WO2022077787A1 - 一种固体充填物料大型可视化直剪实验平台 - Google Patents

一种固体充填物料大型可视化直剪实验平台 Download PDF

Info

Publication number
WO2022077787A1
WO2022077787A1 PCT/CN2021/071069 CN2021071069W WO2022077787A1 WO 2022077787 A1 WO2022077787 A1 WO 2022077787A1 CN 2021071069 W CN2021071069 W CN 2021071069W WO 2022077787 A1 WO2022077787 A1 WO 2022077787A1
Authority
WO
WIPO (PCT)
Prior art keywords
loading
tamper
cylinder
oil cylinder
solid filling
Prior art date
Application number
PCT/CN2021/071069
Other languages
English (en)
French (fr)
Inventor
黄艳利
欧阳神央
李俊孟
李英顺
郭亚超
吕凤圆
翟文
马昆
张伟光
常治国
高华东
Original Assignee
中国矿业大学
新疆工程学院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国矿业大学, 新疆工程学院 filed Critical 中国矿业大学
Priority to AU2021277732A priority Critical patent/AU2021277732B2/en
Publication of WO2022077787A1 publication Critical patent/WO2022077787A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/24Investigating strength properties of solid materials by application of mechanical stress by applying steady shearing forces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/02Details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0001Type of application of the stress
    • G01N2203/0003Steady
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0014Type of force applied
    • G01N2203/0025Shearing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/003Generation of the force
    • G01N2203/0042Pneumatic or hydraulic means
    • G01N2203/0048Hydraulic means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0058Kind of property studied
    • G01N2203/0069Fatigue, creep, strain-stress relations or elastic constants
    • G01N2203/0071Creep
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0058Kind of property studied
    • G01N2203/0069Fatigue, creep, strain-stress relations or elastic constants
    • G01N2203/0075Strain-stress relations or elastic constants
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/022Environment of the test
    • G01N2203/0244Tests performed "in situ" or after "in situ" use
    • G01N2203/0246Special simulation of "in situ" conditions, scale models or dummies
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/025Geometry of the test
    • G01N2203/0258Non axial, i.e. the forces not being applied along an axis of symmetry of the specimen
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/026Specifications of the specimen
    • G01N2203/0298Manufacturing or preparing specimens
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/06Indicating or recording means; Sensing means
    • G01N2203/067Parameter measured for estimating the property
    • G01N2203/0676Force, weight, load, energy, speed or acceleration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/06Indicating or recording means; Sensing means
    • G01N2203/067Parameter measured for estimating the property
    • G01N2203/0682Spatial dimension, e.g. length, area, angle

Definitions

  • the invention relates to an experimental platform and an experimental method for simulating physical and mechanical properties of solid filling materials for coal mining with solid filling, in particular to a large-scale visual direct shearing experimental platform for solid filling materials.
  • the solid filling materials used in solid filling coal mining mainly include non-viscous bulk materials such as gangue, fly ash, aeolian sand, etc., which are filled into the goaf and rammed by the tamping mechanism to withstand the overburden load and reduce the surface subsidence.
  • the physical and mechanical properties of the solid filling material after compaction are important factors that determine its bearing capacity and ensure the filling quality.
  • the invention patent with the application number 201210527053.X discloses a simulation experiment platform for the solid material compaction system for solid filling coal mining.
  • the stress-strain characteristics under confined compression conditions and the creep characteristics under continuous constant pressure but it is impossible to conduct direct shear experiments on the compacted solid filling materials, and at the same time, it is impossible to observe the movement of material particles during the experiment, Fragmentation and shear zone development. Therefore, it is urgent to develop a method that can not only simulate the compaction process of solid filling materials in the goaf, but also conduct direct shear experimental research on the compacted solid filling materials.
  • the present invention provides a direct shear experiment platform and an experiment method for solid filling coal mining solid filling materials.
  • This experimental platform can not only simulate the compaction process of solid filling materials in the goaf, but also conduct large-scale direct shear experiments and confining compression experiments on the compacted solid filling materials, and can observe the movement and crushing of material particles during the whole process of the experiment. conditions and shear zone development.
  • the present invention is achieved through the following technical solutions.
  • a large-scale visual direct shearing experimental platform for solid filling materials includes a reaction force frame, a compactor, a vertical loading system, a shearing system and a data monitoring system.
  • the reaction force frame is composed of a reaction force plate and a platform base, and the reaction force plate is supported above the platform base by four uprights.
  • the tamper is composed of two tamper oil cylinders, a tamper base, a horizontal push cylinder, a slideway and a tamping plate; the slideway is arranged on the platform base, and the tamper base is rolled or slidably assembled on the slideway
  • the two tamping oil cylinders are arranged side by side on the tamper base, the rear end of the tamping oil cylinder is hinged on the tamper base, and the tamping plate is fixed on the front end of the tamping oil cylinder cylinder rod;
  • the horizontal pushing oil cylinder is set Between the two tamping oil cylinders, the cylinder body of the horizontal pushing oil cylinder is fixed on the platform base, and the front end of the lever of the horizontal pushing oil cylinder is connected to the tamping machine base; One end of the oil cylinder is hinged on the base of the tamper, and the other end is hinged on the cylinder block of the tamp
  • the vertical loading system is composed of a first-level loading oil cylinder, a second-level loading oil cylinder, a second-level loading oil cylinder base, a loading plate, a charging port oil cylinder and a charging plate; the first-level loading oil cylinder is vertically arranged on the reaction plate.
  • the first-level loading oil cylinder block is installed on the reaction force plate;
  • the second-level loading oil cylinder base is installed on the end of the first-level loading oil cylinder rod;
  • the second-level loading oil cylinder block is installed on the second-level loading oil cylinder base and Vertically downward;
  • the secondary loading cylinders are preferably four and arranged in a square shape;
  • the loading plate is hinged on the end of the cylinder rod of the secondary loading cylinder;
  • the cylinder block of the charging port is installed on the base of the secondary loading cylinder , is located on the side of the secondary loading oil cylinder close to the tamper, and the charging plate is hinged on the end of the cylinder rod of the charging port oil cylinder;
  • the charging port oil cylinder is preferably two.
  • the shearing system is composed of an upper shearing box and a lower shearing box, and both the upper shearing box and the lower shearing box are made of transparent material.
  • the upper shear box is composed of a square top ring and several square stacked rings.
  • the three sides of the square top ring are integral structures, and the other side is a removable top ring strip baffle, and the top ring strip baffle is located on one side of the tamper; the four corners of the square top ring are provided with sleeves, four The sleeves are respectively fitted on the four uprights.
  • the three sides of the square stack ring are integral structures, and the other side is a detachable tail baffle.
  • the square top ring and each square stack ring are stacked together to form an upper shear box.
  • the tail sweeping baffle is located on one side of the tamper. There are ball slides, and there are balls in the ball slides.
  • the lower shear box is a box body with a bottom and no top cover.
  • the three sides of the lower shear box are integral, and the other side is composed of several detachable lower shear box strip baffles.
  • the lower shear box strip baffles are located at the bottom. one side of the tamper.
  • the tops of the two parallel surfaces of the lower shear box and the slide are provided with ball slides, and balls are arranged in the ball slides.
  • the bottom of the lower shear box is provided with rollers along the direction of the slideway.
  • the data monitoring system includes a pressure sensor installed on each tamping oil cylinder, the secondary loading oil cylinder and the charging port oil cylinder, a vertical displacement sensor installed between the base of the secondary loading oil cylinder and the loading plate, and a vertical displacement sensor installed on the secondary loading oil cylinder. It consists of a vertical displacement sensor between the base and the loading plate, a horizontal displacement sensor installed in the middle of the side of the lower shear box opposite to the tamper, and a horizontal displacement sensor on the side of the upper shear box opposite to the tamper.
  • the large-scale visual direct shear experiment method of solid filling coal mining solid filling material includes the following steps:
  • Step 1 Start the primary loading cylinder to lower the base of the secondary loading cylinder, stop when the ball slideway of the lowermost square stack ring contacts the balls on the top surface of the lower shear box, open the limit safety bolt of the primary loading cylinder, and close it
  • the convenient buckle between the lower shear box and the adjacent square stack rings makes the upper shear box and the lower shear box connect into a stable overall structure.
  • Step 2 Activate the secondary loading cylinder to lower the loading plate to the specified height.
  • Step 3 Carry out the first round of charging according to the design requirements, then move the tamper close to the lower shear box, limit the base of the tamper, and perform the first round of tamping on the solid filling material according to the designed tamping angle and tamping force until the material is The top contacts the loading plate.
  • Step 4 Repeat step 3 to carry out the 2nd, 3rd, 4th... wheel loading and the 2nd, 3rd, 4th... round tamping, and as the loading progresses, the tamper is gradually retreated, and the lower shears are installed from the bottom to the top at the right time. Cut box strip baffle, sweep tail baffle and top ring strip baffle to prevent material from flowing out and ensure the tamping effect. The plate descends and stops when the bottom surface of the charging plate and the bottom surface of the loading plate reach the same level.
  • Step 5 Turn on all pressure sensors and vertical displacement sensors, then start and coordinately control the charging port cylinder and the secondary loading cylinder, and make the charging plate and the loading plate descend synchronously in a displacement-controlled manner to load the solid filling material. Loading stops when the stress reaches the set value.
  • Step 6 Adjust the tamper oil cylinder to a horizontal state, move the tamper base to make the tamper in the best loading position, open the limit device, connect the tamper plate and the lower shear box through the connector, open the lower shear box, The convenient buckles between the square stacked rings and the square top ring cancel the mutual restraint and prepare for large-scale direct shear experiments on solid filling materials.
  • Step 7 Start the horizontal displacement sensor, then turn on the tamper, push the lower shear box to shear the solid filling material in a displacement control loading method, and the solid filling material at the boundary between the upper shear box and the lower shear box is moved by shear force It drives the material in the upper stack ring to move in turn, and stops loading when the displacement of the lower shear box reaches 20cm.
  • Step 8 Turn off all sensors, shrink the tamping cylinder to pull the lower shear box back to its original position, and manually assist the alignment of each square stack ring, while shrinking the secondary loading cylinder and charging port cylinder to pull the loading plate and charging plate back to their original position , close the convenient buckles between the lower shear box, each stack ring and the top ring, start the mutual restraint again, and remove the top ring strip baffle, tail sweep baffle and lower shear box strip baffle in sequence from top to bottom
  • the secondary loading cylinder can be activated to exert impact force on it to loosen it.
  • Step 9 After the unloading is completed, all the cylinders and components are returned to their original positions for the next experiment.
  • Step 10 Process the data collected and stored by the data monitoring system to obtain shear strength parameters of the solid filling material after compaction.
  • this experimental platform can not only simulate the compaction process of solid filling materials in the goaf, but also conduct large-scale direct shear experiments and confining compression experiments on the compacted solid filling materials to obtain the resistance of the compacted solid filling materials.
  • the results of shear strength parameters, stress-strain characteristics and creep characteristics can be observed, and the movement, crushing and shear zone development process of materials during the whole experiment can be observed.
  • the platform is simple in structure and diverse in functions. It is an important experimental platform for in-depth research on the mechanical properties of solid backfill materials after compaction and the influence of compaction process on the mechanical properties of backfill materials.
  • the research results are of great significance for guiding the selection of solid backfill materials and optimizing the coal mining process of solid backfill. It can be widely used in mining engineering and geotechnical engineering technology fields.
  • FIG. 1 is a schematic diagram of the overall structure of the initial state of a large-scale visual direct shear experimental platform for solid filling materials according to the present invention.
  • Fig. 2 is a schematic diagram of the material loading and tamping process of a large-scale visual direct shear experimental platform for solid filling materials according to the present invention.
  • FIG. 3 is a schematic diagram of the direct shear experiment process of a large-scale visualized direct shear experiment platform for solid filling materials according to the present invention.
  • FIG. 4 is a schematic diagram of the overall structure of the shearing system of a large-scale visual direct shearing experimental platform for solid filling materials according to the present invention.
  • FIG. 5 is a top view of a large-scale visual direct shear experimental platform compactor for solid filling materials according to the present invention.
  • FIG. 6 is a bottom view of the distribution of the secondary loading oil cylinder and the charging port oil cylinder of a large-scale visual direct shear experimental platform for solid filling materials according to the present invention.
  • FIG. 7 is a plan view of a ball slideway of a large-scale visual direct shear experimental platform for solid filling material according to the present invention.
  • FIG. 8 is a plan view of a ball groove of a large-scale visual direct shear experimental platform for solid filling materials according to the present invention.
  • FIG. 9 is a schematic structural diagram of the tail baffle of a large-scale visualized direct shear experimental platform for solid filling materials according to the present invention.
  • Fig. 10 is a schematic diagram of the convenient buckle structure of a large-scale visual direct shear experiment platform for solid filling materials according to the present invention. Among them: a picture is the front view, b picture is a side view.
  • Lower shearing box 17, pressure sensor; 18, vertical displacement sensor; 19, square stack ring; 20, horizontal displacement sensor; 21, square top ring; 22, ball; 23, ball groove; 24, ball slide; 25, lower shear box Long baffle; 26, tail baffle; 27, top ring strip baffle; 28, sleeve; 29, convenient buckle; 30, solid filling material; 31, connector; 32, tamping plate; 33, tamping Oil cylinder; 34, data transmission line; 35, signal converter; 36, computer.
  • a large-scale visual direct shear experimental platform for solid filling materials is mainly composed of six systems: a reaction force frame, a compactor, a vertical loading system, a shearing system and a data monitoring system; ,
  • the top reaction plate 2 and the platform base 3 are connected with each other by high-strength rigidity.
  • the tamper 4 includes a tamper base 5 , a height-adjusting oil cylinder 6 , a horizontal pushing oil cylinder 7 , and a slideway 8 .
  • the vertical loading system includes a primary loading cylinder 9, a secondary loading cylinder 10, a secondary loading cylinder base 11, a loading plate 12, a charging port cylinder 13 and a charging plate 14;
  • the shearing system mainly includes an upper shear box 15 and a lower shear The cutting box 16;
  • the data monitoring system includes a pressure sensor 17, a vertical displacement sensor 18, a horizontal displacement sensor 20, a data transmission line 34, a signal converter 35, and a computer 36; the hydraulic system provides power for each oil cylinder.
  • the two tamper cylinders 33 of the tamper are fixed side by side on the tamper base 5, the tamper base 5 is placed on the slideway 8, and the slideway 8 and the horizontal push cylinder 7 are fixed on the platform base 3.
  • the horizontal push cylinder 7 is located in the two In the middle of the tamping oil cylinder, the end of the cylinder rod is connected with the base 5 of the tamper through a pin, which can push the base 5 of the tamper to move on the slideway 8 .
  • the tamper base 5 is provided with a limiting device. Before the tamping oil cylinder is loaded, the limiting device is opened to fix the tamper base 5 on the platform base 3 .
  • the tamper 4 acts as a loading mechanism for the horizontal thrust of the lower shear box 16 at the beginning of the direct shear experiment.
  • One end of the primary loading cylinder 9 of the vertical loading system is fixed to the reaction force plate 2 by bolts, and the other end is connected to the secondary loading cylinder base 11 by bolts.
  • the loading plate 12 and the charging plate 14 are both processed from high-strength steel plates with a thickness of 5 cm.
  • the length ⁇ width of the loading plate 12 is 150 cm ⁇ 200 cm, and the length ⁇ width of the charging plate 14 is 49.5 cm ⁇ 200 cm. Leave a 0.5cm gap in the direction.
  • the upper shearing box 15 and the lower shearing box 16 of the shearing system are both made of 5cm thick high-strength transparent tempered glass plates.
  • the lower shearing box 16 is a box with a bottom and no cover, and the internal dimensions are length ⁇ width ⁇
  • the height is 200cm ⁇ 200cm ⁇ 150cm; the upper shear box 15 is a square frame, and the overall internal dimensions are 200cm ⁇ 200cm ⁇ 155.5cm in length, width and height. Ring 19 composition.
  • each square stack ring 19 and the lower shear box 16 are provided with balls 22 on both sides along the shearing direction to reduce the friction between each other during the shearing process.
  • the upper surface of the stack ring 19 is provided with a ball groove 23 for installing the balls 22, and the lower surface of each square stack ring 19 and the square top ring 21 is provided with a ball slideway 24, and the ball groove 23 and the ball slideway 24 are matched with the ball 22 in size.
  • the unsealing distance between the parts is 0.5cm.
  • the upper shearing box 15 and the lower shearing box 16 are close to the side of the tamper 4, and the side of the lower shearing box 16 is vertically decomposed into four 30cm-high detachable lower shearing box strip baffles 25 and one top piece.
  • the "L"-shaped detachable tail baffle 26 with a height of 30cm, and the two ends of the long baffle 25 of the lower shear box are provided with threaded holes, which can be fixed on both sides of the box body by bolts.
  • the side of the square stack ring 19 is a 10cm-high "L"-shaped tail baffle 26.
  • the two ends of the tail baffle 26 are provided with threaded holes, which are fixed to the stack ring 19 by bolts; the side of the square top ring 21 is vertically decomposed into two pieces of 25cm
  • the high removable top ring strip baffle 27 has threaded holes at both ends of the top ring strip baffle 27 and is fixed to the square top ring by bolts. And it is fixed on the base 11 of the secondary loading oil cylinder with bolts, so that the square top ring 21 can only move in the vertical direction with the column 1 as the track.
  • each square stacking ring 19 there are convenient buckles 29 between the square top ring 21, each square stacking ring 19 and the lower shear box 16. Opening all the convenient buckles 29 can cancel the mutual restraint, and by increasing or decreasing the number of stacking rings 19, the Large-scale direct shear experiments are performed on solid filling materials 30 of different heights, all convenient buckles 29 are closed, and mutual restraint can be activated, and large-scale confining compression experiments can be performed on solid filling materials 30 of different heights.
  • a pressure sensor 17 is installed in each of the compaction oil cylinder 33 , the secondary loading oil cylinder 10 , and the charging port oil cylinder 13 , and four vertical displacement sensors 18 are installed between the secondary loading oil cylinder base 11 and the loading plate 12 .
  • Two vertical displacement sensors 18 are installed between the base 11 of the secondary loading cylinder and the loading plate 14, and one horizontal displacement sensor 20 is installed between the middle of the lower shear box 16 opposite the tamper 4 and the platform base 3.
  • (4) 10 horizontal displacement sensors 20 are installed between the middle of each square stack ring 19 on the opposite side and the base 11 of the secondary loading cylinder, and each sensor is connected to the computer 36 through the data transmission line 34 and the signal converter 35. Sensor data is displayed and stored in real time.
  • step c to carry out the 2nd, 3rd, 4th... wheel loading and the 2nd, 3rd, 4th... wheel tamping, and as the loading progresses, the tamper 4 gradually retreats, and at the same time, the lower shears are installed from the bottom to the top.
  • the cutting box strip baffle 25, the tail sweep baffle 26 and the top ring strip baffle 27 are used to prevent the material from flowing out and ensure the tamping effect.
  • the charging port oil cylinder 13 is activated. , to make the loading plate 14 descend, and stop when the bottom surface of the loading plate 14 and the bottom surface of the loading plate 12 reach the same level.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
  • Machines For Laying And Maintaining Railways (AREA)

Abstract

一种固体充填物料大型可视化直剪实验平台,由反力架、夯实机(4)、加载系统、剪切系统和数据监测系统构成。其中夯实机(4)可模拟固体充填采煤过程中固体充填物料(30)充入采空区后的夯实过程,各系统相互配合不仅可对夯实后的固体充填物料(30)进行大型直剪实验,还可进行大型侧限压缩实验,并可采集实验过程中相关数据,得到夯实后固体充填物料(30)的抗剪强度参数、应力应变特性以及蠕变特性结果,同时可全程观察实验过程中固体充填物料(30)颗粒的运动、破碎情况及剪切带发育过程。该平台构造简单、功能多样,是深入研究夯实后固体充填物料(30)力学性能及夯实工艺对固体充填物料(30)力学性能影响的实验平台,研究结果对指导固体充填材料选取、优化固体充填采煤工艺具有重要意义。

Description

一种固体充填物料大型可视化直剪实验平台 技术领域
本发明涉及一种固体充填采煤固体充填物料物理力学性质模拟测试实验平台及实验方法,尤其涉及一种固体充填物料大型可视化直剪实验平台。
背景技术
近年来,由于综合机械化固体充填采煤技术在控制覆岩移动,减小地表沉陷,保护地表建筑物等方面具有显著效果,成为解放“三下”压煤最有效的技术途径之一。固体充填采煤中所使用的固体充填物料主要包括矸石、粉煤灰、风积沙等无粘性散体材料,其被充入采空区后经夯实机构夯实成为承受覆岩载荷减小地表沉陷的主体,而夯实过后固体充填物料的抗剪强度、抗变形能力等物理力学性质是决定其承载性能保证充填质量的重要因素。
目前对固体充填物料物理力学性质的研究主要集中在通过钢筒侧限压缩实验测试其抗压缩变形能力,而通过直剪实验对其抗剪强度的研究较少,虽然目前岩土工程领域有多种大型直剪实验设备,但却无法模拟固体充填物料在采空区的夯实过程,因此也无法研究固体充填物料经夯实后的抗剪切特性。
申请号为201210527053.X的发明专利公布了一种固体充填采煤固体物料压实系统模拟实验平台,虽然可以在实验室模拟固体充填开采技术中固体物料的充填夯实过程,研究不同固体充填材料在侧限压缩条件下的应力应变特性以及在持续恒定压力下的蠕变特性,但却无法对经夯实后的固体充填物料进行直剪实验研究,同时也无法全程观察实验过程中物料颗粒的运动、破碎情况及剪切带发育过程。因此目前亟需研发一种不仅可以模拟固体充填物料在采空区的夯实过程而且可以对经夯实后的固体充填物料进行直剪实验研,同时可以观察实验过程中物料颗粒的运动、破碎情况及剪切带发育过程的大型可视化实验平台。
发明内容
针对上述问题,本发明提供了一种固体充填采煤固体充填物料直剪实验平台及实验方法。本实验平台不仅可以模拟固体充填物料在采空区的夯实过程,而且可以对夯实过后的固体充填物料进行大型直剪实验和侧限压缩实验,并可以全程观察实验过程中物料颗粒的运动、破碎情况及剪切带发育过程。
本发明是通过如下技术方案予以实现的。
一种固体充填物料大型可视化直剪实验平台,包括反力架、夯实机、垂直加载系统、剪切系统和数据监测系统。
所述反力架由反力板及平台底座组成,所述反力板由四根立柱支撑于平台底座上方。
所述夯实机由两个夯实机油缸、夯实机底座、水平推移油缸、滑道和夯实板组成;所述滑道设置在平台底座上,所述夯实机底座滚动或滑动装配在所述滑道上;所述两个夯实机油缸并排设置在夯实机底座上,夯实机油缸的缸体后端部铰接在夯实机底座上,夯实板固定在夯实机油缸缸杆的前端;所述水平推移油缸设置在两个夯实机油缸之间,水平推移油缸的缸体固定在所述平台底座上,水平推移油缸的杠杆前端连接夯实机底座;两个夯实机油缸均设有调高油缸,所述调高油缸一端铰接在夯实机底座,另一端铰接在夯实机油缸的缸体上,夯实机底座、调高油缸与夯实机油缸构成三角支撑。
所述垂直加载系统由一级加载油缸、二级加载油缸、二级加载油缸底座、加载板、装料口油缸和装料板组成;所述一级加载油缸竖向设置在所述反力板的下方,一级加载油缸缸体安装在反力板上;所述二级加载油缸底座安装在一级加载油缸缸杆端部;所述二级加载油缸缸体安装在二级加载油缸底座上并竖直向下;所述二级加载油缸优选四个并呈正方形布置;所述加载板铰接在二级加载油缸缸杆端部;所述装料口油缸缸体安装在二级加载油缸底座上,位于二级加载油缸靠近夯实机的一侧,所述装料板铰接在装料口油缸缸杆端部;所述装料口油缸优选为两个。
所述剪切系统由上剪切盒和下剪切盒组成,上剪切盒和下剪切盒均透明材质。
所述上剪切盒由方形顶环和若干方形叠环组成。所述方形顶环三个边为整体结构,另一边为可拆卸顶环长条挡板,且顶环长条挡板位于夯实机一侧;所述方形顶环的四角设有套筒,四个套筒分别套装在四根立柱上。所述方形叠环三个边为整体结构,另一边为可拆卸扫尾挡板。方形顶环和各方形叠环依次叠加在一起构成上剪切盒,所述扫尾挡板位于夯实机一侧,各方形叠环与滑道平行的两个边(剪切方向)的上表面开有滚珠滑道,滚珠滑道内设有滚珠。
所述下剪切盒为有底无顶盖的箱体,其三个侧面为整体,另一面由若干可拆卸的下剪切盒长条挡板叠加构成,下剪切盒长条挡板位于夯实机一侧。下剪切盒与滑道平行的两个面的顶部设滚珠滑道,滚珠滑道内设有滚珠。下剪切盒底部沿滑道方向设有滚轮。
所述数据监测系统,包括安装在各夯实机油缸、二级加载油缸和装料口油缸上的压力传感器,安装在二级加载油缸底座与加载板之间的垂直位移传感器、安装在二级加载油缸底座与装料板之间的垂直位移传感器,以及安装在下剪切盒与夯实机相对的一面中部的水平位移传感器、上剪切盒各方形叠环与夯实机相对的一面的水平位移传感器组成。
所述方形顶环、各方形叠环及下剪切盒间设有便捷卡扣,打开所有便捷卡扣,可取 消相互间的约束,并通过增减叠环的数量,可对不同高度固体充填物料进行大型直剪实验,关闭所有便捷卡扣,可启动相互间的约束,可对不同高度固体充填物料进行大型侧限压缩实验。
固体充填采煤固体充填物料大型可视化直剪实验方法,包括以下步骤:
准备好本发明固体充填物料大型可视化直剪实验平台。
步骤1.启动一级加载油缸使二级加载油缸底座下降,当最下面方形叠环的滚珠滑道与下剪切盒顶面的滚珠接触时停止,打开一级加载油缸限位保险栓,关闭下剪切盒与相邻方形叠环间的便捷卡扣,使上剪切盒与下剪切盒连接成稳定的整体结构。
步骤2.启动二级加载油缸使加载板下降至指定高度。
步骤3.按设计要求进行第1轮装料,之后将夯实机移近下剪切盒,对夯实机底座限位,按设计夯实角度及夯实力对固体充填物料进行第1轮夯实,直至物料顶部接触加载板。
步骤4.重复步骤3,进行第2、3、4…轮装料和第2、3、4…轮夯实,并随着装料的进行,夯实机逐步后退,同时从下到上适时安装下剪切盒长条挡板、扫尾挡板和顶环长条挡板,以防物料流出并保证夯实效果,当物料装满填平之后,所有挡板安装完毕,启动装料口油缸,使装料板下降,当装料板底面与加载板底面达到同一水平时停止。
步骤5.开启所有压力传感器和垂直位移传感器,然后启动并协同控制装料口油缸和二级加载油缸,以位移控制的方式使装料板和加载板同步下降对固体充填物料进行加载,当垂直应力达到设定值时停止加载。
步骤6.调整夯实机油缸达到水平状态,并移动夯实机底座使夯实机处于最佳加载位置,打开限位装置,通过连结器连接夯实机夯实板与下剪切盒,打开下剪切盒、各方形叠环及方形顶环间的便捷卡扣,取消相互间的约束,准备对固体充填物料进行大型直剪实验。
步骤7.启动水平位移传感器,然后开启夯实机,以位移控制加载方式推动下剪切盒对固体充填物料进行剪切,上剪切盒与下剪切盒分界处固体充填物料受剪切力运动时依次带动上部叠环中的物料运动,当下剪切盒位移达到20cm时停止加载。
步骤8.关闭所有传感器,收缩夯实机油缸将下剪切盒拉回原位,并人工辅助各方形叠环对齐,同时收缩二级加载油缸和装料口油缸将加载板和装料板拉回原位,关闭下剪切盒、各叠环及顶环间的便捷卡扣,再次启动相互间的约束,自上而下依次拆除顶环长条挡板、扫尾挡板和下剪切盒长条挡板,在侧面进行卸料,当物料被压实紧密不易卸料时可启动二级加载油缸对其施加冲击力以致松散。
步骤9.卸料完成后,所有油缸及部件归复原位,以待下次实验。
步骤10.对数据监测系统采集与存储的数据进行处理,得到夯实后固体充填物料的剪切强度参数。
本发明的有益效果是:
本实验平台通过各系统相互配合不仅可以模拟固体充填物料在采空区的夯实过程,而且可以对夯实过后的固体充填物料进行大型直剪实验和侧限压缩实验,得到夯实后固体充填物料的抗剪强度参数、应力应变特性以及蠕变特性等结果,同时可以全程观察实验过程中物料的运动、破碎情况及剪切带发育过程。该平台构造简单、功能多样,是深入研究夯实后固体充填物料力学性能及夯实工艺对充填物料力学性能影响的重要实验平台,研究结果对指导固体充填材料选取、优化固体充填采煤工艺具有重要意义,可在采矿工程及岩土工程技术领域广泛推广应用。
附图说明
图1是本发明一种固体充填物料大型可视化直剪实验平台初始状态整体结构示意图。
图2是本发明一种固体充填物料大型可视化直剪实验平台上料夯实过程示意图。
图3是本发明一种固体充填物料大型可视化直剪实验平台直剪实验过程示意图。
图4是本发明一种固体充填物料大型可视化直剪实验平台剪切系统整体结构示意图。
图5是本发明一种固体充填物料大型可视化直剪实验平台夯实机俯视图。
图6是本发明一种固体充填物料大型可视化直剪实验平台二级加载油缸及装料口油缸分布仰视图。
图7是本发明一种固体充填物料大型可视化直剪实验平台滚珠滑道平面图。
图8是本发明一种固体充填物料大型可视化直剪实验平台滚珠槽平面图。
图9是本发明一种固体充填物料大型可视化直剪实验平台扫尾挡板结构示意图。
图10是本发明一种固体充填物料大型可视化直剪实验平台便捷卡扣结构示意图。其中:a图是主视图,b图是侧视图。
图中:1、立柱;2、反力板;3、平台底座;4、夯实机;5、夯实机底座;6、调高油缸;7、水平推移油缸;8、滑道;9、一级加载油缸;10、二级加载油缸;11、二级加载油缸底座;12、加载板;13、装料口油缸;14、装料板;15、上剪切盒;16、下剪切盒;17、压力传感器;18、垂直位移传感器;19、方形叠环;20、水平位移传感器;21、方形顶环;22、滚珠;23、滚珠槽;24、滚珠滑道;25、下剪切盒长条挡板;26、扫尾挡板;27、顶环长条挡板;28、套筒;29、便捷卡扣;30、固体充填物料;31、连结器;32、夯实板;33、夯实机油缸;34、数据传输线;35、信号转换器;36、计算机。
具体实施方式
下面结合附图和具体实施方式对本发明进行详细说明。
一种固体充填物料大型可视化直剪实验平台,主要由反力架、夯实机、垂直加载系统、剪切系统和数据监测系统六大系统构成;反力架包括分布于平台四角的4个立柱1、顶部的反力板2及平台底座3,其相互间为高强度刚性连接。夯实机4包括夯实机底座5、调高油缸6、水平推移油缸7、滑道8。垂直加载系统包括一级加载油缸9、二级加载油缸10、二级加载油缸底座11、加载板12、装料口油缸13和装料板14;剪切系统主要包括上剪切盒15和下剪切盒16;数据监测系统包括压力传感器17、垂直位移传感器18、水平位移传感器20、数据传输线34、信号转换器35、计算机36;液压系统为各油缸提供动力。
夯实机的2个夯实机油缸33并排固定在夯实机底座5上,夯实机底座5放置在滑道8上,滑道8和水平推移油缸7固定于平台底座3.水平推移油缸7位于2个夯实机油缸中间,缸杆的端头通过销轴与夯实机底座5连接,能推移夯实机底座5在滑道8上移动。夯实机底座5具有限位装置,夯实机油缸加载前,打开限位装置将夯实机底座5固定于平台底座3上。调高油缸6一端铰接于夯实机底座5,一端铰接于夯实机油缸33的缸体,可控制夯实机油缸33的摆动,摆角范围可实现其对固体充填物料30的全高度夯实。夯实机4在直剪实验开始时作为下剪切盒16水平推力的加载机构。
垂直加载系统的一级加载油缸9一端通过螺栓固定于反力板2,一端通过螺栓连接二级加载油缸底座11。加载油缸10共四个,一端通过螺栓固定于二级加载油缸底座11,一端通过销轴铰接于加载板12,四个二级加载油缸11相对加载板12呈正方形对称分布,且工作时动作完全同步。装料口油缸13共两个且并排布置,一端通过螺栓固定于二级加载油缸底座11,一端通过销轴铰接于装料板14,两个装料口油缸13工作时动作完全同步。加载板12与装料板14同为5cm厚的高强度钢板加工而成,加载板12长×宽为150cm×200cm,装料板14长×宽为49.5cm×200cm,两者间在剪切方向留设0.5cm缝隙。
剪切系统的上剪切盒15和下剪切盒16均由5cm厚的高强度透明钢化玻璃板加工而成,下剪切盒16为有底无盖的箱体,内部尺寸长×宽×高为200cm×200cm×150cm;上剪切盒15为方形框体,内部整体尺寸长×宽×高为200cm×200cm×155.5cm,由50cm高的方形顶环21和10个10cm高的方形叠环19组成。
方形顶环21、各方形叠环19及下剪切盒16间沿剪切方向的两侧均设有滚珠22以减小剪切过程中相互间的摩擦力,下剪切盒16与各方形叠环19上表面开有安装滚珠22的滚珠槽23,各方形叠环19与方形顶环21的下表面开有滚珠滑道24,滚珠槽23与滚珠滑道 24与滚珠22尺寸相匹配,各部件间开封距离为0.5cm。
上剪切盒15与下剪切盒16靠近夯实机4的一面,下剪切盒16侧面在垂直方向上分解为四块30cm高的可拆卸下剪切盒长条挡板25和顶部1块30cm高的“L”型可拆卸扫尾挡板26,下剪切盒长条挡板25两端开设有螺纹孔,可通过螺栓固定于箱体两侧。方形叠环19侧面为10cm高“L”型扫尾挡板26,扫尾挡板26两端开设有螺纹孔,通过螺栓固定于叠环19;方形顶环21侧面在垂直方向上分解为2块25cm高的可拆卸顶环长条挡板27,顶环长条挡板27两端开设有螺纹孔,通过螺栓固定于方形顶环,方形顶环21通过四角的套筒28套住四个立柱1并用螺栓固定于二级加载油缸底座11,使方形顶环21只能以立柱1为轨道在竖直方向运动。
方形顶环21、各方形叠环19及下剪切盒16间设有便捷卡扣29,打开所有便捷卡扣29,可取消相互间的约束,并通过增减叠环19的数量,可对不同高度固体充填物料30进行大型直剪实验,关闭所有便捷卡扣29,可启动相互间的约束,可对不同高度固体充填物料30进行大型侧限压缩实验。
数据监测系统,在每个夯实机油缸33、二级加载油缸10、装料口油缸13均安装有压力传感器17,在二级加载油缸底座11与加载板12之间安装4个垂直位移传感器18、二级加载油缸底座11与装料板14之间安装2个垂直位移传感器18,在夯实机4对面下剪切盒16中部与平台底座3之间安装1个水平位移传感器20,在夯实机(4)4对面各方形叠环19中部与二级加载油缸底座11之间安装10个水平位移传感器20,各传感器通过数据传输线34经信号转换器35与计算机36相连接,计算机36可对各传感器数据进行实时显示并存储。
使用本发明实验平台进行固体充填物料大型可视化直剪实验,包括以下步骤:
a.启动一级加载油缸9使二级加载油缸底座11下降,当最下面方形叠环19的滚珠滑道24与下剪切盒16的滚珠22接触时停止,打开一级加载油缸9限位保险栓,关闭下剪切盒16与相邻方形叠环19间的便捷卡扣29,使上剪切盒15与下剪切盒16连接成稳定的整体结构。
b.启动二级加载油缸10使加载板12下降至指定高度。
c.按设计要求进行第1轮装料,之后将夯实机4移近下剪切盒16,开启夯实机底座限位装置,按设计夯实角度及夯实力对固体充填物料30进行第1轮夯实,直至物料顶部接触加载板12。
d.重复c步骤,进行第2、3、4…轮装料和第2、3、4…轮夯实,并随着装料的进行,夯实机4逐步后退,同时从下到上适时安装下剪切盒长条挡板25、扫尾挡板26和顶环长条 挡板27,以防物料流出并保证夯实效果,当物料装满填平之后,所有挡板安装完毕,启动装料口油缸13,使装料板14下降,当装料板14底面与加载板12底面达到同一水平时停止。
e.开启所有压力传感器17和垂直位移传感器18,然后启动并协同控制装料口油缸13和二级加载油缸10,以位移控制的方式使装料板14和加载板12同步下降对固体充填物料30进行加载,当垂直应力达到设定值时停止加载。
f.调整夯实机油缸33达到水平状态,并移动夯实机底座5使夯实机4处于最佳加载位置,打开限位装置,通过连结器31连接夯实机夯实板32与下剪切盒16,打开下剪切盒16、各方形叠环19及方形顶环21间的便捷卡扣29,取消相互间的约束,准备对固体充填物料30进行大型直剪实验。
g.启动水平位移传感器20,然后开启夯实机油缸33,以位移控制加载方式推动下剪切盒16对固体充填物料30进行剪切,上剪切盒15与下剪切盒16分界处固体充填物料30受剪切力运动时依次带动上部方形叠环19中的物料运动,当下剪切盒16位移达到20cm时停止加载。
h.关闭所有传感器,收缩夯实机油缸33将下剪切盒16拉回原位,并人工辅助各方形叠环19对齐,同时收缩二级加载油缸10和装料口油缸13将加载板12和装料板14拉回原位,关闭下剪切盒16、各方形叠环19及方形顶环21间的便捷卡扣29,再次启动相互间的约束,自上而下依次拆除顶环长条挡板27、扫尾挡板26和下剪切盒长条挡板25,在侧面进行卸料,当物料被压实紧密不易卸料时可启动二级加载油缸10对其施加冲击力以致松散。
j.卸料完成后,所有油缸及部件归复原位,以待下次实验。
k对数据监测系统采集与存储的数据进行处理,得到夯实后固体充填物料30的剪切强度参数。

Claims (6)

  1. 一种固体充填物料大型可视化直剪实验平台,包括反力架、夯实机、垂直加载系统、剪切系统和数据监测系;其特征是:
    所述反力架由反力板及平台底座组成,所述反力板由四根立柱支撑于平台底座上方;
    所述夯实机由两个夯实机油缸、夯实机底座、水平推移油缸、滑道和夯实板组成;所述滑道设置在平台底座上,所述夯实机底座滚动或滑动装配在所述滑道上;所述两个夯实机油缸并排设置在夯实机底座上,夯实机油缸的缸体后端部铰接在夯实机底座上,夯实板固定在夯实机油缸缸杆的前端;所述水平推移油缸设置在两个夯实机油缸之间,水平推移油缸的缸体固定在所述平台底座上,水平推移油缸的杠杆前端连接夯实机底座;两个夯实机油缸均设有调高油缸,所述调高油缸一端铰接在夯实机底座,另一端铰接在夯实机油缸的缸体上,夯实机底座、调高油缸与夯实机油缸构成三角支撑;
    所述垂直加载系统由一级加载油缸、二级加载油缸、二级加载油缸底座、加载板、装料口油缸和装料板组成;所述一级加载油缸竖向设置在所述反力板的下方,一级加载油缸缸体安装在反力板上;所述二级加载油缸底座安装在一级加载油缸缸杆端部;所述二级加载油缸缸体安装在二级加载油缸底座上并竖直向下;所述加载板铰接在二级加载油缸缸杆端部;所述装料口油缸缸体安装在二级加载油缸底座上,位于二级加载油缸靠近夯实机的一侧,所述装料板铰接在装料口油缸缸杆端部;
    所述剪切系统由上剪切盒和下剪切盒组成;
    所述上剪切盒由方形顶环和若干方形叠环组成;所述方形顶环三个边为整体结构,另一边为可拆卸顶环长条挡板,且顶环长条挡板位于夯实机一侧;所述方形顶环的四角设有套筒,四个套筒分别套装在四根立柱上;所述方形叠环三个边为整体结构,另一边为可拆卸扫尾挡板;方形顶环和各方形叠环依次叠加在一起构成上剪切盒,所述扫尾挡板位于夯实机一侧,各方形叠环与滑道平行的两个边的上表面开有滚珠滑道,滚珠滑道内设有滚珠;
    所述下剪切盒为有底无顶盖的箱体,其三个侧面为整体,另一面由若干可拆卸的下剪切盒长条挡板叠加构成,下剪切盒长条挡板位于夯实机一侧;下剪切盒与滑道平行的两个面的顶部设滚珠滑道,滚珠滑道内设有滚珠;下剪切盒底部沿滑道方向设有滚轮;
    所述数据监测系统,包括安装在各夯实机油缸、二级加载油缸和装料口油缸上的压力传感器,安装在二级加载油缸底座与加载板之间的垂直位移传感器、安装在二级加载油缸底座与装料板之间的垂直位移传感器,以及安装在下剪切盒与夯实机相对的一面中部的水平位移传感器、上剪切盒各方形叠环与夯实机相对的一面的水平位移传感器组成。
  2. 根据权利要求1所述一种固体充填物料大型可视化直剪实验平台,其特征是:所述二级 加载油缸优选四个并呈正方形布置。
  3. 根据权利要求1所述一种固体充填物料大型可视化直剪实验平台,其特征是:所述装料口油缸优选为两个。
  4. 根据权利要求1所述一种固体充填物料大型可视化直剪实验平台,其特征是:所述方形顶环与相邻方形叠环间、各方形叠环之间及最下部方形叠环与下剪切盒间均设有便捷卡扣。
  5. 根据权利要求1所述一种固体充填物料大型可视化直剪实验平台,其特征是:所述,上剪切盒和下剪切盒均透明材质。
  6. 一种使用权利要求1-5之一所述固体充填物料大型可视化直剪实验平台进行固体充填物料大型可视化直剪实验的方法,包括以下步骤:
    步骤1.启动一级加载油缸使二级加载油缸底座下降,当最下面方形叠环的滚珠滑道与下剪切盒顶面的滚珠接触时停止,关闭下剪切盒与相邻方形叠环间的便捷卡扣,使上剪切盒与下剪切盒连接成整体结构;
    步骤2.启动二级加载油缸使加载板下降至指定高度;
    步骤3.按设计要求进行第1轮装料,之后将夯实机移近下剪切盒,对夯实机底座限位,按设计夯实角度及夯实力对固体充填物料进行第1轮夯实,直至物料顶部接触加载板;
    步骤4.重复步骤3,进行第2、3、4…轮装料和第2、3、4…轮夯实,并随着装料的进行,夯实机逐步后退,同时从下到上适时安装下剪切盒长条挡板、扫尾挡板和顶环长条挡板,当物料装满填平之后,所有挡板安装完毕,启动装料口油缸,使装料板下降,当装料板底面与加载板底面达到同一水平时停止;
    步骤5.开启所有压力传感器和垂直位移传感器,然后启动并协同控制装料口油缸和二级加载油缸,以位移控制的方式使装料板和加载板同步下降对固体充填物料进行加载,当垂直应力达到设定值时停止加载;
    步骤6.调整夯实机油缸达到水平状态,通过连结器连接夯实机夯实板与下剪切盒,打开下剪切盒、各方形叠环及方形顶环间的便捷卡扣,取消相互间的约束,准备对固体充填物料进行大型直剪实验;
    步骤7.启动水平位移传感器,然后开启夯实机,以位移控制加载方式推动下剪切盒对固体充填物料进行剪切,上剪切盒与下剪切盒分界处固体充填物料受剪切力运动时依次带动上部叠环中的物料运动,当下剪切盒位移达到20cm时停止加载;
    步骤8.关闭所有传感器,收缩夯实机油缸将下剪切盒拉回原位,并将各方形叠环对齐,同时收缩二级加载油缸和装料口油缸将加载板和装料板拉回原位,关闭下剪切盒、各方形叠环 及方形顶环间的便捷卡扣,再次启动相互间的约束,自上而下依次拆除顶环长条挡板、扫尾挡板和下剪切盒长条挡板,在侧面进行卸料;
    步骤9.卸料完成后,所有油缸及部件归复原位,以待下次实验;
    步骤10.对数据监测系统采集与存储的数据进行处理,得到夯实后固体充填物料的剪切强度参数。
PCT/CN2021/071069 2020-10-15 2021-01-11 一种固体充填物料大型可视化直剪实验平台 WO2022077787A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2021277732A AU2021277732B2 (en) 2020-10-15 2021-01-11 Large visual direct shear experiment platform for solid filling materials

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011101627.8A CN112213207B (zh) 2020-10-15 2020-10-15 一种固体充填物料大型可视化直剪实验平台
CN202011101627.8 2020-10-15

Publications (1)

Publication Number Publication Date
WO2022077787A1 true WO2022077787A1 (zh) 2022-04-21

Family

ID=74054241

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/071069 WO2022077787A1 (zh) 2020-10-15 2021-01-11 一种固体充填物料大型可视化直剪实验平台

Country Status (3)

Country Link
CN (1) CN112213207B (zh)
AU (1) AU2021277732B2 (zh)
WO (1) WO2022077787A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117147322A (zh) * 2023-10-30 2023-12-01 四川省公路规划勘察设计研究院有限公司 一种墩柱载荷试验装置
CN117314371A (zh) * 2023-11-30 2023-12-29 济宁矿业集团有限公司霄云煤矿 一种煤矿固体充填的智能管理平台

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4854175A (en) * 1988-02-29 1989-08-08 The Research Foundation Of State University Of New York Simple shear device for testing earthen materials and powders
CN101603903A (zh) * 2009-07-07 2009-12-16 河海大学 叠环式剪切仪及其对复合衬垫材料系统测试的方法
CN103018105A (zh) * 2012-12-10 2013-04-03 中国矿业大学 固体充填采煤固体物料压实系统模拟实验平台
CN203259425U (zh) * 2013-04-28 2013-10-30 河海大学 一种大型粗粒料叠环式水平循环单剪设备
CN103808573A (zh) * 2014-02-14 2014-05-21 湖州职业技术学院 一种大型高精度单剪仪结构
CN104849151A (zh) * 2015-05-29 2015-08-19 武汉大学 一种可适应自由剪切变形的活动板叠环剪切仪
CN108225942A (zh) * 2017-12-18 2018-06-29 河海大学 用于污泥-生活垃圾混合填埋体的大型单剪仪及试验方法
CN110940598A (zh) * 2019-12-20 2020-03-31 河海大学 一种多功能冻土循环单剪试验装置及试验方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1629807A1 (ru) * 1989-04-25 1991-02-23 Уфимский Нефтяной Институт Способ испытани клеевых соединений на сдвиг
CN201449359U (zh) * 2009-07-07 2010-05-05 河海大学 叠环式直剪单剪两用剪切仪
CN105842086B (zh) * 2016-06-08 2019-03-29 长江水利委员会长江科学院 一种低摩阻叠环式双向动剪切试验机
CN109060561A (zh) * 2018-08-10 2018-12-21 西南交通大学 全过程直剪仪以及土体抗剪强度测定方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4854175A (en) * 1988-02-29 1989-08-08 The Research Foundation Of State University Of New York Simple shear device for testing earthen materials and powders
CN101603903A (zh) * 2009-07-07 2009-12-16 河海大学 叠环式剪切仪及其对复合衬垫材料系统测试的方法
CN103018105A (zh) * 2012-12-10 2013-04-03 中国矿业大学 固体充填采煤固体物料压实系统模拟实验平台
CN203259425U (zh) * 2013-04-28 2013-10-30 河海大学 一种大型粗粒料叠环式水平循环单剪设备
CN103808573A (zh) * 2014-02-14 2014-05-21 湖州职业技术学院 一种大型高精度单剪仪结构
CN104849151A (zh) * 2015-05-29 2015-08-19 武汉大学 一种可适应自由剪切变形的活动板叠环剪切仪
CN108225942A (zh) * 2017-12-18 2018-06-29 河海大学 用于污泥-生活垃圾混合填埋体的大型单剪仪及试验方法
CN110940598A (zh) * 2019-12-20 2020-03-31 河海大学 一种多功能冻土循环单剪试验装置及试验方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117147322A (zh) * 2023-10-30 2023-12-01 四川省公路规划勘察设计研究院有限公司 一种墩柱载荷试验装置
CN117147322B (zh) * 2023-10-30 2023-12-29 四川省公路规划勘察设计研究院有限公司 一种墩柱载荷试验装置
CN117314371A (zh) * 2023-11-30 2023-12-29 济宁矿业集团有限公司霄云煤矿 一种煤矿固体充填的智能管理平台

Also Published As

Publication number Publication date
AU2021277732B2 (en) 2022-12-15
AU2021277732A1 (en) 2022-05-05
CN112213207B (zh) 2021-08-27
CN112213207A (zh) 2021-01-12

Similar Documents

Publication Publication Date Title
WO2022077787A1 (zh) 一种固体充填物料大型可视化直剪实验平台
CA3096739C (en) Coal gangue interface recognition test system for top coal caving
CN108226447A (zh) 煤炭地下开采地表移动三维模拟试验装置及试验方法
Castro et al. Experimental study of gravity flow under confined conditions
CN109946164A (zh) 一种模拟煤矿采场煤岩灾变的实验平台及实验方法
CN207964817U (zh) 模拟煤炭地下开采影响岩层及地表移动的三维试验装置
CN108956933B (zh) 一种实验室内模拟逆断层形成的方法及装置
CN207032342U (zh) 一种地质勘测土壤覆土压实设备
CN108333063A (zh) 支挡结构冲击荷载模拟试验装置及试验方法
CN108398330B (zh) 矿柱支撑系统动载稳定性试验系统及试验方法
Liu et al. Dynamic characteristics of superfine tailings–blast furnace slag backfill featuring filling surface
KR101070699B1 (ko) 금속 스크랩 압축물 및 그 제조장치와 제조 방법
DE102009052901B4 (de) Verfahren und Vorrichtung zur sukzessiven Herstellung von kokskammergerechten Kohlepressblöcken
KR101756174B1 (ko) 건설 폐토사의 현장 전단강도 측정장치와 이를 이용한 전단강도 선별방법
CN109827842A (zh) 一种矸石充填推压捣实试验箱及矸石充填推压捣实方法
CN112881190A (zh) 一种室内可模拟多种致滑因素的边坡失稳动态演化装置
CN209061194U (zh) 一种新型实验室岩石破碎装置
CN112213181A (zh) 一种充填留巷巷旁体侧向受力监测模拟方法
CN208537283U (zh) 一种组装式岩土原位直剪试验装置
Remennikov et al. Experimental and numerical investigation of high-yield grout ore pass plugs to resist impact loads
CN216718422U (zh) 用于多重圆弧模型稳定性分析效果检验的模型试验系统
CN207231913U (zh) 一种双排抗滑桩模型试验自加载模型箱
CN113029800A (zh) 一种固体充填材料压缩试验装置及方法
CN107288117A (zh) 一种对煤矸石强夯加固的方法
CN107991197B (zh) 粗粒土大型直剪仪剪切盒结构及法向加载装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021277732

Country of ref document: AU

Date of ref document: 20210111

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21878850

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21878850

Country of ref document: EP

Kind code of ref document: A1