, IoutM2
  • the first DC conversion module 10 outputs
  • the total current is denoted as Iout
  • the real-time temperature of the first half-bridge LLC circuit unit is denoted as T1
  • the real-time temperature of the second half-bridge LLC circuit unit 12 is denoted as T2
  • the control module 10 is based on the output total current Iout.
  • the working state of each half-bridge LLC circuit unit is controlled, that is, when charging the battery 15, the first half-bridge LLC circuit unit works first by default, and detects the total output current Iout in real time.
  • the control module 20 controls the first half-bridge LLC circuit unit 11 and the second half-bridge LLC circuit unit 12 to work alternately, and detects the output of the two half-bridge LLC circuit units. At the same time of the total current, it is necessary to consider the influence of temperature on the two half-bridge LLC circuit units.
  • the The switching device is always in a high-frequency working state, so that the temperature of the two half-bridge LLC circuit units can be kept balanced, the loss of the switching device in the switching unit is reduced, and the charging efficiency is improved.
  • the first DC conversion module 10 is provided with the first half-bridge LLC circuit unit 11 and the second half-bridge LLC circuit unit 12 connected in parallel, and the control module 20 is based on the first DC conversion module
  • the total output current of 10 controls the working state of the two half-bridge LLC circuit units.
  • the two half-bridge LLC circuit units are controlled to work alternately, that is, the two half-bridge LLC circuit units do not work at the same time. , it can prevent the entire half-bridge LLC circuit unit from always working in a high-frequency state, reduce the loss of switching devices in the circuit unit, and alternately work to achieve the purpose of balancing the temperature and improving the charging efficiency.
  • control module 20 controls the first half-bridge LLC circuit unit 11 and the second half-bridge LLC circuit unit 12 to work alternately based on the total output current Iout
  • control the first half-bridge LLC circuit unit 11 to work, and record the first working time of the first half-bridge LLC circuit unit 11, such as t1, compare the first working time t1 with the time threshold such as S, when the first working time t1
  • switch the second half-bridge LLC circuit unit 12 to work, and record the second working time of the second half-bridge LLC circuit unit 12, such as t2, and compare the second working time t2 with the time threshold S
  • the first half-bridge LLC circuit unit is switched to work again.
  • the two half-bridge LLC circuit units can work alternately, so that the temperature of the two half-bridge LLC circuit units can be balanced, avoiding the temperature rise caused by one of the half-bridge LLC circuit units working for a long time, and ensuring charging Safety.
  • the control module 20 since the total output current Iout is constantly changing, in order to ensure the charging efficiency, the total output current Iout is continuously detected, the magnitude of the total output current Iout is different, and the control of the two half-bridge LLC circuit units is also Different, for example, when the control module 20 detects that the total output current Iout is greater than or equal to the current threshold Imax/2, it controls the first half-bridge LLC circuit unit 11 to work and the second half-bridge LLC circuit unit 12 to work simultaneously, that is, controls the two half-bridges The LLC circuit units work at the same time, and by comparing the total output current Iout with the current threshold Imax/2, the working states of the two half-bridge LLC circuit units are controlled to ensure the charging effect.
  • the control module 20 controls the first half-bridge LLC circuit unit 11 to work and controls the second half-bridge LLC circuit unit 12 at the same time work, and set the switching frequency of the first half-bridge LLC circuit unit 11 and the second half-bridge LLC circuit unit 12, for example, F, and the switches for interleaving control of the first half-bridge LLC circuit unit 11 with a difference of a preset phase angle
  • the switch tube and the switch tube of the second half-bridge LLC circuit unit 12, for example, the switch tube of the first half-bridge LLC circuit unit 11 and the switch tube of the second half-bridge LLC circuit unit 12 work staggered by 90°, so as to reduce the output ripple current the goal of.
  • the first half-bridge LLC circuit unit 11 includes a first switch transistor Q15 , a second switch transistor Q16 , a first capacitor C1 , a first inductor IcM1 , and a first transformer 14 , the third switch tube Q19 and the fourth switch tube Q20.
  • the first end of the first switch tube Q15 is connected to the first end of the power battery 16
  • the second end of the first switch tube Q15 is connected to the first end of the second switch tube Q16
  • the control end of the first switch tube Q15 Connected to the control module 20
  • the second end of the second switch tube Q16 is connected to the second end of the power battery 16
  • the control end of the second switch tube Q16 is connected to the control module 20
  • the second end of the first switch tube Q15 is connected to the second end of the power battery 16.
  • first node a between the first ends of the two switches Q16; a first capacitor C1 and a first inductor IcM1, the first end of the first capacitor C1 is connected to the first node a, and the second end of the first capacitor C1 is connected to the first node a.
  • the first end of the first inductance IcM1 is connected; the first transformer 14 includes a first primary coil L11, a first secondary coil L12 and a second secondary coil L13, and the first end of the first primary coil L11 is connected to the first end of the first inductance IcM1.
  • the second end is connected, the second end of the first primary coil L11 is connected to the second end of the second switch tube Q16, the second end of the first secondary coil L12 is connected to the first end of the second secondary coil L13 as the first A common terminal, the first common terminal is connected to the second terminal of the battery 15; the third switch tube Q19 and the fourth switch tube Q20, the first terminal of the third switch tube Q19 is connected to the first terminal of the first secondary coil L12 , the second end of the third switch tube Q19 is connected to the first end of the battery 15, the control end of the third switch tube Q19 is connected to the control module 20, the first end of the fourth switch tube Q20 is connected to the second end of the secondary coil L13 The second end is connected, the second end of the fourth switch Q20 is connected to the second end of the third switch Q19 and the first end of the battery 15 , and the control end of the fourth switch Q20 is connected to the control module 20 .
  • the control module 20 controls the switching state of each switch tube according to the magnitude of the total output current Iout of the first DC conversion module 10, so that the first half-bridge LLC circuit unit 11 and the second half-bridge LLC circuit unit 12 work alternately, thereby , when the first half-bridge LLC circuit unit 11 operates in different power ranges, each switch tube of the first half-bridge LLC circuit unit 11 can be prevented from always in the working state, thereby reducing the loss of the switch tubes in the first half-bridge LLC circuit unit 11 .
  • the second half-bridge LLC circuit unit 12 includes a fifth switch Q17, a sixth switch Q18, a second capacitor C2, a second inductor IcM2, a second transformer 17, a seventh The switch tube Q21 and the eighth switch tube Q22.
  • the first end of the fifth switch tube Q17 is connected to the first end of the power battery 16
  • the second end of the fifth switch tube Q17 is connected to the first end of the sixth switch tube Q18
  • the control end of the fifth switch tube Q17 Connected to the control module 20
  • the second end of the sixth switch tube Q18 is connected to the second end of the power battery 16
  • the control end of the sixth switch tube Q18 is connected to the control module 20
  • the second end of the fifth switch tube Q17 is connected to the second end of the power battery 16.
  • the second end of the third secondary coil L15 is connected to the fourth end of the third secondary coil L15.
  • the first end of the primary coil L16 is connected to the second common end, and the second common end is connected to the second end of the battery 15;
  • the first end of the seventh switch tube Q21 is connected to the first end of the third secondary coil L15, and the second common end is connected to the second end of the battery 15;
  • the second end of the seventh switch tube Q21 is connected to the first end of the battery 15, the control end of the seventh switch tube Q21 is connected to the control module 20, and the first end of the eighth switch tube Q22 is connected to the second end of the fourth secondary coil L16.
  • the second end of the eighth switch tube Q22 is connected to the second end of the seventh switch tube Q21 and the first end of the battery 15 respectively, and the control end of the eighth switch tube Q22 is connected to the control module 20 .
  • the control module 20 controls the working state of the master conversion unit M1 and the slave conversion unit M2 according to the current value of the total output current Iout received, so as to control the switching state of each switch tube, so that the first half-bridge LLC circuit unit 11 and the second
  • the two half-bridge LLC circuit units 12 work alternately, so that when the second half-bridge LLC circuit unit 12 operates in different power ranges, it can be avoided that each switch is in the working state, thereby reducing the reduction of the second half-bridge LLC circuit unit.
  • the first DC conversion module 10 further includes a filter unit 18 , the first end of the filter unit 18 is connected to the first end of the battery 15 , and the second end of the filter unit 18 is connected to the battery 15 is connected to the second end.
  • the filtering unit 18 performs filtering processing on the DC signal required by the battery, so as to filter out redundant interference signals and improve the charging efficiency.
  • the control module 20 is based on the total output current of the first DC conversion module 10 .
  • the working states of the two half-bridge LLC circuit units are controlled.
  • the two half-bridge LLC circuit units are controlled to work alternately, that is, the two half-bridge LLC circuit units do not work at the same time, which can avoid the entire half-bridge.
  • the LLC circuit unit is always in a high-frequency working state, which reduces the loss of switching devices in the circuit unit and improves the charging efficiency.
  • FIG. 3 is a block diagram of a vehicle according to an embodiment of the present disclosure.
  • the vehicle 3 in the embodiment of the present disclosure includes a battery 15 , a power battery 16 , and the charging device 1 mentioned in the above embodiment.
  • the charging device 1 and the battery 15 and power battery 16 are respectively connected.
  • the charging device 1 mentioned in the above embodiment is used to charge the vehicle 3, and the two half-bridge LLC circuit units are controlled to work alternately, that is, the two half-bridge LLC circuit units do not work at the same time, which can avoid the whole
  • the half-bridge LLC circuit unit is always in a high-frequency working state, which reduces the loss of switching devices in the circuit unit and improves the charging efficiency.
  • the charging device includes a first DC conversion module for converting the output DC signal of the power battery into the DC signal required by the battery.
  • the first DC conversion module includes a first half-bridge LLC circuit unit and a second half-bridge LLC circuit unit arranged in parallel.
  • FIG. 4 is a flowchart of a method for controlling charging of a charging device according to an embodiment of the present disclosure. As shown in FIG. 4 , the method for controlling charging of a charging device according to an embodiment of the present disclosure includes at least step S1 , step S2 and step S3 .
  • Step S1 obtaining the total output current of the first DC conversion module.
  • the magnitude of the total output current is related to the working state of the two half-bridge LLC circuit units, and the power battery outputs a direct current signal, which is passed through the first direct current conversion module, the first direct current signal.
  • the DC conversion module converts the DC signal, and the controller obtains the total output current of the DC conversion module.
  • Step S2 judging whether the total output current is less than the current threshold.
  • the current threshold Imax/2 is pre-stored in the control module, the control module continuously detects the total output current Iout of the DC conversion module, and compares the total output current Iout with the current threshold Imax/2 to determine the two currents value relationship.
  • Step S3 the total output current is less than the current threshold, and the first half-bridge LLC circuit unit and the second half-bridge LLC circuit unit are controlled to work alternately.
  • the size of the total output current Iout and the current threshold Imax/2 determines the working state of the first half-bridge LLC circuit unit and the second half-bridge LLC.
  • the control module Controlling the two half-bridge LLC circuit units to work alternately can avoid that the two half-bridge LLC circuit units are always in a high-frequency working state and reduce the loss of switching devices in the circuit units.
  • the control module controls the first half-bridge LLC circuit unit and the second half-bridge LLC circuit unit to cyclically alternately work, and the control module detects that the total output current Iout is less than the current When the threshold Imax/2, control the first half-bridge LLC circuit unit to work, and record the first working time t1 of the first half-bridge LLC circuit unit, compare the first working time t1 with the time threshold S, when the first working time t1 reaches When the time threshold is S, switch the second half-bridge LLC circuit unit to work, and record the second working time t2 of the second half-bridge LLC circuit unit, compare the second working time t2 with the time threshold S, when the second working time t2 reaches the time When the threshold value S is reached, the first half-bridge LLC circuit unit is switched to work again.
  • the two half-bridge LLC circuit units can work alternately, so that the temperature of the two half-bridge LLC circuit units can be balanced, avoiding the temperature rise caused by one of the half-bridge LLC circuit units working for a long time, and ensuring charging Safety.
  • the first half-bridge LLC circuit unit when the total output current Iout is greater than or equal to the current threshold value S, the first half-bridge LLC circuit unit is controlled to work and the second half-bridge LLC circuit unit is controlled to work at the same time, by comparing the total output current Iout with the current threshold value Imax/2 The size of the two half-bridge LLC circuit units is controlled, and the charging effect is better.
  • the control module controls the operation of the first half-bridge LLC circuit unit and the operation of the second half-bridge LLC circuit unit, and sets the first half-bridge LLC circuit unit and the second half-bridge LLC circuit unit
  • the switching frequency of the circuit unit is F, for example, and at the same time, the switching tube of the first half-bridge LLC circuit unit is controlled to work staggered by a preset angle, such as 90°, with the switching tube of the second half-bridge LLC circuit unit, so as to reduce the output ripple current.
  • FIG. 5 it is a flowchart of a method for controlling charging of a charging device according to an embodiment of the present disclosure.
  • Step S11 the charging device is initialized and powered on.
  • Step S13 determine whether the output current value is less than the current threshold value, if yes, go to step S14; if not, go to step S15.
  • step S14 the first half-bridge LLC circuit unit is controlled to work, and the first working time of the first half-bridge LLC circuit unit is recorded.
  • step S15 the first half-bridge LLC circuit unit is controlled to work and the second half-bridge LLC circuit unit is controlled to work simultaneously.
  • Step S16 it is judged whether the first working time exceeds the time threshold, if yes, go to step S17; if not, go to step S16.
  • Step S17 switching the operation of the second half-bridge LLC circuit unit, and recording the second operation time of the second half-bridge LLC circuit unit.
  • Step S18 determine whether the second working time reaches the time threshold, if yes, go to step S19; if not, go to step S18.
  • Step S19 switching the first half-bridge LLC circuit unit to work.
  • Step S20 setting the operation of the first half-bridge LLC circuit unit and the switching frequency of the second half-bridge LLC circuit unit.
  • Step S21 controlling the switch tubes of the first half-bridge LLC circuit unit and the switch tubes of the second half-bridge LLC circuit unit to work alternately at a preset angle.
  • the first half-bridge LLC circuit unit and the second half-bridge LLC circuit unit are controlled to work alternately, that is, two The half-bridge LLC circuit units do not work at the same time, which can prevent the entire half-bridge LLC circuit unit from always working in a high-frequency state, reduce the loss of switching devices in the circuit unit, and improve the charging efficiency.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Dc-Dc Converters (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

一种充电装置、车辆和控制充电装置充电的方法,该充电装置(1)包括:第一直流转换模块(10)和控制模块(20),第一直流转换模块(10)用于将动力电池(16)输出直流电信号转换为蓄电池(15)所需直流电信号,第一直流转换模块(10)包括并联设置的第一半桥LLC电路单元(11)和第二半桥LLC电路单元(12);控制模块(20)与第一半桥LLC电路单元(11)和第二半桥LLC电路单元(12)分别连接,用于获取第一直流转换模块(10)的输出总电流,在输出总电流小于电流阈值时,控制第一半桥LLC电路单元(11)和第二半桥LLC电路(12)单元交替工作。该充电装置(1)可以减少开关损耗,提高充电效率。

Description

充电装置、控制充电装置充电的方法和车辆
相关申请的交叉引用
本公开基于申请号为202011091549.8,申请日为2020年10月13日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本公开作为参考。
技术领域
本公开涉及车辆技术领域,尤其是涉及一种充电装置,以及控制充电装置充电的方法和车辆。
背景技术
随着车辆商业化进度,车辆的DC-DC(Direct current-Direct current converter)转换器和OBC(On board charger,车载充电器)已成为车辆的重要零部件之一。
由于充电需求越来越高,充电时间要求越来越短,产生了大功率充电装置,其中,在一些大功率充电装置中,DC-DC转换器包括两路半桥LLC(Logical Link Control,谐振电路)组成,并联输出电压为13.8V,以为蓄电池以及低压用电器供电。
但是,DC-DC转换器功率工作范围为0-2500W不等,其开关器件始终处于高频工作状态,开关损耗高,影响效率。
公开内容
本公开旨在至少解决现有技术中存在的技术问题之一。为此,本公开的一个目的在于提出一种充电装置,该装置可以减少开关损耗,提高充电效率。
本公开的第二个目的在于提出一种车辆。
本公开的第三个目的在于提出一种控制充电装置充电的方法。
为了达到上述目的,本公开的第一方面实施例提出了一种充电装置,该装置包括:第一直流转换模块,用于将动力电池输出直流电信号转换为蓄电池所需直流电信号,所述第一直流转换模块包括并联设置的第一半桥LLC电路单元和第二半桥LLC电路单元;控制模块,所述控制模块与所述第一半桥LLC电路单元和所述第二半桥LLC电路单元分别连接,用于获取所述第一直流转换模块的输出总电流,在所述输出总电流小于电流阈值时,控制所述第一半桥LLC电路单元和所述第二半桥LLC电路单元交替工作。
根据本公开实施例的充电装置,其第一直流转换模块设置并联连接的第一半桥LLC电 路单元和第二半桥LLC电路单元,控制模块基于第一直流转换模块的输出总电流对两个半桥LLC电路单元的工作状态进行控制,在输出总电流小于电流阈值时,控制两个半桥LLC电路单元交替工作,即两个半桥LLC电路单元不同时工作,从而可以避免整个LLC电路单元的开关始终处于高频工作状态,降低对电路单元中开关器件的损耗,提高充电效率。
在一些实施例中,所述控制模块在所述第一半桥LLC电路单元和所述第二半桥LLC电路单元交替工作时用于,循环执行以下过程:控制所述第一半桥LLC电路单元工作,记录所述第一半桥LLC电路单元的第一工作时间,所述第一工作时间达到时间阈值,切换所述第二半桥LLC电路单元工作,且记录所述第二半桥LLC电路单元的第二工作时间,所述第二工作时间达到所述时间阈值,切换所述第一半桥LLC电路单元工作。通过循环执行该控制过程,实现两个半桥LLC电路单元交替工作,使两个半桥LLC电路单元的温度保持平衡,避免其中一个半桥LLC电路单元长时间工作引起的温度升高,保证充电安全。
在一些实施例中,所述控制模块,还用于在所述输出总电流大于等于所述电流阈值时,控制所述第一半桥LLC电路单元工作以及控制所述第二半桥LLC电路单元同时工作。通过比较输出总电流与电流阈值的大小,当有大电流输出时,对两个半桥LLC电路单元的工作状态进行控制,充电效果更好。
在一些实施例中,所述控制模块在控制所述第一半桥LLC电路单元工作以及控制所述第二半桥LLC电路单元同时工作时,用于相差预设相位角度的交错控制所述第一半桥LLC电路单元的开关管与所述第二半桥LLC电路单元的开关管。大电流输出时,通过控制第一半桥LLC电路单元的开关管与第二半桥LLC电路单元的开关管以预设相位角度交错工作,达到降低输出纹波电流的目的。
在一些实施例中,所述第一半桥LLC电路单元包括:第一开关管和第二开关管,所述第一开关管的第一端与动力电池的第一端连接,所述第一开关管的第二端与所述第二开关管的第一端连接,所述第一开关管的控制端与所述控制模块连接,所述第二开关管的第二端与所述动力电池的第二端连接,所述第二开关管的控制端与所述控制模块连接,所述第一开关管的第二端与所述第二开关管的第一端之间具有第一节点;第一电容和第一电感,所述第一电容的第一端与所述第一节点连接,所述第一电容的第二端与所述第一电感的第一端连接;第一变压器,所述第一变压器包括第一初级线圈、第一次级线圈和第二次级线圈,所述第一初级线圈的第一端与所述第一电感的第二端连接,所述第一初级线圈的第二端与所述第二开关管的第二端连接,所述第一次级线圈的第二端与所述第二次级线圈的第一端连接为第一公共端,所述第一公共端与蓄电池的第二端连接;第三开关管和第四开关管,所述第三开关管的第一端与所述第一次级线圈的第一端连接,所述第三开关管的第二端与所述蓄电池的第一端连接,所述第三开关管的控制端与所述控制模块连接,所述第四 开关管的第一端与所述第二次级线圈的第二端连接,所述第四开关管的第二端与所述第三开关管的第二端、所述蓄电池的第一端连接,所述第四开关管的控制端与所述控制模块连接。通过控制两个半桥LLC电路单元分别工作,不会让每个开关管均处于工作状态,从而降低半桥LLC电路单元中开关管的损耗。
在一些实施例中,所述第二半桥LLC电路单元包括:第五开关管和第六开关管,所述第五开关管的第一端与动力电池的第一端连接,所述第五开关管的第二端与所述第六开关管的第一端连接,所述第五开关管的控制端与所述控制模块连接,所述第六开关管的第二端与所述动力电池的第二端连接,所述第六开关管的控制端与所述控制模块连接,所述第五开关管的第二端与所述第六开关管的第一端之间具有第二节点;第二电容和第二电感,所述第二电容的第一端与所述第二节点连接,所述第二电容的第二端与所述第二电感的第一端连接;第二变压器,所述第二变压器包括第二初级线圈、第三次级线圈和第四次级线圈,所述第二初级线圈的第一端与所述第二电感的第二端连接,所述第二初级线圈的第二端与所述第一变压器的第二端、所述第二开关管的第二端、所述第六开关管的第二端分别连接,所述第三次级线圈的第二端与所述第四次级线圈的第一端连接为第二公共端,所述第二公共端与所述蓄电池的第二端连接;第七开关管和第八开关管,所述第七开关管的第一端与所述第三次级线圈的第一端连接,所述第七开关管的第二端与所述蓄电池的第一端连接,所述第七开关管的控制端与所述控制模块连接,所述第八开关管的第一端与所述第四次级线圈的第二端连接,所述第八开关管的第二端与所述第七开关管的第二端、所述蓄电池的第一端分别连接,所述第八开关管的控制端与所述控制模块连接。通过控制两个半桥LLC电路单元分别工作,不会让每个开关管均处于工作状态,从而降低半桥LLC电路单元中开关管的损耗。
在一些实施例中,所述第一直流转换模块还包括滤波单元,所述滤波单元的第一端与蓄电池的第一端连接,所述滤波单元的第二端与所述蓄电池的第二端连接。
在一些实施例中,所述充电装置还包括:滤波模块,所述滤波模块的第一端与交流电源连接;PFC电路模块,用于对输入交流电进行功率因数校正,并输出功率因数校正后的直流电信号,所述PFC电路模块至少包括三相桥臂,每相桥臂均通过功率电感与所述滤波模块的第二端连接;第二直流转换模块,所述第二直流转换模块的输入端与所述PFC电路模块的输出端连接,所述第二直流转换模块的输出端与动力电池连接。
为了达到上述目的,本公开的第二方面实施例提出的一种车辆,该车辆包括:蓄电池和动力电池以及上面实施例所述的充电装置,所述充电装置与所述蓄电池和所述动力电池分别连接。
根据本公开实施例的车辆,采用上面实施例提到的充电装置为车辆充电,控制两个半 桥LLC电路单元交替工作,即使两个半桥LLC电路单元不同时工作,可以避免整个半桥LLC电路单元的开关始终处于高频工作状态,降低对电路单元中开关器件的损耗,提高充电效率。
为了达到上述目的,本公开的第三方面实施例提出的一种控制充电装置充电的方法,所述充电装置包括用于将动力电池输出直流电信号转换为蓄电池所需直流电信号的第一直流转换模块,所述第一直流转换模块包括并联设置的第一半桥LLC电路单元和第二半桥LLC电路单元,所述方法包括:获取所述第一直流转换模块的输出总电流;判断所述输出总电流是否小于电流阈值;所述输出总电流小于所述电流阈值,控制所述第一半桥LLC电路单元和所述第二半桥LLC电路单元交替工作。
根据本公开实施例的控制充电装置充电的方法,基于输出总电流与电流阈值的大小关系,控制第一半桥LLC电路单元和所述第二半桥LLC电路单元交替工作,即两个半桥LLC电路单元不同时工作,可以避免整个半桥LLC电路单元的开关始终处于高频工作状态,降低对电路单元中开关器件的损耗,提高充电效率。
在一些实施例中,控制所述第一半桥LLC电路单元和所述第二半桥LLC电路单元交替工作,包括:循环执行以下过程:控制所述第一半桥LLC电路单元工作,记录所述第一半桥LLC电路单元的第一工作时间,所述第一工作时间达到时间阈值,切换所述第二半桥LLC电路单元工作,且记录所述第二半桥LLC电路单元的第二工作时间,所述第二工作时间达到所述时间阈值,切换所述第一半桥LLC电路单元工作。
在一些实施例中,所述方法还包括:所述输出总电流大于等于所述电流阈值,控制所述第一半桥LLC电路单元工作以及控制所述第二半桥LLC电路单元同时工作。
在一些实施例中,控制所述第一半桥LLC电路单元工作以及控制所述第二半桥LLC电路单元同时工作,包括:用于相差预设相位角度的交错控制所述第一半桥LLC电路单元的开关管与所述第二半桥LLC电路单元的开关管。
本公开的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本公开的实践了解到。
附图说明
本公开的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1是根据本公开一个实施例的充电装置电路的示意图;
图2是根据本公开一个实施例的充电装置电路的示意图;
图3是根据本公开一个实施例的车辆的框图;
图4是根据本公开一个实施例的控制充电装置充电的方法的流程图;
图5是根据本公开一个实施例的控制充电装置充电的方法的流程图。
具体实施方式
下面详细描述本公开的实施例,参考附图描述的实施例是示例性的,下面详细描述本公开的实施例。
下面参考图1对本公开实施例的充电装置进行说明。
图1是根据本公开的一个实施例的充电装置及其连接的示意图,如图1所示,本公开实施例的充电装置1包括滤波模块19、PFC电路模块30和第二直流转换模块21,其中,滤波模块19的第一端与交流电源连接;PFC电路模块30用于对输入交流电进行功率因数校正,并输出功率因数校正后的直流电信号,PFC电路模块30至少包括三相桥臂,每相桥臂均通过功率电感23与滤波模块19的第二端连接;第二直流转换模块21的输入端与PFC电路模块30的输出端连接,第二直流转换模块21的输出端与动力电池16连接。
在实施例中,采用充电装置1为车辆充电时,交流电源进入滤波模块19,滤波模块19对输入的交流电源进行滤波处理,滤除交流电源中多余的干扰电信号,交流电源经过滤波处理后进入PFC电路模块30,PFC电路模块30包括开关管Q1-Q6,PFC电路模块30对该交流电进行功率因数校正,并输出直流电信号,该直流电信号进入第二直流转换模块21,第二直流转换模块21包括开关管Q7-Q14、变压器等器件,基于第二直流转换模块21获取该直流电信号,并对该直流电信号进行直流转换处理,便于为实现蓄电池充电提供所需直流电信号。
结合图1和图2所示,本公开实施例的充电装置1还包括第一直流转换模块10和控制模块20。第一直流转换模块10用于将动力电池16输出直流电信号转换为蓄电池15所需直流电信号。
具体地,直流电信号经过第二直流转换模块21进行直流转换处理后,为动力电池16充电。在为蓄电池充电时,动力电池16输出直流电信号,第一直流转换模块10将动力电池16输出的直流电信号转换为蓄电池所需的直流电信号,实现为蓄电池15充电。
在本公开实施例中,第一直流转换模块10包括并联设置的第一半桥LLC电路单元11和第二半桥LLC电路单元12;控制模块20与第一半桥LLC电路单元11和第二半桥LLC电路单元12分别连接,控制模块20用于获取第一直流转换模块10的输出总电流,在输出总电流小于电流阈值时,控制第一半桥LLC电路单元11和第二半桥LLC电路单元12交替工作。即控制模块20基于获取的输出总电流,通过对输出总电流的大小进行监控,使两个半桥LLC电路单元交替工作。
在实施例中,如图2所示,第一半桥LLC电路单元11的输出电流例如记为IoutM1,第二半桥LLC电路单元12输出电流例如记为IoutM2,第一直流转换模块10输出的总电流例如记为Iout,第一半桥LLC电路单元的实时温度例如记为T1,第二半桥LLC电路单元12的实时温度例如记为T2,控制模块10基于该输出总电流Iout对两个半桥LLC电路单元的工作状态进行控制,即为蓄电池15充电时,默认第一半桥LLC电路单元先工作,并实时检测输出总电流Iout,由于控制模块20内预存有电流阈值,在输出总电流Iout小于电流阈值时,例如Iout<Imax/2时,控制模块20控制第一半桥LLC电路单元11和第二半桥LLC电路单元12交替工作,在检测两个半桥LLC电路单元输出总电流的同时,需要考虑温度对两个半桥LLC电路单元的影响,通过切换第一半桥LLC电路单元11和第二半桥LLC电路单元12交替工作,避免两个半桥LLC电路单元的开关器件始终处于高频工作状态,使两个半桥LLC电路单元温度保持平衡,降低了开关单元中开关器件损耗,提高充电效率。
根据本公开实施例的充电装置1,其第一直流转换模块10设置并联连接的第一半桥LLC电路单元11和第二半桥LLC电路单元12,控制模块20基于第一直流转换模块10的输出总电流对两个半桥LLC电路单元的工作状态进行控制,在输出总电流小于电流阈值时,控制两个半桥LLC电路单元交替工作,即两个半桥LLC电路单元不同时工作,可以避免整个半桥LLC电路单元始终处于高频工作状态,降低对电路单元中开关器件的损耗,以及交替工作也可以达到均衡温度的目的,提高充电效率。
在一些实施例中,如图2所示,控制模块20在基于输出总电流Iout控制第一半桥LLC电路单元11和第二半桥LLC电路单元12交替工作时,若检测到输出总电流Iout小于电流阈值Imax/2,控制第一半桥LLC电路单元11工作,并记录第一半桥LLC电路单元11的第一工作时间例如t1,比较第一工作时间t1与时间阈值例如S,当第一工作时间t1达到时间阈值S时,切换第二半桥LLC电路单元12工作,且记录第二半桥LLC电路单元12的第二工作时间例如t2,比较第二工作时间t2与时间阈值S,当第二工作时间t2达到时间阈值S时,重新切换第一半桥LLC电路单元工作。通过循环执行该控制过程,实现两个半桥LLC电路单元交替工作,使两个半桥LLC电路单元的温度保持平衡,避免其中一个半桥LLC电路单元长时间工作引起的温度升高,保证充电安全。
在一些实施例中,由于输出总电流Iout是不断变化时,为了保证充电效率,对输出总电流Iout持续进行检测,输出总电流Iout的大小不同,其对两个半桥LLC电路单元的控制也不同,例如控制模块20检测到输出总电流Iout大于等于电流阈值Imax/2时,控制第一半桥LLC电路单元11工作以及控制第二半桥LLC电路单元12同时工作,即控制两个半桥LLC电路单元同时工作,通过比较输出总电流Iout与电流阈值Imax/2的大小,对两个半桥LLC电路单元的工作状态进行控制,保证充电效果。
在一些实施例中,当输出总电流Iout大于电流阈值Imax/2时,即在大电流输出时,控制模块20控制第一半桥LLC电路单元11工作以及控制第二半桥LLC电路单元12同时工作,并设定第一半桥LLC电路单元11与第二半桥LLC电路单元12的开关管频率例如F,以及,用于相差预设相位角度交错控制第一半桥LLC电路单元11的开关管与第二半桥LLC电路单元12的开关管,例如第一半桥LLC电路单元11的开关管与第二半桥LLC电路单元12的开关管相差90°交错工作,达到降低输出纹波电流的目的。
在一些实施例中,如图1和图2所示,第一半桥LLC电路单元11包括第一开关管Q15、第二开关管Q16、第一电容C1、第一电感IcM1、第一变压器14、第三开关管Q19和第四开关管Q20。其中,第一开关管Q15的第一端与动力电池16的第一端连接,第一开关管Q15的第二端与第二开关管Q16的第一端连接,第一开关管Q15的控制端与控制模块20连接,第二开关管Q16的第二端与动力电池16的第二端连接,第二开关管Q16的控制端与控制模块20连接,第一开关管Q15的第二端与第二开关管Q16的第一端之间具有第一节点a;第一电容C1和第一电感IcM1,第一电容C1的第一端与第一节点a连接,第一电容C1的第二端与第一电感IcM1的第一端连接;第一变压器14包括第一初级线圈L11、第一次级线圈L12和第二次级线圈L13,第一初级线圈L11的第一端与第一电感IcM1的第二端连接,第一初级线圈L11的第二端与第二开关管Q16的第二端连接,第一次级线圈L12的第二端与第二次级线圈L13的第一端连接为第一公共端,第一公共端与蓄电池15的第二端连接;第三开关管Q19和第四开关管Q20,第三开关管Q19的第一端与第一次级线圈L12的第一端连接,第三开关管Q19的第二端与蓄电池15的第一端连接,第三开关管Q19的控制端与控制模块20连接,第四开关管Q20的第一端与第二次级线圈L13的第二端连接,第四开关管Q20的第二端与第三开关管Q19的第二端、蓄电池15的第一端连接,第四开关管Q20的控制端与控制模块20连接。控制模块20根据第一直流转换模块10的输出总电流Iout的大小,控制每个开关管的开关状态,使第一半桥LLC电路单元11与第二半桥LLC电路单元12交替工作,从而,第一半桥LLC电路单元11在不同功率范围内工作时,可以避免其每个开关管始终处于工作状态,从而降低第一半桥LLC电路单元11中开关管的损耗。
在一些实施例中,如图2所示,第二半桥LLC电路单元12包括第五开关管Q17、第六开关管Q18、第二电容C2、第二电感IcM2、第二变压器17、第七开关管Q21和第八开关管Q22。其中,第五开关管Q17的第一端与动力电池16的第一端连接,第五开关管Q17的第二端与第六开关管Q18的第一端连接,第五开关管Q17的控制端与控制模块20连接,第六开关管Q18的第二端与动力电池16的第二端连接,第六开关管Q18的控制端与控制模块20连接,第五开关管Q17的第二端与第六开关管Q18的第一端之间具有第二节点b;第二电容C2的第一端与第二节点b连接,第二电容C2的第二端与第二电感IcM2的第一端连接; 第二变压器17包括第二初级线圈L14、第三次级线圈L15和第四次级线圈L16,第二初级线圈L14的第一端与第二电感IcM2的第二端连接,第二初级线圈L14的第二端与第一变压器14的第二端、第二开关管Q16的第二端、第六开关管Q18的第二端分别连接,第三次级线圈L15的第二端与第四次级线圈L16的第一端连接为第二公共端,第二公共端与蓄电池15的第二端连接;第七开关管Q21的第一端与第三次级线圈L15的第一端连接,第七开关管Q21的第二端与蓄电池15的第一端连接,第七开关管Q21的控制端与控制模块20连接,第八开关管Q22的第一端与第四次级线圈L16的第二端连接,第八开关管Q22的第二端与第七开关管Q21的第二端、蓄电池15的第一端分别连接,第八开关管Q22的控制端与控制模块20连接。控制模块20根据收到输出总电流Iout的电流值大小,控制主转换单元M1的以及从转换单元M2工作状态,使控制每个开关管的开关状态,使第一半桥LLC电路单元11与第二半桥LLC电路单元12交替工作,从而,第二半桥LLC电路单元12在不同功率范围内工作时,可以避免使其每个开关管均处于工作状态,从而降低第二半桥LLC电路单元12中开关管的损耗。
在一些实施例中,如图2所示,第一直流转换模块10还包括滤波单元18,滤波单元18的第一端与蓄电池15的第一端连接,滤波单元18的第二端与蓄电池15的第二端连接。充电装置1充电时,通过滤波单元18对蓄电池所需的直流电信号进行滤波处理,滤除多余的干扰信号,提高充电效率。
总而言之,根据本公开实施例的充电装置1,通过并联设置的第一半桥LLC电路单元11和第二半桥LLC电路单元12,控制模块20基于第一直流转换模块10的输出总电流对两个半桥LLC电路单元的工作状态进行控制,在输出总电流小于电流阈值时,控制两个半桥LLC电路单元交替工作,即两个半桥LLC电路单元不同时工作,可以避免整个半桥LLC电路单元始终处于高频工作状态,降低对电路单元中开关器件的损耗,提高充电效率。
下面参考附图描述本公开第二方面实施例的车辆。
图3是根据本公开一个实施例的车辆的框图,如图3所示,本公开实施例的车辆3包括蓄电池15、动力电池16和上面实施例提到的充电装置1,充电装置1与蓄电池15和动力电池16分别连接。
根据本公开实施例的车辆3,采用上面实施例提到的充电装置1为车辆3充电,控制两个半桥LLC电路单元交替工作,即两个半桥LLC电路单元不同时工作,可以避免整个半桥LLC电路单元始终处于高频工作状态,降低对电路单元中开关器件的损耗,提高充电效率。
基于上面实施例提到的充电装置对控制充电装置充电的方法进行说明,充电装置包括用于将动力电池输出直流电信号转换为蓄电池所需直流电信号的第一直流转换模块,第一直流转换模块包括并联设置的第一半桥LLC电路单元和第二半桥LLC电路单元。通过控制 两个半桥LLC电路单元的工作状态,降低对电路中开关器件的损害,减小对效率的影响。
下面参考附图描述本公开第三方面实施例的控制充电装置充电的方法。
图4是根据本公开一个实施例的控制充电装置充电的方法的流程图,如图4所示,本公开实施例的控制充电装置充电的方法至少包括步骤S1、步骤S2和步骤S3。
步骤S1,获取第一直流转换模块的输出总电流。
在实施例中,充电装置为车辆充电时,输出总电流的大小与两个半桥LLC电路单元的工作的状态有关,动力电池输出直流电信号,该直流电信号经第一直流转换模块,第一直流转换模块对该直流电信号进行转换,控制器获取直流转换模块的输出总电流。
步骤S2,判断输出总电流是否小于电流阈值。
在实施例中,控制模块中预存有电流阈值Imax/2,控制模块对直流转换模块的输出总电流Iout不断进行检测,并将输出总电流Iout与电流阈值Imax/2进行比较,判断两个电流值的大小关系。
步骤S3,输出总电流小于电流阈值,控制第一半桥LLC电路单元和第二半桥LLC电路单元交替工作。
在实施例中,输出总电流Iout与电流阈值Imax/2的大小,决定第一半桥LLC电路单元和第二半桥LLC的工作状态,在输出总电流Iout小于电流阈值Imax/2,控制模块控制两个半桥LLC电路单元交替工作,可以避免两个半桥LLC电路单元始终处于高频工作状态,降低对电路单元中开关器件的损耗。
根据本公开实施例的控制充电装置充电的方法,基于输出总电流与电流阈值的大小关系,控制第一半桥LLC电路单元和所述第二半桥LLC电路单元交替工作,即两个半桥LLC电路单元不同时工作,可以避免整个半桥LLC电路单元始终处于高频工作状态,降低对电路单元中开关器件的损耗,提高充电效率。
在一些实施例中,输出总电流Iout小于电流阈值Imax/2时,控制模块控制第一半桥LLC电路单元和第二半桥LLC电路单元循环交替工作,控制模块检测到输出总电流Iout小于电流阈值Imax/2时,控制第一半桥LLC电路单元工作,并记录第一半桥LLC电路单元的第一工作时间t1,比较第一工作时间t1与时间阈值S,当第一工作时间t1达到时间阈值S时,切换第二半桥LLC电路单元工作,且记录第二半桥LLC电路单元的第二工作时间t2,比较第二工作时间t2与时间阈值S,当第二工作时间t2达到时间阈值S时,重新切换第一半桥LLC电路单元工作。通过循环执行该控制过程,实现两个半桥LLC电路单元交替工作,使两个半桥LLC电路单元的温度保持平衡,避免其中一个半桥LLC电路单元长时间工作引起的温度升高,保证充电安全。
在一些实施例中,输出总电流Iout大于等于电流阈值S时,控制第一半桥LLC电路单 元工作以及控制第二半桥LLC电路单元同时工作,通过比较输出总电流Iout与电流阈值Imax/2的大小,对两个半桥LLC电路单元的工作状态进行控制,充电效果更好。
在一些实施例中,在大电流输出时,控制模块控制第一半桥LLC电路单元工作以及控制第二半桥LLC电路单元工作,并设定第一半桥LLC电路单元与第二半桥LLC电路单元的开关管频率例如F,同时,控制第一半桥LLC电路单元的开关管与第二半桥LLC电路单元的开关管相差预设角度例如90°交错工作,达到降低输出纹波电流的目的。
下面结合图5对本公开实施例的控制充电装置充电的方法进行说明。
如图5所示,为本公开一个实施例的控制充电装置充电的方法的流程图。
步骤S11,充电装置初始化上电。
步骤S12,第一半桥LLC电路单元开始工作。
步骤S13,判断输出电流值是否小于电流阈值,若是,执行步骤S14;若否,执行步骤S15。
步骤S14,控制第一半桥LLC电路单元工作,记录第一半桥LLC电路单元的第一工作时间。
步骤S15,控制第一半桥LLC电路单元工作以及控制第二半桥LLC电路单元同时工作。
步骤S16,判断第一工作时间是否超过时间阈值,若是,执行步骤S17;若否,继续执行步骤S16。
步骤S17,切换第二半桥LLC电路单元工作,且记录第二半桥LLC电路单元的第二工作时间。
步骤S18,判断第二工作时间是否达到时间阈值,若是,执行步骤S19;若否,继续执行步骤S18。
步骤S19,切换第一半桥LLC电路单元工作。
步骤S20,设定第一半桥LLC电路单元工作以及第二半桥LLC电路单元的开关频率。
步骤S21,控制第一半桥LLC电路单元的开关管与第二半桥LLC电路单元的开关管以预设角度交错工作。
总而言之,根据本公开实施例的控制充电装置充电的方法,基于输出总电流与电流阈值的大小关系,控制第一半桥LLC电路单元和所述第二半桥LLC电路单元交替工作,即两个半桥LLC电路单元不同时工作,可以避免整个半桥LLC电路单元始终处于高频工作状态,降低对电路单元中开关器件的损耗,提高充电效率。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示意性实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本公开的至少一个实施例或示例中。在本说明书中,对上述术语 的示意性表述不一定指的是相同的实施例或示例。
尽管已经示出和描述了本公开的实施例,本领域的普通技术人员可以理解:在不脱离本公开的原理和宗旨的情况下可以对这些实施例进行多种变化、修改、替换和变型,本公开的范围由权利要求及其等同物限定。

Claims (10)

  1. 一种充电装置,其特征在于,包括:
    第一直流转换模块,用于将动力电池输出直流电信号转换为蓄电池所需直流电信号,所述第一直流转换模块包括并联设置的第一半桥LLC电路单元和第二半桥LLC电路单元;
    控制模块,所述控制模块与所述第一半桥LLC电路单元和所述第二半桥LLC电路单元分别连接,用于获取所述第一直流转换模块的输出总电流,在所述输出总电流小于电流阈值时,控制所述第一半桥LLC电路单元和所述第二半桥LLC电路单元交替工作。
  2. 根据权利要求1所述的充电装置,其特征在于,
    所述控制模块在所述第一半桥LLC电路单元和所述第二半桥LLC电路单元交替工作时用于,循环执行以下过程:控制所述第一半桥LLC电路单元工作,记录所述第一半桥LLC电路单元的第一工作时间,所述第一工作时间达到时间阈值,切换所述第二半桥LLC电路单元工作,且记录所述第二半桥LLC电路单元的第二工作时间,所述第二工作时间达到所述时间阈值,切换所述第一半桥LLC电路单元工作。
  3. 根据权利要求1或2所述的充电装置,其特征在于,
    所述控制模块,还用于在所述输出总电流大于等于所述电流阈值时,控制所述第一半桥LLC电路单元工作以及控制所述第二半桥LLC电路单元同时工作。
  4. 根据权利要求1-3中任一项所述的充电装置,其特征在于,
    所述控制模块在控制所述第一半桥LLC电路单元工作以及控制所述第二半桥LLC电路单元同时工作时,用于相差预设相位角度的交错控制所述第一半桥LLC电路单元的开关管与所述第二半桥LLC电路单元的开关管。
  5. 根据权利要求1所述的充电装置,其特征在于,所述第一半桥LLC电路单元包括:
    第一开关管和第二开关管,所述第一开关管的第一端与动力电池的第一端连接,所述第一开关管的第二端与所述第二开关管的第一端连接,所述第一开关管的控制端与所述控制模块连接,所述第二开关管的第二端与所述动力电池的第二端连接,所述第二开关管的控制端与所述控制模块连接,所述第一开关管的第二端与所述第二开关管的第一端之间具有第一节点;
    第一电容和第一电感,所述第一电容的第一端与所述第一节点连接,所述第一电容的第二端与所述第一电感的第一端连接;
    第一变压器,所述第一变压器包括第一初级线圈、第一次级线圈和第二次级线圈,所述第一初级线圈的第一端与所述第一电感的第二端连接,所述第一初级线圈的第二端与所述第二开关管的第二端连接,所述第一次级线圈的第二端与所述第二次级线圈的第一端连 接为第一公共端,所述第一公共端与蓄电池的第二端连接;
    第三开关管和第四开关管,所述第三开关管的第一端与所述第一次级线圈的第一端连接,所述第三开关管的第二端与所述蓄电池的第一端连接,所述第三开关管的控制端与所述控制模块连接,所述第四开关管的第一端与所述第二次级线圈的第二端连接,所述第四开关管的第二端与所述第三开关管的第二端、所述蓄电池的第一端连接,所述第四开关管的控制端与所述控制模块连接。
  6. 根据权利要求1或5所述的充电装置,其特征在于,所述第二半桥LLC电路单元包括:
    第五开关管和第六开关管,所述第五开关管的第一端与动力电池的第一端连接,所述第五开关管的第二端与所述第六开关管的第一端连接,所述第五开关管的控制端与所述控制模块连接,所述第六开关管的第二端与所述动力电池的第二端连接,所述第六开关管的控制端与所述控制模块连接,所述第五开关管的第二端与所述第六开关管的第一端之间具有第二节点;
    第二电容和第二电感,所述第二电容的第一端与所述第二节点连接,所述第二电容的第二端与所述第二电感的第一端连接;
    第二变压器,所述第二变压器包括第二初级线圈、第三次级线圈和第四次级线圈,所述第二初级线圈的第一端与所述第二电感的第二端连接,所述第二初级线圈的第二端与所述第一变压器的第二端、所述第二开关管的第二端、所述第六开关管的第二端分别连接,所述第三次级线圈的第二端与所述第四次级线圈的第一端连接为第二公共端,所述第二公共端与所述蓄电池的第二端连接;
    第七开关管和第八开关管,所述第七开关管的第一端与所述第三次级线圈的第一端连接,所述第七开关管的第二端与所述蓄电池的第一端连接,所述第七开关管的控制端与所述控制模块连接,所述第八开关管的第一端与所述第四次级线圈的第二端连接,所述第八开关管的第二端与所述第七开关管的第二端、所述蓄电池的第一端分别连接,所述第八开关管的控制端与所述控制模块连接。
  7. 根据权利要求1所述的充电装置,其特征在于,所述第一直流转换模块还包括滤波单元,所述滤波单元的第一端与蓄电池的第一端连接,所述滤波单元的第二端与所述蓄电池的第二端连接。
  8. 根据权利要求1所述的充电装置,其特征在于,所述充电装置还包括:
    滤波模块,所述滤波模块的第一端与交流电源连接;
    PFC电路模块,用于对输入交流电进行功率因数校正,并输出功率因数校正后的直流电信号,所述PFC电路模块至少包括三相桥臂,每相桥臂均通过功率电感与所述滤波模块 的第二端连接;
    第二直流转换模块,所述第二直流转换模块的输入端与所述PFC电路模块的输出端连接,所述第二直流转换模块的输出端与动力电池连接。
  9. 一种车辆,其特征在于,包括:
    蓄电池和动力电池;
    权利要求1-8任一项所述的充电装置,所述充电装置与所述蓄电池、所述动力电池分别连接。
  10. 一种控制充电装置充电的方法,其特征在于,所述充电装置包括用于将动力电池输出直流电信号转换为蓄电池所需直流电信号的第一直流转换模块,所述第一直流转换模块包括并联设置的第一半桥LLC电路单元和第二半桥LLC电路单元,所述方法包括:
    获取所述第一直流转换模块的输出总电流;
    判断所述输出总电流是否小于电流阈值;
    所述输出总电流小于所述电流阈值,控制所述第一半桥LLC电路单元和所述第二半桥LLC电路单元交替工作。
PCT/CN2021/117465 2020-10-13 2021-09-09 充电装置、控制充电装置充电的方法和车辆 WO2022078126A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP21879172.1A EP4216397A4 (en) 2020-10-13 2021-09-09 CHARGING DEVICE, METHOD FOR CONTROLLING THE CHARGING OF A CHARGING DEVICE AND VEHICLE
JP2023522796A JP2023545172A (ja) 2020-10-13 2021-09-09 充電装置、充電装置の充電を制御する方法及び車両
US18/295,610 US20230261492A1 (en) 2020-10-13 2023-04-04 Charging device, method for controlling charging of charging device, and vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011091549.8A CN114362269A (zh) 2020-10-13 2020-10-13 充电装置、控制充电装置充电的方法和车辆
CN202011091549.8 2020-10-13

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/295,610 Continuation US20230261492A1 (en) 2020-10-13 2023-04-04 Charging device, method for controlling charging of charging device, and vehicle

Publications (1)

Publication Number Publication Date
WO2022078126A1 true WO2022078126A1 (zh) 2022-04-21

Family

ID=81090393

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/117465 WO2022078126A1 (zh) 2020-10-13 2021-09-09 充电装置、控制充电装置充电的方法和车辆

Country Status (5)

Country Link
US (1) US20230261492A1 (zh)
EP (1) EP4216397A4 (zh)
JP (1) JP2023545172A (zh)
CN (1) CN114362269A (zh)
WO (1) WO2022078126A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114362270A (zh) * 2020-10-13 2022-04-15 比亚迪股份有限公司 充电装置、控制充电装置充电的方法和车辆

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101106335A (zh) * 2007-06-13 2008-01-16 艾默生网络能源有限公司 一种谐振变换器
CN106787653A (zh) * 2017-03-31 2017-05-31 华为技术有限公司 一种驱动控制方法及电源电路
CN107276190A (zh) * 2017-05-27 2017-10-20 华为技术有限公司 一种轻载纹波的发波方法及装置、设备
CN108683337A (zh) * 2018-04-26 2018-10-19 同济大学 带有多个半桥llc谐振变换器的变换系统及均流方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITMO20130315A1 (it) * 2013-11-14 2015-05-15 Meta System Spa Apparecchiatura per la ricarica di batterie di veicoli elettrici o simili
FR3060230B1 (fr) * 2016-12-14 2019-01-25 Renault S.A.S Procede de commande d'un dispositif de charge embarque sur un vehicule electrique ou hybride.
US10079541B1 (en) * 2017-05-23 2018-09-18 Murata Manufacturing Co., Ltd. Wide input, wide output, high efficiency, isolated DC-DC converter-battery charger
CN107658955B (zh) * 2017-10-31 2024-05-10 厦门远双科技有限公司 一种车载充电机节能省电控制装置及控制方法
CN109510453A (zh) * 2018-12-11 2019-03-22 南京工程学院 一种基于SiC功率器件的EV车载充电器
CN111313679B (zh) * 2020-03-02 2021-10-08 上海瞻芯电子科技有限公司 供电系统及充电设备
CN114362270A (zh) * 2020-10-13 2022-04-15 比亚迪股份有限公司 充电装置、控制充电装置充电的方法和车辆

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101106335A (zh) * 2007-06-13 2008-01-16 艾默生网络能源有限公司 一种谐振变换器
CN106787653A (zh) * 2017-03-31 2017-05-31 华为技术有限公司 一种驱动控制方法及电源电路
CN107276190A (zh) * 2017-05-27 2017-10-20 华为技术有限公司 一种轻载纹波的发波方法及装置、设备
CN108683337A (zh) * 2018-04-26 2018-10-19 同济大学 带有多个半桥llc谐振变换器的变换系统及均流方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4216397A4 *

Also Published As

Publication number Publication date
US20230261492A1 (en) 2023-08-17
EP4216397A4 (en) 2024-04-17
JP2023545172A (ja) 2023-10-26
CN114362269A (zh) 2022-04-15
EP4216397A1 (en) 2023-07-26

Similar Documents

Publication Publication Date Title
US20240030826A1 (en) Dc-dc converter, on-board charger, and electric vehicle
US11404965B2 (en) DC-DC converter, on-board charger, and electric vehicle
US11865933B2 (en) Vehicle and energy conversion device and power system thereof
US11356015B2 (en) Modular medium voltage fast chargers
US9024465B2 (en) Uninterruptible power system
US20220337166A1 (en) Adaptive Power Control for Two-Stage AC/DC or DC/DC Isolated Power Converters
US11855543B2 (en) Energy conversion device, power system and vehicle
CN108512256B (zh) 一种多功能车载充放电一体化系统
US20150263646A1 (en) Switching circuit, power converter, and control method
WO2014044089A1 (zh) 在线式不间断电源拓扑
JPH11215841A (ja) 車両用電源装置
WO1998016993A1 (fr) Convertisseur
CN109687702B (zh) Dc-dc转换器
US20210070190A1 (en) Power Converter Controlled Capacitor Circuits and Methods
CN111313679B (zh) 供电系统及充电设备
CN109067192B (zh) 一种用于宽电压输入的逆变焊割电源的控制电路及装置
WO2022078126A1 (zh) 充电装置、控制充电装置充电的方法和车辆
CN109842182B (zh) 供电系统
CN213661257U (zh) 充电装置和车辆
Zhang et al. A single-stage three-phase isolated AC-DC converter for medium voltage solid state transformer applications
WO2023131101A1 (zh) 双向直流变换器及系统
CN115037163A (zh) 充电电流的控制方法、装置及充电电路
CN114362270A (zh) 充电装置、控制充电装置充电的方法和车辆
Wang et al. Analysis of Z-source inverters in wireless power transfer systems and solutions for accidental shoot-through state
WO2024095703A1 (ja) 電力変換装置、プログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21879172

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023522796

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 2021879172

Country of ref document: EP

Effective date: 20230418

NENP Non-entry into the national phase

Ref country code: DE