WO2022077569A1 - 一种用于超导电缆的双端逆流制冷系统 - Google Patents

一种用于超导电缆的双端逆流制冷系统 Download PDF

Info

Publication number
WO2022077569A1
WO2022077569A1 PCT/CN2020/124509 CN2020124509W WO2022077569A1 WO 2022077569 A1 WO2022077569 A1 WO 2022077569A1 CN 2020124509 W CN2020124509 W CN 2020124509W WO 2022077569 A1 WO2022077569 A1 WO 2022077569A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid nitrogen
refrigeration system
channel
liquid
cooling
Prior art date
Application number
PCT/CN2020/124509
Other languages
English (en)
French (fr)
Inventor
吴小辰
胡子珩
章彬
汪桢子
汪伟
巩俊强
李健伟
Original Assignee
深圳供电局有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳供电局有限公司 filed Critical 深圳供电局有限公司
Publication of WO2022077569A1 publication Critical patent/WO2022077569A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B12/00Superconductive or hyperconductive conductors, cables, or transmission lines
    • H01B12/16Superconductive or hyperconductive conductors, cables, or transmission lines characterised by cooling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Definitions

  • the invention relates to the technical field of superconducting cables, in particular to a double-ended countercurrent refrigeration system for superconducting cables.
  • High-temperature superconducting cable system is a kind of power facility that uses unimpeded superconducting material that can transmit high current density as conductor and can transmit large current. It has the advantages of small size, light weight, low loss and large transmission capacity. Realize low-loss, high-efficiency, large-capacity power transmission.
  • the high temperature superconducting cable system will first be applied to the occasions of short-distance transmission of power (such as generators to transformers, substations to substations, underground substations to urban power grid ports) and short-distance transmission of large currents such as electroplating plants, power plants and substations. occasions, as well as occasions for power transmission in large or very large cities. Since the critical temperature of superconductors is generally below 20K, superconducting cables generally run in liquid helium at 4.2K.
  • the present invention aims to provide a double-ended countercurrent refrigeration system for superconducting cables, the refrigeration system has a simple structure and can make the superconducting cables operate in a suitable liquid helium temperature region.
  • an embodiment of the present invention proposes a double-ended countercurrent refrigeration system for a superconducting cable, the superconducting cable comprising a low-temperature Dewar tube and a current-carrying conductor disposed in an inner cavity of the low-temperature Dewar tube;
  • the first liquid nitrogen channel is arranged in the inner cavity of the current-carrying conductor
  • the second liquid nitrogen channel is arranged between the low-temperature Dewar tube and the current-carrying conductor; wherein, the first liquid nitrogen channel and the second liquid nitrogen channel are in communication with a position close to one end of the superconducting cable ;
  • first refrigeration system disposed at one end of the superconducting cable, the first refrigeration system is connected to the first liquid nitrogen channel through a first cooling pipeline, and is connected to the second liquid nitrogen channel through a second cooling pipeline;
  • a second refrigeration system disposed at one end of the superconducting cable, the second refrigeration system is connected to the first liquid nitrogen channel through a third cooling pipeline, and is connected to the second liquid nitrogen channel through a fourth cooling pipeline;
  • the first refrigeration system sends liquid nitrogen into the first liquid nitrogen channel through the first cooling pipeline, and the liquid nitrogen flows through the first liquid nitrogen channel and the third cooling pipeline before being sent into the The second refrigeration system performs refrigeration. After refrigeration, the liquid nitrogen is sent into the second liquid nitrogen channel through the fourth cooling pipeline, and then flows back to the first refrigeration system through the second liquid nitrogen channel and the second cooling pipeline. refrigeration.
  • the current-carrying conductor is a hollow cylindrical structure, which is wound with a flexible skeleton, a first insulating layer, a phase A superconducting layer, a second insulating layer, a phase B superconducting layer, and a third insulating layer in turn from the inside out. layer, C-phase superconducting layer, shielding layer, fifth insulating layer, protective layer;
  • the system further includes: a third liquid nitrogen channel disposed between the B-phase superconducting layer and the second insulating layer, and a fourth liquid nitrogen channel disposed between the B-phase superconducting layer and the third insulating layer nitrogen channel;
  • the first refrigeration system is connected with the third liquid nitrogen channel through a fifth cooling pipeline, and is connected with the fourth liquid nitrogen channel through a sixth cooling pipeline;
  • the second refrigeration system is connected with the third liquid nitrogen passage through the seventh cooling pipe, and is connected with the fourth liquid nitrogen passage through the eighth cooling pipe;
  • the first refrigeration system sends liquid nitrogen into the third liquid nitrogen channel through the fifth cooling pipeline, and the liquid nitrogen flows through the third liquid nitrogen channel and the seventh cooling pipeline and then is sent into the third liquid nitrogen channel.
  • the second refrigeration system performs refrigeration. After refrigeration, the liquid nitrogen is sent into the fourth liquid nitrogen channel through the eighth cooling pipeline, and then flows back to the first refrigeration system through the fourth liquid nitrogen channel and the sixth cooling pipeline. refrigeration.
  • the third liquid nitrogen channel and the fourth liquid nitrogen channel are both microfluidic channels, between the B-phase superconducting layer and the second insulating layer, and between the B-phase superconducting layer and the second insulating layer.
  • a fiber mesh is arranged between the three insulating layers, and the fiber mesh is used to maintain micro-circulation between the B-phase superconducting layer and the second insulating layer, and between the B-phase superconducting layer and the third insulating layer road.
  • the fiber web is wound on the outer wall surface of the second insulating layer and the outer wall surface of the B-phase superconducting layer by spiral winding, respectively.
  • the first refrigeration system includes a first liquid nitrogen tank, a first subcooler, a first cryogenic refrigerator, a first liquid nitrogen pump, and a first pressurizer
  • the first subcooler includes a first subcooler.
  • the second refrigeration system includes a second liquid nitrogen tank, a second subcooler, a second cryogenic refrigerator, a second liquid nitrogen pump, and a second pressurizer, and the second subcooler includes a second shell and a second coil tube arranged in the second shell; liquid nitrogen is stored in the second liquid nitrogen tank; the second liquid nitrogen tank and the second subcooler are connected through a second connecting pipe, The liquid nitrogen is sent to the second shell of the second subcooler; the second coil includes a second liquid inlet and a second liquid outlet;
  • the first liquid outlet is connected with the first cooling pipe, the first liquid inlet is connected with the second cooling pipe; the second liquid inlet is connected with the third cooling pipe, the The second liquid outlet is connected to the fourth cooling pipeline;
  • the first cryogenic refrigerator is used for cooling the liquid nitrogen in the first shell of the first subcooler to a subcooled state, wherein the liquid nitrogen in the subcooled state is used for cooling the liquid nitrogen in the first coil.
  • the nitrogen exchanges heat to realize the cooling of the liquid nitrogen in the first coil;
  • the second cryogenic refrigerator is used for cooling the liquid nitrogen in the second shell of the second subcooler to subcooling state, wherein the liquid nitrogen in the supercooled state is used to exchange heat with the liquid nitrogen in the second coil to achieve cooling of the liquid nitrogen in the second coil;
  • the first liquid nitrogen pump is arranged on the first cooling pipeline, the second liquid nitrogen pump is arranged on the fourth cooling pipeline, and the first liquid nitrogen pump and the second liquid nitrogen pump are used for It is used to provide power for the circulating flow of liquid nitrogen; a third connection pipe is connected between the first connection pipe and the first cooling pipe; the first pressurizer is arranged on the third connection pipe, so A fourth connection pipe is connected between the second connection pipe and the fourth cooling pipe; the second pressurizer is arranged on the fourth connection pipe, the first pressurizer and the second The pressurizer is used to perform secondary pressurization to meet the power demand for circulating liquid nitrogen when the power provided by the first liquid nitrogen pump is insufficient.
  • the first casing is further provided with a third coil, the third coil includes a third liquid inlet and a third liquid outlet, the third liquid outlet and the fifth cooling
  • the pipeline is connected, and the third liquid inlet is connected with the eighth cooling pipeline;
  • the fifth cooling pipeline is provided with a third liquid nitrogen pump, which is used to provide power for the circulating flow of liquid nitrogen;
  • the second casing is also provided with a fourth coil tube, the fourth coil tube includes a fourth liquid inlet and a fourth liquid outlet, and the fourth liquid inlet is connected to the seventh cooling pipe, so The fourth liquid outlet is connected to the eighth cooling pipeline; the eighth cooling pipeline is provided with a fourth liquid nitrogen pump for providing power for the circulating flow of liquid nitrogen.
  • the first cryogenic refrigerator includes at least a first heater and a first vacuum pump; the first subcooler, the first heater and the first vacuum pump are sequentially connected through pipes; the first vacuum pump is used for The nitrogen in the subcooler is pumped away, and the liquid nitrogen in the shell is refrigerated by means of evacuation and decompression refrigeration; the first heater is used to heat the nitrogen before entering the first vacuum pump;
  • the second low-temperature refrigerator includes at least a second heater and a second vacuum pump; the second subcooler, the second heater and the second vacuum pump are sequentially connected through pipes; the second vacuum pump is used to The nitrogen in the cooler is evacuated, and the liquid nitrogen in the shell is refrigerated by means of evacuation and decompression refrigeration; the second heater is used to heat the nitrogen before entering the second vacuum pump.
  • An embodiment of the present invention proposes a double-ended countercurrent refrigeration system for superconducting cables, comprising a first liquid nitrogen channel disposed in an inner cavity of an energized conductor, a first liquid nitrogen channel disposed in the low-temperature Dewar tube and the energized conductor The second liquid nitrogen channel between them and the refrigeration system arranged at one end of the superconducting cable; wherein, the first liquid nitrogen channel communicates with the second liquid nitrogen channel near one end of the superconducting cable;
  • the refrigeration system is connected with the first liquid nitrogen channel through a first cooling pipeline, and is connected with the second liquid nitrogen channel through a second cooling pipeline, so as to provide liquid nitrogen and pass the liquid nitrogen through the first cooling pipeline
  • the pipeline is fed into the first liquid nitrogen channel, and the liquid nitrogen flows through the first liquid nitrogen channel and the second liquid nitrogen channel in sequence, and then flows back to the refrigeration system for refrigeration.
  • the refrigeration system of the embodiment of the present invention has a simple structure and can make the superconducting cable operate in a suitable liquid helium temperature region
  • FIG. 1 is a schematic structural diagram of a double-ended countercurrent refrigeration system for a superconducting cable according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view of an energized conductor of a superconducting cable according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of a fiber web structure according to an embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of a first refrigeration system according to an embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of a second refrigeration system according to an embodiment of the present invention.
  • 1-low temperature Dewar tube 11-first liquid nitrogen channel, 12-second liquid nitrogen channel, 13-third liquid nitrogen channel, 14-fourth liquid nitrogen channel, 2-current conductor, 21- Flexible skeleton, 22-first insulating layer, 23-A-phase superconducting layer, 24-second insulating layer, 25-B-phase superconducting layer, 26-third insulating layer, 27-C-phase superconducting layer, 28- Fourth insulating layer, 29-copper shielding layer, 210-fifth insulating layer, 211-protective layer, 3-first refrigeration system, 31-first liquid nitrogen tank, 321-first shell, 322-first disk Tube, 323-third coil, 331-first heater, 332-first vacuum pump, 341-first liquid nitrogen pump, 342-third liquid nitrogen pump, 35-first pressurizer, 4-second Refrigeration system, 41-second liquid nitrogen tank, 421-second shell, 422-second coil, 423-fourth coil, 431-second heater, 432-second vacuum pump, 441-
  • an embodiment of the present invention proposes a double-ended countercurrent refrigeration system for a superconducting cable.
  • the superconducting cable includes a low-temperature Dewar tube 1 and a low-temperature Dewar tube 1 disposed in the inner cavity of the low-temperature Dewar tube 1 .
  • Conductor 2 includes:
  • the first liquid nitrogen channel 11 is arranged in the inner cavity of the current-carrying conductor 2;
  • the second liquid nitrogen channel 12 is arranged between the low-temperature Dewar tube 1 and the current-carrying conductor 2; wherein, the first liquid nitrogen channel 11 and the second liquid nitrogen channel 12 are close to the superconducting cable The position of one end is connected;
  • the first refrigeration system 3 arranged at one end of the superconducting cable, the first refrigeration system 3 is connected with the first liquid nitrogen channel 11 through a first cooling pipe 301, and is connected with the second liquid nitrogen channel 12 through a first cooling pipe 301.
  • Two cooling pipes 302 are connected;
  • Four cooling pipes 402 are connected;
  • the first refrigeration system 3 sends liquid nitrogen into the first liquid nitrogen channel 11 through the first cooling pipeline 301, and the liquid nitrogen flows through the first liquid nitrogen channel 11 and the third cooling pipeline After 401, it is sent to the second refrigeration system 4 for cooling. After cooling, the liquid nitrogen is sent to the second liquid nitrogen channel 12 through the fourth cooling pipeline 402, and the second liquid nitrogen channel 12 and the second cooling pipeline 302. Then it flows back to the first refrigeration system 3 for refrigeration.
  • the current-carrying conductor 2 is a hollow cylindrical structure, which is wound with a flexible skeleton 21, a first insulating layer 22, a phase A superconducting layer 23, a second insulating layer 24, and a B phase superconducting layer in turn from the inside out.
  • layer 25 third insulating layer 26, C-phase superconducting layer 27, fourth insulating layer 28, shielding layer 29, fifth insulating layer 210, protective layer 211;
  • the system further includes: a third liquid nitrogen channel 13 disposed between the B-phase superconducting layer 25 and the second insulating layer 22 , and a third liquid nitrogen channel 13 disposed between the B-phase superconducting layer 25 and the third insulating layer 26 . the fourth liquid nitrogen channel 14 between;
  • the first refrigeration system 3 is connected with the third liquid nitrogen passage 13 through a fifth cooling pipe 303, and is connected with the fourth liquid nitrogen passage 14 through a sixth cooling pipe 304;
  • the second refrigeration system 4 is connected with the third liquid nitrogen channel 13 through a seventh cooling pipeline 403, and is connected with the fourth liquid nitrogen channel 14 through an eighth cooling pipeline 404;
  • the first refrigeration system 3 sends liquid nitrogen into the third liquid nitrogen channel 13 through the fifth cooling pipeline 303 , and the liquid nitrogen flows through the third liquid nitrogen channel 13 and the seventh cooling pipeline 403 .
  • the liquid nitrogen is sent to the second refrigeration system 4 for cooling.
  • the liquid nitrogen is sent into the fourth liquid nitrogen channel 14 through the eighth cooling pipeline 404 , and passes through the fourth liquid nitrogen channel 14 and the sixth cooling pipeline 304 . Then it flows back to the first refrigeration system 3 for refrigeration.
  • the cooling system includes four liquid nitrogen channels, and the hollow part of the flexible frame constitutes a first liquid nitrogen channel 11 ; between the inner wall surface of the low temperature Dewar tube 1 and the outer wall surface of the protective layer The gap constitutes the second liquid nitrogen channel 12; the gap between the B-phase superconducting layer and the second insulating layer constitutes the third liquid nitrogen channel 13; the gap between the B-phase superconducting layer and the third insulating layer constitutes the fourth liquid nitrogen channel Liquid nitrogen channel 14 ; the first liquid nitrogen channel 11 , the second liquid nitrogen channel 12 , the third liquid nitrogen channel 13 and the fourth liquid nitrogen channel 14 are used for the circulation of liquid nitrogen, so as to cool and cool the energized conductor 2 ;
  • the thermal conduction path of the intermediate B-phase superconducting layer of the superconducting cable is shortened, and its thermal stability can be improved.
  • the third liquid nitrogen channel 13 and the fourth liquid nitrogen channel 14 are both microfluidic channels, between the B-phase superconducting layer and the second insulating layer, and between the B-phase superconducting layer A fiber net is arranged between the third insulating layer and the fiber net is used to maintain the connection between the B-phase superconducting layer and the second insulating layer, and between the B-phase superconducting layer and the third insulating layer. microfluidic channel.
  • a "microfluidic channel” is introduced in the adjacent layer of the B-phase conductor. That is, a “microfluidic channel” is introduced in the middle of the functional layers such as the insulating layer between the A-B phase and the B-C phase through a micro-support structure.
  • the microfluidic channel will be filled with liquid nitrogen after being filled with liquid nitrogen, providing a good low-temperature environment for the B-phase conductor.
  • the surface viscous force is dominant, and the Reynolds number is large, which will not have a significant impact on the macroscopic refrigeration process.
  • the support structure of the microfluidic channel adopts a special fiber mesh, as shown in Figure 3, the mesh, the relative thickness of the warp and weft lines of this fiber mesh are selected based on the CFD calculation results of the microfluidic channel.
  • the fiber web is wound on the outer wall surface of the second insulating layer and the outer wall surface of the B-phase superconducting layer by spiral winding, for example, as shown in FIG. 3 .
  • the first refrigeration system 3 includes a first liquid nitrogen tank 31 , a first subcooler, a first low-temperature refrigerator, a first liquid nitrogen pump 341 , and a first pressurizer 35 .
  • the first subcooler includes a first casing 321 and a first coil 322 disposed in the first casing 321; the first liquid nitrogen tank 31 stores liquid nitrogen; the first liquid nitrogen The tank 31 is connected with the first subcooler through the first connecting pipe 305, and the liquid nitrogen is sent to the first shell 321 of the first subcooler; the first coil 322 includes the first liquid inlet mouth and the first liquid outlet;
  • the second refrigeration system 4 includes a second liquid nitrogen tank 41 , a second subcooler, a second low temperature refrigerator, a second liquid nitrogen pump 441 , and a second pressurizer 45 .
  • the cooler includes a second shell 421 and a second coil 422 disposed in the second shell 421; the second liquid nitrogen tank 41 stores liquid nitrogen; the second liquid nitrogen tank 41 is connected to the The second subcooler is connected through the second connecting pipe 405, and the liquid nitrogen is sent to the second shell 421 of the second subcooler; the second coil 422 includes a second liquid inlet and a second liquid outlet;
  • the first liquid outlet is connected to the first cooling pipe 301 , the first liquid inlet is connected to the second cooling pipe 302 , and the second liquid inlet is connected to the third cooling pipe 401 , the second liquid outlet is connected to the fourth cooling pipe 402;
  • the first cryogenic refrigerator is used to cool the liquid nitrogen in the first shell 321 of the first subcooler to a subcooled state, wherein the liquid nitrogen in the subcooled state is used to cool the liquid nitrogen in the first coil 322 .
  • the liquid nitrogen exchanges heat to achieve cooling of the liquid nitrogen in the first coil 322;
  • the second cryogenic refrigerator is used to cool the liquid nitrogen in the second shell 421 of the second subcooler cooling to a supercooled state, wherein the liquid nitrogen in the supercooled state is used to exchange heat with the liquid nitrogen in the second coil 422 to achieve cooling of the liquid nitrogen in the second coil 422;
  • the first liquid nitrogen pump 341 is arranged on the first cooling pipe 301, the second liquid nitrogen pump 441 is arranged on the fourth cooling pipe 402, the first liquid nitrogen pump 341 and the The second liquid nitrogen pump 441 is used to provide power for the circulating flow of liquid nitrogen; a third connecting pipe 306 is connected between the first connecting pipe 305 and the first cooling pipe 301; the first pressurizer 35 is provided On the third connection pipe 306, a fourth connection pipe 406 is connected between the second connection pipe 405 and the fourth cooling pipe 402; the second pressurizer 45 is arranged on the fourth connection On the pipeline 406, the first pressurizer 35 and the second pressurizer 45 are used to perform secondary pressurization to meet the circulating flow of liquid nitrogen when the power provided by the first liquid nitrogen pump 341 is insufficient power demand.
  • the first casing 321 is further provided with a third coil 323, the third coil 323 includes a third liquid inlet and a third liquid outlet, and the third liquid outlet is connected to the third liquid outlet.
  • the fifth cooling pipe 303 is connected, and the third liquid inlet is connected with the eighth cooling pipe 404; the fifth cooling pipe 303 is provided with a third liquid nitrogen pump 342 for circulating liquid nitrogen provide power;
  • the second casing 421 is also provided with a fourth coil 423, the fourth coil 423 includes a fourth liquid inlet and a fourth liquid outlet, the fourth liquid inlet and the seventh cooling
  • the pipeline 403 is connected, and the fourth liquid outlet is connected with the eighth cooling pipeline 404;
  • the eighth cooling pipeline 404 is provided with a fourth liquid nitrogen pump 442 for providing power for the circulating flow of liquid nitrogen.
  • the first cryogenic refrigerator includes at least a first heater 331 and a first vacuum pump 332; the first subcooler, the first heater 331 and the first vacuum pump 332 are sequentially connected by pipes; A vacuum pump 332 is used to evacuate the nitrogen in the subcooler, and refrigerates the liquid nitrogen in the shell by means of evacuation and decompression refrigeration; the first heater 331 is used to The nitrogen gas before the vacuum pump 332 is heated;
  • the second cryogenic refrigerator includes at least a second heater 431 and a second vacuum pump 432; the second subcooler, the second heater 431 and the second vacuum pump 432 are connected in sequence through pipes; the second vacuum pump 432 is In order to extract the nitrogen in the subcooler, the liquid nitrogen in the shell is refrigerated by means of evacuation and decompression refrigeration; the second heater 431 is used to Heating with nitrogen.
  • evacuation and decompression refrigeration are adopted, and the physical principle is that the decrease in pressure leads to a decrease in the boiling point.
  • the nitrogen above the heat exchanger is continuously pumped away, so that the saturated vapor pressure of the gas-liquid surface is lowered, and the boiling point of the liquid nitrogen is lowered, that is, low-temperature and supercooled liquid nitrogen is obtained.
  • the first heater 331 and the second heater 431 are used to heat the first vacuum pump 332 and the second vacuum pump 432 before entering the first vacuum pump 332 and the second vacuum pump 432 respectively. Since nitrogen is continuously pumped away, liquid nitrogen needs to be replenished in time.
  • Several pressure relief valves can be arranged on the corresponding pipelines as safety measures.
  • a device for storing nitrogen gas may be connected to store the evacuated nitrogen gas.

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Containers, Films, And Cooling For Superconductive Devices (AREA)

Abstract

本发明提供一种用于超导电缆的双端逆流制冷系统,所述超导电缆包括低温杜瓦管以及设置于所述低温杜瓦管的内腔体中的通电导体;包括:第一液氮通道,设置于通电导体的内腔体;第二液氮通道,设置于低温杜瓦管与通电导体之间;其中,第一液氮通道与第二液氮通道靠近超导电缆一端部的位置连通;设置于超导电缆一端的第一制冷系统,设置于超导电缆一端的第二制冷系统,第一制冷系统将液氮通过第一冷却管道送入第一液氮通道,液氮流经第一液氮通道后送入第二制冷系统进行制冷,制冷后液氮送入第二液氮通道,经第二液氮通道后流回第一制冷系统进行制冷。本发明的制冷系统结构简单,能够使得超导电缆在合适的液氦温区中运行。

Description

一种用于超导电缆的双端逆流制冷系统
本申请要求于2020年10月14日提交中国专利局、申请号为202011096573.0、发明名称为“一种用于超导电缆的双端逆流制冷系统”的中国专利申请的优先权,上述专利的全部内容通过引用结合在本申请中。
技术领域
本发明涉及超导电缆技术领域,具体涉及一种用于超导电缆的双端逆流制冷系统。
背景技术
高温超导电缆系统是采用无阻的、能传输高电流密度的超导材料作为导电体并能传输大电流的一种电力设施,具有体积小、重量轻、损耗低和传输容量大的优点,可以实现低损耗、高效率、大容量输电。高温超导电缆系统将首先应用于短距离传输电力的场合(如发电机到变压器、变电中心到变电站、地下变电站到城市电网端口)及电镀厂、发电厂和变电站等短距离传输大电流的场合,以及大型或超大型城市电力传输的场合。由于超导体的临界温度一般在20K以下,故超导电缆一般在4.2K的液氦中运行。
发明内容
本发明旨在提出一种用于超导电缆的双端逆流制冷系统,该制冷系统结构简单,能够使得超导电缆在合适的液氦温区中运行。
为此,本发明实施例提出一种用于超导电缆的双端逆流制冷系统,所述 超导电缆包括低温杜瓦管以及设置于所述低温杜瓦管的内腔体中的通电导体;包括:
第一液氮通道,设置于所述通电导体的内腔体;
第二液氮通道,设置于所述低温杜瓦管与所述通电导体之间;其中,所述第一液氮通道与所述第二液氮通道靠近所述超导电缆一端部的位置连通;
设置于所述超导电缆一端的第一制冷系统,所述第一制冷系统与所述第一液氮通道通过第一冷却管道连接,与所述第二液氮通道通过第二冷却管道连接;
设置于所述超导电缆一端的第二制冷系统,所述第二制冷系统与所述第一液氮通道通过第三冷却管道连接,与所述第二液氮通道通过第四冷却管道连接;
其中,所述第一制冷系统将液氮通过所述第一冷却管道送入所述第一液氮通道,所述液氮流经所述第一液氮通道、第三冷却管道后送入所述第二制冷系统进行制冷,制冷后液氮通过第四冷却管道送入所述第二液氮通道,经所述第二液氮通道、第二冷却管道后流回所述第一制冷系统进行制冷。
可选地,所述通电导体为空心圆柱结构,其由内之外依次绕制有柔性骨架、第一绝缘层、A相超导层、第二绝缘层、B相超导层、第三绝缘层、C相超导层、屏蔽层、第五绝缘层、保护层;
所述系统还包括:设置于所述B相超导层与第二绝缘层之间的第三液氮通道,以及设置于所述B相超导层与第三绝缘层之间的第四液氮通道;
所述第一制冷系统与所述第三液氮通道通过第五冷却管道连接,与所述第四液氮通道通过第六冷却管道连接;
所述第二制冷系统与所述第三液氮通道通过第七冷却管道连接,与所述 第四液氮通道通过第八冷却管道连接;
所述第一制冷系统将液氮通过所述第五冷却管道送入所述第三液氮通道,所述液氮流经所述第三液氮通道、第七冷却管道后送入所述第二制冷系统进行制冷,制冷后液氮通过所述第八冷却管道送入所述第四液氮通道,经所述第四液氮通道、第六冷却管道后流回所述第一制冷系统进行制冷。
可选地,所述第三液氮通道和所述第四液氮通道均为微流通道,所述B相超导层与第二绝缘层之间、以及所述B相超导层与第三绝缘层之间设置有纤维网,所述纤维网用于维持所述B相超导层与第二绝缘层之间、以及所述B相超导层与第三绝缘层之间的微流通道。
可选地,所述纤维网分别通过螺旋绕制的方式绕制在所述第二绝缘层的外壁面以及所述B相超导层的外壁面上。
可选地,所述第一制冷系统包括第一液氮罐、第一过冷器、第一低温制冷机、第一液氮泵、第一加压器,所述第一过冷器包括第一壳体以及设置于所述第一壳体中的第一盘管;所述第一液氮罐内存储有液氮;所述第一液氮罐与所述第一过冷器通过第一连接管道连接,将液氮送至所述第一过冷器的第一壳体中;所述第一盘管包括第一进液口与第一出液口;
所述第二制冷系统包括第二液氮罐、第二过冷器、第二低温制冷机、第二液氮泵、第二加压器,所述第二过冷器包括第二壳体以及设置于所述第二壳体中的第二盘管;所述第二液氮罐内存储有液氮;所述第二液氮罐与所述第二过冷器通过第二连接管道连接,将液氮送至所述第二过冷器的第二壳体中;所述第二盘管包括第二进液口与第二出液口;
所述第一出液口与所述第一冷却管道连接,所述第一进液口与所述第二冷却管道连接;所述第二进液口与所述第三冷却管道连接,所述第二出液口 与所述第四冷却管道连接;
所述第一低温制冷机用于对所述第一过冷器的第一壳体中的液氮进行冷却至过冷状态,其中过冷状态的液氮用于对第一盘管中的液氮进行热量交互以实现对所述第一盘管内的液氮的冷却;所述第二低温制冷机用于对所述第二过冷器的第二壳体中的液氮进行冷却至过冷状态,其中过冷状态的液氮用于对第二盘管中的液氮进行热量交互以实现对所述第二盘管内的液氮的冷却;
所述第一液氮泵设置于所述第一冷却管道上,所述第二液氮泵设置于所述第四冷却管道上,所述第一液氮泵和所述第二液氮泵用于为液氮的循环流动提供动力;所述第一连接管道与所述第一冷却管道之间连接有第三连接管道;所述第一加压器设置于所述第三连接管道上,所述第二连接管道与所述第四冷却管道之间连接有第四连接管道;所述第二加压器设置于所述第四连接管道上,所述第一加压器和所述第二加压器用于在所述第一液氮泵所提供的动力不足时,进行二次加压以满足液氮循环流动的动力需求。
可选地,所述第一壳体内还设置有第三盘管,所述第三盘管包括第三进液口与第三出液口,所述第三出液口与所述第五冷却管道连接,所述第三进液口与所述第八冷却管道连接;所述第五冷却管道上设置有第三液氮泵,用于为液氮的循环流动提供动力;
所述第二壳体内还设置有第四盘管,所述第四盘管包括第四进液口与第四出液口,所述第四进液口与所述第七冷却管道连接,所述第四出液口与所述第八冷却管道连接;所述第八冷却管道上设置有第四液氮泵,用于为液氮的循环流动提供动力。
可选地,所述第一低温制冷机至少包括第一加热器、第一真空泵;所述 第一过冷器、第一加热器以及第一真空泵依次通过管道连接;所述第一真空泵用于将所述过冷器中的氮气抽走,利用抽空减压制冷方式对所述壳体中的液氮进行制冷;所述第一加热器用于对进入所述第一真空泵之前的氮气进行加热;
所述第二低温制冷机至少包括第二加热器、第二真空泵;所述第二过冷器、第二加热器以及第二真空泵依次通过管道连接;所述第二真空泵用于将所述过冷器中的氮气抽走,利用抽空减压制冷方式对所述壳体中的液氮进行制冷;所述第二加热器用于对进入所述第二真空泵之前的氮气进行加热。
本发明的实施例提出一种用于超导电缆的双端逆流制冷系统,包括设置于通电导体的内腔体中的第一液氮通道、设置于所述低温杜瓦管与所述通电导体之间的第二液氮通道以及设置于所述超导电缆一端的制冷系统;其中,所述第一液氮通道与所述第二液氮通道靠近所述超导电缆一端部的位置连通;制冷系统与所述第一液氮通道通过第一冷却管道连接,与所述第二液氮通道通过第二冷却管道连接,用于提供液氮,并将所述液氮通过所述第一冷却管道送入所述第一液氮通道,所述液氮依次流经所述第一液氮通道、所述第二液氮通道后流回所述制冷系统进行制冷。本发明实施例的制冷系统结构简单,能够使得超导电缆在合适的液氦温区中运行。
本发明的其它特征和优点将在随后的具体实施方式中阐述。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲, 在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例的用于超导电缆的双端逆流制冷系统结构示意图。
图2为本发明实施例的超导电缆通电导体剖视图。
图3为本发明实施例的纤维网结构示意图。
图4为本发明实施例的第一制冷系统结构示意图。
图5为本发明实施例的第二制冷系统结构示意图。
图中标记:1-低温杜瓦管,11-第一液氮通道,12-第二液氮通道,13-第三液氮通道,14-第四液氮通道,2-通电导体,21-柔性骨架,22-第一绝缘层,23-A相超导层,24-第二绝缘层,25-B相超导层,26-第三绝缘层,27-C相超导层,28-第四绝缘层,29-铜屏蔽层,210-第五绝缘层,211-保护层,3-第一制冷系统,31-第一液氮罐,321-第一壳体,322-第一盘管,323-第三盘管,331-第一加热器,332-第一真空泵,341-第一液氮泵,342-第三液氮泵,35-第一加压器,4-第二制冷系统,41-第二液氮罐,421-第二壳体,422-第二盘管,423-第四盘管,431-第二加热器,432-第二真空泵,441-第二液氮泵,442-第四液氮泵,45-第二加压器;301-第一冷却管道,302-第二冷却管道,303-第五冷却管道,304-第六冷却管道,401-第三冷却管道,402-第四冷却管道,403-第七冷却管道,404-第八冷却管道,305-第一连接管道,306-第三连接管道,405-第二连接管道,406-第四连接管道。
具体实施方式
以下将参考附图详细说明本公开的各种示例性实施例、特征和方面。附图中相同的附图标记表示功能相同或相似的元件。尽管在附图中示出了实施例的各种方面,但是除非特别指出,不必按比例绘制附图。
另外,为了更好的说明本发明,在下文的具体实施例中给出了众多的具体细节。本领域技术人员应当理解,没有某些具体细节,本发明同样可以实施。在一些实例中,对于本领域技术人员熟知的手段未作详细描述,以便于凸显本发明的主旨。
参阅图1,本发明实施例提出一种用于超导电缆的双端逆流制冷系统,所述超导电缆包括低温杜瓦管1以及设置于所述低温杜瓦管1的内腔体中的通电导体2;包括:
第一液氮通道11,设置于所述通电导体2的内腔体;
第二液氮通道12,设置于所述低温杜瓦管1与所述通电导体2之间;其中,所述第一液氮通道11与所述第二液氮通道12靠近所述超导电缆一端部的位置连通;
设置于所述超导电缆一端的第一制冷系统3,所述第一制冷系统3与所述第一液氮通道11通过第一冷却管道301连接,与所述第二液氮通道12通过第二冷却管道302连接;
设置于所述超导电缆一端的第二制冷系统4,所述第二制冷系统4与所述第一液氮通道11通过第三冷却管道401连接,与所述第二液氮通道12通过第四冷却管道402连接;
其中,所述第一制冷系统3将液氮通过所述第一冷却管道301送入所述第一液氮通道11,所述液氮流经所述第一液氮通道11、第三冷却管道401后送入所述第二制冷系统4进行制冷,制冷后液氮通过第四冷却管道402送入所述第二液氮通道12,经所述第二液氮通道12、第二冷却管道302后流回所述第一制冷系统3进行制冷。
可选地,所述通电导体2为空心圆柱结构,其由内之外依次绕制有柔性 骨架21、第一绝缘层22、A相超导层23、第二绝缘层24、B相超导层25、第三绝缘层26、C相超导层27、第四绝缘层28、屏蔽层29、第五绝缘层210、保护层211;
所述系统还包括:设置于所述B相超导层25与第二绝缘层22之间的第三液氮通道13,以及设置于所述B相超导层25与第三绝缘层26之间的第四液氮通道14;
所述第一制冷系统3与所述第三液氮通道13通过第五冷却管道303连接,与所述第四液氮通道14通过第六冷却管道304连接;
所述第二制冷系统4与所述第三液氮通道13通过第七冷却管道403连接,与所述第四液氮通道14通过第八冷却管道404连接;
所述第一制冷系统3将液氮通过所述第五冷却管道303送入所述第三液氮通道13,所述液氮流经所述第三液氮通道13、第七冷却管道403后送入所述第二制冷系统4进行制冷,制冷后液氮通过所述第八冷却管道404送入所述第四液氮通道14,经所述第四液氮通道14、第六冷却管道304后流回所述第一制冷系统3进行制冷。
具体而言,所述冷却系统包括四个液氮通道,所述柔性骨架的中空部分构成第一液氮通道11;所述低温杜瓦管1的内壁面与所述保护层的外壁面之间间隙构成第二液氮通道12;所述B相超导层与第二绝缘层之间间隙构成第三液氮通道13;所述B相超导层与第三绝缘层之间间隙构成第四液氮通道14;所述第一液氮通道11、第二液氮通道12、第三液氮通道13以及第四液氮通道14用于液氮的流通,以为所述通电导体2进行降温冷却;通过以上设置,使得超导电缆的中间B相超导层的热传导路径缩短,能够提高其热稳定性。
可选地,所述第三液氮通道13和所述第四液氮通道14均为微流通道,所述B相超导层与第二绝缘层之间、以及所述B相超导层与第三绝缘层之间设置有纤维网,所述纤维网用于维持所述B相超导层与第二绝缘层之间、以及所述B相超导层与第三绝缘层之间的微流通道。
具体而言,本实施例为了改进超导电缆的B相超导层的冷却效果,在B相导体相邻层引入“微流通道”。即在A-B相和B-C相之间的绝缘层等功能层中间通过微支撑结构引入“微流通道”,微流通道在充入液氮后会充满液氮,为B相导体提供良好的低温环境。不过由于微流通道的空间狭小,表面粘性力占优,雷诺数很大,不会对宏观制冷流程产生明显影响。
其中,微流通道的支撑结构采用一种特制的纤维网,如图3所示,这种纤维网的网孔、经纬线相对粗细是以微流通道CFD计算结果为基准选定的。
可选地,所述纤维网分别通过螺旋绕制的方式绕制在所述第二绝缘层的外壁面以及所述B相超导层的外壁面上,例如图3所示。
可选地,参阅图4,所述第一制冷系统3包括第一液氮罐31、第一过冷器、第一低温制冷机、第一液氮泵341、第一加压器35,所述第一过冷器包括第一壳体321以及设置于所述第一壳体321中的第一盘管322;所述第一液氮罐31内存储有液氮;所述第一液氮罐31与所述第一过冷器通过第一连接管道305连接,将液氮送至所述第一过冷器的第一壳体321中;所述第一盘管322包括第一进液口与第一出液口;
参阅图5,所述第二制冷系统4包括第二液氮罐41、第二过冷器、第二低温制冷机、第二液氮泵441、第二加压器45,所述第二过冷器包括第二壳体421以及设置于所述第二壳体421中的第二盘管422;所述第二液氮罐41内存储有液氮;所述第二液氮罐41与所述第二过冷器通过第二连接管道405 连接,将液氮送至所述第二过冷器的第二壳体421中;所述第二盘管422包括第二进液口与第二出液口;
所述第一出液口与所述第一冷却管道301连接,所述第一进液口与所述第二冷却管道302连接;所述第二进液口与所述第三冷却管道401连接,所述第二出液口与所述第四冷却管道402连接;
所述第一低温制冷机用于对所述第一过冷器的第一壳体321中的液氮进行冷却至过冷状态,其中过冷状态的液氮用于对第一盘管322中的液氮进行热量交互以实现对所述第一盘管322内的液氮的冷却;所述第二低温制冷机用于对所述第二过冷器的第二壳体421中的液氮进行冷却至过冷状态,其中过冷状态的液氮用于对第二盘管422中的液氮进行热量交互以实现对所述第二盘管422内的液氮的冷却;
所述第一液氮泵341设置于所述第一冷却管道301上,所述第二液氮泵441设置于所述第四冷却管道402上,所述第一液氮泵341和所述第二液氮泵441用于为液氮的循环流动提供动力;所述第一连接管道305与所述第一冷却管道301之间连接有第三连接管道306;所述第一加压器35设置于所述第三连接管道306上,所述第二连接管道405与所述第四冷却管道402之间连接有第四连接管道406;所述第二加压器45设置于所述第四连接管道406上,所述第一加压器35和所述第二加压器45用于在所述第一液氮泵341所提供的动力不足时,进行二次加压以满足液氮循环流动的动力需求。
可选地,所述第一壳体321内还设置有第三盘管323,所述第三盘管323包括第三进液口与第三出液口,所述第三出液口与所述第五冷却管道303连接,所述第三进液口与所述第八冷却管道404连接;所述第五冷却管道303上设置有第三液氮泵342,用于为液氮的循环流动提供动力;
所述第二壳体421内还设置有第四盘管423,所述第四盘管423包括第四进液口与第四出液口,所述第四进液口与所述第七冷却管道403连接,所述第四出液口与所述第八冷却管道404连接;所述第八冷却管道404上设置有第四液氮泵442,用于为液氮的循环流动提供动力。
可选地,所述第一低温制冷机至少包括第一加热器331、第一真空泵332;所述第一过冷器、第一加热器331以及第一真空泵332依次通过管道连接;所述第一真空泵332用于将所述过冷器中的氮气抽走,利用抽空减压制冷方式对所述壳体中的液氮进行制冷;所述第一加热器331用于对进入所述第一真空泵332之前的氮气进行加热;
所述第二低温制冷机至少包括第二加热器431、第二真空泵432;所述第二过冷器、第二加热器431以及第二真空泵432依次通过管道连接;所述第二真空泵432用于将所述过冷器中的氮气抽走,利用抽空减压制冷方式对所述壳体中的液氮进行制冷;所述第二加热器431用于对进入所述第二真空泵432之前的氮气进行加热。
具体而言,本实施例采用抽空减压制冷,其物理原理是压力降低导致沸点降低。通过第一真空泵332和第二真空泵432不断地将换热器上方的氮气抽走,从而气液面的饱和蒸气压降低,液氮的沸点降低,也即获得了低温过冷的液氮。由于第一真空泵332和第二真空泵432不耐低温,所以前面用第一加热器331和第二加热器431先加热后再分别进入第一真空泵332和第二真空泵432。由于氮气被源源不断的抽走,所以需要及时补充液氮。可以设置在相应管道上设置若干泄压阀作为安全措施。
可以理解的是,在第一真空泵332和第二真空泵432之后,可以连接一个存储氮气的装置,以存储抽走的氮气。
以上已经描述了本发明的各实施例,上述说明是示例性的,并非穷尽性的,并且也不限于所披露的各实施例。在不偏离所说明的各实施例的范围和精神的情况下,对于本技术领域的普通技术人员来说许多修改和变更都是显而易见的。本文中所用术语的选择,旨在最好地解释各实施例的原理、实际应用或对市场中的技术改进,或者使本技术领域的其它普通技术人员能理解本文披露的各实施例。

Claims (7)

  1. 一种用于超导电缆的双端逆流制冷系统,所述超导电缆包括低温杜瓦管以及设置于所述低温杜瓦管的内腔体中的通电导体;其特征在于,包括:
    第一液氮通道,设置于所述通电导体的内腔体;
    第二液氮通道,设置于所述低温杜瓦管与所述通电导体之间;其中,所述第一液氮通道与所述第二液氮通道靠近所述超导电缆一端部的位置连通;
    设置于所述超导电缆一端的第一制冷系统,所述第一制冷系统与所述第一液氮通道通过第一冷却管道连接,与所述第二液氮通道通过第二冷却管道连接;
    设置于所述超导电缆一端的第二制冷系统,所述第二制冷系统与所述第一液氮通道通过第三冷却管道连接,与所述第二液氮通道通过第四冷却管道连接;
    其中,所述第一制冷系统将液氮通过所述第一冷却管道送入所述第一液氮通道,所述液氮流经所述第一液氮通道、第三冷却管道后送入所述第二制冷系统进行制冷,制冷后液氮通过第四冷却管道送入所述第二液氮通道,经所述第二液氮通道、第二冷却管道后流回所述第一制冷系统进行制冷。
  2. 根据权利要求1所述的用于超导电缆的双端逆流制冷系统,其特征在于,所述通电导体为空心圆柱结构,其由内之外依次绕制有柔性骨架、第一绝缘层、A相超导层、第二绝缘层、B相超导层、第三绝缘层、C相超导层、屏蔽层、第五绝缘层、保护层;
    所述系统还包括:设置于所述B相超导层与第二绝缘层之间的第三液氮通道,以及设置于所述B相超导层与第三绝缘层之间的第四液氮通道;
    所述第一制冷系统与所述第三液氮通道通过第五冷却管道连接,与所述第四液氮通道通过第六冷却管道连接;
    所述第二制冷系统与所述第三液氮通道通过第七冷却管道连接,与所述第四液氮通道通过第八冷却管道连接;
    所述第一制冷系统将液氮通过所述第五冷却管道送入所述第三液氮通道,所述液氮流经所述第三液氮通道、第七冷却管道后送入所述第二制冷系统进行制冷,制冷后液氮通过所述第八冷却管道送入所述第四液氮通道,经所述第四液氮通道、第六冷却管道后流回所述第一制冷系统进行制冷。
  3. 根据权利要求2所述的用于超导电缆的双端逆流制冷系统,其特征在于,所述第三液氮通道和所述第四液氮通道均为微流通道,所述B相超导层与第二绝缘层之间、以及所述B相超导层与第三绝缘层之间设置有纤维网,所述纤维网用于维持所述B相超导层与第二绝缘层之间、以及所述B相超导层与第三绝缘层之间的微流通道。
  4. 根据权利要求3所述的用于超导电缆的双端逆流制冷系统,其特征在于,所述纤维网分别通过螺旋绕制的方式绕制在所述第二绝缘层的外壁面以及所述B相超导层的外壁面上。
  5. 根据权利要求1所述的用于超导电缆的双端逆流制冷系统,其特征在于,所述第一制冷系统包括第一液氮罐、第一过冷器、第一低温制冷机、第一液氮泵、第一加压器,所述第一过冷器包括第一壳体以及设置于所述第一壳体中的第一盘管;所述第一液氮罐内存储有液氮;所述第一液氮罐与所述 第一过冷器通过第一连接管道连接,将液氮送至所述第一过冷器的第一壳体中;所述第一盘管包括第一进液口与第一出液口;
    所述第二制冷系统包括第二液氮罐、第二过冷器、第二低温制冷机、第二液氮泵、第二加压器,所述第二过冷器包括第二壳体以及设置于所述第二壳体中的第二盘管;所述第二液氮罐内存储有液氮;所述第二液氮罐与所述第二过冷器通过第二连接管道连接,将液氮送至所述第二过冷器的第二壳体中;所述第二盘管包括第二进液口与第二出液口;
    所述第一出液口与所述第一冷却管道连接,所述第一进液口与所述第二冷却管道连接;所述第二进液口与所述第三冷却管道连接,所述第二出液口与所述第四冷却管道连接;
    所述第一低温制冷机用于对所述第一过冷器的第一壳体中的液氮进行冷却至过冷状态,其中过冷状态的液氮用于对第一盘管中的液氮进行热量交互以实现对所述第一盘管内的液氮的冷却;所述第二低温制冷机用于对所述第二过冷器的第二壳体中的液氮进行冷却至过冷状态,其中过冷状态的液氮用于对第二盘管中的液氮进行热量交互以实现对所述第二盘管内的液氮的冷却;
    所述第一液氮泵设置于所述第一冷却管道上,所述第二液氮泵设置于所述第四冷却管道上,所述第一液氮泵和所述第二液氮泵用于为液氮的循环流动提供动力;所述第一连接管道与所述第一冷却管道之间连接有第三连接管道;所述第一加压器设置于所述第三连接管道上,所述第二连接管道与所述第四冷却管道之间连接有第四连接管道;所述第二加压器设置于所述第四连接管道上,所述第一加压器和所述第二加压器用于在所述第一液氮泵所提供的动力不足时,进行二次加压以满足液氮循环流动的动力需求。
  6. 根据权利要求5所述的用于超导电缆的双端逆流制冷系统,其特征在于,所述第一壳体内还设置有第三盘管,所述第三盘管包括第三进液口与第三出液口,所述第三出液口与所述第五冷却管道连接,所述第三进液口与所述第八冷却管道连接;所述第五冷却管道上设置有第三液氮泵,用于为液氮的循环流动提供动力;
    所述第二壳体内还设置有第四盘管,所述第四盘管包括第四进液口与第四出液口,所述第四进液口与所述第七冷却管道连接,所述第四出液口与所述第八冷却管道连接;所述第八冷却管道上设置有第四液氮泵,用于为液氮的循环流动提供动力。
  7. 根据权利要求6所述的用于超导电缆的双端逆流制冷系统,其特征在于,所述第一低温制冷机至少包括第一加热器、第一真空泵;所述第一过冷器、第一加热器以及第一真空泵依次通过管道连接;所述第一真空泵用于将所述过冷器中的氮气抽走,利用抽空减压制冷方式对所述壳体中的液氮进行制冷;所述第一加热器用于对进入所述第一真空泵之前的氮气进行加热;
    所述第二低温制冷机至少包括第二加热器、第二真空泵;所述第二过冷器、第二加热器以及第二真空泵依次通过管道连接;所述第二真空泵用于将所述过冷器中的氮气抽走,利用抽空减压制冷方式对所述壳体中的液氮进行制冷;所述第二加热器用于对进入所述第二真空泵之前的氮气进行加热。
PCT/CN2020/124509 2020-10-14 2020-10-28 一种用于超导电缆的双端逆流制冷系统 WO2022077569A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011096573.0A CN112331409B (zh) 2020-10-14 2020-10-14 一种用于超导电缆的双端逆流制冷系统
CN202011096573.0 2020-10-14

Publications (1)

Publication Number Publication Date
WO2022077569A1 true WO2022077569A1 (zh) 2022-04-21

Family

ID=74314902

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/124509 WO2022077569A1 (zh) 2020-10-14 2020-10-28 一种用于超导电缆的双端逆流制冷系统

Country Status (2)

Country Link
CN (1) CN112331409B (zh)
WO (1) WO2022077569A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113958780B (zh) * 2021-11-01 2022-10-21 重庆大学 一种液氮双向流通保护的液化天然气超导能源管道

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5120705A (en) * 1989-06-28 1992-06-09 Motorola, Inc. Superconducting transmission line cable connector providing capacative and thermal isolation
CN2767916Y (zh) * 2005-01-28 2006-03-29 中国科学院理化技术研究所 用于冷却高温超导电缆的过冷液氮循环冷却装置
CN103165246A (zh) * 2011-12-19 2013-06-19 尼克桑斯公司 冷却用于超导电缆的设备的方法
CN104064279A (zh) * 2014-06-13 2014-09-24 苏州华徕光电仪器有限公司 一种冷绝缘超导电缆的冷却系统
CN109559850A (zh) * 2018-12-07 2019-04-02 深圳供电局有限公司 一种直流双极超导电缆通电导体
CN109659089A (zh) * 2019-01-23 2019-04-19 深圳供电局有限公司 一种高温超导电缆结构
CN209487218U (zh) * 2018-12-07 2019-10-11 深圳供电局有限公司 一种三相同轴式超导电缆通电导体
US20190341174A1 (en) * 2018-05-07 2019-11-07 Microsoft Technology Licensing, Llc Reducing losses in superconducting cables
CN110600192A (zh) * 2019-09-24 2019-12-20 深圳供电局有限公司 超导电缆

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102759231B (zh) * 2012-07-25 2014-11-12 北京卫星环境工程研究所 常压/负压液氮过冷器系统
JP5972156B2 (ja) * 2012-11-26 2016-08-17 株式会社前川製作所 超電導送電システム及び該システムを備える構造物
CN211125168U (zh) * 2020-01-09 2020-07-28 上海电缆研究所有限公司 带回流通道的超导电缆

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5120705A (en) * 1989-06-28 1992-06-09 Motorola, Inc. Superconducting transmission line cable connector providing capacative and thermal isolation
CN2767916Y (zh) * 2005-01-28 2006-03-29 中国科学院理化技术研究所 用于冷却高温超导电缆的过冷液氮循环冷却装置
CN103165246A (zh) * 2011-12-19 2013-06-19 尼克桑斯公司 冷却用于超导电缆的设备的方法
CN104064279A (zh) * 2014-06-13 2014-09-24 苏州华徕光电仪器有限公司 一种冷绝缘超导电缆的冷却系统
US20190341174A1 (en) * 2018-05-07 2019-11-07 Microsoft Technology Licensing, Llc Reducing losses in superconducting cables
CN109559850A (zh) * 2018-12-07 2019-04-02 深圳供电局有限公司 一种直流双极超导电缆通电导体
CN209487218U (zh) * 2018-12-07 2019-10-11 深圳供电局有限公司 一种三相同轴式超导电缆通电导体
CN109659089A (zh) * 2019-01-23 2019-04-19 深圳供电局有限公司 一种高温超导电缆结构
CN110600192A (zh) * 2019-09-24 2019-12-20 深圳供电局有限公司 超导电缆

Also Published As

Publication number Publication date
CN112331409B (zh) 2023-06-09
CN112331409A (zh) 2021-02-05

Similar Documents

Publication Publication Date Title
US4796433A (en) Remote recondenser with intermediate temperature heat sink
CN107631105B (zh) 液化页岩气-液氮-超导直流电缆复合能源管道设计方法
CN107646134B (zh) 用于直流电传输的设备和冷却方法
CN103968878A (zh) 低温脉动热管实验装置
CN109140064A (zh) 一种低温燃料传导冷却的超导能源管道
JP2010245523A (ja) 超伝導マグネット冷却の装置及び方法
US11540419B2 (en) Systems and methods for cooling of superconducting power transmission lines
WO2022077569A1 (zh) 一种用于超导电缆的双端逆流制冷系统
WO2022077570A1 (zh) 一种用于超导电缆的单端逆流制冷系统
Demko et al. Thermal management of long-length HTS cable systems
WO2022077568A1 (zh) 一种用于超导电缆的单端顺流制冷系统
CN209672043U (zh) 内胆悬浮式低温液体存储及运输容器
CN103782353A (zh) 用于冷却装置的设备和方法
CN109681771A (zh) 内胆悬浮式低温液体存储及运输容器
CN113628827B (zh) 一种传导冷却超导磁体
CN107610835B (zh) 液化天然气冷却cf4保护的超导能源管道
Yeom et al. Design of cryogenic systems for 154 kV HTS power cable
Ivanov et al. A proposal of the hybrid energy transfer pipe
Green The Cryogenic refrigeration system for MICE
Haug et al. Cryogenics of the 1.8 K test station for 10 Tesla superconducting magnet models
Hosoyama et al. Design and performance of KEKB superconducting cavities and its cryogenic system
Wang et al. Design of a test cryomodule for IMP ADS-Injector II
Wang et al. Cooling for SC devices of test cryomodule for ADS Injector II at IMP
Anghel et al. Design, construction and operation of a neon refrigeration system for a HTS power transmission cable
Yoshida et al. 1 ATM subcooled liquid nitrogen cryogenic system with GM-refrigerator for a HTS power transformer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20957347

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205N DATED 07/06/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20957347

Country of ref document: EP

Kind code of ref document: A1