WO2022077873A1 - 一种四轮驱动车辆自动跟车的控制方法及系统 - Google Patents

一种四轮驱动车辆自动跟车的控制方法及系统 Download PDF

Info

Publication number
WO2022077873A1
WO2022077873A1 PCT/CN2021/084025 CN2021084025W WO2022077873A1 WO 2022077873 A1 WO2022077873 A1 WO 2022077873A1 CN 2021084025 W CN2021084025 W CN 2021084025W WO 2022077873 A1 WO2022077873 A1 WO 2022077873A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
wheel
curve
driving
time period
Prior art date
Application number
PCT/CN2021/084025
Other languages
English (en)
French (fr)
Inventor
丁磊
胡健
何磊
Original Assignee
华人运通(上海)自动驾驶科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华人运通(上海)自动驾驶科技有限公司 filed Critical 华人运通(上海)自动驾驶科技有限公司
Publication of WO2022077873A1 publication Critical patent/WO2022077873A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/14Adaptive cruise control
    • B60W30/16Control of distance between vehicles, e.g. keeping a distance to preceding vehicle
    • B60W30/165Automatically following the path of a preceding lead vehicle, e.g. "electronic tow-bar"
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/10Longitudinal speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/12Lateral speed

Definitions

  • the invention relates to the technical field of automobiles, in particular to a control method and system for automatic following of a four-wheel drive vehicle.
  • ACC automatic following system is an intelligent automatic control system, including radar sensor, digital signal processor and control module. While the vehicle is driving, the driver sets the desired speed, and the following system uses low-power radar or infrared beams to detect the distance of the target ahead to obtain the position of the following target. If a target is detected to slow down or a new target is detected, the system sends an actuation signal to the engine or braking system to slow the vehicle and keep the vehicle a safe distance from the vehicle ahead. When there is no car on the current road, it will accelerate to the set speed and the radar system will automatically monitor the next following target. It can be seen that the screening of targets is crucial to the function of the automatic car following system.
  • the inventor found through research that, due to the complexity of the driving road conditions, the steering of the wheels during the curve driving will affect the target screening function of the vehicle ACC adaptive cruise system, resulting in the wrong choice of the following target, and the vehicle Wrong tracking of the front vehicle target in the outer lane, or incorrect braking due to the influence of the front vehicle target in the outer lane, which will reduce the reliability of the vehicle's automatic following system and affect the normal driving of the vehicle.
  • the invention provides a control method and system for automatic following of a four-wheel drive vehicle, which can improve the accuracy of target screening during the following process of the vehicle, and optimize the automatic following function of the four-wheel drive vehicle.
  • the embodiment of the present invention provides a control method for automatic following of a four-wheel drive vehicle, including:
  • the real-time vehicle speed, the real-time ratio of front and rear wheel rotation angles, and the real-time distance from the center of the front and rear wheels to the center of mass of the vehicle are substituted into the relationship between the preset wheel yaw angle parameters and the yaw rate , calculate the wheel yaw rate;
  • the vehicle is controlled to automatically follow the vehicle according to the screened following target.
  • the steps of modeling the trajectory of the vehicle on the basis of the wheel yaw rate, and constructing the trajectory model of the vehicle on a curve include:
  • a trajectory model of the vehicle traveling on a curve is constructed according to the compensated coordinate information.
  • the relationship between the preset wheel yaw angle parameter information and the front and rear wheel angle parameters includes:
  • is the wheel yaw rate
  • ⁇ FA is the front wheel angle parameter
  • ⁇ RA is the rear wheel angle parameter
  • Vx is the real-time vehicle speed
  • EG is the ratio of front and rear wheel rotation angles
  • L FA is the distance from the center of the front wheel to the center of mass of the vehicle
  • L RA is the distance from the center of the rear wheel to the center of mass of the vehicle.
  • the step of compensating the coordinate information of the vehicle within a preset time period based on the wheel yaw rate includes:
  • the coordinate information of the vehicle is calculated and updated with the coordinate compensation value.
  • the step of screening the following target according to the trajectory model of the vehicle driving on the curve includes:
  • the following target is selected from the plurality of candidate targets.
  • Another embodiment of the present invention provides a control system for automatic following of a four-wheel drive vehicle, including an automatic driving domain controller, and the automatic driving domain controller is configured as:
  • the real-time vehicle speed, the real-time ratio of front and rear wheel rotation angles, and the real-time distance from the center of the front and rear wheels to the center of mass of the vehicle are substituted into the relationship between the preset wheel yaw angle parameters and the yaw rate , calculate the wheel yaw rate;
  • the vehicle is controlled to automatically follow the vehicle according to the screened following target.
  • the autonomous driving domain controller is further configured to:
  • a trajectory model of the vehicle traveling on a curve is constructed according to the compensated coordinate information.
  • the relationship between the preset wheel yaw angle parameter information and the front and rear wheel angle parameters includes:
  • is the wheel yaw rate
  • ⁇ FA is the front wheel angle parameter
  • ⁇ RA is the rear wheel angle parameter
  • Vx is the real-time vehicle speed
  • EG is the ratio of front and rear wheel rotation angles
  • L FA is the distance from the center of the front wheel to the center of mass of the vehicle
  • L RA is the distance from the center of the rear wheel to the center of mass of the vehicle.
  • the autonomous driving domain controller is further configured to:
  • the coordinate information of the vehicle is calculated and updated with the coordinate compensation value.
  • the autonomous driving domain controller is further configured to:
  • the following target is selected from the plurality of candidate targets.
  • the driving trajectory of the vehicle is predicted to obtain an accurate driving trajectory of the vehicle, so that the vehicle automatic driving domain controller can select the correct following target based on the trajectory model. Then, the following state of the vehicle is controlled to prevent the vehicle from erroneously braking or erroneously following the vehicle due to the wrong screening of the following target, which improves the accuracy of the following target screening and ensures the stable control of the automatic following.
  • FIG. 1 is a schematic flowchart of a control method for a four-wheel drive vehicle to automatically follow in one of the embodiments of the present invention
  • FIG. 2 is a schematic diagram of a curve driving trajectory of a vehicle with rear wheel steering configuration in an embodiment of the present invention
  • Fig. 3 is the wheel change schematic diagram of the two-wheel model in the embodiment of the present invention.
  • FIG. 4 is a schematic diagram of a low-speed wheel change of a four-wheel model in an embodiment of the present invention
  • Fig. 5 is the schematic diagram of the high-speed wheel change of the four-wheel model in the embodiment of the present invention.
  • FIG. 6 is a schematic structural diagram of a control system for automatically following a four-wheel drive vehicle in an embodiment of the present invention
  • 100 automatic stability control system
  • 200 rear wheel steering system
  • 300 automatic driving domain controller
  • 400 electronic power steering system
  • FA front wheel
  • RA rear wheel
  • A correct track
  • B wrong track.
  • FIG. 1 is a schematic flowchart of a control method for automatically following a four-wheel drive vehicle in one of the embodiments. Specifically include:
  • the vehicle's automatic following system uses relevant sensors to detect the distance between the vehicle and the vehicle in front, and cooperates with other relevant control systems to control the vehicle to automatically follow the vehicle in front and drive normally.
  • ADAS advanced driver assistance system
  • AVS front wheel steering system
  • RWS rear wheel steering system
  • ACC adaptive cruise system
  • ESC electronic stability control system
  • ADCM automatic driving domain controller
  • the control method for automatically following a four-wheel drive vehicle provided by the embodiment of the present invention is preferably based on a four-wheel steering model, and sensors such as a forward-looking camera and a forward-looking millimeter-wave radar sense the front target, and the ADAS system is based on the four-wheel steering model.
  • the trajectory is predicted, and the correct control target is screened based on the predicted trajectory, and the vehicle is followed or braked, which ultimately improves the accuracy of target screening during the vehicle following process and ensures the stable driving of the vehicle.
  • FIG. 2 shows a schematic diagram of the curve driving trajectory of a vehicle with rear wheel steering configuration in an embodiment of the present invention
  • FIG. 3 shows the present invention
  • FIG. 4 shows a schematic diagram of the low-speed wheel change of the four-wheel model in the embodiment of the present invention
  • FIG. 5 shows the high-speed wheel of the four-wheel model in the embodiment of the present invention.
  • Schematic diagram of wheel changes the inventor found after research that, for example, the rear wheel steering will affect the ACC function of the adaptive cruise system of the vehicle.
  • a low-speed four-wheel model is preferred, and the steering of the entire vehicle is The radius is small, so that the vehicle's driving trajectory is shifted to the inside, thereby achieving a better automatic following function.
  • the construction of the trajectory model of the vehicle driving on the curve in the step S2 specifically includes:
  • the driving trajectory of the vehicle can be predicted, and then the accurate trajectory of the vehicle driving on the curve can be obtained
  • the method of revising the coordinate information is preferably as follows Compensating the coordinate information of the vehicle within a preset time period based on the wheel yaw rate, which specifically includes the following steps:
  • S212 Calculate the coordinate compensation value of the vehicle in the first time period based on the wheel cornering force, the heading angle, and the coordinate value of the vehicle in the previous time period of the preset time period ;
  • the specific calculation of the wheel cornering force and the heading angle is based on the vehicle lateral dynamics model.
  • angle (only one front wheel FA and one rear wheel RA are shown in the figure for convenience), and calculated according to the equation of vehicle motion; then with the wheel cornering force, heading angle, and The coordinate value in a certain period of time is used to predict the driving trajectory of the vehicle, and the coordinate compensation value of the vehicle in the above-mentioned time period is calculated.
  • the trajectory model is conducive to the accurate screening of subsequent automatic following targets.
  • the relationship between the preset wheel yaw angle parameter information and the front and rear wheel angle parameters includes:
  • is the wheel yaw rate
  • ⁇ FA is the front wheel angle parameter
  • ⁇ RA is the rear wheel angle parameter
  • Vx is the real-time vehicle speed
  • EG is the ratio of front and rear wheel rotation angles
  • L FA is the distance from the center of the front wheel to the center of mass of the vehicle
  • L RA is the distance from the center of the rear wheel to the center of mass of the vehicle.
  • the rear wheel angle of the vehicle is proportional to the front wheel angle.
  • the embodiment of the present invention finally realizes the accurate screening of the following target through the accurate calculation of the yaw angular velocity and the prediction and construction of the trajectory model of the vehicle running on the curve.
  • the step of screening the vehicle following target specifically includes:
  • the state parameters of each target to be selected are obtained through the sensor.
  • relevant threshold conditions can be set. When the coincidence degree and the variation range of the coincidence degree change rate fall within the preset threshold conditions, the corresponding candidate target is determined as the correct following target, thereby improving the vehicle speed. Stability of following control.
  • Another embodiment of the present invention provides a control system for automatic following of a four-wheel drive vehicle, including an automatic driving domain controller, and the automatic driving domain controller is configured as:
  • the real-time vehicle speed, the real-time ratio of front and rear wheel rotation angles, and the real-time distance from the center of the front and rear wheels to the center of mass of the vehicle are substituted into the relationship between the preset wheel yaw angle parameters and the yaw rate , calculate the wheel yaw rate;
  • the vehicle is controlled to automatically follow the vehicle according to the screened following target.
  • FIG. 6 is a schematic structural diagram of a four-wheel drive vehicle automatic following control system in one of the embodiments, which includes an automatic stability control system 100 (ESC) , Rear Wheel Steering System 200 (RWS), Electronic Power Steering System 400 (EPS) and Autonomous Driving Domain Controller 300 (ADCM), which provide rear wheel steering stroke signals (including rear wheel steering angle) through the rear wheel steering system, and electronic power assist
  • ESC automatic stability control system 100
  • RWS Rear Wheel Steering System 200
  • EPS Electronic Power Steering System 400
  • ADCM Autonomous Driving Domain Controller 300
  • the steering system provides the actual front wheel steering angle
  • the electronic stability control system provides the rear wheel steering status signal
  • the automatic driving domain controller sends the rear wheel steering stroke signal to the internal trajectory prediction module for compensation to achieve more accurate trajectory prediction.
  • the automatic driving domain controller 300 is further configured to: compensate the coordinate information of the vehicle within a preset time period based on the wheel yaw rate;
  • a trajectory model of the vehicle traveling on a curve is constructed according to the compensated coordinate information.
  • the relationship between the preset wheel yaw angle parameter information and the front and rear wheel angle parameters includes:
  • is the wheel yaw rate
  • ⁇ FA is the front wheel angle parameter
  • ⁇ RA is the rear wheel angle parameter
  • Vx is the real-time vehicle speed
  • EG is the ratio of front and rear wheel rotation angles
  • L FA is the distance from the center of the front wheel to the center of mass of the vehicle
  • L RA is the distance from the center of the rear wheel to the center of mass of the vehicle.
  • the automatic driving domain controller 300 is further configured to:
  • the coordinate information of the vehicle is calculated and updated with the coordinate compensation value.
  • the automatic driving domain controller 300 is further configured to:
  • the following target is selected from the plurality of candidate targets.
  • the driving trajectory of the vehicle is predicted to obtain an accurate driving trajectory of the vehicle, so that the vehicle automatic driving domain controller can select the correct following target based on the trajectory model. Then, the following state of the vehicle is controlled to prevent the vehicle from erroneously braking or erroneously following the vehicle due to the wrong screening of the following target, which improves the accuracy of the following target screening and ensures the stable control of the automatic following.

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)

Abstract

本发明公开了一种四轮驱动车辆自动跟车的控制方法及系统,其中方法包括:当车辆在弯道行驶时,将所述车辆的实时车速、实时前后轮转角比例与前后轮中心到车辆质心的实时距离代入预置的车轮偏航角参数与横摆角速度之间的关系式中,计算得到车轮横摆角速度;基于所述车轮横摆角速度对所述车辆行驶的轨迹进行建模,构建车辆弯道行驶的轨迹模型;根据所述车辆弯道行驶的轨迹模型对跟车目标进行筛选;控制所述车辆根据筛选后的跟车目标进行自动跟车。本发明实施例提供的四轮驱动车辆自动跟车的控制方法及系统,能够提高车辆在跟车过程中目标筛选的准确率,优化了四轮驱动车辆的自动跟车功能。

Description

一种四轮驱动车辆自动跟车的控制方法及系统 技术领域
本发明涉及汽车技术领域,尤其是涉及一种四轮驱动车辆自动跟车的控制方法及系统。
背景技术
ACC自动跟车系统是一种智能自动控制系统,包括雷达传感器、数字信号处理器和控制模块。在车辆行驶过程中,驾驶员设定期望的车速,跟车系统使用低功率雷达或红外光束探测前方目标的距离,以获得跟车目标的位置。如果发现目标减速或检测到新目标,系统将向发动机或制动系统发送执行信号,以降低车辆速度,并使车辆和前方车辆保持安全行驶距离。当前道路上没有汽车时,它将加速到设定的速度,雷达系统将自动监控下一个跟车目标。由此可见,目标的筛选对于自动跟车系统的功能至关重要。
但在现有技术中,发明人经研究发现,由于行驶路况的复杂性,在弯道行驶过程中车轮的转向会影响车辆ACC自适应巡航系统的目标筛选功能,导致跟车目标选择错误,车辆错误跟踪外侧车道的前车目标,或是受到外侧车道的前车目标影响而错误刹车,进而导致车辆自动跟车系统的可靠性能降低,影响车辆的正常行驶。
发明内容
本发明提供一种四轮驱动车辆自动跟车的控制方法及系统,能够提高车辆在跟车过程中目标筛选的准确率,优化了四轮驱动车辆的自动跟车功能。
为了解决上述技术问题,本发明实施例提供了一种四轮驱动车辆自动跟车的控制方法,包括:
当车辆在弯道行驶时,将所述车辆的实时车速、实时前后轮转角比例与前后轮中心到车辆质心的实时距离代入预置的车轮偏航角参数与横摆角速度之间的关系式中,计算得到车轮横摆角速度;
基于所述车轮横摆角速度对所述车辆行驶的轨迹进行建模,构建车辆弯道行驶的轨迹模型;
根据所述车辆弯道行驶的轨迹模型对跟车目标进行筛选;
控制所述车辆根据筛选后的跟车目标进行自动跟车。
作为其中一种优选方案,所述基于所述车轮横摆角速度对所述车辆行驶的轨迹进行建模,构建车辆弯道行驶的轨迹模型的步骤,包括:
基于所述车轮横摆角速度对所述车辆在预设时间段内的坐标信息进行补偿;
根据补偿后的坐标信息构建所述车辆弯道行驶的轨迹模型。
作为其中一种优选方案,所述预置的车轮偏航角参数信息与前后轮转角参数之间的关系式包括:
ψ=V*[tan(δ FA)-tan(δ RA)]
其中,ψ为车轮横摆角速度,δ FA为前轮转角参数,δ RA为后轮转角参数,
Figure PCTCN2021084025-appb-000001
为车轮偏航角参数,其中,Vx为实时车速,EG为前后轮转角比例,L FA为前轮中心到车辆质心的距离,L RA为后轮中心到车辆质心的距离。
作为其中一种优选方案,所述基于所述车轮横摆角速度对所述车辆在预设时间段内的坐标信息进行补偿的步骤,包括:
根据所述车轮横摆角速度计算所述车辆在所述预设时间段内的车轮侧偏力、以及所述车辆在所述预设时间段内的航向角;
基于所述车轮侧偏力、所述航向角、所述车辆在所述预设时间段的上一时间段的坐标值,计算所述车辆在所述第一时间段内的坐标补偿值;
以所述坐标补偿值计算并更新所述车辆的所述坐标信息。
作为其中一种优选方案,所述根据所述车辆弯道行驶的轨迹模型对跟车目标进行筛选的步骤,包括:
确定多个待选目标的弯道行驶轨迹;
基于所述车辆弯道行驶的轨迹模型和所述多个待选目标的弯道行驶轨迹,确定每一待选目标在预设时间段内的重合度以及重合度变化率;
根据所述每一待选目标的重合度以及所述重合度变化率,从所述多个待选目 标中筛选出所述跟车目标。
本发明另一实施例提供了一种四轮驱动车辆自动跟车的控制系统,包括自动驾驶域控制器,所述自动驾驶域控制器被配置为:
当车辆在弯道行驶时,将所述车辆的实时车速、实时前后轮转角比例与前后轮中心到车辆质心的实时距离代入预置的车轮偏航角参数与横摆角速度之间的关系式中,计算得到车轮横摆角速度;
基于所述车轮横摆角速度对所述车辆行驶的轨迹进行建模,构建车辆弯道行驶的轨迹模型;
根据所述车辆弯道行驶的轨迹模型对跟车目标进行筛选;
控制所述车辆根据筛选后的跟车目标进行自动跟车。
作为其中一种优选方案,所述自动驾驶域控制器还被配置为:
基于所述车轮横摆角速度对所述车辆在预设时间段内的坐标信息进行补偿;
根据补偿后的坐标信息构建所述车辆弯道行驶的轨迹模型。
作为其中一种优选方案,所述预置的车轮偏航角参数信息与前后轮转角参数之间的关系式包括:
ψ=V*[tan(δ FA)-tan(δ RA)]
其中,ψ为车轮横摆角速度,δ FA为前轮转角参数,δ RA为后轮转角参数,
Figure PCTCN2021084025-appb-000002
为车轮偏航角参数,其中,Vx为实时车速,EG为前后轮转角比例,L FA为前轮中心到车辆质心的距离,L RA为后轮中心到车辆质心的距离。
作为其中一种优选方案,所述自动驾驶域控制器还被配置为:
根据所述车轮横摆角速度计算所述车辆在所述预设时间段内的车轮侧偏力、以及所述车辆在所述预设时间段内的航向角;
基于所述车轮侧偏力、所述航向角、所述车辆在所述预设时间段的上一时间段的坐标值,计算所述车辆在所述第一时间段内的坐标补偿值;
以所述坐标补偿值计算并更新所述车辆的所述坐标信息。
作为其中一种优选方案,所述自动驾驶域控制器还被配置为:
确定多个待选目标的弯道行驶轨迹;
基于所述车辆弯道行驶的轨迹模型和所述多个待选目标的弯道行驶轨迹,确定每一待选目标在预设时间段内的重合度以及重合度变化率;
根据所述每一待选目标的重合度以及所述重合度变化率,从所述多个待选目标中筛选出所述跟车目标。
相比于现有技术,本发明实施例具有如下有益效果:
(1)充分考虑四轮驱动车辆在弯道行驶过程中的车轮横摆角速度的变化对车辆行驶状态的影响问题,通过预置的车轮偏航角参数与横摆角速度之间的关系式,计算得到准确的车轮横摆角速度,从而为后续的轨迹模型的建立以及跟车目标的筛选提供了良好的数据支撑。
(2)通过构建反映车辆弯道行驶状态的轨迹模型,对车辆的行驶轨迹做出预测,以获得准确的车辆行驶轨迹,使得车辆自动驾驶域控制器基于轨迹模型筛选出正确的跟车目标,进而控制车辆的跟车状态,防止车辆因跟车目标的筛选错误而导致错误刹车或错误跟车,提高了跟车目标筛选的准确率,保障了自动跟车的稳定控制。
附图说明
图1是本发明其中一种实施例中的四轮驱动车辆自动跟车的控制方法的流程示意图;
图2是本发明实施例中的带后轮转向配置车型的弯道行驶轨迹示意图;
图3是本发明实施例中的二轮模型的车轮变化示意图;
图4是本发明实施例中的四轮模型的低速车轮变化示意图;
图5是本发明实施例中的四轮模型的高速车轮变化示意图;
图6是本发明实施例中的四轮驱动车辆自动跟车的控制系统的结构示意图;
其中,附图标记如下:
100、自动稳定控制系统;200、后轮转向系统;300、自动驾驶域控制器;400、电子助力转向系统;FA、前轮;RA、后轮;A、正确轨道;B、错误轨道。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清 楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
在本申请的描述中,需要说明的是,除非另有定义,本发明所使用的所有的技术和科学术语与属于本的技术领域的技术人员通常理解的含义相同。本发明中说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明,对于本领域的普通技术人员而言,可以具体情况理解上述术语在本申请中的具体含义。
本发明提供了一种四轮驱动车辆自动跟车的控制方法,具体的,请参见图1,图1示出为其中一实施例中的四轮驱动车辆自动跟车的控制方法的流程示意图,具体包括:
S1、当车辆在弯道行驶时,将所述车辆的实时车速、实时前后轮转角比例与前后轮中心到车辆质心的实时距离代入预置的车轮偏航角参数与横摆角速度之间的关系式中,计算得到车轮横摆角速度;
S2、基于所述车轮横摆角速度对所述车辆行驶的轨迹进行建模,构建车辆弯道行驶的轨迹模型;
S3、根据所述车辆弯道行驶的轨迹模型对跟车目标进行筛选;
S4、控制所述车辆根据筛选后的跟车目标进行自动跟车。
应当说明的是,车辆的自动跟车系统采用相关传感器检测本车与前车的距离,并与其他相关控制系统配合动作,控制本车自动跟随前车正常行驶,例如,现如今车辆安装有底盘控制系统,包括高级驾驶辅助系统(ADAS)、前轮转向系统(AFS)、后轮转向系统(RWS)、自适应巡航系统(ACC)、电子稳定控制系统(ESC)等,各控制系统相互配合以控制车辆的自动跟车。其中,高级驾驶辅助系统(ADAS)包括自动驾驶域控制器(ADCM),它是利用安装在车上的各式各样传感器(前视毫米波雷达、激光雷达、单\双目前视摄像头以及卫星导航),在汽车行驶过程中随时来感应周围的环境,收集数据,进行静态、动态物体的辨识、侦测与追踪,并结合导航地图数据,进行系统的运算与分析,从而得到前车 状态数据与本车状态数据等,预先让驾驶者察觉到可能发生的危险,有效增加汽车驾驶的舒适性和安全性。本发明实施例提供的四轮驱动车辆自动跟车的控制方法,优选为基于四轮转向模型,由前视摄像头和前视毫米波雷达等传感器感知前方目标,ADAS系统基于四轮转向模型对行驶轨迹做出预测,进而基于预测的轨迹筛选出正确的控制目标,并对车辆进行跟车或制动控制,最终提高了车辆在跟车过程中目标筛选的准确率,保证了车辆的稳定行驶。
当车辆在弯道行驶过程中,请参见图2至图5,其中图2示出为本发明实施例中的带后轮转向配置车型的弯道行驶轨迹示意图,其中图3示出为本发明实施例中的二轮模型的车轮变化示意图,其中图4示出为本发明实施例中的四轮模型的低速车轮变化示意图,其中图5示出为本发明实施例中的四轮模型的高速车轮变化示意图,发明人经研究发现,例如后轮转向会对车辆的自适应巡航系统ACC功能产生影响,在弯道行驶时会导致跟车目标筛选错误,车辆错误跟踪外侧车道的前车行驶,且后轮变化也会对车辆的自动紧急制动系统AEB功能产生影响,会导致车辆因为错误的跟车目标而错误刹车,即,在自动跟车过程中,难以实现准确的跟车目标的筛选,如图2中车辆的正确轨道A与车辆的错误轨道B所示,因此,在本发明实施例中,为提高跟车目标筛选的准确率,优选为低速四轮模型,其整车的转向半径较小,使得车辆的行驶轨迹靠内侧偏移,进而实现较佳的自动跟车功能。
作为进一步的,在上述实施例中,所述步骤S2中的构建车辆弯道行驶的轨迹模型,其具体包括:
S21、基于所述车轮横摆角速度对所述车辆在预设时间段内的坐标信息进行补偿;
S22、根据补偿后的坐标信息构建所述车辆弯道行驶的轨迹模型。
本发明实施例通过对车辆在预设时间段内的坐标信息进行修正,能够对车辆的行驶轨迹做出预测,进而得到准确的车辆弯道行驶的轨迹,其中对坐标信息进行修正的方式优选为基于所述车轮横摆角速度对所述车辆在预设时间段内的坐标信息进行补偿,其具体包括如下步骤:
S211、根据所述车轮横摆角速度计算所述车辆在所述预设时间段内的车轮侧偏力、以及所述车辆在所述预设时间段内的航向角;
S212、基于所述车轮侧偏力、所述航向角、所述车辆在所述预设时间段的上一时间段的坐标值,计算所述车辆在所述第一时间段内的坐标补偿值;
S213、以所述坐标补偿值计算并更新所述车辆的所述坐标信息。
应当说明的是,车轮侧偏力以及航向角的具体计算是依据车辆侧向动力学模型,将车速、前后轮转角参数、车轮距质心距离以车辆质心为准,四个轮胎均有独立的转向角(图中为方便显示仅展示了一个前轮FA与一个后轮RA),并根据车辆运动方程进行计算;然后凭借能够反映车辆弯道行驶的状态变化的车轮侧偏力、航向角,以及在某一时间段内的坐标值,对车辆行驶轨迹进行预测,计算得到车辆在上述时间段内的坐标补偿值;最后以坐标补偿值更新车辆的坐标信息,最终得到准确的车辆弯道行驶的轨迹模型,有利于后续自动跟车目标的准确筛选。
在上述实施例中,所述预置的车轮偏航角参数信息与前后轮转角参数之间的关系式包括:
ψ=V*[tan(δ FA)-tan(δ RA)]
其中,ψ为车轮横摆角速度,δ FA为前轮转角参数,δ RA为后轮转角参数,
Figure PCTCN2021084025-appb-000003
为车轮偏航角参数,其中,Vx为实时车速,EG为前后轮转角比例,L FA为前轮中心到车辆质心的距离,L RA为后轮中心到车辆质心的距离。
在一定车速下,车辆的后轮转角跟前轮转角成比例关系,例如当车辆的iRA=0.1,前轮角的比例参数deltaFA=10°,后轮角的比例参数deltaRA=1°。根据前轮和后轮的比例换算关系和车速信息,采取如上所述的关系式可以得到更准确的横摆角速度,提高计算的准确率,有利于获得准确的跟车目标。
本发明实施例通过对横摆角速度的准确计算,车辆弯道行驶的轨迹模型的预测与构建,最终实现对跟车目标的准确筛选。作为进一步地,其中对跟车目标进行筛选的步骤,具体包括:
S31、确定多个待选目标的弯道行驶轨迹;
S32、基于所述车辆弯道行驶的轨迹模型和所述多个待选目标的弯道行驶轨迹,确定每一待选目标在预设时间段内的重合度以及重合度变化率;
S33、根据所述每一待选目标的重合度以及所述重合度变化率,从所述多个待选目标中筛选出所述跟车目标。
需要说明的是,为了实现正确的跟车目标的筛选,通过传感器获得每个待选目标的状态参数,优选地,可以计算每个待选目标在预设时间段内对应的坐标值与所述车辆弯道行驶的轨迹之间的距离,进而计算每个待选目标的在预设时间段内的重合度、以及重合度变化率,然后根据预设的车辆跟车条件,筛选出正确的跟车目标,例如,可以设置相关的阈值条件,当重合度以及重合度变化率的变化范围落入预设的阈值条件时,将对应的待选目标确定为正确的跟车目标,从而提高了车辆跟车控制的稳定性。
本发明另一实施例提供了一种四轮驱动车辆自动跟车的控制系统,包括自动驾驶域控制器,所述自动驾驶域控制器被配置为:
当车辆在弯道行驶时,将所述车辆的实时车速、实时前后轮转角比例与前后轮中心到车辆质心的实时距离代入预置的车轮偏航角参数与横摆角速度之间的关系式中,计算得到车轮横摆角速度;
基于所述车轮横摆角速度对所述车辆行驶的轨迹进行建模,构建车辆弯道行驶的轨迹模型;
根据所述车辆弯道行驶的轨迹模型对跟车目标进行筛选;
控制所述车辆根据筛选后的跟车目标进行自动跟车。
作为优选地,在上述实施例中,请参见图6,图6示出为其中一实施例中的四轮驱动车辆自动跟车的控制系统的结构示意图,其包括自动稳定控制系统100(ESC)、后轮转向系统200(RWS)、电子助力转向系统400(EPS)和自动驾驶域控制器300(ADCM),通过后轮转向系统提供后轮转向行程信号(包括后轮转向角度),电子助力转向系统提供实际的前轮转向角度,电子稳定控制系统提供后轮转向状态信号,自动驾驶域控制器把后轮转向行程信号给到内部的轨迹预测模块做补偿,实现更准确的轨迹预测。
作为进一步的,在上述实施例中,所述自动驾驶域控制器300还被配置为:基于所述车轮横摆角速度对所述车辆在预设时间段内的坐标信息进行补偿;
根据补偿后的坐标信息构建所述车辆弯道行驶的轨迹模型。
作为进一步的,在上述实施例中,所述预置的车轮偏航角参数信息与前后轮转角参数之间的关系式包括:
ψ=V*[tan(δ FA)-tan(δ RA)]
其中,ψ为车轮横摆角速度,δ FA为前轮转角参数,δ RA为后轮转角参数,
Figure PCTCN2021084025-appb-000004
为车轮偏航角参数,其中,Vx为实时车速,EG为前后轮转角比例,L FA为前轮中心到车辆质心的距离,L RA为后轮中心到车辆质心的距离。
作为进一步的,在上述实施例中,所述自动驾驶域控制器300还被配置为:
根据所述车轮横摆角速度计算所述车辆在所述预设时间段内的车轮侧偏力、以及所述车辆在所述预设时间段内的航向角;
基于所述车轮侧偏力、所述航向角、所述车辆在所述预设时间段的上一时间段的坐标值,计算所述车辆在所述第一时间段内的坐标补偿值;
以所述坐标补偿值计算并更新所述车辆的所述坐标信息。
作为进一步的,在上述实施例中,所述自动驾驶域控制器300还被配置为:
确定多个待选目标的弯道行驶轨迹;
基于所述车辆弯道行驶的轨迹模型和所述多个待选目标的弯道行驶轨迹,确定每一待选目标在预设时间段内的重合度以及重合度变化率;
根据所述每一待选目标的重合度以及所述重合度变化率,从所述多个待选目标中筛选出所述跟车目标。
本发明实施例提供的四轮驱动车辆自动跟车的控制方法及系统,具有如下有益效果:
(1)充分考虑四轮驱动车辆在弯道行驶过程中的车轮横摆角速度的变化对车辆行驶状态的影响问题,通过预置的车轮偏航角参数与横摆角速度之间的关系式,计算得到准确的车轮横摆角速度,从而为后续的轨迹模型的建立以及跟车目标的筛选提供了良好的数据支撑。
(2)通过构建反映车辆弯道行驶状态的轨迹模型,对车辆的行驶轨迹做出预测,以获得准确的车辆行驶轨迹,使得车辆自动驾驶域控制器基于轨迹模型筛选出正确的跟车目标,进而控制车辆的跟车状态,防止车辆因跟车目标的筛选错误而导致错误刹车或错误跟车,提高了跟车目标筛选的准确率,保障了自动跟车的稳定控制。
以上所述是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也视为本发明的保护范围。

Claims (10)

  1. 一种四轮驱动车辆自动跟车的控制方法,其特征在于,包括:
    当车辆在弯道行驶时,将所述车辆的实时车速、实时前后轮转角比例与前后轮中心到车辆质心的实时距离代入预置的车轮偏航角参数与横摆角速度之间的关系式中,计算得到车轮横摆角速度;
    基于所述车轮横摆角速度对所述车辆行驶的轨迹进行建模,构建车辆弯道行驶的轨迹模型;
    根据所述车辆弯道行驶的轨迹模型对跟车目标进行筛选;
    控制所述车辆根据筛选后的跟车目标进行自动跟车。
  2. 如权利要求1所述的四轮驱动车辆自动跟车的控制方法,其特征在于,所述基于所述车轮横摆角速度对所述车辆行驶的轨迹进行建模,构建车辆弯道行驶的轨迹模型的步骤,包括:
    基于所述车轮横摆角速度对所述车辆在预设时间段内的坐标信息进行补偿;
    根据补偿后的坐标信息构建所述车辆弯道行驶的轨迹模型。
  3. 如权利要求1或2所述的四轮驱动车辆自动跟车的控制方法,其特征在于,所述预置的车轮偏航角参数信息与前后轮转角参数之间的关系式包括:
    ψ=V*[tan(δ FA)-tan (δ RA)]
    其中,ψ为车轮横摆角速度,δ FA为前轮转角参数,δ RA为后轮转角参数,
    Figure PCTCN2021084025-appb-100001
    为车轮偏航角参数,其中,Vx为实时车速,EG为前后轮转角比例,L FA为前轮中心到车辆质心的距离,L RA为后轮中心到车辆质心的距离。
  4. 如权利要求2所述的四轮驱动车辆自动跟车的控制方法,其特征在于,所述基于所述车轮横摆角速度对所述车辆在预设时间段内的坐标信息进行补偿的步骤,包括:
    根据所述车轮横摆角速度计算所述车辆在所述预设时间段内的车轮侧偏力、 以及所述车辆在所述预设时间段内的航向角;
    基于所述车轮侧偏力、所述航向角、所述车辆在所述预设时间段的上一时间段的坐标值,计算所述车辆在所述第一时间段内的坐标补偿值;
    以所述坐标补偿值计算并更新所述车辆的所述坐标信息。
  5. 如权利要求2所述的四轮驱动车辆自动跟车的控制方法,其特征在于,所述根据所述车辆弯道行驶的轨迹模型对跟车目标进行筛选的步骤,包括:
    确定多个待选目标的弯道行驶轨迹;
    基于所述车辆弯道行驶的轨迹模型和所述多个待选目标的弯道行驶轨迹,确定每一待选目标在预设时间段内的重合度以及重合度变化率;
    根据所述每一待选目标的重合度以及所述重合度变化率,从所述多个待选目标中筛选出所述跟车目标。
  6. 一种四轮驱动车辆自动跟车的控制系统,包括自动驾驶域控制器,所述自动驾驶域控制器被配置为:
    当车辆在弯道行驶时,将所述车辆的实时车速、实时前后轮转角比例与前后轮中心到车辆质心的实时距离代入预置的车轮偏航角参数与横摆角速度之间的关系式中,计算得到车轮横摆角速度;
    基于所述车轮横摆角速度对所述车辆行驶的轨迹进行建模,构建车辆弯道行驶的轨迹模型;
    根据所述车辆弯道行驶的轨迹模型对跟车目标进行筛选;
    控制所述车辆根据筛选后的跟车目标进行自动跟车。
  7. 如权利要求6所述的四轮驱动车辆自动跟车的控制系统,其特征在于,所述自动驾驶域控制器还被配置为:
    基于所述车轮横摆角速度对所述车辆在预设时间段内的坐标信息进行补偿;
    根据补偿后的坐标信息构建所述车辆弯道行驶的轨迹模型。
  8. 如权利要求6或7所述的四轮驱动车辆自动跟车的控制系统,其特征在于,所述预置的车轮偏航角参数信息与前后轮转角参数之间的关系式包括:
    ψ=V*[tan(δ FA)-tan(δ RA)]
    其中,ψ为车轮横摆角速度,δ FA为前轮转角参数,δ RA为后轮转角参数,
    Figure PCTCN2021084025-appb-100002
    为车轮偏航角参数,其中,Vx为实时车速,EG为前后轮转角比例,L FA为前轮中心到车辆质心的距离,L RA为后轮中心到车辆质心的距离。
  9. 如权利要求6所述的四轮驱动车辆自动跟车的控制系统,其特征在于,所述自动驾驶域控制器还被配置为:
    根据所述车轮横摆角速度计算所述车辆在所述预设时间段内的车轮侧偏力、以及所述车辆在所述预设时间段内的航向角;
    基于所述车轮侧偏力、所述航向角、所述车辆在所述预设时间段的上一时间段的坐标值,计算所述车辆在所述第一时间段内的坐标补偿值;
    以所述坐标补偿值计算并更新所述车辆的所述坐标信息。
  10. 如权利要求6所述的四轮驱动车辆自动跟车的控制系统,其特征在于,所述自动驾驶域控制器还被配置为:
    确定多个待选目标的弯道行驶轨迹;
    基于所述车辆弯道行驶的轨迹模型和所述多个待选目标的弯道行驶轨迹,确定每一待选目标在预设时间段内的重合度以及重合度变化率;
    根据所述每一待选目标的重合度以及所述重合度变化率,从所述多个待选目标中筛选出所述跟车目标。
PCT/CN2021/084025 2020-10-16 2021-03-30 一种四轮驱动车辆自动跟车的控制方法及系统 WO2022077873A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011100580.3A CN112298179B (zh) 2020-10-16 2020-10-16 一种四轮驱动车辆自动跟车的控制方法及系统
CN202011100580.3 2020-10-16

Publications (1)

Publication Number Publication Date
WO2022077873A1 true WO2022077873A1 (zh) 2022-04-21

Family

ID=74327045

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/084025 WO2022077873A1 (zh) 2020-10-16 2021-03-30 一种四轮驱动车辆自动跟车的控制方法及系统

Country Status (2)

Country Link
CN (1) CN112298179B (zh)
WO (1) WO2022077873A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112298179B (zh) * 2020-10-16 2022-04-08 华人运通(上海)自动驾驶科技有限公司 一种四轮驱动车辆自动跟车的控制方法及系统
CN113353078B (zh) * 2021-06-24 2024-10-18 中汽创智科技有限公司 一种无车道线自动跟车轨迹确定方法及装置
CN113602270B (zh) * 2021-08-16 2023-05-12 广州小鹏汽车科技有限公司 交通工具的控制方法、控制装置、交通工具及存储介质
CN113561969B (zh) * 2021-08-31 2023-07-28 岚图汽车科技有限公司 一种倒车辅助方法及装置
CN114228723B (zh) * 2021-12-09 2024-04-12 华人运通(上海)云计算科技有限公司 一种驾驶行为分析方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105667509A (zh) * 2015-12-30 2016-06-15 苏州安智汽车零部件有限公司 一种用于汽车自适应巡航控制系统的弯道控制系统及方法
CN105716617A (zh) * 2016-01-29 2016-06-29 大连楼兰科技股份有限公司 基于车辆数据绘制驾驶轨迹的系统及方法
CN106114511A (zh) * 2016-07-21 2016-11-16 辽宁工业大学 一种汽车巡航系统关键目标识别方法
JP2017159879A (ja) * 2016-03-07 2017-09-14 先進モビリティ株式会社 車両位置認識システム
CN110239621A (zh) * 2019-06-17 2019-09-17 北京理工大学 一种分布式电动汽车横摆稳定性控制方法及系统
CN110244293A (zh) * 2018-03-07 2019-09-17 德尔福技术有限公司 用于确定移动物体的指向角的方法和系统
CN111209361A (zh) * 2019-12-31 2020-05-29 深圳安智杰科技有限公司 跟车目标选择方法、装置、电子设备及可读存储介质
CN112298179A (zh) * 2020-10-16 2021-02-02 华人运通(上海)自动驾驶科技有限公司 一种四轮驱动车辆自动跟车的控制方法及系统

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4029856B2 (ja) * 2004-03-26 2008-01-09 トヨタ自動車株式会社 車輌の挙動制御装置
JP6898591B2 (ja) * 2017-09-28 2021-07-07 トヨタ自動車株式会社 車両運転支援装置
JP6822365B2 (ja) * 2017-09-28 2021-01-27 トヨタ自動車株式会社 車両運転支援装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105667509A (zh) * 2015-12-30 2016-06-15 苏州安智汽车零部件有限公司 一种用于汽车自适应巡航控制系统的弯道控制系统及方法
CN105716617A (zh) * 2016-01-29 2016-06-29 大连楼兰科技股份有限公司 基于车辆数据绘制驾驶轨迹的系统及方法
JP2017159879A (ja) * 2016-03-07 2017-09-14 先進モビリティ株式会社 車両位置認識システム
CN106114511A (zh) * 2016-07-21 2016-11-16 辽宁工业大学 一种汽车巡航系统关键目标识别方法
CN110244293A (zh) * 2018-03-07 2019-09-17 德尔福技术有限公司 用于确定移动物体的指向角的方法和系统
CN110239621A (zh) * 2019-06-17 2019-09-17 北京理工大学 一种分布式电动汽车横摆稳定性控制方法及系统
CN111209361A (zh) * 2019-12-31 2020-05-29 深圳安智杰科技有限公司 跟车目标选择方法、装置、电子设备及可读存储介质
CN112298179A (zh) * 2020-10-16 2021-02-02 华人运通(上海)自动驾驶科技有限公司 一种四轮驱动车辆自动跟车的控制方法及系统

Also Published As

Publication number Publication date
CN112298179B (zh) 2022-04-08
CN112298179A (zh) 2021-02-02

Similar Documents

Publication Publication Date Title
WO2022077873A1 (zh) 一种四轮驱动车辆自动跟车的控制方法及系统
WO2020187257A1 (zh) 车辆异常换道控制方法、装置及系统
CN109649393B (zh) 一种自动驾驶变换车道的路径规划方法及装置
US8170739B2 (en) Path generation algorithm for automated lane centering and lane changing control system
US8190330B2 (en) Model based predictive control for automated lane centering/changing control systems
US8428843B2 (en) Method to adaptively control vehicle operation using an autonomic vehicle control system
US9174641B2 (en) Safety device for a motor vehicle and method for operating a motor vehicle
US10994744B2 (en) Travel control apparatus, travel control method, and non-transitory computer-readable storage medium
US7433772B2 (en) Target speed control system for a vehicle
US8983706B2 (en) Safety device for motor vehicle and method for operating a motor vehicle
US20200238980A1 (en) Vehicle control device
US20200353918A1 (en) Vehicle control device
US20110279254A1 (en) Method and device for carrying out an avoidance maneuver
CN110525436A (zh) 车辆换道控制方法、装置、车辆和存储介质
US10875508B2 (en) Vehicle traveling assistance method and vehicle traveling assistance device
CN111522237B (zh) 一种半挂车的避障控制方法
KR102634362B1 (ko) 차량의 트레일러 인식 장치 및 방법
CN116080754B (zh) 一种车辆自主驾驶横向控制方法
WO2023287919A1 (en) System and method for lane departure warning with ego motion and vision
US20230311931A1 (en) Systems and methods for control state estimation of vehicles
CN114084133B (zh) 一种跟车目标的确定方法及相关装置
CN114291071A (zh) 一种车辆稳定性控制主动介入时机的判定方法、系统、可读存储介质及车辆
JP2018199458A (ja) 連結車の後退駐車支援装置
WO2023032009A1 (ja) 車両制御方法及び車両制御装置
CN116588187B (zh) 用于车道保持功能的控制方法和设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21878928

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 22/09/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 21878928

Country of ref document: EP

Kind code of ref document: A1