WO2022077729A1 - 基于增材制造制备的固体氧化物燃料电池/电解池及电堆 - Google Patents

基于增材制造制备的固体氧化物燃料电池/电解池及电堆 Download PDF

Info

Publication number
WO2022077729A1
WO2022077729A1 PCT/CN2020/133641 CN2020133641W WO2022077729A1 WO 2022077729 A1 WO2022077729 A1 WO 2022077729A1 CN 2020133641 W CN2020133641 W CN 2020133641W WO 2022077729 A1 WO2022077729 A1 WO 2022077729A1
Authority
WO
WIPO (PCT)
Prior art keywords
solid oxide
oxide fuel
fuel cell
additive manufacturing
electrolyzer
Prior art date
Application number
PCT/CN2020/133641
Other languages
English (en)
French (fr)
Inventor
刘敏
宋琛
刘太楷
董东东
邓春明
周克崧
张亚鹏
文魁
邓畅光
马文有
Original Assignee
广东省科学院新材料研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东省科学院新材料研究所 filed Critical 广东省科学院新材料研究所
Priority to US17/637,970 priority Critical patent/US11502320B2/en
Publication of WO2022077729A1 publication Critical patent/WO2022077729A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/1213Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the electrode/electrolyte combination or the supporting material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/40Radiation means
    • B22F12/41Radiation means characterised by the type, e.g. laser or electron beam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/40Radiation means
    • B22F12/49Scanners
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0232Metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • H01M8/0273Sealing or supporting means around electrodes, matrices or membranes with sealing or supporting means in the form of a frame
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/1213Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the electrode/electrolyte combination or the supporting material
    • H01M8/1226Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the electrode/electrolyte combination or the supporting material characterised by the supporting layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/1286Fuel cells applied on a support, e.g. miniature fuel cells deposited on silica supports
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • H01M8/2425High-temperature cells with solid electrolytes
    • H01M8/2432Grouping of unit cells of planar configuration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/36Process control of energy beam parameters
    • B22F10/366Scanning parameters, e.g. hatch distance or scanning strategy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • B22F2005/005Article surface comprising protrusions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2207/00Aspects of the compositions, gradients
    • B22F2207/11Gradients other than composition gradients, e.g. size gradients
    • B22F2207/17Gradients other than composition gradients, e.g. size gradients density or porosity gradients
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes

Definitions

  • the present disclosure relates to the field of batteries, and in particular, to a solid oxide fuel cell/electrolyte cell and a stack prepared based on additive manufacturing.
  • Solid oxide fuel cell Solid Oxide Fuel Cell, SOFC for short
  • SOFC Solid Oxide Fuel Cell
  • SOFC Solid Oxide Fuel Cell
  • SOEC Solid Oxide Electrolyzer Cell
  • the current global research focus is to reduce the SOFC operating temperature from the previous 800-1000 °C to below 800 °C to reduce the high temperature reaction of the component materials, reduce the preparation cost, and prolong the battery life.
  • This expands the choice of SOFC materials and enables the application of metal supports in SOFCs.
  • the metal-supported SOFC uses porous metal as a support, and the anode, electrolyte and cathode of the battery functional layer are sequentially prepared on its surface. Compared with traditional anode-supported SOFCs, metal-supported SOFCs have the following advantages:
  • the high mechanical strength, excellent ductility and thermal conductivity of metal materials can effectively reduce the mechanical stress and thermal stress suffered by the battery during service, and improve the operating life and stability of the battery;
  • the battery functional layers can be made into thin films, which can improve the output performance of the battery while reducing the SOFC preparation cost;
  • the current preparation process of metal-supported SOFC is generally to prepare a porous metal body and a metal connector with gas flow channels respectively, and then splicing the porous metal body and the metal connector to form a metal support body, and finally on the metal support body.
  • Preparation of battery functional layer The preparation process often requires complex processes such as drilling, welding, packaging, powder metallurgy, high-temperature sintering, etc., resulting in low preparation efficiency, processing accuracy and reliability, and cannot achieve one-step integrated and flexible molding.
  • the traditional metal-supported SOFC usually only has the function of single-side power generation due to the limitation of the above-mentioned preparation process, and it is difficult to further improve the mass energy density of the battery.
  • metal-supported SOECs also have similar problems.
  • the present disclosure provides a solid oxide fuel cell/electrolyzer and a stack based on additive manufacturing, which can partially or fully improve or even solve the solid oxide fuel cell/electrolyzer
  • the preparation process and structure are complex.
  • an example of the present disclosure provides a solid oxide fuel cell/electrolyte based on additive manufacturing, comprising a metal support frame and a battery/electrolyte functional layer, the metal support frame including a dense region and a porous region , the dense area and the porous area of the metal support frame are integrally formed by additive manufacturing, and the dense area has a fuel flow channel and does not have an oxygen gas channel.
  • the fuel flow channel described in the embodiments of the present invention is only a structural name, and does not merely mean that it can only be used as a flow channel for fuel circulation.
  • the raw material for the reaction such as water or carbon dioxide
  • the fuel flow passage is used for the flow of the fuel.
  • an example of the present disclosure provides a method of fabricating a solid oxide fuel cell/electrolyte, the fabrication method comprising:
  • a metal support frame body with a composite structure is fabricated by integral molding, wherein the metal support frame body has a stacked dense area and a porous area, wherein the dense area has a fuel flow channel but no oxygen gas channel (also without air passages), and the fuel flow passages are covered by porous areas;
  • Anode layer, electrolyte layer and cathode layer are fabricated layer by layer over the porous area by thermal spraying, tape casting, screen printing or chemical vapour deposition methods to form a battery/electrolyte functional layer, wherein the edges of the electrolyte layer extend And cover the junction of the porous area and the dense area to achieve self-sealing;
  • Additive manufacturing includes: controlling the scanning distance and power of the laser/electron beam, so that the scanning distance of the dense area is smaller than the scanning distance of the porous area, and the power of the dense area is greater than or equal to the power of the porous area, so as to adjust the melting point of the printing material. cell spacing, thereby forming dense and porous regions, respectively.
  • an example of the present disclosure provides a stack comprising a plurality of the above solid oxide fuel cells/electrolyzers, each of which is independently configured and connected in series or in parallel.
  • the exemplary solution of the present disclosure has at least the following advantages:
  • the porous area for gas permeation, the dense area for gas sealing and the fuel flow channel for fuel circulation of the metal support frame in the solid oxide fuel cell/electrolyte can be flexibly formed in one or more steps,
  • the integration of the structure and function of the metal support of the solid oxide fuel cell/electrolyzer has the advantages of no packaging, compact design, and high mass energy density.
  • the preparation process belongs to room temperature forming, and no drilling, welding, packaging, powder metallurgy, and high temperature sintering processes are required, which simplifies the manufacturing process of the metal support frame of the solid oxide fuel cell/electrolyte cell, and has obvious high efficiency, Low cost and high reliability.
  • FIG. 1 is a schematic structural diagram of a first porous metal body in an example of the disclosure
  • FIG. 2 is a schematic structural diagram of a second type of porous metal body in an example of the disclosure
  • FIG. 3 is a schematic structural diagram of a first dense metal body in an example of the disclosure.
  • FIG. 4 is a schematic structural diagram of a second type of dense metal body in an example of the disclosure.
  • FIG. 5 is a schematic structural diagram of a metal support body based on the porous metal body of FIG. 1 and the dense metal body of FIG. 3 in an example of the disclosure;
  • FIG. 6 is a schematic structural diagram of another metal support body based on the porous metal body of FIG. 2 and the dense metal body of FIG. 4 in an example of the disclosure;
  • FIG. 7 is a schematic structural diagram of a solid oxide fuel cell/electrolyte based on the metal support of FIG. 5 in an example of the disclosure
  • FIG. 8 is a schematic structural diagram of a solid oxide fuel cell/electrolyte based on the metal support of FIG. 6 in an example of the disclosure.
  • Icon 100a-porous metal body; 101a-straight hole; 100b-porous metal body; 101b-trapezoidal hole; 201a-dense metal body; 202-fuel flow channel; 201b-dense metal body; 300a-metal support frame; 300b - metal support frame; 400 - solid oxide fuel cell/electrolyzer; 401 - battery/electrolyzer functional layer; 4011 - cathode layer or anode layer; 4012 - electrolyte layer; 4013 - anode layer or cathode layer; 500 - solid Oxide fuel cells/electrolyzers.
  • metal-supported SOFC Compared with traditional (ceramic-supported) SOFC, metal-supported SOFC has the advantages of high strength (flexural resistance, shock resistance), easy processing and packaging.
  • the metal supporting body is usually prepared separately from the metal connecting body with gas flow channels, which does not realize the integration of structure and function, and can only realize single-side power generation.
  • the above-mentioned process is mainly based on additive manufacturing technology to flexibly and conveniently fabricate the metal support frame of the solid oxide fuel cell/electrolyte. That is, the process is used in solid oxide fuel cells/electrolyzers, especially solid oxide fuel cells/electrolyzers including the above-mentioned metal support frame.
  • the solid oxide fuel cell/electrolyzer is a self-sealing cell or electrolyzer. Its shape is a flat structure or a flat tube structure. Of course, it can be understood that the solid oxide fuel cell/electrolyzer can also be designed in other shapes or structures according to requirements.
  • the SOFC is a plate-like structure, which includes a support structure and a battery functional structure (anode-electrolyte-cathode).
  • the support structure provides a support function, so that the functional structure of the battery is supported to maintain the designed shape, and it also imposes certain constraints on the structure and appearance of the battery.
  • the support structure is a metal support frame with dense and porous regions, both distributed in a layered form.
  • the porous region in the metal support frame is described and referred to as a porous metal body
  • the dense region is described and referred to as a dense metal body. This will not be explained later.
  • a metal-supported SOFC support structure ie, an independent porous metal body, or a metal support frame based on the porous metal body is fabricated.
  • the metal support frame is integrally formed and includes the porous metal body as described above.
  • porous metal body 100a as shown in FIG. 1 is proposed in the example.
  • the porous metal body 100a is fabricated by additive manufacturing.
  • the porous metal body 100a As applied to the metal-supported solid oxide fuel cell/electrolyte 400 of the flat plate type, the porous metal body 100a generally has a flat plate shape or the like.
  • the porous metal body 100a is a flat cuboid structure with a relatively small height or thickness, such as 0.1mm, 0.5mm, 1mm, 2mm, 3mm, 4mm, 5mm, 6mm, 7mm, 8mm, 9mm, 10mm or any value between the range values formed between any two of the above values; have a relatively larger length and width, for example, the area of the formed longitudinal section is 1 square centimeter, 5 square centimeters, 10 square centimeters, 20 square centimeters, 30 square centimeters, 40 square centimeters, 50 square centimeters, 60 square centimeters, 70 square centimeters, 80 square centimeters, 90 square centimeters, 100 square centimeters, 150 square centimeters, 160 square centimeters, 200 square centimeters, 210 square centimeters centimeters, 250 square centimeters, 280 square centimeters, 300 square centimeters, 350 square centimeters, 380 square centimeters,
  • the porous structure can be realized by forming uniformly distributed through holes on the surface of the metal plate.
  • the porous structure is composed of pores with a pore size of 10 to 150 microns (may be 40 to 110 microns, or 80 to 100 microns, etc.), and a porosity of 10% to 60%.
  • the specific shape of the hole can be a hole with a regular shape, such as a straight hole 101a (as shown in FIG. 1, which can be a cylindrical hole or a prismatic hole) or a trapezoidal hole 101b (as shown in FIG. 2) disclosed in the porous metal body 100b ), or holes of other shapes.
  • any one of Fe-based alloys, Ni-based alloys, Co-based alloys, or Cr-based alloys can be selected.
  • the material for making the porous metal body 100a is an Fe-based alloy, such as SS430.
  • the above-mentioned shape, size and material of the porous metal body 100a can be adjusted and freely selected. It is not limited to the content given above.
  • the manufacturing method of the porous metal body 100a can be realized by manufacturing a metal material, such as a plate-shaped metal material, into a porous structure by means of additive manufacturing. Generally, it includes establishing a three-dimensional model of the porous metal body 100a, then exporting it, importing it into an additive manufacturing device through slicing software, and setting printing parameters, such as but not limited to scanning distance, scanning speed, scanning method, and preheating temperature. , powder spreading speed, shielding gas and laser/electron beam power, etc., and then perform additive manufacturing.
  • printing parameters such as but not limited to scanning distance, scanning speed, scanning method, and preheating temperature. , powder spreading speed, shielding gas and laser/electron beam power, etc.
  • additive manufacturing can use laser/electron beam as a heating source, that is, laser/electron beam additive manufacturing, and of course other types of energy sources. More specifically, laser/electron beam additive manufacturing can be powder-fed additive manufacturing or powder-spreading additive manufacturing. The laser/electron beam heats and melts the powder, and then prints each thin layer. The target product is formed into the desired shape by gradually stacking the thin layers.
  • a metal support frame body 300a (as shown in FIG. 5 ) and a metal support frame body 300b (as shown in FIG. 6 ) are also proposed in the example. It includes a dense metal body 201a (shown in Figure 3) and a porous metal body 100a. And, the dense metal body 201a and the porous metal body 100a are distributed in a composite structure and integrally formed by a one-step method in a manner of additive manufacturing. This manufacturing method can ensure that the abutting surfaces of the two are flat and well combined.
  • the dense metal body 201a and the porous metal body 100a are described in the metal support frame 300a, this does not mean that the dense metal body 201a and the porous metal body 100a can only be made of metal materials. In fact, for other types of solid oxide fuel cells/electrolyzers, non-metallic materials, such as ceramics, can also be selected for fabrication when necessary or desired.
  • the metal material may refer to either a simple metal or an alloy or the like.
  • the fabrication materials of the dense metal body 201a and the porous metal body 100a may be the same or different, which are not particularly limited in the present disclosure.
  • a dense metal body 201a with a fuel flow channel and the position of the fuel flow channel is opposite to the porous metal body 100a, that is, the The fuel flow passage is covered with the porous metal body 100a.
  • the fuel flow channel can be used as a fuel distribution and injection channel in the solid oxide fuel cell/electrolyzer 400 , and is therefore referred to as a fuel channel 202 , see FIG. 3 .
  • the fuel channel 202 can be designed correspondingly in the model design stage of the metal support frame 300a, so that the dense metal body 201a with the fuel channel 202 can be directly formed in the subsequent additive manufacturing (the present disclosure). example scenario). Therefore, when the metal support frame body 300a is produced, the dense metal body 201a having the fuel passage and the porous metal body 100a are integrally formed in one step.
  • the fuel channel can be designed in various ways as required, such as parallel structure (with parallel channels), serpentine structure (serpentine channel), parallel serpentine structure, interdigital structure (with interdigital channels) or mesh like structure (with a mesh flow channel).
  • the integrally formed solid dense metal body 201a and the porous metal body 100a may be fabricated first by means of additive manufacturing. Then, the solid dense metal body 201a is conventionally machined or processed on the basis thereof to form the fuel passage.
  • the structure of the single-sided solid oxide fuel cell/electrolyzer 400 is shown in FIG. 7
  • the structure of the double-sided solid oxide fuel cell/electrolyte cell 500 is as follows shown in Figure 8.
  • one side of the dense metal body 201a has the fuel channel 202 (see FIG. 3).
  • the fuel passage 202 is located between the porous metal body 100a and the dense metal body 201a, thereby forming a specific passage.
  • a battery/electrolytic cell is fabricated on the porous metal body 100a by combining thermal spraying, tape casting, screen printing or chemical vapor deposition methods, so that a single-sided solid oxide fuel cell/electrolytic cell 400 can be obtained (as shown in FIG. 7 ). ).
  • the dense metal body 201b may have fuel passages 202 on opposite sides (eg, front and back).
  • the fuel channel 202 is located between the porous metal body 100a and the dense metal body 201b so as to form a specific passage.
  • a functional cell structure is fabricated on the porous metal body 100a on both sides by combining thermal spraying, tape casting, screen printing or chemical vapor deposition, so as to obtain a double-sided solid oxide fuel cell/electrolyzer 500 (as shown in FIG. 8 ). ).
  • the double-sided solid oxide fuel cell/electrolyzer 500 can significantly improve space utilization, reduce cell volume, and reduce fabrication cost.
  • the fuel utilization rate is greatly improved, and the battery mass specific energy density is improved.
  • the dense metal body 201a and the porous metal body 100a may have a circular structure, a square structure or other shapes (denoted by the shape of the longitudinal cross-sectional profile).
  • the cross sections along the thickness direction of the metal support frame 300 a (or the thickness direction of the metal support body 300 b ) are shown, and the above-mentioned longitudinal sections are planes perpendicular to the aforementioned cross sections.
  • the longitudinal cross-sectional area of the dense metal body 201a may be limited to 1 to 400 square centimeters, for example, may be 1 square centimeter, 5 square centimeters, 10 square centimeters, 20 square centimeters, 30 square centimeters, 40 square centimeters, 50 square centimeters Centimeters, 60 square centimeters, 70 square centimeters, 80 square centimeters, 90 square centimeters, 100 square centimeters, 150 square centimeters, 160 square centimeters, 200 square centimeters, 210 square centimeters, 250 square centimeters, 280 square centimeters, 300 square centimeters, 350 square centimeters, 380 square centimeters, 400 square centimeters, or any value in the range formed between any two of the above values.
  • the metal support frame body 300a has a substantially equivalent longitudinal cross-sectional area.
  • the longitudinal cross-sectional area of the dense metal body 201a is generally larger than the longitudinal cross-sectional area of the porous metal body 100a.
  • the manufacturing method of the metal support frame 300a includes manufacturing the dense metal body 201a and the porous metal body 100a layer by layer by means of additive manufacturing. For example, by performing three-dimensional modeling on the metal support frame 300a designed above, a three-dimensional model thereof is obtained, and then the model is processed by software into a file required by the additive manufacturing equipment. Then use additive manufacturing equipment to assemble raw materials and working gases, etc., and set printing parameters for printing.
  • the above-mentioned additive manufacturing may be an additive manufacturing solution that combines laser/electron beam, or other additive manufacturing processes, depending on the printing material.
  • the selection of the laser/electron beam is mainly determined according to the scanning speed, the melting point of the material, the size and specification of the target printing product, the thickness of the printing layer, etc., and is not particularly limited.
  • the metal support frame 300a includes the dense metal body 201a and the porous metal body 100a.
  • the dense metal body 201a can be used as the support structure of the entire solid oxide fuel cell/electrolyte 400 (including the porous metal body of course);
  • a support structure for the battery/electrolyte functional layer 401 anode-electrolyte-cathode, and it may also provide a pathway channel (eg, fuel channel 202 ) for providing fuel as the above-described battery/electrolyte functional layer 401 .
  • the dense metal body 201a and the porous metal body 100a may differ in shape, material and microstructure. And this can be achieved through parameter selection of laser/electron beam assisted additive manufacturing.
  • the scanning distance of the laser/electron beam is controlled to adjust the distance between the molten pools of the printing material, thereby forming the dense metal body 201a and the porous metal body 100a.
  • the scanning pitch for producing the dense metal body 201a is made smaller than the scanning pitch for producing the porous metal body. Therefore, when the scanning spacing is larger, the spacing between adjacent molten pools is larger, thereby forming holes to achieve the fabrication of a porous structure.
  • the scanning pitch is small, the adjacent molten pools are close to each other (no gap) or the gap is small, thereby forming a dense structure.
  • the scanning interval for fabricating the dense metal body 201a is 0.05 to 0.15 mm, or 0.05 to 0.10 mm; and the scanning interval for fabricating the porous metal body 100a is 0.1 to 0.5 mm, or 0.2 to 0.4 mm.
  • the laser/electron beam power can be selectively controlled during additive manufacturing operations.
  • the laser/electron beam power for making the dense metal body 201a is greater than or equal to the laser/electron beam power for making the porous metal body.
  • the laser/electron beam power for fabricating the dense metal body 201a is 100 to 400W; the laser/electron beam power for fabricating the porous metal body is 50 to 250W.
  • a solid oxide fuel cell/electrolyte 400 can also be obtained. Furthermore, the example also proposes a stack, which includes a plurality of solid oxide fuel cells/electrolyzers 400, and each of the solid oxide fuel cells/electrolyzers 400 is independently configured and connected in series.
  • the solid oxide fuel cell/electrolyte 400 includes the battery/electrolyte functional layer 401 and the metal support frame 300a (of course also includes the porous metal body 100a or the porous metal body 100b), which can realize self-sealing ( This can be achieved by fabricating the later-mentioned electrolyte layer 4012 in the battery/electrolytic cell functional layer 401 ), thereby helping to simplify the fabrication process.
  • the battery/electrolytic cell functional layer 401 includes an anode layer or cathode layer 4013, an electrolyte layer 4012, and a cathode layer or anode layer 4011 that are stacked in sequence.
  • the method for forming the functional layer of the battery/electrolytic cell includes any one of thermal spraying, tape casting, screen printing or chemical vapor deposition methods.
  • the preparation of the battery/electrolytic cell functional layer 401 includes: coating, for example, a ceramic material on the metal support frame 300a made by additive manufacturing by thermal spraying, tape casting, screen printing or chemical vapor deposition, Thus, each layer in the battery/electrolytic cell functional layer 401 is fabricated separately.
  • the battery/electrolytic cell functional layer 401 is bonded to the porous metal body 100a or the metal support frame body 300a in a stacked manner.
  • the battery/electrolytic cell functional layer 401 is in direct contact with the porous metal body 100a in the metal support frame 300a via the anode layer or the cathode layer 4013 .
  • a transition layer (not shown) may also be configured in the solid oxide fuel cell/electrolyte 400.
  • the transition layer is formed between the porous region and the functional layer of the battery/electrolytic cell, specifically, the transition layer acts as a transition structure between the porous metal body and the anode layer or cathode layer 4013, so it is directly formed on the on the porous metal body 100a or the metal support frame 300a.
  • the above structure is disclosed by the single-sided solid oxide fuel cell/electrolyzer 400 shown in FIG. 7 . That is, a porous metal body is provided on one side of the metal support frame body 300a in the thickness direction, and a battery/electrolytic cell functional layer 401 is correspondingly provided thereon. In other examples, two opposite sides of the metal support frame 300b in the thickness direction are respectively the porous metal bodies 100a, and correspondingly, battery/electrolytic cell functional layers 401 are fabricated on the two porous metal bodies 100a respectively. Meanwhile, as fuel injection passages, there are fuel passages 202 on both sides of the metal support body 300b, as shown in FIG. 8 .
  • the dense metal body 201b has fuel channels 202 on both sides thereof, and the structure is shown in FIG. 4 .
  • the number of battery/electrolyte functional layers 401 is two, which are symmetrically distributed and formed as a whole by the shared dense metal body 201b.
  • the dense metal body 201a of the metal support frame 300a has a larger longitudinal cross-sectional area, while the longitudinal cross-sectional area of the porous metal body and the battery/electrolytic cell functional layer 401 is relatively smaller.
  • the porous metal body, anode layer or cathode layer 4013 and cathode layer or anode layer 4011 have generally uniform longitudinal cross-sectional areas. Therefore, along the thickness direction of the metal support frame 300a, the projections of the anode, the cathode, and the porous metal body substantially overlap.
  • the electrolyte layer 4012 has a longitudinal cross-sectional area slightly larger than that of the anode layer or the cathode layer 4013, so that the periphery of the electrolyte layer 4012 protrudes beyond the periphery of the anode layer or the cathode layer 4013, and can also support the metal support frame 300a. play a seal.
  • the metal-supported self-sealing solid oxide fuel cells/electrolyzers fabricated on the basis of the above scheme have fluctuations in working conditions and output power in some examples. The inventors believe that this may be caused by the deterioration of the fuel delivery stability of the battery.
  • the inventor unexpectedly found that this is due to the deformation of the fuel passages in the metal support frame (or metal support), which causes fluctuations in the fuel flow or normal delivery therein. This was analyzed and experimentally confirmed to correlate with the porous metal body, the dense metal body, and the size of the fuel channels therein.
  • the porous metal body covers the dense metal body, the porous metal body is suspended on the fuel channel of the dense metal body.
  • the porous metal body is supported by the dense metal body.
  • it will cause the porous metal body to sag into the fuel channel, thereby changing the shape and cross-sectional area of the fuel channel, thereby affecting the flow of fuel in the fuel channel. And this change is gradual, that is, occurs after the battery is used for a period of time, so it cannot be detected in advance.
  • the collapse of the porous metal body can lead to changes in the pore structure and shape therein, which further degrades the smooth transport of fuel.
  • the structural size of the battery is selected to be controlled to improve its structural stability.
  • the fuel flow channel has a plurality of partition walls (four in the illustrated structure), and the adjacent two are defined as one sub-flow channel, that is, the fuel channel has five sub-flow channels .
  • the width D2 of the sub-channel is 0.5-10 mm, for example, 0.5 mm, 12 mm, 3 mm, 4 mm, 5 mm, 6 mm, 7 mm, 8 mm , 9 mm, 10 mm and any value within the range formed between the above-mentioned arbitrary point values
  • the thickness of the partition wall D3 is not less than 0.1 mm.
  • the thickness D4 of the dense metal body is not less than 0.3 mm
  • the thickness D6 of the thickest part of the dense metal body is not less than 2 mm
  • the thickness of the porous metal body D1 is not less than 0.1 mm.
  • the metal support frame 201b has two independent fuel flow channels separated by partition walls, and the thickness D5 of the partition walls is not less than 0.2 mm. The inventors found that within the above-mentioned range of structure size, the fabricated battery structure can be achieved relatively well, which does not collapse and has sufficient supporting force.
  • the laser/electron beam scanning distance of the dense metal plate is smaller than that of the porous metal body, and the laser/electron beam power is larger than that of the porous metal body.
  • the scanning pitch of the dense metal plate is 0.1 mm, the power is 150 W, and the scanning speed is 700 mm/s.
  • the scanning spacing of the porous metal body is 0.25 mm, the power is 250 W, and the scanning speed is 1400 mm/s.
  • the preheating temperature of the additively manufactured substrate After the laser/electron beam parameters are set, set the preheating temperature of the additively manufactured substrate, the powder spreading speed of the equipment, and the pressure of the protective gas.
  • the material is SS430
  • the preheating temperature is 80°C
  • the powder spreading speed of the equipment is 100mm/s
  • the pressure of the protective gas is 0.65bar.
  • the dense metal body is formed into a dense solid structure, while the porous metal body forms a porous area due to the large scanning distance of the laser/electron beam and the gap between adjacent molten pools.
  • the anode, the electrolyte and the cathode or the cathode, the electrolyte and the anode are sequentially prepared on the metal support by thermal spraying, tape casting, screen printing or chemical vapor deposition. seal.
  • the solid oxide fuel cell/electrolyte provided by the present disclosure can form a metal support frame that plays a supporting role in one or more steps through an additive manufacturing process, so that the structure and functions of the metal support frame can be integrated without additional packaging.
  • the integrally formed metal support frame has a compact design and high mass energy density.
  • the use of additive manufacturing process belongs to room temperature molding, and does not require drilling, welding, packaging, powder metallurgy, and high-temperature sintering processes, which simplifies the manufacturing process of the metal support frame of the solid oxide fuel cell/electrolytic cell electrochemical converter. It has obvious advantages of high efficiency, low cost and high reliability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Automation & Control Theory (AREA)
  • Inorganic Chemistry (AREA)
  • Fuel Cell (AREA)
  • Inert Electrodes (AREA)

Abstract

种固体氧化物燃料电池/电解池(400、500)及电堆,涉及电池领域。通过增材制造技术一步或多步成型形成金属支撑框体(300a、300b)。再通过热喷涂、流延成型、丝网印刷或者化学气相沉积方法在金属支撑框体(300a、300b)上形成电池/电解池功能层(401),利用电解质的致密结构实现固体氧化物燃料电池/电解池(400、500)的自密封。上述制造技术所制备的固体氧化物燃料电池/电解池(400、500)及电堆可免除钻孔、焊接、封装、粉末冶金和高温烧结等传统工艺,实现固体氧化物燃料电池/电解池(400、500)的结构功能一体化,提高制备效率。同时,还可明显提高金属支撑固体氧化物燃料电池/电解池(400、500)的质量能量密度、加工精度和可靠性、降低制备成本,利于固体氧化物燃料电池/电解池(400、500)的商业化。

Description

基于增材制造制备的固体氧化物燃料电池/电解池及电堆
相关申请的交叉引用
本申请要求于2020年10月16日提交中国专利局的申请号为CN202011112244.0、名称为“基于增材制造的金属支撑型自密封固体氧化物燃料电池/电解池及电堆”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开涉及电池领域,具体而言,涉及一种基于增材制造制备的固体氧化物燃料电池/电解池及电堆。
背景技术
固体氧化物燃料电池(Solid Oxide Fuel Cell,简称SOFC)是一种通过化学反应将燃料中的化学能直接转化为电能的全固态发电装置,其热电联供时能量转化效率可达80%以上,发电过程环保且燃料适用范围广,故在分布式电站、家庭热电联供系统、便携式电源等领域具有广泛应用前景。作为SOFC的逆过程,固体氧化物燃料电解池(Solid Oxide Electrolyzer Cell,简称SOEC)是将电能和热能转化为化学能的储能装置,可实现高效电解水制备氢气。若能与SOFC装置联用,实现制氢储能与耗氢发电的双重功能,将对解决能源危机和环境污染问题具有重要意义。
目前全球研究热点是将SOFC工作温度由从前的800~1000℃降低到800℃以下,以减少组元材料高温反应、降低制备成本,延长电池使用寿命。这扩大了SOFC材料的选择范围,使金属支撑体在SOFC中的应用成为可能。金属支撑型SOFC是利用多孔金属作为支撑,将电池功能层阳极、电解质和阴极依次制备在其表面。与传统阳极支撑SOFC相比,金属支撑SOFC 具有以下优点:
(1)金属材料的高机械强度、优良的延展性和热导性,可有效降低电池在服役过程中遭受的机械应力和热应力,提高电池运行寿命和稳定性;
(2)采用廉价金属材料如不锈钢替代陶瓷材料作为电池支撑体,可将电池功能层均做成薄膜形式,在降低SOFC制备成本的同时提高电池的输出性能;
(3)金属材料易加工,易密封,降低SOFC制备和封接难度。
然而,目前金属支撑型SOFC制备工艺一般是先分别制备多孔金属体和具有气体流道的金属连接体,然后再将多孔金属体与金属连接体拼接成金属支撑体,最后再在金属支撑体上制备电池功能层。该制备过程往往需要采用钻孔、焊接、封装、粉末冶金、高温烧结等复杂工艺,导致制备效率、加工精度和可靠性低,无法做到一步一体化灵活成型。此外,传统金属支撑型SOFC因上述制备工艺所限通常只具备单侧发电功能,难以进一步提高电池的质量能量密度。
同上所述,金属支撑型SOEC也存在类似问题。
发明内容
本公开提供了一种基于增材制造制备的固体氧化物燃料电池/电解池及电堆,该固体氧化物燃料电池/电解池能部分或全部地改善、甚至解决固体氧化物燃料电池/电解池制备工艺和结构复杂的问题。
本公开是这样实现的:
在第一方面,本公开示例提供了一种基于增材制造制备的固体氧化物燃料电池/电解池,包括金属支撑框体和电池/电解池功能层,金属支撑框体包括致密区和多孔区,金属支撑框体的致密区和多孔区为增材制造一体化成形,致密区具有燃料流道且不具有氧气气道。
需要说明的是,本发明实施例记载的燃料流道仅仅是一个结构名称, 并不仅仅意味着其仅能作为燃料流通的流道。SOEC时,该燃料流道内流通的为水或者二氧化碳等用于反应的原料,而SOFC时,该燃料流道则用于流通燃料。
在第二方面,本公开示例提供了一种固体氧化物燃料电池/电解池的制作方法,制作方法包括:
采用增材制作工艺,通过一体成型制作具有复合结构的金属支撑框体,其中金属支撑框体具有叠层设置的致密区和多孔区,其中致密区具有燃料流道却不具有氧气气道(也不具有空气气道),且燃料流道被多孔区覆盖;
通过热喷涂、流延成型、丝网印刷或化学气相沉积方法,在多孔区之上逐层制作阳极层、电解质层以及阴极层,以形成电池/电解池功能层,其中,电解质层的边缘延伸并覆盖多孔区与致密区的结合处,以实现自密封;
增材制造包括:控制激光/电子束的扫描间距和功率,使制作致密区的扫描间距小于制作多孔区的扫描间距、制作致密区的功率大于等于制作多孔区的功率,以调整打印材料的熔池间距,从而分别形成致密区和多孔区。
在第三方面,本公开的示例提供了一种电堆,包括多个上述固体氧化物燃料电池/电解池,且各个固体氧化物燃料电池/电解池独立配置并通过串联或并联连接。
与现有技术相比,本公开示例方案至少具有以下优势:
(1)可一步或多步法灵活成型固体氧化物燃料电池/电解池中金属支撑框体的用于气体渗透的多孔区、用于气体密封的致密区和用于燃料流通的燃料流道,实现固体氧化物燃料电池/电解池的金属支撑的结构功能一体化,具有无须封装、设计紧凑、质量能量密度高等优点。
(2)制备过程属常温成型,无需采用钻孔、焊接、封装、粉末冶金、高温烧结工艺,简化了固体氧化物燃料电池/电解池的金属支撑框体的制造过程,具有明显的效率高、成本低、可靠性高等优势。
(3)可根据特定需求实现金属支撑各部分宏微观结构的灵活设计和精细化制备,具有结构精细、加工精度高等优点。
附图说明
为了更清楚地说明本公开实施例或现有技术中的技术方案,以下将对实施例或现有技术描述中所需要使用的附图作简单地介绍。
图1为本公开示例中的第一种多孔金属体的结构示意图;
图2为本公开示例中的第二种多孔金属体的结构示意图;
图3为本公开示例中的第一种致密金属体的结构示意图;
图4为本公开示例中的第二种致密金属体的结构示意图;
图5为本公开示例中基于图1的多孔金属体和图3的致密金属体的一种金属支撑体的结构示意图;
图6为本公开示例中基于图2的多孔金属体和图4的致密金属体的另一种金属支撑体的结构示意图;
图7为本公开示例中的基于图5的金属支撑体的固体氧化物燃料电池/电解池的结构示意图;
图8为本公开示例中的基于图6的金属支撑体的固体氧化物燃料电池/电解池的结构示意图。
图标:100a-多孔金属体;101a-直通孔;100b-多孔金属体;101b-梯形孔;201a-致密金属体;202-燃料流道;201b-致密金属体;300a-金属支撑框体;300b-金属支撑框体;400-固体氧化物燃料电池/电解池;401-电池/电解池功能层;4011-阴极层或阳极层;4012-电解质层;4013-阳极层或阴极层;500-固体氧化物燃料电池/电解池。
具体实施方式
下面将结合实施例对本公开的实施方案进行详细描述,但是本领域技术人员将会理解,下列实施例仅用于说明本公开,而不应视为限制本公开的范围。实施例中未注明具体条件者,按照常规条件或制造商建议的条件进行。所用试剂或仪器未注明生产厂商者,均为可以通过市售购买获得的常规产品。
以下针对本公开实施例进行具体说明。
金属支撑SOFC相比于传统的(陶瓷支撑)SOFC具有强度高(抗折、抗震)、易加工和封装等优势。但是其中的金属支撑体通常与具有气体流道的金属连接体分开制备,未实现结构功能一体化,且只能实现单侧发电。
基于这样的现实情况,在本公开示例中提出了一种新的结构及其制造工艺,用以制作上述金属支撑体和金属连接体一体化的金属支撑结构。并且经过验证该工艺具有简单易于实施、结构易于根据需要控制、制备温度低不易产生裂纹等优点。
在本公开示例中,上述工艺主要基于增材制造技术,对固体氧化物燃料电池/电解池的金属支撑框体进行灵活和便捷的制作。即该工艺被用于固体氧化物燃料电池/电解池中,尤其是包括上述金属支撑框体的固体氧化物燃料电池/电解池。
该固体氧化物燃料电池/电解池为自密封电池或电解池。其形状为平板状结构或扁管状结构。当然可以理解的是,固体氧化物燃料电池/电解池也可以根据需求设计为其他形状或结构。
以金属支撑SOFC为例,且该SOFC为平板状结构,其包括支撑结构和电池功能结构(阳极-电解质-阴极)。顾名思义,支撑结构提供支撑作用,使电池功能结构被支撑而保持设计形状,同时也对电池的结构和外观形状起到一定的约束。
通常地,该支撑结构是一种金属支撑框体,其具有致密区和多孔区,且两者以层状形式分布。为了方便描述,在本公开中的以下描述中,金属 支撑框体中的多孔区以多孔金属体被描述和提及,致密区则以致密金属体被描述和提及。后续不在对此进行说明。
在本公开示例中,制作了金属支撑SOFC的支撑结构,即独立的多孔金属体,或基于该多孔金属体的金属支撑框体。该金属支撑框体是一体成型的且包含如前述的多孔金属体。
换言之,示例中提出了一种如图1所示的多孔金属体100a。该多孔金属体100a通过增材制造的方式制作而成。作为在平板型的金属支撑固体氧化物燃料电池/电解池400的应用,该多孔金属体100a大致具有平板状或类似结构。
作为一种示例,多孔金属体100a为扁平的长方体结构,其具有相对较小高度或厚度,例如为0.1mm、0.5mm、1mm、2mm、3mm、4mm、5mm、6mm、7mm、8mm、9mm、10mm或者上述任意两个数值之间形成的范围值之间的任意数值;具有相对更大的长度和宽度,例如,所形成的纵截面的面积为1平方厘米、5平方厘米、10平方厘米、20平方厘米、30平方厘米、40平方厘米、50平方厘米、60平方厘米、70平方厘米、80平方厘米、90平方厘米、100平方厘米、150平方厘米、160平方厘米、200平方厘米、210平方厘米、250平方厘米、280平方厘米、300平方厘米、350平方厘米、380平方厘米、400平方厘米或者上述任意两个数值之间形成的范围值之间的任意数值。
进一步地,其多孔结构可以通过在金属板的表面形成均匀分布的通孔而实现。例如,多孔结构是由孔隙的尺寸为10至150微米(也可以是40至110微米,或者80至100微米等等)的孔构成,孔隙率为10%~60%。孔的具体形状可以是具有规则形状的孔,例如直通孔101a(如图1所示,可以是圆柱孔或棱柱孔)或在多孔金属体100b中所公开的梯形孔101b(如图2所示),也可以是其他形状的孔。
而作为制作该多孔金属体100a的材料则可以选择为Fe基合金、Ni基 合金、Co基合金或Cr基合金中的任意一种。一种优选示例中,多孔金属体100a的制作材料为Fe基合金,例如SS430。
需要指出的是,根据具体的设计需求和固体氧化物燃料电池/电解池400的电池功能结构的不同,上述对于多孔金属体100a的形状、尺寸以及制作材料等均可以做出调整和自由的选择而不以上述给出的内容为限。
该多孔金属体100a的制作方法可以通过增材制造的方式将金属材料,例如板状的金属材料,制作为多孔结构而实现。一般地,其包括建立多孔金属体100a的三维模型,然后将其导出,通过切片软件导入增材制造设备,设定打印参数,例如包括但不限于扫描间距、扫描速度、扫描方式、预热温度、铺粉速度、保护气和激光/电子束功率等,而后进行增材制造制作。
其中,增材制造可以使用激光/电子束作为加热源即激光/电子束增材制造,当然也可以是其他类型的能量源。更具体而言,激光/电子束增材制造可以是送粉式增材制造,也可以是铺粉式增材制造。激光/电子束通过对粉料进行加热熔化,继而制作打印每一薄层,通过将薄层逐渐地层层叠加而制作形成所需形状的目标产品。
进一步地,基于前述的多孔金属体100a,示例中还提出了一种金属支撑框体300a(如图5所示)和金属支撑框体300b(如图6所示)。其包括致密金属体201a(如图3所示)和多孔金属体100a。并且,致密金属体201a和多孔金属体100a以复合结构分布且采用增材制造的方式通过一步法而一体化成型。通过这样制造方式可以确保两者对接面平整且结合良好。并且,由于增材制造的一体化工艺的使用,有助于实现燃料电池/电解池的自密封性,且可以免于特别地设置氧气气道。同时,由于不需要设置提供氧气气道,因此,电池的结构也得以被简化,且方便制作电池堆。
应当提及的是,虽然金属支撑框体300a中描述的是致密金属体201a和多孔金属体100a,但是这并不意味着致密金属体201a和多孔金属体100a只能采用金属材料。实际上在针对其他类型的固体氧化物燃料电池/电解池 时,在必要或需要时也可以选择非金属材料,例如陶瓷,进行制作。此外,其中的金属材料既可以是指单质金属,也可以指合金等。例如前述的Fe基合金、Ni基合金、Co基合金或Cr基合金,,例如具体且优选为SS430,或者可以为Fe-30Cr、Fe-26Cr、Fe22Cr、SS430、Ni和Hastelloy X中的任意一种。换言之,致密金属体201a和多孔金属体100a的制作材料可以相同,也可以不同,对此本公开并无特别的限定。
进一步,基于简化制作固体氧化物燃料电池/电解池工艺或分工的需要,可以进一步地,制作具有燃料流道的致密金属体201a,并且该燃料流道的位置正对于多孔金属体100a,即该燃料流道被多孔金属体100a覆盖。该燃料流道可以作为固体氧化物燃料电池/电解池400中的燃料的分布和注入通道,因此称之为燃料通道202,参阅图3。需要说明的是,在本公开示例的固体氧化物燃料电池方案中,图3所示的致密金属体201a和图4所示的致密金属体201b均含有燃料通道,而不含氧气通道或空气气道。即本公开示例中,仅仅主动地设置燃料供给通道,而未设计氧气的供给通道(本公开中,氧气由环境/大气供给)。这有别于目前燃料电池中通常采用的燃料和氧气双通道的设计方案,从而有助于降低电池/电解池的制作难度、压缩体积、继而提高质量能量密度。
结合增材制造的工艺,该燃料通道202可以在金属支撑框体300a的模型设计阶段即进行相应的设计,从而在后续增材制作时可以直接形成具有燃料通道202的致密金属体201a(本公开示例方案)。因此,在制作金属支撑框体300a时,是一步一体化成型具有燃料通道的致密金属体201a和多孔金属体100a。其中,燃料通道可以按需进行各种设计,如平行结构(具有平行沟道)、蛇形结构(蛇形沟道)、平行蛇形结构、叉指结构(具有叉指形沟道)或网状结构(具有网状流道)。
或者,在一些情况下,可以先通过增材制造的方式制作一体成型的实心的致密金属体201a和多孔金属体100a。然后再于其基础上,对实心的致 密金属体201a进行常规的机械加工或者加工方式,从而制作燃料通道。
在上述的致密金属体和多孔金属体的应用实例中,单面的固体氧化物燃料电池/电解池400的结构如图7所示,双面的固体氧化物燃料电池/电解池500的结构如图8所示。
针对如图7所示单面的固体氧化物燃料电池/电解池400而言,致密金属体201a的一侧具有燃料通道202(参阅图3)。在图7所示的结构中,燃料通道202位于多孔金属体100a与致密金属体201a之间,从而形成特定通路。由此结合热喷涂、流延成型、丝网印刷或者化学气相沉积方法在多孔金属体100a上制作电池/电解池,从而可以获得单面固体氧化物燃料电池/电解池400(如图7所示)。
相应地,在另一些示例中,如图4所示,致密金属体201b可以具有位于相对的两侧(例如正面和背面)的燃料通道202。燃料通道202位于多孔金属体100a与致密金属体201b之间,从而形成特定通路。由此结合热喷涂、流延成型、丝网印刷或者化学气相沉积方式在两侧多孔金属体100a上制作电池功能结构,从而获得双面固体氧化物燃料电池/电解池500(如图8所示)。双面固体氧化物燃料电池/电解池500可以明显提高空间利用率,减少电池体积,降低制备成本。同时,由于两面双通道(两侧的燃料流道)并联发电,大幅度提高了燃料利用率,电池质量比能量密度提高。
在金属支撑框体300a中,致密金属体201a和多孔金属体100a可以为圆形结构和方形结构或者其他形状(以纵截面轮廓的形状记)。如图5至图6中,表示的均为沿金属支撑框体300a的厚度方向(或金属支撑体300b的厚度方向)的横截面,而上述的纵截面是与前述横截面垂直的平面。
此外,致密金属体201a的纵截面面积可以被限制为1至400平方厘米,例如,可以为1平方厘米、5平方厘米、10平方厘米、20平方厘米、30平方厘米、40平方厘米、50平方厘米、60平方厘米、70平方厘米、80平方厘米、90平方厘米、100平方厘米、150平方厘米、160平方厘米、200平 方厘米、210平方厘米、250平方厘米、280平方厘米、300平方厘米、350平方厘米、380平方厘米、400平方厘米或者上述任意两个数值之间形成的范围值之间的任意数值。即与前述的金属支撑框体300a具有大致相当的纵截面面积。但是一般地,在金属支撑框体300a中,致密金属体201a的纵截面面积通常是大于多孔金属体100a的纵截面面积。
为了方便本领域技术人员实施本公开示例方案,以下针对金属支撑框体300a的制作方法进行详述。
总体上而言,金属支撑框体300a的制作方法包括通过增材制造的方式逐层制作致密金属体201a和多孔金属体100a。例如,通过对上述设计的金属支撑框体300a进行三维建模,获得其三维模型,然后将模型通过软件处理为增材制造设备所需的文件。然后利用增材制造设备,装配原料和工作气体等等,并设置打印参数,进行打印制作。
一些示例中,根据打印材料的不同,上述的增材制造可以是结合激光/电子束,或者其他增材制造工艺所采用的方法,的增材制造方案。其中激光/电子束的选择主要根据扫描的速度、材料的熔点、目标打印产品的尺寸和规格、打印层的厚度等等而确定,并无特别的限定。
如前述,在金属支撑框体300a中,包括致密金属体201a和多孔金属体100a。其中,致密金属体201a可以作为整个固体氧化物燃料电池/电解池400(当然包括多孔金属体)的支撑结构;同时,多孔金属体100a也相应可以作为固体氧化物燃料电池/电解池400中的电池/电解池功能层401(阳极-电解质-阴极)的支撑结构,并且其还可以提供用以作为上述电池/电解池功能层401提供燃料的途径通道(如燃料通道202)。
因此,致密金属体201a和多孔金属体100a在形状、材料和微观结构可以存在区别。并且这可以通过对激光/电子束辅助的增材制造的参数选择而实现。此外,在制作金属支撑框体300a还应当考虑其与电池/电解池功能层401的热膨胀系数匹配,以防止金属支撑框体300a和电池/电解池功能层401 因热膨胀系数的差异而在工作时因产生的热的累积或不能发散而产生裂纹等问题。
本公开示例中,在增材制造的过程中,控制激光/电子束的扫描间距,以调整打印材料的熔池间距,从而形成致密金属体201a和多孔金属体100a。具体而言,使制作致密金属体201a的扫描间距小于制作多孔金属体的扫描间距。因此,当扫描间距较大时,相邻的熔池间距更大,从而形成孔洞,以达到制作多孔结构。相应地,当扫描间距较小时,相邻的熔池彼此紧邻(无间隙)或者间隙较小,从而形成致密结构。优选地,制作致密金属体201a的扫描间距为0.05至0.15mm,或者0.05至0.10mm;而制作多孔金属体100a的扫描间距为0.1至0.5mm,或者0.2至0.4mm。
除此之外,在进行增材制造操作的过程中,还可以对激光/电子束功率进行有选择性的控制。
例如,制作致密金属体201a的激光/电子束功率大于等于制作多孔金属体的激光/电子束功率。示例性地,制作致密金属体201a的激光/电子束功率100至400W;制作多孔金属体的激光/电子束功率为50至250W。
进一步地,如前述,在制作上述的多孔金属体100a或金属支撑框体300a的基础上,还可以获得固体氧化物燃料电池/电解池400。更进一步地,示例中还提出了一种电堆,其包括多个固体氧化物燃料电池/电解池400,且各个固体氧化物燃料电池/电解池400独立配置并串联连接。
在上述的固体氧化物燃料电池/电解池400中,其包括电池/电解池功能层401和金属支撑框体300a(当然也包括多孔金属体100a或多孔金属体100b),能够实现自密封性(这可以通过在制作电池/电解池功能层401中的后续提及的电解质层4012后实现),从而有助于简化制作工艺。
其中,电池/电解池功能层401包括依次层叠的阳极层或阴极层4013、电解质层4012以及阴极层或阳极层4011。形成所述电池/电解池功能层的方法包括:热喷涂、流延成型、丝网印刷或化学气相沉积方法中的任意一 种。具体地,电池/电解池功能层401的制备包括:通过热喷涂、流延成型、丝网印刷或者化学气相沉积方式在使用增材制造方式制作的金属支撑框体300a上涂覆例如陶瓷材料,从而分别制作电池/电解池功能层401中的各层。
并且,电池/电解池功能层401是以层叠的方式结合于多孔金属体100a或金属支撑框体300a之上。在本公开图示结构中,如图7所示,电池/电解池功能层401是以阳极层或阴极层4013与金属支撑框体300a中的多孔金属体100a直接地接触。其中,为了促进阳极层或阴极层4013在多孔金属体100a上的制作和牢固结合,还可以在固体氧化物燃料电池/电解池400中配置过渡层(图未绘示)。过渡层形成设置于所述多孔区和所述电池/电解池功能层之间,具体地,过渡层作为多孔金属体和阳极层或阴极层4013之间的过渡结构,因此其是直接地形成于多孔金属体100a或金属支撑框体300a之上。
以上结构由图7所示的单面的固体氧化物燃料电池/电解池400所公开。即在金属支撑框体300a的厚度方向的一侧具有多孔金属体,并在其上对应设置电池/电解池功能层401。在另一些示例中,金属支撑框体300b的厚度方向相对的两侧分别为多孔金属体100a,相应地,分别在两个多孔金属体100a上制作电池/电解池功能层401。同时,作为燃料的注入通道,在金属支撑体300b的两侧均具有燃料通道202,如图8所示。其中的致密金属体201b的两侧均具有燃料通道202,结构如图4所示。在这样的固体氧化物燃料电池/电解池500中,电池/电解池功能层401的数量为两个,且通过共用的致密金属体201b对称分布成型为一体。
在上述图示结构中,金属支撑框体300a的致密金属体201a具有更大的纵截面面积,而多孔金属体、电池/电解池功能层401的纵截面面积则相对更小。且大体上,多孔金属体、阳极层或阴极层4013和阴极层或阳极层4011具有大体上一致的纵截面面积。因此,沿金属支撑框体300a的厚度方向而言,阳极、阴极和多孔金属体的投影大致重合。而电解质层4012具有略大 于阳极层或阴极层4013的纵截面面积,从而使得电解质层4012的周缘是凸出到阳极层或阴极层4013的周缘之外的,并且还能够对金属支撑框体300a起到密封。
在进一步的研究中,基于上述方案制作的金属支撑型自密封固体氧化物燃料电池/电解池,在部分示例中,其工作条件和输出功率等存在波动。发明人认为,这可能是由于电池的燃料输送稳定性变差所导致的。
进一步的研究中,发明人意外地发现,这是来自于金属支撑框体(或称金属支撑体)中的燃料通道的形变,而引起其中的燃料流量或正常输送发生波动。对此进行分析和实验确认,这与多孔金属体、致密金属体以及其中的燃料通道尺寸相关联。
例如,由于多孔金属体覆盖在致密金属体上,因此,多孔金属体是悬空在致密金属体的燃料通道上。多孔金属体被致密金属体所支撑。当其不能够提供稳定的支撑时,会导致多孔金属体向燃料通道内凹陷,从而改变燃料通道的形状和截面积,从而影响燃料通道内燃料的流量。并且这样改变是逐渐产生的,即在电池使用一段时间后发生,因此,并不能预先发现。
此外,由于多孔金属体的坍塌会导致其中的孔隙结构和形状发生改变,从而进一步劣化燃料的顺利传输。
有鉴于此,在本公开的部分示例中选择对电池的结构尺寸进行控制,以提高其结构稳定性。在图5所示的金属支撑框体中,燃料流道具有多个隔离壁(图示结构中为四个)、相邻两者限定为一个子流道,即该燃料通道具有五个子流道。
参阅图1至图4,在这样的结构中,子流道的宽度D2为0.5-10毫米,例如为0.5毫米、12毫米、3毫米、4毫米、5毫米、6毫米、7毫米、8毫米、9毫米、10毫米以及上述任意点值之间形成的范围值内的任意数值,隔离壁D3的厚度为不小于0.1毫米。同时,致密金属体的厚度D4不小于0.3毫米,致密金属体的最厚部分的厚度D6不小2毫米,多孔金属体D1 的厚度不小于0.1毫米。进一步地,当电池/电解池功能层的数量为两个(如图6所示),金属支撑框体201b具有由分隔壁间隔开的两个独立的燃料流道,且分隔壁的厚度D5不小于0.2毫米。发明人发现在上述的结构尺寸范围内,才能比较好地达到制作的电池结构,不塌陷、有足够的支撑力。
以下结合实施例对本公开作进一步的详细描述。
实施例1
以SS430为制作材料,进行基于增材制造的金属支撑自密封固体氧化物燃料电池/电解池的说明。
1.首先采用三维制图软件对金属支撑框体包含的多孔金属体、致密金属体和燃料流道进行三维建模。
2.将三维建模完成的金属支撑框体模型导出,并利用切片软件对三维模型进行切片处理。切片完毕后,导入增材制造设备所自带的参数编辑软件中。
3.在增材制造设备的参数编辑软件中,对多孔金属体和致密金属体进行激光/电子束参数的编辑和设置。其中致密金属板的激光/电子束扫描间距较多孔金属体小,激光/电子束功率较多孔金属体大。致密金属板的扫描间距为0.1mm,功率为150W,扫描速度为700mm/s。多孔金属体的扫描间距为0.25mm,功率为250W,扫描速度为1400mm/s。
4.激光/电子束参数设置完毕后,对增材制造的基板的预热温度、设备的铺粉速度、保护气的压力等进行设置。本实施例中材料SS430,预热温度选择80℃,设备的铺粉速度为100mm/s,保护气的压强为0.65bar(巴)。
5.设置参数完毕后,导入增材制造机进行打印。
打印完毕后致密金属体成型为致密的实体结构,而多孔金属体由于激光/电子束扫描间距较大,相邻熔池存在间距,因而形成多孔区。
6.对所述金属支撑体表面进行喷砂、粗化或清洗处理。采用热喷涂、流延成型、丝网印刷或者化学气相沉积方法依次在金属支撑上制备阳极、电 解质和阴极或阴极、电解质以及阳极,利用电解质的致密结构实现固体氧化物燃料电池/电解池的自密封。
以上所述仅为本公开的优选实施例而已,并不用于限制本公开,对于本领域的技术人员来说,本公开可以有各种更改和变化。凡在本公开的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本公开的保护范围之内。
工业实用性:
本公开提供的固体氧化物燃料电池/电解池通过增材制作工艺能够一步或多步成型起到支撑作用的金属支撑框体,继而使得该金属支撑框体的结构功能一体化,无须再额外封装,且一体成型的金属支撑框体设计紧凑、质量能量密度高。同时,采用增材制备工艺属于常温成型,无需采用钻孔、焊接、封装、粉末冶金、高温烧结工艺,简化了固体氧化物燃料电池/电解池电化学转换器的金属支撑框体的制造过程,具有明显的效率高、成本低、可靠性高等优势。

Claims (29)

  1. 一种基于增材制造制备的固体氧化物燃料电池/电解池,包括金属支撑框体和电池/电解池功能层,所述金属支撑框体包括致密区和多孔区,其特征在于,所述金属支撑框体的致密区和多孔区为增材制造一体化成形,所述致密区具有燃料流道且不具有氧气气道。
  2. 如权利要求1所述的基于增材制造制备的固体氧化物燃料电池/电解池,其特征在于,所述燃料电池/电解池是自密封的电池或电解池。
  3. 如权利要求1所述的基于增材制造制备的固体氧化物燃料电池/电解池,其特征在于,所述致密区不具有空气气道。
  4. 如权利要求1所述的基于增材制造制备的固体氧化物燃料电池/电解池,其特征在于,所述燃料流道被所述多孔区覆盖。
  5. 如权利要求1-4任一项所述的基于增材制造制备的固体氧化物燃料电池/电解池,其特征在于,所述燃料流道具有多个隔离壁,相邻两个所述隔离壁之间的通道为子流道。
  6. 根据权利要求3所述的基于增材制造制备的固体氧化物燃料电池/电解池,其特征在于,所述子流道的宽度为0.5-10毫米,所述隔离壁的厚度不小于0.1毫米,所述致密区的厚度不小于0.3毫米,所述多孔区的厚度不小于0.1毫米。
  7. 根据权利要求1-6中任意一项所述的基于增材制造制备的固体氧化物燃料电池/电解池,其特征在于,电池/电解池功能层的数量为两个,且两者通过共用的所述金属支撑框体对称分布且一体成型。
  8. 根据权利要求7所述的基于增材制造制备的固体氧化物燃料电池/电解池,其特征在于,所述致密区在所述电池/电解池功能层的叠层方向具有由分隔壁间隔开的两个独立的燃料流道,所述分隔壁的厚度不小于0.2毫米。
  9. 根据权利要求1-8任一项所述的基于增材制造制备的固体氧化物燃料电池/电解池,其特征在于,所述电池/电解池功能层具有逐层叠置的阳极层、电解质层以及阴极层或者所述电池/电解池功能成具有逐层叠置的阴极层、电解质层以及阳极层,所述电池/电解池功能层以层叠的方式结合于所述多孔区之上,且所述电解质层的边缘延伸并覆盖所述多孔区与所述致密区的结合处。
  10. 根据权利要求1-9任一项所述的基于增材制造制备的固体氧化物燃料电池/电解池,其特征在于,所述燃料电池/电解池包括过渡层,所述过渡层设置于所述多孔区和所述电池/电解池功能层之间。
  11. 根据权利要求1-10任一项所述的基于增材制造制备的固体氧化物燃料电池/电解池,其特征在于,所述固体氧化物燃料电池/电解池化学转换器为平板状结构或扁管状结构。
  12. 根据权利要求1-11任一项所述的基于增材制造制备的固体氧化物燃料电池/电解池,其特征在于,在所述多孔区中,孔隙尺寸为10至150微米,孔隙率为10%~60%。
  13. 根据权利要求12所述的基于增材制造制备的固体氧化物燃料电池/电解池,其特征在于,所述孔隙为直通孔或梯型通孔。
  14. 根据权利要求13所述的基于增材制造制备的固体氧化物燃料电池/电解池,其特征在于,所述直通孔为圆柱孔或棱柱孔。
  15. 根据权利要求1-14任一项所述的基于增材制造制备的固体氧化物燃料电池/电解池,其特征在于,所述致密区的纵截面轮廓形状为圆形或方形。
  16. 根据权利要求1-15任一项所述的基于增材制造制备的固体氧化物燃料电池/电解池,其特征在于,所述致密区的纵截面的面积为1至400平方厘米。
  17. 根据权利要求1-16任一项所述的基于增材制造制备的固体氧化物燃 料电池/电解池,其特征在于,所述致密区的制作材料选自包括由Fe基合金、Ni基合金、Co基合金和Cr基合金组成的组中的任意一种。
  18. 根据权利要求1-17任一项所述的基于增材制造制备的固体氧化物燃料电池/电解池,其特征在于,所述致密区的制作材料为Fe-30Cr、Fe-26Cr、Fe-22Cr、SS430、Ni和Hastelloy X中的任意一种。
  19. 根据权利要求1-18任一项所述的基于增材制造制备的固体氧化物燃料电池/电解池,其特征在于,
    所述多孔区的纵截面轮廓形状为圆形或方形。
  20. 根据权利要求1-19任一项所述的基于增材制造制备的固体氧化物燃料电池/电解池,其特征在于,所述多孔区的纵截面的面积为1至400平方厘米。
  21. 根据权利要求1-20任一项所述的基于增材制造制备的固体氧化物燃料电池/电解池,其特征在于,所述多孔区的制作材料包括Fe基合金、Ni基合金、Co基合金或Cr基合金。
  22. 根据权利要求1-21任一项所述的基于增材制造制备的固体氧化物燃料电池/电解池,其特征在于,所述制作材料是金属粉末且粒径为5至150微米。
  23. 根据权利要求1-22任一项所述的基于增材制造制备的固体氧化物燃料电池/电解池,其特征在于,所述多孔区的制作材料为Fe-30Cr、Fe-26Cr、Fe-22Cr、SS430、Ni和Hastelloy X中的任意一种。
  24. 一种权利要求1-23任一项所述的基于增材制造制备的固体氧化物燃料电池/电解池的制作方法,其特征在于,所述制作方法包括:
    采用增材制作工艺,通过一体成型制作具有复合结构的金属支撑框体,其中,所述金属支撑框体包括致密区和多孔区,其中所述致密区具有燃料流道却不具有氧气气道;而后在所述多孔区上制作电池/电解池功能层。
  25. 根据权利要求24所述的制作方法,其特征在于,形成所述电池/电 解池功能层的方法包括:热喷涂、流延成型、丝网印刷或化学气相沉积方法中的任意一种。
  26. 根据权利要求25所述的制作方法,其特征在于,所述增材制造包括:控制激光/电子束的扫描间距和功率,使制作致密区的扫描间距小于制作多孔区的扫描间距、制作所述致密区的功率大于等于制作多孔区的功率,以调整打印材料的熔池间距,从而分别形成所述致密区和所述多孔区。
  27. 根据权利要求24所述的制作方法,其特征在于,所述增材制造包括如下一项或多项限定:
    第一限定:制作所述致密区的扫描间距为0.05至0.15mm;
    第二限定:制作所述致密区的扫描速度为300-2000mm/s;
    第三限定:制作所述致密区的激光/电子束的功率为100至400W;
    第四限定:制作所述多孔区的扫描间距为0.1至0.5mm;
    第五限定:制作所述多孔区的扫描速度为500-1500mm/s;
    第六限定:制作所述多孔区的激光/电子束的功率为50至250W。
  28. 根据权利要求24-26任一项所述的制作方法,其特征在于,在制备所述电池/电解池功能层前,对所述金属支撑框体表面进行喷砂、粗化或清洗处理。
  29. 一种固体氧化物燃料电堆,其特征在于,包括多个如权利要求1至23中任意一项所述的基于增材制造制备的固体氧化物燃料电池/电解池或权利要求24-28任一项所述的基于增材制造制备的固体氧化物燃料电池/电解池的制作方法制备得到的固体氧化物燃料电池/电解池,且各个固体氧化物燃料电池/电解池独立配置并通过串联或并联连接。
PCT/CN2020/133641 2020-10-16 2020-12-03 基于增材制造制备的固体氧化物燃料电池/电解池及电堆 WO2022077729A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/637,970 US11502320B2 (en) 2020-10-16 2020-12-03 Solid oxide fuel cell/electrolytic cell and electric stack prepared based on additive manufacturing

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011112244.0 2020-10-16
CN202011112244.0A CN112242546B (zh) 2020-10-16 2020-10-16 基于增材制造的金属支撑型自密封固体氧化物燃料电池/电解池及电堆

Publications (1)

Publication Number Publication Date
WO2022077729A1 true WO2022077729A1 (zh) 2022-04-21

Family

ID=74168872

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/133641 WO2022077729A1 (zh) 2020-10-16 2020-12-03 基于增材制造制备的固体氧化物燃料电池/电解池及电堆

Country Status (3)

Country Link
US (1) US11502320B2 (zh)
CN (1) CN112242546B (zh)
WO (1) WO2022077729A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114744221A (zh) * 2022-04-22 2022-07-12 季华实验室 多孔阳极层结构及其制备方法、燃料电池

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112952170A (zh) * 2021-02-09 2021-06-11 广东省科学院新材料研究所 一种燃料电池/电解池多孔金属支撑体及其增材制备方法
CN113067004B (zh) * 2021-03-19 2022-07-19 东睦新材料集团股份有限公司 一种用于燃料电池的金属支撑板的制备方法
CN113097552B (zh) * 2021-04-06 2023-05-05 广东省科学院新材料研究所 一种连接板及固体氧化物燃料电池/电解池电堆
CN113328113B (zh) * 2021-05-28 2022-07-12 广东省科学院新材料研究所 一种固体氧化物燃料电池/电解池连接体的制备方法
CN113948748A (zh) * 2021-10-14 2022-01-18 广东省科学院新材料研究所 一种连接板和固体氧化物燃料电池/电解池电堆
CN114976101B (zh) * 2022-05-26 2024-07-05 西安交通大学 一端密封陶瓷扁管支撑型固体氧化物燃料电池/电解池以及电池堆结构
CN115458765B (zh) * 2022-11-09 2023-01-31 武汉氢能与燃料电池产业技术研究院有限公司 一种金属空心支撑型固体氧化物燃料电池电堆及发电模块
CN115763869B (zh) * 2022-12-16 2024-04-16 广东省科学院新材料研究所 一种用于固体氧化物燃料电池或电解池的支撑连接体及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1588682A (zh) * 2004-10-15 2005-03-02 华中科技大学 平板式固体氧化物燃料电池
CN102623732A (zh) * 2012-03-28 2012-08-01 郭丰亮 玄武岩纤维增强的陶瓷材料涂层的固体氧化物燃料电池
CN105470529A (zh) * 2015-12-03 2016-04-06 苏州攀特电陶科技股份有限公司 一种固体氧化物燃料电池电极及其制备方法和基于其的固体氧化物燃料电池
CN106374120A (zh) * 2016-11-02 2017-02-01 西安交通大学 一种自密封平板状固体氧化物燃料电池/电解池的结构
US20200144647A1 (en) * 2018-11-06 2020-05-07 Utility Global, Inc. Method and System for Making a Fuel Cell
CN111403767A (zh) * 2020-03-31 2020-07-10 西安交通大学 固体氧化物燃料电池/电解池及电池堆结构

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1588682A (zh) * 2004-10-15 2005-03-02 华中科技大学 平板式固体氧化物燃料电池
CN102623732A (zh) * 2012-03-28 2012-08-01 郭丰亮 玄武岩纤维增强的陶瓷材料涂层的固体氧化物燃料电池
CN105470529A (zh) * 2015-12-03 2016-04-06 苏州攀特电陶科技股份有限公司 一种固体氧化物燃料电池电极及其制备方法和基于其的固体氧化物燃料电池
CN106374120A (zh) * 2016-11-02 2017-02-01 西安交通大学 一种自密封平板状固体氧化物燃料电池/电解池的结构
US20200144647A1 (en) * 2018-11-06 2020-05-07 Utility Global, Inc. Method and System for Making a Fuel Cell
CN111403767A (zh) * 2020-03-31 2020-07-10 西安交通大学 固体氧化物燃料电池/电解池及电池堆结构

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114744221A (zh) * 2022-04-22 2022-07-12 季华实验室 多孔阳极层结构及其制备方法、燃料电池

Also Published As

Publication number Publication date
US20220271317A1 (en) 2022-08-25
US11502320B2 (en) 2022-11-15
CN112242546A (zh) 2021-01-19
CN112242546B (zh) 2021-10-01

Similar Documents

Publication Publication Date Title
WO2022077729A1 (zh) 基于增材制造制备的固体氧化物燃料电池/电解池及电堆
US8486580B2 (en) Integrated seal for high-temperature electrochemical device
JP4811622B2 (ja) 固体電解質型燃料電池
JP4899324B2 (ja) 固体酸化物形燃料電池及びその製造方法
JP2004529477A (ja) 燃料電池およびその製造方法
US7632593B2 (en) Bipolar plate supported solid oxide fuel cell with a sealed anode compartment
WO2009096624A1 (en) Electrode supports and monolith type unit cells for solid oxide fuel cells and their manufacturing methods
JP6199697B2 (ja) セパレータ付燃料電池単セル,燃料電池スタック,およびその製造方法
US20130040223A1 (en) Fuel cell
JP2001196069A (ja) 燃料電池
US20150024299A1 (en) Unit cell for solid-oxide fuel cell and solid-oxide fuel cell using same
KR100776299B1 (ko) 고체 산화물형 연료 전지의 단위 셀을 제조하는 방법
WO2024125205A1 (zh) 一种用于固体氧化物燃料电池或电解池的支撑连接体及其制备方法
KR101628653B1 (ko) 고체산화물 연료전지용 분리판, 이를 포함하는 고체산화물 연료전지 및 그 제조방법
JP4876363B2 (ja) 集電体とその製造方法及び固体酸化物型燃料電池
CN101682045B (zh) 热机械稳定的固体氧化物燃料电池装置组合件
CN113097552B (zh) 一种连接板及固体氧化物燃料电池/电解池电堆
JP4512911B2 (ja) 固体電解質型燃料電池
KR102030981B1 (ko) 금속지지체식 고체산화물 연료전지 및 그 제조방법
JP2002358996A (ja) 平板積層型燃料電池のマニホールド構造
JP6180628B2 (ja) 多孔質のガス誘導チャネル層を備えた高温型単電池
KR101353691B1 (ko) 금속 지지체형 고체 산화물 연료전지 및 그 제조방법
WO2010103269A1 (en) A fuel cell system
CN101459253A (zh) 一种大面积熔融碳酸盐燃料电池
KR101606161B1 (ko) 관형 금속 지지체 기반의 고체산화물 연료전지 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20957503

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20957503

Country of ref document: EP

Kind code of ref document: A1