WO2022078064A1 - 球形译码检测方法和装置、电子设备、存储介质 - Google Patents

球形译码检测方法和装置、电子设备、存储介质 Download PDF

Info

Publication number
WO2022078064A1
WO2022078064A1 PCT/CN2021/113569 CN2021113569W WO2022078064A1 WO 2022078064 A1 WO2022078064 A1 WO 2022078064A1 CN 2021113569 W CN2021113569 W CN 2021113569W WO 2022078064 A1 WO2022078064 A1 WO 2022078064A1
Authority
WO
WIPO (PCT)
Prior art keywords
decision
hard
layer
search
euclidean distance
Prior art date
Application number
PCT/CN2021/113569
Other languages
English (en)
French (fr)
Inventor
杜敏
周文彬
杜超
孟虹岐
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2022078064A1 publication Critical patent/WO2022078064A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/02Arrangements for detecting or preventing errors in the information received by diversity reception
    • H04L1/06Arrangements for detecting or preventing errors in the information received by diversity reception using space diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/022Site diversity; Macro-diversity
    • H04B7/024Co-operative use of antennas of several sites, e.g. in co-ordinated multipoint or co-operative multiple-input multiple-output [MIMO] systems

Definitions

  • the computational complexity of the Sphere Decoding (SD) algorithm is much smaller than that of the ML detection algorithm, but its performance is the closest to the ML detection algorithm, and it is an ideal signal detection algorithm.
  • the detection principle of the spherical decoding algorithm is to find the optimal signal point by searching all constellation point grids in a hypersphere with a certain radius.
  • the standard spherical decoding detection algorithm has relatively high implementation complexity, which is not conducive to hardware implementation.
  • a related patent embodiment discloses a VLSI-based spherical decoding detection method, which utilizes the configured search nodes to perform table lookup sorting from the first layer, and retains the node with the smallest Euclidean distance, and then sequentially analyzes the remaining nodes.
  • the layer is sorted by look-up table, and the search node with the smallest weight of the current layer is reserved.
  • the decoding result is output.
  • the result of this patented embodiment only includes the symbol information of the modulation result, and the utilization rate of the channel information is low.
  • a related patent embodiment also discloses a spherical decoding detection method based on depth-first search.
  • the search process it is necessary to configure the upper limit of the total search nodes and the upper limit of the search nodes of different layers, and then perform the search layer by layer according to the depth first principle, and set the upper limit of the search nodes to be searched.
  • the current search radius is updated to the weight of the bottommost node searched, and the decoding result is output until the number of searched summary points is equal to the upper limit or the search layer cannot continue to perform the search.
  • the underlying search weight of the patented embodiment is constantly updated, and the subsequent search range is also updated accordingly, and the amount of calculation in hardware implementation cannot be fixed.
  • a first aspect of the embodiments of the present application proposes a spherical decoding detection method, including: performing QR decomposition on a channel matrix to obtain a received signal of each layer, and constructing an index of a hard-decision constellation point lookup table according to the received signal ; Calculate the Euclidean distance of the constellation point of the corresponding layer according to the constellation point corresponding to the search node of each layer in the index of the described hard-judgment constellation point lookup table; Carry out hard-judgment constellation point search to all preset hard-judgment search paths, Summing the Euclidean distances of all layers under each hard-decision search path to obtain the hard-decision global optimal path, the hard-decision shortest Euclidean distance, the reverse polarity bit matrix, and the reverse polarity bit matrix The corresponding shortest Euclidean distance; according to the constellation point corresponding to the hard-decision global optimal path, perform a soft-decision constellation point search, update the hard-decision global optimal path to obtain
  • a second aspect of the embodiments of the present application provides a spherical decoding and detection device, including: a lookup table construction module, configured to perform QR decomposition on a channel matrix, obtain a received signal of each layer, and construct a structure according to the received signal The index of the hard-judgment constellation point look-up table; the calculation module is set to calculate the Euclidean distance of the constellation point of the corresponding layer according to the constellation point corresponding to the search node of each layer in the index of the hard-judgment constellation point look-up table; The search module is set to perform a hard-decision constellation point search on all preset hard-decision search paths, and sum the Euclidean distances of the constellation points of all layers under each of the hard-decision search paths to obtain the hard-decision global maximum.
  • the optimal path the shortest Euclidean distance of the hard decision, the shortest Euclidean distance corresponding to the reverse polarity bit matrix and the reverse polarity bit matrix; the soft decision search module is set to perform a soft decision according to the constellation point corresponding to the hard decision global optimal path.
  • Constellation point search update the hard-decision global optimal path to obtain the soft-decision global optimal path, update the hard-decision shortest Euclidean distance to obtain the soft-decision shortest Euclidean distance, update the inverse polarity bit matrix and the inverse polarity bit matrix
  • the shortest Euclidean distance corresponding to the sex bit matrix, and according to the updated soft decision global optimal path, the soft decision shortest Euclidean distance, the reverse polarity bit matrix, the shortest Euclidean distance corresponding to the reverse polarity bit matrix The distance calculates the LLR soft information corresponding to each bit of each layer.
  • a fourth aspect of the embodiments of the present application provides a storage medium, where the storage medium stores instructions that can be executed by an FPGA or an ASIC, and the instructions are executed by the FPGA or ASIC to implement the method described in the first aspect above .
  • FIG. 1 is a schematic diagram of a search tree of a sphere decoding detection method provided by an embodiment of the present application.
  • FIG. 3 is a flowchart of step 201 in FIG. 2 .
  • FIG. 4 is a flowchart of step 202 in FIG. 2 .
  • FIG. 5 is a flowchart of step 203 in FIG. 2 .
  • SD Sphere Decoding
  • Quadrature Amplitude Modulation It is a vector modulation that maps the input bits (generally using Gray code) to a complex plane (constellation) to form a complex modulation symbol, and then converts the I, Q of the symbol to a complex plane (constellation).
  • the components (corresponding to the real and imaginary parts of the complex plane, that is, the horizontal and vertical directions) are modulated by amplitude, which are respectively modulated on two carriers (cos wt and sin wt) that are orthogonal to each other (time-domain orthogonal). Therefore, compared with amplitude modulation (AM), its spectrum utilization rate will be doubled.
  • QAM is a joint modulation technique of amplitude and phase.
  • the carrier uses the amplitude and phase of the carrier to transmit information bits, so it can achieve higher frequency band utilization under the condition of the same minimum distance.
  • the highest QAM has reached 1024-QAM (ie 1024 samples). The more the number of samples, the higher the transmission efficiency.
  • a 16-QAM signal with 16 samples each sample represents a vector state
  • 16-QAM has 16 states
  • each 4-bit binary number specifies 16 states.
  • 16 carrier and phase combinations are specified in 16-QAM, and each symbol and period of 16-QAM transmits 4 bits.
  • the path further updates the hard-decision shortest Euclidean distance in the soft-decision constellation points to obtain the soft-decision shortest Euclidean distance, updates the reverse polarity bit matrix, and updates the shortest Euclidean distance of the reverse polarity bit matrix, so as to make full use of the channel environment and improve translation. code performance.
  • the highest layer is the Nth layer
  • the next high layer is the N-1th layer
  • the child nodes of layer 4 include: node 1 and node 2 of layer 3, node 3, node 4 and node 5 of layer 2, and all nodes of layer 1 (not shown).
  • the sphere decoding and detection method provided by the embodiment of the present application is applied to a MIMO system.
  • the MIMO system can be applied to a terminal, a server, or software running in the terminal or the server.
  • the terminal may be a smart phone, a tablet computer, a notebook computer, a desktop computer, a smart watch, etc.
  • the server side may be configured as an independent physical server, or may be configured as a server cluster or distributed server composed of multiple physical servers
  • the system can also be configured to provide basic cloud computing such as cloud services, cloud databases, cloud computing, cloud functions, cloud storage, network services, cloud communications, middleware services, domain name services, security services, CDN, and big data and artificial intelligence platforms.
  • the cloud server of the service; the software can be an application that implements the spherical decoding detection method, etc., but is not limited to the above forms.
  • FIG. 2 is a flowchart of a method for detecting sphere decoding provided by an embodiment of the present application.
  • the method in FIG. 2 may include, but is not limited to, steps 201 to 204 .
  • Step 202 according to the constellation point corresponding to the search node of each layer in the index of the hard-decided constellation point lookup table, calculate the Euclidean distance of the constellation point of the corresponding layer;
  • step 201 may include, but is not limited to, including steps 301 to 303.
  • Step 301 perform QR decomposition on the channel matrix to obtain the upper triangular matrix and the received signal of each layer;
  • Step 302 performing equalization processing on the received signal
  • Step 303 Construct the index of the hard-decision constellation point lookup table according to the signal component of the received signal after equalization processing, and obtain the constellation point of each layer; Specifically, in one embodiment, the signal component of the received signal is used as the hard-decision constellation. Look up the index of the table, take the obtained constellation point of each layer as a candidate constellation point, and use the candidate constellation point as the constellation point for calculating the Euclidean distance of the constellation point in step 202 .
  • step 201 in this embodiment of the present application When step 201 in this embodiment of the present application is started to be executed, the preset hard-judgment start flag signal takes effect, and the hardware module of the FPGA or ASIC prepares the hard-judgment process.
  • Step 401 obtain the candidate constellation points of each layer according to the index of the hard-decided constellation point look-up table
  • Step 402 Calculate the Euclidean distance of the constellation points of the corresponding layer according to the candidate constellation points of each layer.
  • Step 501 summing the Euclidean distances of the constellation points of all layers to obtain the accumulated Euclidean distances of the constellation points;
  • Step 502 Acquire all constellation points corresponding to the minimum value of the accumulated Euclidean distance, and use the acquired constellation points as a hard-decided global optimal path.
  • step 202 may further include:
  • the sub-nodes corresponding to different layers are sequentially searched according to the preset search tree, including:
  • N layer is a positive integer
  • i is a positive integer greater than 2.
  • the highest layer is the Nth layer for description:
  • the search table will give the hardware system a hard-decision end flag signal.
  • the constellation point corresponding to the hard-decision global optimal path, The shortest Euclidean distance corresponding to the hard-decided global optimal path and the shortest Euclidean distance corresponding to the reverse polarity bit matrix are sent to the back-end soft-decision module.
  • the hard decision process can be implemented by a hard decision module inside the FPGA or ASIC, and the soft decision process can be implemented by a soft decision module inside the FPGA or ASIC.
  • the constellation point look-up table corresponding to 256QAM (256-order quadrature amplitude modulation) is used as an example for illustration.
  • 256QAM includes a total of 256 constellation points, that is, 256 constellation points to be detected.
  • To detect constellation points select the constellation points whose Euclidean distances are within a fixed range as the candidate constellation points to be searched by the constellation points.
  • Constellation point to be detected Hardly judge the number of constellation points
  • the number of soft-decision constellation points B i,1 corresponds to constellation point 1 N M
  • B i,2 corresponds to constellation point 2
  • B i,3 corresponds to constellation point 3 N M
  • N M B i,n corresponds to constellation point 64 N M
  • step 402 includes:
  • the Euclidean distance of the constellation point of the N-1th layer is calculated according to the constellation point corresponding to the first search node of the N-1th layer.
  • the constellation points corresponding to the minimum value of all accumulated Euclidean distances are the global shortest paths of the hard-decision algorithm, that is, Hard-decision global optimal path, and then use the hard-decided global optimal path to perform step 204, that is, use the hard-decided global optimal path to further update the hard-decided shortest Euclidean distance in the soft-decision constellation points to obtain the soft-decided shortest Euclidean distance , Update the reverse polarity bit matrix, and update the shortest Euclidean distance of the reverse polarity bit matrix, so as to make full use of the channel information and improve the decoding performance.
  • step 204 includes:
  • the LLR soft information corresponding to each bit of each layer is calculated according to the updated soft-decision global optimal path, the soft-decision shortest Euclidean distance, the reverse polarity bit matrix, and the shortest Euclidean distance corresponding to the reverse polarity bit matrix.
  • the base address Find the constellation point corresponding to the first search node 1 of the N-1th layer from the soft-decision search table; wherein, all the constellation points from the N-2th layer to the first layer are processed according to the aforementioned hard-decision process;
  • the base address Find the constellation point corresponding to the second search node 2 of the N-1th layer from the soft-decision search table; wherein, all the constellation points from the N-2th layer to the 1st layer are processed according to the aforementioned hard-decision process;
  • the soft decision search table will give a soft decision search end flag signal.
  • the soft information LLR of each bit of each layer is output, and the soft information LLR can represent as follows:
  • L j,b represents the soft information of the b-th bit of the j-th layer
  • ⁇ ML represents the shortest Euclidean distance
  • the hard-judgment flag signal takes effect; specifically, when the process starts, the hard-judgment flag signal takes effect, and the hard-judgment module prepares the hard-judgment search process;
  • the soft-judgment flag signal takes effect; specifically, the soft-judgment flag signal takes effect, and the software module prepares the soft-judgment search process;
  • the soft decision search point is searched from the first soft decision search point of the next high level, and the soft decision point search of the first complete soft decision path is performed;
  • the layers N-2 to 1 are searched in turn to complete the search of the first complete soft decision path; among them, the top layer N does not participate in soft decision
  • the N-1 layer starts a soft judgment;
  • the index of the hard-decision constellation point lookup table is constructed according to the received signal, and the constellation point corresponding to the search node of each layer in the index of the hard-decision constellation point lookup table is calculated.
  • Optimal path update the shortest Euclidean distance of hard decision to obtain the shortest Euclidean distance of soft decision, update the shortest Euclidean distance corresponding to the reverse polarity bit matrix and the reverse polarity bit matrix, and according to the updated soft decision global optimal path, soft decision shortest
  • the LLR soft information corresponding to each bit of each layer is calculated by the Euclidean distance, the reverse polarity bit matrix, and the shortest Euclidean distance corresponding to the reverse polarity bit matrix; a fixed number of constellation points (each The number of layers can be different), traverse all the paths in turn, and obtain the cumulative Euclidean distance and the corresponding constellation point of each path. path.
  • the embodiments of the present application can switch the corresponding constellation point lookup table and constellation point lookup table according to different modulation modes and antenna layers, so as to implement the spherical decoding algorithm by hardware with a low and fixed computational complexity.
  • the embodiments of the present application can better improve the decoding performance of sphere decoding, and can effectively utilize channel information (eg, channel environment, etc.) through the sphere decoding method combining hard decision and soft decision to improve the decoding performance of the algorithm.
  • the embodiment of the present application also provides a spherical decoding detection device, which can implement the above spherical decoding detection method, and the device includes:
  • the look-up table construction module is set to perform QR decomposition on the channel matrix, obtain the received signal of each layer, and construct the index of the hard-decided constellation point look-up table according to the received signal;
  • the soft decision search module is set to perform soft decision constellation point search according to the constellation points corresponding to the hard decision global optimal path, update the hard decision global optimal path to obtain the soft decision global optimal path, and update the hard decision shortest Euclidean distance to obtain the soft decision Shortest Euclidean distance, update the shortest Euclidean distance corresponding to the reverse polarity bit matrix and the reverse polarity bit matrix, and according to the updated soft judgment global optimal path, soft judgment shortest Euclidean distance, reverse polarity bit matrix, reverse polarity bit matrix
  • the shortest Euclidean distance corresponding to the matrix calculates the LLR soft information corresponding to each bit of each layer.
  • the embodiment of the present application also provides an electronic device, including:
  • the memory stores instructions that can be executed by the FPGA or ASIC, and the instructions are executed by the FPGA or ASIC, so that the FPGA or ASIC can execute the foregoing spherical decoding detection method.
  • Embodiments of the present application further provide a storage medium, where the storage medium stores instructions that can be executed by an FPGA or an ASIC, and the instructions are executed by the FPGA or ASIC to implement the foregoing spherical decoding detection method.
  • the spherical decoding detection method, spherical decoding detection device, electronic device and storage medium proposed in the embodiments of the present application construct the index of the hard-decision constellation point lookup table according to the received signal, and according to each index of the hard-decision constellation point lookup table
  • the constellation points corresponding to the search nodes of one layer calculate the Euclidean distance of the constellation points of the corresponding layer, perform a hard-decision constellation point search on all preset hard-decision search paths, and sum the Euclidean distances of the constellation points of all layers, thereby Obtain the shortest Euclidean distance corresponding to the hard-decision global optimal path and the reverse polarity bit matrix, and then perform a soft-decision constellation point search according to the constellation points corresponding to the hard-decision global optimal path, and update the hard-decision global optimal path to obtain a soft-decision point.
  • Global optimal path update the shortest Euclidean distance of hard judgment to obtain the shortest Euclidean distance of soft judgment, update the shortest Euclidean distance corresponding to the reverse polarity bit matrix and the reverse polarity bit matrix, and according to the updated soft judgment global optimal path, soft judgment
  • the shortest Euclidean distance, the reverse polarity bit matrix, and the shortest Euclidean distance corresponding to the reverse polarity bit matrix are used to calculate the LLR soft information corresponding to each bit of each layer, and use the hard-decision global optimal path to further update the soft-decision constellation points.
  • the shortest Euclidean distance of the hard decision is obtained to obtain the shortest Euclidean distance of the soft decision, the updated reverse polarity bit matrix, and the shortest Euclidean distance of the updated reverse polarity bit matrix, so as to make full use of the channel information and improve the decoding performance.
  • the memory can be used to store non-transitory software programs and non-transitory computer-executable programs.
  • the memory may include high-speed random access memory, and may also include non-transitory memory, such as at least one magnetic disk storage device, flash memory device, or other non-transitory solid state storage device.
  • the memory may include memory located remotely from the processor, which may be connected to the processor through a network. Examples of such networks include, but are not limited to, the Internet, an intranet, a local area network, a mobile communication network, and combinations thereof.
  • the sphere decoding detection method shown in FIGS. 2-5 does not constitute a limitation to the embodiments of the present application, and may include more or less steps than those shown in the figure, or combine some steps , or different steps.
  • the spherical decoding detection method and device, electronic device, and storage medium proposed in the embodiments of the present application construct the index of the hard-decision constellation point lookup table according to the received signal, and search for each layer in the index of the hard-decision constellation point lookup table according to the
  • the constellation point corresponding to the node calculates the Euclidean distance of the constellation point of the corresponding layer, performs a hard-decision constellation point search for all the preset hard-decision search paths, and sums the Euclidean distance of the constellation points of all layers to obtain the hard-decision global
  • the optimal path the hardest shortest Euclidean distance, the reverse polarity bit matrix and the shortest Euclidean distance corresponding to the reverse polarity bit matrix, and then perform a soft-decision constellation point search according to the constellation point corresponding to the hard-decided global optimal path, and update
  • the hard-decision global optimal path obtains the soft-decision global optimal path, the hard-decision shortest Euclidean distance is
  • the LLR soft information corresponding to each bit of uses the hard-decision global optimal path to further update the hard-decision shortest Euclidean distance in the soft-decision constellation points to obtain the soft-decision shortest Euclidean distance, update the reverse polarity bit matrix, update the reverse polarity bit.
  • the shortest Euclidean distance of the matrix can make full use of the channel information and improve the decoding performance.
  • At least one (a) of a, b or c can mean: a, b, c, "a and b", “a and c", “b and c", or "a and b and c" ", where a, b, c can be single or multiple.
  • the disclosed apparatus and method may be implemented in other manners.
  • the apparatus embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not implemented.
  • the shown or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, indirect coupling or communication connection of devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution in this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • the above-mentioned integrated units may be implemented in the form of hardware, or may be implemented in the form of software functional units.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as an independent product, may be stored in a computer-readable storage medium.
  • the technical solutions of the present application can be embodied in the form of software products in essence, or the parts that contribute to the prior art, or all or part of the technical solutions, and the computer software products are stored in a storage medium , including multiple instructions for causing a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium includes: U disk, mobile hard disk, Read-Only Memory (ROM for short), Random Access Memory (RAM for short), magnetic disk or CD, etc. that can store programs medium.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • Error Detection And Correction (AREA)

Abstract

球形译码检测方法和装置、电子设备、存储介质,该方法包括:对信道矩阵进行QR分解,得到每一层的接收信号,并根据接收信号构造硬判星座点查找表的索引;计算出对应层的星座点欧氏距离;对预设的所有硬判搜索路径进行硬判星座点搜索,将所有层的星座点欧氏距离进行求和,得到硬判全局最优路径;根据硬判全局最优路径对应的星座点进行软判星座点搜索,得到软判全局最优路径、软判最短欧式距离、更新后的反极性比特矩阵和最短欧式距离,并根据更新后的软判全局最优路径、软判最短欧式距离、反极性比特矩阵、反极性比特矩阵对应的最短欧式距离计算出每一层的每一比特对应的LLR软信息。

Description

球形译码检测方法和装置、电子设备、存储介质
相关申请的交叉引用
本申请基于申请号为202011112846.6、申请日为2020年10月16日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请涉及无线通信技术领域,尤其涉及球形译码检测方法和装置、电子设备、存储介质。
背景技术
常用的多进多出(multiple input multiple output,MIMO)检测算法中,最大似然(Maximum Likelyhood,ML)检测算法的性能最优,但是其计算复杂度与调制阶数、发射天线数呈指数关系,在实际系统中难以在硬件系统上实现。常见的计算复杂度较低的检测算法包括迫零算法和最小均方误差算法,这两种算法实现简单,但是性能损失较大。因此,目前MIMO检测算法的研究重点集中在:如何降低算法实现的复杂度,并能达到或者接近ML算法的检测性能。
球形译码(SphereDecoding,SD)算法的计算复杂度远小于ML检测算法,但是性能却最接近ML检测算法,是一种较为理想的信号检测算法。球形译码算法的检测原理,是通过在一定半径的超球体内搜索所有星座点网格来查找最优信号点。标准的球形译码检测算法,实现复杂度相对较高,不利于硬件实现。
相关专利实施例公开了一种固定复杂度的MIMO接收机信号搜索球形译码算法,利用乔里斯基分解以及迫零均衡的结果遍历不同调制方式下的所有的星座点进行迭代搜索,并计算累积欧氏距离,然后计算出对应的软比特信息。该专利需要遍历搜索所有星座点,获得最优路径,硬件实现复发度高。
相关专利实施例公开了一种基于超大规模集成电路的球形译码检测方法,利用配置的搜索节点,从第一层开始进行查表排序,并保留其中欧氏距离最小的节点,然后依次对其余层进行查表排序,并保留当前层权值最小的搜索节点,当搜索到最后一层时,输出译码结果。该专利实施例的结果只包含调制结果的符号信息,对信道信息的利用率较低。
相关专利实施例还公开了一种基于深度优先搜索的球形译码检测方法,搜索过程中需要配置搜索总节点的上限以及不同层的搜索节点上限,然后依据深度优先原则逐层进行搜索,并将当前搜索半径更新为搜索到的最底层节点的权值,直到搜索的总结点数等于上限值或者搜索层不能继续执行搜索时,输出译码结果。该专利实施例的底层的搜索权值在不断更新,后续的搜索范围也随之更新,其硬件实现时的计算量无法固定。
发明内容
本申请实施例提出一种球形译码检测方法和装置、电子设备、存储介质。
本申请实施例的第一方面提出了一种球形译码检测方法,包括:对信道矩阵进行QR分解,得到每一层的接收信号,并根据所述接收信号构造硬判星座点查找表的索引;根据所述硬判星座点查找表的索引中每一层的搜索节点对应的星座点计算出对应层的星座点欧氏距离;对预设的所有硬判搜索路径进行硬判星座点搜索,将每一所述硬判搜索路径下的所有层的星座点欧氏距离进行求和,得到硬判全局最优路径、硬判最短欧氏距离、反极性比特矩阵、和反极性比特矩阵对应的最短欧式距离;根据所述硬判全局最优路径对应的星座点进行软判星座点搜索,更新所述硬判全局最优路径得到软判全局最优路径,更新所述硬判最短欧式距离得到软判最短欧式距离,更新所述反极性比特矩阵和所述反极性比特矩阵对应的最短欧式距离,并根据更新后的所述软判全局最优路径、所述软判最短欧式距离、所述反极性比特矩阵、所述反极性比特矩阵对应的最短欧式距离计算出每一层的每一比特对应的LLR软信息。
本申请实施例的第二方面提出了一种球形译码检测装置,包括:查找表构造模块,被设置成对信道矩阵进行QR分解,得到每一层的接收信号,并根据所述接收信号构造硬判星座点查找表的索引;计算模块,被设置成根据所述硬判星座点查找表的索引中每一层的搜索节点对应的星座点计算出对应层的星座点欧氏距离;硬判搜索模块,被设置成对预设的所有硬判搜索路径进行硬判星座点搜索,将每一所述硬判搜索路径下的所有层的星座点欧氏距离进行求和,得到硬判全局最优路径、硬判最短欧氏距离、反极性比特矩阵和反极性比特矩阵对应的最短欧式距离;软判搜索模块,被设置成根据所述硬判全局最优路径对应的星座点进行软判星座点搜索,更新所述硬判全局最优路径得到软判全局最优路径,更新所述硬判最短欧式距离得到软判最短欧式距离,更新所述反极性比特矩阵和所述反极性比特矩阵对应的最短欧式距离,并根据更新后的所述软判全局最优路径、所述软判最短欧式距离、所述反极性比特矩阵、所述反极性比特矩阵对应的最短欧式距离计算出每一层的每一比特对应的LLR软信息。
本申请实施例的第三方面提出了一种电子设备,包括:现场可编程门阵列FPGA或集成电路ASIC;与所述FPGA或ASIC通信连接的存储器;其中,所述存储器存储有可被所述FPGA或ASIC执行的指令,所述指令被所述FPGA或ASIC执行,以使所述FPGA或ASIC能够执行如上述第一方面所述的方法。
本申请实施例的第四方面提出了一种存储介质,所述存储介质存储有可被FPGA或ASIC执行的指令,所述指令被所述FPGA或ASIC执行实现如上述第一方面所述的方法。
附图说明
图1是本申请实施例提供的球形译码检测方法的搜索树的示意图。
图2是本申请实施例提供的球形译码检测方法的流程图。
图3是图2中的步骤201的流程图。
图4是图2中的步骤202的流程图。
图5是图2中的步骤203的流程图。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本申请,并不用于限定本申请。
需要说明的是,虽然在装置示意图中进行了功能模块划分,在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于装置中的模块划分,或流程图中的顺序执行所示出或描述的步骤。说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。本文中所使用的术语只是为了描述本申请实施例的目的,不是旨在限制本申请。
首先,对本申请中涉及的若干名词进行解析:
多进多出(multiple input multiple output,MIMO):是一种天线分集技术,是一种在发送端和接收端都使用多根天线、在收发之间构成多个信道的天线系统;MIMO系统的核心原理是:利用多根发射天线与多根接收天线所提供的空间自由度,来提升无线通信中的频谱效率,以提升传输速率并改善通信品质。
最大似然(Maximum Likelyhood,ML):ML检测算法考虑了时间弥散对接收信号的影响,用整个接收信号来确定最有可能被发送的序列。
对数似然比(Log likelihood Ratio,LLR):常用于软解码。
球形译码(SphereDecoding,SD):SD算法比较接近ML算法,且计算复杂度相对ML算法较小,SD算法的复杂度取决于搜索半径的大小;SD的大致原理是:先在接收信号空间中预设一个以接收信号为圆心的球,再把该球映射为发射信号空间中的一个椭球,并在椭球内搜索可能的发射信号点,一旦找到一个发射信号,即该信号点的映射点与接收信号的距离为半径收缩预设的球,从而后续的搜索可以在更小的氛围内进行。
现场可编程逻辑门阵列(Field Programmable Gate Array,FPGA):是作为专用集成电路(ASIC)领域中的一种半定制电路。
专用集成电路(Application Specific Integrated Circuit,ASIC):是指应特定用户要求和特定电子系统的需要而设计、制造的集成电路,可采用用CPLD(Complex Programming logic device,复杂可编程逻辑器件)和FPGA(现场可编程逻辑阵列)来进行ASIC设计。
正交幅度调制(Quadrature Amplitude Modulation,QAM):是一种矢量调制,将输入比特先映射(一般采用格雷码)到一个复平面(星座)上,形成复数调制符号,然后将符号的I、Q分量(对应复平面的实部和虚部,也就是水平和垂直方向)采用幅度调制,分别对应调制在相互正交(时域正交)的两个载波(cos wt和sin wt)上。从而与幅度调制(AM)相比,其频谱利用率将提高一倍。QAM是幅度、相位联合调制的技术,同时利用了载波的幅度和相位来传递信息比特,因此在最小距离相同的条件下可实现更高的频带利用率,目前QAM最高已达到1024-QAM(即1024个样点)。样点数目越多,其传输效率越高,例如具有16个样点的16-QAM信号,每个样点表示一种矢量状态,16-QAM有16态,每4位二进制数规定了16态中的一态,16-QAM中规定了16种载波和相位的组合,16-QAM的每个符号和周期传送4比特。
通过在硬判搜索步骤中计算的每条路径的累加的欧氏距离总和以及对应的星座点,所有的累加欧氏距离的最小值对应的星座点即为硬判算法的全局最短路径,也即硬判全局最优路径,然后利用该硬判全局最优路径执行步骤204,即,利用该硬判全局最优路径在软判星座点中进一步更新硬判最短欧式距离得到软判最短欧氏距离、更新反极性比特矩阵、更新反极性比特矩阵的最短欧氏距离,从而充分的利用信道信息,提高译码性能。
本申请实施例的应用场景,是应用于MIMO系统,通过构建搜索树进行硬判和软判,以通过搜索树控制硬判、软判整个过程的星座点的搜索路径,并通过在硬判搜索步骤中计算的每条路径的累加的欧氏距离总和以及对应的星座点,所有的累加欧氏距离的最小值对应的星座点即为硬判全局最优路径,然后利用该硬判全局最优路径在软判星座点中进一步更新硬判最短欧式距离得到软判最短欧氏距离、更新反极性比特矩阵、更新反极性比特矩阵的最短欧氏距离,从而充分的利用信道环境,提高译码性能。请参阅图1,示意地,本申请实施例提供的搜索树,其中,最高层是第N层,次高层是第N-1层,第N-1层包括两个节点,分别是节点1和节点2,且,第N-1层的节点1和节点2是第N层的子节点;若N=4,则定义最高层第4层下的节点均为第4层的子节点,例如第4层的子节点包括:第3层的节点1和节点2,第2层的节点3、节点4和节点5,以及第1层的所有节点(图未示)。
本申请实施例提供的方案涉及球形译码检测方法和装置、电子设备、存储介质,具体通过如下实施例进行说明,首先描述本申请实施例中的球形译码检测方法。
本申请实施例提供的球形译码检测方法,应用于MIMO系统,该MIMO系统可应用于终端中,也可应用于服务器端中,还可以是运行于终端或服务器端中的软件。在一些实施例中,终端可以是智能手机、平板电脑、笔记本电脑、台式计算机或者智能手表等;服务器端可以配置成独立的物理服务器,也可以配置成多个物理服务器构成的服务器集群或者分布式系统,还可以配置成提供云服务、云数据库、云计算、云函数、云存储、网络服务、云通信、中间件服务、域名服务、安全服务、CDN以及大数据和人工智能平台等基础云计算服务的云服务器;软件可以是实现球形译码检测方法的应用等,但并不局限于以上形式。
在一些实施例中,球形译码检测方法可以通过FPGA实现;在另一些实施例中,球形译码检测方法可以通过ASIC实现。
图2是本申请实施例提供的球形译码检测方法的一个流程图,图2中的方法可以包括但不限于包括步骤201至步骤204。
步骤201、对信道矩阵进行QR分解,得到每一层的接收信号,并根据接收信号构造硬判星座点查找表的索引;
步骤202、根据硬判星座点查找表的索引中每一层的搜索节点对应的星座点计算出对应层的星座点欧氏距离;
步骤203、对预设的所有硬判搜索路径进行硬判星座点搜索,将每一硬判搜索路径下的所有层的星座点欧氏距离进行求和,得到硬判全局最优路径、硬判最短欧氏距离、反极性比特矩阵和反极性比特矩阵对应的最短欧式距离;
步骤204、根据硬判全局最优路径对应的星座点进行软判星座点搜索,更新硬判全局最优路径得到软判全局最优路径,更新硬判最短欧式距离得到软判最短欧式距离,更新反极性比特矩阵和反极性比特矩阵对应的最短欧式距离,并根据更新后的软判全局最优路径、软判最短欧式距离、反极性比特矩阵、反极性比特矩阵对应的最短欧式距离计算出每一层 的每一比特对应的LLR软信息。
在一些实施例的步骤201中,通过对原始信号对应的信道矩阵进行QR分解,可以去除原始信号之间的相关性,以得到每一层的接收信号。步骤201还包括:
在一些实施例中,请参阅图3,步骤201可以包括但不限于包括步骤301至步骤303。
步骤301、对信道矩阵进行QR分解,得到上三角矩阵和每一层的接收信号;
步骤302、对接收信号进行均衡处理;
步骤303、根据均衡处理后的接收信号的信号分量构造硬判星座点查找表的索引,得到每一层的星座点;具体地,在一实施例中,将接收信号的信号分量作为硬判星座点查表的索引,把得到的每一层的星座点作为候选星座点,将该候选星座点以作为步骤202中进行星座点欧式距离计算的星座点。
通过步骤302对接收信号进行均衡处理,可以降低接收信号之间的干扰。
步骤301中,对信道矩阵H进行QR分解,H=Q·R,其中,Q为酋矩阵,QQ H=I,R为上三角矩阵,R参照如下公式表示:
Figure PCTCN2021113569-appb-000001
接收信号Z=Q HY得到如下表示如下:
Figure PCTCN2021113569-appb-000002
其中,Z N中仅包括第N层的信号分量,Z N-1中包括第N层的信号分量和第N-1层的信号分量,……,以此类推,Z 1包括第N层到第1层所有的信号分量;S N表示第N层的星座点
本申请实施例的步骤201启动执行时,预先设置的硬判开始标志信号生效,FPGA或ASIC的硬件模块准备硬判流程。
在一些实施例中,请参阅图4,步骤202可以包括但不限于包括步骤401至步骤402。
步骤401、根据硬判星座点查找表的索引获取每一层的候选星座点;
步骤402、根据每一层的候选星座点计算对应层的星座点欧氏距离。
在一些实施例中,请参阅图5,步骤203可以包括但不限于包括步骤501至步骤502。
步骤501、将所有层的星座点欧氏距离进行求和得到星座点累加的欧氏距离总和;
步骤502、获取所有的累加欧氏距离的最小值对应的星座点,将获取到的星座点作为硬判全局最优路径。
在该实施例中,通过在硬判搜索步骤中计算的每条路径的累加的欧氏距离总和以及对应的星座点,所有的累加欧氏距离的最小值对应的星座点即为硬判流程的全局最短路径,也即作为硬判全局最优路径,也就是从中选取累加欧氏距离最小的搜索路径作为硬判全局最优路径。
在一些实施例中,步骤202还可以包括:
根据预设搜索树依次对不同层对应的子节点进行搜索;从而,可以不断迭代更新高层对应的星座点;
计算并保留当前子节点对应的星座点欧氏距离。
具体地,根据预设搜索树依次对不同层对应的子节点进行搜索,包括:
保持最高层到第i层的路径不变,对所述路径下i-1层的所有子节点进行搜索;
跳转回所述第i层;
其中,最高层为N层,N是正整数,i是大于2的正整数。
示例地,以最高层为第N层进行说明:
保持第N层到第2层的第一路径不变,对当前第一路径下第1层的所有子节点进行搜索,直到搜索结束,跳转回第2层;
保持固定第N层到第3层的第二路径不变,对当前第二路径下第2层的所有子节点进行搜索,直到搜索结束,跳转回第3层;
以此类推,直至完成所有硬判搜索路径的遍历;
硬判结束标志信号生成。
通过上述步骤202的各子步骤,直至遍历完搜索树指定的所有硬判搜索路径,搜索表会给硬件系统一个硬判结束标志信号,此时会将硬判全局最优路径对应的星座点、硬判全局最优路径对应的最短欧氏距离和反极性比特矩阵对应的最短欧氏距离发送给后端的软判模块。其中,硬判流程可以由FPGA或者ASIC内部的硬判模块来实现,软判流程可以由FPGA或者ASIC内部的软判模块来实现。
在一些实施例的步骤401中,以256QAM(256阶正交幅度调制)对应的星座点查找表为例进行说明,256QAM中共包含256个星座点,即256个待检测星座点,针对每个待检测星座点选取与其欧氏距离在固定范围内的星座点作为其星座点搜索的候选星座点,候选星座点按照与待检测星座点的欧氏距离由近及远的顺序在星座点查找表中进行排列;如下表1所示的星座点查找表,进一步地,为了减小星座点查找表的表格规格,可以将256QAM的256个待检测星座点,经由象限变换,变换到其中一个象限,即,将256个待检测星座点减少四分之三,为64个待检测星座点进行排序,星座点查找表的规格也随之减少了四分之三,即为64个待检测星座点(分别是1,2,3,......64),记为B i,n,其中i表示第I,n表示星座点,B i,1表示第i层对应的待检测星座点为1,B i,2表示第i层对应的待检测星座点为2,B i,3表示第i层对应的待检测星座点为3,B i,64表示第i层对应的待检测星座点为64,每个待检测星座点对应的硬判星座点个数均为N、对应的软判星座点个数均为M,即,每个待检测星座点会有N个与其欧式距离较近的硬判星座点、M个与其欧式距离较近的软判星座点。
待检测星座点 硬判星座点个数 软判星座点个数
B i,1对应星座点1 N M
B i,2对应星座点2 N M
B i,3对应星座点3 N M
…… N M
B i,n对应星座点64 N M
表1
在一些实施例中,最高层为第N层,步骤402包括:
根据第N层的第一搜索节点对应的星座点计算出第N层星座点欧氏距离;
从第N-1层的相关信号中去除第N层的第一搜索节点的信号分量,作为第N-1层的硬判星座点查表的索引,得到第N-1层的第一搜索节点对应的星座点;
根据第N-1层的第一搜索节点对应的星座点计算出第N-1层星座点欧氏距离。
以此类推,直至根据N-1层的所有星座点信息,得到第1层的第一搜索节点对应的星座点,则完成了一条完整路径的硬判星座点搜索。
示例地,以最高层的搜索节点1为例,进行说明,步骤402包括:
根据最高层第N层的搜索节点1对应的星座点B N,1,计算出第N层星座点欧氏距离;
从次高层第N-1层的相关信号中去除最高层第N层的搜索节点1的信号分量,作为第N-1层的硬判星座点查表的索引,得到第N-1层的搜索节点1对应的星座点B N-1,1
第N-1层的搜索节点1对应的星座点B N-1,1计算出第N-1层星座点欧氏距离;
以此类推,直至根据N-1层的所有星座点信息,得到第1层的搜索节点1对应的星座点B 1,1,则完成了一条完整路径的硬判星座点搜索。
在步骤203中,预设的所有硬判搜索路径是指预设的搜索树指定的所有硬判搜索路径;本申请实施例是通过构建搜索树,并通过搜索指定的所有硬判搜索路径进行硬判星座点搜索,将所有层的星座点欧氏距离进行求和,计算出所有路径的累加的欧氏距离总和以及对应的星座点,并将所有的累加欧氏距离的最小值对应的星座点作为硬判全局最优路径。
在该实施例中,通过在硬判搜索步骤中计算的每条路径的累加的欧氏距离总和以及对应的星座点,所有的累加欧氏距离的最小值对应的星座点即为硬判算法的全局最短路径,也即作为硬判全局最优路径。
在一些实施例的步骤203中,还可以得到全局最优路径对应的星座点和最短欧式距离。步骤203中,根据深度优先原则从最高层进行硬判星座点搜索。例如,从最高层的第N层开始,依次对第N-1层到第1层进行硬判星座点搜索,直至完成一条完整路径的星座点搜索。
通过在硬判搜索步骤中计算的每条路径的累加的欧氏距离总和以及对应的星座点,所有的累加欧氏距离的最小值对应的星座点即为硬判算法的全局最短路径,也即硬判全局最优路径,然后利用该硬判全局最优路径执行步骤204,即,利用该硬判全局最优路径在软判星座点中进一步更新硬判最短欧式距离得到软判最短欧氏距离、更新反极性比特矩阵、更新反极性比特矩阵的最短欧氏距离,从而充分的利用信道信息,提高译码性能。
在步骤204中,最高层第N层不参与软判流程;保存每个最大似然解及其对应的反比特矩阵对应的最短欧式距离,并对该最短欧氏距离进行软判星座点搜索,计算出每一层的每一比特对应的LLR软信息。
在一些实施例中,次高层为第N-1层,步骤204包括:
将每一层硬判全局最优路径对应的星座点作为软判搜索表的基地址;
根据基地址从软判搜索表中查找每一层的第一搜索节点对应的星座点;
根据星座点更新硬判全局最优路径得到软判全局最优路径,更新硬判最短欧式距离得到软判最短欧式距离,更新反极性比特矩阵、反极性比特矩阵对应的最短欧式距离;
根据更新后的软判全局最优路径、软判最短欧式距离、反极性比特矩阵、反极性比特 矩阵对应的最短欧式距离计算出每一层的每一比特对应的LLR软信息。
示例地,次高层为第N-1层,步骤204包括:
将第N-1层硬判全局最优路径对应的星座点
Figure PCTCN2021113569-appb-000003
作为软判搜索表的基地址;
根据基地址
Figure PCTCN2021113569-appb-000004
从软判搜索表中查找第N-1层的第一搜索节点1对应的星座点;其中,从第N-2层至第1层的所有星座点按照前述的硬判流程进行处理;
跳回第N-1层;
根据基地址
Figure PCTCN2021113569-appb-000005
从软判搜索表中查找第N-1层的第二搜索节点2对应的星座点;其中,从第N-2层至第1层的所有星座点按照前述的硬判流程进行处理;
跳回第N-1层;
以此类推,直到完成所有层的软判星座点搜索;
根据软判的星座点对应的反极性比特矩阵计算出最短欧式距离;
根据反极性比特矩阵对应的最短欧式距离计算出每一层的每一比特对应的LLR软信息。
本申请实施例中,第N-1层硬判全局最优路径对应的星座点
Figure PCTCN2021113569-appb-000006
作为软判查表的基地址,通过查找软判星座点查找表,得到层N-1软判搜索节点1对应的软判星座点,剩余N-2层的星座点进行正常的硬判处理,硬判搜索完成后跳回第N-1层,利用
Figure PCTCN2021113569-appb-000007
查找第N-1层的第2个搜索节点对应的软判星座点,以此类推直至完成第N-1层所有软判搜索节点的搜索。通过对相应层的软判搜索,可更新得到该层星座点的最优路径,同时也可以更新第N-1层,...,第1层的最短路径(或仍保留硬判处理的结果)。
在步骤204中,最高层第N层不参与软判处理,直接将硬判全局最优路径对应的星座点
Figure PCTCN2021113569-appb-000008
作为软判的最短路径,软判从第N-1层开始,将第N-1层硬判全局最优路径对应的星座点
Figure PCTCN2021113569-appb-000009
作为软判查表的基地址,通过查找软判星座点表,得到第N-1层第一软判搜索节点1对应的软判星座点,从第N-2层至第1层的剩余N-2层的星座点进行前述的硬判流程处理,硬判流程完成后跳回第N-1层,利用基地址
Figure PCTCN2021113569-appb-000010
查找第N-1层的第二软判搜索节点2对应的软判星座点,以此类推直至完成N-1层所有软判搜索节点的搜索。通过对相应层的软判搜索,可以更新得到该层星座点的最优路径,同时也可以更新第N-1层,第N-2层,...,至第1层的最短路径,保存硬判处理的结果。然后,对剩下的N-2层重复上述流程,直至完成第N-2层至第1层的软判搜索流程。通过重复上述流程,直至完成搜索树指定的软判搜索路径,软判搜索表会给一个软判搜索结束标志信号,此时输出每一层的每一比特的软信息LLR,软信息LLR可以表示如下:
Figure PCTCN2021113569-appb-000011
其中,L j,b表示第j层第b比特的软信息,λ ML表示最短欧式距离,
Figure PCTCN2021113569-appb-000012
表示对应最短欧式距离的第(j,b)位置的比特,
Figure PCTCN2021113569-appb-000013
表示反极性比特矩阵中第(j,b)位置的比特,
Figure PCTCN2021113569-appb-000014
Figure PCTCN2021113569-appb-000015
表示反极性比特矩阵中第(j,b)位置的比特对应的最小部分欧式距离。
在一实际应用场景中,球形译码检测方法中的硬判和软判的搜索流程包括如下步骤:
硬判标志信号生效;具体地,流程启动时,硬判标志信号生效,硬判模块准备硬判搜 索流程;
根据深度优先原则从最高层开始进行硬判星座点搜索,进行一条完整的硬判路径的星座点搜索;具体地,从最高层的第N层开始硬判星座点搜索,依次对第N-1层到第1层的硬判星座点搜索,完成一条完整的硬判路径的星座点搜索;
保持第N层到第2层的路径不变,对当前路径下第1层的所有子节点进行搜索,直到搜索结束,跳转回第2层;此时保持第N层到第3层的路径不变,对当前路径下第2层的所有子节点进行搜索,直到搜索结束;以此类推,直至完成硬判全部路径的遍历;
硬判搜索结束标志信号生成;
软判标志信号生效;具体地,软判标志信号生效,软件模块准备软判搜索流程;
根据深度优先原则从次高层的第一个软判搜索点开始进行软判搜索点搜索,进行第一条完整的软判路径的软判点搜索;具体地,从次高层第层N-1的第一个软判搜索点开始,依次对第N-2至第1层进行搜索,完成第一条完整的软判路径的搜索;其中,最高层第N层不参与软判,从次高层第N-1层开始进行软判;
跳转回次高层第N-1层的第二个软判搜索节点开始进行软判搜索点搜索,进行第二条完整的软判路径的软判点搜索;具体地,从次高层第层N-1的第二个软判搜索点开始,依次对第N-2至第1层进行搜索,完成第二条完整的软判路径的搜索,直至完成第N-1层的所有软判搜索节点的搜索;
重复前面的两个步骤,依次完成第N-2层,第N-3层,...,直至第1层的软判搜索点搜索;
软判结束标志信号生成;即,软判搜索的流程结束,至此完成了一个完整的星座点搜索过程,即硬判搜索点搜索和软判搜索点搜索过程。
本申请实施例提供的球形译码检测方法中,通过根据接收信号构造硬判星座点查找表的索引,并根据硬判星座点查找表的索引中每一层的搜索节点对应的星座点计算出对应层的星座点欧氏距离,对预设的所有硬判搜索路径进行硬判星座点搜索,将所有层的星座点欧氏距离进行求和,从而得到硬判全局最优路径、硬判最短欧式距离、反极性比特矩阵和反极性比特矩阵对应的最短欧式距离,再根据硬判全局最优路径对应的星座点进行软判星座点搜索,更新硬判全局最优路径得到软判全局最优路径,更新硬判最短欧式距离得到软判最短欧式距离,更新反极性比特矩阵和反极性比特矩阵对应的最短欧式距离,并根据更新后的软判全局最优路径、软判最短欧式距离、反极性比特矩阵、反极性比特矩阵对应的最短欧式距离计算出每一层的每一比特对应的LLR软信息;在每一层的搜索中选取固定数量的星座点(每一层的数目可以不同),依次对所有路径进行遍历,同时得到每条路径的累加欧氏距离和对应的星座点,所有的累加欧氏距离的最小值对应的星座点即为硬判全局最优路径。利用硬判得到的最优路径,在候选的软判星座点中进一步更新硬判最短欧式距离得到软判最短欧氏距离、更新反极性比特矩阵、更新反极性比特矩阵的最短欧氏距离,从而可以充分利用信道信息,提高译码性能。
本申请实施例可以根据不同的调制方式和天线层数,切换对应的星座点查找表和星座点搜索表从而以较低并固定的计算复杂度,以通过硬件实现球形译码算法。本申请实施例可以更好地提高球形译码的译码性能,通过硬判和软判相结合的球形译码方法,可以有效利用信道信息(例如信道环境等),提高算法的译码性能。
本申请实施例根据不同的信道质量(信道环境),构建了不同的星座点的搜索树和星座点查找表,接收机在工作过程中可以根据实际的信道环境实现在线切换,即可以在线切换星座点的搜索树的路径以及星座点查找表,并利用无效路径将所有的星座点搜索路径补齐到与最长的路径的搜索节点数相同,可以更好地保证算法的译码性能,降低了算法在硬件实现过程中的复杂度,且固定了算法的计算复杂度,从而更易于硬件实现。相对于物理接收机应用较多的MMSE信号检测算法,本申请实施例具有更优的译码性能。另外,本申请实施例应用了FPGA或ASIC硬件实现,可以实现产品的量化生产,提高通信质量。
本申请实施例还提供一种球形译码检测装置,可以实现上述球形译码检测方法,该装置包括:
查找表构造模块,被设置成对信道矩阵进行QR分解,得到每一层的接收信号,并根据接收信号构造硬判星座点查找表的索引;
计算模块,被设置成根据硬判星座点查找表的索引中每一层的搜索节点对应的星座点计算出对应层的星座点欧氏距离;
硬判搜索模块,被设置成对预设的所有硬判搜索路径进行硬判星座点搜索,将所有层的星座点欧氏距离进行求和,得到硬判全局最优路径、硬判最短欧式距离、反极性比特矩阵和反极性比特矩阵对应的最短欧式距离;
软判搜索模块,被设置成根据硬判全局最优路径对应的星座点进行软判星座点搜索,更新硬判全局最优路径得到软判全局最优路径,更新硬判最短欧式距离得到软判最短欧式距离,更新反极性比特矩阵和反极性比特矩阵对应的最短欧式距离,并根据更新后的软判全局最优路径、软判最短欧式距离、反极性比特矩阵、反极性比特矩阵对应的最短欧式距离计算出每一层的每一比特对应的LLR软信息。
本申请实施例还提供了一种电子设备,包括:
现场可编程门阵列FPGA或集成电路ASIC;
与FPGA或ASIC通信连接的存储器;
其中,所述存储器存储有可被所述FPGA或ASIC执行的指令,所述指令被所述FPGA或ASIC执行,以使所述FPGA或ASIC能够执行前述的球形译码检测方法。
FPGA或ASIC可以包括但不限于包括硬判模块和软判模块,硬判模块包括上述的查找表构造模块、计算模块、硬判搜索模块,软判模块包括上述的软判搜索模块。
本申请实施例还提供了一种存储介质,存储介质存储有可被FPGA或ASIC执行的指令,指令被FPGA或ASIC执行实现如前述的球形译码检测方法。
本申请实施例提出的球形译码检测方法、球形译码检测装置、电子设备和存储介质,通过根据接收信号构造硬判星座点查找表的索引,并根据硬判星座点查找表的索引中每一层的搜索节点对应的星座点计算出对应层的星座点欧氏距离,对预设的所有硬判搜索路径进行硬判星座点搜索,将所有层的星座点欧氏距离进行求和,从而得到硬判全局最优路径和反极性比特矩阵对应的最短欧式距离,再根据所述硬判全局最优路径对应的星座点进行软判星座点搜索,更新硬判全局最优路径得到软判全局最优路径,更新硬判最短欧式距离得到软判最短欧式距离,更新反极性比特矩阵和反极性比特矩阵对应的最短欧式距离,并根据更新后的软判全局最优路径、软判最短欧式距离、反极性比特矩阵、反极性比特矩阵对应的最短欧式距离计算出每一层的每一比特对应的LLR软信息,利用硬判全局最优路径 在软判星座点中进一步更新硬判最短欧式距离得到软判最短欧氏距离、更新反极性比特矩阵、更新反极性比特矩阵的最短欧氏距离,从而充分的利用信道信息,提高译码性能。
存储器作为一种非暂态计算机可读存储介质,可用于存储非暂态软件程序以及非暂态性计算机可执行程序。此外,存储器可以包括高速随机存取存储器,还可以包括非暂态存储器,例如至少一个磁盘存储器件、闪存器件、或其他非暂态固态存储器件。在一些实施方式中,存储器可包括相对于处理器远程设置的存储器,这些远程存储器可以通过网络连接至该处理器。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
本申请实施例描述的实施例是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域技术人员可知,随着技术的演变和新应用场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
本领域技术人员可以理解的是,图2-5中示出的球形译码检测方法并不构成对本申请实施例的限定,可以包括比图示更多或更少的步骤,或者组合某些步骤,或者不同的步骤。
本申请实施例提出的球形译码检测方法和装置、电子设备、存储介质,通过根据接收信号构造硬判星座点查找表的索引,并根据硬判星座点查找表的索引中每一层的搜索节点对应的星座点计算出对应层的星座点欧氏距离,对预设的所有硬判搜索路径进行硬判星座点搜索,将所有层的星座点欧氏距离进行求和,从而得到硬判全局最优路径、硬判最短欧氏距离、反极性比特矩阵和反极性比特矩阵对应的最短欧式距离,再根据所述硬判全局最优路径对应的星座点进行软判星座点搜索,更新所述硬判全局最优路径得到软判全局最优路径,更新所述硬判最短欧式距离得到软判最短欧式距离,更新所述反极性比特矩阵和所述反极性比特矩阵对应的最短欧式距离,并根据更新后的所述软判全局最优路径、所述软判最短欧式距离、所述反极性比特矩阵、所述反极性比特矩阵对应的最短欧式距离计算出每一层的每一比特对应的LLR软信息,利用硬判全局最优路径在软判星座点中进一步更新硬判最短欧式距离得到软判最短欧氏距离、更新反极性比特矩阵、更新反极性比特矩阵的最短欧氏距离,从而充分的利用信道信息,提高译码性能。
以上所描述的装置实施例仅仅是示意性的,其中作为分离部件说明的单元可以是或者也可以不是物理上分开的,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。
本领域普通技术人员可以理解,上文中所公开方法中的全部或某些步骤、系统、设备中的功能模块/单元可以被实施为软件、固件、硬件及其适当的组合。
本申请的说明书及上述附图中的术语“第一”、“第二”、“第三”、“第四”等(如果存在)是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
应当理解,在本申请中,“至少一个(项)”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,用于描述关联对象的关联关系,表示可以存在三种关系,例如,“A和/ 或B”可以表示:只存在A,只存在B以及同时存在A和B三种情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b或c中的至少一项(个),可以表示:a,b,c,“a和b”,“a和c”,“b和c”,或“a和b和c”,其中a,b,c可以是单个,也可以是多个。
在本申请所提供的几个实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括多指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,简称ROM)、随机存取存储器(Random Access Memory,简称RAM)、磁碟或者光盘等各种可以存储程序的介质。
以上参照附图说明了本申请实施例的一些实施例,并非因此局限本申请实施例的权利范围。本领域技术人员不脱离本申请实施例的范围和实质内所作的任何修改、等同替换和改进,均应在本申请实施例的权利范围之内。

Claims (10)

  1. 一种球形译码检测方法,包括:
    对信道矩阵进行QR分解,得到每一层的接收信号,并根据所述接收信号构造硬判星座点查找表的索引;
    根据所述硬判星座点查找表的索引中每一层的搜索节点对应的星座点计算出对应层的星座点欧氏距离;
    对预设的所有硬判搜索路径进行硬判星座点搜索,将每一所述硬判搜索路径下的所有层的星座点欧氏距离进行求和,得到硬判全局最优路径、硬判最短欧式距离、反极性比特矩阵和反极性比特矩阵对应的最短欧式距离;
    根据所述硬判全局最优路径对应的星座点进行软判星座点搜索,更新所述硬判全局最优路径得到软判全局最优路径,更新所述硬判最短欧式距离得到软判最短欧式距离,更新所述反极性比特矩阵和所述反极性比特矩阵对应的最短欧式距离,并根据更新后的所述软判全局最优路径、所述软判最短欧式距离、所述反极性比特矩阵、所述反极性比特矩阵对应的最短欧式距离计算出每一层的每一比特对应的LLR软信息。
  2. 根据权利要求1所述的方法,其中,所述对预设的所有硬判搜索路径进行硬判星座点搜索,将所有层的星座点欧氏距离进行求和,得到硬判全局最优路径和反极性比特矩阵对应的最短欧式距离,包括:
    将所有层的星座点欧氏距离进行求和得到星座点累加的欧氏距离总和;
    获取所有的累加欧氏距离的最小值对应的星座点,将获取到的星座点作为所述硬判全局最优路径。
  3. 根据权利要求1所述的方法,其中,所述根据所述硬判星座点查找表的索引中每一层的搜索节点对应的星座点计算出对应层的星座点欧氏距离,还包括:
    根据预设搜索树依次对不同层对应的子节点进行搜索;
    计算并保留当前的子节点对应的星座点欧氏距离。
  4. 根据权利要求3所述的方法,其中,所述根据预设搜索树依次对不同层对应的子节点进行搜索,包括:
    保持最高层到第i层的路径不变,对所述路径下第i-1层的所有子节点进行搜索;
    跳转回所述第i层;
    其中,最高层为第N层,N是正整数,i是大于2的正整数。
  5. 根据权利要求1所述的方法,其中,最高层为第N层,所述根据每一层的所述候选星座点计算对应层的星座点欧氏距离,包括:
    根据第N层的第一搜索节点对应的星座点计算出第N层星座点欧氏距离;
    从第N-1层的相关信号中去除第N层的第一搜索节点的信号分量,作为第N-1层的硬判星座点查表的索引,得到第N-1层的第一搜索节点对应的星座点;
    根据第N-1层的第一搜索节点对应的星座点计算出第N-1层星座点欧氏距离。
  6. 根据权利要求1至5任意一项所述的方法,其中,所述对信道矩阵进行QR分解,得到每一层的接收信号,并根据所述接收信号构造硬判星座点查找表的索引,包括:
    对所述信道矩阵进行QR分解,得到上三角矩阵和每一层的所述接收信号;
    对所述接收信号进行均衡处理;
    根据均衡处理后的所述接收信号的信号分量构造所述硬判星座点查找表的索引,得到每一层的星座点。
  7. 根据权利要求1至5任意一项所述的方法,其中,次高层为第N-1层,所述根据所述硬判全局最优路径和所述反极性比特矩阵对应的最短欧式距离进行软判星座点搜索,得到每一层的每一比特对应的LLR软信息,包括:
    将每一层硬判全局最优路径对应的星座点作为软判搜索表的基地址;
    根据所述基地址从所述软判搜索表中查找每一层的第一搜索节点对应的星座点;
    根据所述星座点更新所述硬判全局最优路径得到软判全局最优路径,更新所述硬判最短欧式距离得到软判最短欧式距离,更新所述反极性比特矩阵和所述反极性比特矩阵对应的最短欧式距离;
    根据更新后的所述软判全局最优路径、所述软判最短欧式距离、所述反极性比特矩阵、所述反极性比特矩阵对应的最短欧式距离计算出每一层的每一比特对应的LLR软信息。
  8. 一种球形译码检测装置,包括:
    查找表构造模块,被设置成对信道矩阵进行QR分解,得到每一层的接收信号,并根据所述接收信号构造硬判星座点查找表的索引;
    计算模块,被设置成根据所述硬判星座点查找表的索引中每一层的搜索节点对应的星座点计算出对应层的星座点欧氏距离;
    硬判搜索模块,被设置成对预设的所有硬判搜索路径进行硬判星座点搜索,将每一所述硬判搜索路径下的所有层的星座点欧氏距离进行求和,得到硬判全局最优路径、硬判最短欧氏距离、反极性比特矩阵和反极性比特矩阵对应的最短欧式距离;
    软判搜索模块,被设置成根据所述硬判全局最优路径对应的星座点进行软判星座点搜索,更新所述硬判全局最优路径得到软判全局最优路径,更新所述硬判最短欧式距离得到软判最短欧式距离,更新所述反极性比特矩阵和所述反极性比特矩阵对应的最短欧式距离,并根据更新后的所述软判全局最优路径、所述软判最短欧式距离、所述反极性比特矩阵、所述反极性比特矩阵对应的最短欧式距离计算出每一层的每一比特对应的LLR软信息。
  9. 一种电子设备,包括:
    现场可编程门阵列FPGA或集成电路ASIC;
    与所述FPGA或ASIC通信连接的存储器;
    其中,所述存储器存储有可被所述FPGA或ASIC执行的指令,所述指令被所述FPGA或ASIC执行,以使所述FPGA或ASIC能够执行如权利要求1至7任一项所述的方法。
  10. 一种存储介质,存储有可被FPGA或ASIC执行的指令,其中,所述指令被所述FPGA或ASIC执行实现如权利要求1至7任一项所述的方法。
PCT/CN2021/113569 2020-10-16 2021-08-19 球形译码检测方法和装置、电子设备、存储介质 WO2022078064A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011112846.6 2020-10-16
CN202011112846.6A CN114389757A (zh) 2020-10-16 2020-10-16 球形译码检测方法和装置、电子设备、存储介质

Publications (1)

Publication Number Publication Date
WO2022078064A1 true WO2022078064A1 (zh) 2022-04-21

Family

ID=81193672

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/113569 WO2022078064A1 (zh) 2020-10-16 2021-08-19 球形译码检测方法和装置、电子设备、存储介质

Country Status (2)

Country Link
CN (1) CN114389757A (zh)
WO (1) WO2022078064A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115022132A (zh) * 2022-05-27 2022-09-06 中国电信股份有限公司 信号接收译码方法和装置
CN115051900A (zh) * 2022-05-10 2022-09-13 四川创智联恒科技有限公司 无线多输入多输出的接收机检测方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101026435A (zh) * 2006-02-24 2007-08-29 中国科学院上海微系统与信息技术研究所 通信系统中低复杂度的极大似然检测方法及装置
EP1993246A1 (en) * 2007-05-17 2008-11-19 Research In Motion Limited Apparatus and associated method for detecting values of a space-time block code using selective decision-feedback detection
CN101615980A (zh) * 2009-07-27 2009-12-30 北京天碁科技有限公司 一种多输入多输出系统中的最大似然检测方法及装置
US20120106666A1 (en) * 2010-10-29 2012-05-03 Intel Mobile Communications Technology Dresden GmbH Method for defining a search sequence for soft-decision sphere decoding algorithm
US8428169B1 (en) * 2008-07-30 2013-04-23 Marvell International Ltd. MIMO soft demodulation using hard-decision candidate selection
US8559543B1 (en) * 2009-10-09 2013-10-15 Marvell International Ltd. Soft sphere decoder for MIMO maximum likelihood demodulation
WO2013189383A2 (zh) * 2012-08-20 2013-12-27 中兴通讯股份有限公司 对mimo信号进行空时译码的处理方法及装置
CN103888217A (zh) * 2012-12-24 2014-06-25 中兴通讯股份有限公司 一种球形译码检测方法及装置
CN106130690A (zh) * 2016-06-21 2016-11-16 东南大学 结合极化码的mimo系统联合检测译码方法
WO2020173161A1 (zh) * 2019-02-28 2020-09-03 乐鑫信息科技(上海)股份有限公司 带有检测中信道矩阵预处理的mimo-ofdm无线信号检测方法和系统

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101026435A (zh) * 2006-02-24 2007-08-29 中国科学院上海微系统与信息技术研究所 通信系统中低复杂度的极大似然检测方法及装置
EP1993246A1 (en) * 2007-05-17 2008-11-19 Research In Motion Limited Apparatus and associated method for detecting values of a space-time block code using selective decision-feedback detection
US8428169B1 (en) * 2008-07-30 2013-04-23 Marvell International Ltd. MIMO soft demodulation using hard-decision candidate selection
CN101615980A (zh) * 2009-07-27 2009-12-30 北京天碁科技有限公司 一种多输入多输出系统中的最大似然检测方法及装置
US8559543B1 (en) * 2009-10-09 2013-10-15 Marvell International Ltd. Soft sphere decoder for MIMO maximum likelihood demodulation
US20120106666A1 (en) * 2010-10-29 2012-05-03 Intel Mobile Communications Technology Dresden GmbH Method for defining a search sequence for soft-decision sphere decoding algorithm
WO2013189383A2 (zh) * 2012-08-20 2013-12-27 中兴通讯股份有限公司 对mimo信号进行空时译码的处理方法及装置
CN103888217A (zh) * 2012-12-24 2014-06-25 中兴通讯股份有限公司 一种球形译码检测方法及装置
CN106130690A (zh) * 2016-06-21 2016-11-16 东南大学 结合极化码的mimo系统联合检测译码方法
WO2020173161A1 (zh) * 2019-02-28 2020-09-03 乐鑫信息科技(上海)股份有限公司 带有检测中信道矩阵预处理的mimo-ofdm无线信号检测方法和系统

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115051900A (zh) * 2022-05-10 2022-09-13 四川创智联恒科技有限公司 无线多输入多输出的接收机检测方法
CN115051900B (zh) * 2022-05-10 2024-01-16 四川创智联恒科技有限公司 无线多输入多输出的接收机检测方法
CN115022132A (zh) * 2022-05-27 2022-09-06 中国电信股份有限公司 信号接收译码方法和装置

Also Published As

Publication number Publication date
CN114389757A (zh) 2022-04-22

Similar Documents

Publication Publication Date Title
JP4429945B2 (ja) Mimo多重通信装置および信号分離方法
WO2022078064A1 (zh) 球形译码检测方法和装置、电子设备、存储介质
JP4373439B2 (ja) スフィア復号技術を用いた信号検出
CN107005504A (zh) 用于通过降低复杂度的树搜索检测无线通信网络中的数据的方法及装置
CN101790854A (zh) 用于多输入多输出系统的接近软输出最大似然检测
CN114097202B (zh) 解码器和用于对信号进行解码的方法
CN102457470B (zh) 用于软判定球形解码的方法和装备
Liu et al. Fast maximum likelihood detection of the generalized spatially modulated signals using successive sphere decoding algorithms
US20130022155A2 (en) Enhanced lattice reduction systems and methods
Kosasih et al. A Bayesian receiver with improved complexity-reliability trade-off in massive MIMO systems
WO2016121625A1 (en) Method for decoding block of data received over communication channel and receiver
WO2024036933A1 (zh) 检测译码方法、装置、计算机设备及可读存储介质
CN109660473B (zh) 一种球形译码检测方法及装置、计算机可读存储介质
CN109167648B (zh) 候选星座点集合生成方法及mimo空间复用检测方法
Chang et al. Complexity‐reduced maximum‐likelihood hybrid detection for MIMO systems
KR100842817B1 (ko) Mdsa를 이용한 저 연산량 mimo 수신방식
TW201810961A (zh) 最大可能性偵測器與偵測方法
Elghariani et al. Branch and bound with m algorithm for near optimal mimo detection with higher order qam constellation
CN113746776B (zh) 基于星座点排序和动态树搜索的信号接收方法
TW201505380A (zh) 由基於球狀解碼器之渦輪等化器執行之方法與渦輪等化器
Lai et al. Channel-aware local search (CA-LS) for iterative MIMO detection
TWI797907B (zh) Mimo之訊符偵測與搜尋方法、解碼電路及接收天線系統
CN109039539B (zh) 候选星座点集合生成方法及mimo空间复用检测方法
JP2013197751A (ja) 無線装置、無線装置制御方法、無線装置制御プログラム
WO2023024535A1 (zh) 信号检测方法和装置、电子设备、计算机可读存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21879111

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 31/08/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 21879111

Country of ref document: EP

Kind code of ref document: A1