WO2022077521A1 - 一种随机接入方法 - Google Patents

一种随机接入方法 Download PDF

Info

Publication number
WO2022077521A1
WO2022077521A1 PCT/CN2020/121706 CN2020121706W WO2022077521A1 WO 2022077521 A1 WO2022077521 A1 WO 2022077521A1 CN 2020121706 W CN2020121706 W CN 2020121706W WO 2022077521 A1 WO2022077521 A1 WO 2022077521A1
Authority
WO
WIPO (PCT)
Prior art keywords
random access
message
terminal device
access preamble
base station
Prior art date
Application number
PCT/CN2020/121706
Other languages
English (en)
French (fr)
Inventor
高宽栋
颜矛
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN202080106209.XA priority Critical patent/CN116368928A/zh
Priority to EP20957299.9A priority patent/EP4221424A4/en
Priority to PCT/CN2020/121706 priority patent/WO2022077521A1/zh
Publication of WO2022077521A1 publication Critical patent/WO2022077521A1/zh
Priority to US18/299,949 priority patent/US20230254891A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/002Transmission of channel access control information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/08Arrangements for detecting or preventing errors in the information received by repeating transmission, e.g. Verdan system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/08Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access]
    • H04W74/0833Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access] using a random access procedure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/002Transmission of channel access control information
    • H04W74/008Transmission of channel access control information with additional processing of random access related information at receiving side

Definitions

  • the present application relates to the field of communications, and in particular, to a random access method for terminal equipment and base stations.
  • the terminal device After the terminal device obtains the downlink synchronization of the base station, the terminal device will obtain the system information required to initiate random access.
  • the terminal equipment obtains the uplink synchronization of the base station through the random access procedure.
  • the random access procedure can be divided into contention-based random access and non-contention-based random access.
  • the contention-based random access is random access when the terminal equipment does not acquire uplink synchronization or loses uplink synchronization, and the terminal equipment does not coordinate with each other.
  • Non-contention-based random access is random access when the terminal equipment has a certain coordination.
  • the contention-based random access process is usually divided into 4 steps, each step corresponds to a message: including message 1, message 2, message 3, and message 4. Due to the complex wireless communication environment, in order to improve the robustness of the random access process, improve the coverage performance of the uplink signal, and reduce the time delay in the complex environment, it is necessary to require the terminal equipment to perform repeated transmission or diversity transmission of messages.
  • the embodiment of the present application provides a random access method, in which a terminal device can repeatedly send and/or diversity send message 3, which effectively improves the coverage performance of the uplink signal and reduces the delay in a complex environment.
  • the base station sends at least one of a downlink signal, random access configuration information, and association information between a downlink signal and a random access preamble;
  • the random access configuration information is used to indicate that the random access preamble is divided into N groups of random access preambles
  • the access preamble, the association information is used to indicate the association between the downlink signal and the N groups of random access preambles; N is an integer greater than 1;
  • the base station receives the message 3 repeatedly sent or diversity sent by the terminal device.
  • the base station receives the random access preamble sent by the terminal device.
  • the base station sends a random access response; the base station receives the message 3 sent by the terminal device; wherein, the random access configuration information and/or the association information is also used to determine the way in which the N groups of random access preambles and the terminal device send the message 3 corresponding relationship.
  • the association information between the downlink signal and the random access preamble includes: one random access opportunity includes N groups of random access preambles; wherein one downlink signal is associated with all random access preambles in each group of random access preambles in N The preamble, or the M downlink signals are sequentially associated with random access preambles in each group of random access preambles in the N, where M is an integer greater than 1.
  • the sending manner of the message 3 includes: repeated sending of the message 3, frequency hopping sending of the message 3, and diversity sending of the message 3.
  • the base station may carry all or part of the random access configuration information in the system information to instruct the terminal device to repeatedly send or send message 3 in diversity; the base station may carry the random access response in the random access response All or part of the configuration information is used to instruct the terminal device to repeatedly send or diversity the message 3 sent.
  • the configuration information may be used to determine the number of repetitions of repeatedly sending the message 3, and the number of repetitions may be any one of 2, 4, 8, 16, and 32.
  • the configuration information may be used to determine the reception threshold of the downlink received signal, where the reception threshold of the downlink received signal is the threshold of the received signal power of the synchronization signal/physical broadcast channel block.
  • the frequency offset of the frequency hopping in the system information may also specify a time interval for repeated transmission, and the time interval may be a symbol interval in a time slot or a time slot interval.
  • the time interval in the present invention is the difference between the initial time slots of two message 3 transmissions.
  • any one or more of the two parameters, the frequency hopping offset and the repetition time interval may also be configured in the random access response.
  • the repeated transmission or diversity transmission of the random access response indication message 3 may be indicated by time alignment partial data bits.
  • the terminal device does not need to repeatedly send or diversity send message 3, that is, the random access preamble received by the base station does not belong to the random access preamble indicating that message 3 is repeatedly sent or sent by diversity
  • the time calibration is used to carry the indication
  • the value of the data bits of the information may be set to zero.
  • Part of the data bits in the time alignment can be used to indicate the relevant information of repeated transmission or diversity transmission of the terminal equipment, wherein the relevant information includes the number of repetitions, the frequency offset of different repetitions, and the part or the time interval between different repetitions. full information.
  • the system information may indicate the number of data bits useful in time alignment or indicate the number of data bits of the MSG3 related information or the protocol directly specifies the number of data bits of the related information and related values.
  • the repeated transmission or diversity transmission of the random access response indication message 3 may be indicated by a header in the random response, including, the base station may use a header corresponding to the random access response for the bearer indication, wherein, The header can be bound with the random access preamble; the base station can also redefine a header identifier, and all relevant information is placed in the random access response corresponding to the header.
  • the present application provides a random access method, which is applied to a terminal device.
  • the method includes: when the terminal device needs to repeatedly send or diversity send the message 3, the terminal device sends a first random access preamble, wherein the first random access preamble is selected from a specific group of multiple groups of random access preambles
  • the multiple groups of random access preambles are multiple groups of random access preambles after grouping non-contention-based random access preambles or grouping contention-based random access preambles, and a specific group is non-contention-based random access preambles.
  • the terminal device receives the indication, wherein the indication is used to instruct the terminal device to repeatedly send or send the message 3 in a diversity manner and/or indication
  • the terminal equipment repeatedly transmits or diversity transmits the time domain and/or frequency domain resource positions of the message 3; the terminal equipment repeatedly transmits or diversity transmits the message 3.
  • the association information between the downlink signal and the random access preamble includes: one random access opportunity includes N groups of random access preambles; wherein one downlink signal is associated with all random access preambles in each group of random access preambles in N The preamble, or the M downlink signals are sequentially associated with random access preambles in each group of random access preambles in the N, where M is an integer greater than 1.
  • the terminal device can obtain the indication sent by the base station in the system information; the terminal device can obtain the indication sent by the base station in the synchronization signal block index; the terminal device can obtain the indication sent by the base station in the random access response .
  • the terminal device After acquiring the base station instruction sent by the base station, the terminal device repeatedly sends or hierarchically sends message 3 according to the repeated transmission or hierarchical transmission mode specified by the instruction and on the time domain and/or frequency domain resources specified by the instruction.
  • the repeated transmission or diversity transmission of the indication message 3 in the system information may specify the frequency offset of the repeated transmission or the frequency hopping of the diversity transmission in the system information, and may also specify the time interval of the repeated transmission or the diversity transmission, and the time interval may be The symbol interval in a time slot can also be a time slot interval.
  • the time interval in the present invention is the difference between the initial time slots of two message 3 transmissions.
  • the synchronization signal block index indicates that the repeated transmission or diversity transmission of message 3 can be notified by binding the synchronization signal block index.
  • One notification method is ⁇ SSB index, K ⁇ , where K can represent the repetition of message 3 The number of transmissions or the method and number of diversity transmissions.
  • the repeated transmission or diversity transmission of the random access response indication message 3 may be indicated by time alignment partial data bits.
  • the value of the data bit used to carry the indication information in the time calibration can be set to 0. .
  • the terminal device needs to repeatedly send or diversity send message 3, that is, the terminal selects a random access preamble from a specific group to send, that is, the terminal device sends the first random access preamble, and the base station receives the first random access preamble.
  • the terminal device After judging that the first random access preamble belongs to a specific group, it is known that the terminal device needs to repeatedly send or diversity send message 3, and some data bits in the time calibration can be used to indicate the terminal device.
  • the relevant information includes repetition times, frequency offsets of different repetition times, and some or all of the information in the time interval between different repetition times.
  • the repeated transmission or diversity transmission of the random access response indication message 3 may be indicated by a header in the random response, including that the terminal device may obtain an indication from a header corresponding to the random access response, wherein the header It can be bound with the random access preamble; the base station can also redefine a header identifier, put all relevant information in the random access response corresponding to the header, and put the relevant information of the header identifier in the indication Before sending, make an agreement with the terminal device, and the terminal device obtains the indication in the random access response corresponding to the newly defined prefix identifier of the base station.
  • any one or more of the two parameters, the frequency hopping offset and the repetition time interval may also be configured in the random access response.
  • some terminal devices do not support repeated transmission or hierarchical transmission of message 3, that is, in the random access response process, the first terminal device will not be selected.
  • the random access preamble is sent as message 1.
  • some terminal equipment supports repeated transmission or diversity transmission of message 3, and when it is deemed necessary to repeatedly transmit or diversity transmission of message 3 according to parameters such as channel loss, transmit power, and receive power, the first random access preamble is selected as message 1. send.
  • the corresponding terminal equipment supporting the repeated transmission or diversity transmission of message 3 can choose not to repeatedly send or to send message 3 in diversity, that is, not to select the first random access preamble to be sent as message 1, and to select the random access preamble outside a specific group as the Message 1 is sent.
  • the present application provides a random access method, which is applied to a terminal device and a base station.
  • the terminal device sends the first random access preamble, where the first random access preamble is selected from a specific group of multiple random access preambles, and the multiple random access preambles are
  • the group random access preamble is a group of random access preambles after grouping the non-contention-based random access preamble or grouping the contention-based random access preamble, and a specific group belongs to the non-contention-based random access preamble grouping.
  • the base station receives the first random access preamble sent by the terminal device, wherein, since the first random access preamble belongs to a specific group, the base station obtains The base station sends an instruction to indicate the method used to instruct the terminal equipment to repeatedly send or diversity send the message 3; the terminal equipment receives the instruction, wherein the instruction is used to instruct the terminal equipment to repeat the transmission. or the manner of diversity sending of message 3 and/or the time domain and/or frequency domain resource location instructing the terminal device to repeatedly send or diversity send message 3;
  • the association information between the downlink signal and the random access preamble includes: one random access opportunity includes N groups of random access preambles; wherein one downlink signal is associated with all random access preambles in each group of random access preambles in N The preamble, or the M downlink signals are sequentially associated with random access preambles in each group of random access preambles in the N, where M is an integer greater than 1.
  • the sending manner of the message 3 includes: repeated sending of the message 3, frequency hopping sending of the message 3, and diversity sending of the message 3.
  • the terminal device can obtain the indication sent by the base station in the system information; the terminal device can obtain the indication sent by the base station in the synchronization signal block index; the terminal device can obtain the indication sent by the base station in the random access response.
  • the base station can instruct the terminal equipment to repeatedly send or diversity send message 3 in the system information; the base station can instruct the terminal equipment to repeatedly send or diversity send message 3 in the synchronization signal block index; the base station can indicate in the random access response The terminal equipment repeatedly sends or diversity sends message 3.
  • the terminal device After acquiring the base station instruction sent by the base station, the terminal device repeatedly sends or hierarchically sends message 3 according to the repeated transmission or hierarchical transmission mode specified by the instruction and on the time domain and/or frequency domain resources specified by the instruction. Correspondingly, after sending the instruction, the base station will demodulate and read the message 3 sent by the terminal device in the corresponding time domain and/or frequency domain resources in a corresponding manner.
  • the repeated transmission or diversity transmission of the indication message 3 in the system information may specify the frequency offset of the repeated transmission or the frequency hopping of the diversity transmission in the system information, and may also specify the time interval of the repeated transmission or the diversity transmission, and the time interval may be The symbol interval in a time slot can also be a time slot interval.
  • the time interval in the present invention is the difference between the initial time slots of two message 3 transmissions.
  • the synchronization signal block index indicates that the repeated transmission or diversity transmission of message 3 can be notified by binding the synchronization signal block index.
  • One notification method is ⁇ SSB index, K ⁇ , where K can represent the repetition of message 3 The number of transmissions or the method and number of diversity transmissions.
  • the repeated transmission or diversity transmission of the random access response indication message 3 may be indicated by time alignment partial data bits.
  • the value of the data bit used to carry the indication information in the time calibration can be set to 0. .
  • the terminal device needs to repeatedly send or diversity send message 3, that is, the terminal selects a random access preamble from a specific group to send, that is, the terminal device sends the first random access preamble, and the base station receives the first random access preamble.
  • the terminal device After judging that the first random access preamble belongs to a specific group, it is known that the terminal device needs to repeatedly send or diversity send message 3, and some data bits in the time calibration can be used to indicate the terminal device.
  • the relevant information includes repetition times, frequency offsets of different repetition times, and some or all of the information in the time interval between different repetition times.
  • the repeated transmission or diversity transmission of the random access response indication message 3 may be indicated by a header in the random response, including that the terminal device may obtain an indication from a header corresponding to the random access response, wherein the header It can be bound with the random access preamble; the base station can also redefine a header identifier, put all relevant information in the random access response corresponding to the header, and put the relevant information of the header identifier in the indication Before sending, make an agreement with the terminal device, and the terminal device obtains the indication in the random access response corresponding to the newly defined prefix identifier of the base station.
  • an embodiment of the present application provides a base station, the base station includes a memory, a processor coupled to the memory, and one or more programs, when the above programs are run on the base station, the base station is made to execute the first aspect and The method described in any possible implementation manner of the first aspect.
  • an embodiment of the present application provides a terminal device.
  • the terminal device includes a memory, a processor coupled to the memory, and one or more programs. When the programs are run on the terminal device, the terminal device can execute the following: The method described in the second aspect and any possible implementation manner of the second aspect.
  • embodiments of the present application provide a computer-readable storage medium, including instructions, when the instructions are executed on a base station, the base station causes the base station to execute the method described in the first aspect and any possible implementation manner of the first aspect.
  • an embodiment of the present application provides a computer-readable storage medium, including instructions, when the above instructions are executed on a terminal device, the terminal device can execute the device as described in the second aspect and any possible implementation manner of the second aspect. Methods.
  • FIG. 1 is a schematic structural diagram of a random access system involved in the present application.
  • Fig. 2 shows the architecture of the base station and terminal equipment in Fig. 1;
  • FIG. 3 is a schematic diagram of a random access process involved in the present application.
  • FIG. 4 is a schematic diagram of a random access method provided by an embodiment of the present application.
  • FIG. 5 is a schematic diagram of a random access scenario provided by an embodiment of the present application.
  • Fig. 6 is the field indication method in the configuration information involved in the embodiment of the present application.
  • FIG. 7 is a schematic diagram of the relationship between the threshold of the downlink signal involved in the embodiment of the present application and whether it is repeatedly sent;
  • FIG. 8 and FIG. 9 are schematic diagrams of the relationship between the random access preamble group and the random access time provided by the embodiments of the present application.
  • FIG. 10 is a schematic diagram of a method for randomly accessing a preamble grouping provided by an embodiment of the present application.
  • FIG. 11 is a schematic diagram of another method for randomly accessing a preamble grouping provided by an embodiment of the present application.
  • FIG. 12 is a schematic diagram of configuration information carried in time calibration provided by an embodiment of the present application.
  • FIG. 13 is a schematic diagram of a terminal device side architecture in a random access method provided by an embodiment of the present application.
  • FIG. 14 is a schematic diagram of a base station side architecture in a random access method provided by an embodiment of the present application.
  • first, second, group 1", and group 2 are only used for descriptive purposes, and should not be construed as implying or implying relative importance or implicitly specifying the number of technical features indicated. Therefore, the features defined as “first” and “second” may explicitly or implicitly include one or more of the features. In the description of the embodiments of the present application, unless otherwise specified, the “multiple” The meaning is two or more.
  • repeated transmission or diversity transmission includes: sending a message at least once, and the transmission modes between different transmission times may be the same transmission mode or different transmission modes , where the transmission mode in the specific embodiment of the present application includes: frequency diversity, coding diversity and other diversity modes.
  • QCL relationship a quasi co-located (QCL) relationship
  • the association and in this application may also be referred to as mapping, correspondence, and correlation.
  • QCL quasi co-located
  • the same delay spread, the same Doppler spread, the same average gain, the same average delay, and the same spatial parameters can be used to transmit or receive signals and use the same
  • the beam transmits or receives at least one of signals.
  • the parameters of the quasi-co-location include: at least one of Doppler spread, Doppler frequency shift, average delay, delay spread and spatial reception parameters.
  • the QCL relationship can be divided into four categories: 'QCL-TypeA': ⁇ Doppler shift, Doppler spread, average delay, delay spread ⁇ ; 'QCL-TypeB': ⁇ Doppler shift, multiple Pler extension ⁇ ; 'QCL-TypeC': ⁇ Doppler shift, average delay ⁇ ; 'QCL-TypeD': ⁇ spatial reception parameters ⁇ .
  • the QCL relationship parameter it can be selected arbitrarily, such as selecting the average gain and 'QCL-TypeD'.
  • the embodiment of the beam in the NR protocol can be a spatial domain filter, or a spatial filter or a spatial parameter.
  • the beam used to transmit the signal can be called the transmission beam (transmission beam, Tx beam), which can be called the spatial domain transmission filter or the spatial transmission parameter;
  • the beam used to receive the signal can be called For the reception beam (reception beam, Rx beam), it can be called a spatial domain receive filter (spatial domain receive filter) or a spatial receive parameter (spatial RX parameter).
  • the transmitting beam may refer to the distribution of signal strength in different directions in space after the signal is transmitted by the antenna
  • the receiving beam may refer to the signal strength distribution of the wireless signal received from the antenna in different directions in space.
  • the beams may be wide beams, or narrow beams, or other types of beams.
  • the beamforming technique may be beamforming or other techniques.
  • the beamforming technology may specifically be a digital beamforming technology, an analog beamforming technology, or a hybrid digital/analog beamforming technology.
  • the beam is embodied in the form of a reference signal in the communication process between the terminal and the base station, and the reference signal is the SSB.
  • the index of the beam is also the index of the SSB.
  • Other signals are transmitted and/or received with reference to the index of the SSB.
  • Other signals include transmission of system messages, transmission of RAR, reception of PARCH.
  • the other signals of the index of the reference SSB, the other signals take the same beam as the reference SSB.
  • the first beam is used to send the SSB, which is denoted as the SSB with index 1, so the system messages, PARCH, message 2, message 3, and message 4 corresponding to the SSB with index 1 are all sent and/or received using beam 1. .
  • Beams generally correspond to resources or signals. For example, when performing beam measurement, network equipment uses different resources to measure different beams. The terminal equipment feeds back the measured resource quality, and the network equipment knows the quality of the corresponding beam. In data transmission, beam information is also indicated by its corresponding resources. For example, the network device indicates the information of the physical downlink shared channel beam of the terminal device through the resource in the TCI of the downlink control information.
  • multiple beams with the same or similar communication characteristics are regarded as one beam.
  • One or more antenna ports may be included in a beam for transmitting data channels, control channels, sounding signals, etc.
  • One or more antenna ports forming a beam can also be viewed as a set of antenna ports.
  • the beam refers to the transmission beam of the network device.
  • each beam of the network device corresponds to a resource, so the index of the resource can be used to uniquely identify the beam corresponding to the resource.
  • the beam re-standard can be expressed using the QCL relationship.
  • System information block Contains system information block (SIB), there are multiple system information blocks in a cell, and these system information blocks carry different information, such as SIB1, which mainly carries the configuration information of some cells, such as Configuration information of random access, information related to physical downlink control channels, information related to other information blocks, information of UE accessing a cell, cell identification information and other information.
  • SIB1 system information block
  • the system information block includes PBCH information of the system information block and PDSCH of the system information block.
  • the physical downlink control channel mainly schedules the time domain and frequency domain resource positions of the physical downlink shared channel.
  • the downlink signal is the signal sent by the base station to the terminal. It can be at least one of a synchronization signal block (synchronization signal block, SS block), a channel state information reference signal (channel state information reference signal, CSI-RS), a reference signal, and system information.
  • a synchronization signal block synchronization signal block
  • CSI-RS channel state information reference signal
  • the embodiment of the present invention mainly considers the case where the downlink signal is a synchronization signal block.
  • the downlink signal is a "CSI-RS”
  • the same method as the above embodiment can be used, that is, the "synchronization signal block” can be replaced in the embodiment. into "CSI-RS”.
  • Synchronization signal block can also be called SS (Synchronization Signal block, synchronization signal block)/PBCH (Physical broadcast channel, physical broadcast channel) block, SS/PBCH block contains at least one of the following, A primary synchronization signal (Primary Synchronization signal, PSS), a secondary synchronization signal (Secondary Synchronization signal, SSS), a physical broadcast channel (Physical broadcast channel, PBCH), a demodulation reference signal (Demodulationed Reference Signal, DMRS).
  • PSS Primary Synchronization signal
  • SSS Secondary Synchronization signal
  • SSS Secondary Synchronization signal
  • SSS Secondary Synchronization signal
  • SSS Secondary Synchronization signal
  • Physical broadcast channel Physical broadcast channel
  • DMRS demodulation reference signal
  • the SS/PBCH block may also be called the SSB/PBCH block, and the signals in the SS/PBCH block or the SSB/PBCH block may be the same antenna port.
  • the terminal device Before the terminal device sends the random access preamble, in the case of beamforming in 5G, the terminal device first detects and selects a beam for random access. Through the high-level parameter ssb-perRACH-OccasionAndCB-PremblesPreSSB, the terminal device is provided with N synchronization signal blocks (Synchronization Signal and PBCH block, SSB) associated with the physical random access channel (Physical Random Access Channel, PARCH) transmission timing and each SSB. The number of R contention-based PARCH preambles.
  • N is less than 1, the SSB is mapped to 1/N consecutive PRACH transmission occasions. If N is greater than 1, then R have consecutive indices (from index Start) contention-based random access preamble and SSBn association, where, is the number of random access preambles used for random access at the random access opportunity, Configured by the high-level parameter totalNumberOfRA-Preambles.
  • Association period There are K1 SSBs in an SSB period.
  • the association period includes one or more configuration periods, and a random access configuration period includes one or more random access opportunities. All random access opportunities in the association period will be K1. All SSBs are associated.
  • the Physical Uplink Control Channel (PUCCH) is used to transmit uplink control information sent by the terminal device to the base station, including information such as Scheduling Request (SR) and Channel State Information (SI).
  • SR Scheduling Request
  • SI Channel State Information
  • Transmit power also known as output power. It can be defined as the output power measured on all or part of the supported frequencies or frequency bands or bandwidths within a given time and/or period.
  • the measured time is at least 1 ms, and for example, the measured time is at least one time slot corresponding to a certain subcarrier interval.
  • power obtained for a time period of at least 1 ms of measurement is used.
  • Diversity transmission methods include closed loop and open loop.
  • the closed loop includes: the receiving end feeds back its desired precoding information to the transmitting end, and the transmitting end performs precoding processing on the transmitted data and reference signals according to the feedback from the receiving end.
  • the open loop includes: the transmitting end performs precoding processing on the transmitted data and reference signals, which is not performed according to the feedback of the receiving end device.
  • the transmitter is a terminal and the receiver is a base station
  • for downlink open-loop transmission the receiver is a terminal and the transmitter is a base station.
  • Random access In a communication system with access control in LTE or 5G, an information exchange mechanism (or process) for devices not connected to the network to establish a connection with the network.
  • RA and RACH are often mixed in protocols and spoken languages. It is divided into contention-based random access and non-contention random access. Contention-based random access is usually divided into 4 steps, each step corresponds to a message: including message 1, message 2, message 3, and message 4, which respectively carry different signaling or information. Non-contention based random access has only the first 2 steps. In addition, in order to reduce the access time of the 4-step contention-based random access, there are further 2-step random access.
  • 2-step random access it consists of message A and message B, where message A includes the preamble and the first data information (for example, similar to message 1 and message 3 in 4-step random access), and message B includes Including contention resolution and uplink scheduling (eg, similar to message 2 and message 4 in 4-step random access).
  • the random access resource configuration period (PRACH configuration period/PRACH period/PRACH density) is also called the random access period.
  • the random access resource configuration period includes multiple random access resources of time, frequency, preamble or sequence, and these resources form a random access resource pattern.
  • the random access resource configuration period is also the time interval during which the random access resource pattern repeats.
  • the random access resources in a random access resource configuration period are associated with all actually transmitted downlink signals in a downlink signal set. It can be understood that the random access resource associated with the downlink signal appears repeatedly with the time length of the random access resource configuration period.
  • Random access opportunity is also called random access resource (RACH resource), random access opportunity (RACH occasion/RACH opportunity/RACH chance, RO), random access transmission opportunity (RACH transmission occasion), is Refers to the time and frequency resources used to carry one or more random access preambles. Logically, a random access opportunity is used to carry the information/signal of the physical random access channel (PRACH). Sometimes it is also called equivalently as physical random access opportunity (PRACH occasion, RO), physical random access resource (PRACH resource).
  • Message 1 (message 1, Msg1): that is, a random access preamble (preamble or sequence), which is carried through a physical random access channel (PRACH). It is usually used to initiate connection requests, handover requests, synchronization requests, and scheduling requests between the device and the network.
  • PRACH physical random access channel
  • Random access preamble group It can also be understood as a random access preamble set.
  • a random access preamble group includes at least one random access preamble on one random access opportunity.
  • the multiple random access preambles are N random access preambles with consecutive index numbers on one random access opportunity.
  • a random access preamble group may also be a set composed of N (N>1) random access preambles on multiple different random access occasions.
  • Message 2 (message 2, Msg2): Also known as random access response (RAR) message. It is the response of the network side to the received message 1, and one message 2 can respond to multiple Msg1s.
  • Msg2 Also known as random access response (RAR) message. It is the response of the network side to the received message 1, and one message 2 can respond to multiple Msg1s.
  • RAR random access response
  • Msg2 Also known as random access response (RAR) message. It is the response of the network side to the received message 1, and one message 2 can respond to multiple Msg1s.
  • Msg2 Also known as random access response (RAR) message. It is the response of the network side to the received message 1, and one message 2 can respond to multiple Msg1s.
  • RAR random access response
  • the network side receives the message 1, it will encapsulate and send at least one of the following information: the index of the message 1 (random access preamble identity, RAPID), uplink scheduling grant (uplink grant), time advance (timing advance), temporary cell-wireless network Temporary cell radio network temporary identity (TC-RNTI), etc.
  • the network side can respond to multiple Msg1s simultaneously in the same Msg2.
  • Message 3 (message 3, Msg3): Also known as the first uplink scheduled transmission, it is the scheduled transmission by the UL grant in message 2, or the retransmission scheduled by the DCI scrambled by the TC-RNTI.
  • the transmission content of Msg3 is a high-level message, such as a connection establishment request message (specifically, the identification information of the user who initiates the connection request).
  • the function of this message is for contention resolution. If multiple different devices use the same Msg1 for random access, Msg3 and Msg4 can jointly determine whether there is a conflict.
  • Msg3 Message transmitted on UL-SCH (uplink shared channel) containing a C-RNTI MAC (Medium access control) CE (control element) or CCCH (Common Control Channel) SDU (Service Data Unit), submitted from upper layer and associated with the UE Contention Resolution Identity, as part of a Random Access procedure.
  • the transmission of message 3 includes retransmission and power control (that is, in the UL grant that schedules initial transmission or retransmission, there is power control information).
  • Message 4 (message 4, Msg4): used for contention resolution. It usually includes the CCCH SDU carried in message 3. If the device detects the CCCH SDU sent by itself in message 4, it considers that the contention for random access is successful, and continues the next communication process. Message 4 is retransmitted, that is, the corresponding physical uplink control channel (PUCCH) transmits feedback information (whether message 4 is successfully detected), and the device transmits feedback information on PUCCH with power control.
  • PUCCH physical uplink control channel
  • the random access process of terminal equipment can be triggered by a series of events, such as: access in radio resource control (Radio Resource Control, RRC) idle mode; RRC connection re-establishment process; cell handover; in the RRC connection state, the downlink data arrives but the uplink Not synchronized; in the RRC connection state, the uplink data is required but the uplink data is not synchronized; the terminal device needs to change from the RRC_INACTIVE state to another state; beam management needs to be performed; SI information needs to be obtained, etc.
  • RRC Radio Resource Control
  • the random access preamble can be generated by using a Z-C sequence.
  • the random access preamble is transmitted on specific time-frequency resources.
  • PARCH resources in a radio frame are indicated by a PARCH configuration index provided by higher layers.
  • Various PRACH preamble formats can be defined by using different numbers of symbols, different cyclic prefixes (Cyclic Prefix, CP) and guard time (Guard Time, GT).
  • the 5G terminal device Before the terminal device sends the random access preamble, in the case that 5G uses beamforming by default, the 5G terminal device must first detect and select a beam for random access.
  • the base station assigns the random access preamble signature to the terminal device as needed, and the random access process is a non-contention random access process;
  • the broadcast random access parameter in the cell system information randomly selects access, and the random access process is a contention random access process at this time.
  • FIG. 1 is a schematic structural diagram of a random access system involved in the present application.
  • the scenario involved in this application includes a base station and a terminal device. Wherein, the base station communicates with the terminal equipment.
  • a base station may be a device capable of communicating with terminal devices.
  • a base station may be a base station terminal device, a relay station or an access point.
  • the base station can be a BTS (Base Transceiver Station, a base transceiver station) in a GSM (Global System for Mobile Communication, Global System for Mobile Communications) or CDMA (Code Division Multiple Access, Code Division Multiple Access) network, or a WCDMA (Wideband The NB (NodeB) in the Code Division Multiple Access (Wideband Code Division Multiple Access) can also be the eNB or the eNodeB (Evolutional NodeB) in the Long Term Evolution (Long Term Evolution, LTE).
  • the base station may also be a wireless controller in a CRAN (Cloud Radio Access Network, cloud radio access network) scenario.
  • the base station may also be a base station terminal device in a future 5G network or a network terminal device in a future evolved PLMN network.
  • the base station may also be a wearable terminal device or a vehicle-mounted terminal device.
  • the base station can also be an exciter or a receiver.
  • the terminal equipment can be UE (User Equipment, user equipment), access terminal, UE unit, UE station, mobile station, mobile station, remote station, remote terminal, terminal equipment, UE terminal, terminal, wireless communication equipment, UE proxy or UE devices, etc.
  • the terminal device can be a cellular phone, a cordless phone, a SIP (Session Initiation Protocol) phone, a WLL (Wireless Local Loop, wireless local loop) station, a PDA (Personal Digital Assistant, personal digital processing), with a wireless communication function handheld devices, computing devices or other processing devices connected to wireless modems, in-vehicle devices, wearable devices, terminal devices in future 5th Generation Mobile Network (5G) networks or future evolution of public land mobile Terminal equipment in the network (Public Land Mobile Network, PLMN), etc.
  • 5G 5th Generation Mobile Network
  • PLMN Public Land Mobile Network
  • FIG. 2 shows the architecture of the base station and terminal equipment in FIG. 1 .
  • the specific architecture of the base station and terminal equipment in Figure 1 includes:
  • the terminal device 10 includes a processor 101 , a memory 102 and a transceiver 103 , and the transceiver 103 includes a transmitter 1031 , a receiver 1032 and an antenna 1033 .
  • the base station 20 includes a processor 201 , a memory 202 and a transceiver 203 , and the transceiver 203 includes a transmitter 2031 , a receiver 2032 and an antenna 2033 .
  • the receiver 1032 may be used to receive transmission control information through the antenna 1033
  • the transmitter 1031 may be used to send transmission feedback information to the network terminal device 20 through the antenna 1033 .
  • the transmitter 2031 can be used to send transmission control information to the terminal device 10 through the antenna 2033
  • the receiver 2032 can be used to receive the transmission feedback information sent by the terminal device 10 through the antenna 2033 .
  • FIG. 3 is a schematic diagram of a random access process involved in the present application.
  • random access is an information exchange mechanism or process for establishing a connection between a terminal device that is not connected to the network and a base station.
  • the random access process is divided into contention based random access (CBRA) and non-contention based random access (contention free random access, CFRA).
  • contention-based random access is usually divided into 4 steps:
  • the terminal device sends a message 1 (message 1, Msg1) to the base station.
  • the base station receives the message 1 sent by the terminal device.
  • the message 1 the random access preamble (preamble or sequence), is carried through a physical random access channel (physical random access channel, PRACH). It is usually used to initiate connection requests, handover requests, synchronization requests, scheduling requests, etc. between the terminal device and the network.
  • the message 1 may include two kinds of preambles, one is a contention-based random access preamble, and the other is a non-contention-based random access preamble.
  • the contention-based random access preamble is generally used for random access
  • the non-contention-based random access preamble is generally used for connected state random access.
  • S302 The base station sends a message 2 (message 2, Msg2) to the terminal device.
  • the terminal receives the message 1 sent by the base station terminal device.
  • Message 2 also known as a random access response (RAR) message. It is the response of the network side to the received message 1, and one message 2 can respond to multiple messages 1.
  • RAR random access response
  • the network side receives the message 1, it will encapsulate and send at least one of the following information: the index of the message 1 (random access preamble identity, RAPID), uplink scheduling grant (uplink grant), time calibration value (Timing Advance Command, TAC), temporary Cell-wireless network temporary identity (temporary cell radio network temporary identity, TC-RNTI), etc.
  • the network side can respond to multiple messages 1 in the same message 2 at the same time.
  • the protocol defines a random response access window (RAR-Window), which is used to receive message 2. If the terminal device does not receive message 2 within the duration of the random response access window, it considers that message 1 fails to be sent.
  • Random Access-Radio Network Temporary Identity used to scramble the Physical Downlink Control Channel (PDCCH) of message 2, the terminal can identify itself according to RA-RNTI In message 2, each RA-RNTI uniquely corresponds to an RO, and the generation of the RA-RNTI is related to the time-frequency resource location of the RO.
  • the terminal device sends a message 3 (message 3, Msg3) to the base station.
  • the base station receives the message 3 sent by the terminal device.
  • Message 3 Also known as the first uplink scheduling transmission, it is scheduled and transmitted by the UL grant (UP-link grant, uplink connection grant resource) in message 2, or the downlink control information scrambled by TC-RNTI (Downlink Control Information, DCI) scheduled retransmissions.
  • the transmission content of the message 3 is a high-level message, such as a connection establishment request message (specifically, the identification information of the user who initiates the connection request).
  • the function of this message is for contention resolution.
  • the message 3 and message 4 can jointly determine whether there is a conflict.
  • Msg3 on the protocol: Message transmitted on UL-SCH (uplink shared channel) containing a C-RNTI MAC (Medium access control) CE (control element) or CCCH (Common Control Channel) SDU (Service Data Unit), submitted from upper layer and associated with the Contention Resolution Identity, as part of a Random Access procedure.
  • the transmission of message 3 includes retransmission and power control (that is, in the UL grant that schedules initial transmission or retransmission, there is power control information).
  • S304 The base station sends a message 4 (message 4, Msg4) to the terminal device.
  • the terminal receives the message 4 sent by the terminal equipment of the base station.
  • Message 4 For contention resolution. It usually includes the CCCH SDU carried in message 3. If the terminal device detects the CCCH SDU sent by itself in message 4, it considers that the contention for random access is successful, and the next communication process is continued.
  • Message 4 is retransmitted, that is, there is a corresponding physical uplink control channel (PUCCH) to transmit feedback information (whether message 4 is successfully detected), and the terminal device transmits feedback information on PUCCH with power control.
  • PUCCH physical uplink control channel
  • 2-step random access in order to reduce the access time of the 4-step contention-based random access, there are further 2-step random access.
  • 2-step random access it consists of message A and message B, where message A includes the preamble and the first data information (for example, similar to message 1 and message 3 in 4-step random access), and message B includes Including contention resolution and uplink scheduling (eg, similar to message 2 and message 4 in 4-step random access).
  • the non-contention-based random access has only the first two steps, including S301 and S302.
  • the initial transmission of the message 3 is only once, and the resources of the initial transmission are scheduled and transmitted by the uplink scheduling grant (UL grant) in the message 2.
  • UL grant uplink scheduling grant
  • Information such as the time domain position and frequency domain position and modulation and coding strategy of the initial transmission of message 3.
  • the process of sending the message 3 by the terminal device supports a hybrid automatic repeat request (HARQ).
  • HARQ hybrid automatic repeat request
  • the terminal device sends message 3 for HARQ retransmission, the base station needs to send an acknowledgement character (Acknowledge Character, ACK) or a negative acknowledgement character (Negative Acknowledge Character, NACK) to the terminal device.
  • ACK acknowledgement Character
  • NACK Negative Acknowledge Character
  • the base station In complex environments such as weak signal-to-noise ratio and large channel fading, when the terminal device initiates the random access process, the base station cannot receive message 3 sent by the terminal device, resulting in random access failure or HARQ retransmission of message 3. The robustness of the incoming process is poor, and the delay of the random access process increases.
  • the present application proposes a random access method, which can realize repeated transmission or diversity transmission of message 3 .
  • the present application proposes that the terminal device can be instructed in message 2 or system information to perform repeated transmission or diversity transmission of message 3.
  • the repeated sending or diversity sending of messages involved in the technical solution of the present application can effectively improve the probability of the base station detecting the message, improve the robustness of the random access process, and improve the coverage performance of the uplink signal.
  • the base station does not have the terminal reporting information whether it is necessary to perform repeated transmission or diversity transmission of message 3, so It is impossible to determine whether to perform repeated transmission or diversity transmission of message 3, so the base station will consider the worst case, and determine whether to perform repeated transmission or diversity transmission of message 3 or not to perform repeated transmission or diversity transmission of message 3 according to the worst situation. . If all terminal equipments perform repeated transmission or diversity transmission of message 3, and some terminal equipments have good performance, resources will be wasted.
  • the terminal equipment of R15 and/or R16 includes the terminal equipment whose communication protocol is the R15 standard and/or the R16 standard, and the terminal equipment that does not have an agreement with the base station for repeated transmission or diversity transmission;
  • R17 and /or later terminal equipment includes terminal equipment whose communication protocol is the R17 standard or other later communication protocol standards, and terminal equipment that has an agreement with the base station for repeated transmission or diversity transmission.
  • the repeated sending of the message 3 involved in the technical solution of the present application refers to sending the same message 3 more than once during the random access process without waiting for the base station to return a confirmation character or a negative character, thereby reducing the delay.
  • FIG. 4 is a schematic diagram of a random access method provided by an embodiment of the present application
  • FIG. 5 is a schematic diagram of a random access scenario provided by an embodiment of the present application.
  • the random access method provided by this application includes:
  • the base station sends configuration information and downlink signals, including:
  • the terminal equipment receives the SSB, and determines the received reference SSB signal according to the received power of the reference signal of the SSB.
  • the terminal device receives the random access configuration information sent by the base station according to the reference SSB signal, and the random access configuration information includes at least one of the repetition information of message 3 or the diversity transmission information.
  • the repeated transmission or hierarchical transmission of the configuration information indication message 3 of random access includes: indication by data bits in the configuration information and indication by fields in the configuration information.
  • the repetition information of the message 3 includes the number of times of repeated sending of the message 3, the indication of the repeated sending of the message 3, and the repeated sending condition of the message 3.
  • the number of times K of repeated sending of the message 3 may be at least one of 2, 4, 8, 16, and 32.
  • the repeated transmission of the indication message 3 may be indicated by a data bit.
  • the data bits are carried in the configuration information, and the data bits are used to indicate the number of times the message 3 is repeatedly sent.
  • the number of bits occupied by the data bits may be any one of 1 bit, 2 bits, 3 bits or 4 bits.
  • the data bits indicate that the number of repetitions of message 3 is related to the bit range occupied by the data, which can be 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, At least one of 16.
  • the data bits indicate that the repetition times of the message 3 are 2, 4, 8, and 16. For example, when the data bit is 00, the number of repetitions of message 3 is 2; when the data bit is 01, the number of repetitions of message 3 is 4; when the data bit is 10, the number of repetitions of message 3 is 8; When the bit is 11, the number of repetitions of message 3 is 16 times.
  • FIG. 6 shows a field indication method in the configuration information involved in the present application.
  • the configuration information may be used to determine at least one of the following: the number M of random access preamble groups, the number K i of random access preamble groups in the random access preamble group, the number N i of SSBs associated with a random access preamble group, where i as 0,1,...,M-1.
  • association between the SSB and the random access preamble group (also referred to as mapping, the terms association and mapping are used in the following, there is no difference in meaning) can be:
  • N i N, that is, the number of SSBs associated with each random access preamble group is the same (or the number of SSBs mapped to each random access preamble group is the same).
  • K i K, that is, the number of random access preambles in each random access preamble group is the same.
  • K i R
  • the indices of the random access preambles in the random access preamble group i are consecutive, and the index number is actually related to at least one of the following parameters: the random access preamble index number i, the number of random access preamble groups M , the number of downlink signals associated with each random access preamble group.
  • the SSB associated with each random access preamble group is the same
  • the SSB associated with each random access preamble group is the same
  • the SSB associated with each random access preamble group is the same
  • the repeated transmission of the indication message 3 may be a single field or multiple fields, and the field indicates a random access preamble set or a random access preamble group.
  • the random access preamble is divided into 3 groups, 3 field indications can be used.
  • the random access preamble group indicated by the third field is the random access preamble group indicating that the message 3 is repeatedly sent or sent by diversity.
  • the terminal device needs to send repeatedly, it selects the random access preamble indicated by the third field to send.
  • the mode of repeated transmission by the terminal device is determined by the field value and field length of the third field, as shown in Figure 6.
  • 1-bit information may also be added to the configuration information to determine whether there is a random access preamble that supports repeated transmission or diversity transmission of message 3.
  • multiple bit messages are used in the configuration information, where the multiple bit information is used to indicate the number of times the message 3 is retransmitted.
  • the random access preamble group represents the number of times that the random access preamble in the group supports the repeated sending of the message 3, and the number of times that the message 3 is repeatedly sent may be K times.
  • the configuration information can also be multiplexed with the existing field to indicate that the message 3 is repeatedly sent.
  • the existing configuration numberOfRA-PreamblesGroupA is used to indicate the repeated sending of the message 3 based on the contention-based random access preamble field GroupA number.
  • the base station uses the field in the configuration information to indicate the repeated transmission of message 3, it can use 1 bit to indicate the random access preamble set for repeated transmission of message 3; Preamble set, or indication N, where N is the number of preamble sets that message 3 is repeatedly sent.
  • the first group indicates that the number of times the message 3 is repeatedly sent is 2
  • the second group indicates that the number of times the message 3 is repeatedly sent is 4 times.
  • the configuration information includes the association relationship between the synchronization signal and the random access preamble and the random access opportunity, and the terminal device determines the random access preamble and the random access opportunity according to the configuration information.
  • the configuration information only configures the association relationship between the contention-based random access preamble and the synchronization signal. All contention-based random access preambles and random access opportunities associate all SSBs in a circle within the association period. All SSBs are all SSBs within an SSB period.
  • each random access opportunity needs to be associated with 2 SSBs, each The random access preamble is associated with an SSB.
  • the configuration information provided in this application is used to indicate that when the random access preamble is divided into N groups of random access preambles, each group in the N groups of random access preambles is associated with all SSBs with the random access opportunity.
  • each group of contention-based random access preambles includes two contention-based random access preambles
  • the association period has 4 SSBs
  • 4 SSB includes SSB0, SSB1, SSB2, and SSB3.
  • Each random access opportunity needs to have 2 contention-based random access preambles belonging to the first group, and 2 belong to the first group.
  • the association between the random access preamble and the SSB includes:
  • the first random access preamble in the first group of random access preambles in the first random access opportunity is associated with SSB0;
  • the second random access preamble in the first group of random access preambles in the first random access opportunity is associated with SSB1;
  • the first random access preamble in the first group of random access preambles in the second random access opportunity is associated with SSB2;
  • the second random access preamble in the first group of random access preambles in the second random access opportunity is associated with SSB3.
  • association between the second group of random access preambles and the SSB includes:
  • the first random access preamble in the second group of random access preambles in the first random access opportunity is associated with SSB0;
  • the second random access preamble in the second group of random access preambles in the first random access opportunity is associated with SSB1;
  • the first random access preamble in the second group of random access preambles in the second random access opportunity is associated with SSB2;
  • the second random access preamble in the second group of random access preambles in the second random access opportunity is associated with SSB3.
  • Each random access opportunity is associated with 2 SSBs, and each random access preamble in each group is associated with one SSB.
  • the association relationship between the leading group and the SSB is independent. It can be an independent configuration or a common configuration. By configuring all associated SSBs at random access occasions, the efficiency of random access is improved compared to the prior art.
  • the independence of the present invention is that the association between the preamble group and the SSB has nothing to do with the association of the random access preamble of the non-repetitively transmitted message 3 .
  • the specific configuration information may adopt an existing association method.
  • the configuration information indicates that repeated transmission or diversity transmission of message 3 may be notified with an SSB index, one way of notification is ⁇ SSB index, L1 ⁇ , where L1 represents the number of repeated transmissions of message 3.
  • the repeated transmission of the message 3 may be repeated transmission with frequency hopping, or repeated transmission without frequency hopping.
  • the base station and/or the terminal equipment may specify the frequency offset of the frequency hopping, and may also specify the time interval for repeated transmission, and the time interval may be a symbol interval in a time slot or a time slot interval. Therefore, the frequency hopping offset and/or the time interval for repeated transmission or diversity transmission can be configured in the system information. Any one or more of the two parameters of frequency hopping offset and time interval for repeated transmission or diversity transmission can also be configured in the RAR.
  • the time interval can be related to the uplink and downlink ratio.
  • the time interval is 1 time slot, that is, message 3 is transmitted once in each uplink time slot, but since the uplink and downlink ratio is 4:1, every 5 time slots There is a repeated transmission or diversity transmission of message 3 with a time interval of 5 time slots.
  • the time interval in the present invention is the difference between the initial time slots of two message 3 transmissions.
  • the configuration information provided in the present application is used to indicate that the random access preamble is divided into N groups of random access preambles. Refer to the random access preamble grouping method shown in FIG. 9 and FIG. 10 .
  • the random access preambles are grouped, wherein one group indicates that the random access preambles are repeatedly sent random access preambles, and the repeatedly sent random access preambles may be those sent repeatedly within K PRACH configuration periods.
  • the random access preamble may also be a random access preamble that is repeatedly sent within K SSB-PRACH association periods. That is, multiple random access preambles on multiple different random access opportunities (or multiple random access preambles on the same random access opportunity) constitute a message 1, and the terminal can send the message 1 before the random access response.
  • message 1 may include multiple random access preambles, the multiple random access preambles are on different random access occasions or on the same random access occasion, and the terminal according to the Message 1 sends the multiple random access preambles, and the base station receives the multiple random access preambles according to the message; or the multiple random access preambles are all in a random access preamble group, and the base station receives the random access preambles.
  • the multiple random access preambles entered into the preamble group are multiple random access preambles that can be sent by the same terminal device. Further, the multiple random access preambles are responded to by one or more random access response messages.
  • FIG. 8 and FIG. 9 are schematic diagrams of the relationship between the random access preamble group and the random access time provided by the embodiments of the present application.
  • random access time 0 corresponds to random access opportunity 0 and random access opportunity 1; random access time 0 corresponds to random access opportunity 0 and random access opportunity 1.
  • random access opportunity 1 and random access opportunity 4 are associated with the same SSB index; random access opportunity 0 and random access opportunity 4 are associated with the same SSB index.
  • the random access preamble i and the random access preamble j belong to the random access preamble group 1 .
  • the terminal selects the random access preamble group 1, according to at least one of the following information: preset or information indicated by the base station, and the quality of the downlink signal, multiple random access preambles (for example, random access preambles) on at least one random access opportunity are determined. i on entry opportunity 1 and j) on random access opportunity 4, are sent to the base station.
  • the base station may send the random access preamble i and the random access preamble j to realize multiple sending of the message 1 .
  • the base station determines and detects multiple random access preambles on at least one random access opportunity (eg, i on random access opportunity 1 and j on random access opportunity 4) according to preset or configuration information.
  • the base station detects at least one of the random access preamble i on random access opportunity 1 and the random access preamble j on random access opportunity 4, it sends a random access response to the terminal device.
  • the random access response message may further indicate the manner of transmitting message 3, including at least one of repetition times and transmission diversity.
  • the random access timings of the random access preambles that are repeatedly sent twice in a row may be associated with the same SSB index, and may be located at different time-domain and frequency-domain resource positions.
  • repeated transmissions may be multiple transmissions.
  • the protocol may specify or the system information may configure the number of times of repeated transmission of message 3, and the repeated random access preamble may have the same RAR response and message 3.
  • the value of K may be 1 or the value of K may be 1-8. It is also possible to constrain the time for repeated transmission of message 1 not to exceed Yms. For example, Y is 160ms or 320ms.
  • the terminal device may use multiple messages 2 to schedule the same time-frequency resource location of the message 3 to repeatedly transmit the message 3.
  • the network device may also use the same message 2 to indicate the random access preamble associated with the same message 3 multiple times, schedule multiple time-frequency resource locations for the message 3 associated with the random access preamble, and send the message 3 repeatedly.
  • the random access preamble that supports repeated transmission of message 3 or diversity transmission by default it can be further grouped, and the result of the grouping can be associated with the transmission mode of message 3.
  • Associating the result of the grouping with the transmission mode of the message 3 includes: subdividing the random access preamble supporting repeated transmission or diversity transmission of the message 3 into several groups, wherein each group corresponds to a specific transmission mode.
  • the transmission modes include: repeated transmission with different repeated transmission times, different diversity transmission modes, frequency hopping transmission with different frequencies, and the like.
  • the terminal device receives configuration information and downlink signals, and selects a random access preamble to send, including:
  • the terminal device When the terminal device initiates the random access process, the terminal device selects one of the random access preamble sequences that can be selected by the current cell as information 1, and sends the random access preamble on the uplink PARCH channel.
  • the process for the terminal equipment to select the random access preamble includes:
  • the terminal device determines the random access preamble to be sent according to whether it supports repeated transmission or diversity transmission of message 3 or not. When the terminal device supports repeated transmission or diversity transmission of message 3, it can select the random access preamble that indicates the repeated transmission or diversity transmission of message 3, that is, the first random access preamble, or can select the random access preamble that does not indicate repeated transmission or diversity transmission of message 3. Access preamble; when the terminal device does not support repeated transmission or diversity transmission of message 3, select a random access preamble that does not require repeated transmission or diversity transmission of message 3.
  • R17 and/or later terminal equipment supports repeated transmission or diversity transmission of message 3, and a random access preamble indicating repeated transmission or diversity transmission of message 3 can be selected, or A random access preamble that does not indicate repeated transmission or diversity transmission of message 3 is selected.
  • the terminal device may determine whether to select the random access preamble of a specific packet according to its calculated path loss. For example, when the path loss is relatively large, the random access preamble indicating repeated transmission or diversity transmission of message 3 can be selected, and when the path loss is relatively small, the random access preamble that does not instruct the repeated transmission or diversity transmission of message 3 can be selected.
  • the path loss can be calculated from parameters such as base station transmit power, channel attenuation, and terminal device receive power.
  • FIG. 7 is a schematic diagram illustrating the relationship between the threshold of the downlink signal and whether to repeatedly send the signal according to the embodiment of the present application.
  • the terminal device selects a random access preamble indicating repeated transmission or diversity transmission of message 3. Further, when the threshold value of the downlink signal is in the range 1, the selection instruction message 3 repeatedly transmits the random access preamble for N1 times. When the threshold value of the downlink signal is in the range 2, the random access preamble of repeating transmission of the instruction message 3 for N2 times is selected. When the threshold value of the downlink signal is greater than a certain value, a random access preamble that does not instruct repeated transmission of message 3 is selected.
  • any group in the random access preamble group may correspond to a repeated sending mode of message 3 through the association relationship between the downlink signal and the random access preamble.
  • the threshold of the downlink signal when the threshold of the downlink signal is between the threshold 1 and the threshold 2, and the terminal equipment needs to repeat the transmission of message 3 for N1 times, it is selected to instruct the message 3 to be repeated for N1 times.
  • the random access preamble of FIG. 7 corresponds to the above in other cases shown in FIG. 7 , and details are not repeated here.
  • R17 and/or later terminal devices may decide to select the random access preamble indicating or not indicating repeated transmission or diversity transmission of Message 3 according to other parameters. Further, the terminal equipment of R17 and/or later may decide to select the transmission mode of message 3 according to other parameters, and select the corresponding random access preamble according to the transmission mode of message 3.
  • S403 The base station receives the random access preamble and sends message 2.
  • the base station After receiving the first random access preamble, the base station determines the group to which the first random access preamble belongs. It can be known whether the terminal device needs to repeatedly send or diversity send message 3 . It can be understood that the random access preamble can only be divided into a random access preamble group that indicates repetition and a random access preamble that does not indicate repetition. Way.
  • the base station instructs the terminal equipment to repeatedly send or diversity the message 3, which specifically includes:
  • the configuration information indicates repeated transmission or diversity transmission of message 3, which may be indicated by information in the RAR.
  • a way of indicating is to use TAC (Time Advance Command) part of the data bits to indicate, for the terminal equipment of R15 and/or R16, can not indicate, that is, select the random access preamble that does not repeat transmission or diversity transmission above, These values are set to 0. If the random access preamble for repeated transmission or diversity transmission is selected, part of the data indicates information related to repeated transmission or diversity transmission.
  • the information related to the repeated transmission includes at least one information among the number of repeated transmissions, the frequency offset between different repeated transmission times, and the time interval between different repeated transmission times.
  • a header (Sub Header) corresponding to the RAR is used alone to indicate the repeated transmission of related information.
  • a prefix corresponding to the RAR may be bound with the random access preamble; alternatively, a prefix identifier may be redefined, and all relevant information is placed in the RAR corresponding to the prefix.
  • the R15 and/or R16 terminal device may select a random access preamble that supports repeated transmission or diversity transmission of Message 3. At this time, the R15 and/or R16 terminal equipment cannot recognize the indication of repeated transmission or diversity transmission of message 3 sent by the base station, and does not perform repeated transmission or diversity transmission of message 3.
  • the terminal device receives the message 2, and sends the message 3 according to the manner indicated by the configuration information, the downlink signal, and the SSB signal.
  • the terminal device receives the configuration information, and repeatedly sends the message 3 according to the data bits carried in the configuration information. For example, when the number of bits occupied by the data bits carried in the configuration information is 2 bits, and the data bits are 00, the terminal device repeatedly sends the message 3, and the number of times of repeatedly sending the message 3 is 2; When the number of bits occupied by the data bits is 2 bits, and the number of data bits is 11, the terminal device repeatedly sends the message 3, and the number of times the message 3 is repeatedly sent is 8 times.
  • the terminal device receives the configuration information, and determines to repeatedly send the message 3 and the number of times to repeatedly send the message 3 according to fields carried in the configuration information.
  • the configuration information may be carried in the message 2, including, carried in part of the data bits of the TAC, and in the redefined header identifier.
  • the terminal device may determine the sending mode of sending the message 3 according to the message 2 and at least one of the configuration information, the downlink signal, and the SSB signal. Or the terminal device may determine the sending mode of the message 3 according to at least one of the configuration information, the downlink signal, and the SSB signal.
  • the terminal device After receiving the instruction, the terminal device sends message 3 in an agreed manner according to the content agreed in the instruction.
  • the base station receives the message 3 sent by the base station in an agreed manner according to the agreed content.
  • the terminal device selects a corresponding group of random access preambles to send according to whether the terminal device itself supports and needs to perform repeated transmission or diversity transmission of message 3.
  • the base station judges whether to instruct the terminal device to perform repeated transmission or diversity transmission of message 3 according to the random access preamble sent by the terminal device. If the terminal device supports repeated transmission or diversity transmission of message 3, The terminal equipment performs repeated transmission or diversity transmission of message 3 at the corresponding position; if the terminal equipment does not support repeated transmission and/or diversity transmission of message 3, the terminal equipment will not perform repeated transmission or diversity transmission of message 3.
  • the terminal device does not support repeated transmission or diversity transmission of message 3, that is, when the terminal device is an R15 and/or R16 terminal device, a random access preamble that does not support repeated transmission and/or diversity transmission of message 3 is selected.
  • FIG. 10 is a schematic diagram of a method for randomly accessing a preamble packet according to an embodiment of the present application.
  • the non-contention-based random access preambles considered by R15 and/or R16 terminal equipment can be divided into two groups, the first group is random access Preamble packet 1, and the second group is random access preamble packet 2.
  • the random access preamble packet 1 and/or the random access preamble packet 2 are both non-contention-based random access preambles.
  • the terminal equipment of R15 and/or R16 will send non-contention-based random access preambles, ie, random access preamble packet 2 and random access preamble packet 1, to the base station.
  • a random access preamble is selected from the random access preamble packet 2.
  • the random access preamble packet 1 is a contention-based random access preamble, indicating that the terminal device supports repeated transmission or diversity transmission of messages.
  • the random access preamble packet 2 is a non-contention-based random access preamble.
  • the terminal device For the contention-based random access preamble considered by the R15 and/or R16 terminal equipment, after the base station receives the random access preamble belonging to the "contention-based random access preamble considered by the R15 and/or R16 terminal equipment", The terminal device is not instructed to perform repeated transmission or diversity transmission of messages, and no time domain and/or frequency domain resources are reserved for the terminal device to perform repeated transmission or diversity transmission of messages.
  • the contention-based random access preamble considered by the R15 and/or R16 terminal equipment is the contention-based random access preamble.
  • the base station receives the random access preamble that belongs to the "contention-based random access preamble considered by the terminal equipment of R15 and/or R16", it does not instruct the terminal equipment to perform repeated transmission or diversity transmission of the message, and will not provide the terminal equipment for the terminal equipment.
  • the device reserves time domain and/or frequency domain resources for repeated message transmission or diversity transmission.
  • R15 and/or R16 terminal equipment there are two groups of random access preambles provided by the base station or agreed in the communication protocol, and one group is the non-contention-based random access preamble, namely random access preamble group 1 and random access preamble
  • the preamble is grouped 2, and the other group is a random preamble based on contention.
  • random access preambles provided by the base station, of which 2 groups are contention-based random access preambles, namely random access preamble group 1 and "for R15 and/or" Or the contention-based random access preamble considered by the terminal equipment of R16", one group is the non-contention-based random access preamble, that is, the random access preamble packet 2.
  • the terminal equipment of R15 and/or R16 there are two groups of random access preambles provided by the base station or agreed in the communication protocol, and one group is the non-contention-based random access preamble, that is, the random access preamble Group 2, the other group is "contention-based random access preamble considered by terminal equipment of R15 and/or R16".
  • the terminal equipment of R15 and/or R16 selects the random access preamble belonging to the random access preamble group 1, but cannot identify the indication of the base station, thereby avoiding the waste of base station resources.
  • time domain and/or frequency domain resources are reserved for the terminal device to perform message repeated transmission or diversity transmission.
  • the base station does not instruct the terminal device to perform repeated message transmission or diversity transmission, it will not reserve time domain and/or frequency domain resources for the terminal device to perform message repeated transmission or diversity transmission.
  • the non-contention-based random access preambles considered by the R15 and/or R16 terminal equipment can be divided into multiple groups, at least one group is selected as the random access preamble group 1, and the rest are used as random access preambles. Access preamble packet 2.
  • FIG. 11 is a schematic diagram of another method for randomly accessing a preamble grouping provided by an embodiment of the present application.
  • the contention-based random access preambles considered by the R15 and/or R16 terminal equipment can be divided into two groups, the first group is the random access preamble grouping 3. The second group is the random access preamble packet 4 .
  • the random access preamble in random access preamble packet 3 indicates that the terminal equipment supports repeated transmission or diversity transmission of the message.
  • the base station receives the random access preamble in the random access preamble packet 3 sent by the terminal equipment, the base station instructs the terminal equipment to perform repeated transmission or diversity transmission of the message.
  • R17 and/or later terminal equipment after selecting the random access preamble in random access preamble packet 4, R17 and/or later terminal equipment does not perform repeated transmission or diversity transmission of messages.
  • the base station after receiving the random access preamble in random access preamble packet 4, the base station does not instruct the terminal equipment to perform repeated transmission or diversity transmission of messages.
  • the random access preamble packet 3 and/or the random access preamble packet 4 are both contention-based random access preambles. Since the contention-based random access preamble sent by the terminal equipment is randomly selected by the terminal equipment, the base station cannot identify from the random access preamble whether the terminal equipment sending the random access preamble is of R17 and/or later terminal equipment or R15 and / or R16 terminal equipment. For R17 and/or later terminal equipment, the random access preamble in random access preamble packet 3 indicates that the terminal equipment needs to perform repeated transmission or diversity transmission of message 3, and the random access preamble in random access preamble packet 4 indicates that The terminal equipment does not need to perform repeated transmission or diversity transmission of message 3.
  • the base station When the base station receives the random access preamble belonging to the random access preamble packet 3, it instructs the terminal device to perform repeated transmission or diversity transmission of the message; when the base station receives the random access preamble belonging to the random access preamble packet 4, it does not indicate The terminal equipment performs repeated transmission or diversity transmission of messages.
  • the terminal equipment of R15 and/or R16 will send a non-contention-based random access preamble to the base station.
  • the non-contention-based random access preamble considered by the terminal equipment of R15 and/or R16 is the non-contention-based random access preamble.
  • the terminal equipment of R17 and/or later will send the "non-contention-based random access preamble considered by the terminal equipment of R15 and/or R16" to the base station.
  • R15 and/or R16 terminal equipment there are two groups of random access preambles provided by the base station, one group is non-contention-based random access preamble, and the other group is contention-based random access preamble, that is, random access Preamble packet 4 and random access preamble packet 3.
  • R17 and/or later terminal equipment there are three groups of random access preambles provided by the base station, two of which are contention-based random access preambles, namely random access preamble group 3 and random access preamble group 4, Group 1 is a non-contention based random access preamble.
  • R15 and/or R16 terminal equipment there are two groups of random access preambles provided by the base station, one group is non-contention-based random access preambles, and the other group is contention-based random access preambles.
  • the preamble that is, the random access preamble packet 4 .
  • the terminal equipment of R15 and/or R16 selects the random access preamble in the random access preamble packet 3, but cannot identify the indication of the base station, thereby avoiding the waste of base station resources.
  • the contention-based random access preambles considered by the R15 and/or R16 terminal equipment can be divided into multiple groups, at least one group is selected as the random access preamble group 3, and the rest are used as random access preambles. Enter the leading group 4.
  • the grouping method includes: randomly selecting at least one random access preamble for grouping, and fixedly selecting at least one random preamble Grouping is performed, and random access preambles are grouped in parity order.
  • time domain and/or frequency domain resources are reserved for the terminal device to perform message repeated transmission or diversity transmission.
  • the base station does not instruct the terminal equipment to perform repeated message transmission or diversity transmission, it will not reserve time domain and/or frequency domain resources for the terminal equipment to perform message repeated transmission or diversity transmission.
  • the base station instructs the terminal equipment to perform repeated transmission or diversity transmission of the message includes: the base station instructs through system information.
  • the terminal device Before the terminal device transmits data through the network, it first needs to access the network through the base station.
  • the terminal device needs to obtain the frequency and/or time synchronization in the downlink direction of the base station through the cell search (Cell Search) and then detect the cell identification number (Cell ID).
  • Cell Search the cell search process
  • the terminal device obtains the primary synchronization signal (PSS) and secondary synchronization signal (SSS) of the cell, and receives and demodulates the physical broadcast channel (Physical Broadcast Channel, PBCH) to obtain system information.
  • PSS primary synchronization signal
  • SSS secondary synchronization signal
  • PBCH Physical Broadcast Channel
  • the primary synchronization signal, the secondary synchronization signal, and the physical broadcast channel constitute an SSB.
  • the base station periodically sends the SSB in the downlink direction.
  • the system information includes a master information block (Master Information Block, MIB), in which the 24-bit information from the upper layer is used to indicate the system frame number, the subcarrier spacing of the SSB, etc., and the 8-bit information from the physical layer.
  • MIB Master Information Block
  • 3-bit information can be used to indicate the sync block index (SSB Index).
  • the synchronization signal block can be used to instruct the terminal device to perform repeated transmission or diversity transmission of the message.
  • One way of bearing is ⁇ SSB index, K ⁇ , where K represents the number and/or mode of repeated transmission or diversity transmission of the message.
  • K represents the number and/or mode of repeated transmission or diversity transmission of the message.
  • the terminal equipment performs repeated sending of messages, and K identifies the number of repeated sending of messages at this time.
  • K identifies the way of message diversity transmission.
  • the message can be sent by frequency hopping or without frequency hopping.
  • the network device can specify the frequency offset of frequency hopping, or specify the repeating time interval, which can be a symbol in a time slot. interval, which can also be a slot interval. Therefore, the frequency hopping offset and/or the repetition time interval can be configured in the system information.
  • the base station may also configure any one or more of the two parameters of frequency hopping offset and repetition time interval in the RAR.
  • the time interval in the present application is the difference between the initial time slots of two message transmissions.
  • the time interval for instructing the terminal device to send may be related to the uplink and downlink configuration.
  • the base station instructs the terminal device to perform repeated transmission or diversity transmission of the message includes: the base station instructs by the information in the RAR.
  • FIG. 12 is a schematic diagram of configuration information carried in time calibration provided by an embodiment of the present application.
  • the base station will continuously detect the received signal of the PRACH channel, and when the base station receives the random access preamble, it determines the best beam received by the terminal device. After receiving the random access preamble, the base station will send the corresponding RAR through the PDCCH and/or the Physical Downlink Shared Channel (PDSCH). Among them, RAR contains the time calibration value (Timing Advance Command, TAC) of uplink transmission.
  • TAC Timing Advance Command
  • the terminal device After sending the random access preamble, the terminal device will start the random response receiving window (ra-Response Window), monitor the PDCCH channel and detect DCI at the same time. After the DCI detection is successful, the terminal device obtains the information contained in the RAR.
  • the system information may indicate the number of data bits useful to the TAC, or indicate the data bits of the relevant information for repeated transmission or diversity transmission of message 3, and the range of values configured under different data bits. For example, the data bits indicating the number of repetitions in the system information start from k1, and the number of occupied data bits is k2. Or the protocol directly specifies the number of data bits of the relevant information and the relevant value.
  • the base station may also indicate through the header information in the RAR.
  • a new header identifier 1 may be defined in the random access response, and all relevant information of repeated transmission or diversity transmission is placed in the random access response corresponding to the header identifier 1.
  • FIG. 13 is a schematic diagram of a terminal device side architecture in the random access method provided by the present application.
  • Figure 13 (A) shows a system architecture on the side of a terminal device, including: the terminal device measures SSB, selects random access resources (including selecting random access preambles), sends message 1, receives message 2, sends message 3, Receive message 4.
  • the random access method of the system architecture on the terminal side is shown in (A) of FIG. 13 .
  • the random access preamble grouping method shown in FIG. 11 that is, “the non-contention-based random access preamble considered by the terminal equipment of R15 and/or R16 can be divided into two groups, the first group is the random access preamble Group 1, the second group is random access preamble packet 2".
  • random access is selected from the "contention-based random access preamble considered by terminal equipment for R15 and/or R16" when selecting random access resources Preamble; when the terminal equipment is R17 and/or later terminal equipment, when selecting random access resources, select the random access preamble from the "contention-based random access preamble considered by the terminal equipment of R15 and/or R16".
  • the base station receives the random access preamble belonging to the "contention-based random access preamble considered by the terminal equipment of R15 and/or R16", regardless of whether the terminal equipment is R17 and/or later terminal equipment or R15 and/or R16
  • the terminal equipment does not instruct the terminal equipment to perform repeated transmission or diversity transmission of message 3, and does not reserve resources for repeated transmission or diversity transmission of message 3.
  • Figure 13 (B) shows a terminal-side system architecture, including: terminal equipment measuring SSB, selecting random access resources (including selecting random access preambles), sending message 1, receiving message 2, repeating transmission or diversity transmission Message 3, receive message 4.
  • the random access method of the system architecture on the terminal side is shown in (B) of FIG. 10 .
  • the random access preamble grouping method shown in FIG. 3 that is, “the non-contention-based random access preamble considered by the terminal equipment of R15 and/or R16 can be divided into two groups, the first group is the random access preamble Group 1, the second group is random access preamble packet 2".
  • contention-based random access is initiated for R15 and/or R16 terminal equipment, random access is selected from the "contention-based random access preamble considered by terminal equipment for R15 and/or R16" when selecting random access resources leading.
  • the terminal device is R17 and/or later, when selecting random access resources, the random access preamble is selected from the "random access preamble group 1".
  • the base station receives the random access preamble that belongs to the "contention-based random access preamble considered by the terminal equipment of R15 and/or R16" sent by the terminal equipment, and does not instruct the terminal equipment to perform repeated transmission or diversity transmission of message 3. If the base station receives the random access preamble belonging to "random access preamble packet 1", it instructs the terminal device to perform repeated transmission or diversity transmission of message 3, and reserves resources for the repeated transmission or diversity transmission of message 3.
  • the contention-based random access preamble considered by the terminal equipment of R15 and/or R16 can be divided into two groups, and the first group is the random access preamble grouping. 3. The second group is the random access preamble packet 4".
  • the random access method of the system architecture on the terminal side is shown in (A) of FIG. 10 .
  • the random access preamble selects the random access preamble from "Random Access Preamble Packet 4"; when the terminal equipment is R17 and/or later
  • a random access preamble is selected from the "random access preamble packet 4".
  • the base station When the base station receives the random access preamble belonging to "random access preamble packet 4" sent by the terminal equipment, it does not instruct the terminal equipment to perform repeated transmission or diversity transmission of message 3, and does not reserve resources for repeated transmission or diversity transmission of message 3. .
  • the random access method of the system architecture on the terminal side is shown in (B) of FIG. 13 .
  • Random Access Preamble Packet 4 When initiating contention-based random access for R15 and/or R16 terminal equipment, when selecting random access resources, select the random access preamble from "Random Access Preamble Packet 4"; when the terminal equipment is R17 and/or later When selecting a random access resource when a terminal device is used, select a random access preamble from the "random access preamble packet 3".
  • the base station When the base station receives the random access preamble belonging to the "random access preamble packet 3" sent by the terminal equipment, it instructs the terminal equipment to perform repeated transmission or diversity transmission of message 3, and reserves resources for the repeated transmission or diversity transmission of message 3.
  • the terminal device when the terminal device needs to repeatedly send or diversity send message 3, when the R15 and/or R16 terminal device initiates contention-based random access, when selecting random access resources, it can also be selected from the "random access preamble" Group 3" selects the random access preamble.
  • R17 and/or later terminal equipment when the base station instructs the terminal equipment to perform repeated transmission or diversity transmission of message 3, R17 and/or later terminal equipment can obtain the base station's instructions to repeat transmission or diversity transmission of message 3, R15 and/ Or the R16 terminal equipment cannot recognize the indication of the base station, and thus cannot repeatedly transmit or diversity transmit message 3.
  • FIG. 14 is a schematic diagram of a base station side architecture in the random access method provided by the present application.
  • Figure 14 (A) shows a random access method of a terminal-side system architecture, including: the base station sends SSB, receives message 1, sends message 2, receives message 3, and sends message 4.
  • the random access method of the system architecture on the base station side is shown in (A) of FIG. 14 .
  • the base station receives the random access preamble belonging to the “contention-based random access preamble considered by the terminal equipment of R15 and/or R16”, regardless of whether the terminal equipment is R17 and R16 /or the terminal equipment in the future is still the terminal equipment of R15 and/or R16, neither instructs the terminal equipment to perform repeated transmission or diversity transmission of message 3, and does not reserve resources for repeated transmission or diversity transmission of message 3.
  • FIG. 14 (B) shows a random access method of a terminal-side system architecture, including: the base station sends SSB, receives message 1 , sends message 2 , receives multiple messages 3 , and sends message 4 .
  • the random access method of the system architecture on the base station side is shown in (B) of FIG. 14 .
  • the base station receives the random access preamble belonging to "random access preamble group 1", and knows that the terminal equipment belongs to R17 and/or later terminal equipment, indicating that R17 and / or future terminal equipment to perform repeated transmission or diversity transmission of message 3, and reserve resources for the repeated transmission or diversity transmission of message 3 of R17 and/or later terminal equipment, within the corresponding time domain and/or frequency domain window Receive multiple messages 3 sent by R17 and/or later terminal devices.
  • the base station receives the random access preamble belonging to "random access preamble packet 4", regardless of whether the terminal equipment is R17 and/or later terminal equipment or R15 and/or R16 terminal equipment, it does not instruct the terminal equipment to repeat message 3 Transmission or diversity transmission, no resources are reserved for repeated transmission or diversity transmission of message 3.
  • the base station receives the random access preamble belonging to "random access preamble packet 3", and learns that the terminal equipment belongs to R17 and/or later terminal equipment, and instructs R17 and/or later terminal equipment to perform repeated transmission or diversity of message 3 Send, and reserve resources for the repeated transmission or diversity transmission of R17 and/or later terminal equipment message 3, and receive multiple messages sent by R17 and/or later terminal equipment in the corresponding time domain and/or frequency domain window 3.
  • the terminal device when the terminal device needs to repeatedly send or diversity send message 3, when the R15 and/or R16 terminal device initiates contention-based random access, when selecting random access resources, it can also be selected from the "random access preamble" Group 3" selects the random access preamble, at this time the base station receives the random access preamble belonging to the "random access preamble group 3", instructing the terminal equipment to perform repeated transmission and/or diversity transmission of message 3, and is the terminal equipment message
  • the repeated transmission or diversity transmission of 3 reserves resources, and receives multiple messages 3 sent by the terminal device in the corresponding time domain and/or frequency domain window.
  • the term "when” may be interpreted to mean “if” or “after” or “in response to determining" or “in response to detecting" depending on the context.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了一种随机接入方法。在该方法中,通过对随机接入前导分组,电子设备从分组后的随机接入前导中选择随机接入前导,并接收基站对电子设备重复发送或分集发送消息3的指示,使得电子设备在随机接入过程中重复发送或分集发送消息3。实施本申请提供的技术方案,可以有效提高基站检测到消息3的概率,提高了上行信号的覆盖性能,减少了基站资源的浪费。

Description

一种随机接入方法 技术领域
本申请涉及通信领域,尤其涉及终端设备和基站的一种随机接入方法。
背景技术
终端设备获取基站下行同步后,终端设备会获得发起随机接入所需要的系统信息。终端设备通过随机接入过程获得基站的上行同步。随机接入过程可以分为基于竞争的随机接入和基于非竞争的随机接入。基于竞争的随机接入是在终端设备没有取得上行同步或者丧失上行同步,并且终端设备相互之间没有协调时的随机接入。基于非竞争的随机接入是在终端设备有一定协调时的随机接入。基于竞争的随机接入过程通常分为4步,每一步对应一个消息:包括消息1、消息2、消息3、消息4。由于无线通信环境复杂,为了提高随机接入过程的鲁棒性、提高上行信号的覆盖性能、降低复杂环境下的时延,有必要求终端设备进行消息的重复发送或分集发送。
发明内容
本申请实施例提供了一种随机接入方法,终端设备可以重复发送和/分集发送消息3,有效提高了上行信号的覆盖性能,降低复杂环境下的时延。
第一方面,基站发送下行信号、随机接入配置信息、下行信号与随机接入前导的关联信息中的至少一个;随机接入配置信息用于指示将所述随机接入前导分为N组随机接入前导,关联信息用于指示下行信号与N组随机接入前导的关联;N为大于1的整数;基站接收终端设备重复发送或分集发送的消息3。基站接收终端设备发送的所述随机接入前导。基站发送随机接入响应;基站接收所述终端设备发送的消息3;其中,随机接入配置信息和/或所述关联信息还用于确定N组随机接入前导与终端设备发送消息3的方式的对应关系。
下行信号与随机接入前导的关联信息包括:一个随机接入时机中包含N组随机接入前导;其中,一个所述下行信号关联N中的每一组随机接入前导中的所有随机接入前导,或者M个所述下行信号依次关联所述N中的每一组随机接入前导中的随机接入前导,所述M为大于1的整数。
其中,消息3的发送方式包括:消息3的重复发送、消息3的跳频发送、消息3的分集发送。
实施第一方面提供的方法,基站可以在系统信息中承载随机接入配置信息的全部或部分用于指示终端设备重复发送或分集发送的消息3;基站可以在随机接入响应中承载随机接入配置信息的全部或部分用于指示终端设备重复发送或分集发送的消息3。
配置信息可以用于确定重复发送消息3的重复次数,重复次数可以为2、4、8、16、32中的任一个。配置信息可以用于确定下行接收信号的接收门限,其中,下行接收信号的接收门限为同步信号/物理广播信道块的接收信号功率的门限。
具体的,系统信息中跳频的频率偏移,也可以规定重复发送的时间间隔,该时间间隔可以是一个时隙内的符号间隔,也可以是时隙间隔。本发明中的时间间隔为两次消息3传 输的起始时隙之差。
具体的,也可以在随机接入响应中配置跳频偏移和重复的时间间隔这两个参数中的任意一个或多个。
具体的,随机接入响应指示消息3的重复发送或分集发送可以用时间校准部分数据比特进行指示。当终端设备不需要重复发送或分集发送消息3的情况下,即基站接收到的随机接入前导不属于指示消息3重复发送或分集发送的随机接入前导,此时时间校准中用于承载指示信息的数据比特的值可以被设为0。时间校准中的部分数据比特可以用来指示终端设备重复发送或分集发送的相关信息,其中,相关信息包括重复次数、不同重复次数的频率偏移、不同重复次数之间的时间间隔中的部分或全部信息。系统信息可以指示时间校准中有用的数据比特数目或者指示MSG3相关信息的数据比特或协议直接规定相关信息的数据比特数目及相关的值。
具体的,随机接入响应指示消息3的重复发送或分集发送可以用随机响应中的字头进行指示,包括,基站可以通过使用随机接入响应所对应的一个字头用于承载指示,其中,字头可以与随机接入前导进行绑定;基站也可以通过重新定义一个字头标识,所有相关信息都放在该字头所对应的随机接入响应中。
第二方面,本申请提供了一种随机接入方法,应用于终端设备。该方法包括:在终端设备需要重复发送或分集发送消息3的情况下,终端设备发送第一随机接入前导,其中,第一随机接入前导是从多组随机接入前导中的特定组选择出来的,多组随机接入前导是对基于非竞争的随机接入前导进行分组或对基于竞争的随机接入前导进行分组后的多组随机接入前导,特定组为基于非竞争的随机接入前导分组中的至少一组或为基于竞争的随机接入前导分组中的至少一组;终端设备接收指示,其中,指示用于指示终端设备重复发送或分集发送消息3的方式和/或指示终端设备重复发送或分集发送消息3的时域和/或频域资源位置;终端设备重复发送或分集发送消息3。
下行信号与随机接入前导的关联信息包括:一个随机接入时机中包含N组随机接入前导;其中,一个所述下行信号关联N中的每一组随机接入前导中的所有随机接入前导,或者M个所述下行信号依次关联所述N中的每一组随机接入前导中的随机接入前导,所述M为大于1的整数。
实施第二方面提供的方法,终端设备可以在系统信息中获取基站发送的指示;终端设备可以在同步信号块索引中获取基站发送的指示;终端设备可以在随机接入响应中获取基站发送的指示。终端设备在获取基站发送的基站指示后,按照指示指定的重复发送或分级发送方式、以及指示指定的时域和/或频域资源上,重复发送或分级发送消息3。
具体的,系统信息中指示消息3的重复发送或分集发送可以在系统信息中规定重复发送或分集发送跳频的频率偏移,也可以规定重复发送或分集发送的时间间隔,该时间间隔可以是一个时隙内的符号间隔,也可以是时隙间隔。本发明中的时间间隔为两次消息3传输的起始时隙之差。
具体的,同步信号块索引中指示消息3的重复发送或分集发送可以用同步信号块索引进行绑定进行通知,一种通知的方式是{SSB index,K},其中K可以表示消息3的重复发送的次数或分集发送方式和次数。终端设备通过读取K值,获取终端设备重复发送或分集 发送消息3的相关信息。
具体的,随机接入响应指示消息3的重复发送或分集发送可以用时间校准部分数据比特进行指示。当终端设备不需要重复发送或分集发送消息3的情况下,即基站接收到的随机接入前导不属于特定组,此时时间校准中用于承载指示信息的数据比特的值可以被设为0。当终端设备需要重复发送或分集发送消息3的情况下,即终端从特定组中选择随机接入前导进行发送,即终端设备发送第一随机接入前导,基站在收到第一随机接入前导后,判断第一随机接入前导属于特定组,得知终端设备需要重复发送或分集发送消息3,此时时间校准中的部分数据比特可以用来指示终端设备重复发送或分集发送的相关信息,其中,相关信息包括重复次数、不同重复次数的频率偏移、不同重复次数之间的时间间隔中的部分或全部信息。
具体的,随机接入响应指示消息3的重复发送或分集发送可以用随机响应中的字头进行指示,包括,终端设备可以在随机接入响应所对应的一个字头获取指示,其中,字头可以与随机接入前导进行绑定;基站也可以通过重新定义一个字头标识,所有相关信息都放在该字头所对应的随机接入响应中,并将该字头标识的相关信息在指示发送前与终端设备进行约定,终端设备在基站新定义的字头标识对应的随机接入响应中获取指示。
具体的,也可以在随机接入响应中配置跳频偏移和重复的时间间隔这两个参数中的任意一个或多个。
结合第二方面,在一些实施例中,准备发起随机接入方法的终端设备中,有部分终端设备不支持消息3的重复发送或分级发送,即在随机接入响应过程中不会选择第一随机接入前导作为消息1发送。对应的,部分终端设备支持消息3的重复发送或分集发送,并且根据信道损耗、发射功率、接收功率等参数认为有必要重复发送或分集发送消息3时,选择第一随机接入前导作为消息1发送。对应的支持消息3的重复发送或分集发送的终端设备,可以选择不重复发送或分集发送消息3,即不选择第一随机接入前导作为消息1发送,选择特定组外的随机接入前导作为消息1发送。
第三方面,本申请提供了一种随机接入方法,应用于终端设备和基站。
在终端设备需要重复发送或分集发送消息3的情况下,终端设备发送第一随机接入前导,其中,第一随机接入前导是从多组随机接入前导中的特定组选择出来的,多组随机接入前导是对基于非竞争的随机接入前导进行分组或对基于竞争的随机接入前导进行分组后的多组随机接入前导,特定组为属于基于非竞争的随机接入前导分组中的至少一组或为属于基于竞争的随机接入前导分组中的至少一组;基站接收终端设备发送的第一随机接入前导,其中,由于第一随机接入前导属于特定组,基站得知终端设备需要进行重复发送或分集发送消息3;基站发送指示,指示用于指示终端设备重复发送或分集发送消息3的方式;终端设备接收指示,其中,指示用于指示所述终端设备重复发送或分集发送消息3的方式和/或指示所述终端设备重复发送或分集发送消息3的时域和/或频域资源位置;所述终端设备重复发送或分集发送消息3。
下行信号与随机接入前导的关联信息包括:一个随机接入时机中包含N组随机接入前导;其中,一个所述下行信号关联N中的每一组随机接入前导中的所有随机接入前导,或者M个所述下行信号依次关联所述N中的每一组随机接入前导中的随机接入前导,所述M 为大于1的整数。
其中,消息3的发送方式包括:消息3的重复发送、消息3的跳频发送、消息3的分集发送。
实施第三方面提供的方法,终端设备可以在系统信息中获取基站发送的指示;终端设备可以在同步信号块索引中获取基站发送的指示;终端设备可以在随机接入响应中基站发送的指示。对应的,基站可以在系统信息中指示终端设备重复发送或分集发送的消息3;基站可以在同步信号块索引中指示终端设备重复发送或分集发送的消息3;基站可以在随机接入响应中指示终端设备重复发送或分集发送的消息3。终端设备在获取基站发送的基站指示后,按照指示指定的重复发送或分级发送方式、以及指示指定的时域和/或频域资源上,重复发送或分级发送消息3。对应的,基站在发送指示后,会在对应的时域和/或频域资源,以对应的方式解调读取终端设备发送的消息3。
具体的,系统信息中指示消息3的重复发送或分集发送可以在系统信息中规定重复发送或分集发送跳频的频率偏移,也可以规定重复发送或分集发送的时间间隔,该时间间隔可以是一个时隙内的符号间隔,也可以是时隙间隔。本发明中的时间间隔为两次消息3传输的起始时隙之差。
具体的,同步信号块索引中指示消息3的重复发送或分集发送可以用同步信号块索引进行绑定进行通知,一种通知的方式是{SSB index,K},其中K可以表示消息3的重复发送的次数或分集发送方式和次数。终端设备通过读取K值,获取终端设备重复发送或分集发送消息3的相关信息。
具体的,随机接入响应指示消息3的重复发送或分集发送可以用时间校准部分数据比特进行指示。当终端设备不需要重复发送或分集发送消息3的情况下,即基站接收到的随机接入前导不属于特定组,此时时间校准中用于承载指示信息的数据比特的值可以被设为0。当终端设备需要重复发送或分集发送消息3的情况下,即终端从特定组中选择随机接入前导进行发送,即终端设备发送第一随机接入前导,基站在收到第一随机接入前导后,判断第一随机接入前导属于特定组,得知终端设备需要重复发送或分集发送消息3,此时时间校准中的部分数据比特可以用来指示终端设备重复发送或分集发送的相关信息,其中,相关信息包括重复次数、不同重复次数的频率偏移、不同重复次数之间的时间间隔中的部分或全部信息。
具体的,随机接入响应指示消息3的重复发送或分集发送可以用随机响应中的字头进行指示,包括,终端设备可以在随机接入响应所对应的一个字头获取指示,其中,字头可以与随机接入前导进行绑定;基站也可以通过重新定义一个字头标识,所有相关信息都放在该字头所对应的随机接入响应中,并将该字头标识的相关信息在指示发送前与终端设备进行约定,终端设备在基站新定义的字头标识对应的随机接入响应中获取指示。
第四方面,本申请实施例提供一种基站,基站包括存储器以及耦合与所述存储器的处理器,以及一个或多个程序,当上述程序在基站上运行时,使得基站执行如第一方面以及第一方面任一可能的实现方式描述的方法。
第五方面,本申请实施例提供一种终端设备,终端设备包括存储器以及耦合与所述存储器的处理器,以及一个或多个程序,当上述程序在终端设备上运行时,使得终端设备执 行如第二方面以及第二方面任一可能的实现方式描述的方法。
第六方面,本申请实施例提供一种计算机可读存储介质,包括指令,当上述指令在基站上运行时,使得基站执行如第一方面以及第一方面任一可能的实现方式描述的方法。
第七方面,本申请实施例提供一种计算机可读存储介质,包括指令,当上述指令在终端设备上运行时,使得终端设执行备如第二方面以及第二方面任一可能的实现方式描述的方法。
附图说明
图1是本申请涉及的一种随机接入系统的结构示意图;
图2示出了图1中的基站和终端设备的架构;
图3是本申请涉及的一种随机接入过程的示意图;
图4是本申请实施例提供的一种随机接入方法示意图;
图5是本申请实施例提供的一种随机接入场景示意图;
图6是本申请实施例涉及的配置信息中字段指示方法;
图7是本申请实施例涉及的下行信号的门限与是否重复发送的关系示意图;
图8和图9为本申请实施例提供的随机接入前导组与随机接入时间的关系示意图;
图10是本申请实施例提供的一种随机接入前导分组的方法示意图;
图11是本申请实施例提供的另一种随机接入前导分组的方法示意图;
图12是本申请实施例提供的承载于时间校准中的配置信息示意图;
图13是本申请实施例提供的随机接入方法中终端设备侧架构示意图;
图14是本申请实施例提供的随机接入方法中基站侧架构示意图。
具体实施方式
本申请以下实施例中所使用的术语只是为了描述特定实施例的目的,而并非旨在作为对本申请的限制。如在本申请的说明书和所附权利要求书中所使用的那样,单数表达形式“一个”、“一种”、“上述”、“该”和“这一”旨在也包括复数表达形式,除非其上下文中明确地有相反指示。还应当理解,本申请中使用的术语“和/或”是指并包含一个或多个所列出项目的任何或所有可能组合。
以下,术语“第一”、“第二”、“分组1”、“分组2”仅用于描述目的,而不能理解为暗示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征,在本申请实施例的描述中,除非另有说明,“多个”的含义是两个或两个以上。在本申请实施例的描述中,除非另有说明,重复发送或分集发送的含义包括:发送至少一次消息,不同发送次数之间的发送方式可以是相同的发送方式,也可以是不同的发送方式,其中发送方式在本申请具体的实施例中,包括:频率分集、编码分集等分集方式。
为了便于理解,下面先对本申请实施例涉及的相关术语以及相关概念进行介绍。
QCL关系:准共址(quasi co-located,QCL)关系,本申请中的关联与也可以称为映射,对应,相关。当两个信号之间具有QCL的时候,即可以采用相同的时延扩展、相同的多普勒扩展、相同的平均增益、相同的平均时延、相同的空域参数发送或接收信号和采用相同的波束发送或接收信号至少一项。准共址的参数包含:多普勒扩展,多普勒频移,平均时延,时延扩展和空域接收参数中的至少一项。可以将QCL关系分为四类:'QCL-TypeA':{多普勒频移,多普勒扩展,平均时延,时延扩展};'QCL-TypeB':{多普勒频移,多普勒扩展};'QCL-TypeC':{多普勒频移,平均时延};'QCL-TypeD':{空域接收参数}。在选取QCL关系参数的时候,可以任意选取,例如选取平均增益和'QCL-TypeD'。
波束:波束在NR协议中的体现可以是空域滤波器(spatial domain filter),或者称空间滤波器(spatial filter)或空间参数(spatial parameter)。用于发送信号的波束可以称为发送波束(transmission beam,Tx beam),可以称为空域发送滤波器(spatial domain transmission filter)或空间发射参数(spatial transmission parameter);用于接收信号的波束可以称为接收波束(reception beam,Rx beam),可以称为空域接收滤波器(spatial domain receive filter)或空间接收参数(spatial RX parameter)。
发送波束可以是指信号经天线发射出去后在空间不同方向上形成的信号强度的分布,接收波束可以是指从天线上接收到的无线信号在空间不同方向上的信号强度分布。
此外,波束可以是宽波束,或者窄波束,或者其他类型波束。形成波束的技术可以是波束赋形技术或者其他技术。波束赋形技术具体可以为数字波束赋形技术、模拟波束赋形技术或者混合数字/模拟波束赋形技术等。
波束在终端与基站的通信过程中,以参考信号的方式体现,该参考信号为SSB。在本方面中,波束的索引也为SSB的索引。其他信号参考SSB的索引进行发送和/或接收。其他信号包括系统消息的发送、RAR发送、PARCH的接收。参考SSB的索引的其他信号,其他信号与参考SSB采取相同的波束。例如,采用第一个波束发送SSB,记为索引为1的SSB,那所以索引1的SSB对应的系统消息、PARCH、消息2、消息3、消息4都是采用波束1发送和/或接收的。
波束一般和资源或信号对应,例如进行波束测量时,网络设备通过不同的资源来测量不同的波束,终端设备反馈测得的资源质量,网络设备就知道对应的波束的质量。在数据传输是,波束信息也是通过其对应的资源来进行指示的。例如网络设备通过下行控制信息的TCI中资源,来指示终端设备物理下行共享信道波束的信息。
可选地,将具有相同或者类似的通信特征的多个波束视为是一个波束。一个波束内可以包括一个或多个天线端口,用于传输数据信道、控制信道和探测信号等。形成一个波束的一个或多个天线端口也可以看作是一个天线端口集。
在本申请实施例中,若未做出特别说明,波束是指网络设备的发送波束。在波束测量中,网络设备的每一个波束对应一个资源,因此可以以资源的索引来唯一标识该资源对应的波束。波束再标准中可以使用QCL关系进行表示。
系统信息块:包含系统信息块(system information block,SIB),一个小区中有多个系统信息块,这些系统信息块承载的信息不相同,例如SIB1,主要承载一些小区的本身的配置信息,例如随机接入的配置信息,物理下行控制信道相关的信息,其他信息块相关 的信息,UE接入小区的信息,小区的标识信息等信息。系统信息块包括系统信息块的PBCH信息、系统信息块的PDSCH。物理下行控制信道主要调度物理下行共享信道的时域、频域资源位置。
下行信号:下行信号是基站发给终端的信号。可以是同步信号块(synchronization signal block,SS block)、信道状态信息参考信号(channel state information reference signal,CSI-RS)、参考信号、系统信息中的至少一种。本发明中实施例主要考虑下行信号为同步信号块的情况,当下行信号为“CSI-RS”时,可以与以上实施例完全相同的方法,即可以实施例中可以把“同步信号块”替换成“CSI-RS”。
同步信号块:SSB(Synchronization Signal block,同步信号块)也可以称为SS(Synchronization Signal,同步信号)/PBCH(Physical broadcast channel,物理广播信道)block,SS/PBCH block中包含以下至少一项,主同步信号(Primary Synchronization signal,PSS)、辅同步信号(Secondary Synchronization signal,SSS),物理广播信道(Physical broadcast channel,PBCH)、解调参考信号(Demodulationed Reference Signal,DMRS)。SS/PBCH block也可以称为SSB/PBCH block,SS/PBCH block或者SSB/PBCH block里的信号可以是相同的天线端口。在终端设备发送随机接入前导前,在5G使用波束赋形的情况下,终端设备首先要探测并挑选一个波束用于随机接入。通过高层参数ssb-perRACH-OccasionAndCB-PremblesPreSSB为终端设备提供与物理随机接入信道(Physical Random Access Channel,PARCH)发送时机关联的N个同步信号块(Synchronization Signal and PBCH block,SSB)以及每个SSB的R个基于竞争的PARCH前导数量。如果N小于1,则SSB映射到1/N连续的PRACH发送时机。如果N大于1,则R个具有连续索引(从索引
Figure PCTCN2020121706-appb-000001
开始)的基于竞争的随机接入前导和SSBn关联,其中,
Figure PCTCN2020121706-appb-000002
是该随机接入时机上用于随机接入的随机接入前导数量,
Figure PCTCN2020121706-appb-000003
由高层参数totalNumberOfRA-Preambles配置。
关联周期:一个SSB的周期内有K1个SSB,关联周期包含一个或多个配置周期,一个随机接入配置周期包含一个或多个随机接入时机,关联周期内的所有随机接入时机将K1个SSB关联完。
物理上行控制信道(Physical Uplink Control Channel,PUCCH)用于传送终端设备发送给基站的上行控制信息,包括调度请求信息(Scheduling Request,SR)和信道状态信 息(Channel State Information,SI)等信息。
发送功率,也称为输出功率。可以定义为在给定时间和/或周期内,在所支持的全部或者部分频率或者频段或者带宽上测量得到的输出功率。例如测量的时间至少为1ms,再例如测量的时间至少为与某个子载波间隔对应的一个时隙。在一种实施例中,使用测量的时间为至少1ms所获取的功率。
分集发送方法包括:闭环、开环。闭环包括:接收端使用向发送端反馈其期望的预编码信息,发送端根据接收端的反馈对发送的数据和参考信号进行预编码处理。开环包括:发送端对发送的数据和参考信号进行预编码处理不是根据接收端设备的反馈进行的。对于上行开环传输来说,发送端为终端,接收端为基站;对于下行开环传输来说,接收端为终端,发送端为基站。随机接入(random access,RA):在LTE或5G有接入控制的通信系统中,用于未接入网络的设备与网络建立连接的信息交互机制(或者过程)。由于随机接入过程由随机接入信道(random access channel,RACH)承载,协议和口语中也常将RA和RACH混用。分为基于竞争的随机接入和非竞争的随机接入。基于竞争的随机接入通常分为4步,每一步对应一个消息:包括消息1、消息2、消息3、消息4,分别承载不同的信令或者信息。基于非竞争的随机接入只有前2步。另外,为了降低4步基于竞争的随机接入的接入时间,进一步有2步随机接入。在2步随机接入中,由消息A和消息B两个组成,其中消息A中包括前导和第一个数据信息(例如类似4步随机接入中的消息1和消息3),消息B中包括竞争解决以及上行调度(例如类似4步随机接入中的消息2和消息4)。
随机接入资源配置周期(PRACH configuration period/PRACH period/PRACH density)又称为随机接入周期。随机接入资源配置周期中包含多个时间、频率、前导或序列的随机接入资源,这些资源组成一个随机接入资源图案。随机接入资源配置周期也是随机接入资源图案重复出现的时间间隔。在一个随机接入资源配置周期中的随机接入资源,与一个下行信号集中所有实际传输的下行信号有关联。可以理解,下行信号关联的随机接入资源,以随机接入资源配置周期的时间长度重复出现。
随机接入机会:随机接入机会又称为随机接入资源(RACH resource)、随机接入时机(RACH occasion/RACH opportunity/RACH chance,RO)、随机接入发送机会(RACH transmission occasion),是指用于承载一个或者多个随机接入前导的时间、频率资源。逻辑上,一个随机接入机会用于承载物理随机接入信道(physical random access channel,PRACH)的信息/信号。有时也等效被称为物理随机接入机会(PRACH occasion,RO)、物理随机接入资源(PRACH resource)。
消息1(message 1,Msg1):即随机接入前导(preamble或者sequence),通过物理随机接入信道(physical random access channel,PRACH)承载。通常用于设备与网络之间发起连接请求、切换请求、同步请求、调度请求。
随机接入前导组:也可以理解为随机接入前导集合。一个随机接入前导组包括一个随机接入时机上的至少一个随机接入前导。当随机接入前导组包含N个(N>1)随机接入前导时,该多个随机接入前导是一个随机接入时机上索引号连续的N个随机接入前导。一个随机接入前导组还可以是多个不同的随机接入时机上的N个(N>1)随机接入前导组成的集合。
消息2(message 2,Msg2):也称为随机接入响应(random access response,RAR)消 息。是网络侧对接收到的消息1的回应,一个消息2里面可以回应多个Msg1。对于单个随机接入前导来说,在MAC具有特定的随机接入响应消息。而基站往往将一个随机接入机会上检测到的所有随机接入前导的响应,封装到一起,组成一个Msg2。即终端发送随机接入前导后,则在对应的消息2中搜寻自己发送的随机接入前导对应的随机接入响应消息,且忽略针对其他随机接入前导的响应消息。
如果网络侧接收到了消息1,则将以下至少一个信息封装发送:消息1的索引(random access preamble identity,RAPID)、上行调度授权(uplink grant)、时间提前(timing advance)、临时小区-无线网络临时标识(temporary cell radio network temporary identity,TC-RNTI)等。网络侧可以在同一个Msg2里面,同时针对多个Msg1进行响应。
消息3(message 3,Msg3):也称为第一次上行调度传输,是由消息2中的UL grant调度传输,或者TC-RNTI加扰的DCI调度的重传。Msg3传输内容为高层消息,例如连接建立请求消息(具体可能是发起连接请求用户的标识信息)。该消息的作用是用于竞争解决,如果多个不同设备使用相同Msg1进行随机接入,通过Msg3和Msg4可以共同确定是否有冲突。协议上Msg3的定义:Message transmitted on UL-SCH(uplink shared channel)containing a C-RNTI MAC(Medium access control)CE(control element)or CCCH(Common Control Channel)SDU(Service Data Unit),submitted from upper layer and associated with the UE Contention Resolution Identity,as part of a Random Access procedure。消息3的传输有重传和功率控制(即调度初传或者重传的UL grant中,有功率控制信息)。
消息4(message 4,Msg4):用于竞争解决。通常包含消息3中携带的CCCH SDU,如果设备在消息4中检测到自己发送的CCCH SDU,则认为竞争随机接入成功,继续进行接下来的通信过程。消息4有重传,即有相应的物理上行控制信道(physical uplink control channel,PUCCH)传输反馈信息(是否成功检测到消息4),设备在PUCCH发送反馈信息有功率控制。
终端设备的随机接入过程可以由一系列事件触发如:无线资源控制(Radio Resource Control,RRC)空闲模式下的接入;RRC连接重建过程;小区切换;RRC连接状态下,下行数据到达但上行未同步;RRC连接状态下,需要上行数据但上行数据未同步;终端设备需要从RRC_INACTIVE状态改变为其他状态;需要进行波束管理;需要获得SI信息等。
随机接入前导可以采用Z-C序列产生,每个小区中有L个可用随机接入前导,它们由一个或者多个根长度为139或者893的Z-C(Zadoff-Chu)序列循环移位产生,并映射到特定的时域和频域资源上。其中,L在部分场景中被配置为64。随机接入前导在特定的时频资源上进行传送。无线帧中的PARCH资源由高层提供的PARCH配置索引来进行指示。通过使用不同的符号数量、不同的循环前缀(Cyclic Prefix,CP)及保护时间(Guard Time,GT)可定义多种PRACH前导格式。在终端设备发送随机接入前导前,5G默认使用了波束赋形的情况下,5G终端设备首先要探测并挑选一个波束用于随机接入。在某些随机接入场景中,基站根据需要给终端设备分配的随机接入前导签名,此时随机接入过程为非竞争的随机接入过程;在某些随机接入场景中,终端设备根据小区系统信息中的广播的随机接入参数随机选择接入,此时随机接入过程为竞争的随机接入过程。
由于本申请实施例涉及随机接入,为了便于理解,介绍随机接入过程。参见图1,图1 是本申请涉及的一种随机接入系统的结构示意图。如图1所示,本申请所涉及的场景包含基站和终端设备。其中,基站与终端设备通信。
基站可以是能和终端设备通信的设备。在本申请中,基站可以是基站终端设备、中继站或接入点。基站可以是GSM(Global System for Mobile Communication,全球移动通信系统)或CDMA(Code Division Multiple Access,码分多址)网络中的BTS(Base Transceiver Station,基站收发信台),也可以是WCDMA(Wideband Code Division Multiple Access,宽带码分多址)中的NB(NodeB),还可以是长期演进(Long Term Evolution,LTE)中的eNB或eNodeB(Evolutional NodeB)。基站还可以是CRAN(Cloud Radio Access Network,云无线接入网络)场景下的无线控制器。基站还可以是未来5G网络中的基站终端设备或者未来演进的PLMN网络中的网络终端设备。基站还可以是可穿戴终端设备或车载终端设备。基站也可以为激励器或者为接收器。
终端设备可以是UE(User Equipment,用户设备)、接入终端、UE单元、UE站、移动站、移动台、远方站、远程终端、终端设备、UE终端、终端、无线通信设备、UE代理或UE装置等。终端设备可以是蜂窝电话、无绳电话、SIP(Session Initiation Protocol,会话启动协议)电话、WLL(Wireless Local Loop,无线本地环路)站、PDA(Personal Digital Assistant,个人数字处理)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,未来第五代移动通信技术(5th Generation Mobile Network,5G)网络中的终端设备或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)中的终端设备等。
图2示出了图1中的基站和终端设备的架构。如图2所示,图1中的基站和终端设备的具体架构包括:
如图2中(A)所示,终端设备10包括处理器101、存储器102和收发器103,收发器103包括发射机1031、接收机1032和天线1033。
基站20包括处理器201、存储器202和收发器203,收发器203包括发射机2031、接收机2032和天线2033。接收机1032可以用于通过天线1033接收传输控制信息,发射机1031可以用于通过天线1033向网络终端设备20发送传输反馈信息。发射机2031可以用于通过天线2033向终端设备10发送传输控制信息,接收机2032可以用于通过天线2033接收终端设备10发送的传输反馈信息。
图3是本申请涉及的一种随机接入过程的示意图。在LTE或5G有接入控制的通信系统中,随机接入(random access,RA)是未接入网络的终端设备与基站建立连接的信息交互机制或者过程。随机接入过程分为基于竞争的随机接入(contention based random access,CBRA)和基于非竞争的随机接入(contention free random access,CFRA)。其中,基于竞争的随机接入通常分为4步:
S301:终端设备向基站发送消息1(message 1,Msg1)。相应地,基站接收终端设备发送的消息1。其中消息1:即随机接入前导(preamble或者sequence),通过物理随机接入信道(physical random access channel,PRACH)承载。通常用于终端设备与网络之间发起连接请求、切换请求、同步请求、调度请求等。其中消息1可以包括两种前导,一种是基于竞争的随机接入前导,一种是基于非竞争的随机接入前导。基于竞争的随机接入前导 一般用作随机接入,基于非竞争的随机接入前导一般用作连接态的随机接入。
S302:基站向终端设备发送消息2(message 2,Msg2)。相应地,终端接收基站终端设备发送的消息1。消息2:也称为随机接入响应(random access response,RAR)消息。是网络侧对接收到的消息1的回应,一个消息2里面可以回应多个消息1。如果网络侧接收到了消息1,则将以下至少一个信息封装发送:消息1的索引(random access preamble identity,RAPID)、上行调度授权(uplink grant)、时间校准值(Timing Advance Command,TAC)、临时小区-无线网络临时标识(temporary cell radio network temporary identity,TC-RNTI)等。网络侧可以在同一个消息2里面,同时针对多个消息1进行响应。协议定义随机响应接入窗口(RAR-Window),用来接收消息2,终端设备如果在随机响应接入窗口持续的时间段内接收不到消息2,则认为消息1发送失败。随机接入-无线网络临时标识(RA-radio network temporary identity,RA-RNTI),用来加扰消息2的物理下行控制信道(Physical Downlink Control Channel,PDCCH),终端可以根据RA-RNTI识别到自己的消息2,每一个RA-RNTI与一个RO唯一对应,该RA-RNTI的生成与RO的时频资源位置相关。
S303:终端设备向基站发送消息3(message 3,Msg3)。相应地,基站接收终端设备发送的消息3。消息3:也称为第一次上行调度传输,是由消息2中的UL grant(UP-link grant,上行连接准许资源)调度传输,或者TC-RNTI加扰的下行控制信息(Downlink Control Information,DCI)调度的重传。消息3传输内容为高层消息,例如连接建立请求消息(具体可能是发起连接请求用户的标识信息)。该消息的作用是用于竞争解决,如果多个不同终端设备使用相同消息1进行随机接入,通过消息3和消息4可以共同确定是否有冲突。协议上Msg3的定义:Message transmitted on UL-SCH(uplink shared channel)containing a C-RNTI MAC(Medium access control)CE(control element)or CCCH(Common Control Channel)SDU(Service Data Unit),submitted from upper layer and associated with the Contention Resolution Identity,as part of a Random Access procedure。消息3的传输有重传和功率控制(即调度初传或者重传的UL grant中,有功率控制信息)。
S304:基站向终端设备发送消息4(message 4,Msg4)。相应地,终端接收基站终端设备发送的消息4。消息4:用于竞争解决。通常包含消息3中携带的CCCH SDU,如果终端设备在消息4中检测到自己发送的CCCH SDU,则认为竞争随机接入成功,继续进行接下来的通信过程。消息4有重传,即有相应的物理上行控制信道(physical uplink control channel,PUCCH)传输反馈信息(是否成功检测到消息4),终端设备在PUCCH发送反馈信息有功率控制。
在其他实施例中,为了降低4步基于竞争的随机接入的接入时间,进一步有2步随机接入。在2步随机接入中,由消息A和消息B两个组成,其中消息A中包括前导和第一个数据信息(例如类似4步随机接入中的消息1和消息3),消息B中包括竞争解决以及上行调度(例如类似4步随机接入中的消息2和消息4)。
基于非竞争的随机接入只有前2步,包括S301、S302。
现有技术中,消息3的初传只有一次,初传的资源是由消息2中的上行调度授权(uplink grant,UL grant)调度传输,在UL grant中没有重复发送或分集发送的指示,只有消息3初传的时域位置和频域位置以及调制编码策略等信息。现有技术中,终端设备发送消息3 的这一过程支持混合式自动重送请求(Hybrid Automatic Repeat request,HARQ)。终端设备发送消息3进行HARQ重传需要基站向终端设备发送确认字符(Acknowledge Character,ACK)或否认字符(Negative Acknowledge Character,NACK)。在弱信噪比、信道衰落大等复杂环境下,终端设备发起随机接入过程时,基站不能收到终端设备发送的消息3,导致随机接入失败或者消息3的HARQ重传,使得随机接入过程鲁棒性差、随机接入过程的时延增加。
参见图4,为了解决上述问题,本申请提出一种随机接入方法,能够实现消息3的重复发送或分集发送。为了实现消息3的重复发送或分集发送问题,本申请提出了可以在消息2或者系统信息中指示终端设备可以进行消息3的重复发送或分集发送。本申请技术方案涉及到的重复发送或分集发送消息,能够有效提升基站检测到消息的概率,提高了随机接入过程的鲁棒性,提高上行信号的覆盖性能。
进一步的,但是对于R15和/或R16的终端设备来说,无法识别这种重复发送、重复发送次数或分集发送,而基站没有终端的上报信息是否需要进行消息3的重复发送或分集发送,因此无法判断是否进行消息3的重复发送或分集发送,因此基站会考虑最坏的情况,根据最坏的情况确定全部进行消息3的重复发送或分集发送或全部不进行消息3的重复发送或分集发送。如果全部终端设备都进行消息3的重复发送或分集发送,而部分终端设备的性能本来很好,会造成资源的浪费。
在本申请具体的实施例中,R15和/或R16的终端设备包括使用的通信协议为R15标准和/或R16标准的终端设备、没有与基站有约定重复发送或分集发送的终端设备;R17和/或以后的终端设备包括使用的通信协议为R17标准或以后其他通信协议标准的终端设备、与基站有约定重复发送或分集发送的终端设备。
值得说明的是,与本申请技术方案中涉及到的重复发送消息3不同。本申请技术方案中涉及到的重复发送消息3是指在随机接入过程中,发送多于一次相同的消息3,而无需等待基站返回确认字符或否认字符,降低时延。
图4是本申请实施例提供的一种随机接入方法示意图,图5是本申请实施例提供的一种随机接入场景示意图。
如图4所示,本申请提供的随机接入方法包括:
S401:基站发送配置信息、下行信号,包括:
终端设备接收SSB,根据SSB的参考信号接收功率,确定接收到的参考SSB信号。终端设备根据参考SSB信号去接收基站发送的随机接入配置信息,随机接入的配置信息包含消息3的重复信息或分集发送信息中的至少一项。
随机接入的配置信息指示消息3重复发送或分级发送包括:配置信息中的数据比特进行指示、配置信息中的字段进行指示。
消息3的重复信息包含消息3的重复发送次数和消息3重复发送的指示以及消息3的重复发送条件。消息3的重复发送次数K可以为2、4、8、16、32中的至少一个。
指示消息3的重复发送可以是通过数据比特进行指示。数据比特承载于配置信息中,所述数据比特用于指示消息3的重复发送次数。所述数据比特占据的比特数目可以是1个bit、2个bit、3个bit或4个bit中的任一种。所述数据比特指示消息3的重复发送次 数与数据占据比特范围有关,可以是1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16中的至少一个。
当数据比特占据比特数目为2个bit时,数据比特指示消息3的重复次数为2、4、8、16。例如,数据比特为00的时候消息3的重复次数为2次;数据比特为01的时候,消息3的重复次数为4次;数据比特为10的时候,消息3的重复次数为8次;数据比特为11的时候,消息3的重复次数为16次。
图6是本申请涉及的配置信息中字段指示方法。配置信息可以用于确定以下至少一个:随机接入前导组的数量M,随机接入前导组中的随机接入前导数量K i,关联到一个随机接入前导组的SSB数量N i,其中i为0,1,…,M-1。
SSB与随机接入前导组之间的关联(也称为映射,下文同时使用关联和映射两种术语,含义上没有区别)可以是:
确定关联到随机接入前导组0的N 0个SSB,依次将N 0个SSB映射到随机接入前导组0的K 0个随机接入前导;
确定关联到随机接入前导组i的N i个SSB,依次将N i个SSB映射到随机接入前导组i的K i个随机接入前导;
直到下行信号与M个随机接入前导组映射完毕。
在一种实现方式中,N i=N,即每个随机接入前导组关联的SSB数量相同(或者映射到每个随机接入前导组的SSB数量相同)。
在一种实现方式中,每个随机接入前导组关联的SSB相同,例如关联到随机接入前导组i的下行信号时间索引集为{SSB 0,SSB 1,…,SSB N-1},其中i=0,1,…,M-1。
在一种实现方式中,K i=K,即每个随机接入前导组的随机接入前导的数量相同。进一步可以为,K i=R,其中R为根据ssb-perRACH-OccasionAndCB-PreamblesPerSSB确定随机接入前导数量,其中i=0,1,…,M-1。
在一种实现方式中,随机接入前导组i中的K i个随机接入前导为索引从
Figure PCTCN2020121706-appb-000004
开始的连续K i个随机接入前导,其中i=0,1,…,M-1。
在一种实现方式中,K i=R,且随机接入前导组i中的R个随机接入前导为索引从i×R开 始的连续R个随机接入前导,其中i=0,1,…,M-1。
在一种实现方式中,随机接入前导组i中的随机接入前导的索引连续,且其实索引号与以下至少一个参数有关:随机接入前导索引号i、随机接入前导组的数量M、关联到各个随机接入前导组的下行信号数量。
在一种实现方式中,K i=R,N i=N,每个随机接入前导组关联的SSB相同,且关联到该随机接入分组的索引为n的下行信号关联的随机接入前导为索引从
Figure PCTCN2020121706-appb-000005
开始的连续R个随机接入前导,其中i=0,1,…,M-1,
Figure PCTCN2020121706-appb-000006
为随机接入时机中的随机接入前导数量。
在一种实现方式中,K i=R,N i=N,每个随机接入前导组关联的SSB相同,且关联到该随机接入分组的索引为n的下行信号关联的随机接入前导为索引从
Figure PCTCN2020121706-appb-000007
Figure PCTCN2020121706-appb-000008
开始的连续R个随机接入前导,其中i=0,1,…,M-1,
Figure PCTCN2020121706-appb-000009
为随机接入时机中的随机接入前导数量。
在一种实现方式中,K i=R,N i=N,每个随机接入前导组关联的SSB相同,且关联到该随机接入分组的索引为n的下行信号关联的随机接入前导为索引从
Figure PCTCN2020121706-appb-000010
Figure PCTCN2020121706-appb-000011
开始的连续R个随机接入前导,其中i=0,1,…,M-1,
Figure PCTCN2020121706-appb-000012
为随机接入时机中的随机接入前导数量。
指示消息3重复发送的可以是单独的一个字段或多个字段,该字段指示为一个随机接入前导集合或随机接入前导组。例如当随机接入前导被分为3组时,可以使用3个字段指示。其中第3个字段指示的随机接入前导组为指示有消息3重复发送或分集发送的随机接入前导组。例如,终端设备需要重复发送时,选择第三个字段所指示的随机接入前导发送。终端设备重复发送的方式由第三个字段的字段取值和字段长度决定,如图6所示。
配置信息中还可以增加1bit信息,用于判断是否存在支持消息3重复发送或分集发送的随机接入前导。或者,配置信息中使用多个bit消息,其中,多个bit信息用于指示消 息3重发发送的次数。
该随机接入前导组表示该组内的随机接入前导支持消息3的重复发送次数,消息3重复发送的次数可以为K次。配置信息也可以复用现有字段指示消息3重复发送,例如现有配置基于竞争的随机接入前导字段GroupA的数量numberOfRA-PreamblesGroupA用于表示消息3的重复发送。
当基站使用配置信息中的字段指示重复发送消息3时,可以使用1比特指示消息3重复发送的随机接入前导集合;或者增加2个比特,指示是否存在多个用于指示消息3重复发送的前导集合、或指示N,其中N为消息3重复发送的前导集合的数量。
例如,在N=2的情况下,存在两个随机接入前导分组,第一个分组表示重复发送消息3的次数为2次,第二个集合表示重复发送消息3的次数为4次。
配置信息包括同步信号与随机接入前导和随机接入时机的关联关系,终端设备根据该配置信息确定随机接入前导和随机接入时机。在现有技术中配置信息只配置了基于竞争的随机接入前导与同步信号的关联关系。所有的基于竞争的随机接入前导和随机接入时机在关联周期内将所有的SSB都关联了一圈。所有的SSB是SSB周期内的所有SSB。例如关联周期内有2个随机接入时机,每一个随机接入时机内有2个基于竞争的随机接入前导,共有4个SSB,则需要每个随机接入时机关联2个SSB,每一个随机接入前导关联一个SSB。
本申请提供的配置信息用于指示随机接入前导被分为N组随机接入前导的时候,N组随机接入前导中的每一个组都与随机接入时机全部关联SSB。
例如,N为2时,关联周期内有2组基于竞争的随机接入前导,每组基于竞争的随机接入前导包括两个基于竞争的随机接入前导,关联周期有4个SSB,4个SSB包括SSB0、SSB1、SSB2、SSB3,关联周期内有2个随机接入时机,每一个随机接入时机内需要有2个属于第一组的基于竞争的随机接入前导,也有2个属于第二组的基于竞争的随机接入前导。随机接入前导与SSB的关联关系包括:
第一个随机接入时机内第一组随机接入前导中的第一个随机接入前导,关联SSB0;
第一个随机接入时机内第一组随机接入前导中的第二个随机接入前导,关联SSB1;
第二个随机接入时机内第一组随机接入前导中的第一个随机接入前导,关联SSB2;
第二个随机接入时机内第一组随机接入前导中的第二个随机接入前导,关联SSB3。
对应的,第二组随机接入前导与SSB的关联包括:
第一个随机接入时机内第二组随机接入前导中的第一个随机接入前导,关联SSB0;
第一个随机接入时机内第二组随机接入前导中的第二个随机接入前导,关联SSB1;
第二个随机接入时机内第二组随机接入前导中的第一个随机接入前导,关联SSB2;
第二个随机接入时机内第二组随机接入前导中的第二个随机接入前导,关联SSB3。
每个随机接入时机关联2个SSB,每一组中的每一个随机接入前导关联一个SSB。
即对于前导组与SSB的关联关系独立的。可以是独立配置,也可以采用共同的配置。通过配置随机接入时机全部关联SSB,相比于现有技术,提高了随机接入的效率。本发明所述的独立为该前导组与SSB的关联与非重复发送消息3的随机接入前导的关联没有关系。例如具体配置信息可以采用现有的关联方法。
在一些实施例中,配置信息指示消息3的重复发送或分集发送可以用SSB索引进行通 知,一种通知的方式是{SSB index,L1},其中L1表示消息3的重复发送的次数。消息3的重复发送可以是跳频进行重复发送,也可以是不跳频进行重复发送。基站和/或终端设备可以规定跳频的频率偏移,也可以规定重复发送的时间间隔,该时间间隔可以是一个时隙内的符号间隔,也可以是时隙间隔。因此可以在系统信息中配置跳频偏移和/或重复发送或分集发送的时间间隔。也可以在RAR中配置跳频偏移和重复发送或分集发送的时间间隔这两个参数中的任意一个或多个。该时间间隔可以与上下行配比有关,例如时间间隔为1个时隙,即每一个上行时隙中传输一次消息3,但是由于上下行配比为4:1,因此每5个时隙中有一个消息3的重复发送或分集发送,时间间隔为5个时隙。本发明中的时间间隔为两次消息3传输的起始时隙之差。
本申请提供的配置信息用于指示随机接入前导被分为N组随机接入前导,参见图9、图10所示的随机接入前导分组方法。
在一些实施例中,随机接入前导进行分组,其中一组表示该随机接入前导为重复发送的随机接入前导,重复发送的随机接入前导可以为在K个PRACH配置周期内重复发送的随机接入前导,也可以为K个SSB-PRACH关联周期内重复发送的随机接入前导。即多个不同的随机接入时机上的多个随机接入前导(或者同一个随机接入时机上的多个随机接入前导)构成一个消息1,终端在随机接入响应之前可以发送所述多个随机接入前导;或者,消息1可以包括多个随机接入前导,所述多个随机接入前导在不同的随机接入时机上或者在相同的随机接入时机上,终端根据所述消息1发送所述多个随机接入前导,基站根据所述消息接收所述多个随机接入前导;或者多个随机接入前导都在一个随机接入前导组内,基站接收到该随机接入前导组内的所述多个随机接入前导为同一个终端设备可以发送的多个随机接入前导。进一步地,所述多个随机接入前导由一个或者多个随机接入响应消息进行响应。
图8和图9为本申请实施例提供的随机接入前导组与随机接入时间的关系示意图。
如图8所示,随机接入时机0对应于随机接入前导组0和随机接入前导组1;随机接入时机1对应于随机接入前导组0和随机接入前导组1;随机接入时机2对应于随机接入前导组0和随机接入前导组1;随机接入时机3对应于随机接入前导组0和随机接入前导组1。
其中,随机接入时间0对应于随机接入时机0和随机接入时机1;随机接入时间0对应于随机接入时机0和随机接入时机1。
其中,随机接入时机1和随机接入时机4关联相同的SSB索引;随机接入时机0和随机接入时机4关联相同的SSB索引。
如图9所述,随机接入前导i和随机接入前导前导j属于随机接入前导组1。当终端选择随机接入前导组1时,根据以下至少一个信息:预设的或者基站指示的信息、下行信号的质量,确定至少一个随机接入时机上的多个随机接入前导(例如随机接入时机1上的i和随机接入时机4上的j),发送给基站。其中,基站可以发送随机接入前导i和随机接入前导j,实现消息1的多次发送。
基站根据预设或者配置信息,确定并检测至少一个随机接入时机上的多个随机接入前导(例如随接入时机1上的i和随机接入时机4上的j)。基站检测到随机接入时机1上的随机接入前导i和随机接入时机4上的随机接入前导j中的至少一个时,向终端设备发送 随机接入响应。随机接入响应消息中可以进一步指示传输消息3的方式,包括重复次数、发送分集中的至少一个。
相邻两次重复发送的随机接入前导的随机接入时机可以是关联到相同的SSB索引上,可以位于不同的时域频域资源位置上。在该实施例中,重复发送可以是多次发送。对于重复发送的随机接入前导集合,其默认支持消息3的重复发送或者分集发送。协议可以规定或者系统信息可以配置消息3的重复发送次数,重复发送的随机接入前导可以有相同的RAR响应和消息3。其中K的值可以为1或者K的值为1~8。也可以约束消息1重复传输的时间不超过Yms。例如Y为160ms或者320ms。当消息1进行重复传输的时候,终端设备可以使用消息多个消息2调度相同的消息3时频资源位置进行重复传输消息3。网络设备也可以使用同一个消息2多次指示相同的消息3关联的随机接入前导,为该随机接入前导关联的消息3调度多个时频资源位置,进行重复发送消息3。
可以理解的是,对于默认支持消息3的重复发送或者分集发送的随机接入前导,可以进一步分组,并将分组的结果与消息3的发送方式关联。分组的结果与消息3的发送方式关联包括:将对于默认支持消息3的重复发送或者分集传输的随机接入前导再分为若干组,其中每一组对应于特定的发送方式。发送方式包括:不同重复发送次数的重复发送,不同分集发送方式,不同频率的跳频发送等。
S402:终端设备接收配置信息、下行信号,选择随机接入前导发送,包括:
终端设备在发起随机接入过程时,终端设备从当前小区可选择的随机接入前导序列中选取一个作为信息1,在上行PARCH信道发送随机接入前导。
终端设备选择随机接入前导的过程包括:
终端设备根据其是否支持消息3的重复发送或分集发送选择确定要发送的随机接入前导。当终端设备支持重复发送或分集发送消息3,可以选择指示重复发送或分集发送消息3的随机接入前导,即第一随机接入前导,也可以选择不指示重复发送或分集发送消息3的随机接入前导;当终端设备不支持消息3的重复发送或分集发送的时候,选择不需要进行消息3重复发送或分集发送的随机接入前导。
进一步的,对于R17和/或以后的终端设备来说,R17和/或以后的终端设备支持消息3重复发送或分集发送,可以选择指示重复发送或分集发送消息3的随机接入前导,也可以选择不指示重复发送或分集发送消息3的随机接入前导。
在一些实施例中,终端设备可以根据其计算的路径损耗,确定是否选择特定分组的随机接入前导。例如当路径损耗比较大的时候,可以选择指示消息3重复发送或分集发送的随机接入前导,当路径损耗比较小的时候,可以选择不指示消息3重复发送或分集发送的随机接入前导。路径损耗可以通过基站发送功率、信道衰减、终端设备接收功率等参数计算获得。
图7是本申请实施例涉及的下行信号的门限与是否重复发送的关系示意图。
在一些实施例中,如图7所示,终端设备接收下行信号的门限值小于一定的值时,选择指示消息3重复发送或分集发送的随机接入前导。进一步的,当下行信号的门限值位于范围1时,选择指示消息3重复发送N1次的随机接入前导。当下行信号的门限值位于范围2时,选择指示消息3重复发送N2次的随机接入前导。当下行信号的门限值大于一定值时, 选择不指示消息3重复发送的随机接入前导。
在一些实施例中,随机接入前导分组中的任一组,可以通过下行信号与随机接入前导的关联关系,对应于一种消息3的重复发送方式。结合图7所示的下行信号的门限与是否重复发送的关系,当下行信号的门限介于阈值1和阈值2中,终端设备需要消息3重复发送N1次,则选择指示消息3重复发送N1次的随机接入前导,图7所示的其他的情况下与上述对应,不再赘述。
在一些实施例中,R17和/或以后的终端设备可以根据其他参数决定选择指示或不指示消息3重复发送或分集发送的随机接入前导。进一步的,R17和/或以后的终端设备可以根据其他参数决定选择消息3的发送方式,并根据消息3的发送方式选择对应的随机接入前导。
S403:基站接收随机接入前导,发送消息2。
基站接收到第一随机接入前导后,根据第一随机接入前导所属的分组。可以得知终端设备是否需要重复发送或分集发送消息3。可以理解的是,随机接入前导可以仅被分为指示重复的随机接入前导组和不指示重复的随机接入前导,在该分组情况下,基站需要指示消息3重复发送或分集发送的具体方式。
基站指示终端设备消息3的重复发送或分集发送消息,具体包括:
在一些实施例中,配置信息指示消息3的重复发送或分集发送,可以通过RAR中的信息进行指示。
一种指示的方式是使用TAC(Time Advance Command)部分数据比特进行指示,针对R15和/或R16的终端设备,不能进行指示,即选择了上面不进行重复发送或分集发送的随机接入前导,这些值设为0。如果选择了进行重复发送或分集发送的随机接入前导,部分数据指示重复发送或分集发送的相关信息。重复发送的相关信息包括:重复发送的次数,不同重复发送次数之间的频率偏移、不同重复发送次数之间的时间间隔三者中的至少一个信息。
在一些实施例中,指示消息3的重复发送,有一种指示方式是单独使用RAR所对应的一个字头(Sub Header)进行指示重复发送相关的信息。具体的,RAR所对应的一个字头可以与随机接入前导进行绑定;或者,也可以重新定义一个字头标识,所有相关信息都放在该字头所对应的RAR中。
在一些实施例中,R15和/或R16终端设备可以选择支持消息3重复发送或分集发送的随机接入前导。此时R15和/或R16终端设备不能识别基站发送的消息3重复发送或分集发送的指示,不进行消息3重复发送或分集发送。
S404:终端设备接收消息2,根据配置信息、下行信号、SSB信号所指示的方式发送消息3。
在一些实施例中,终端设备接收配置信息,根据承载于配置信息中的数据比特,重复发送消息3。例如,承载于配置信息中的数据比特占据的比特数目为2个bit,并且数据比特为00时,终端设备重复发送消息3,并且重复发送消息3的次数为2次;承载于配置信息中的数据比特占据的比特数目为2个bit,且数据比特为11时,终端设备重复发送消息3,并且重复发送消息3的次数为8次。
在一些实施例中,终端设备接收配置信息,根据承载于配置信息中的字段,确定重复发送消息3和重复发送消息3的次数。
在一些实施例中,配置信息可以承载于消息2中,包括,承载于TAC的部分数据比特中,重新定义的字头标识中。
终端设备可以根据消息2和配置信息、下行信号、SSB信号中的至少一种确定发送消息3的发送方式。或者终端设备可以根据配置信息、下行信号、SSB信号中的至少一种确定消息3的发送方式。
终端设备在收到指示后,按照指示所约定的内容,使用约定的方式发送消息3。对应的,基站依据所约定的内容,以约定的方式接收基站发送的消息3。
随机接入前导被分组后,终端设备根据终端设备本身是否支持以及是否需要进行消息3的重复发送或分集发送,选择对应组别的随机接入前导发送。基站收到终端设备发送的随机接入前导后,根据终端设备发送的随机接入前导判断是否指示终端设备进行消息3的重复发送或分集发送,若终端设备支持消息3的重复发送或分集发送,终端设备在相应的位置进行消息3的重复发送或分集发送;若终端设备不支持消息3的重复发送和/或分集传输,终端设备不会进行消息3的重复发送或分集发送。
进一步的,当终端设备不支持消息3的重复发送或分集发送,即终端设备为R15和/或R16终端设备时,则选择不不支持消息3重复发送和/或分集传输的随机接入前导。
图10是本申请实施例提供的一种随机接入前导分组的方法示意图。
基站对随机接入前导进行分类的方法,如图10所示,对于R15和/或R16的终端设备认为的基于非竞争的随机接入前导,可以分为两组,第一组为随机接入前导分组1,第二组为随机接入前导分组2。
对于R15和/或R16的终端设备来说,随机接入前导分组1和/或随机接入前导分组2均为基于非竞争的随机接入前导。R15和/或R16的终端设备在非竞争随机接入的情况下会向基站发送基于非竞争的随机接入前导,即随机接入前导分组2和随机接入前导分组1。
在一些实施例中,对于R15和/或R16的终端设备来说,发起基于非竞争的随机接入过程中,从随机接入前导分组2选择随机接入前导。
对于R17和/或以后的终端设备来说,随机接入前导分组1为基于竞争的随机接入前导,表示终端设备支持消息有重复发送或分集发送。对于R17和/或以后的终端设备来说,随机接入前导分组2为基于非竞争的随机接入前导。
对于R15和/或R16的终端设备认为的基于竞争的随机接入前导,基站接收到属于“对于R15和/或R16的终端设备认为的基于竞争的随机接入前导”的随机接入前导后,不指示终端设备进行消息的重复发送或分集发送,并且也不会为终端设备进行消息重复发送或分集发送预留时域和/或频域资源。
对于R17和/或以后的终端设备来说,认为“对于R15和/或R16的终端设备认为的基于竞争的随机接入前导”为基于竞争的随机接入前导。基站接收到属于“对于R15和/或R16的终端设备认为的基于竞争的随机接入前导”的随机接入前导后,不指示终端设备进行消息的重复发送或分集发送,并且也不会为终端设备进行消息重复发送或分集发送预留时域和/或频域资源。
对于R15和/或R16的终端设备来说,基站提供或通信协议约定的随机接入前导共有2组,一组是基于非竞争的随机接入前导,即随机接入前导分组1和随机接入前导分组2,另一组是基于竞争的随机接前导。同时,对于R17和/或以后的终端设备来说,基站提供的随机接入前导共有三种,其中2组是基于竞争的随机接入前导,即随机接入前导分组1和“对于R15和/或R16的终端设备认为的基于竞争的随机接入前导”,一组是基于非竞争的随机接入前导,即随机接入前导分组2。
在一些实施例中,对于R15和/或R16的终端设备来说,基站提供或通信协议约定的随机接入前导共有2组,一组是基于非竞争的随机接入前导,即随机接入前导分组2,另一组是“对于R15和/或R16的终端设备认为的基于竞争的随机接入前导”。在该实施例中,能够避免R15和/或R16的终端设备选择属于随机接入前导分组1中的随机接入前导,却不能识别基站的指示,进而避免了基站资源的浪费。
当基站指示终端设备进行消息的重复发送或分集发送,会为终端设备进行消息重复发送或分集发送预留时域和/或频域资源。当基站不指示终端设备进行消息的重复发送或分集发送,不会为终端设备进行消息重复发送或分集发送预留时域和/频域资源。
在一些实施例中,对于R15和/或R16的终端设备认为的基于非竞争的随机接入前导,可以分为多组,选取其中的至少一组作为随机接入前导分组1,剩余的作为随机接入前导分组2。
图11是本申请实施例提供的另一种随机接入前导分组的方法示意图。
对随机接入前导进行分组的方法,如图11所示,对于R15和/或R16的终端设备认为的基于竞争的随机接入前导,可以分为两组,第一组为随机接入前导分组3,第二组为随机接入前导分组4。
对于R17和/或以后的终端设备来说,随机接入前导分组3中的随机接入前导,表示终端设备支持消息有重复发送或分集发送。当基站收到终端设备发送的随机接入前导分组3中的随机接入前导,基站指示终端设备进行消息的重复发送或分集发送。
对于R17和/或以后的终端设备来说,选择随机接入前导分组4中的随机接入前导后,R17和/或以后的终端设备不进行消息的重复发送或分集发送。对于R17和/或以后的终端设备来说,基站接收到随机接入前导分组4中的随机接入前导后,不指示终端设备进行消息的重复发送或分集发送。
对于R15和/或R16的终端设备来说,随机接入前导分组3和/或随机接入前导分组4均为基于竞争的随机接入前导。由于终端设备发送基于竞争的随机接入前导是终端设备随机选择的,因此基站不可以从随机接入前导中识别发送随机接入前导的终端设备是R17和/或以后的终端设备的还是R15和/或R16的终端设备。对于R17和/或以后的终端设备来说,随机接入前导分组3中的随机接入前导表示终端设备需要进行消息3重复发送或分集发送,随机接入前导分组4中的随机接入前导表示终端设备不需要进行消息3重复发送或分集发送。
当基站接收到属于随机接入前导分组3中的随机接入前导,指示终端设备进行消息的重复发送或分集发送,当基站接收到属于随机接入前导分组4中的随机接入前导,不指示终端设备进行消息的重复发送或分集发送。
R15和/或R16的终端设备在非竞争随机接入的情况下会向基站发送基于非竞争的随机接入前导。
对于R17和/或以后的终端设备来说,认为“对于R15和/或R16的终端设备认为的基于非竞争的随机接入前导”为基于非竞争的随机接入前导。R17和/或以后的终端设备在非竞争随机接入的情况下会向基站发送“对于R15和/或R16的终端设备认为的基于非竞争的随机接入前导”。
对于R15和/或R16的终端设备来说,基站提供的随机接入前导共有2组,一组是基于非竞争的随机接入前导,另一组是基于竞争的随机接前导,即随机接入前导分组4和随机接入前导分组3。对于R17和/或以后的终端设备来说,基站提供的随机接入前导共有3组,其中2组是基于竞争的随机接入前导,即随机接入前导分组3和随机接入前导分组4,1组是基于非竞争的随机接入前导。
在一些实施例中,对于R15和/或R16的终端设备来说,基站提供的随机接入前导共有2组,一组是基于非竞争的随机接入前导,另一组是基于竞争的随机接前导、即随机接入前导分组4。在该实施例中,能够避免R15和/或R16的终端设备选择随机接入前导分组3中的随机接入前导,却不能识别基站的指示,进而避免了基站资源的浪费。
在一些实施例中,对于R15和/或R16的终端设备认为的基于竞争的随机接入前导,可以分为多组,选取其中的至少一组作为随机接入前导分组3,剩余的作为随机接入前导分组4。
在本申请具体的实施例中,在图10和图11所示的随机接入前导分组的方法中,分组的方法包括:随机选取至少一个随机接入前导进行分组、固定的选取至少一个随机前导进行分组、按照奇偶顺序对随机接入前导进行分组。
当基站指示终端设备进行消息的重复发送或分集发送,会为终端设备进行消息重复发送或分集发送预留时域和/或频域资源。当基站不指示终端设备进行消息的重复发送或分集发送,不会为终端设备进行消息重复发送或分集发送预留时域和/或频域资源。
上述“基站指示终端设备进行消息的重复发送或分集发送”包括:基站通过系统信息进行指示。
终端设备通过网络传输数据前首先需要通过基站接入网络,终端设备需要通过小区搜索(Cell Search)获取基站下行方向的频率和/或时间同步进而检测小区识别号(Cell ID)。在小区搜索过程中,终端设备获得小区的主同步信号(Primary Synchronization Signal,PSS)、辅同步信号(Secondary Synchronization Signal,SSS),接收并解调物理广播信道(Physical Broadcast Channel,PBCH)获取系统信息。主同步信号、辅同步信号、物理广播信道构成一个SSB。基站周期性的在下行方向发送SSB。系统信息包括主信息块(Master Information Block,MIB),其中来自高层的承载24比特信息用于指示系统帧号、SSB的子载波间隔等,另外来自于物理层的8比特信息。对于来自物理层的8比特信息,其中3比特信息可以用于指示同步块索引(SSB Index)。
可以利用同步信号块承载用于指示终端设备进行消息的重复发送或分集发送。一种承载的方式是{SSB index,K},其中K表示消息的重复发送或分集发送的次数和/或方式。终端设备进行消息的重复发送为例,K此时标识消息重复发送的次数。终端设备进行分集发 送时,此时K标识消息分集发送的方式。消息的发送方式可以是跳频进行发送也可以是不进行跳频进行发送,网络设备可以规定跳频的频率偏移,也可以规定重复的时间间隔,该时间间隔可以是一个时隙内的符号间隔,也可以是时隙间隔。因此可以在系统信息中配置跳频偏移和/或重复的时间间隔。
在一些实施例中,基站也可以在RAR中配置跳频偏移和重复的时间间隔这两个参数中的任意一个或多个。在本申请具体的实施例中,本申请中的时间间隔为两次消息传输的起始时隙之差。
在一些实施例中,指示终端设备进行发送的时间间隔可以与上下行配比有关。
上述“基站指示终端设备进行消息的重复发送或分集发送”包括:基站通过RAR中的信息进行指示。
图12是本申请实施例提供的承载于时间校准中的配置信息示意图。
如图12所示,在网络侧,基站会不断对PRACH信道接收信号进行检测,当基站接收到随机接入前导后,确定终端设备接收的最佳波束。基站在接收到随机接入前导,会通过PDCCH和/或物理下行共享信道(Physical Downlink Shared Channel,PDSCH)上发送相应的RAR。其中,RAR包含了上行传输的时间校准值(Timing Advance Command,TAC)。
终端设备在发送随机接入前导后,将启动随机响应接收窗口(ra-Response Window),同时监听PDCCH信道,检测DCI。在DCI检测成功后,终端设备获取RAR中包含的信息。系统信息可以指示TAC有用的数据比特数目或者指示消息3重复发送或分集发送相关信息的数据比特,不同数据比特下配置的值的范围。例如系统信息指示重复次数的数据比特从k1开始,占据的数据比特数目为k2,例如k1=8,k2=2,则可以指示重复次数为1,2,3,4。或者协议直接规定相关信息的数据比特数目及相关的值。
协议规定
在一些实施例中,基站也可以通过RAR中的字头信息进行指示。在一些实施例中,可以在随机接入响应中定义一个新的字头标识1,将重复发送或分集发送的相关信息都放在字头标识1对应的随机接入响应中。
图13是本申请提供的随机接入方法中终端设备侧架构示意图。
图13中(A)示出了一种终端设备侧系统架构,包括:终端设备测量SSB、选择随机接入资源(包括选择随机接入前导)、发送消息1、接收消息2、发送消息3、接收消息4。
当不需要重复发送或分集发送消息3,终端侧系统架构的随机接入方法如图13中(A)所示。对于图11所示的随机接入前导分组的方法,即“对于R15和/或R16的终端设备认为的基于非竞争的随机接入前导,可以分为两组,第一组为随机接入前导分组1,第二组为随机接入前导分组2”。当为R15和/或R16终端设备发起基于竞争的随机接入时,选择随机接入资源时,从“对于R15和/或R16的终端设备认为的基于竞争的随机接入前导”选择随机接入前导;当终端设备为R17和/或以后的终端设备时,选择随机接入资源时,从“对于R15和/或R16的终端设备认为的基于竞争的随机接入前导”选择随机接入前导。
此时基站接收到属于“对于R15和/或R16的终端设备认为的基于竞争的随机接入前导”的随机接入前导,不论终端设备为R17和/或以后的终端设备还是R15和/或R16的终端设备,均不指示终端设备进行消息3的重复发送或分集发送,不为消息3的重复发送或分集 发送预留资源。
图13中(B)示出了一种终端侧系统架构,包括:终端设备测量SSB、选择随机接入资源(包括选择随机接入前导)、发送消息1、接收消息2、重复发送或分集发送消息3、接收消息4。
当需要重复发送或分集发送消息3时,终端侧系统架构的随机接入方法如图10中(B)所示。对于图3所示的随机接入前导分组的方法,即“对于R15和/或R16的终端设备认为的基于非竞争的随机接入前导,可以分为两组,第一组为随机接入前导分组1,第二组为随机接入前导分组2”。当为R15和/或R16终端设备发起基于竞争的随机接入时,选择随机接入资源时,从“对于R15和/或R16的终端设备认为的基于竞争的随机接入前导”选择随机接入前导。而当终端设备为R17和/或以后的终端设备时,选择随机接入资源时,从“随机接入前导分组1”选择随机接入前导。
此时基站接收到终端设备发送的属于“对于R15和/或R16的终端设备认为的基于竞争的随机接入前导”的随机接入前导,不指示终端设备进行消息3的重复发送或分集发送。若基站接收到属于“随机接入前导分组1”的随机接入前导,指示终端设备进行消息3的重复发送或分集发送,为消息3的重复发送或分集发送预留资源。
对于图11所示的随机接入前导分组的方法,即“对于R15和/或R16的终端设备认为的基于竞争的随机接入前导,可以分为两组,第一组为随机接入前导分组3,第二组为随机接入前导分组4”。
当终端设备不需要重复发送或分集发送消息3,终端侧系统架构的随机接入方法如图10中(A)所示。当为R15和/或R16终端设备发起基于竞争的随机接入时,选择随机接入资源时,从“随机接入前导分组4”选择随机接入前导;当终端设备为R17和/或以后的终端设备时,选择随机接入资源时,从“随机接入前导分组4”选择随机接入前导。
当基站接收到终端设备发送的属于“随机接入前导分组4”的随机接入前导,不指示终端设备进行消息3的重复发送或分集发送,不为消息3的重复发送或分集发送预留资源。
当终端设备不需要重复发送或分集发送消息3,终端侧系统架构的随机接入方法如图13中(B)所示。
当为R15和/或R16终端设备发起基于竞争的随机接入时,选择随机接入资源时,从“随机接入前导分组4”选择随机接入前导;当终端设备为R17和/或以后的终端设备时,选择随机接入资源时,从“随机接入前导分组3”选择随机接入前导。
当基站接收到终端设备发送的属于“随机接入前导分组3”的随机接入前导,指示终端设备进行消息3的重复发送或分集发送,为消息3的重复发送或分集发送预留资源。
在一些实施例中,当终端设备需要重复发送或分集发送消息3时,R15和/或R16终端设备发起基于竞争的随机接入时,选择随机接入资源时,还可以从“随机接入前导分组3”选择随机接入前导,此时基站指示终端设备进行重复发送或分集发送消息3时,R17和/或以后的终端设备能获取基站的指示进行重复发送或分集发送消息3,R15和/或R16终端设备不能识别基站的指示,进而不能重复发送或分集发送消息3。
图14是本申请提供的随机接入方法中基站侧架构示意图。
图14中(A)示出了一种终端侧系统架构的随机接入方法,包括:基站发送SSB、接收 消息1、发送消息2、接收消息3、发送消息4。当不需要终端设备重复发送或分集发送消息3,基站侧系统架构的随机接入方法如图14中(A)所示。对于图11所示的随机接入前导分组的方法,基站接收到属于“对于R15和/或R16的终端设备认为的基于竞争的随机接入前导”的随机接入前导,不论终端设备为R17和/或以后的终端设备还是R15和/或R16的终端设备,均不指示终端设备进行消息3的重复发送或分集发送,不为消息3的重复发送或分集发送预留资源。
图14中(B)示出了一种终端侧系统架构的随机接入方法,包括:基站发送SSB、接收消息1、发送消息2、接收多个消息3、发送消息4。当需要重复发送或分集发送消息3时,基站侧系统架构的随机接入方法如图14中(B)所示。对于图9所示的随机接入前导分组的方法,基站接收到属于“随机接入前导分组1”的随机接入前导,得知该终端设备属于R17和/或以后的终端设备,指示R17和/或以后的终端设备进行消息3的重复发送或分集发送,并为R17和/或以后的终端设备消息3的重复发送或分集发送预留资源,在对应的时域和/或频域窗口内接收R17和/或以后的终端设备发送的多个消息3。
对于图11所示的随机接入前导分组的方法,当不需要终端设备重复发送或分集发送消息3,基站侧系统架构的随机接入方法如图14中(A)所示。
基站接收到属于“随机接入前导分组4”的随机接入前导,不论终端设备为R17和/或以后的终端设备还是R15和/或R16的终端设备,均不指示终端设备进行消息3的重复发送或分集发送,不为消息3的重复发送或分集发送预留资源。
当需要终端设备重复发送或分集发送消息3,基站侧系统架构的随机接入方法如图14中(B)所示。
基站接收到属于“随机接入前导分组3”的随机接入前导,得知该终端设备属于R17和/或以后的终端设备,指示R17和/或以后的终端设备进行消息3的重复发送或分集发送,并为R17和/或以后的终端设备消息3的重复发送或分集发送预留资源,在对应的时域和/或频域窗口内接收R17和/或以后的终端设备发送的多个消息3。
在一些实施例中,当终端设备需要重复发送或分集发送消息3时,R15和/或R16终端设备发起基于竞争的随机接入时,选择随机接入资源时,还可以从“随机接入前导分组3”选择随机接入前导,此时基站接收到属于“随机接入前导分组3”的随机接入前导,指示该终端设备进行消息3的重复发送和/或分集传输,并为终端设备消息3的重复发送或分集发送预留资源,在对应的时域和/或频域窗口内接收终端设备发送的多个消息3。
以上所述,以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。
上述实施例中所用,根据上下文,术语“当…时”可以被解释为意思是“如果…”或“在…后”或“响应于确定…”或“响应于检测到…”。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。

Claims (25)

  1. 一种随机接入方法,其特征在于,所述方法包括:
    基站发送下行信号、随机接入配置信息、下行信号与随机接入前导的关联信息中的至少一个;所述随机接入配置信息用于指示将所述随机接入前导分为N组随机接入前导,所述关联信息用于指示下行信号与N组随机接入前导的关联;所述N为大于1的整数;
    所述基站接收终端设备发送的所述随机接入前导;
    所述基站发送随机接入响应;
    所述基站接收所述终端设备发送的消息3;
    其中,所述随机接入配置信息和/或所述关联信息还用于确定所述N组随机接入前导与所述终端设备发送消息3的方式的对应关系。
  2. 根据权利要求1所述的方法,其特征在于,所述基站接收终端设备发送的所述随机接入前导,包括,所述基站接收终端设备发送的多个所述随机接入前导。
  3. 根据权利要求1或2所述的方法,其特征在于,所述下行信号与所述N组随机接入前导关联,包括,一个随机接入时机中包含所述N组随机接入前导;其中,一个所述下行信号关联所述N组中的每一组随机接入前导中的所有随机接入前导,或者M个所述下行信号依次关联所述N组中的每一组随机接入前导中的随机接入前导,所述M为大于1的整数。
  4. 根据权利要求1-3任一项所述的方法,其特征在于,所述发送消息3的方式包括以下至少一种:消息3的重复发送、消息3的跳频发送、消息3的分集发送。
  5. 根据权利要求1-4所述的方法,其特征在于,所述随机接入配置信息用于确定消息3重复发送的重复次数和/或下行接收信号的接收门限的值。
  6. 根据权利要求1-5任一项所述的方法,其特征在于,所述随机接入配置信息的部分承载于系统信息中或所述随机接入配置信息承载于系统信息中。
  7. 根据权利要求1-5任一项所述的方法,其特征在于,所述的随机接入配置信息的部分或所述随机接入配置信息承载于随机接入响应中。
  8. 一种随机接入方法,其特征在于,所述方法包括:
    终端设备接收下行信号、随机接入配置信息、下行信号与随机接入前导的关联信息中的至少一个;所述随机接入配置信息用于指示将所述随机接入前导分为N组随机接入前导,所述关联信息用于指示下行信号与N组随机接入前导的关联;所述N为大于1的整数;
    所述终端设备发送所述随机接入前导;
    所述终端接收随机接入响应,其中所述随机接入配置信息和/或所述关联信息还用于确定所述N组随机接入前导与所述终端设备发送消息3的方式的对应关系;
    所述基站依据所述方式发送消息3。
  9. 根据权利要求8所述的方法,其特征在于,所述终端设备发送所述随机接入前导,包括,所述终端设备多次发送所述随机接入前导。
  10. 根据权利要求8或9所述的方法,其特征在于,所述下行信号与所述N组随机接入前导关联,包括,一个随机接入时机中包含所述N组随机接入前导;其中,一个所述下行信号关联所述N组中的每一组随机接入前导中的所有随机接入前导,或者M个所述下行 信号依次关联所述N组中的每一组随机接入前导中的随机接入前导,所述M为大于1的整数。
  11. 根据权利要求8-10任一项所述的方法,其特征在于,所述发送消息3的方式包括以下至少一种:消息3的重复发送、消息3的跳频发送、消息3的分集发送。
  12. 根据权利要求8-11任一项所述的方法,其特征在于,所述随机接入配置信息用于确定消息3重复发送的重复次数和/或下行接收信号的接收门限的值。
  13. 根据权利要求8-12任一项所述的方法,其特征在于,所述随机接入配置信息的部分承载于系统信息中或所述随机接入配置信息承载于系统信息中。
  14. 根据权利要求8-12任一项所述的方法,其特征在于,所述的随机接入配置信息的部分或所述随机接入配置信息承载于随机接入响应中。
  15. 一种随机接入方法,其特征在于,所述方法包括:
    基站发送下行信号、随机接入配置信息、下行信号与随机接入前导的关联信息中的至少一个;所述随机接入配置信息用于指示将所述随机接入前导分为N组随机接入前导,所述关联信息用于指示下行信号与N组随机接入前导的关联;所述N为大于1的整数;
    终端发送所述随机接入前导;
    所述基站发送随机接入响应;
    所述终端接收随机接入响应;其中,所述随机接入配置信息和/或所述关联信息还用于确定所述N组随机接入前导与所述终端设备发送消息3的方式的对应关系;
    所述基站依据所述方式发送消息3。
  16. 根据权利要求15所述的方法,其特征在于,所述终端设备发送所述随机接入前导,包括,所述终端设备多次发送所述随机接入前导。
  17. 根据权利要求15或16所述的方法,其特征在于,所述下行信号与所述N组随机接入前导关联,包括,一个随机接入时机中包含所述N组随机接入前导;其中,一个所述下行信号关联所述N组中的每一组随机接入前导中的所有随机接入前导,或者M个所述下行信号依次关联所述N组中的每一组随机接入前导中的随机接入前导,所述M为大于1的整数。
  18. 根据权利要求15-17任一项所述的方法,其特征在于,所述发送消息3的方式包括以下至少一种:消息3的重复发送、消息3的跳频发送、消息3的分集发送。
  19. 根据权利要求15-18任一项所述的方法,其特征在于,所述随机接入配置信息用于确定消息3重复发送的重复次数和/或下行接收信号的接收门限的值。
  20. 根据权利要求15-19任一项所述的方法,其特征在于,所述随机接入配置信息的部分承载于系统信息中或所述随机接入配置信息承载于系统信息中。
  21. 根据权利要求15-19任一项所述的方法,其特征在于,所述的随机接入配置信息的部分或所述随机接入配置信息承载于随机接入响应中。
  22. 一种基站,其特征在于,包括存储器以及耦合于所述存储器的处理器,以及一个或多个程序;其中所述处理器在执行一个或多个程序时,使得所述终端设备实现如权利要求1至7任一项所述的方法。
  23. 一种终端设备,其特征在于,包括存储器以及耦合于所述存储器的处理器,以及 一个或多个程序;其中所述处理器在执行一个或多个程序时,使得所述终端设备实现如权利要求8至14任一项所述的方法。
  24. 一种计算机可读介质,包括指令,其特征在于,当所述指令在基站上运行时,使得所述终端设备执行如权利要求1至7任一项所述的方法。
  25. 一种计算机可读介质,包括指令,其特征在于,当所述指令在终端设备上运行时,使得所述终端设备执行如权利要求8至14任一项所述的方法。
PCT/CN2020/121706 2020-10-16 2020-10-16 一种随机接入方法 WO2022077521A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202080106209.XA CN116368928A (zh) 2020-10-16 2020-10-16 一种随机接入方法
EP20957299.9A EP4221424A4 (en) 2020-10-16 2020-10-16 RANDOM ACCESS METHOD
PCT/CN2020/121706 WO2022077521A1 (zh) 2020-10-16 2020-10-16 一种随机接入方法
US18/299,949 US20230254891A1 (en) 2020-10-16 2023-04-13 Random access method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/121706 WO2022077521A1 (zh) 2020-10-16 2020-10-16 一种随机接入方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/299,949 Continuation US20230254891A1 (en) 2020-10-16 2023-04-13 Random access method and device

Publications (1)

Publication Number Publication Date
WO2022077521A1 true WO2022077521A1 (zh) 2022-04-21

Family

ID=81208928

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/121706 WO2022077521A1 (zh) 2020-10-16 2020-10-16 一种随机接入方法

Country Status (4)

Country Link
US (1) US20230254891A1 (zh)
EP (1) EP4221424A4 (zh)
CN (1) CN116368928A (zh)
WO (1) WO2022077521A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024027508A1 (zh) * 2022-08-03 2024-02-08 大唐移动通信设备有限公司 前导序列的发送和接收方法、装置及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019082152A1 (en) * 2017-10-27 2019-05-02 Telefonaktiebolaget Lm Ericsson (Publ) RANDOM ACCESS WITHOUT CONFLICT WITH MULTIPLE SSB
WO2019213978A1 (zh) * 2018-05-11 2019-11-14 华为技术有限公司 一种信息传输方法和终端设备以及网络设备
US20200120709A1 (en) * 2018-05-09 2020-04-16 Telefonaktiebolaget Lm Ericsson (Publ) A Radio Network Node, a Wireless Device and Methods Therein for Handling of Random Access (RA) Messages
CN112040558A (zh) * 2020-08-07 2020-12-04 中国信息通信研究院 一种随机接入过程中的上行数据传输方法和设备

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018093249A (ja) * 2015-04-03 2018-06-14 シャープ株式会社 無線通信システム、端末装置、基地局装置、無線通信方法および集積回路
CN109392107B (zh) * 2017-08-08 2023-09-01 华为技术有限公司 一种通信的方法和装置
CN110475374B (zh) * 2018-05-11 2024-03-19 华为技术有限公司 一种通信方法和通信装置
JP7286288B2 (ja) * 2018-09-21 2023-06-05 シャープ株式会社 基地局装置、端末装置、通信方法、および、集積回路

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019082152A1 (en) * 2017-10-27 2019-05-02 Telefonaktiebolaget Lm Ericsson (Publ) RANDOM ACCESS WITHOUT CONFLICT WITH MULTIPLE SSB
US20200120709A1 (en) * 2018-05-09 2020-04-16 Telefonaktiebolaget Lm Ericsson (Publ) A Radio Network Node, a Wireless Device and Methods Therein for Handling of Random Access (RA) Messages
WO2019213978A1 (zh) * 2018-05-11 2019-11-14 华为技术有限公司 一种信息传输方法和终端设备以及网络设备
CN112040558A (zh) * 2020-08-07 2020-12-04 中国信息通信研究院 一种随机接入过程中的上行数据传输方法和设备

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "Solutions to Coverage Issues for Msg3 Transmissions", 3GPP DRAFT; R2-1807028 - SOLUTIONS TO COVERAGE ISSUES FOR MSG3 TRANSMISSIONS, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Busan, Republic of Korea; 20180521 - 20180525, 20 May 2018 (2018-05-20), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051443451 *
See also references of EP4221424A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024027508A1 (zh) * 2022-08-03 2024-02-08 大唐移动通信设备有限公司 前导序列的发送和接收方法、装置及存储介质

Also Published As

Publication number Publication date
CN116368928A (zh) 2023-06-30
EP4221424A1 (en) 2023-08-02
EP4221424A4 (en) 2024-03-13
US20230254891A1 (en) 2023-08-10

Similar Documents

Publication Publication Date Title
US20220174747A1 (en) Method and apparatus for improving msg3 transmission of random access procedure in a wireless communication system
JP6588953B2 (ja) 無線通信システムにおいて上りタイミングアドバンスを識別するための方法及び装置
US20210227566A1 (en) Method and apparatus of preventing bandwidth part misalignment in a wireless communication system
US10701734B2 (en) Method and apparatus of selecting bandwidth part for random access (RA) procedure in a wireless communication system
US11109416B2 (en) Method and user equipment for transmitting random access channel, and method and base station for receiving random access channel
US11013006B2 (en) Method and apparatus for beam tracking in a wireless communication system
RU2727155C1 (ru) Способ и пользовательское оборудование для передачи преамбулы произвольного доступа, способ и базовая станция для приема преамбулы произвольного доступа
KR102429435B1 (ko) 랜덤 액세스 프로세스에서 시간-주파수 리소스를 결정하고 구성하는 방법들 및 장치들
US20190215706A1 (en) Method and apparatus of beam failure recovery via random access procedure in a wireless communication system
US8223791B2 (en) Methods and apparatuses for performing random access in a telecommunications systems
TWI723552B (zh) 判斷對話前監聽和通道存取優先級等級之方法及使用者設備
JP2020504514A (ja) ランダムアクセスチャネルを送受信する方法及びそのための装置
US20220007426A1 (en) Random access method and device
CN112218362A (zh) 终端装置、基站装置以及通信方法
US11108426B2 (en) Method and apparatus for half-duplex communication
CN112203358B (zh) 终端装置、基站装置以及通信方法
WO2018028604A1 (en) Methods and apparatus for ul data transmission
US20230254891A1 (en) Random access method and device
CN109617656B (zh) 终端、基站及混合自动重传请求harq过程标识id配置方法
WO2017155438A1 (en) Classification of user equipment using extended set of random access preambles
KR20200025437A (ko) 비면허 대역을 위한 nr 시스템에서 신호를 송수신하는 방법 및 그 장치
WO2020186468A1 (zh) 随机接入的方法和设备
CN116963115A (zh) 一种通信方法、装置、系统及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20957299

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020957299

Country of ref document: EP

Effective date: 20230425

NENP Non-entry into the national phase

Ref country code: DE