WO2022077974A1 - 电路系统、电路系统的控制方法、控制器及存储介质 - Google Patents

电路系统、电路系统的控制方法、控制器及存储介质 Download PDF

Info

Publication number
WO2022077974A1
WO2022077974A1 PCT/CN2021/105720 CN2021105720W WO2022077974A1 WO 2022077974 A1 WO2022077974 A1 WO 2022077974A1 CN 2021105720 W CN2021105720 W CN 2021105720W WO 2022077974 A1 WO2022077974 A1 WO 2022077974A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrically connected
latching relay
power supply
magnetic latching
circuit system
Prior art date
Application number
PCT/CN2021/105720
Other languages
English (en)
French (fr)
Inventor
陈宁宁
徐金辉
俞贤桥
王京
黄猛
党培育
Original Assignee
珠海格力电器股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海格力电器股份有限公司 filed Critical 珠海格力电器股份有限公司
Publication of WO2022077974A1 publication Critical patent/WO2022077974A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H1/00Details of emergency protective circuit arrangements
    • H02H1/06Arrangements for supplying operative power
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/001Methods to deal with contingencies, e.g. abnormalities, faults or failures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy

Definitions

  • the present application is based on the CN application number 202011112702.0 and the filing date is October 16, 2020, and claims its priority.
  • the disclosure of the CN application is hereby incorporated into the present application as a whole.
  • the present disclosure relates to the technical field of electronic circuits, and in particular, to a circuit system, a control method for the circuit system, a controller, and a non-transitory computer-readable storage medium.
  • DC contactors or relays are usually used to control the connection and shutdown between the electrical equipment and the power supply.
  • the voltage on the photovoltaic panel is connected to the high-voltage DC bus through the DC-DC DC/DC converter, and then connected to the power grid through the DC-AC DC/AC converter.
  • a DC contactor is arranged between the photovoltaic cell panel and the DC/DC converter, so as to realize the connection and shutdown of the photovoltaic cell panel in a reliable and controllable manner;
  • a relay is set between the DC/AC converter and the power grid, Thereby, the connection and shutdown of the power grid can be realized reliably and controllably.
  • a circuit system comprising: a system power supply; a latching relay electrically connected to the system power supply; a DC bus electrically connected to the latching relay; a DC bus capacitor disposed between the DC buses; and a controller electrically connected to the DC bus capacitor, and configured to send off control pulses to the magnetic latching relay by utilizing the electrical energy stored in the DC bus capacitor when the system power supply stops supplying power.
  • the controller is electrically connected to the system power supply; the controller is further configured to send a closing control pulse to the latching relay using electrical energy provided by the system power supply when the system power supply is powered.
  • the disconnection control pulse is the first pulse signal
  • the latching relay includes: a first optocoupler electrically connected to the ground terminal of the latching relay; electrically connected to the first optocoupler and the power terminal of the latching relay respectively A connected coil; a permanent magnet coupled with the coil; wherein the first optocoupler is turned on when receiving the first pulse signal, and the current in the coil in the first direction drives the permanent magnet to move to disconnect the magnetic latching relay.
  • the opening control pulse is a first pulse signal
  • the closing control pulse includes a second pulse signal and a third pulse signal
  • the magnetic latching relay includes: a first optocoupler electrically connected to the ground terminal of the magnetic latching relay; a second optocoupler; an electromagnetic relay electrically connected to the power supply end of the magnetic latching relay, the electromagnetic relay includes a first contact and a second contact; electrically connected to the first optocoupler, the second optocoupler, and the electromagnetic relay respectively A coil; a permanent magnet coupled with the coil; wherein the first optocoupler is turned on when receiving the first pulse signal, the electromagnetic relay is connected to the first contact, and the current in the coil in the first direction drives the permanent magnet to move
  • the magnetic latching relay is turned off; the second optocoupler is turned on when it receives the second pulse signal, the electromagnetic relay is turned on when the third pulse signal is received, and the current in the second direction in the coil is turned on.
  • the permanent magnet is driven to move to close the magnetic latching relay, and the second
  • the controller includes: a power board electrically connected to the DC bus; a control board electrically connected to the power board, configured to obtain electrical energy stored in the capacitors of the DC bus through the power board when the system power supply stops supplying power , and send an open control pulse to the latching relay.
  • the power supply board is electrically connected to the system power supply; the control board is further configured to obtain the power provided by the system power supply through the power supply board under the condition of the system power supply, and send a closing control pulse to the magnetic latching relay.
  • the system power source includes: a grid power source and a photovoltaic power source;
  • the latching relay includes a first latching relay electrically connected to the grid power source and a second latching relay electrically connected to the photovoltaic power source.
  • the numbers of the first magnetic latching relay and the second magnetic latching relay are respectively multiple.
  • the circuit system further includes: a DC-AC converter electrically connected to the DC bus and the first magnetic latching relay, respectively; a compressor drive circuit electrically connected to the DC-AC converter and the DC bus, respectively; and a compressor drive circuit
  • the motor is electrically connected to the motor drive circuit
  • the DC-DC converter is electrically connected to the second magnetic latching relay and the DC bus respectively
  • the energy storage circuit is electrically connected to the DC-DC converter and the DC bus respectively.
  • the compressor drive circuit is a compressor drive circuit of an air conditioner
  • the motor is a motor of an air conditioner
  • a method for controlling a circuit system where the circuit system is the aforementioned circuit system, and the control method includes: when the system power supply stops supplying power, the controller utilizes the electric energy stored in the DC bus capacitor , sending the open control pulse to the magnetic latching relay; and in the case of the system power supply, the controller uses the electric energy provided by the system power supply to send the closing control pulse to the magnetic latching relay.
  • a controller including: a memory; and a processor coupled to the memory, the processor being configured to execute the aforementioned control method of the circuit system based on instructions stored in the memory.
  • a non-transitory computer-readable storage medium stores computer instructions, and when the instructions are executed by a processor, implement the aforementioned control method of the circuit system.
  • FIG. 1 shows a schematic structural diagram of a circuit system of some embodiments of the present disclosure.
  • FIG. 2 shows a schematic structural diagram of a magnetic latching relay according to some embodiments of the present disclosure.
  • FIG. 3 shows the situation where the magnetic latching relay needs to be turned off.
  • FIG. 4 shows the situation where the magnetic latching relay needs to be closed.
  • FIG. 5 shows a schematic flowchart of a control method of a circuit system according to some embodiments of the present disclosure.
  • FIG. 6 shows a schematic structural diagram of a controller according to some embodiments of the present disclosure.
  • the inventor has found through research that a DC bus capacitor is usually arranged between the DC bus bars of the circuit system.
  • the voltage on the DC bus capacitor discharges slowly, causing a potential safety hazard in the circuit system.
  • the DC contactors and relays will consume high power and generate serious heat, which not only reduces the operating efficiency of the circuit system, but also causes the heat dissipation problem of the circuit system, thus reducing the power consumption of the circuit system. system security.
  • the present disclosure provides a circuit system, which will be described in detail below.
  • circuitry of some embodiments of the present disclosure will be described with reference to FIG. 1 .
  • FIG. 1 shows a schematic structural diagram of a circuit system of some embodiments of the present disclosure.
  • the circuit system in FIG. 1 includes: a system power supply 101; a latching relay 102 electrically connected to the system power supply 101; a DC bus 103 electrically connected to the latching relay 102; a DC bus capacitor 104 disposed between the DC buses 103; and A controller 105 is electrically connected to the DC bus capacitor 104 .
  • the controller 105 is configured to send off control pulses to the magnetic latching relay 102 using the electrical energy stored in the DC bus capacitor 104 in the event that the system power supply 101 stops supplying power.
  • the residual power stored in the DC bus capacitor cannot provide power for a long time, but can provide power for a period of time.
  • the electrical energy during this time supplies power to the controller, enabling the controller to send off control pulses.
  • the magnetic latching relay is disconnected under the action of the disconnection control pulse signal, and keeps the disconnection state continuously.
  • the residual current stored in the DC bus capacitor is used to drive the magnetic latching relay to disconnect, so that the voltage on the DC bus capacitor can be rapidly discharged, thereby improving the safety of the circuit system.
  • the controller 105 is electrically connected to the system power supply 101 .
  • the controller 105 is also configured to send a closing control pulse to the magnetic latching relay 102 using the power provided by the system power supply 101 when the system power supply 101 is powered.
  • the magnetic latching relay is closed under the action of the closing control pulse, and keeps the closed state continuously without the need for continuous power supply, so it can avoid the phenomenon of serious heating of the DC contactor and the relay. In this way, not only the power loss of the circuit system is reduced, but also the heat dissipation problem during operation of the circuit system can be alleviated, thereby further improving the safety of the circuit system.
  • the controller 105 includes: a power supply board 1051 electrically connected to the DC bus 103 ; and a control board 1052 electrically connected to the power supply board 1051 .
  • the control board 1052 is configured to obtain the electric energy stored in the DC bus capacitor 104 through the power supply board 1051 , and to send a disconnection control pulse to the magnetic latching relay 102 when the power supply of the system power supply 101 is stopped.
  • the power strip 1051 is electrically connected to the system power supply 101 .
  • the control board 1052 is also configured to obtain the power provided by the system power supply 101 through the power supply board 1051 and send a closing control pulse to the magnetic latching relay 102 when the system power supply 101 supplies power.
  • the system power source 101 includes a grid power source 1012 and a photovoltaic power source 1011
  • the photovoltaic power source can be, for example, a photovoltaic cell panel.
  • the latching relay 102 includes a first latching relay 1021 electrically connected to the grid power supply 1012 and a second latching relay 1022 electrically connected to the photovoltaic power source 1011 .
  • the number of the first magnetic latching relay 1021 and the second magnetic latching relay 1022 may be one or more.
  • the first latching relay 1021 includes latching relays K1, K2, K3, and K4
  • the second latching relay 1022 includes latching relays K5 and K6.
  • the circuit system further includes: a DC-AC converter 110 electrically connected to the DC bus 103 and the first magnetic latching relay 1021, respectively; a compressor electrically connected to the DC-AC converter 110 and the DC bus 103, respectively.
  • the compressor driving circuit 106 is the compressor driving circuit 106 of the air conditioner
  • the motor 107 is the motor 107 of the air conditioner.
  • the circuit system is an air-conditioning system capable of reducing power consumption.
  • the control board sends out control pulses to energize the coils of the magnetic latching relays K1, K2, K3, and K4, and the magnetic latching relays K1, K2, K3, and K4 are closed. Then, the control board turns off the control pulse to keep the magnetic latching relays K1, K2, K3, K4 in a closed state, and the circuit system operates normally. When the photovoltaic power supply is required to be connected to the system, the magnetic latching relays K5 and K6 are closed in a similar control manner.
  • the power board can maintain power supply for a period of time. Based on this control board, the control pulse is output to make the coils of the magnetic latching relays K1, K2, K3, K4, K5, and K6 reversely energized.
  • the magnetic latching relays K1, K2, K3, K4, K5, K6 are reset and disconnected to prepare for the next start-up operation.
  • FIG. 2 shows a schematic structural diagram of a magnetic latching relay according to some embodiments of the present disclosure.
  • the off control pulse is the first pulse signal.
  • the latching relay 102 includes: a first optocoupler 2021 electrically connected to the ground terminal of the latching relay; a coil 2022 electrically connected to the first optocoupler 2021 and the power supply terminal VCC of the latching relay 102 respectively; Magnet 2023.
  • the first optocoupler 2021 is turned on when receiving the first pulse signal, and the current in the coil 2022 in the first direction drives the permanent magnet 2023 to move so that the magnetic latching relay 102 is disconnected.
  • the opening control pulse is a first pulse signal
  • the closing control pulse includes a second pulse signal and a third pulse signal.
  • the latching relay 102 includes: a first optocoupler 2021 and a second optocoupler 2024 electrically connected to the ground terminal of the latching relay; an electromagnetic relay 2025 electrically connected to the power terminal VCC of the latching relay 102 , and the electromagnetic relay 2025 includes a first optocoupler 2025 .
  • the first optocoupler 2021 is turned on when receiving the first pulse signal, the electromagnetic relay turns on the first contact 20251, and the current in the coil 2022 in the first direction drives the permanent magnet 2023 to move, so that the magnetic latching relay 102 is disconnected.
  • the second optocoupler 2024 is turned on when receiving the second pulse signal, the electromagnetic relay 2025 is turned on when receiving the third pulse signal, the second contact 20252 is turned on, and the current in the coil 2022 in the second direction drives the permanent The movement of the magnet 2023 causes the magnetic latching relay 102 to close, and the second direction is opposite to the first direction.
  • FIG. 3 shows the situation in which the magnetic latching relay needs to be turned off.
  • the control board outputs the first pulse signal S21, the electromagnetic relay is turned on and contacts the first contact 20251, so that the first optocoupler starts to work, the coil of the magnetic latching relay is energized, and the magnetic latching relay is disconnected. Then, the control board turns off the first pulse signal S21.
  • the duration of the pulse signal S21 can be adjusted according to the actual component selection, for example, it can be set to 200 milliseconds.
  • FIG. 4 shows the situation that the magnetic latching relay needs to be closed.
  • the control board outputs the second pulse signal S22 and the third pulse signal S23, the second pulse signal S22 makes the second optocoupler start to work, the third pulse signal S23 makes the electromagnetic relay switch to the second contact 20252, and the magnetic latching relay coil reverses. When the direction is energized, the magnetic latching relay is closed. Then, the control board turns off the second pulse signal S22 and the third pulse signal S23.
  • the duration of the pulse signals S22 and S23 can be adjusted according to the actual component selection, for example, it can be set to 200 milliseconds.
  • FIG. 5 shows a schematic flowchart of a control method of a circuit system according to some embodiments of the present disclosure. As shown in FIG. 5 , the control method of the circuit system includes steps S501 to S502 , where the circuit system is the circuit system in any of the foregoing embodiments.
  • step S501 when the system power supply stops supplying power, the controller uses the electric energy stored in the DC bus capacitor to send a disconnection control pulse to the magnetic latching relay.
  • step S502 when the system power supply supplies power, the controller sends a closing control pulse to the magnetic latching relay by using the electric energy provided by the system power supply.
  • the residual power stored in the DC bus capacitor cannot provide power for a long time, but can provide power for a period of time.
  • the electrical energy during this time powers the controller and enables the controller to send a disconnect control pulse signal.
  • the magnetic latching relay is disconnected under the action of the disconnection control pulse signal, and keeps the disconnection state continuously.
  • the residual current stored in the DC bus capacitor is used to drive the magnetic latching relay to disconnect, so that the voltage on the DC bus capacitor can be rapidly discharged, thereby improving the safety of the circuit system.
  • the magnetic latching relay is closed under the action of the closing control pulse, and keeps the closed state continuously without the need for continuous power supply, so it can avoid the phenomenon of serious heating of the DC contactor and the relay. In this way, not only the power loss of the circuit system is reduced, but also the heat dissipation problem during operation of the circuit system can be alleviated, thereby further improving the safety of the circuit system.
  • controller of some embodiments of the present disclosure is described below with reference to FIG. 6 .
  • FIG. 6 shows a schematic structural diagram of a controller according to some embodiments of the present disclosure.
  • the controller 60 includes a memory 610 and a processor 620 coupled to the memory 610, the processor 620 is configured to execute the circuitry of any of the foregoing embodiments based on instructions stored in the memory 610 .
  • the memory 610 may include, for example, a system memory, a fixed non-volatile storage medium, and the like.
  • the system memory stores, for example, an operating system, an application program, a boot loader (Boot Loader), and other programs.
  • the controller 60 may also include an input-output interface 630, a network interface 640, a storage interface 650, and the like. These interfaces 630 , 640 , 650 and the memory 610 and the processor 620 may be connected, for example, through a bus 660 .
  • the input and output interface 630 provides a connection interface for input and output devices such as a display, a mouse, a keyboard, and a touch screen.
  • Network interface 640 provides a connection interface for various networked devices.
  • the storage interface 650 provides a connection interface for external storage devices such as SD cards and U disks.
  • the present disclosure also includes a computer-readable storage medium having stored thereon computer instructions that, when executed by a processor, implement the circuitry of any of the foregoing embodiments.
  • These computer program instructions may also be stored in a computer-readable memory capable of directing a computer or other programmable data processing apparatus to function in a particular manner, such that the instructions stored in the computer-readable memory result in an article of manufacture comprising instruction means, the instructions
  • the apparatus implements the functions specified in the flow or flow of the flowcharts and/or the block or blocks of the block diagrams.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Direct Current Feeding And Distribution (AREA)

Abstract

本公开提供了一种电路系统、电路系统的控制方法、控制器及非瞬时性计算机可读存储介质,涉及电子电路技术领域。电路系统包括:系统电源;与系统电源电连接的磁保持继电器;与磁保持继电器电连接的直流母线;设置在直流母线之间的直流母线电容;以及与直流母线电容电连接的控制器,被配置为在系统电源停止供电的情况下,利用直流母线电容存储的电能,向磁保持继电器发送断开控制脉冲。本公开在系统电源停止供电的情况下,利用直流母线电容存储的余电驱动磁保持继电器断开,使直流母线电容上的电压快速放电,从而提升了电路系统的安全性。

Description

电路系统、电路系统的控制方法、控制器及存储介质
相关申请的交叉引用
本申请是以CN申请号为202011112702.0,申请日为2020年10月16日的申请为基础,并主张其优先权,该CN申请的公开内容在此作为整体引入本申请中。
技术领域
本公开涉及电子电路技术领域,特别涉及一种电路系统、电路系统的控制方法、控制器及非瞬时性计算机可读存储介质。
背景技术
在电路系统中,通常使用直流接触器或继电器来控制用电设备与电源之间的连接和关断。
以光伏系统为例,光伏电池板上的电压经直流-直流DC/DC变换器接入高压直流母线,再经直流-交流DC/AC变换器接入电网。其中,在光伏电池板与DC/DC变换器之间设置有直流接触器,从而可靠、可控的实现光伏电池板的连接和关断;在DC/AC变换器与电网之间设置由继电器,从而可靠、可控的实现电网的连接和关断。
发明内容
根据本公开的一个方面,提供了一种电路系统,包括:系统电源;与系统电源电连接的磁保持继电器;与磁保持继电器电连接的直流母线;设置在直流母线之间的直流母线电容;以及与直流母线电容电连接的控制器,被配置为在系统电源停止供电的情况下,利用直流母线电容存储的电能,向磁保持继电器发送断开控制脉冲。
在一些实施例中,控制器与系统电源电连接;所述控制器还被配置为在系统电源供电的情况下,利用系统电源提供的电能,向磁保持继电器发送闭合控制脉冲。
在一些实施例中,断开控制脉冲为第一脉冲信号;磁保持继电器包括:与磁保持继电器接地端电连接的第一光耦合器;分别与第一光耦合器、磁保持继电器电源端电连接的线圈;与线圈耦合的永磁体;其中,第一光耦合器在接收到第一脉冲信号的情况下导通,线圈中第一方向的电流驱动永磁体移动使磁保持继电器断开。
在一些实施例中,断开控制脉冲为第一脉冲信号,闭合控制脉冲包括第二脉冲信 号和第三脉冲信号;磁保持继电器包括:与磁保持继电器接地端电连接的第一光耦合器和第二光耦合器;与磁保持继电器电源端电连接的电磁继电器,电磁继电器包括第一触点和第二触点;分别与第一光耦合器、第二光耦合器、电磁继电器电连接的线圈;与线圈耦合的永磁体;其中,第一光耦合器在接收到第一脉冲信号的情况下导通,电磁继电器接通第一触点,线圈中第一方向的电流驱动永磁体移动使磁保持继电器断开;第二光耦合器在接收到第二脉冲信号的情况下导通,电磁继电器在接收到第三脉冲信号的情况下接通第二触点,线圈中第二方向的电流驱动永磁体移动使磁保持继电器闭合,第二方向与第一方向相反。
在一些实施例中,控制器包括:与直流母线电连接的电源板;与电源板电连接的控制板,被配置为在系统电源停止供电的情况下,通过电源板获取直流母线电容存储的电能,并向磁保持继电器发送断开控制脉冲。
在一些实施例中,电源板与系统电源电连接;所述控制板还被配置为在系统电源供电的情况下,通过电源板获取系统电源提供的电能,向磁保持继电器发送闭合控制脉冲。
在一些实施例中,系统电源包括:电网电源和光伏发电电源;磁保持继电器包括:与电网电源电连接的第一磁保持继电器和与光伏发电电源电连接的第二磁保持继电器。
在一些实施例中,第一磁保持继电器以及第二磁保持继电器的个数分别为多个。
在一些实施例中,电路系统还包括:分别与直流母线和第一磁保持继电器电连接的直流-交流转换器;分别与直流-交流转换器和直流母线电连接的压缩机驱动电路;与压缩机驱动电路电连接的电机;分别与第二磁保持继电器和直流母线电连接的直流-直流转换器;分别与直流-直流转换器和直流母线电连接的储能电路。
在一些实施例中,压缩机驱动电路为空调的压缩机驱动电路,电机为空调的电机。
根据本公开的另一个方面,提供了一种电路系统的控制方法,电路系统为前述的电路系统,所述控制方法包括:在系统电源停止供电的情况下,控制器利用直流母线电容存储的电能,向磁保持继电器发送断开控制脉冲;以及在系统电源供电的情况下,控制器利用系统电源提供的电能,向磁保持继电器发送闭合控制脉冲。
根据本公开的又一个方面,提供了一种控制器,包括:存储器;以及耦接至存储器的处理器,处理器被配置为基于存储在存储器中的指令,执行前述的电路系统的控制方法。
根据本公开的再一个方面,提供了非瞬时性计算机可读存储介质,其中,非瞬时性计算机可读存储介质存储有计算机指令,指令被处理器执行时实现前述的电路系统的控制方法。
通过以下参照附图对本公开的示例性实施例的详细描述,本公开的其它特征及其优点将会变得清楚。
附图说明
为了更清楚地说明本公开实施例或相关技术中的技术方案,下面将对实施例或相关技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1示出了本公开一些实施例的电路系统的结构示意图。
图2示出了本公开一些实施例的磁保持继电器的结构示意图。
图3示出了磁保持继电器需要断开的情况。
图4示出了磁保持继电器需要闭合的情况。
图5示出了本公开一些实施例的电路系统的控制方法的流程示意图。
图6示出了本公开一些实施例的控制器的结构示意图。
具体实施方式
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。以下对至少一个示例性实施例的描述实际上仅仅是说明性的,决不作为对本公开及其应用或使用的任何限制。基于本公开中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其它实施例,都属于本公开保护的范围。
发明人研究发现,在电路系统的直流母线之间,通常设置有直流母线电容。在系统电源停止供电的情况下,直流母线电容上的电压放电缓慢,使得电路系统存在安全隐患。同时,在系统电源供电的情况下电路系统运行,直流接触器和继电器会消耗较高的电能,发热严重,不仅降低电路系统的运行效率,还引发了电路系统的散热问题,因此也降低了电路系统的安全性。
为提升了电路系统的安全性,本公开提供了一种电路系统,下面进行具体介绍。
首先结合图1描述本公开一些实施例的电路系统。
图1示出了本公开一些实施例的电路系统的结构示意图。图1中的电路系统包括:系统电源101;与系统电源101电连接的磁保持继电器102;与磁保持继电器102电连接的直流母线103;设置在直流母线103之间的直流母线电容104;以及与直流母线电容104电连接的控制器105。控制器105被配置为在系统电源101停止供电的情况下,利用直流母线电容104存储的电能,向磁保持继电器102发送断开控制脉冲。
本领域技术人员能够理解,在系统电源停止供电的情况下,直流母线电容存储的余电不能持久的提供电能,而能够在一段时间内提供电能。这段时间的电能为控制器供电,能够使控制器发送断开控制脉冲信号。磁保持继电器在断开控制脉冲信号的作用下断开,并持续保持断开状态。利用直流母线电容存储的余电驱动磁保持继电器断开,能够使直流母线电容上的电压快速放电,从而提升了电路系统的安全性。
在一些实施例中,控制器105与系统电源101电连接。控制器105还被配置为在系统电源101供电的情况下,利用系统电源101提供的电能,向磁保持继电器102发送闭合控制脉冲。
在电路系统运行过程中,磁保持继电器在闭合控制脉冲的作用下闭合,并在不需要持续供电的情况下持续保持闭合状态,因此能够避免直流接触器、继电器发热严重的现象。这样一来,不仅降低了电路系统的功率损耗,还能够缓解电路系统运行时的散热问题,进一步提升了电路系统的安全性。
在一些实施例中,控制器105包括:与直流母线103电连接的电源板1051;与电源板1051电连接的控制板1052。
控制板1052被配置为在系统电源101停止供电的情况下,通过电源板1051获取直流母线电容104存储的电能,并向磁保持继电器102发送断开控制脉冲。
在一些实施例中,电源板1051与系统电源101电连接。
控制板1052还被配置为在系统电源101供电的情况下,通过电源板1051获取系统电源101提供的电能,向磁保持继电器102发送闭合控制脉冲。
在一些实施例中,系统电源101包括:电网电源1012和光伏发电电源1011,光伏发电电源例如可以为光伏电池板。磁保持继电器102包括:与电网电源1012电连接的第一磁保持继电器1021和与光伏发电电源1011电连接的第二磁保持继电器1022。
在一些实施例中,第一磁保持继电器1021以及第二磁保持继电器1022的个数可以为一个或多个。例如,第一磁保持继电器1021包括磁保持继电器K1、K2、K3、 K4,第二磁保持继电器1022包括磁保持继电器K5、K6。
在一些实施例中,电路系统还包括:分别与直流母线103和第一磁保持继电器1021电连接的直流-交流转换器110;分别与直流-交流转换器110和直流母线103电连接的压缩机驱动电路106;与压缩机驱动电路106电连接的电机107;分别与第二磁保持继电器1022和直流母线103电连接的直流-直流转换器108;分别与直流-直流转换器108和直流母线103电连接的储能电路109。
在一些实施例中,压缩机驱动电路106为空调的压缩机驱动电路106,电机107为空调的电机107。此时,电路系统为能够降低功耗的空调系统。
电路系统的工作过程具体举例如下。
(1)系统电源供电的情况
控制板发出控制脉冲使磁保持继电器K1、K2、K3、K4的线圈得电,磁保持继电器K1、K2、K3、K4闭合。然后,控制板再关闭控制脉冲使磁保持继电器K1、K2、K3、K4维持闭合状态,电路系统正常运行。当需要光伏发电电源接入系统时,以相似的控制方式使磁保持继电器K5、K6闭合。
(2)系统电源停止的情况
由于直流母线电容上的电压需要泄放过程,电源板能够维持一段时间供电,基于此控制板输出控制脉冲,使磁保持继电器K1、K2、K3、K4、K5、K6的线圈反向得电。磁保持继电器K1、K2、K3、K4、K5、K6复位断开,为下一次的启动运行做准备。
下面结合图2描述本公开磁保持继电器的一些实施例。
图2示出了本公开一些实施例的磁保持继电器的结构示意图。
在一些实施例中,断开控制脉冲为第一脉冲信号。磁保持继电器102包括:与磁保持继电器接地端电连接的第一光耦合器2021;分别与第一光耦合器2021、磁保持继电器102电源端VCC电连接的线圈2022;与线圈2022耦合的永磁体2023。
第一光耦合器2021在接收到第一脉冲信号的情况下导通,线圈2022中第一方向的电流驱动永磁体2023移动使磁保持继电器102断开。
在一些实施例中,断开控制脉冲为第一脉冲信号,闭合控制脉冲包括第二脉冲信号和第三脉冲信号。磁保持继电器102包括:与磁保持继电器接地端电连接的第一光耦合器2021和第二光耦合器2024;与磁保持继电器102电源端VCC电连接的电磁继电器2025,电磁继电器2025包括第一触点20251和第二触点20252;分别与第一光耦 合器2021、第二光耦合器2024、电磁继电器2025电连接的线圈2022;与线圈2022耦合的永磁体2023。
第一光耦合器2021在接收到第一脉冲信号的情况下导通,电磁继电器接通第一触点20251,线圈2022中第一方向的电流驱动永磁体2023移动使磁保持继电器102断开。
第二光耦合器2024在接收到第二脉冲信号的情况下导通,电磁继电器2025在接收到第三脉冲信号的情况下接通第二触点20252,线圈2022中第二方向的电流驱动永磁体2023移动使磁保持继电器102闭合,第二方向与第一方向相反。
磁保持继电器的工作过程具体举例如下。
(1)图3示出了磁保持继电器需要断开的情况。
控制板输出第一脉冲信号S21,电磁继电器接通触第一触点20251,使第一光耦合器开始工作,磁保持继电器线圈得电,磁保持继电器断开。然后,控制板关闭第一脉冲信号S21。脉冲信号S21持续时间可根据实际元器件选择进行调整,例如可以设置为200毫秒。
(2)图4示出了磁保持继电器需要闭合的情况。
控制板输出第二脉冲信号S22和第三脉冲信号S23,第二脉冲信号S22使第二光耦合器开始工作,第三脉冲信号S23使电磁继电器切换至第二触点20252,磁保持继电器线圈反向得电,磁保持继电器闭合。然后,控制板关闭第二脉冲信号S22、第三脉冲信号S23。脉冲信号S22、S23持续时间可根据实际元器件选择进行调整,例如可以设置为200毫秒。
下面结合图5描述本公开电路系统的控制方法的一些实施例。
图5示出了本公开一些实施例的电路系统的控制方法的流程示意图。如图5所示,电路系统的控制方法包括步骤S501~步骤S502,其中的电路系统为前述任一实施例中的电路系统。
在步骤S501中,在系统电源停止供电的情况下,控制器利用直流母线电容存储的电能,向磁保持继电器发送断开控制脉冲。
在步骤S502中,在系统电源供电的情况下,控制器利用系统电源提供的电能,向磁保持继电器发送闭合控制脉冲。
在系统电源停止供电的情况下,直流母线电容存储的余电不能持久的提供电能,而能够在一段时间内提供电能。这段时间的电能为控制器供电,能够使控制器发送断 开控制脉冲信号。磁保持继电器在断开控制脉冲信号的作用下断开,并持续保持断开状态。利用直流母线电容存储的余电驱动磁保持继电器断开,能够使直流母线电容上的电压快速放电,从而提升了电路系统的安全性。
在电路系统运行过程中,磁保持继电器在闭合控制脉冲的作用下闭合,并在不需要持续供电的情况下持续保持闭合状态,因此能够避免直流接触器、继电器发热严重的现象。这样一来,不仅降低了电路系统的功率损耗,还能够缓解电路系统运行时的散热问题,进一步提升了电路系统的安全性。
下面结合图6描述本公开一些实施例的控制器。
图6示出了本公开一些实施例的控制器的结构示意图。如图6所示,控制器60包括:存储器610以及耦接至该存储器610的处理器620,处理器620被配置为基于存储在存储器610中的指令,执行前述任意一些实施例中的电路系统。
其中,存储器610例如可以包括系统存储器、固定非易失性存储介质等。系统存储器例如存储有操作系统、应用程序、引导装载程序(Boot Loader)以及其他程序等。
控制器60还可以包括输入输出接口630、网络接口640、存储接口650等。这些接口630、640、650以及存储器610和处理器620之间例如可以通过总线660连接。其中,输入输出接口630为显示器、鼠标、键盘、触摸屏等输入输出设备提供连接接口。网络接口640为各种联网设备提供连接接口。存储接口650为SD卡、U盘等外置存储设备提供连接接口。
本公开还包括一种计算机可读存储介质,其上存储有计算机指令,该指令被处理器执行时实现前述任意一些实施例中的电路系统。
本公开是参照根据本公开实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个 方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
以上所述仅为本公开的较佳实施例,并不用以限制本公开,凡在本公开的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本公开的保护范围之内。

Claims (13)

  1. 一种电路系统,包括:
    系统电源;
    与系统电源电连接的磁保持继电器;
    与磁保持继电器电连接的直流母线;
    设置在直流母线之间的直流母线电容;以及
    与直流母线电容电连接的控制器,被配置为在系统电源停止供电的情况下,利用直流母线电容存储的电能,向磁保持继电器发送断开控制脉冲。
  2. 根据权利要求1所述的电路系统,其中,控制器与系统电源电连接;所述控制器还被配置为在系统电源供电的情况下,利用系统电源提供的电能,向磁保持继电器发送闭合控制脉冲。
  3. 根据权利要求1所述的电路系统,其中,所述断开控制脉冲为第一脉冲信号;
    磁保持继电器包括:
    与磁保持继电器接地端电连接的第一光耦合器;
    分别与第一光耦合器、磁保持继电器电源端电连接的线圈;
    与线圈耦合的永磁体;
    其中,第一光耦合器在接收到第一脉冲信号的情况下导通,线圈中第一方向的电流驱动永磁体移动使磁保持继电器断开。
  4. 根据权利要求2所述的电路系统,其中,所述断开控制脉冲为第一脉冲信号,所述闭合控制脉冲包括第二脉冲信号和第三脉冲信号;
    磁保持继电器包括:
    与磁保持继电器接地端电连接的第一光耦合器和第二光耦合器;
    与磁保持继电器电源端电连接的电磁继电器,电磁继电器包括第一触点和第二触点;
    分别与第一光耦合器、第二光耦合器、电磁继电器电连接的线圈;
    与线圈耦合的永磁体;
    其中,第一光耦合器在接收到第一脉冲信号的情况下导通,电磁继电器接通第一触点,线圈中第一方向的电流驱动永磁体移动使磁保持继电器断开;
    第二光耦合器在接收到第二脉冲信号的情况下导通,电磁继电器在接收到第三脉冲信号的情况下接通第二触点,线圈中第二方向的电流驱动永磁体移动使磁保持继电器闭合,第二方向与第一方向相反。
  5. 根据权利要求1所述的电路系统,其中,控制器包括:
    与直流母线电连接的电源板;
    与电源板电连接的控制板,被配置为在系统电源停止供电的情况下,通过所述电源板获取直流母线电容存储的电能,并向磁保持继电器发送断开控制脉冲。
  6. 根据权利要求5所述的电路系统,其中,
    电源板与系统电源电连接;
    所述控制板还被配置为在系统电源供电的情况下,通过电源板获取系统电源提供的电能,向磁保持继电器发送闭合控制脉冲。
  7. 根据权利要求1所述的电路系统,其中,
    系统电源包括:电网电源和光伏发电电源;
    磁保持继电器包括:与电网电源电连接的第一磁保持继电器和与光伏发电电源电连接的第二磁保持继电器。
  8. 根据权利要求7所述的电路系统,其中,第一磁保持继电器以及第二磁保持继电器的个数分别为多个。
  9. 根据权利要求7所述的电路系统,还包括:
    分别与直流母线和第一磁保持继电器电连接的直流-交流转换器;
    分别与直流-交流转换器和直流母线电连接的压缩机驱动电路;
    与压缩机驱动电路电连接的电机;
    分别与第二磁保持继电器和直流母线电连接的直流-直流转换器;
    分别与直流-直流转换器和直流母线电连接的储能电路。
  10. 根据权利要求9所述的电路系统,其中,所述压缩机驱动电路为空调的压缩机驱动电路,所述电机为空调的电机。
  11. 一种电路系统的控制方法,所述电路系统为如权利要求1至10任一项所述的电路系统,所述控制方法包括:
    在系统电源停止供电的情况下,控制器利用直流母线电容存储的电能,向磁保持继电器发送断开控制脉冲;以及
    在系统电源供电的情况下,控制器利用系统电源提供的电能,向磁保持继电器发送闭合控制脉冲。
  12. 一种控制器,包括:
    存储器;以及
    耦接至所述存储器的处理器,所述处理器被配置为基于存储在所述存储器中的指令,执行如权利要求11所述的电路系统的控制方法。
  13. 一种非瞬时性计算机可读存储介质,其中,所述非瞬时性计算机可读存储介质存储有计算机指令,所述指令被处理器执行时实现如权利要求11所述的电路系统的控制方法。
PCT/CN2021/105720 2020-10-16 2021-07-12 电路系统、电路系统的控制方法、控制器及存储介质 WO2022077974A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011112702.0 2020-10-16
CN202011112702.0A CN112134251A (zh) 2020-10-16 2020-10-16 电路系统、电路系统的控制方法、控制器及存储介质

Publications (1)

Publication Number Publication Date
WO2022077974A1 true WO2022077974A1 (zh) 2022-04-21

Family

ID=73853221

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/105720 WO2022077974A1 (zh) 2020-10-16 2021-07-12 电路系统、电路系统的控制方法、控制器及存储介质

Country Status (2)

Country Link
CN (1) CN112134251A (zh)
WO (1) WO2022077974A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112134251A (zh) * 2020-10-16 2020-12-25 珠海格力电器股份有限公司 电路系统、电路系统的控制方法、控制器及存储介质

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102403994A (zh) * 2011-12-20 2012-04-04 基康仪器(北京)有限公司 一种实现便携式仪表一键式开关机功能的装置和方法
CN104539042A (zh) * 2014-12-11 2015-04-22 华为技术有限公司 一种不间断电源系统
CN106276445A (zh) * 2016-09-23 2017-01-04 南京理工大学 一种电梯驱动控制、节能一体化系统及方法
CN107449034A (zh) * 2017-07-17 2017-12-08 广东美的制冷设备有限公司 室内机电控板及空调器
US20190074696A1 (en) * 2011-04-15 2019-03-07 Deka Products Limited Partnership Modular Power Conversion System
CN210156316U (zh) * 2019-04-19 2020-03-17 宁波三星医疗电气股份有限公司 一种新型磁保持继电器驱动电路
CN112134251A (zh) * 2020-10-16 2020-12-25 珠海格力电器股份有限公司 电路系统、电路系统的控制方法、控制器及存储介质

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190074696A1 (en) * 2011-04-15 2019-03-07 Deka Products Limited Partnership Modular Power Conversion System
CN102403994A (zh) * 2011-12-20 2012-04-04 基康仪器(北京)有限公司 一种实现便携式仪表一键式开关机功能的装置和方法
CN104539042A (zh) * 2014-12-11 2015-04-22 华为技术有限公司 一种不间断电源系统
CN106276445A (zh) * 2016-09-23 2017-01-04 南京理工大学 一种电梯驱动控制、节能一体化系统及方法
CN107449034A (zh) * 2017-07-17 2017-12-08 广东美的制冷设备有限公司 室内机电控板及空调器
CN210156316U (zh) * 2019-04-19 2020-03-17 宁波三星医疗电气股份有限公司 一种新型磁保持继电器驱动电路
CN112134251A (zh) * 2020-10-16 2020-12-25 珠海格力电器股份有限公司 电路系统、电路系统的控制方法、控制器及存储介质

Also Published As

Publication number Publication date
CN112134251A (zh) 2020-12-25

Similar Documents

Publication Publication Date Title
EP2993421B1 (en) Low-power consumption standby circuit device, air conditioner and control method for air conditioner
CN101859625B (zh) 交流启动直流通电保持的电磁致动装置
CN109559934B (zh) 继电器驱动电路和空调器
CN112564078B (zh) 一种供电系统、缓启动电路及控制方法
CN108162782B (zh) 节能直流充电方法
WO2022077974A1 (zh) 电路系统、电路系统的控制方法、控制器及存储介质
CN109686616B (zh) 继电器驱动电路和空调器
JP2011113781A (ja) 電子制御装置
JPH077807A (ja) 電動車制御装置
CN213243513U (zh) 电路系统
CN102768919B (zh) 一种软启动电路
CN212113569U (zh) 继电器驱动电路及电磁加热设备
JP6349203B2 (ja) 電磁接触器、パワーコンディショナ
KR101624141B1 (ko) 에너지 절감형 래치 형식의 모터 제어반
CN111355421B (zh) 驱动控制电路、驱动控制方法、线路板及空调器
US20050088043A1 (en) Backup power supply system with a null transfer time
CN111478641A (zh) 驱动控制电路、驱动控制方法、线路板及空调器
CN108870683A (zh) 一种变频空调控制方法及控制系统
CN218243384U (zh) 电机正转反转停止循环控制装置及系统
CN217469802U (zh) 一种过载热继电器控制回路
CN107768196A (zh) 一种可降低继电器功耗的控制系统
CN210627000U (zh) 信号转换电路和控制系统
CN111371372B (zh) 电机连接电路、驱动电路、方法、介质、系统和空调器
CN107190467A (zh) 一种基于串激电机的洗衣机控制电路及方法
CN217545915U (zh) 电机驱动电路及空调器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21879022

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21879022

Country of ref document: EP

Kind code of ref document: A1