WO2022077497A1 - 通信方法和装置 - Google Patents

通信方法和装置 Download PDF

Info

Publication number
WO2022077497A1
WO2022077497A1 PCT/CN2020/121678 CN2020121678W WO2022077497A1 WO 2022077497 A1 WO2022077497 A1 WO 2022077497A1 CN 2020121678 W CN2020121678 W CN 2020121678W WO 2022077497 A1 WO2022077497 A1 WO 2022077497A1
Authority
WO
WIPO (PCT)
Prior art keywords
network element
network
data rate
identifier
quota
Prior art date
Application number
PCT/CN2020/121678
Other languages
English (en)
French (fr)
Inventor
李卓明
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP20957275.9A priority Critical patent/EP4210381A4/en
Priority to PCT/CN2020/121678 priority patent/WO2022077497A1/zh
Publication of WO2022077497A1 publication Critical patent/WO2022077497A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/80Ingress point selection by the source endpoint, e.g. selection of ISP or POP
    • H04L45/85Selection among different networks
    • H04L45/851Dynamic network selection or re-selection, e.g. after degradation of quality

Definitions

  • the present application relates to the field of communication technologies, and in particular, to a communication method and apparatus.
  • the terminal may be a subscriber of a home public land mobile network (HPLMN), or a subscriber of a visited public land mobile network (VPLMN).
  • HPLMN home public land mobile network
  • VPLMN visited public land mobile network
  • the terminal can communicate based on the service provided by the HPLMN; when the terminal is in the roaming area, the terminal can use the service provided by the HPLMN and the VPLMN to communicate.
  • a terminal uses a network slice in a roaming area, it needs to rely on HPLMN to limit the network resources occupied by the network slice when running, for example, relying on HPLMN to control the session creation of the terminal in the network slice.
  • the embodiments of the present application provide a communication method and device, which can control resources in a roaming area based on a VPLMN.
  • the first network element in the VPLMN determines the identity of the network slice in the VPLMN and the identity of the home public land mobile network HPLMN.
  • the first quota related to the PLMN identifier of the public land mobile network and the first network element determines the target PLMN identifier of the terminal device in the HPLMN according to the target network slice identifier and the identifier of the terminal device.
  • the first network element determines the target quota in the first quota according to the target network slice identifier and the target PLMN identifier. In this way, when the quota is determined, frequent interaction between the VPLMN and the HPLMN is not required, thereby saving network resources.
  • the first network element includes: a PCF network element, an AMF network element, or an SMF network element;
  • the second network element includes: a UDM network element, a UDR network element, or an NWDAF network element;
  • the third network element includes: a UPF network element Yuan.
  • an embodiment of the present application provides a communication method, including: a first network element determining a first quota; wherein, the first network element is a network element in a visited public land mobile network VPLMN; the first quota is the same as that in the VPLMN
  • the identity of the network slice is related to the public land mobile network PLMN identity of the home public land mobile network HPLMN; the first network element determines the target PLMN identity of the terminal device in the HPLMN according to the relevant request of the session; wherein, the relevant request of the session includes the target network slice The identifier and the identifier of the terminal device; the first network element determines the target quota in the first quota according to the identifier of the target network slice and the identifier of the target PLMN. In this way, when the quota is determined, frequent interaction between the VPLMN and the HPLMN is not required, thereby saving network resources.
  • the first quota includes: a first maximum number of sessions and/or a first maximum data rate.
  • the first quota includes multiple sets of association relationships, and the association relationships include: a relationship between a network slice identifier, a PLMN identifier, and a quota; the identity identifier of the terminal device corresponds to a PLMN identifier.
  • the first network element receives the first quota from the second network element, where the second network element includes an operation management and maintenance OAM network element, or the second network element includes a quota control function. In this way, the first network element can determine whether the terminal device is controlled by the service quota data according to the first quota.
  • the method further includes: the first network element sends the identifier of the target network slice and the identifier of the target PLMN to the third network element; the first network element receives the identifier of the target network slice and the target network slice from the third network element.
  • the PLMN identifies the corresponding actual data rate; the first network element sends the actual data rate to the second network element. In this way, the third network element can process the session according to the actual data rate.
  • the method further includes: the first network element determines the identifier of the target network slice and the actual number of sessions corresponding to the identifier of the target PLMN; ask.
  • the method further includes: the first network element sends the actual session number to the second network element.
  • an embodiment of the present application provides a communication method, including: a second network element determining a first quota of a first network element; wherein the first network element is a network element in a visited public land mobile network VPLMN; the first network element The quota is related to the identity of the network slice in the VPLMN and the public land mobile network PLMN identity of the home public land mobile network HPLMN; the second network element sends the first quota to the first network element. In this way, when the quota is determined, frequent interaction between the VPLMN and the HPLMN is not required, thereby saving network resources.
  • the first quota includes: the maximum number of sessions and/or the maximum data rate.
  • the first quota includes multiple sets of association relationships, and the association relationships include: a relationship between a network slice identifier, a PLMN identifier, and a quota; the identity identifier of the terminal device corresponds to a PLMN identifier.
  • the method further includes: the second network element receives the identifier of the target network slice from the third network element and the actual data rate corresponding to the PLMN identifier; the second network element is the third network element according to the actual data rate. A second maximum data rate is determined; the second network element sends the second maximum data rate to the third network element. In this way, the second network element can obtain the second maximum data rate according to the actual data rate.
  • the number of third network elements is multiple, including: the second network element summarizes the actual data rates of multiple third network elements to obtain the aggregated actual data rate; when the aggregated actual data rate reaches the first In the case of a proportional threshold of the maximum data rate, the first network element determines the second maximum data rate for each third network element according to the actual data rate of each third network element. In this way, the third network element can process the session according to the second maximum data rate.
  • the method further includes: the second network element receives the identifier of the target network slice from the first network element and the actual number of sessions corresponding to the PLMN identifier; the second network element is the third network element according to the actual number of sessions. Determine the second maximum number of sessions; the second network element sends the second maximum number of sessions to the first network element. In this way, the first network element can allow or deny session establishment according to the second maximum session number.
  • an embodiment of the present application provides a communication method, including: a third network element receiving an identifier of a target network slice and a target PLMN identifier from a first network element; wherein the first network element is a visited public land mobile network VPLMN
  • the target PLMN identity is the identity of the terminal equipment in the home public land mobile network HPLMN
  • the third network element counts the identity of the target network slice and the actual data rate corresponding to the
  • the third network element receives the second maximum data rate from the second network element; the maximum data rate is related to the actual data rate; the third network element performs session processing according to the second maximum data rate. In this way, when the quota is determined, frequent interaction between the VPLMN and the HPLMN is not required, thereby saving network resources.
  • the third network element discards some packets.
  • an embodiment of the present application provides a communication device.
  • the communication device may be the first network element, or may be a chip or a chip system in the first network element.
  • the communication apparatus may include a processing unit and a communication unit.
  • the processing unit may be a processor, and the communication unit may be a communication interface or an interface circuit.
  • the communication device may also include a storage unit, which may be a memory. The storage unit is used for storing instructions, and the processing unit executes the instructions stored in the storage unit, so that the first network element implements a communication method described in the first aspect or any possible implementation manner of the first aspect .
  • the processing unit may be a processor, and the communication unit may be a communication interface.
  • the communication interface may be an input/output interface, a pin or a circuit, or the like.
  • the processing unit executes the instructions stored in the storage unit, so that the first network element implements a communication method described in the first aspect or any possible implementation manner of the first aspect.
  • the storage unit may be a storage unit in the chip (for example, a register, a cache, etc.), or a storage unit in the first network element located outside the chip (for example, a read-only memory, a random access memory, etc.) .
  • the processing unit is configured to determine a first quota; wherein, the first network element is a network element in the visited public land mobile network VPLMN; the first quota and the identifier of the network slice in the VPLMN and the home public land mobile network HPLMN
  • the public land mobile network PLMN identification is relevant;
  • the processing unit is used to determine the target PLMN identification of the terminal device in the HPLMN according to the relevant request of the session; Wherein, the relevant request of the session includes the target network slice identification and the identification of the terminal device;
  • the processing unit which is used to determine the target quota in the first quota according to the target network slice identifier and the target PLMN identifier.
  • the first quota includes: a first maximum number of sessions and/or a first maximum data rate.
  • the first quota includes multiple sets of association relationships, and the association relationships include: a relationship between a network slice identifier, a PLMN identifier, and a quota; the identity identifier of the terminal device corresponds to a PLMN identifier.
  • the communication unit is specifically configured to receive a first quota from a second network element, where the second network element includes an operation, management and maintenance OAM network element, or the second network element includes a quota control function .
  • the communication unit is specifically configured to send the identifier of the target network slice and the target PLMN identifier to the third network element; the communication unit is specifically configured to receive the identifier of the target network slice from the third network element and The target PLMN identifies the corresponding actual data rate; the communication unit is specifically configured to send the actual data rate to the second network element.
  • the processing unit is specifically configured to determine the identifier of the target network slice and the actual number of sessions corresponding to the target PLMN identifier; the processing unit is specifically configured to determine whether to allow or reject the session according to the target quota and the actual number of sessions related requests.
  • the communication unit is specifically configured to send the actual session number to the second network element.
  • an embodiment of the present application provides a communication device.
  • the communication device may be the second network element, or may be a chip or a chip system in the second network element.
  • the communication apparatus may include a processing unit and a communication unit.
  • the processing unit may be a processor, and the communication unit may be a communication interface or an interface circuit.
  • the communication device may also include a storage unit, which may be a memory. The storage unit is used for storing instructions, and the processing unit executes the instructions stored in the storage unit, so that the second network element implements a communication method described in the second aspect or any possible implementation manner of the second aspect .
  • the processing unit may be a processor, and the communication unit may be a communication interface.
  • the communication interface may be an input/output interface, a pin or a circuit, or the like.
  • the processing unit executes the instructions stored in the storage unit, so that the second network element implements a communication method described in the second aspect or any possible implementation manner of the second aspect.
  • the storage unit may be a storage unit in the chip (for example, a register, a cache, etc.), or a storage unit in the second network element located outside the chip (for example, a read-only memory, a random access memory, etc.) .
  • the processing unit is configured to determine the first quota of the first network element; wherein, the first network element is a network element in the VPLMN of the visited public land mobile network; the first quota and the identification and the attribution of the network slice in the VPLMN
  • the public land mobile network PLMN identifier of the public land mobile network HPLMN is related; the communication unit is configured to send the first quota to the first network element.
  • the first quota includes: the maximum number of sessions and/or the maximum data rate.
  • the first quota includes multiple sets of association relationships, and the association relationships include: a relationship between a network slice identifier, a PLMN identifier, and a quota; the identity identifier of the terminal device corresponds to a PLMN identifier.
  • the communication unit is specifically configured to receive the identifier of the target network slice from the third network element and the actual data rate corresponding to the PLMN identifier; the processing unit is specifically configured to provide the third network slice according to the actual data rate.
  • the element determines the second maximum data rate; the communication unit is specifically configured to send the second maximum data rate to the third network element.
  • the number of third network elements is multiple, and the processing unit is specifically configured to aggregate the actual data rates of the multiple third network elements to obtain the aggregated actual data rate;
  • the first network element determines the second maximum data rate for each third network element according to the actual data rate of each third network element.
  • the communication unit is specifically configured to receive the identifier of the target network slice from the first network element and the actual number of sessions corresponding to the PLMN identifier; the processing unit is specifically configured to provide the third network slice according to the actual number of sessions The element determines the second maximum number of sessions; the communication unit is specifically configured to send the second maximum number of sessions to the first network element.
  • an embodiment of the present application provides a communication device.
  • the communication device may be a third network element, or may be a chip or a chip system in the third network element.
  • the communication apparatus may include a processing unit and a communication unit.
  • the processing unit may be a processor, and the communication unit may be a communication interface or an interface circuit.
  • the communication device may also include a storage unit, which may be a memory. The storage unit is used for storing instructions, and the processing unit executes the instructions stored in the storage unit, so that the second network element implements a communication method described in the second aspect or any possible implementation manner of the second aspect .
  • the processing unit may be a processor, and the communication unit may be a communication interface.
  • the communication interface may be an input/output interface, a pin or a circuit, or the like.
  • the processing unit executes the instructions stored in the storage unit, so that the second network element implements a communication method described in the second aspect or any possible implementation manner of the second aspect.
  • the storage unit may be a storage unit in the chip (eg, a register, a cache, etc.), or a storage unit in the second network element (eg, a read-only memory, a random access memory, etc.) located outside the chip .
  • a communication unit configured to receive an identifier of a target network slice and a target PLMN identifier from a first network element; wherein, the first network element is a network element in a visited public land mobile network VPLMN; the target PLMN identifier is a terminal device The identifier in the home public land mobile network HPLMN; the processing unit is used to count the identifier of the target network slice and the actual data rate corresponding to the identifier of the target PLMN; the communication unit is used to send the actual data rate to the second network element; the communication unit, is used for receiving the second maximum data rate from the second network element; the maximum data rate is related to the actual data rate; the processing unit is used for the third network element to perform session processing according to the second maximum data rate.
  • the processing unit is specifically configured to, when the data rate of the session exceeds the second maximum data rate, the third network element discards some packets.
  • an embodiment of the present application provides a computer-readable storage medium, where a computer program or instruction is stored, and when the computer program or instruction is run on a computer, the computer executes the steps from the first aspect to the first aspect.
  • the embodiments of the present application provide a computer program product including instructions, when the instructions are executed on a computer, the computer can execute the communication method described in any one of the implementation manners of the first aspect to the third aspect.
  • an embodiment of the present application provides a communication system, the system includes any one or more of the following: the communication device described in the fourth aspect and various possible implementation manners, the fifth aspect and each of the fifth aspect The communication apparatus described in one possible implementation manner, the communication apparatus described in the sixth aspect and various possible implementation manners of the sixth aspect.
  • an embodiment of the present application provides a communication device, the device includes a processor and a storage medium, the storage medium stores an instruction, and when the instruction is executed by the processor, the implementation is as described in any implementation manner of the first aspect to the third aspect. communication method.
  • the present application provides a chip or a chip system, the chip or chip system includes at least one processor and a communication interface, the communication interface and the at least one processor are interconnected through a line, and the at least one processor is used for running a computer program or instruction , to perform the communication method described in any one of the implementation manners of the first aspect to the third aspect.
  • the communication interface in the chip may be an input/output interface, a pin, a circuit, or the like.
  • the chip or chip system described above in this application further includes at least one memory, where instructions are stored in the at least one memory.
  • the memory may be a storage unit inside the chip, such as a register, a cache, etc., or a storage unit of the chip (eg, a read-only memory, a random access memory, etc.).
  • Fig. 1 is a kind of schematic flow chart based on HPLMN control session establishment provided by the prior art
  • FIG. 2 is a schematic diagram of a network architecture provided by an embodiment of the present application.
  • FIG. 3 is a schematic diagram of allocating a maximum number of sessions to a first network element according to an embodiment of the present application
  • FIG. 4 is a specific flowchart of a communication method provided by an embodiment of the present application.
  • FIG. 5 is a schematic diagram of a specific communication flow provided by an embodiment of the present application.
  • FIG. 6 is a schematic diagram of a specific communication flow provided by an embodiment of the present application.
  • FIG. 7 is a schematic diagram of a specific communication flow provided by an embodiment of the present application.
  • FIG. 8 is a schematic flowchart of a specific flow of a communication method provided by an embodiment of the present application.
  • FIG. 9 is a schematic diagram of a specific communication flow provided by an embodiment of the present application.
  • FIG. 10 is a schematic diagram of a specific communication flow provided by an embodiment of the present application.
  • FIG. 11 is a schematic diagram of a specific communication flow provided by an embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of a communication device according to an embodiment of the present application.
  • FIG. 13 is a schematic diagram of a hardware structure of a communication device provided by an embodiment of the present application.
  • FIG. 14 is a schematic structural diagram of a chip according to an embodiment of the present application.
  • words such as “first” and “second” are used to distinguish the same or similar items with basically the same function and effect.
  • the first network element and the second network element are only used to distinguish different network elements, and the sequence of the first network element is not limited.
  • the words “first”, “second” and the like do not limit the quantity and execution order, and the words “first”, “second” and the like are not necessarily different.
  • At least one means one or more
  • plural means two or more.
  • And/or which describes the association relationship of the associated objects, indicates that there can be three kinds of relationships, for example, A and/or B, which can indicate: the existence of A alone, the existence of A and B at the same time, and the existence of B alone, where A, B can be singular or plural.
  • the character “/” generally indicates that the associated objects are an “or” relationship.
  • At least one item(s) below” or similar expressions thereof refer to any combination of these items, including any combination of single item(s) or plural items(s).
  • At least one (a) of a, b, or c can represent: a, b, c, a-b, a-c, b-c, or a-b-c, where a, b, c may be single or multiple .
  • a network slice is a logical network with specific network characteristics, which meets the requirements of the 5th generation (5G) mobile communication system proposed by the 3rd generation partnership project (3GPP). key technologies required.
  • a 5G physical network can be abstractly divided into multiple network slices. Each network slice constitutes an end-to-end logical network, which is logically isolated from each other and does not affect each other. Therefore, a network slicing is a logical network with specific network characteristics divided in an operator's communication network.
  • the services of each network slice are usually identified using single-network slice selection assistance information (S-NSSAI).
  • S-NSSAI single-network slice selection assistance information
  • the 5G network selects a network slice for the service according to the S-NSSAI carried in the terminal service request, and transmits the customer's service data within the selected network slice.
  • a custom S-NSSAI value identifies only one network slice within an operator's network. If the value of the S-NSSAI subscribed by the terminal in the home public land mobile network (HPLMN) is a self-defined S-NSSAI (referred to as hS-NSSAI), the terminal roams in the visiting public land mobile network (visit public land mobile network).
  • public land mobile network, VPLMN uses the hS-NSSAI to determine the network slices that the terminal is allowed to use in the VPLMN, and can only use the corresponding S-NSSAI (referred to as vS-NSSAI) valid in the VPLMN to determine that the terminal is allowed in the VPLMN. The network slice to use.
  • the terminal uses a subscription permanent identifier (SUPI) as an identity identifier.
  • the terminal's subscription information of the HPLMN also includes network slice information subscribed by the terminal, that is, one or more subscription S-NSSAIs (Subscribed S-NSSAIs).
  • the end user is a subscriber of the HPLMN, and uses the communication service provided by the HPLMN to which it belongs in the local area, and uses the communication service provided by the VPLMN that has a roaming agreement with the HPLMN in other areas.
  • An operator can provide a communication service (Communication Service) in a range limited by a license, and can often only provide services in a local area. If services are provided in other roaming areas, a roaming agreement must be reached with other operators. Since third-party industry tenants, as service providers (SPs) (such as Internet of Vehicles service providers), want to provide services across multiple roaming areas, they subscribe to network slices from operators in each roaming area, and provide network slices to roaming end users. Application Service. If a third-party industry tenant subscribes to network slices from operators in multiple roaming areas, the operators generally allocate non-standard S-NSSAI to them, which requires the determination of the S-NSSAI of HPLMN and the S-NSSAI of VPLMN. relation.
  • the network slice mapping information is configured on the network device (generally NSSF) of the VPLMN according to the roaming agreement signed by the HPLMN and the VPLMN. Furthermore, in the process of registering the terminal to the VPLMN, the network device of the VPLMN can use the network slice mapping information configured above, combined with the hS-NSSAI subscribed by the terminal to obtain the corresponding vS-NSSAI valid in the VPLMN, and then determine that the terminal is in the VPLMN. Allowed network slices.
  • the roaming agreement signed between the VPLMN and the HPLMN includes the S-NSSAI valid in the VPLMN corresponding to the S-NSSAI signed by the terminal. If the terminal can use a network slice with a user-defined S-NSSAI identifier in HPLMN, and VPLMN can provide an identical or similar network slice that meets the requirements of related communication services, HPLMN and VPLMN will use these two network slices when signing a roaming agreement.
  • the S-NSSAI of the network slice is mapped, that is, hS-NSSAI is mapped to vS-NSSAI.
  • a terminal When a terminal performs network registration in the VPLMN and initiates a session connection, it needs to use the vS-NSSAI corresponding to the hS-NSSAI. After the UE is successfully registered, the obtained one or more network slices that are currently allowed to access are also identified by the vS-NSSAI. At the same time, the UE also obtains the mapping relationship between these vS-NSSAI and hS-NSSAI. When the UE communicates, it sends a session establishment request message to the access and mobility management function (AMF) network element through the access network (AN), wherein the session establishment request message needs to carry the S-NSSAI Indicates in which network slice the session was established.
  • AMF access and mobility management function
  • the AMF network element selects a session management function (SMF) instance of the VPLMN network according to the vS-NSSAI carried in the session establishment request message; if possible, it also selects another HPLMN SMF instance according to the hS-NSSAI .
  • the AMF network element forwards the session establishment request message to the selected SMF network element.
  • the SMF network element processes it, selects an appropriate user plane function (UPF) network element and controls the UPF network element to establish a packet data unit session (PDU Session).
  • UPF user plane function
  • the service message of the terminal can be transferred to the destination data network through the access network and UPF network element.
  • the size of a network slice is often determined by these technical metrics.
  • the scale of network slices ordered by different customers is often different, and the most common scale parameters include the maximum number of sessions and maximum data rate for network slices.
  • the maximum number of sessions for a network slice is the maximum allowed number of PDU sessions connected to this network slice.
  • the maximum data rate of a network slice is the maximum value of the sum of the data transmission rates of all PDU sessions transmitted through the network slice, that is, the maximum value of the network bandwidth allowed to be occupied by all services transmitted by all PDU sessions connected to this network slice.
  • uplink refers to the service transmission direction from the terminal to the network side
  • downlink refers to the service transmission direction from the network to the terminal.
  • up and down directions can be controlled together, or separately, or only one of the directions can be controlled.
  • the HPLMN controls the number of sessions or the maximum data rate established in the network slice, but when there are a large number of roaming users, the VPLMN also needs to restrict a terminal of an HPLMN from establishing too many sessions or occupying too many sessions in the VPLMN according to the roaming agreement. multiple data rates. That is, the VPLMN needs to control the number of sessions established by the roaming terminal or the data rate used by the roaming terminal not to exceed the scale parameter allowed by the roaming agreement signed with the HPLMN.
  • FIG. 1 is a schematic flowchart of establishing a control session based on an HPLMN.
  • the process of establishing the HPLMN control session may include:
  • the V-SMF network element requests the V-PCF network element to establish a policy association during the session request process.
  • the PCF network element with the policy control function in the VPLMN may be referred to as a V-PCF network element; the session management function SMF network element in the VPLMN may be referred to as a V-SMF network element Yuan.
  • the V-SMF network element sends a request for session management policy control to the V-PCF network element, and the request information may carry the identifier hS-NSSAI of the network slice in the HPLMN.
  • the V-PCF network element judges whether the hS-NSSAI of the session has a quota limit.
  • the V-PCF network element determines whether the hS-NSSAI carried in the session has a quota limit.
  • the V-PCF network element requests the H-PCF network element to decide whether to accept the session.
  • the PCF network element of the policy control function in the HPLMN may be referred to as the H-PCF network element.
  • the V-PCF network element sends a quota request to the H-PCF network element.
  • the request information for the quota carries hS-NSSAI.
  • the H-PCF network element judges whether the maximum allowable value is exceeded.
  • the H-PCF network element records the number of PDU sessions currently established after the terminal of the HPLMN roams to the VPLMN. It is judged whether the number of PDU sessions reaches or exceeds the maximum number of sessions allowed by the HPLMN terminal to be established in the VPLMN specified in the roaming agreement.
  • the H-PCF network element can refuse to grant the quota to the V-PCF, and the H-PCF sends a request to reject the quota to the V-PCF; when the number of PDU sessions is If the maximum number of sessions established by the terminal in the VPLMN does not exceed the maximum number of sessions established by the terminal in the VPLMN, the H-PCF can allow the quota to be granted to the V-PCF.
  • the H-PCF network element sends the request for allowing the quota to the V-PCF network element and deducts the current remaining quota. quantity.
  • the H-PCF network element sends a quota request response (allowed or rejected) to the V-PCF network element.
  • the H-PCF sends the response information of the quota request information to the V-PCF, where the response information carries the quota processing result of allowing or denying the quota.
  • the V-PCF network element sends a policy establishment response (allow or deny) to the V-SMF network element.
  • the V-PCF sends response information for establishing a session management policy to the V-SMF, where the response information carries a session processing result of allowing or refusing to establish a PDU session.
  • the HPLMN needs to be used to control the number of sessions or the maximum data rate established in the VPLMN, but one VPLMN can have terminals from multiple different HPLMNs, and the VPLMN must rely on each HPLMN to control the number of sessions from different HPLMNs.
  • the number of sessions established by the terminal equipment or the data rate used by the terminal equipment cannot be controlled by the VPLMN itself. This results in that, after the network slice of the VPLMN is expanded, if it wants to access more roaming users, it is necessary to notify each HPLMN to modify the number of control.
  • the VPLMN needs to frequently interact with multiple HPLMNs and occupies more network resources, resulting in poor communication effect.
  • the embodiment of the present application provides a communication method, which can control the resources of the roaming area based on the VPLMN.
  • the first network element in the VPLMN determines the identity of the network slice in the VPLMN and the home public land mobile network.
  • the first quota related to the public land mobile network PLMN identity of the HPLMN the first network element determines the target PLMN identity of the terminal device in the HPLMN according to the target network slice identity and the identity identity of the terminal device.
  • the first network element determines the target quota in the first quota according to the target network slice identifier and the target PLMN identifier. In this way, when the quota is determined, frequent interaction between the VPLMN and the HPLMN is not required, thereby saving network resources.
  • the methods in the embodiments of the present application may be applied in long term evolution (long term evolution, LTE), and may also be applied in a fifth generation mobile communication (5th generation, 5G) system, or a future mobile communication system.
  • long term evolution long term evolution
  • 5G fifth generation mobile communication
  • FIG. 2 is a schematic diagram of a network architecture provided by an embodiment of the present application.
  • the network architecture may include: terminal equipment (user equipment, UE), (radio) access network ((radio) access network, (R)AN), core network (core network, CN) (not shown in FIG. 2 ). shown) and data network (DN), etc.
  • the terminal device is a device with wireless transceiver function, which can be deployed on land, including indoor or outdoor, handheld, wearable or vehicle-mounted; it can also be deployed on water (such as ships, etc.); it can also be deployed in the air (such as planes, balloons, satellites, etc.).
  • the terminal device can be a mobile phone (mobile phone), a tablet computer (pad), a computer with wireless transceiver function, a virtual reality (virtual reality, VR) terminal device, an augmented reality (augmented reality, AR) terminal device, industrial control ( Wireless terminals in industrial control, wireless terminals in self-driving, wireless terminals in remote medical, wireless terminals in smart grid, wireless terminals in transportation safety Wireless terminals, wireless terminals in smart cities, wireless terminals in smart homes, and so on.
  • the embodiments of the present application do not limit application scenarios.
  • a terminal device may also be sometimes called a user equipment (UE), a mobile station, a remote station, etc.
  • the embodiments of this application do not limit the specific technology, device form, and name used by the terminal device.
  • the AN device is used to be responsible for the wireless side access of the terminal device, and the possible deployment forms include: separation scenarios of centralized unit (centralized unit, CU) and distributed unit (distributed unit, DU) and single-site scenarios.
  • CU supports radio resource control (radio resource control, RRC), packet data convergence protocol (packet data convergence protocol, PDCP), service data adaptation protocol (service data adaptation protocol, SDAP) and other protocols;
  • DU It mainly supports radio link control (RLC), media access control (MAC) and physical layer protocols.
  • a single site may include (new radio Node, gNB), evolved Node B (evolved Node B, eNB), radio network controller (radio network controller, RNC), Node B (Node B, NB) , Base Station Controller (BSC), Base Transceiver Station (BTS), Home Base Station, Base Band Unit (BBU), etc.
  • RNC radio network controller
  • Node B Node B, NB
  • BSC Base Station Controller
  • BTS Base Transceiver Station
  • BBU Base Band Unit
  • CN devices can include management devices and gateway devices.
  • Management devices are mainly used for device registration, security authentication, mobility management and location management of terminal devices.
  • Gateway devices are mainly used to establish channels with terminal devices, and forward terminals on the channel. Data packets between the device and the external data network.
  • DN can provide data transmission services for terminals, which can be a public data network (PDN) network, such as the Internet, or a local access data network (LADN, Local Access Data Network), such as mobile edge A network of computing (MEC, Mobile Edge Computing) nodes, etc.
  • PDN public data network
  • LADN Local Access Data Network
  • MEC mobile edge A network of computing
  • 5G 5th Generation
  • the access network in 5G can be a radio access network (R)AN, and the (R)AN device in the 5G system can be composed of multiple 5G-(R)AN nodes.
  • AN nodes may include: 3GPP access networks, non-3GPP access networks such as access points (access points, APs) of WiFi networks, next-generation base stations (which may be collectively referred to as new-generation radio access network nodes (NG-RAN) node), wherein the next-generation base station includes a new air interface base station (NR nodeB, gNB), a new generation of evolved base station (NG-eNB), a central unit (central unit, CU) and a distributed unit (distributed unit, DU) separate forms gNB, etc.), transceiver point (transmission receive point, TRP), transmission point (transmission point, TP) or other nodes.
  • NR nodeB new air interface base station
  • NG-eNB new generation of evolved base station
  • CU central unit
  • DU distributed unit
  • the 5G core network may include access and mobility management function (AMF) network elements, session management function (SMF) network elements, user user plane function (UPF) network element, authentication server function (AUSF) network element, policy control function (PCF) network element, application function (AF) network element, Unified data management (UDM) network element, network slice selection function (NSSF) network element, network element function (NEF) network element, network data analysis function (network data analytics function) , NWDAF) network element and other functional units.
  • AMF access and mobility management function
  • SMF session management function
  • UPF user plane function
  • AUSF authentication server function
  • PCF policy control function
  • UDM Unified data management
  • NSSF network slice selection function
  • NEF network element function
  • NWDAF network data analysis function
  • the AMF network element is mainly used for terminal attachment, mobility management, and tracking area update procedures in the mobile network, and the access management network element terminates non-access stratum (non access stratum, NAS) messages, completes registration management, and connection. Management and reachability management, allocation of track area list (TA list) and mobility management, etc., and transparent routing of session management (SM) messages to session management network elements.
  • NAS non-access stratum
  • SMF network elements are mainly responsible for session management, dynamic host configuration protocol functions, selection and control of user plane functions, such as session establishment, modification, and release.
  • Specific functions include allocating Internet Protocol (IP) addresses to users, and selecting user plane network elements that provide packet forwarding functions.
  • IP Internet Protocol
  • Specific functions include allocating Internet Protocol (IP) addresses to terminals, and selecting user plane network elements that provide packet forwarding functions.
  • the UPF network element is mainly responsible for external connection to the data network (DN) and data packet routing and forwarding on the user plane, packet filtering, and performing quality of service (QoS) control related functions, such as forwarding, billing, etc. .
  • the user plane network element may also be referred to as a protocol data unit (protocol data unit, PDU) session anchor (PDU session anchor, PSA).
  • the AUSF network element is mainly responsible for the authentication function of the terminal equipment.
  • the PCF network element is mainly responsible for providing a unified policy framework for network behavior management, providing policy rules for control plane functions, and acquiring registration information related to policy decisions, such as QoS policies, slice selection policies, and so on. It should be noted that these functional units can work independently, or can be combined to implement certain control functions, such as access control and mobility management functions such as access authentication, security encryption, location registration, etc. Session management functions such as establishment, release, and modification of plane transmission paths.
  • UDM network elements are unified user data management, and are mainly used to store user equipment subscription data, such as storage subscription information and authentication/authorization information.
  • NSSF network elements are mainly used to select appropriate network slices for terminal services.
  • the AF network element is responsible for providing service-related information to the 3GPP network, such as for influencing service routing, interacting with the PCF network element for policy control, and the like.
  • the NWDAF network element has at least one of the following functions: a data collection function, a data training function, a data inference function, and a data analysis result feedback function.
  • the data collection function means that NWDAF network elements can collect data from network network elements, third-party service servers, terminal equipment or network management systems, etc., and the data can be used as input data for data training or data inference functions
  • data training functions refer to The NWDAF network element performs offline data analysis and training operations on a large amount of acquired input data, and obtains the corresponding data model or data rule or data feature
  • the data inference function means that the NWDAF network element performs online inference based on input data or inference data and obtains Data analysis results
  • the data analysis result feedback function can send the data analysis results to network elements, third-party service servers, terminal equipment or network management systems.
  • the analysis results can assist the network to select service quality parameters for services, or assist the network to perform traffic routing. , or assist the network to select a background traffic transmission strategy, etc.
  • NWDAF network elements can be independently deployed network elements, or can be co-located or deployed with other network elements (such as AMF network elements, SMF network elements, or PCF network elements, etc.)
  • the function of adding an NWDAF network element to the network element is not specifically limited in this embodiment of the present application.
  • the functional units in the 5G system can communicate through the next generation network (NG) interface.
  • the terminal device can communicate with the AMF network element through the NG interface 1 (N1 for short, not shown in Figure 2).
  • the RAN device can establish a user plane communication connection with the UPF through the NG interface 3 (N3 for short) to establish a channel
  • the AN/RAN device can establish a control plane signaling connection with the AMF network element through the NG interface 2 (N2 for short).
  • the UPF The network element can exchange information with the SMF network element through the NG interface 4 (N4 for short), the UPF network element can exchange user plane data with the data network DN through the NG interface 6 (N6 for short), and the AMF network element can use the NG interface 11 (abbreviated as N6).
  • N11, not shown in Figure 2) interacts with SMF network elements
  • SMF network elements can exchange information with PCF network elements through NG interface 7 (N7 for short, not shown in Figure 2)
  • AMF network elements can use NG interface 7 (N7 for short, not shown in Figure 2) to exchange information with PCF network elements
  • the interface 12 (N12 for short, not shown in FIG. 2 ) exchanges information with the AUSF network element.
  • the first network element described in the embodiment of the present application may be a core network element such as a PCF network element, an AMF network element, or an SMF network element in a VPLMN.
  • a core network element such as a PCF network element, an AMF network element, or an SMF network element in a VPLMN.
  • the second network element described in the embodiments of the present application may be other network elements that implement a data management function, such as a UDM network element, a UDR network element, or an NWDAF network element.
  • the third network element described in the embodiments of the present application may be a UPF network element or the like.
  • the network slicing described in the embodiments of this application may be a logical network with specific network characteristics that is divided in the communication network of the operator.
  • network slices can be of the following three types: enhanced mobile broadband (eMBB), ultra high-reliability and low-latency communication (URLLC), enhanced machine type communication (enhanced machine type communication, eMTC).
  • eMBB enhanced mobile broadband
  • URLLC ultra high-reliability and low-latency communication
  • eMTC enhanced machine type communication
  • the roaming described in the embodiments of the present application may be a function that the operator can still provide services to the operator after leaving the registered local area and moving to another service area.
  • the maximum number of sessions described in this embodiment of the present application may be the maximum allowed number of PDU sessions accessing this network slice.
  • the maximum number of sessions may also be referred to as the maximum number of bearers (maximum number of bearers) or the maximum number of flows (maximum number of flows), such as the number of quality of service flows (quality of service flow, QoS flow).
  • the maximum data rate described in this embodiment of the present application may be the maximum value of the sum of the data transmission rates of all PDU sessions transmitted through a network slice, that is, all services transmitted by all PDU sessions connected to this network slice are allowed to occupy Maximum network bandwidth.
  • the maximum data rate of the network slice can be divided into two directions: uplink (UpLink, UL) and downlink (DownLink, DL).
  • Uplink refers to the service transmission direction from the terminal to the network side
  • downlink refers to the service transmission direction from the network to the terminal.
  • the up and down directions can be controlled together, or separately, or only one of the directions can be controlled.
  • a first network element determines a first quota.
  • the first quota is related to the identifier S-NSSAI of the network slice in the VPLMN and the PLMN identifier (identity, ID) of the HPLMN.
  • the first quota may include one or more groups of association relationships, and the form of each group of association relationships may be: S-NSSAI+PLMN ID+quota It is vS-NSSAI, or a combination of vS-NSSAI+hS-NSSAI. Or it can be understood that the available quotas of roaming terminals from different HPLMNs are distinguished according to the combination of S-NSSAI+PLMN ID. In this way, the quota can be associated with the S-NSSAI and the PLMN ID, and the first network element in the subsequent VPLMN can control session processing in the VPLMN based on the first quota.
  • the first quota may include other types of quota data such as the first maximum number of sessions and/or the first maximum data rate.
  • the first maximum number of sessions is the maximum number of sessions that can be established by all terminals associated with the PLMN ID in the network slice identified by the S-NSSAI through the first network element;
  • the first maximum data rate is that all terminals associated with the PLMN ID pass through
  • the first network element establishes, within the network slice identified by the S-NSSAI, the maximum uplink and/or maximum downlink data rate that can be transmitted in total by all PDU sessions.
  • the subsequent first network element may control the session establishment process in the VPLMN based on the first maximum session number and/or the first maximum data rate. The specific control manner will be described in the subsequent embodiments, and will not be repeated here.
  • a possible implementation for the first network element to determine the first quota is: the first network element receives the first quota from an operation administration and maintenance (operation administration and maintenance, OAM network element).
  • the network slice of the PLMN identified by the vS-NSSAI can be mapped with the network slice identified by the hS-NSSAI signed by the UE at the HPLMN.
  • the roaming agreement can also specify how many PDU sessions the terminal roaming from the HPLMN can establish at the same time, and the maximum uplink and/or downlink data rate that the network slice of the VPLMN needs to support.
  • These determined scale parameters can be stored in the OAM entity or the service issuing entity of the VPLMN.
  • the OAM entity may be a network slice management function
  • the service issuing entity may be a network slice order and service management function.
  • the OAM entity or the service provisioning entity will be referred to as an OAM network element hereinafter.
  • the OAM network element may determine all the first network elements responsible for the vS-NSSAI network slicing, and then use the parameter of the maximum number of sessions or the maximum data rate that a terminal from a specific HPLMN is allowed to establish as the overall service quota data. According to the processing performance or device capacity of each first network element, the overall service quota data of the network slice is divided into several first quotas, and then the divided first quotas are allocated to the corresponding first network elements.
  • the OAM network element may also configure the first quota for the first network element based on user settings.
  • the first network element receives the first quota from the network element with the quota control function.
  • the quota control function network element may be a network element with a quota control function, for example, may include a UDR network element or an NWDAF network element.
  • the roaming agreement specifies how many PDU sessions the terminal roaming from the HPLMN can establish at the same time, and the maximum uplink and/or downlink data rate supported by the network slice of the VPLMN.
  • These determined scale parameters are configured in the quota control function entity (or referred to as the quota control function network element) of the VPLMN.
  • the quota control function network element can determine all the first network elements responsible for the vS-NSSAI network slice, and then allow the The parameter of the maximum number of sessions or the maximum data rate established by the terminal of a specific HPLMN is taken as the overall service quota data.
  • the overall service quota data of the network slice is divided into several first quotas, and then the divided first quotas are allocated to the corresponding first network elements.
  • the first network element determines the target PLMN identifier of the terminal device in the HPLMN according to the relevant request of the session.
  • a session may be initiated by a terminal device, and a related request for the session may include: an identifier of a network slice in the VPLMN (or vS-NSSAI) and an identifier of the terminal device (or called SUPI). Wherein, based on the SUPI, it can be associated with a PLMN ID. Therefore, the first network element can use the SUPI of the terminal device to determine the target PLMN identifier (or referred to as the target PLMN ID) to which the terminal device belongs.
  • the first network element determines the target quota in the first quota according to the target network slice identifier and the target PLMN identifier.
  • the first network element may match or search for the target quota corresponding to the target network slice identifier and the target PLMN identifier in the first quota. Then the subsequent first network element can use the target quota to perform quota control on the number of sessions in the network slice.
  • the resources in the roaming area can be controlled based on the network elements in the VPLMN.
  • the first network element in the VPLMN determines the first quota related to the identifier of the network slice in the VPLMN and the PLMN identifier of the HPLMN, The first network element determines the target PLMN identifier of the terminal device in the HPLMN according to the target network slice identifier and the identifier of the terminal device. The first network element determines the target quota in the first quota according to the target network slice identifier and the target PLMN identifier. In this way, when the quota is determined, frequent interaction between the VPLMN and the HPLMN is not required, thereby saving network resources.
  • FIG. 3 is a schematic diagram of allocating a maximum number of sessions to a first network element according to an embodiment of the present application.
  • the maximum number of sessions that can be accommodated can be configured in the operation, administration and maintenance (OAM) network element, unified data repository (unified data repository) repository, UDR) network element or unified data management UDM network element or a central PCF (center PCF or master PCF or primary PCF) network element, or NWDAF network element.
  • OAM administration and maintenance
  • sub-slices can be divided by regions, network slice instances, etc., and each sub-slice has a first network element (the PCF network element will be used as an example for the following description) for slicing
  • the maximum number of sessions control Assuming that there are N sub-slices under the S-NSSAI, generally, sub-slices can be divided by regions, network slice instances, etc., and each sub-slice has a first network element (the PCF network element will be used as an example for the following description) for slicing The maximum number of sessions control.
  • OAM, UDR network element, UDM network element or NWDAF network element can be divided into N shares of the first maximum number of sessions according to the maximum number of sessions, and then the first maximum number of sessions is divided into PCF 1 network element, PCF network element 2 network elements...PCF N network elements. Next, the PCF 1 network element, the PCF 2 network element, and the PCF N network element respectively perform slice access control or slice creation session control according to the respective first maximum number of sessions.
  • the maximum number of sessions and the first maximum number of sessions are controlled according to the total-point mode (OAM/UDR/UDM/NWDAF-PCF, or Master PCF-PCF).
  • the sum of the first maximum number of sessions 1, the first maximum number of sessions 2...the sum of the first maximum number of sessions N is equal to or less than the (total) maximum number of sessions.
  • the actual number of sessions (the actual number of PDU Sessions, counter for current PDU sessions) of all UEs associated with the target PLMN identifier in the sub-slice 1 is: zero.
  • the UE sends a protocol data unit (PDU) session creation request to the SMF 1 network element, and the SMF 1 network element interacts with the PCF 1 network element to determine whether the UE can The PDU Session is created in the sub-slice 1 corresponding to the S-NSSAI.
  • PDU protocol data unit
  • the PCF 1 network element determines that the actual number of PDU Sessions of all UEs associated with the target PLMN identifier in the current sub-slice 1 is close to or exceeds the first maximum number of sessions 1, The UE's request to create a PDU Session in sub-slice 1 is rejected; otherwise, the UE's request to create a PDU Session in sub-slice 1 is accepted, and the actual number of PDU Sessions associated with the target PLMN identifier in sub-slice 1 is increased by one.
  • FIG. 4 shows a schematic flowchart of a specific communication method according to an embodiment of the present application.
  • the communication method including the method may include:
  • the second network element determines the first maximum number of sessions and/or the first maximum data rate of the first network element.
  • the second network element may determine each PCF entity in the vS-NSSAI network slice, and use the first maximum number of sessions and/or the first maximum data rate parameter that the terminal device from the HPLMN is allowed to establish as the overall service quota data. .
  • the overall service quota data of the network slice is divided into several first quotas, and then the divided first quotas are allocated to the corresponding first network elements.
  • the second network element sends the first maximum number of sessions and/or the first maximum data rate to the first network element.
  • the first network element determines whether to allow or deny session establishment according to the first maximum number of sessions.
  • the first network element may determine whether the terminal device is controlled by the service quota data according to the first maximum number of sessions. For example, if the session quantity quota has been exhausted or the number of established sessions exceeds the first maximum session quantity, the establishment of the session may be refused; if the session quantity quota does not exceed the first maximum session quantity, the session establishment may be permitted, and the session may be established at the first maximum session quantity. The quantity quota is reduced by one.
  • the first network element sends the first maximum data rate to the third network element.
  • the third network element processes the session according to the first maximum data rate.
  • the third network element controls the sum of the rates of all sessions of the UE associated with the PLMN ID in the network slice identified by the S-NSSAI not to exceed the first maximum data quantity rate. If the sum of the rates of all sessions exceeds the first maximum data rate, the rate bandwidth of the PDU sessions matching the vS-NSSAI+PLMN ID in the VPLMN is controlled.
  • the third network element when the third network element performs actual data rate limiting on the uplink and/or downlink data packets of the PDU session matching the vS-NSSAI+PLMN ID. If the third network element determines that the actual data rate of all PDU sessions of the vS-NSSAI+PLMN ID exceeds the quota, the third network element first discards the non-GBR packets of these PDU sessions, and if it still exceeds the quota , the third network element may continue to discard the packets exceeding the guaranteed bandwidth flow bit rate (GFBR) part in the data flow of the guaranteed bandwidth (guaranteed bit rate, GBR) service.
  • GFBR guaranteed bandwidth flow bit rate
  • the resources of the roaming area can be controlled based on the first network element, the second network element and the third network element in the VPLMN.
  • the second network element determines the first maximum session of the first network element. number and/or the first maximum data rate, the second network element sends the first maximum number of sessions and/or the first maximum data rate to the first network element, and the first network element determines whether to allow or reject the session establishment according to the first maximum number of sessions , the first network element sends the first maximum data rate to the third network element. In this way, when the quota is determined, frequent interaction between the VPLMN and the HPLMN is not required, thereby saving network resources.
  • FIG. 5 shows a specific communication in the embodiment of the present application Schematic diagram of the process.
  • the PCF network element determines the first maximum number of sessions and/or the first maximum data rate.
  • the UE sends a session request to the AMF network element.
  • the UE initiates a session request to the AMF network element through the gNB, and the session request may carry the vS-NSSAI.
  • the session may be other sessions such as a local breakout (LBO) session or a home routed (home routed, HR) session. It can be understood that, the types of sessions are not limited in this embodiment of the present application.
  • the AMF network element sends a request for creating a PDU session context to the SMF network element.
  • the AMF network element selects and requests the SMF network element in the network slice to create a PDU session management context of the terminal device, and the PDU session (or session) management context carries the vS-NSSAI.
  • the UDM network element sends session management subscription information to the SMF network element.
  • the SMF network element creates a session management policy control request (SUPI, S-NSSAI) to the PCF network element.
  • SUPI session management policy control request
  • S-NSSAI session management policy control request
  • the SMF network element determines the PCF network element that processes the target network slice from the session management subscription information, and sends a message for establishing a session management policy control request to the first network element, where the message carries the vS-NSSAI and the SUPI of the UE. .
  • the PCF network element determines the PLMN ID according to the SUPI, and performs control according to the first maximum number of sessions corresponding to the S-NSSAI+PLMN ID.
  • the first network element determines the PLMN ID to which the UE belongs according to the SUPI of the UE.
  • the SUPI may be composed of a mobile country code (mobile country code, MCC), a mobile network code (mobile network code, MNC), and a user identification part.
  • the first network element may obtain the MCC and the MNC from the SUPI, and use the combination of the MCC+MNC as the PLMN ID of the HPLMN to which the UE belongs.
  • the first network element may control the session establishment process according to the first maximum number of sessions corresponding to the combination of the vS-NSSAI+PLMN ID.
  • the session establishment control process is as described in S405, which will not be repeated here.
  • the PCF network element sends the first maximum data rate to the UPF network element, where the PCF network element may send the first maximum data rate to the UPF network element through the SMF network element.
  • the UPF network element processes the session according to the first maximum data rate.
  • the PCF network element sends a create session management policy control response (accept or reject) to the SMF network element.
  • the response message carries the processing result of allowing the establishment of the PDU session or refusing to establish the PDU session obtained in S506.
  • the SMF network element returns a session context establishment response message to the AMF network element.
  • the SMF network element can control the UPF network element through the N4 interface. Among them, the UPF performs the service message transmission of the PDU session.
  • the UE, the AMF network element, the third network element, the SMF network element and the PCF network element terminate the session.
  • the PCF network element restores the quota.
  • the PCF restores the session quantity quota and the data rate quota corresponding to the combination of the vS-NSSAI+PLMN ID used by the PDU session.
  • S507 and S508 are optional steps, which are not specifically limited in this embodiment of the present application.
  • the resources of the roaming area can be controlled based on the AMF, third, SMF, PCF, and UDM network elements in the VPLMN, so that the VPLMN and HPLMN do not need to be frequently used when determining the quota. interaction, thereby saving network resources.
  • FIG. 6 shows this A schematic diagram of a specific communication flow of the application embodiment.
  • the SMF network element determines the first maximum number of sessions and/or the first maximum data rate.
  • the UE sends a session request to the AMF network element.
  • the AMF network element SMF network element sends a request for creating a PDU session context.
  • the UDM network element sends session management subscription information to the SMF network element.
  • the SMF network element determines the PLMN ID according to the SUPI, and performs control according to the first maximum number of sessions corresponding to the S-NSSAI+PLMN ID. Specifically, the SMF network element controls whether to allow the establishment of a PDU session according to the first maximum number of sessions corresponding to the combination of the vS-NSSAI+PLMN ID. If the establishment is allowed, execute the subsequent steps; otherwise, send a response message rejecting the session establishment to the UE through the AMF network element.
  • the SMF network element sends the first maximum data rate to the third network element.
  • the UPF network element processes the session according to the first maximum data rate.
  • the PCF network element sends a create session management policy control response (accept or reject) to the SMF network element.
  • the PCF network element restores the quota.
  • S601-S604 in the embodiment of the present application may correspond to the records of S501-S504 in FIG. 5 ;
  • S605-S611 in the embodiment of the present application may correspond to the records of S506-S512 in FIG. 5 ; details are not repeated here.
  • the PCF network element determines the first maximum number of sessions and/or the first maximum data rate, and controls the sessions.
  • the SMF network element determines the first maximum session. The number and/or the first maximum data rate, and the session is controlled, and the interaction flow between the network elements is also changed accordingly.
  • the resources of the roaming area can be controlled based on the AMF network element, third network element, SMF network element, PCF network element and UDM network element in the VPLMN, so that the VPLMN and HPLMN do not need to be frequently used when determining the quota. interaction, thereby saving network resources.
  • FIG. 7 shows this A schematic diagram of a specific communication flow of the application embodiment.
  • the AMF network element determines the first maximum number of sessions and/or the first maximum data rate.
  • the UE sends a session request to the AMF network element.
  • the AMF network element sends a request for creating a PDU session context to the SMF network element.
  • the UDM network element sends session management subscription information to the SMF network element.
  • the AMF network element determines the PLMN ID according to the SUPI, and performs control according to the first maximum number of sessions corresponding to the S-NSSAI+PLMN ID. Specifically, the AMF network element controls whether to allow the establishment of a PDU session according to the first maximum number of sessions corresponding to the combination of the vS-NSSAI+PLMN ID. If the establishment is allowed, perform the following steps; otherwise, the AMF network element sends a response message rejecting the session establishment to the UE.
  • the AMF network element sends the first maximum data rate to the UPF network element through the SMF network element.
  • the UPF network element processes the session according to the first maximum data rate.
  • the PCF network element sends a create session management policy control response (accept or reject) to the SMF network element.
  • the PCF network element restores the quota.
  • S701-S711 in this embodiment of the present application may correspond to the records of S601-S611 in FIG. 6 , and details are not described herein again.
  • the SMF network element in FIG. 6 determines the first maximum number of sessions and/or the first maximum data rate, and controls the sessions
  • the AMF network element in FIG. 7 determines the first maximum number of sessions and/or the first maximum data rate. / or the first maximum data rate, and if the session is controlled and adapted, the interaction flow between the network elements is also changed accordingly.
  • the resources of the roaming area can be controlled based on the AMF, third, SMF, PCF, and UDM network elements in the VPLMN, so that the VPLMN and HPLMN do not need to be frequently used when determining the quota. interaction, thereby saving network resources.
  • FIG. 8 shows a specific communication schematic diagram of a communication method according to an embodiment of the present application.
  • the communication method may include:
  • the second network element determines the first maximum number of sessions and/or the first maximum data rate of the first network element.
  • the second network element may be a quota control function network element, and the quota control function network element may determine all the first network elements responsible for vS-NSSAI network slicing, and then allow the maximum number of sessions established by a terminal from a specific HPLMN or The maximum data rate parameter is used as the overall service quota data.
  • the overall service quota data of the network slice is divided into several first quotas, and then the divided first quotas are allocated to the corresponding first network elements.
  • the second network element sends the first maximum number of sessions and/or the first maximum data rate to the first network element.
  • the first network element determines to allow or deny session establishment according to the first maximum session quantity.
  • the first network element sends the first maximum data rate to the third network element.
  • the third network element processes the session according to the first maximum data rate.
  • the first network element sends the identifier of the target network slice and the actual number of sessions corresponding to the PLMN identifier to the second network element.
  • the second network element determines the second maximum number of sessions for the first network element according to the actual number of sessions.
  • the second network element may summarize the actual number of sessions of the combination of vS-NSSAI+PLMN ID sent by the first network element, and the second network element may re-determine the second network element based on the actual number of sessions of the first network element. Maximum number of sessions. For example, a larger portion of the session quantity quota is allocated to the first network element that reports a larger actual session quantity, and a smaller portion of the session quantity quota is allocated to the first network element that reports a smaller actual session quantity.
  • the second network element sends the second maximum number of sessions to the first network element.
  • the first network element determines to allow or deny session establishment according to the second maximum number of sessions.
  • the first network element may determine whether the terminal device is controlled by the service quota data according to the second maximum number of sessions. For example, if the session quantity quota has been exhausted or the number of established sessions exceeds the second maximum session quantity, the establishment of the session may be refused; if the session quantity quota does not exceed the second maximum session quantity, the session establishment may be permitted, and the session may be established at the second maximum session quantity. The quantity quota is reduced by one.
  • the first network element sends the identifier of the target slice and the identifier of the target PLMN to the third network element.
  • the third network element counts the identifier of the target network slice and the actual data rate corresponding to the identifier of the target PLMN.
  • the third network element counts the actual UL/DL data rates of all sessions on the N3 or N6 interface according to the combination of vS-NSSAI+PLMN ID, which may be, for example, the average data rate of a period.
  • the third network element may periodically report the actual data rate corresponding to the combination of vS-NSSAI+PLMN ID in the network slice to the second network element.
  • the third network element sends the actual data rate to the second network element.
  • the second network element determines a second maximum data rate for the third network element according to the actual data rate.
  • the second network element may summarize the UL/DL actual data rates reported by each third network element according to the combination of vS-NSSAI+PLMN ID, and the second network element may periodically This network slicing allows the overall data rate of the terminal from this HPLMN to be allocated to the second maximum data rate of each third network element according to the traffic volume of each third network element. For example, an additional part of the data rate quota is allocated to the third network element whose actual data rate reported last time is relatively large, and a part of the data rate quota is allocated less to the third network element whose actual data rate reported last time is relatively small.
  • the second network element may instruct the third network element to limit the uplink or/and downlink data rate of the session matching the vS-NSSAI+PLMN ID combination according to the allocated quota.
  • the second network element may periodically perform the above quota allocation, or when it is determined that the actual data rate of the aggregated vS-NSSAI+PLMN ID combination reaches a specific threshold, it may start according to the actual rate quota of each third network element as:
  • Each third network element allocates a second maximum data rate and instructs the third network element to perform data rate limiting according to the second maximum data rate.
  • the second network element may also instruct the UPF to stop the enforcement of the data rate limit if it falls below a certain threshold.
  • the characteristic threshold may be that the ratio of the actual data rate to the maximum allowable data rate reaches a certain value, or that the specific data rate reaches a certain value.
  • the second network element may allocate the data rate quota according to the device capacity of each third network element, or equally divide the data rate quota to each third network element.
  • the second network element sends the second maximum data rate to the third network element.
  • the third network element performs session processing according to the second maximum rate.
  • the third network element may perform an actual data rate limit on the uplink and/or downlink data packets of the session matching the vS-NSSAI+PLMN ID.
  • the third network element determines that the actual data rate of all the sessions of the vS-NSSAI+PLMN ID exceeds the quota, the third network element first discards the non-GBR packets of these sessions, if the quota is still exceeded , the third network element may continue to discard the packets exceeding the guaranteed flow bit rate (guaranteed flow bit rate, GFBR) in the data flow of the guaranteed bandwidth (guaranteed bit rate, GBR) service.
  • the guaranteed flow bit rate guaranteed flow bit rate
  • GBR guaranteed bandwidth
  • S802-S805 in the embodiment of the present application may correspond to the records of S402-S405 in FIG. 4 , and details are not repeated here.
  • the resources of the roaming area can be controlled based on the first, second and third network elements in the VPLMN, so that when the quota is determined, the frequent interaction between the VPLMN and the HPLMN is not required, thereby saving the network resource.
  • FIG. 9 shows this A schematic diagram of a specific communication flow of the application embodiment.
  • the V-PCF network element determines the first maximum session number and/or the first maximum data rate.
  • the UE sends a session request to the AMF network element.
  • the AMF network element sends a request for creating a PDU session context to the SMF network element.
  • the UDM network element sends the session management subscription information to the SMF network element.
  • the SMF network element sends a create session management policy control request (SUPI, vS-NSSAI) to the V-PCF network element.
  • SUPI create session management policy control request
  • vS-NSSAI create session management policy control request
  • the V-PCF network element determines the PLMN ID according to the SUPI, and performs control according to the first maximum number of sessions corresponding to the S-NSSAI+PLMN ID.
  • the V-PCF network element sends a session management policy control to the SMF network element.
  • the third network element of the V-PCF network element sends the first maximum data rate.
  • the UPF network element processes the session according to the first maximum data rate.
  • the SMF network element returns a session context establishment response message to the AMF network element.
  • the SMF network element and the UPF network element establish an N4 interface session. If the SMF network element determines, according to the instruction of the V-PCF network element, that the session is limited by the first maximum data rate quota of the network slice, the SMF network element will send the relevant The vS-NSSAI and PLMN ID are passed to the UPF network element through the N4 interface.
  • the V-PCF network element sends the identifier of the target slice and the identifier of the target PLMN to the third network element.
  • the third network element counts the identifier of the target network slice and the actual data rate corresponding to the identifier of the target PLMN.
  • the third network element sends a periodic report of the actual data rate (S-NSSAI+PLMN ID, N6 DL/UL actual rate) to the second network element.
  • the second network element determines a second maximum data rate for the third network element according to the actual data rate.
  • the second network element distributes the second maximum data rate (S-NSSAI+PLMN ID, rate limit quota) to each UPF according to the actual data rate to the third network element.
  • the third network element performs session processing according to the second maximum data rate.
  • the Non-BGR flow is limited.
  • the GBR flow may be limited by the part exceeding the GFBR.
  • S901-S909 in the embodiments of the present application may correspond to the records of S501-S509 in FIG. 5 ;
  • S911-S916 in the embodiments of the present application may correspond to the records of S810-S815 in FIG. 8 ; details are not repeated here.
  • the first network element in FIG. 8 may be represented by the V-PCF network element in FIG. 9 .
  • the resources of the roaming area can be controlled based on the AMF network element, the third network element, the SMF network element, the V-PCF network element, the second network element, and the UDM network element in the VPLMN. Frequent interaction between VPLMN and HPLMN is not required, thereby saving network resources.
  • FIG. 10 shows this A schematic diagram of a specific communication flow of the application embodiment.
  • the SMF network element determines a first maximum number of sessions and/or a first maximum data rate.
  • the UE sends a session request to the AMF network element.
  • the AMF network element sends a request for creating a PDU session context to the SMF network element.
  • the UDM network element sends session management subscription information to the SMF network element.
  • the V-SMF network element determines the PLMN ID according to the SUPI, and performs control according to the first maximum number of sessions corresponding to the S-NSSAI+PLMN ID. Specifically, the V-SMF network element controls whether to allow the establishment of a PDU session according to the first maximum number of sessions corresponding to the combination of the S-NSSAI+PLMN ID. If the establishment is allowed, execute the subsequent steps; otherwise, send a response message rejecting the session establishment to the UE through the AMF network element.
  • the V-PCF network element creates a session management policy control for the SMF network element.
  • the SMF network element UPF network element sends the first maximum data rate.
  • the UPF network element processes the session according to the first maximum data rate.
  • the UPF network element and the SMF network element establish an N4 session (S-NSSAI+PLMN ID).
  • the SMF network element sends the identifier of the target slice and the identifier of the target PLMN to the UPF network element.
  • the UPF network element counts the identifier of the target network slice and the actual data rate corresponding to the identifier of the target PLMN.
  • the UPF network element sends a periodic report of the actual data rate (S-NSSAI+PLMN ID, N6 DL/UL actual rate) to the second network element.
  • the second network element determines a second maximum data rate for the UPF network element according to the actual data rate.
  • the second network element distributes the second maximum data rate (S-NSSAI+PLMN ID, rate limit quota) to each UPF network element according to the actual data rate to the UPF network element.
  • the UPF network element performs session processing according to the second maximum data rate, and when the actual rate exceeds the limit, the Non-BGR flow is limited, and optionally, the GBR flow can be limited by the part exceeding the GFBR.
  • S1001-S1004 in the embodiments of the present application may correspond to the records of S901-S904 in FIG. 9 ;
  • S1005-S1015 in the embodiments of the present application may correspond to the records of S906-S916 in FIG. 9 ; details are not repeated here.
  • the PCF network element determines the first maximum number of sessions and/or the first maximum data rate, and the second maximum number of sessions and/or the second maximum data rate, and determines the maximum number of sessions and/or the second maximum data rate.
  • Control, the SMF network element in FIG. 10 determines the first maximum number of sessions and/or the first maximum data rate, and the second maximum number of sessions and/or the second maximum data rate, and controls the sessions, adaptive, each network
  • the interaction flow between elements also changes accordingly.
  • the resources of the roaming area can be controlled based on the AMF network element, the third network element, the SMF network element, the V-PCF network element, the second network element and the UDM network element in the VPLMN. , which does not require frequent interaction between VPLMN and HPLMN, thereby saving network resources.
  • FIG. 11 shows this A schematic diagram of a specific communication flow of the application embodiment.
  • the AMF network element determines the first maximum number of sessions and the first maximum data rate.
  • the UE sends a session request to the AMF network element.
  • S1103 The AMF network element sends a request for creating a PDU session context to the SMF network element.
  • the UDM network element sends session management subscription information to the SMF network element.
  • the AMF network element determines the PLMN ID according to the SUPI, and performs control according to the first maximum number of sessions corresponding to the S-NSSAI+PLMN ID.
  • the V-PCF network element creates a session management policy control for the SMF network element.
  • the AMF network element sends the first maximum data rate to the UPF network element through the SMF network element.
  • the UPF network element processes the session according to the first maximum data rate.
  • the AMF network element sends the identifier of the target slice and the identifier of the target PLMN to the UPF network element through the SMF network element.
  • the UPF network element counts the identifier of the target network slice and the actual data rate corresponding to the identifier of the target PLMN.
  • the UPF network element sends a periodic report of the actual data rate (S-NSSAI+PLMN ID, N6 DL/UL actual rate) to the second network element.
  • the second network element determines a second maximum data rate for the UPF network element according to the actual data rate.
  • the second network element distributes the second maximum data rate (S-NSSAI+PLMN ID, rate limit quota) to each UPF network element according to the actual data rate to the UPF network element.
  • the UPF network element performs session processing according to the second maximum data rate.
  • the current of the Non-BGR flow is limited, and optionally, the current of the part of the GBR flow that exceeds the GFBR can be limited.
  • S1101-S1115 in this embodiment of the present application may correspond to the records of S1001-S1015 in FIG. 10 , and details are not described herein again.
  • the SMFF network element determines the first maximum number of sessions and/or the first maximum data rate, and the second maximum number of sessions and/or the second maximum data rate, and determines the maximum number of sessions and/or the second maximum data rate.
  • the AMF network element in FIG. 11 determines the first maximum number of sessions and/or the first maximum data rate, and the second maximum number of sessions and/or the second maximum data rate, and controls the sessions, adaptive, each network
  • the interaction flow between elements also changes accordingly.
  • the resources of the roaming area can be controlled based on the AMF network element, the third network element, the SMF network element, the V-PCF network element, the second network element and the UDM network element in the VPLMN. , which does not require frequent interaction between VPLMN and HPLMN, thereby saving network resources.
  • FIG. 12 shows a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • the communication device may be a first network element, a second network element, or a third network element in the embodiment of the present application, or It can be a chip applied to the first network element, the second network element or the third network element.
  • the communication device includes: a processing unit 121 and a communication unit 122 .
  • the communication unit 122 is configured to support the communication device to perform the steps of sending or receiving information
  • the processing unit 121 is configured to support the communication device to perform the steps of information processing.
  • the communication apparatus may further include: a storage unit 123 .
  • the processing unit 121, the communication unit 122, and the storage unit 123 are connected through a communication bus.
  • the storage unit 123 may include one or more memories, and the memories may be devices in one or more devices or circuits for storing programs or data.
  • the storage unit 123 may exist independently, and is connected to the processing unit 121 of the communication device through a communication bus.
  • the storage unit 123 may also be integrated with the processing unit.
  • the communication apparatus may be used in a communication device, circuit, hardware component or chip.
  • the communication unit 122 may be an input or output interface, a pin, or a circuit.
  • the storage unit 123 may store computer execution instructions of the method on the side of the first network element, the second network element or the third network element, so that the processing unit 121 executes the first network element and the second network element in the above-mentioned embodiment. or the method on the third network element side.
  • the storage unit 123 may be a register, a cache or a RAM, etc., and the storage unit 123 may be integrated with the processing unit 121 .
  • the storage unit 123 may be a ROM or other types of static storage devices that may store static information and instructions, and the storage unit 123 may be independent of the processing unit 121 .
  • An embodiment of the present application provides a communication device, where the communication device includes one or more modules for implementing the methods in the steps included in the foregoing FIG. - The steps of the method in the steps contained in Figure 11 correspond.
  • FIG. 13 is a schematic diagram of a hardware structure of a communication device provided by an embodiment of the present application.
  • the communication device includes a processor 131, a communication line 134 and at least one communication interface (the communication interface 133 is exemplified in FIG. 13 for illustration).
  • the processor 131 may be a general-purpose central processing unit (CPU), a microprocessor, an application-specific integrated circuit (ASIC), or one or more processors for controlling the execution of the programs of the present application. integrated circuit.
  • CPU central processing unit
  • ASIC application-specific integrated circuit
  • Communication line 134 may include a path to communicate information between the aforementioned components.
  • the communication interface 133 using any transceiver-like device, is used to communicate with other devices or communication networks, such as Ethernet, wireless local area networks (WLAN), RAN, and the like.
  • devices or communication networks such as Ethernet, wireless local area networks (WLAN), RAN, and the like.
  • the communication device may also include a memory 132 .
  • the memory 132 may be read-only memory (ROM) or other type of static storage device that can store static information and instructions, random access memory (RAM) or other type of static storage device that can store information and instructions It can also be an electrically erasable programmable read-only memory (EEPROM), a compact disc read-only memory (CD-ROM) or other optical disk storage, CD-ROM storage (including compact discs, laser discs, optical discs, digital versatile discs, Blu-ray discs, etc.), magnetic disk storage media or other magnetic storage devices, or capable of carrying or storing desired program code in the form of instructions or data structures and capable of being executed by a computer Access any other medium without limitation.
  • the memory may exist independently and be connected to the processor through communication line 134 .
  • the memory can also be integrated with the processor.
  • the memory 132 is used for storing computer-executed instructions for executing the solution of the present application, and the execution is controlled by the processor 131 .
  • the processor 131 is configured to execute the computer-executed instructions stored in the memory 132, thereby implementing the policy control method provided by the following embodiments of the present application.
  • the computer-executed instructions in the embodiments of the present application may also be referred to as application code, which is not specifically limited in the embodiments of the present application.
  • the processor 131 may include one or more CPUs, such as CPU0 and CPU1 in FIG. 13 .
  • the communication device may include multiple processors, such as the processor 131 and the processor 135 in FIG. 13 .
  • processors can be a single-core (single-CPU) processor or a multi-core (multi-CPU) processor.
  • a processor herein may refer to one or more devices, circuits, and/or processing cores for processing data (eg, computer program instructions).
  • FIG. 14 is a schematic structural diagram of a chip 140 provided by an embodiment of the present invention.
  • the chip 140 includes one or more (including two) processors 1410 and a communication interface 1430 .
  • the chip 140 shown in FIG. 14 further includes a memory 1440, which may include a read-only memory and a random access memory, and provides the processor 1410 with operation instructions and data.
  • a portion of memory 1440 may also include non-volatile random access memory (NVRAM).
  • NVRAM non-volatile random access memory
  • memory 1440 stores the following elements, executable modules or data structures, or a subset thereof, or an extended set of them:
  • the corresponding operation is performed by calling the operation instruction stored in the memory 1440 (the operation instruction may be stored in the operating system).
  • the structures of the chips used by the first network element, the second network element or the third network element are similar, and different devices may use different chips to realize their respective functions.
  • the processor 1410 controls the operation of the first network element, the second network element or the third network element, and the processor 1410 may also be referred to as a central processing unit (central processing unit, CPU).
  • Memory 1440 may include read-only memory and random access memory, and provides instructions and data to processor 1410 .
  • a portion of memory 1440 may also include non-volatile random access memory (NVRAM).
  • NVRAM non-volatile random access memory
  • the memory 1440, the communication interface 1430, and the memory 1440 are coupled together through the bus system 1420, wherein the bus system 1420 may include a power bus, a control bus, a status signal bus, and the like in addition to a data bus.
  • the various buses are labeled as bus system 1420 in FIG. 14 .
  • the above communication unit may be an interface circuit or a communication interface of the device for receiving signals from other devices.
  • the communication unit is an interface circuit or a communication interface used by the chip to receive or transmit signals from other chips or devices.
  • the methods disclosed in the above embodiments of the present invention may be applied to the processor 1410 or implemented by the processor 1410 .
  • the processor 1410 may be an integrated circuit chip with signal processing capability. In the implementation process, each step of the above-mentioned method may be completed by an integrated logic circuit of hardware in the processor 1410 or an instruction in the form of software.
  • the above-mentioned processor 1410 may be a general-purpose processor, a digital signal processing (DSP), an application specific integrated circuit (ASIC), an off-the-shelf programmable gate array (field-programmable gate array, FPGA) or Other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components.
  • a general purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • the steps of the method disclosed in conjunction with the embodiments of the present invention can be directly embodied as being executed and completed by a hardware decoding processor, or executed and completed by a combination of hardware and software modules in the decoding processor.
  • the software modules may be located in random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, registers and other storage media mature in the art.
  • the storage medium is located in the memory 1440, and the processor 1410 reads the information in the memory 1440, and completes the steps of the above method in combination with its hardware.
  • the communication interface 1430 is configured to perform the steps of receiving and sending the first network element, the second network element or the third network element in the embodiments shown in FIGS. 4-11 .
  • the processor 1410 is configured to perform the processing steps of the first network element, the second network element or the third network element in the embodiments shown in FIG. 4-FIG. 11 .
  • the instructions stored by the memory for execution by the processor may be implemented in the form of a computer program product.
  • the computer program product can be pre-written in the memory, or downloaded and installed in the memory in the form of software.
  • a computer program product includes one or more computer instructions. When the computer program instructions are loaded and executed on a computer, the procedures or functions according to the embodiments of the present application are generated in whole or in part.
  • the computer may be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • Computer instructions may be stored on or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be transmitted from a website site, computer, server, or data center over a wire (e.g. coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (eg infrared, wireless, microwave, etc.) means to transmit to another website site, computer, server or data center.
  • a wire e.g. coaxial cable, optical fiber, digital subscriber line (DSL)
  • wireless e.g infrared, wireless, microwave, etc.
  • the computer-readable storage medium can be any available medium that can be stored by a computer or a data storage device such as a server, data center, etc. that includes one or more available media integrated.
  • Useful media may be magnetic media (eg, floppy disk, hard disk, magnetic tape), optical media (eg, digital versatile disc (DVD)), or semiconductor media (eg, solid state disk (SSD)), etc. .
  • Embodiments of the present application also provide a computer-readable storage medium.
  • the methods described in the above embodiments may be implemented in whole or in part by software, hardware, firmware or any combination thereof. If implemented in software, the functions may be stored on or transmitted over as one or more instructions or code on a computer-readable medium.
  • Computer-readable media can include both computer storage media and communication media and also include any medium that can transfer a computer program from one place to another.
  • the storage medium can be any target medium that can be accessed by a computer.
  • the computer readable medium may include RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other medium intended to carry or in an instruction or data structure
  • the required program code is stored in the form and can be accessed by the computer.
  • any connection is properly termed a computer-readable medium.
  • coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), or wireless technologies such as infrared, radio, and microwave
  • coaxial cable, fiber optic cable , twisted pair, DSL or wireless technologies such as infrared, radio and microwave
  • Disk and disc includes compact disc (CD), laser disc, optical disc, DVD, floppy disk, and blu-ray disc, where disks usually reproduce data magnetically, while discs reproduce data optically with lasers. Combinations of the above should also be included within the scope of computer-readable media.
  • the embodiments of the present application also provide a computer program product.
  • the methods described in the above embodiments may be implemented in whole or in part by software, hardware, firmware or any combination thereof. If implemented in software, it may be implemented in whole or in part in the form of a computer program product.
  • a computer program product includes one or more computer instructions. When the above-mentioned computer program instructions are loaded and executed on a computer, all or part of the processes or functions described in the above-mentioned method embodiments are generated.
  • the aforementioned computer may be a general purpose computer, a special purpose computer, a computer network, a base station, a terminal, or other programmable devices.

Abstract

本申请实施例提供一种通信方法和装置,涉及通信技术领域,包括:第一网元确定第一配额;其中,第一网元为拜访公共陆地移动网络VPLMN中的网元;第一配额与VPLMN中的网络切片的标识以及归属公共陆地移动网络HPLMN的公共陆地移动网络PLMN标识相关;第一网元根据会话的相关请求确定终端设备在HPLMN中的目标PLMN标识;其中,会话的相关请求包括目标网络切片标识和终端设备的身份标识;第一网元根据目标网络切片标识和目标PLMN标识,在第一配额中确定目标配额。这样,在确定配额时,不需要VPLMN与HPLMN频繁交互,从而可以节约网络资源。

Description

通信方法和装置 技术领域
本申请涉及通信技术领域,尤其涉及一种通信方法和装置。
背景技术
随着移动通信技术的不断发展,运营商大都在一个统一的基础设施上分离出多个虚拟网络,由此构成了网络切片,网络切片的使用,实现了网络资源共享和隔离。在网络切片的运行场景中,终端可以是归属公共陆地移动网络(home public land mobile network,HPLMN)的签约用户,也可以是拜访公共陆地移动网络(visit public land mobile network,VPLMN)的签约用户。终端在本地区域时,终端可以基于HPLMN提供的服务通信;终端在漫游区域时,终端可以使用HPLMN和VPLMN提供的服务通信。
通常情况下,终端在漫游区域使用网络切片时,需要依靠HPLMN对网络切片运行时所占用的网络资源进行限制,例如依靠HPLMN控制终端在网络切片中的会话创建等。
然而,在HPLMN控制当前会话创建的过程中,需要占用较多的网络资源。
发明内容
本申请实施例提供一种通信方法和装置,可以基于VPLMN对漫游区域的资源进行控制,具体的,VPLMN中的第一网元确定与VPLMN中的网络切片的标识以及归属公共陆地移动网络HPLMN的公共陆地移动网络PLMN标识相关的第一配额,第一网元根据目标网络切片标识和终端设备的身份标识确定终端设备在HPLMN中的目标PLMN标识。第一网元根据目标网络切片标识和目标PLMN标识,在第一配额中确定目标配额。这样,在确定配额时,不需要VPLMN与HPLMN频繁交互,从而可以节约网络资源。
本申请实施例中,第一网元包括:PCF网元、AMF网元或SMF网元;第二网元包括:UDM网元、UDR网元或NWDAF网元;第三网元包括:UPF网元。
第一方面,本申请实施例提供一种通信方法,包括:第一网元确定第一配额;其中,第一网元为拜访公共陆地移动网络VPLMN中的网元;第一配额与VPLMN中的网络切片的标识以及归属公共陆地移动网络HPLMN的公共陆地移动网络PLMN标识相关;第一网元根据会话的相关请求确定终端设备在HPLMN中的目标PLMN标识;其中,会话的相关请求包括目标网络切片标识和终端设备的身份标识;第一网元根据目标网络切片标识和目标PLMN标识,在第一配额中确定目标配额。这样,在确定配额时,不需要VPLMN与HPLMN频繁交互,从而可以节约网络资源。
在一种可能的实现方式中,第一配额包括:第一最大会话数量和/或第一最大数据速率。
在一种可能的实现方式中,第一配额中包含多组关联关系,关联关系包括:网络切片标识、PLMN标识和配额的关系;终端设备的身份标识对应一个PLMN标识。
在一种可能的实现方式中,第一网元接收来自第二网元的第一配额,其中,第二网元包括操作管理维护OAM网元,或者,第二网元包括配额控制功能。这样,第一网元就可以根据第一配额判断终端设备是否受到业务配额数据的控制。
在一种可能的实现方式中,还包括:第一网元向第三网元发送目标网络切片的标识以及目标PLMN标识;第一网元接收来自第三网元的目标网络切片的标识以及目标PLMN标识对应的实际数据速率;第一网元向第二网元发送实际数据速率。这样,第三网元就可以根据实际数据速率处理会话。
在一种可能的实现方式中,还包括:第一网元确定目标网络切片的标识以及目标PLMN标识对应的实际会话数量;第一网元根据目标配额和实际会话数量确定允许或拒绝会话的相关请求。
在一种可能的实现方式中,还包括:第一网元向第二网元发送实际会话数量。
第二方面,本申请实施例提供一种通信方法,包括:第二网元确定第一网元的第一配额;其中,第一网元为拜访公共陆地移动网络VPLMN中的网元;第一配额与VPLMN中的网络切片的标识以及归属公共陆地移动网络HPLMN的公共陆地移动网络PLMN标识相关;第二网元向第一网元发送第一配额。这样,在确定配额时,不需要VPLMN与HPLMN频繁交互,从而可以节约网络资源。
在一种可能的实现方式中,第一配额包括:最大会话数量和/或最大数据速率。
在一种可能的实现方式中,第一配额中包含多组关联关系,关联关系包括:网络切片标识、PLMN标识和配额的关系;终端设备的身份标识对应一个PLMN标识。
在一种可能的实现方式中,还包括:第二网元接收来自第三网元的目标网络切片的标识以及PLMN标识对应的实际数据速率;第二网元根据实际数据速率为第三网元确定第二最大数据速率;第二网元向第三网元发送第二最大数据速率。这样,第二网元就可以根据实际数据速率获取第二最大数据速率。
在一种可能的实现方式中,第三网元的数量为多个,包括:第二网元汇总多个第三网元的实际数据速率,得到汇总实际数据速率;在汇总实际数据速率达到第一最大数据速率的比例阈值情况下,第一网元根据各第三网元的实际数据速率,为各第三网元确定第二最大数据速率。这样,第三网元就可以根据第二最大数据速率处理会话。
在一种可能的实现方式中,还包括:第二网元接收来自第一网元的目标网络切片的标识以及PLMN标识对应的实际会话数量;第二网元根据实际会话数量为第三网元确定第二最大会话数量;第二网元向第一网元发送第二最大会话数量。这样,第一网元就可以根据第二最大会话数量允许或拒绝会话建立。
第三方面,本申请实施例提供一种通信方法,包括:第三网元接收来自第一网元的目标网络切片的标识以及目标PLMN标识;其中,第一网元为拜访公共陆地移动网络VPLMN中的网元;目标PLMN标识为终端设备在归属公共陆地移动网络HPLMN中的标识;第三网元统计目标网络切片的标识以及目标PLMN标识对应的实际数据速率;第三网元向第二网元发送实际数据速率;第三网元接收来自第二网元的第二最大数据速率;最大数据速率与实际数据速率相关;第三网元根据第二最大数据速率进行 会话处理。这样,在确定配额时,不需要VPLMN与HPLMN频繁交互,从而可以节约网络资源。
在一种可能的实现方式中,在会话的数据速率超过第二最大数据速率的情况下,第三网元丢弃部分报文。
第四方面,本申请实施例提供一种通信装置。该通信装置可以是第一网元,也可以是第一网元内的芯片或者芯片系统。该通信装置可以包括处理单元和通信单元。当该通信装置是第一网元时,该处理单元可以是处理器,该通信单元可以是通信接口或接口电路。该通信装置还可以包括存储单元,该存储单元可以是存储器。该存储单元用于存储指令,该处理单元执行该存储单元所存储的指令,以使该第一网元实现第一方面或第一方面的任意一种可能的实现方式中描述的一种通信方法。当该通信装置是第一网元内的芯片或者芯片系统时,该处理单元可以是处理器,该通信单元可以是通信接口。例如通信接口可以为输入/输出接口、管脚或电路等。该处理单元执行存储单元所存储的指令,以使该第一网元实现第一方面或第一方面的任意一种可能的实现方式中描述的一种通信方法。该存储单元可以是该芯片内的存储单元(例如,寄存器、缓存等),也可以是该第一网元内的位于该芯片外部的存储单元(例如,只读存储器、随机存取存储器等)。
示例性的,处理单元,用于确定第一配额;其中,第一网元为拜访公共陆地移动网络VPLMN中的网元;第一配额与VPLMN中的网络切片的标识以及归属公共陆地移动网络HPLMN的公共陆地移动网络PLMN标识相关;处理单元,用于根据会话的相关请求确定终端设备在HPLMN中的目标PLMN标识;其中,会话的相关请求包括目标网络切片标识和终端设备的身份标识;处理单元,用于根据目标网络切片标识和目标PLMN标识,在第一配额中确定目标配额。
在一种可能的实现方式中,第一配额包括:第一最大会话数量和/或第一最大数据速率。
在一种可能的实现方式中,第一配额中包含多组关联关系,关联关系包括:网络切片标识、PLMN标识和配额的关系;终端设备的身份标识对应一个PLMN标识。
在一种可能的实现方式中,通信单元,具体用于接收来自第二网元的第一配额,其中,第二网元包括操作管理维护OAM网元,或者,第二网元包括配额控制功能。
在一种可能的实现方式中,通信单元,具体用于向第三网元发送目标网络切片的标识以及目标PLMN标识;通信单元,具体用于接收来自第三网元的目标网络切片的标识以及目标PLMN标识对应的实际数据速率;通信单元,具体用于向第二网元发送实际数据速率。
在一种可能的实现方式中,处理单元,具体用于确定目标网络切片的标识以及目标PLMN标识对应的实际会话数量;处理单元,具体用于根据目标配额和实际会话数量确定允许或拒绝会话的相关请求。
在一种可能的实现方式中,通信单元,具体用于向第二网元发送实际会话数量。
第五方面,本申请实施例提供一种通信装置。该通信装置可以是第二网元,也可以是第二网元内的芯片或者芯片系统。该通信装置可以包括处理单元和通信单元。当该通信装置是第二网元时,该处理单元可以是处理器,该通信单元可以是通信接口或 接口电路。该通信装置还可以包括存储单元,该存储单元可以是存储器。该存储单元用于存储指令,该处理单元执行该存储单元所存储的指令,以使该第二网元实现第二方面或第二方面的任意一种可能的实现方式中描述的一种通信方法。当该通信装置是第二网元内的芯片或者芯片系统时,该处理单元可以是处理器,该通信单元可以是通信接口。例如通信接口可以为输入/输出接口、管脚或电路等。该处理单元执行存储单元所存储的指令,以使该第二网元实现第二方面或第二方面的任意一种可能的实现方式中描述的一种通信方法。该存储单元可以是该芯片内的存储单元(例如,寄存器、缓存等),也可以是该第二网元内的位于该芯片外部的存储单元(例如,只读存储器、随机存取存储器等)。
示例性的,处理单元,用于确定第一网元的第一配额;其中,第一网元为拜访公共陆地移动网络VPLMN中的网元;第一配额与VPLMN中的网络切片的标识以及归属公共陆地移动网络HPLMN的公共陆地移动网络PLMN标识相关;通信单元,用于向第一网元发送第一配额。
在一种可能的实现方式中,第一配额包括:最大会话数量和/或最大数据速率。
在一种可能的实现方式中,第一配额中包含多组关联关系,关联关系包括:网络切片标识、PLMN标识和配额的关系;终端设备的身份标识对应一个PLMN标识。
在一种可能的实现方式中,通信单元,具体用于接收来自第三网元的目标网络切片的标识以及PLMN标识对应的实际数据速率;处理单元,具体用于根据实际数据速率为第三网元确定第二最大数据速率;通信单元,具体用于向第三网元发送第二最大数据速率。
在一种可能的实现方式中,第三网元的数量为多个,处理单元,具体用于汇总多个第三网元的实际数据速率,得到汇总实际数据速率;用于在汇总实际数据速率达到第一最大数据速率的比例阈值情况下,第一网元根据各第三网元的实际数据速率,为各第三网元确定第二最大数据速率。
在一种可能的实现方式中,通信单元,具体用于接收来自第一网元的目标网络切片的标识以及PLMN标识对应的实际会话数量;处理单元,具体用于根据实际会话数量为第三网元确定第二最大会话数量;通信单元,具体用于向第一网元发送第二最大会话数量。
第六方面,本申请实施例提供一种通信装置。该通信装置可以是第三网元,也可以是第三网元内的芯片或者芯片系统。该通信装置可以包括处理单元和通信单元。当该通信装置是第二网元时,该处理单元可以是处理器,该通信单元可以是通信接口或接口电路。该通信装置还可以包括存储单元,该存储单元可以是存储器。该存储单元用于存储指令,该处理单元执行该存储单元所存储的指令,以使该第二网元实现第二方面或第二方面的任意一种可能的实现方式中描述的一种通信方法。当该通信装置是第二网元内的芯片或者芯片系统时,该处理单元可以是处理器,该通信单元可以是通信接口。例如通信接口可以为输入/输出接口、管脚或电路等。该处理单元执行存储单元所存储的指令,以使该第二网元实现第二方面或第二方面的任意一种可能的实现方式中描述的一种通信方法。该存储单元可以是该芯片内的存储单元(例如,寄存器、缓存等),也可以是该第二网元内的位于该芯片外部的存储单元(例如,只读存储器、 随机存取存储器等)。
示例性的,通信单元,用于接收来自第一网元的目标网络切片的标识以及目标PLMN标识;其中,第一网元为拜访公共陆地移动网络VPLMN中的网元;目标PLMN标识为终端设备在归属公共陆地移动网络HPLMN中的标识;处理单元,用于统计目标网络切片的标识以及目标PLMN标识对应的实际数据速率;通信单元,用于向第二网元发送实际数据速率;通信单元,用于接收来自第二网元的第二最大数据速率;最大数据速率与实际数据速率相关;处理单元,用于第三网元根据第二最大数据速率进行会话处理。
在一种可能的实现方式中,处理单元,具体用于在会话的数据速率超过第二最大数据速率的情况下,第三网元丢弃部分报文。
第七方面,本申请实施例提供一种计算机可读存储介质,计算机可读存储介质中存储有计算机程序或指令,当计算机程序或指令在计算机上运行时,使得计算机执行如第一方面至第三方面的任意一种实现方式中描述的通信方法。
第八方面,本申请实施例提供一种包括指令的计算机程序产品,当指令在计算机上运行时,使得计算机执行第一方面至第三方面的任意一种实现方式中描述的通信方法。
第九方面,本申请实施例提供一种通信系统,该系统包括如下中任一个或多个:第四方面及各种可能的实现方式中描述的通信装置,第五方面及第五方面的各种可能的实现方式中描述的通信装置,第六方面及第六方面的各种可能的实现方式中描述的通信装置。
第十方面,本申请实施例提供一种通信装置,该装置包括处理器和存储介质,存储介质存储有指令,指令被处理器运行时,实现如第一方面至第三方面任意的实现方式描述的通信方法。
第十一方面,本申请提供一种芯片或者芯片系统,该芯片或者芯片系统包括至少一个处理器和通信接口,通信接口和至少一个处理器通过线路互联,至少一个处理器用于运行计算机程序或指令,以进行第一方面至第三方面任意的实现方式中任一项所描述的通信方法。
其中,芯片中的通信接口可以为输入/输出接口、管脚或电路等。
在一种可能的实现中,本申请中上述描述的芯片或者芯片系统还包括至少一个存储器,该至少一个存储器中存储有指令。该存储器可以为芯片内部的存储单元,例如,寄存器、缓存等,也可以是该芯片的存储单元(例如,只读存储器、随机存取存储器等)。
应当理解的是,本申请的第四方面至第十一方面与本申请的第一方面至第三方面的技术方案相对应,各方面及对应的可行实施方式所取得的有益效果相似,不再赘述。
附图说明
图1为现有技术提供的一种基于HPLMN控制会话建立的流程示意图;
图2为本申请实施例提供的一种网络架构的示意图;
图3为本申请实施例提供的为第一网元分配最大会话数的示意图;
图4为本申请实施例提供的一种通信方法的具体流程示意图;
图5为本申请实施例提供的一种具体通信流程示意图;
图6为本申请实施例提供的一种具体通信流程示意图;
图7为本申请实施例提供的一种具体通信流程示意图;
图8为本申请实施例提供的一种通信方法的具体流程示意图;
图9为本申请实施例提供的一种具体通信流程示意图;
图10为本申请实施例提供的一种具体通信流程示意图;
图11为本申请实施例提供的一种具体通信流程示意图;
图12为本申请实施例提供的一种通信装置的结构示意图;
图13为本申请实施例提供的一种通信设备的硬件结构示意图;
图14为本申请实施例提供的一种芯片的结构示意图。
具体实施方式
为了便于清楚描述本申请实施例的技术方案,在本申请的实施例中,采用了“第一”、“第二”等字样对功能和作用基本相同的相同项或相似项进行区分。例如,第一网元和第二网元仅仅是为了区分不同的网元,并不对其先后顺序进行限定。本领域技术人员可以理解“第一”、“第二”等字样并不对数量和执行次序进行限定,并且“第一”、“第二”等字样也并不限定一定不同。
需要说明的是,本申请中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本申请中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其他实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念。
本申请中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中a,b,c可以是单个,也可以是多个。
网络切片(network slice)是一个具备特定网络特性的逻辑网络,是满足第三代合作伙伴项目(3rd generation partnership project,3GPP)提出的第五代(5th generation,5G)移动通信系统关于网络差异化需求的关键技术。一张5G物理网络可以被抽象划分成多个网络切片,每个网络切片构成一个端到端的逻辑网络,彼此之间逻辑上是隔离的,互不影响。因此,网络切片是在运营商的通信网络中划分出来的一个具备特定网络特性的逻辑网络。每个网络切片(network slice)的业务通常使用单个网络切片选择辅助信息(single-network slice selection assistance information,S-NSSAI)来标识。5G网络根据终端业务请求中携带的S-NSSAI为业务选择网络切片,并在所选择的网络切片内传输客户的业务数据。
一般情况下各个运营商都会分配自定义S-NSSAI。一个自定义S-NSSAI的值只在一个运营商的网络内标识一个网络切片。若终端在归属公共陆地移动网络(home public land  mobile network,HPLMN)签约的S-NSSAI的值是自定义S-NSSAI(记为hS-NSSAI),则终端发生漫游在拜访公共陆地移动网络(visit public land mobile network,VPLMN)使用该hS-NSSAI来确定终端在VPLMN允许使用的网络切片,只能使用对应的在VPLMN中有效的S-NSSAI(记为vS-NSSAI)来确定终端在该VPLMN允许使用的网络切片。
其中,终端以签约永久标识(subscription permanent identifier,SUPI)作为身份标识。终端在HPLMN的签约信息中还包含终端签约的网络切片信息,即一到多个签约S-NSSAI(Subscribed S-NSSAIs)。示例性的,终端用户是HPLMN的签约用户,在本地区域使用其归属的HPLMN提供的通信服务,在其它地域使用与HPLMN有漫游协议的VPLMN提供的通信服务。
运营商(operator,OP)能够提供通信服务(Communication Service)的范围受牌照限制,往往只能在本地区域提供服务,如果在其它漫游区域提供服务,必须和其它运营商达成漫游协议。由于第三方行业租户作为服务提供商(Service Provider,SP)(比如车联网服务提供商)希望跨多个漫游区域提供服务,向各个漫游区域的运营商订购网络切片,向各个漫游的终端用户提供应用服务(Application Service)。若第三方行业租户在多个漫游区域的运营商处订购网络切片,一般情况下运营商都为其分配非标准类型的S-NSSAI,这就需要确定HPLMN的S-NSSAI和VPLMN的S-NSSAI映射关系。
为了使终端在漫游场景下获得终端签约的S-NSSAI对应的在VPLMN中有效的S-NSSAI,根据HPLMN和VPLMN签订的漫游协议在VPLMN的网络设备(一般为NSSF)上配置网络切片映射信息。进而,终端在注册到VPLMN的过程中,VPLMN的网络设备可以使用上述配置的网络切片映射信息,结合终端签约的hS-NSSAI来获得对应的在VPLMN中有效的vS-NSSAI,进而确定终端在VPLMN允许使用的网络切片。
其中,VPLMN和HPLMN之间签署的漫游协议中包含了终端签约的S-NSSAI对应的在VPLMN中有效的S-NSSAI。若终端在HPLMN可以使用某个自定义S-NSSAI标识的网络切片,同时VPLMN能够提供一个满足相关通信业务需求的相同或类似的网络切片,HPLMN和VPLMN在签订漫游协议时就会将这两个网络切片的S-NSSAI映射起来,即hS-NSSAI映射到vS-NSSAI。
终端在VPLMN进行网络注册和发起会话连接时,都需要使用hS-NSSAI对应的vS-NSSAI。UE注册成功后,获得的当前允许接入的一到多个网络切片,也是使用vS-NSSAI标识的。同时UE还获得这些vS-NSSAI和hS-NSSAI的映射关系。UE进行通信时,通过接入网(access network,AN)向接入和移动管理功能(access and mobility management function,AMF)网元发送会话建立请求消息,其中,会话建立请求消息需要携带S-NSSAI指示会话在哪个网络切片中建立。AMF网元根据会话建立请求消息中携带的vS-NSSAI,选择一个VPLMN网络的会话管理功能(session management function,SMF)实例;可能的情况下,还会根据hS-NSSAI再选择一个HPLMN的SMF实例。AMF网元向选定的SMF网元转发会话建立请求消息。SMF网元收到会话建立请求消息后进行处理,选择合适的用户面功能(user plane function,UPF)网元并控制UPF网元建立分组数据单元会话(packet data unit session,PDU Session)。终端的业务报文就可以通过接入网和UPF网元传递到目的数据网络。
运营商根据客户订单,为客户创建一个网络切片时,运营商和客户会往往会根据实际业务需求确定网络切片的一些技术指标。网络切片规模常常由这些技术指标确定。不同客 户订购的网络切片规模往往是不同的,最常见的规模参数包括网络切片的最大会话数量和最大数据速率。网络切片最大会话数量是接入到这个网络切片的PDU会话的最大允许数量。网络切片的最大数据速率是通过网络切片传输的所有PDU会话传送数据的传输速率之和的最大值,也就是接入到这个网络切片的所有PDU会话传输的所有业务允许占用网络带宽的最大值。网络切片的最大数据速率分上行(up link,UL)和下行(down link,DL)两个方向。上行是指从终端到网络侧的业务传输方向,下行是指从网络到终端的业务传输方向。上下行方向可以一起控制,也可以分别控制,还可以只控制其中一个方向。
在网络切片的运行过程中,运营商需要限制切片用户超出范围使用网络资源。通常的,是HPLMN控制在网络切片中建立的会话数量或最大数据速率,但是当存在大量漫游用户时,VPLMN也需要根据漫游协议,限制某个HPLMN的终端在VPLMN建立过多的会话或占用过多的数据速率。也就是,VPLMN需要控制漫游终端建立的会话数量或使用的数据速率不超过与HPLMN签署的漫游协议所允许的规模参数。
示例性的,图1为一种基于HPLMN控制会话建立的流程示意图。如图1所示,当终端漫游到VPLMN时,HPLMN控制会话建立的过程可以包括:
S101、V-SMF网元在会话请求过程中向V-PCF网元请求建立策略关联。
本申请实施例中,当终端设备在VPLMN建立PDU会话时,VPLMN中的策略控制功能PCF网元可以称为V-PCF网元;VPLMN中的会话管理功能SMF网元可以称为V-SMF网元。该V-SMF网元向V-PCF网元发送的会话管理策略控制的请求,该请求信息中可以携带HPLMN中的网络切片的标识hS-NSSAI。
S102、V-PCF网元判断会话的hS-NSSAI是否有配额限制。
本申请实施例中,V-PCF网元判断会话中携带的hS-NSSAI是否有配额限制。当会话的hS-NSSAI有配额限制时,V-PCF网元请求H-PCF网元决策是否可以接收本次会话。其中,HPLMN中的策略控制功能PCF网元可以称为H-PCF网元。
S103、V-PCF网元向H-PCF网元发送配额请求。
本申请实施例中,该配额的请求信息中携带hS-NSSAI。
S104、H-PCF网元判断是否超出最大允许值。
本申请实施例中,H-PCF网元记录了HPLMN的终端漫游到所述VPLMN后,当前建立的PDU会话数量。判断当PDU会话数量是否达到或超过了漫游协议中规定的允许HPLMN的终端在VPLMN建立的最大会话数量。
当PDU会话数量达到或超过终端在VPLMN建立的最大会话数量,则H-PCF网元就可以拒绝向V-PCF授予配额,H-PCF将拒绝配额的请求发送给V-PCF;当PDU会话数量不超过终端在VPLMN建立的最大会话数量,则H-PCF就可以允许向V-PCF授予配额,H-PCF网元将允许配额的请求发送给V-PCF网元,并扣减当前的剩余配额的数量。
S105、H-PCF网元向V-PCF网元发送配额请求响应(允许或拒绝)。
本申请实施例中,H-PCF向V-PCF发送配额请求信息的响应信息,该响应信息中携带允许或拒绝配额的配额处理结果。
S106、V-PCF网元向V-SMF网元发送建立策略响应(允许或拒绝)。
本申请实施例中,V-PCF向V-SMF发送建立会话管理策略的响应信息,该响应信息中携带允许或拒绝建立PDU会话的会话处理结果。
如上述S101-S106所示的步骤,需要利用HPLMN控制VPLMN中建立的会话数量或最大数据速率,但是一个VPLMN内可以有来自多个不同HPLMN的终端,VPLMN必须依靠各个HPLMN来分别控制来自不同HPLMN的终端设备建立的会话数量或使用的数据速率,VPLMN自己不能实现控制。这就造成了,当VPLMN的网络切片扩容后,如果希望接入更多的漫游用户,就需要通知各个HPLMN修改控制的数量。另外大量终端进行通信时,VPLMN需要和多个HPLMN的频繁交互占用较多的网络资源,造成通信效果不佳。
基于此,本申请实施例提供了一种通信方法,可以基于VPLMN对漫游区域的资源进行控制,具体的,VPLMN中的第一网元确定与VPLMN中的网络切片的标识以及归属公共陆地移动网络HPLMN的公共陆地移动网络PLMN标识相关的第一配额,第一网元根据目标网络切片标识和所述终端设备的身份标识确定终端设备在HPLMN中的目标PLMN标识。第一网元根据目标网络切片标识和目标PLMN标识,在第一配额中确定目标配额。这样,在确定配额时,不需要VPLMN与HPLMN频繁交互,从而可以节约网络资源。
本申请实施例的方法可以应用在长期演进(long term evolution,LTE)中,也可以应用在第五代移动通信(5th generation,5G)系统中,或者未来的移动通信系统。
示例性的,图2为本申请实施例提供的一种网络架构的示意图。
其中,该网络架构中可以包括:终端设备(user equipment,UE)、(无线)接入网((radio)access network,(R)AN)、核心网(core network,CN)(图2中未示出)和数据网络(data network,DN)等。
其中,终端设备是一种具有无线收发功能的设备,可以部署在陆地上,包括室内或室外、手持、穿戴或车载;也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机、气球和卫星上等)。所述终端设备可以是手机(mobile phone)、平板电脑(pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等等。本申请的实施例对应用场景不做限定。终端设备有时也可以称为用户设备(user equipment,UE)、移动台和远方站等,本申请的实施例对终端设备所采用的具体技术、设备形态以及名称不做限定。
AN设备用于负责终端设备的无线侧接入,可能的部署形态包括:集中式单元(centralized unit,CU)和分布式单元(distributed unit,DU)的分离场景以及单站点场景。其中,在分离场景中,CU支持无线资源控制(radio resource control,RRC)、分组数据汇聚协议(packet data convergence protocol,PDCP)、业务数据适配协议(service data adaptation protocol,SDAP)等协议;DU主要支持无线链路控制层(radio link control,RLC)、媒体接入控制层(media access control,MAC)和物理层协议。在单站点场景中,单站点可以包括(new radio Node,gNB)、演进型节点B(evolved Node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、基站控制器(base station controller, BSC)、基站收发台(base transceiver station,BTS)、家庭基站、基带单元(base band unit,BBU)等。
CN设备可以包含管理设备和网关设备,管理设备主要用于终端设备的设备注册、安全认证、移动性管理和位置管理等,网关设备主要用于与终端设备间建立通道,在该通道上转发终端设备和外部数据网络之间的数据包。
DN可以为终端提供数据传输服务,可以是公用数据网(public data network,PDN)网络,如因特网(internet)等,也可以是本地接入数据网络(LADN,Local Access Data Network),如移动边缘计算(MEC,Mobile Edge Computing)节点的网络等。示例性的,以5G中的接入网、核心网和数据网络为例进行说明。
5G中的接入网可以是无线接入网(radio access network,(R)AN),5G系统中的(R)AN设备可以由多个5G-(R)AN节点组成,该5G-(R)AN节点可以包括:3GPP的接入网络、非3GPP的接入网络如WiFi网络的接入点(access point,AP)、下一代基站(可统称为新一代无线接入网节点(NG-RAN node),其中,下一代基站包括新空口基站(NR nodeB,gNB)、新一代演进型基站(NG-eNB)、中心单元(central unit,CU)和分布式单元(distributed unit,DU)分离形态的gNB等)、收发点(transmission receive point,TRP)、传输点(transmission point,TP)或其它节点。
5G核心网(5G core/new generation core,5GC/NGC)可以包括接入和移动性管理功能(access and mobility management function,AMF)网元、会话管理功能(session management function,SMF)网元、用户面功能(user plane function,UPF)网元、鉴权服务器功能(authentication server function,AUSF)网元、策略控制功能(policy control function,PCF)网元、应用功能(application function,AF)网元、统一数据管理功能(unified data management,UDM)网元、网络切片选择功能(network slice selection function,NSSF)网元、网络功能(network element function,NEF)网元、网络数据分析功能(network data analytics function,NWDAF)网元等多个功能单元。
其中,AMF网元主要用于移动网络中的终端的附着、移动性管理、跟踪区更新流程,接入管理网元终结了非接入层(non access stratum,NAS)消息、完成注册管理、连接管理以及可达性管理、分配跟踪区域列表(track area list,TA list)以及移动性管理等,并且透明路由会话管理(session management,SM)消息到会话管理网元。
SMF网元主要负责会话管理、动态主机配置协议功能、用户面功能的选择和控制等,如会话建立、修改、释放。具体功能如为用户分配互联网协议(internet protocol,IP)地址、选择提供报文转发功能的用户面网元网元等。主要用于移动网络中的会话管理,如会话建立、修改、释放。具体功能如为终端分配互联网协议(internet protocol,IP)地址、选择提供报文转发功能的用户面网元等。
UPF网元主要负责对外连接到数据网络(data network,DN)以及用户面的数据包路由转发、报文过滤、执行服务质量(quality of service,QoS)控制相关功能等,如转发、计费等。用户面网元也可以称为协议数据单元(protocol data unit,PDU)会话锚点(PDU session anchor,PSA)。
AUSF网元主要负责对终端设备的认证功能等。
PCF网元主要负责为网络行为管理提供统一的策略框架、提供控制面功能的策略 规则、获取与策略决策相关的注册信息等,如QoS策略、切片选择策略等。需要说明的是,这些功能单元可以独立工作,也可以组合在一起实现某些控制功能,如对终端设备的接入鉴权、安全加密、位置注册等接入控制和移动性管理功能,以及用户面传输路径的建立、释放和更改等会话管理功能。
UDM网元为统一的用户数据管理,主要用来存储用户设备签约数据,如存储签约信息、鉴权/授权信息。
NSSF网元主要用于为终端的业务选择合适的网络切片。
AF网元负责向3GPP网络提供业务相关信息,如用于影响业务路由、与PCF网元之间交互以进行策略控制等。
NWDAF网元具备以下至少一种功能:数据收集功能、数据训练功能、数据推理功能、数据分析结果反馈功能。其中,数据收集功能是指NWDAF网元可以收集来自网络网元、第三方业务服务器、终端设备或网管系统等的数据,该数据可以作为数据训练或数据推理功能的输入数据;数据训练功能是指NWDAF网元对获取的大量的输入数据做离线的数据分析训练操作,而得到相应的数据模型或数据规律或者数据特征;数据推理功能是指NWDAF网元基于输入数据或者推理数据做在线推理并得到数据分析结果;数据分析结果反馈功能可以将数据分析结果发送给网络网元、第三方业务服务器、终端设备或网管系统,该分析结果可协助网络选择业务的服务质量参数,或协助网络执行流量路由,或协助网络选择背景流量传输策略等。
NWDAF网元可以是独立部署的网元,也可以是与其他网元(如AMF网元,SMF网元或PCF网元等)合设或者部署在一起,或者也可以理解为,在其他网元中添加NWDAF网元的功能,本申请实施例对此不作具体限定。
5G系统中各功能单元之间可以通过下一代网络(next generation,NG)接口进行通信,如:终端设备可以通过NG接口1(简称N1,图2中未示出)与AMF网元进行控制面消息的传输,RAN设备可以通过NG接口3(简称N3)与UPF建立用户面通信连接建立通道,AN/RAN设备可以通过NG接口2(简称N2)与AMF网元建立控制面信令连接,UPF网元可以通过NG接口4(简称N4)与SMF网元进行信息交互,UPF网元可以通过NG接口6(简称N6)与数据网络DN交互用户面数据,AMF网元可以通过NG接口11(简称N11,图2中未示出)与SMF网元进行信息交互,SMF网元可以通过NG接口7(简称N7,图2中未示出)与PCF网元进行信息交互,AMF网元可以通过NG接口12(简称N12,图2中未示出)与AUSF网元进行信息交互。
下面对本申请实施例中所描述的词汇进行说明。可以理解,该说明是为更加清楚的解释本申请实施例,并不必然构成对本申请实施例的限定。
本申请实施例所描述的第一网元可以是VPLMN中的PCF网元、AMF网元或SMF网元等核心网网元。
本申请实施例所描述的第二网元可以是UDM网元、UDR网元或NWDAF网元等实现数据管理功能的其他网元。
本申请实施例所描述的第三网元可以是UPF网元等。
本申请实施例所描述的网络切片可以是,在运营商的通信网络中划分出来的一个 具备特定网络特性的逻辑网络。示例性的,网络切片可以是以下三种:增强移动宽带(enhanced mobile broadband,eMBB)、超高可靠性低时延通信(ultra high-reliability and low-latency communication,URLLC)、增强型机器类通信(enhanced machine type communication,eMTC)。
本申请实施例所描述的漫游可以是,离开注册登记的本地区域,移动到另一服务区后,运营商仍可以向其提供服务的功能。
本申请实施例所描述的最大会话数可以是,接入到这个网络切片的PDU会话的最大允许数量。该最大会话数也可以称为最大承载数(maximum number of bearers)或者最大流(maximum number of flows)数,例如服务质量流(quality of service flow,QoS flow)数。
本申请实施例所描述的最大数据速率可以为,通过网络切片传输的所有PDU会话传送数据的传输速率之和的最大值,也就是接入到这个网络切片的所有PDU会话传输的所有业务允许占用网络带宽的最大值。网络切片的最大数据速率可以分上行(UpLink,UL)和下行(DownLink,DL)两个方向。上行是指从终端到网络侧的业务传输方向,下行是指从网络到终端的业务传输方向。上下行方向可以一起控制,也可以分别控制,还可以只控制其中一个方向。
下面以具体地实施例对本申请的技术方案以及本申请的技术方案如何解决上述技术问题进行详细说明。下面这几个具体的实施例可以独立实现,也可以相互结合,对于相同或相似的概念或过程可能在某些实施例中不再赘述。
本申请实施例提供的一种通信方法,包括以下步骤:
S301、第一网元确定第一配额。
本申请实施例中,第一配额与VPLMN中的网络切片的标识S-NSSAI以及HPLMN的PLMN标识(identity,ID)相关。
示例性的,第一配额中可以包括一组或多组关联关系,每一组关联关系的形式可以为:S-NSSAI+PLMN ID+配额,其中,“+”表示与的关系,S-NSSAI可以是vS-NSSAI,也可以是vS-NSSAI+hS-NSSAI的组合。或者可以理解为,是按照S-NSSAI+PLMN ID的组合区分来自不同HPLMN的漫游终端的可用配额。这样,可以把配额与S-NSSAI和PLMN ID关联起来,后续VPLMN中的第一网元可以基于该第一配额,控制VPLMN中的会话处理。
可能的实现方式中,第一配额可以包括:第一最大会话数量和/或第一最大数据速率等其他类型的配额数据。其中,第一最大会话数量是与PLMN ID关联的所有终端能够通过第一网元在S-NSSAI标识的网络切片内建立的最大会话数量;第一最大数据速率是与PLMN ID关联的所有终端通过第一网元在S-NSSAI标识的网络切片内建立所有PDU会话总共能够传输的最大上行和/或最大下行的数据速率。这样,后续第一网元可以基于第一最大会话数量和/或第一最大数据速率,控制VPLMN中的会话建立过程。具体的控制方式将在后续实施例中说明,在此不做赘述。
本申请实施例中,第一网元确定第一配额的一种可能实现为:第一网元接收来自运行管理和维护(operation administration and maintenance,OAM网元)的第一配额。
示例性的,HPLMN和VPLMN签订网络切片的漫游协议时,可以将vS-NSSAI标识 的PLMN的网络切片和UE在HPLMN签约的以hS-NSSAI标识的网络切片映射起来。同时漫游协议还可以规定VPLMN的网络切片需要支持从HPLMN漫游来的终端最多能够同时建立多少PDU会话,以及最大的上行和/或下行数据速率。这些确定下来的规模参数可以存储在VPLMN的OAM实体或业务发放实体中。例如,OAM实体可以是网络切片管理功能,业务发放实体可以是网络切片订单和业务管理功能。为便于描述,后续将OAM实体或业务发放实体通称为OAM网元。
OAM网元可以确定负责vS-NSSAI网络切片的所有第一网元,然后将允许来自特定HPLMN的终端建立的最大会话数量或最大数据速率参数作为整体业务配额数据。根据各个第一网元的处理性能或者设备容量,将网络切片的整体业务配额数据分成若干份第一配额,然后将分好的第一配额分配给相应的第一网元。
或者,OAM网元也可以基于用户设置为第一网元配置第一配额。
第一网元确定第一配额的另一种可能实现为:第一网元接收来自配额控制功能网元的第一配额。其中配额控制功能网元可以是具备配额控制功能的网元,例如,可以包括UDR网元或NWDAF网元等。
示例性的,漫游协议明确了VPLMN的网络切片支持从HPLMN漫游来的终端最多能够同时建立多少PDU会话,以及最大的上行和/或下行数据速率。这些确定下来的规模参数配置在VPLMN的配额控制功能实体(或称为配额控制功能网元)中,配额控制功能网元可以确定负责vS-NSSAI网络切片的所有第一网元,然后将允许来自特定HPLMN的终端建立的最大会话数量或最大数据速率参数作为整体业务配额数据。根据各个第一网元的处理性能或者设备容量,将网络切片的整体业务配额数据分成若干份第一配额,然后将分好的第一配额分配给相应的第一网元。
S302、第一网元根据会话的相关请求确定终端设备在HPLMN中的目标PLMN标识。
本申请实施例中,会话可以是终端设备发起的,该会话的相关请求中可以包括:VPLMN中的网络切片的标识(或称vS-NSSAI)和终端设备的身份标识(或称为SUPI)。其中,基于SUPI可以关联到一个PLMN ID,因此,第一网元可以利用终端设备的SUPI确定终端设备归属的目标PLMN标识(或称为目标PLMN ID)。
S303、第一网元根据目标网络切片标识和目标PLMN标识,在第一配额中确定目标配额。
本申请实施例中,第一网元在确定目标网络切片标识和目标PLMN标识后,就可以在第一配额中匹配或查找该目标网络切片标识和目标PLMN标识对应的目标配额。则后续第一网元可以利用该目标配额对网络切片中的会话数量进行配额控制。
综上所述,可以基于VPLMN中的网元对漫游区域的资源进行控制,具体的,VPLMN中的第一网元确定与VPLMN中的网络切片的标识以及HPLMN的PLMN标识相关的第一配额,第一网元根据目标网络切片标识和终端设备的身份标识确定终端设备在HPLMN中的目标PLMN标识。第一网元根据目标网络切片标识和目标PLMN标识,在第一配额中确定目标配额。这样,在确定配额时,不需要VPLMN与HPLMN频繁交互,从而可以节约网络资源。
示例性的,图3为本申请实施例提供的一种为第一网元分配最大会话数的示意图。
如图3所示,针对一个S-NSSAI标识的切片类型,可以将能够容纳的最大会话数配置 在操作、管理和维护(operation,administration and maintenance,OAM)网元、统一数据存储库(unified data repository,UDR)网元或者统一数据管理UDM网元或者一个中心PCF(center PCF或者master PCF或者primary PCF)网元,或者NWDAF网元上。
假设该S-NSSAI下面有N个子切片,通常的,子切片可以通过区域、网络切片实例等进行划分,每个子切片中有一个第一网元(后续以PCF网元为例进行说明)进行切片的最大会话数控制。
OAM、UDR网元、UDM网元或NWDAF网元可以根据对最大会话数进行切分,切分成N份的第一最大会话数,然后分别将第一最大会话数划分给PCF 1网元、PCF 2网元……PCF N网元。接着,PCF 1网元、PCF 2网元……PCF N网元分别按照各自的第一最大会话数进行切片接入控制或者切片创建会话控制。
可以看出,这种最大会话数和第一最大会话数是按照总-分模式(OAM/UDR/UDM/NWDAF-PCF,或Master PCF-PCF)控制的。第一最大会话数1、第一最大会话数2……第一最大会话数N的总和等于或者小于(总的)最大会话数。
示例性的,以S-NSSAI对应的子切片1为例,初始情况下,子切片1中的和目标PLMN标识关联的所有UE的实际会话数(实际PDU Session数,counter for current PDU sessions)为零。在切片中进行会话创建控制时,UE发送协议数据单元(protocol data unit,PDU)会话(session)创建请求给SMF 1网元,SMF 1网元与PCF 1网元交互确定所述UE是否可以在S-NSSAI对应的子切片1中创建PDU Session,若PCF 1网元判定当前子切片1中的和目标PLMN标识关联的所有UE的实际PDU Session数已经接近或者超过了第一最大会话数1,则拒绝UE在子切片1中的创建PDU Session请求;否则,接受UE在子切片1中的创建PDU Session请求,此时子切片1中和目标PLMN标识关联的实际PDU Session数增加一。
可以理解,为第一网元分配最大数据速率的方式与为第一网元分配最大会话数的方式类似,在此不再赘述。
图4示出了本申请实施例的一种通信方法的具体流程示意图。如图4所示,该通信方法中包括该方法可以包括:
S401、第二网元确定第一网元的第一最大会话数量和/或第一最大数据速率。
示例性的,第二网元可以确定vS-NSSAI网络切片中的的各个PCF实体,将允许来自HPLMN的终端设备建立的第一最大会话数量和/或第一最大数据速率参数作为整体业务配额数据。根据各个网元的处理性能或者设备容量,将网络切片的整体业务配额数据分成若干份第一配额,然后将分好的第一配额分配给相应的第一网元。
S402、第二网元向第一网元发送第一最大会话数量和/或第一最大数据速率。
S403、第一网元根据第一最大会话数量确定允许或拒绝会话建立。
示例性的,第一网元可以根据第一最大会话数量判断终端设备是否受到业务配额数据的控制。例如,若会话数量配额已经耗尽或者已经建立的会话数量超过第一最大会话数量,可以拒绝建立会话;若会话数量配额不超过第一最大会话数量,可以允许建立会话,并在第一最大会话数量配额中减一。
S404、第一网元向第三网元发送第一最大数据速率。
S405、第三网元根据第一最大数据速率处理会话。
示例性的,第三网元控制S-NSSAI标识的网络切片内所有与PLMN ID关联的UE的会话的速率的和不超过第一最大数据数量速率。若所有会话的速率的和超过第一最大数据速率,就对VPLMN中的匹配vS-NSSAI+PLMN ID的PDU会话的速率带宽进行控制。
例如,第三网元对匹配vS-NSSAI+PLMN ID的PDU会话的上行和/或下行数据报文执行实际数据速率限制时。如果第三网元确定所有vS-NSSAI+PLMN ID的PDU会话的实际数据速率超过配额,第三网元首先丢弃这些PDU会话的非带宽保障业务(non-GBR)的报文,如果仍然超过配额,第三网元还可以继续丢弃带宽保障类(guaranteed bit rate,GBR)业务的数据流中超出带宽流保障类(guaranteed flow bit rate,GFBR)部分的报文。
综上所述,可以基于VPLMN中的第一网元、第二网元和第三网元,对漫游区域的资源进行控制,具体的,第二网元确定第一网元的第一最大会话数量和/或第一最大数据速率,第二网元向第一网元发送第一最大会话数量和/或第一最大数据速率,第一网元根据第一最大会话数量确定允许或拒绝会话建立,第一网元向第三网元发送第一最大数据速率。这样,在确定配额时,不需要VPLMN与HPLMN频繁交互,从而可以节约网络资源。
在图4对应的实施例的基础上,示例性的,以第一网元为PCF网元,第三网元为UPF网元为例,图5示出了本申请实施例的一种具体通信流程示意图。包括:
S501、PCF网元确定第一最大会话数量和/或第一最大数据速率。
S502、UE向AMF网元发送会话请求。
示例性的,UE通过gNB向AMF网元发起会话请求,该会话请求中可以携带vS-NSSAI。该会话可以为本地网输出(local breakout,LBO)会话或者归属网路由(home routed,HR)会话等其他会话。可以理解的是,本申请实施例中对会话的种类不做限制。
S503、AMF网元向SMF网元发送创建PDU会话上下文请求。
示例性的,AMF网元选择并请求网络切片内的SMF网元创建终端设备的PDU会话管理上下文,该PDU会话(或称会话)管理上下文中携带vS-NSSAI。
S504、UDM网元向SMF网元发送会话管理签约信息。
S505、SMF网元向PCF网元创建会话管理策略控制请求(SUPI,S-NSSAI)。
示例性的,SMF网元从会话管理签约信息中,确定处理目标网络切片的PCF网元,向第一网元发送建立会话管理策略控制请求的消息,该消息中携带vS-NSSAI和UE的SUPI。
S506、PCF网元根据SUPI确定PLMN ID,按S-NSSAI+PLMN ID对应的第一最大会话数量进行控制。
示例性的,第一网元根据UE的SUPI确定UE归属的PLMN ID。其中,SUPI可以由移动设备国家代码(mobile country code,MCC)、移动设备网络代码(mobile network code,MNC)以及用户标识部分组成。第一网元可以从SUPI中获取MCC和MNC,并将MCC+MNC的组合作为UE归属的HPLMN的PLMN ID。
第一网元可以根据vS-NSSAI+PLMN ID的组合对应的第一最大会话数量控制会话建立过程,该会话建立的控制过程如S405中的记载,在此不再赘述。
S507、PCF网元向UPF网元发送第一最大数据速率,其中PCF网元可以通过SMF网元向UPF网元发送第一最大数据速率。
S508、UPF网元根据第一最大数据速率处理会话。
S509、PCF网元向SMF网元发送创建会话管理策略控制响应(接受或拒绝)。
示例性的,该响应消息中携带S506中获取的允许建立PDU会话或拒绝建立PDU会话的处理结果。
S510、UE、AMF网元、第三网元、SMF网元和PCF网元共同执行后续会话建立流程。
示例性的,在后续的会话处理流程中,SMF网元向AMF网元回复会话上下文建立响应消息。SMF网元可以通过N4接口控制UPF网元。其中,UPF执行PDU会话的业务报文传送。
S511、UE、AMF网元、第三网元、SMF网元和PCF网元共同执行会话释放流程。
示例性的,UE、AMF网元、第三网元、SMF网元和PCF网元终结会话。
S512、PCF网元恢复配额。
示例性的,PCF恢复PDU会话使用的vS-NSSAI+PLMN ID的组合对应的会话数量配额和数据速率配额。
需要说明的是,S507和S508为可选步骤,本申请实施例对此不作具体限定。
综上所述,可以基于VPLMN中的AMF网元、第三网元、SMF网元、PCF网元和UDM网元对漫游区域的资源进行控制,这样在确定配额时,不需要VPLMN与HPLMN频繁交互,从而可以节约网络资源。
在图4对应的实施例的基础上,一种可能的实现方式中,以第一网元为SMF网元,第三网元为UPF网元为例,示例性的,图6示出了本申请实施例的一种具体通信流程示意图。包括:
S601、SMF网元确定第一最大会话数量和/或第一最大数据速率。
S602、UE向AMF网元发送会话请求。
S603、AMF网元SMF网元发送创建PDU会话上下文请求。
S604、UDM网元向SMF网元发送会话管理签约信息。
S605、SMF网元根据SUPI确定PLMN ID,按S-NSSAI+PLMN ID对应的第一最大会话数量进行控制。具体的,SMF网元根据vS-NSSAI+PLMN ID的组合对应的第一最大会话数量控制是否允许建立PDU会话。如果允许建立,则执行后续步骤;否则,通过AMF网元向UE发送拒绝会话建立的响应消息。
S606、SMF网元向第三网元发送第一最大数据速率。
S607、UPF网元根据第一最大数据速率处理会话。
S608、PCF网元向SMF网元发送创建会话管理策略控制响应(接受或拒绝)。
S609、UE、AMF网元、第三网元、SMF网元和PCF网元共同执行后续会话建立流程。
S610、UE、AMF网元、第三网元、SMF网元和PCF网元共同执行会话释放流程。
S611、PCF网元恢复配额。
本申请实施例中的S601-S604可以对应于图5中S501-S504的记载;本申请实施例中的S605-S611可以对应于图5中S506-S512的记载;在此不再赘述。与图4的实施例不同的是,图5中的由PCF网元确定第一最大会话数量和/或第一最大数据速率,并对会话进行控制,图6中SMF网元确定第一最大会话数量和/或第一最大数据速率,并对会话进行控制,适应的,各网元之间的交互流程也相应改变。
综上所述,可以基于VPLMN中的AMF网元、第三网元、SMF网元、PCF网元和UDM 网元对漫游区域的资源进行控制,这样在确定配额时,不需要VPLMN与HPLMN频繁交互,从而可以节约网络资源。
在图4对应的实施例的基础上,一种可能的实现方式中,以第一网元为AMF网元,第三网元为UPF网元为例,示例性的,图7示出了本申请实施例的一种具体通信流程示意图。包括:
S701、AMF网元确定第一最大会话数量和/或第一最大数据速率。
S702、UE向AMF网元发送会话请求。
S703、AMF网元向SMF网元发送创建PDU会话上下文请求。
S704、UDM网元向SMF网元发送会话管理签约信息。
S705、AMF网元根据SUPI确定PLMN ID,按S-NSSAI+PLMN ID对应的第一最大会话数量进行控制。具体的,AMF网元根据vS-NSSAI+PLMN ID的组合对应的第一最大会话数量控制是否允许建立PDU会话。如果允许建立,则执行后续步骤;否则,AMF网元向UE发送拒绝会话建立的响应消息。
S706、AMF网元通过SMF网元向UPF网元发送第一最大数据速率。
S707、UPF网元根据第一最大数据速率处理会话。
S708、PCF网元向SMF网元发送创建会话管理策略控制响应(接受或拒绝)。
S709、UE、AMF网元、第三网元、SMF网元和PCF网元共同执行后续会话建立流程。
S710、UE、AMF网元、第三网元、SMF网元和PCF网元共同执行会话释放流程。
S711、PCF网元恢复配额。
本申请实施例中的S701-S711可以对应于图6中S601-S611的记载,在此不再赘述。与图6的实施例不同的是,图6中SMF网元确定第一最大会话数量和/或第一最大数据速率,并对会话进行控制,图7中AMF网元确定第一最大会话数量和/或第一最大数据速率,并对会话进行控制适应的,各网元之间的交互流程也相应改变。
综上所述,可以基于VPLMN中的AMF网元、第三网元、SMF网元、PCF网元和UDM网元对漫游区域的资源进行控制,这样在确定配额时,不需要VPLMN与HPLMN频繁交互,从而可以节约网络资源。
图8示出了本申请实施例的一种通信方法的具体通信示意图。
如图8所示,该通信方法可以包括:
S801、第二网元确定第一网元的第一最大会话数量和/或第一最大数据速率。
实例性的,第二网元可以为配额控制功能网元,配额控制功能网元可以确定负责vS-NSSAI网络切片的所有第一网元,然后将允许来自特定HPLMN的终端建立的最大会话数量或最大数据速率参数作为整体业务配额数据。根据各个第一网元的处理性能或者设备容量,将网络切片的整体业务配额数据分成若干份第一配额,然后将分好的第一配额分配给相应的第一网元。
S802、第二网元向第一网元发送第一最大会话数量和/或第一最大数据速率。
S803、第一网元根据第一最大会话数量确定允许或拒绝会话建立。
S804、第一网元向第三网元发送第一最大数据速率。
S805、第三网元根据第一最大数据速率处理会话。
S806、第一网元向第二网元发送目标网络切片的标识以及PLMN标识对应的实际会话 数量。
S807、第二网元根据实际会话数量为第一网元确定第二最大会话数量。
第二网元可以汇总第一网元发来的vS-NSSAI+PLMN ID的组合的实际会话数量,第二网元可以结合第一网元的实际会话数量,重新为第一网元确定第二最大会话数量。例如,为上报的实际会话数量较大的第一网元多分配一部分会话数量配额,为上报的实际会话数量较小的第一网元少分配一部分会话数量配额。
S808、第二网元向第一网元发送第二最大会话数量。
S809、第一网元根据第二最大会话数量确定允许或拒绝会话建立。
示例性的,第一网元可以根据第二最大会话数量判断终端设备是否受到业务配额数据的控制。例如,若会话数量配额已经耗尽或者已经建立的会话数量超过第二最大会话数量,可以拒绝建立会话;若会话数量配额不超过第二最大会话数量,可以允许建立会话,并在第二最大会话数量配额中减一。
S810、第一网元向第三网元发送目标切片的标识以及目标PLMN标识。
S811、第三网元统计目标网络切片的标识以及目标PLMN标识对应的实际数据速率。
示例性的,第三网元按照vS-NSSAI+PLMN ID的组合统计所有会话在N3或N6接口的UL/DL实际数据速率,例如可以是一段周期的平均数据速率。第三网元可以周期性地向第二网元上报网络切片内vS-NSSAI+PLMN ID的组合对应的实际数据速率。
S812、第三网元向第二网元发送实际数据速率。
S813、第二网元根据实际数据速率为第三网元确定第二最大数据速率。
示例性的,第三网元的数量为多个是,第二网元可以汇总各个第三网元按照vS-NSSAI+PLMN ID的组合上报的UL/DL实际数据速率,第二网元可以周期性将本网络切片允许来自这个HPLMN的终端的整体数据速率按照各个第三网元的业务量大小,分配给各个第三网元第二最大数据速率。例如,为上次上报的实际数据速率较大的第三网元多分配一部分数据速率配额,为上次上报的实际数据速率较小的第三网元少分配一部分数据速率配额。第二网元可以指示第三网元按照分配的配额对匹配vS-NSSAI+PLMN ID组合的会话的上行或/和下行数据速率执行限制。
具体的,第二网元可以周期性的执行上述配额分配,也可以在确定汇总的vS-NSSAI+PLMN ID组合的实际数据速率达到特定门限时,开始按照各个第三网元的实际速率配额为各个第三网元分配第二最大数据速率,并指示第三网元按照第二最大数据速率执行数据速率限制。如果低于特定门限,第二网元也可以指示UPF停止数据速率限制的执行。其中,该特性门限可以是实际数据速率与允许的最大数据速率的比例达到一定值,或者,是具体的数据速率达到一定值。
可以理解的是,第二网元可以按照各个第三网元的设备容量大小分配数据速率配额,或者给各个第三网元平分数据速率配额。
S814、第二网元向第三网元发送第二最大数据速率。
S815、第三网元根据第二最大速率进行会话处理。
本申请实施例中,第三网元可以对匹配vS-NSSAI+PLMN ID的会话的上行和/或下行数据报文执行实际数据速率限制。
例如,如果第三网元确定所有vS-NSSAI+PLMN ID的会话的实际数据速率超过配额, 第三网元首先丢弃这些会话的非带宽保障业务(non-GBR)的报文,如果仍然超过配额,第三网元还可以继续丢弃带宽保障类(guaranteed bit rate,GBR)业务的数据流中超出保证流比特率(guaranteed flow bit rate,GFBR)部分的报文。
需要说明的是,本申请实施例中的S802-S805,可以对应于图4中S402-S405的记载,在此不再赘述。
综上所述,可以基于VPLMN中的第一网元、第二网元和第三网元对漫游区域的资源进行控制,这样在确定配额时,不需要VPLMN与HPLMN频繁交互,从而可以节约网络资源。
在图8对应的实施例的基础上,一种可能的实现方式中,以第一网元为PCF网元,第三网元为UPF网元为例,示例性的,图9示出了本申请实施例的一种具体通信流程示意图。包括:
S901、V-PCF网元确定第一最大会话数量和/或第一最大数据速率。
S902、UE向AMF网元发送会话请求。
S903、AMF网元向SMF网元发送创建PDU会话上下文请求。
S904、UDM网元向SMF网元发送会话管理签约信息。
S905、SMF网元向V-PCF网元发送创建会话管理策略控制请求(SUPI,vS-NSSAI)。
S906、V-PCF网元根据SUPI确定PLMN ID,按S-NSSAI+PLMN ID对应的第一最大会话数量进行控制。
S907、V-PCF网元向SMF网元发送创建会话管理策略控制。
S908、V-PCF网元第三网元发送第一最大数据速率。
S909、UPF网元根据第一最大数据速率处理会话。
S910、UPF网元和SMF网元建立N4会话(S-NSSAI+PLMN ID)。
示例性的,在后续的会话处理流程中,SMF网元向AMF网元回复会话上下文建立响应消息。SMF网元和UPF网元建立N4接口会话,如果SMF网元根据V-PCF网元的指示,确定本次会话受到网络切片的第一最大数据速率配额限制,SMF网元将本次会话相关的vS-NSSAI和PLMN ID通过N4接口传递给UPF网元。
S911、V-PCF网元向第三网元发送目标切片的标识以及目标PLMN标识。
S912、第三网元统计目标网络切片的标识以及目标PLMN标识对应的实际数据速率。
S913、第三网元向第二网元发送实际数据速率周期上报(S-NSSAI+PLMN ID,N6 DL/UL实际速率)。
S914、第二网元根据实际数据速率为第三网元确定第二最大数据速率。
S915、第二网元向第三网元根据实际数据速率给各个UPF分发第二最大数据速率(S-NSSAI+PLMN ID,限速配额)。
S916、第三网元根据第二最大数据速率进行会话处理,当实际速率超限时对Non-BGR flow限流,可选的还可以对GBR flow超过GFBR部分限流。
本申请实施例中的S901-S909可以对应于图5中S501-S509的记载;本申请实施例中的S911-S916可以对应于图8中S810-S815的记载;在此不再赘述。与图8的实施例不同的是,图8中的第一网元可以用图9中的V-PCF网元表示。
综上所述,可以基于VPLMN中的AMF网元、第三网元、SMF网元V-PCF网元、第二 网元和UDM网元对漫游区域的资源进行控制,这样在确定配额时,不需要VPLMN与HPLMN频繁交互,从而可以节约网络资源。
在图8对应的实施例的基础上,一种可能的实现方式中,以第一网元为SMF网元,第三网元为UPF网元为例,示例性的,图10示出了本申请实施例的一种具体通信流程示意图。包括:
S1001、SMF网元确定第一最大会话数量和/或第一最大数据速率。
S1002、UE向AMF网元发送会话请求。
S1003、AMF网元向SMF网元发送创建PDU会话上下文请求。
S1004、UDM网元向SMF网元发送会话管理签约信息。
S1005、V-SMF网元根据SUPI确定PLMN ID,按S-NSSAI+PLMN ID对应的第一最大会话数量进行控制。具体的,V-SMF网元根据S-NSSAI+PLMN ID的组合对应的第一最大会话数量控制是否允许建立PDU会话。如果允许建立,则执行后续步骤;否则,通过AMF网元向UE发送拒绝会话建立的响应消息。
S1006、V-PCF网元为SMF网元创建会话管理策略控制。
S1007、SMF网元UPF网元发送第一最大数据速率。
S1008、UPF网元根据第一最大数据速率处理会话。
S1009、UPF网元和SMF网元建立N4session(S-NSSAI+PLMN ID)。
S1010、SMF网元向UPF网元发送目标切片的标识以及目标PLMN标识。
S1011、UPF网元统计目标网络切片的标识以及目标PLMN标识对应的实际数据速率。
S1012、UPF网元向第二网元发送实际数据速率周期上报(S-NSSAI+PLMN ID,N6 DL/UL实际速率)。
S1013、第二网元根据实际数据速率为UPF网元确定第二最大数据速率。
S1014、第二网元向UPF网元根据实际数据速率给各个UPF网元分发第二最大数据速率(S-NSSAI+PLMN ID,限速配额)。
S1015、UPF网元根据第二最大数据速率进行会话处理,当实际速率超限时对Non-BGR flow限流,可选的还可以对GBR flow超过GFBR部分限流。
本申请实施例中的S1001-S1004可以对应于图9中S901-S904的记载;本申请实施例中的S1005-S1015可以对应于图9中S906-S916的记载;在此不再赘述。与图9的实施例不同的是,图9中由PCF网元确定第一最大会话数量和/或第一最大数据速率,以及第二最大会话数量和/或第二最大数据速率,并对会话进行控制,图10中SMF网元确定第一最大会话数量和/或第一最大数据速率,以及第二最大会话数量和/或第二最大数据速率,并对会话进行控制,适应的,各网元之间的交互流程也相应改变。
综上所述,可以基于VPLMN中的AMF网元、第三网元、SMF网元、V-PCF网元、第二网元和UDM网元对漫游区域的资源进行控制,这样在确定配额时,不需要VPLMN与HPLMN频繁交互,从而可以节约网络资源。
在图8对应的实施例的基础上,一种可能的实现方式中,以第一网元为AMF网元,第三网元为UPF网元为例,示例性的,图11示出了本申请实施例的一种具体通信流程示意图。包括:
S1101、AMF网元确定第一最大会话数量和第一最大数据速率。
S1102、UE向AMF网元发送会话请求。
S1103、AMF网元向SMF网元发送创建PDU会话上下文请求。
S1104、UDM网元向SMF网元发送会话管理签约信息。
S1105、AMF网元根据SUPI确定PLMN ID,按S-NSSAI+PLMN ID对应的第一最大会话数量进行控制。
S1106、V-PCF网元为SMF网元创建会话管理策略控制。
S1107、AMF网元通过SMF网元向UPF网元发送第一最大数据速率。
S1108、UPF网元根据第一最大数据速率处理会话。
S1109、UPF网元和SMF网元建立N4session(S-NSSAI+PLMN ID)。
S1110、AMF网元通过SMF网元向UPF网元发送目标切片的标识以及目标PLMN标识。
S1111、UPF网元统计目标网络切片的标识以及目标PLMN标识对应的实际数据速率。
S1112、UPF网元向第二网元发送实际数据速率周期上报(S-NSSAI+PLMN ID,N6 DL/UL实际速率)。
S1113、第二网元根据实际数据速率为UPF网元确定第二最大数据速率。
S1114、第二网元向UPF网元根据实际数据速率给各个UPF网元分发第二最大数据速率(S-NSSAI+PLMN ID,限速配额)。
S1115、UPF网元根据第二最大数据速率进行会话处理,当实际速率超限时对Non-BGR flow限流,可选的还可以对GBR flow超过GFBR部分限流。
本申请实施例中的S1101-S1115可以对应于图10中S1001-S1015的记载,在此不再赘述。与图10的实施例不同的是,图10中由SMFF网元确定第一最大会话数量和/或第一最大数据速率,以及第二最大会话数量和/或第二最大数据速率,并对会话进行控制,图11中AMF网元确定第一最大会话数量和/或第一最大数据速率,以及第二最大会话数量和/或第二最大数据速率,并对会话进行控制,适应的,各网元之间的交互流程也相应改变。
综上所述,可以基于VPLMN中的AMF网元、第三网元、SMF网元、V-PCF网元、第二网元和UDM网元对漫游区域的资源进行控制,这样在确定配额时,不需要VPLMN与HPLMN频繁交互,从而可以节约网络资源。
上面结合图4-图11,对本申请实施例的方法进行了说明,下面对本申请实施例提供的执行上述方法的通信装置进行描述。本领域技术人员可以理解,方法和装置可以相互结合和引用,本申请实施例提供的一种通信装置可以执行上述通信方法中第一网元所执行的步骤。另一种通信装置可以执行上述实施例中的通信方法中第二网元所执行的步骤。另一种通信装置可以执行上述实施例中的通信方法中第三网元所执行的步骤。
下面以采用对应各个功能划分各个功能模块为例进行说明:
如图12所示,图12示出了本申请实施例提供的通信装置的结构示意图,该通信装置可以是本申请实施例中的第一网元、第二网元或第三网元,也可以为应用于第一网元、第二网元或第三网元的芯片。该通信装置包括:处理单元121和通信单元122。其中,通信单元122用于支持通信装置执行信息发送或接收的步骤,处理单元121用于支持通信装置执行信息处理的步骤。
在一种可能的实施例中,通信装置还可以包括:存储单元123。处理单元121、通 信单元122、存储单元123通过通信总线相连。
存储单元123可以包括一个或者多个存储器,存储器可以是一个或者多个设备、电路中用于存储程序或者数据的器件。
存储单元123可以独立存在,通过通信总线与通信装置具有的处理单元121相连。存储单元123也可以和处理单元集成在一起。
通信装置可以用于通信设备、电路、硬件组件或者芯片中。
以通信装置可以是本申请实施例中第一网元、第二网元或第三网元的芯片或芯片系统为例,则通信单元122可以是输入或者输出接口、管脚或者电路等。示例性的,存储单元123可以存储第一网元、第二网元或第三网元侧的方法的计算机执行指令,以使处理单元121执行上述实施例中第一网元、第二网元或第三网元侧的方法。存储单元123可以是寄存器、缓存或者RAM等,存储单元123可以和处理单元121集成在一起。存储单元123可以是ROM或者可存储静态信息和指令的其他类型的静态存储设备,存储单元123可以与处理单元121相独立。
本申请实施例提供了一种通信装置,该通信装置包括一个或者多个模块,用于实现上述图4-图11中所包含的步骤中的方法,该一个或者多个模块可以与上述图4-图11中所包含的步骤中的方法的步骤相对应。
图13所示为本申请实施例提供的通信设备的硬件结构示意图。本申请实施例中的第一网元、第二网元或第三网元的硬件结构均可以参考如图13所示的通信设备的硬件结构示意图。该通信设备包括处理器131,通信线路134以及至少一个通信接口(图13中示例性的以通信接口133为例进行说明)。
处理器131可以是一个通用中央处理器(central processing unit,CPU),微处理器,特定应用集成电路(application-specific integrated circuit,ASIC),或一个或多个用于控制本申请方案程序执行的集成电路。
通信线路134可包括一通路,在上述组件之间传送信息。
通信接口133,使用任何收发器一类的装置,用于与其他设备或通信网络通信,如以太网,无线局域网(wireless local area networks,WLAN),RAN等。
可能的,该通信设备还可以包括存储器132。
存储器132可以是只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(electrically erasable programmable read-only memory,EEPROM)、只读光盘(compact disc read-only memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。存储器可以是独立存在,通过通信线路134与处理器相连接。存储器也可以和处理器集成在一起。
其中,存储器132用于存储执行本申请方案的计算机执行指令,并由处理器131来控制执行。处理器131用于执行存储器132中存储的计算机执行指令,从而实现本申请下述实施例提供的策略控制方法。
可能的,本申请实施例中的计算机执行指令也可以称之为应用程序代码,本申请实施例对此不作具体限定。
在具体实现中,作为一种实施例,处理器131可以包括一个或多个CPU,例如图13中的CPU0和CPU1。
在具体实现中,作为一种实施例,通信设备可以包括多个处理器,例如图13中的处理器131和处理器135。这些处理器中的每一个可以是一个单核(single-CPU)处理器,也可以是一个多核(multi-CPU)处理器。这里的处理器可以指一个或多个设备、电路、和/或用于处理数据(例如计算机程序指令)的处理核。
图14是本发明实施例提供的芯片140的结构示意图。芯片140包括一个或两个以上(包括两个)处理器1410和通信接口1430。
在一种可能的实施例中,如图14所示的芯片140还包括存储器1440,存储器1440可以包括只读存储器和随机存取存储器,并向处理器1410提供操作指令和数据。存储器1440的一部分还可以包括非易失性随机存取存储器(non-volatile random access memory,NVRAM)。
在一些实施方式中,存储器1440存储了如下的元素,可执行模块或者数据结构,或者他们的子集,或者他们的扩展集:
在本发明实施例中,通过调用存储器1440存储的操作指令(该操作指令可存储在操作系统中),执行相应的操作。
一种可能的实现方式中为:第一网元、第二网元或第三网元所用的芯片的结构类似,不同的装置可以使用不同的芯片以实现各自的功能。
处理器1410控制第一网元、第二网元或第三网元的操作,处理器1410还可以称为中央处理单元(central processing unit,CPU)。存储器1440可以包括只读存储器和随机存取存储器,并向处理器1410提供指令和数据。存储器1440的一部分还可以包括非易失性随机存取存储器(non-volatile random access memory,NVRAM)。例如应用中存储器1440、通信接口1430以及存储器1440通过总线系统1420耦合在一起,其中总线系统1420除包括数据总线之外,还可以包括电源总线、控制总线和状态信号总线等。但是为了清楚说明起见,在图14中将各种总线都标为总线系统1420。
以上通信单元可以是一种该装置的接口电路或通信接口,用于从其它装置接收信号。例如,当该装置以芯片的方式实现时,该通信单元是该芯片用于从其它芯片或装置接收信号或发送信号的接口电路或通信接口。
上述本发明实施例揭示的方法可以应用于处理器1410中,或者由处理器1410实现。处理器1410可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法的各步骤可以通过处理器1410中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器1410可以是通用处理器、数字信号处理器(digital signal processing,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field-programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本发明实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本发明实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完 成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器1440,处理器1410读取存储器1440中的信息,结合其硬件完成上述方法的步骤。
一种可能的实现方式中,通信接口1430用于执行图4-图11所示的实施例中的第一网元、第二网元或第三网元的接收和发送的步骤。处理器1410用于执行图4-图11所示的实施例中的第一网元、第二网元或第三网元的处理的步骤。
在上述实施例中,存储器存储的供处理器执行的指令可以以计算机程序产品的形式实现。计算机程序产品可以是事先写入在存储器中,也可以是以软件形式下载并安装在存储器中。
计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行计算机程序指令时,全部或部分地产生按照本申请实施例的流程或功能。计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一计算机可读存储介质传输,例如,计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。计算机可读存储介质可以是计算机能够存储的任何可用介质或者是包括一个或多个可用介质集成的服务器、数据中心等数据存储设备。可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,数字通用光盘(digital versatile disc,DVD))、或者半导体介质(例如固态硬盘(solid state disk,SSD))等。
本申请实施例还提供了一种计算机可读存储介质。上述实施例中描述的方法可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。如果在软件中实现,则功能可以作为一个或多个指令或代码存储在计算机可读介质上或者在计算机可读介质上传输。计算机可读介质可以包括计算机存储介质和通信介质,还可以包括任何可以将计算机程序从一个地方传送到另一个地方的介质。存储介质可以是可由计算机访问的任何目标介质。
作为一种可能的设计,计算机可读介质可以包括RAM,ROM,EEPROM,CD-ROM或其它光盘存储器,磁盘存储器或其它磁存储设备,或目标于承载的任何其它介质或以指令或数据结构的形式存储所需的程序代码,并且可由计算机访问。而且,任何连接被适当地称为计算机可读介质。例如,如果使用同轴电缆,光纤电缆,双绞线,数字用户线(DSL)或无线技术(如红外,无线电和微波)从网站,服务器或其它远程源传输软件,则同轴电缆,光纤电缆,双绞线,DSL或诸如红外,无线电和微波之类的无线技术包括在介质的定义中。如本文所使用的磁盘和光盘包括光盘(CD),激光盘,光盘,DVD,软盘和蓝光盘,其中磁盘通常以磁性方式再现数据,而光盘利用激光光学地再现数据。上述的组合也应包括在计算机可读介质的范围内。
本申请实施例还提供了一种计算机程序产品。上述实施例中描述的方法可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。如果在软件中实现,可以全部或者部分得通过计算机程序产品的形式实现。计算机程序产品包括一个或多个计算 机指令。在计算机上加载和执行上述计算机程序指令时,全部或部分地产生按照上述方法实施例中描述的流程或功能。上述计算机可以是通用计算机、专用计算机、计算机网络、基站、终端或者其它可编程装置。
以上的具体实施方式,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上仅为本发明的具体实施方式而已,并不用于限定本发明的保护范围,凡在本发明的技术方案的基础之上,所做的任何修改、等同替换、改进等,均应包括在本发明的保护范围之内。

Claims (18)

  1. 一种通信方法,其特征在于,包括:
    第一网元确定第一配额;其中,所述第一网元为拜访公共陆地移动网络VPLMN中的网元;所述第一配额与所述VPLMN中的网络切片的标识以及归属公共陆地移动网络HPLMN的公共陆地移动网络PLMN标识相关;
    所述第一网元根据会话的相关请求确定终端设备在所述HPLMN中的目标PLMN标识;其中,所述会话的相关请求包括目标网络切片标识和所述终端设备的身份标识;
    所述第一网元根据所述目标网络切片标识和所述目标PLMN标识,在所述第一配额中确定目标配额。
  2. 根据权利要求1所述的方法,其特征在于,所述第一配额包括:第一最大会话数量和/或第一最大数据速率。
  3. 根据权利要求1或2所述的方法,其特征在于,所述第一配额中包含多组关联关系,所述关联关系包括:网络切片标识、PLMN标识和配额的关系;所述终端设备的身份标识对应一个PLMN标识。
  4. 根据权利要求1-3任一项所述的方法,其特征在于,所述第一网元确定第一配额,包括:
    所述第一网元接收来自第二网元的所述第一配额,其中,所述第二网元包括操作管理维护OAM网元,或者,所述第二网元包括配额控制功能。
  5. 根据权利要求4所述的方法,其特征在于,还包括:
    所述第一网元向第三网元发送所述目标网络切片的标识以及所述目标PLMN标识;
    所述第一网元接收来自所述第三网元的所述目标网络切片的标识以及所述目标PLMN标识对应的实际数据速率;
    所述第一网元向所述第二网元发送所述实际数据速率。
  6. 根据权利要求4或5所述的方法,其特征在于,还包括:
    所述第一网元确定所述目标网络切片的标识以及所述目标PLMN标识对应的实际会话数量;
    所述第一网元根据所述目标配额和所述实际会话数量确定允许或拒绝所述会话的相关请求。
  7. 根据权利要求6所述的方法,其特征在于,还包括:
    所述第一网元向所述第二网元发送所述实际会话数量。
  8. 一种通信方法,其特征在于,包括:
    第二网元确定第一网元的第一配额;其中,所述第一网元为拜访公共陆地移动网络VPLMN中的网元;所述第一配额与所述VPLMN中的网络切片的标识以及归属公共陆地移动网络HPLMN的公共陆地移动网络PLMN标识相关;
    所述第二网元向所述第一网元发送所述第一配额。
  9. 根据权利要求8所述的方法,其特征在于,所述第一配额包括:最大会话数量和/或最大数据速率。
  10. 根据权利要求8或9所述的方法,其特征在于,所述第一配额中包含多组关联关系,所述关联关系包括:网络切片标识、PLMN标识和配额的关系;所述终端设 备的身份标识对应一个PLMN标识。
  11. 根据权利要求9-10任一项所述的方法,其特征在于,还包括:
    所述第二网元接收来自第三网元的目标网络切片的标识以及PLMN标识对应的实际数据速率;
    所述第二网元根据所述实际数据速率为所述第三网元确定第二最大数据速率;
    所述第二网元向所述第三网元发送所述第二最大数据速率。
  12. 根据权利要求11所述的方法,其特征在于,所述第三网元的数量为多个,所述第二网元根据所述实际数据速率为所述第三网元确定第二最大数据速率,包括:
    所述第二网元汇总多个所述第三网元的实际数据速率,得到汇总实际数据速率;
    在所述汇总实际数据速率达到所述第一最大数据速率的比例阈值情况下,所述第一网元根据各所述第三网元的实际数据速率,为各所述第三网元确定所述第二最大数据速率。
  13. 根据权利要求9-10任一项所述的方法,其特征在于,还包括:
    所述第二网元接收来自所述第一网元的目标网络切片的标识以及PLMN标识对应的实际会话数量;
    所述第二网元根据所述实际会话数量为所述第三网元确定第二最大会话数量;
    所述第二网元向所述第一网元发送所述第二最大会话数量。
  14. 一种通信方法,其特征在于,包括:
    第三网元接收来自第一网元的目标网络切片的标识以及目标PLMN标识;其中,所述第一网元为拜访公共陆地移动网络VPLMN中的网元;所述目标PLMN标识为终端设备在归属公共陆地移动网络HPLMN中的标识;
    所述第三网元统计所述目标网络切片的标识以及所述目标PLMN标识对应的实际数据速率;
    所述第三网元向第二网元发送所述实际数据速率;
    所述第三网元接收来自所述第二网元的第二最大数据速率;所述最大数据速率与所述实际数据速率相关;
    所述第三网元根据所述第二最大数据速率进行会话处理。
  15. 根据权利要求14所述的方法,其特征在于,所述第三网元根据所述第二最大数据速率进行会话处理,包括:
    在所述会话的数据速率超过所述第二最大数据速率的情况下,所述第三网元丢弃部分报文。
  16. 一种通信装置,其特征在于,包括:处理器和通信接口;
    所述通信接口用于执行如权利要求1-7中任一项所述的通信方法中进行收发的操作,或执行如权利要求8-13中任一项所述的通信方法中进行收发的操作,或执行如权利要求14-15中任一项所述的通信方法中进行收发的操作;所述处理器运行指令以执行如权利要求1-7中任一项所述的通信方法中进行处理或控制的操作,或执行如权利要求8-13中任一项所述的通信方法中进行处理或控制的操作,或执行如权利要求14-15中任一项所述的通信方法中进行处理或控制的操作。
  17. 一种芯片,其特征在于,所述芯片包括至少一个处理器和通信接口,所述通 信接口和所述至少一个处理器耦合,所述至少一个处理器用于运行计算机程序或指令,以实现如权利要求1-7中任一项所述的通信方法,或以实现如权利要求8-13中任一项所述的通信方法,或以实现如权利要求14-15中任一项所述的通信方法;所述通信接口用于与所述芯片之外的其它模块进行通信。
  18. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有指令,当所述指令被运行时,实现如权利要求1-7中任一项所述的通信方法,或实现如权利要求8-13中任一项所述的通信方法,或实现如权利要求14-15中任一项所述的通信方法。
PCT/CN2020/121678 2020-10-16 2020-10-16 通信方法和装置 WO2022077497A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20957275.9A EP4210381A4 (en) 2020-10-16 2020-10-16 COMMUNICATION METHOD AND DEVICE
PCT/CN2020/121678 WO2022077497A1 (zh) 2020-10-16 2020-10-16 通信方法和装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/121678 WO2022077497A1 (zh) 2020-10-16 2020-10-16 通信方法和装置

Publications (1)

Publication Number Publication Date
WO2022077497A1 true WO2022077497A1 (zh) 2022-04-21

Family

ID=81208904

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/121678 WO2022077497A1 (zh) 2020-10-16 2020-10-16 通信方法和装置

Country Status (2)

Country Link
EP (1) EP4210381A4 (zh)
WO (1) WO2022077497A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102098727A (zh) * 2009-12-15 2011-06-15 华为技术有限公司 数据速率控制方法和装置
CN106982458A (zh) * 2017-03-09 2017-07-25 华为技术有限公司 一种网络切片的选择方法及装置
WO2019219182A1 (en) * 2018-05-16 2019-11-21 Nokia Solutions And Networks Oy Adaptive quota allocation
CN110999343A (zh) * 2017-08-14 2020-04-10 三星电子株式会社 5g系统中网络与终端之间的能力协商和切片信息映射的方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7421735B2 (ja) * 2019-03-29 2024-01-25 オフィノ, エルエルシー 非公開ネットワークのための課金制御

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102098727A (zh) * 2009-12-15 2011-06-15 华为技术有限公司 数据速率控制方法和装置
CN106982458A (zh) * 2017-03-09 2017-07-25 华为技术有限公司 一种网络切片的选择方法及装置
CN110999343A (zh) * 2017-08-14 2020-04-10 三星电子株式会社 5g系统中网络与终端之间的能力协商和切片信息映射的方法
WO2019219182A1 (en) * 2018-05-16 2019-11-21 Nokia Solutions And Networks Oy Adaptive quota allocation

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ANONYMOUS: "3rd Generation Partnership Project; Technical Specification Group Services and System Aspects; Study on enhancement of network slicing; Phase 2 (Release 17)", 3GPP STANDARD; TECHNICAL REPORT; 3GPP TR 23.700-40, no. V0.5.0, 9 September 2020 (2020-09-09), pages 1 - 191, XP051925994 *

Also Published As

Publication number Publication date
EP4210381A1 (en) 2023-07-12
EP4210381A4 (en) 2023-10-25

Similar Documents

Publication Publication Date Title
CN106982458B (zh) 一种网络切片的选择方法及装置
US10129108B2 (en) System and methods for network management and orchestration for network slicing
KR102513813B1 (ko) 서비스 흐름 송신 방법 및 장치, 그리고 통신 방법 및 장치
WO2022007899A1 (zh) Upf选择方法及装置
EP4072071A1 (en) Slice control method and apparatus
JP6406259B2 (ja) 通信装置、制御装置、通信方法、制御方法およびプログラム
CN114930970A (zh) 在通信系统中使用网络切片向用户设备提供服务的方法和设备
WO2021233148A1 (zh) 切片接入方法、装置及系统
US20200288352A1 (en) Local breakout architecture
WO2022012122A1 (zh) 一种通信方法、设备及系统
WO2019174582A1 (zh) 一种消息传输方法和装置
JP2023529628A (ja) バックグラウンドデータ転送ポリシー策定方法、装置、及びシステム
WO2022077497A1 (zh) 通信方法和装置
WO2023035925A1 (zh) 一种业务处理方法、装置和系统
WO2015033579A1 (ja) 通信装置、制御装置、通信システム、通信方法、制御方法およびプログラム
WO2021139378A1 (zh) 通信方法和通信装置
CN115734282A (zh) 一种服务质量的处理方法、装置和通信系统
WO2022032517A1 (zh) 通信方法和装置
WO2022141528A1 (zh) 一种确定mec接入点的方法及装置
KR20190129274A (ko) 어플리케이션별 사설망 서비스 제공 방법 및 이를 구현한 통신망 시스템, 그리고 단말에서의 트래픽 전송 방법
WO2021136301A1 (zh) 通信方法及装置
WO2024012376A1 (zh) 一种通信方法、通信装置及通信系统
WO2023246620A1 (zh) 通信方法、装置和系统
WO2024074095A1 (zh) 一种通信方法及装置
WO2023185496A1 (zh) 冗余传输请求方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20957275

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020957275

Country of ref document: EP

Effective date: 20230405

NENP Non-entry into the national phase

Ref country code: DE