WO2022077439A1 - 穿戴式红外导航超声刺激系统 - Google Patents

穿戴式红外导航超声刺激系统 Download PDF

Info

Publication number
WO2022077439A1
WO2022077439A1 PCT/CN2020/121490 CN2020121490W WO2022077439A1 WO 2022077439 A1 WO2022077439 A1 WO 2022077439A1 CN 2020121490 W CN2020121490 W CN 2020121490W WO 2022077439 A1 WO2022077439 A1 WO 2022077439A1
Authority
WO
WIPO (PCT)
Prior art keywords
infrared
ultrasonic stimulation
navigation
ultrasonic
infrared detection
Prior art date
Application number
PCT/CN2020/121490
Other languages
English (en)
French (fr)
Inventor
牛丽丽
邹俊杰
郑海荣
孟龙
易沙沙
黄小伟
陈厚民基
钟永盛
周伟
林争荣
Original Assignee
深圳先进技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳先进技术研究院 filed Critical 深圳先进技术研究院
Priority to PCT/CN2020/121490 priority Critical patent/WO2022077439A1/zh
Publication of WO2022077439A1 publication Critical patent/WO2022077439A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/04Measuring blood pressure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N7/00Ultrasound therapy

Definitions

  • the present application relates to the field of medical technology, in particular to a wearable infrared navigation ultrasound stimulation system.
  • the neck tissue contains important neurovascular structures such as the common carotid artery and the vagus nerve, especially the cervical vagus nerve, which is one of the important targets for peripheral nerve regulation and treatment of nervous system diseases.
  • the vagus nerve has a good therapeutic effect on a variety of serious brain diseases.
  • Cervical vagus nerve stimulation is a common neuromodulation method in the treatment of neurological diseases.
  • the implanted vagus nerve stimulation program is still an invasive neuromodulation method, which requires surgical implantation of electrodes, which may cause side effects such as infection. On this basis, non-invasive nerve stimulation is more important.
  • Non-invasive ultrasound requires accurate positioning to the target area.
  • the skin of the neck is thick, and the position of the nerves and blood vessels is deep, and the structures such as blood vessels and nerves cannot be directly observed with the naked eye.
  • Non-invasive positioning is a difficult problem, especially when guiding ultrasound to the deep tissue after positioning is a major problem.
  • the neurovascular function of the neck is very important, and it is easy to cause instability of heart rate and blood pressure and lead to life-threatening. Therefore, monitoring the stimulation effect and the adverse reactions caused is an important part.
  • One of the purposes of the embodiments of the present application is to provide a wearable infrared navigation ultrasound stimulation system, which aims to solve the technical problems that blood vessels and nerves cannot be accurately located and the safety is not high when non-invasive ultrasound technology stimulates blood vessels and nerves. .
  • a wearable infrared navigation ultrasound stimulation system including:
  • the infrared detection and navigation system is used for imaging the nerve blood vessels, and after marking the stimulation site, the ultrasonic stimulation system is guided to reach the target site through the mobile positioning system, and the information of the nerve blood vessels is monitored and recorded;
  • Ultrasonic stimulation control system for generating and releasing ultrasonic waves to stimulate nerves and blood vessels after penetrating the skin
  • a mobile positioning system for moving the ultrasonic stimulation control system the ultrasonic stimulation control system is connected to the mobile positioning system;
  • the feedback system is used for collecting biological information, such as the effect of ultrasonic stimulation and the changes in vital signs caused by ultrasonic stimulation (heart rate, blood oxygen, blood pressure, and tissue temperature changes at the stimulation site, etc.), through the central processor. Signal processing, timely feedback changes to the ultrasonic stimulation control system, and adjust the treatment plan. And display the data on the display of this system in real time to remind medical staff.
  • biological information such as the effect of ultrasonic stimulation and the changes in vital signs caused by ultrasonic stimulation (heart rate, blood oxygen, blood pressure, and tissue temperature changes at the stimulation site, etc.
  • a fixing device for fixing the infrared detection and navigation system and the ultrasonic stimulation control system to the detection part of the human body; and a control feedback system, which is electrically connected to the infrared detection and navigation system, the ultrasonic stimulation control system and the control system.
  • the mobile positioning system is used for receiving monitoring information of the infrared detection and navigation system and controlling the mobile positioning system and the ultrasonic stimulation control system according to the monitoring information.
  • the infrared detection and navigation system includes an infrared imaging device for visualizing nerve blood vessels, the infrared imaging device includes an infrared detection housing, an infrared detection housing provided in the infrared detection housing and used for emitting infrared light. Imaging light source and camera to locate neurovascular.
  • the infrared detection shell is arc-shaped
  • the fixing device is a length-adjustable connecting belt
  • two ends of the connecting belt are respectively connected to two ends of the infrared detection shell.
  • the infrared detection housing and the fixing device are detachably connected through a buckle.
  • the infrared detection and navigation system further includes an infrared monitoring device for monitoring and recording blood vessel information, and the infrared monitoring device includes an infrared monitoring light source and a monitor.
  • the infrared imaging light source and the infrared monitoring light source are the same light source.
  • a moving track is provided on the infrared detection housing, and the ultrasonic stimulation control system is slidably connected to the moving track.
  • the moving track includes a first track and a second track slidably connected to the first track, and the ultrasound stimulation control system is slidably connected to the first track.
  • the first track is arcuate, and the second track is straight.
  • the mobile positioning system includes a driving member and a transmission device driven by the driving member, and the ultrasonic stimulation control system is fixed to the power output end of the transmission device.
  • the transmission device is a pulley device, and the ultrasonic stimulation control system is fixed on a transmission belt of the pulley device; or, the transmission device is a sprocket device, and the ultrasonic stimulation device is fixed on a on the chain of the sprocket device.
  • the ultrasonic stimulation control system includes an ultrasonic transducer and a laser sight fixedly connected to the ultrasonic transducer.
  • the focal point of the laser sight is at the same location as the ultrasonic focal point of the ultrasonic transducer.
  • the number of the laser sights is plural, and the plurality of the laser sights are uniformly arranged in the circumferential direction of the center of the ultrasonic transducer.
  • the ultrasound transducer has a piezoelectric sheet for converting electrical signals into acoustic signals.
  • the wearable infrared navigation ultrasonic stimulation system of the present application includes an infrared detection and navigation system, an ultrasonic stimulation control system, a mobile positioning system, a fixed The device and control feedback system, the infrared detection and navigation system is used to image the nerve blood vessels and detect and record the blood vessel information, the position information of the nerve blood vessels detected by the infrared detection and navigation system is transmitted to the control feedback system, and the control feedback system controls the movement of the mobile positioning system.
  • the ultrasonic stimulation control system is moved to the position facing the neurovascular to be treated, and accurate positioning of the neurovascular can be realized under the premise of non-invasiveness.
  • the infrared detection and navigation system also has the function of monitoring blood vessel information such as heart rate, blood pressure, blood oxygen, and body temperature, and can feed back the above blood vessel information to the control feedback system. Once the heart rate, blood pressure, and blood oxygen are abnormal, the control feedback system The operation of the ultrasonic stimulation control system can be stopped, and the safety of the device can be improved.
  • FIG. 1 is a three-dimensional structural diagram of a wearable infrared navigation ultrasound stimulation system provided by an embodiment of the present application
  • FIG. 2 is a front view of a wearable infrared navigation ultrasound stimulation system provided by an embodiment of the present application
  • FIG. 3 is a schematic diagram of a control feedback system provided by an embodiment of the present application.
  • 1-Infrared detection and navigation system 11-Infrared imaging device; 111-Infrared detection shell; 112-Infrared imaging light source; 12-Infrared monitoring device; 2-Ultrasonic stimulation control system; 21-Ultrasonic transducer; 22-Laser sight ; 3- Mobile positioning system; 4- Fixed device.
  • the wearable ultrasound device provided in the embodiments of the present application can be used in the treatment of neck, wrist, ankle and other parts.
  • a wearable infrared navigation ultrasonic stimulation system includes an infrared detection and navigation system 1 , an ultrasonic stimulation control system 2 , a mobile positioning system 3 , a fixed device 4 and control feedback System 5.
  • the infrared detection and navigation system 1 is used to image the nerve blood vessels and monitor and record the blood vessel information. More specifically, the infrared detection and navigation system 1 can emit infrared rays to reach the depth of the skin, so as to visualize the nerve blood vessels inside the human tissue, and can also monitor and record Blood vessel information, wherein the blood vessel information includes pulse, heart rate, blood pressure, blood oxygen and other information.
  • the ultrasonic stimulation control system 2 is used to generate ultrasonic waves to stimulate the nerve blood vessels in human tissue, and to effectively treat nervous system diseases in a non-invasive manner.
  • the fixing device 4 is used for fixing the infrared detection and navigation system 1 and the ultrasonic stimulation control system 2 to the parts to be treated of the human body, such as the neck, wrist, ankle and other parts. More specifically, the entire ultrasonic stimulation device can be fixed to the affected part of the human body through the fixing device 4 , so that the device is wearable, more portable, and more widely used.
  • the infrared detection and navigation system 1, the ultrasonic stimulation control system 2 and the mobile positioning system 3 are all electrically connected to the control feedback system 5, and the control feedback system 5 is used to receive the monitoring information of the infrared detection and navigation system 1 and control the mobile positioning system 3 and the mobile positioning system according to the monitoring information.
  • Ultrasound stimulation control system 2 More specifically, please refer to FIG. 3, when the wearable infrared navigation ultrasonic stimulation system works, the infrared detection and navigation system 1 makes the nerve blood vessels inside the skin visualize through the irradiation of infrared light, obtains the position information of the nerve blood vessels, and controls the feedback system. The position information of the nerve blood vessels is acquired, and the mobile fixation system 3 is controlled by the position information.
  • the mobile fixation system 3 drives the ultrasonic stimulation control system 2 to move to the nerve blood vessels to be treated, and releases ultrasonic waves to stimulate and treat the affected area.
  • the infrared detection and navigation system 1 also monitors and records blood vessel information. Once the heart rate, blood pressure, and blood oxygen are abnormal, the control feedback system 5 can stop the work of the ultrasonic stimulation control system 2 and improve the device. safety of use.
  • the control feedback system 5 performs signal processing on the collected biological information, feeds back the changes to the ultrasonic stimulation control system 2 in time, adjusts the treatment plan, and can display the data on the display in real time to remind the medical staff.
  • the above-mentioned wearable infrared navigation ultrasonic stimulation system includes an infrared detection and navigation system 1, an ultrasonic stimulation control system 2, a mobile positioning system 3, a fixing device 4 and a control feedback system 5.
  • the infrared detection and navigation system 1 is used for imaging and detecting the nerve blood vessels. And record the blood vessel information, the position information of the nerve blood vessels detected by the infrared detection and navigation system 1 is transmitted to the control feedback system 5, and the control feedback system 5 controls the movement of the mobile device 3, so as to move the ultrasonic stimulation control system 2 to the position facing the required treatment.
  • the position of the neurovascular can achieve accurate positioning of the neurovascular under the premise of non-invasiveness.
  • the infrared detection and navigation system 1 also has the function of monitoring blood vessel information such as heart rate, blood pressure, blood oxygen, etc., and can feed back the above blood vessel information to the control feedback system. Once the heart rate, blood pressure, and blood oxygen are abnormal, the control feedback system can The operation of the ultrasonic stimulation control system 2 is stopped to improve the safety of the device.
  • blood vessel information such as heart rate, blood pressure, blood oxygen, etc.
  • the infrared detection and navigation system 1 includes an infrared imaging device 11, and the infrared imaging device 11 is used to visualize the nerve blood vessels, so as to facilitate the positioning of the nerve blood vessels in the affected area, thereby
  • the ultrasonic stimulation control system 2 can be correspondingly moved to the affected area, and the affected area can be treated.
  • the infrared imaging device 11 includes an infrared detection housing 111 , an infrared imaging light source 112 and a camera.
  • the infrared imaging light source 112 and the camera are both installed on the infrared detection housing 111.
  • the infrared imaging light source 112 emits infrared light to illuminate the human tissue, so that the nerve blood vessels inside the human tissue can be visualized.
  • the position information of the blood vessels is recorded and saved, and the control feedback system can obtain the pictures taken by the camera, extract and calculate the position information of the nerve blood vessels in the pictures, and finally obtain the position coordinates of the nerve blood vessels.
  • the control feedback system compares the position of the ultrasonic stimulation control system 2 with the position of the neurovascular to be treated, calculates the path and distance that the ultrasonic stimulation control system 2 needs to move, and controls the mobile positioning system 3
  • the ultrasonic stimulation device 2 is driven to move to the affected area according to the required moving path and distance.
  • the infrared detection housing 111 can be selected from resin materials, plastics, polyetheretherketone (referred to as peek) and other materials with good histocompatibility, and can also be materials such as metal, and the material of the infrared detection housing 111 is not limited here.
  • the infrared imaging light source 112 can be selected as light sources of different sizes and types, such as point light sources, surface light sources, and the like.
  • the infrared imaging light source 112 is an LED. In order to ensure the imaging effect, an infrared light source in the frequency band of 850nm to 940nm can be selected.
  • the infrared imaging light source 112 is disposed inside the infrared detection casing 111 , or embedded in the infrared detection casing 111 .
  • the position opposite the infrared detection housing 111 and the infrared imaging light source 112 is transparent or translucent, or is provided with a window, so that the light emitted by the infrared imaging light source 112 can pass through the infrared detection housing 111 .
  • the camera can be selected as a miniature camera. The number and distribution of the cameras are not limited here, as long as the shooting field of view can meet the design requirements.
  • the photographing field of view of the camera overlaps with the developing area of the infrared imaging light source 112, so that the developed area can be photographed and recorded.
  • the infrared detection and navigation system 1 further includes an infrared monitoring device 12.
  • the infrared monitoring device 12 is used to monitor and record blood vessel information.
  • the control feedback system can obtain the blood vessel information from the infrared monitoring device 12.
  • the infrared monitoring device 12 includes an infrared monitoring light source and a monitor, and the infrared monitoring light source can be an LED. In order to ensure the imaging effect, an infrared light source in the frequency band of 850nm to 940nm can be selected.
  • the infrared monitoring light source is arranged inside the infrared detection casing 111 , or embedded in the infrared detection casing 111 .
  • the position opposite the infrared detection housing 111 and the infrared monitoring light source is transparent or translucent, or is provided with a window, so that the light emitted by the infrared monitoring light source can pass through the infrared detection housing 111 .
  • the infrared imaging light source 112 and the infrared monitoring light source are the same light source, that is, the infrared imaging device 11 and the infrared monitoring device 12 share the same light source, which can reduce the structural components in the ultrasonic stimulation device and reduce the production cost.
  • the monitor is used to monitor pulse, heart rate, blood pressure, blood oxygen, etc.
  • the specific model of the monitor is not limited here.
  • the monitors commonly used in the market (such as monitors in smart bracelets) are all applicable to this embodiment.
  • the side of the infrared detection housing 111 on which the infrared imaging light source 112 emits light is used to face the human tissue.
  • the infrared detection shell 111 is connected with the fixing device 4 , so that the infrared detection shell 111 of the ultrasonic stimulation device can be closely attached to the human skin.
  • both ends of the fixing device 4 are detachably connected to the infrared detection housing 111 , so that the fixing device 4 can be detached from both ends of the infrared detection housing 111 , and the infrared detection housing 111 can be adapted to different fixing devices 4 .
  • the fixing device 4 is detachably connected to the infrared detection housing 111 through a buckle or a belt buckle, and the specific structures of the buckle and the buckle are not described here.
  • the fixing structure is a connecting belt or a fixing bracket whose length can be adjusted.
  • the connecting belt can be selected as a strap, an elastic belt, a fixed bracket and other structures.
  • the fixing structure is a strap
  • the strap includes two strap units, and the two strap units are connected by adjustment buckles, so that the length of the strap can be adjusted, and the side of the infrared detection shell 111 that emits infrared light can be closely attached to the human body. Skin settings.
  • the fixed structure is an elastic band
  • the length of the elastic band can be extended or shortened, and the elastic band can be stretched to different degrees according to the diameter of the neck, ankle, wrist, etc. The side is set against the human skin.
  • the fixed structure is a fixed support, it can be used in conjunction with the neck to support the front or back of the neck, making the patient more comfortable.
  • the side of the infrared detection shell 111 that emits infrared light is further provided with a soft layer made of materials such as sponge and latex, so that the human skin is more comfortable when the infrared detection shell 111 is in close contact with the human skin.
  • the infrared detection shell 111 is arc-shaped, making it easier to fit with the arc-shaped human skin surface such as the neck, ankle, wrist, etc.
  • the infrared light of the infrared imaging light source 112 and the ultrasonic stimulation control system 2 The ultrasonic waves are emitted from the inner arc surface of the infrared detection shell 111 to the human tissue.
  • the infrared detection housing 111 is provided with a moving track, and the ultrasonic stimulation control system 2 is slidably connected to the moving track, so that the ultrasonic stimulation control system 2 is positioned on the moving positioning system 3 . Move smoothly to the affected area under the driving force.
  • the moving track includes a first track and a second track
  • the second track is slidably connected to the first track
  • the length extension direction of the first track is the first direction
  • the ultrasonic stimulation control system 2 is slidably connected to the second track
  • the length extension direction of the second track is the second direction
  • the first direction and the second direction are arranged at an included angle, so that the ultrasonic stimulation control system 2 can move to any position where the infrared imaging light source 112 develops and images.
  • the first direction and the second direction may be vertically arranged.
  • the first track is an arc-shaped track
  • the first direction is the circumferential direction of the arc-shaped track.
  • the number of tracks can be one, two or more.
  • the number of arc-shaped tracks is two, they are respectively provided on both sides of the infrared detection housing 111 in the axial direction.
  • the second track is an axial track
  • the first direction is the axial direction of the arc-shaped track
  • the length direction of the axial track is parallel to the axial direction of the infrared detection housing 111
  • the axial track can be partially fitted into the arc-shaped track, so that the shaft
  • the direction track itself can slide on the arc track
  • the ultrasonic stimulation device is axially slid in the axial track. In this way, the ultrasonic stimulation device can slide not only along the circumferential direction of the infrared detection housing 111 but also along the axial direction of the infrared detection housing 111 , so that the ultrasonic stimulation device can be moved to any position where the infrared imaging light source 112 develops and images.
  • the mobile positioning system 3 includes a driving member and a transmission device, and also includes the above-mentioned moving track, and the ultrasonic stimulation control system 2 is fixed to the power output end of the transmission device, The ultrasonic stimulation control system 2 can be moved under the driving of the transmission device.
  • the structures of the driving member and the transmission device are not limited here, and can be specifically selected according to the motion required by the ultrasonic stimulation control system 2 .
  • the driving member can be selected from a motor capable of outputting a rotary motion, or the like, or a cylinder capable of outputting a linear motion.
  • the transmission device can be optionally a pulley device or a sprocket device.
  • the ultrasonic stimulation control system 2 is fixed on the transmission belt of the pulley device; when the transmission device is a sprocket device, the ultrasonic stimulation control system 2 Fixed on the chain of the sprocket device.
  • the infrared detection shell 111 is arc-shaped, and the ultrasonic stimulation control system 2 can realize circumferential swing with the infrared detection shell 111 as the center and axial movement with the infrared detection shell 111 as the center.
  • the driving member includes a circumferential driving member and an axial driving member, the circumferential driving member is a motor, the transmission device is a reducer, and the ultrasonic stimulation control system 2 is fixed on the output end of the reducer.
  • the axial driving member is a motor, and the transmission device is a pulley device or a sprocket device, so that the output of the ultrasonic stimulation control system 2 moves linearly; or the axial driving member is a cylinder, and the ultrasonic stimulation control system 2 is directly fixed to the output end of the cylinder.
  • the mobile positioning system 3 only includes the above-mentioned moving track, and the position of the ultrasonic stimulation control system 2 is adjusted manually.
  • the ultrasonic stimulation control system 2 is disposed on the side of the infrared detection housing 111 that emits infrared light, and the infrared detection housing 111 emits infrared light on the side of the infrared detection housing The light-emitting side of 111.
  • the infrared imaging light source 112 avoids the setting of the ultrasonic stimulation control system 2 .
  • the ultrasonic stimulation control system 2 is disposed at the center of the light-emitting side.
  • the infrared imaging light source 112 can be disposed on the upper and lower edges of the light-emitting side.
  • the ultrasonic stimulation control system 2 includes an ultrasonic transducer 21 and a laser sight 22 .
  • the ultrasonic transducer 21 is used to convert electrical energy into sound energy, and the ultrasonic transducer 21 has a signal input port through which the electrical signal generated by the signal generator and the power amplifier can be transmitted to the ultrasonic transducer 21 .
  • the ultrasonic transducer 21 has a piezoelectric ceramic sheet, which can convert electrical signals into acoustic signals to excite ultrasonic waves and transmit them to human tissue.
  • the ultrasonic transducer 21 can be selected with different frequencies, different focusing effects, different output energies, different focal spot sizes and different focal lengths. For example, it can be selected as 200kHZ-4MHz low-intensity focusing Ultrasound transducer.
  • the ultrasonic transducer 21 can optionally be made of a magnetically compatible material.
  • the laser sight 22 is used to determine the position of the ultrasound focus and indicate the ultrasound focus, so that the camera of the infrared detection and navigation system 1 can identify the stimulation position corresponding to the ultrasound stimulation control system 2 .
  • the ultrasonic transducer 21 and the laser sight 22 are fixedly connected, and under the action of the mobile positioning system 3 , the ultrasonic transducer 21 and the laser sight 22 move synchronously.
  • the focal point of the laser sight 22 and the ultrasonic focal position of the ultrasonic transducer 21 are the same, so that the direction indicated by the laser sight 22 is the ultrasonic focal position of the ultrasonic transducer 21, which is convenient for the identification of the camera without converting the ultrasonic wave.
  • the ultrasound focus position of the transducer 21 is the same, so that the direction indicated by the laser sight 22 is the ultrasonic focal position of the ultrasonic transducer 21, which is convenient for the identification of the camera without converting the ultrasonic wave.
  • the number of the laser sights 22 is multiple, and the multiple laser sights 22 are evenly arranged in the circumferential direction of the center of the ultrasonic transducer 21 .
  • the number of the laser sights 22 is two, which are respectively disposed on opposite sides of the ultrasonic transducer 21 .

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Public Health (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biomedical Technology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Veterinary Medicine (AREA)
  • Physics & Mathematics (AREA)
  • Hematology (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)

Abstract

公开了一种穿戴式红外导航超声刺激系统,包括:红外探测导航系统(1),用于对神经血管显影并监测和记录神经血管信息;超声刺激控制系统(2),用于释放超声波刺激神经血管;移动定位系统(3),用于移动超声刺激控制系统(2);固定装置(4),用于将红外探测导航系统(1)和超声刺激装置(2)固定至人体的检测部位;以及控制反馈系统(5),其电性连接于红外探测装置(1)、超声刺激装置(2)及移动定位系统(3),用于接收红外探测导航系统(1)的监测信息并根据监测信息控制移动定位系统(4)及超声刺激控制系统(2)。该穿戴式红外导航超声刺激系统通过红外探测导航系统(1)可以检测到神经血管的位置信息,从而可以在无创的前提下实现对神经血管的准确定位。

Description

穿戴式红外导航超声刺激系统 技术领域
本申请涉及医疗技术领域,具体涉及一种穿戴式红外导航超声刺激系统。
背景技术
颈部组织中包含着如颈总动脉及迷走神经等重要的神经血管结构,尤其是颈部迷走神经,外周神经调控治疗神经系统疾病的重要靶点之一,大量的报导表明,通过电刺激等方式刺激迷走神经对多种严重脑部疾病有良好的治疗作用。
神经调控技术刺激颈部血管主神经治疗神经疾病己经引起了大众的关注,电刺激在迷走神经刺激治疗上得到了广泛的应用。颈部迷走神经电刺激是治疗神经系统疾病一种常见的神经调控方式。但是,植入式的迷走神经刺激方案还是有创的神经调控方式,需要手术植入电极,可能会引起感染等副作用。在此基础上,无创的神经刺激显得更加重要。
无创超声对血管、神经的精准刺激需要准确定位到目标靶区。然而,颈部皮肤较厚,神经血管的位置较深,肉眼无法直接观察到血管、神经等结构,无创定位是一个难题,尤其是定位后引导超声到达深部组织更是一个重大的难题。此外,颈部的神经血管功能非常重要,易引起心率、血压不稳导致生命危险,因此,对刺激效果及引起的不良反应进行监测是一个重要的部分。
技术问题
本申请实施例的目的之一在于:提供一种穿戴式红外导航超声刺激系统,旨在解决无创超声技术刺激血管、神经时,无法对血管、神经进行准确定位,而且安全性不高的技术问题。
技术解决方案
为解决上述技术问题,本申请实施例采用的技术方案是:
第一方面,提供了一种穿戴式红外导航超声刺激系统,包括:
红外探测导航系统,用于对神经血管显影,标记刺激部位后引导所述超声刺激系统通过移动定位系统到达目标部位,并监测和记录神经血管信息;
超声刺激控制系统,用于产生并释放超声波穿透皮肤后刺激神经血管;
移动定位系统,用于移动所述超声刺激控制系统,所述超声刺激控制系统连接于所述移动定位系统;
反馈系统,用于通过收集到的生物信息,如超声刺激产生的作用效果及超声刺激引起的生命体征的变化(心率、血氧、血压及刺激部位的组织温度变化等),通过中央处理器进行信号处理,及时将变化反馈到超声刺激控制系统中,调整治疗方案。并将数据实时在本系统的显示器中显示,提醒医护人员。
固定装置,用于将所述红外探测导航系统和所述超声刺激控制系统固定至人体的检测部位;以及控制反馈系统,电性连接于所述红外探测导航系统、所述超声刺激控制系统及所述移动定位系统,用于接收所述红外探测导航系统的监测信息并根据所述监测信息控制所述移动定位系统及所述超声刺激控制系统。
在一个实施例中,所述红外探测导航系统包括用于使神经血管显影的红外成像装置,所述红外成像装置包括红外探测外壳、设于所述红外探测外壳内且用于发出红外光的红外成像光源以及用于定位神经血管的摄像头。
在一个实施例中,所述红外探测外壳呈弧形,所述固定装置为长度可调节的连接带,所述连接带的两端分别连接于所述红外探测外壳的两端。
在一个实施例中,所述红外探测外壳与所述固定装置通过卡扣可拆卸连接。
在一个实施例中,所述红外探测导航系统还包括用于监测和记录血管信息的红外监测装置,所述红外监测装置包括红外监测光源以及监测器。
在一个实施例中,所述红外成像光源和所述红外监测光源为同一光源。
在一个实施例中,所述红外探测外壳上设有移动轨道,所述超声刺激控制系统滑动连接于所述移动轨道。
在一个实施例中,所述移动轨道包括第一轨道和滑动连接于所述第一轨道的第二轨道,所述超声刺激控制系统滑动连接于所述第一轨道。
在一个实施例中,所述第一轨道呈弧形,所述第二轨道呈直线形。
在一个实施例中,所述移动定位系统包括驱动件以及由所述驱动件驱动的传动装置,所述超声刺激控制系统固定于所述传动装置的动力输出端。
在一个实施例中,所述传动装置为带轮装置,所述超声刺激控制系统固定于所述带轮装置的传动带上;或者,所述传动装置为链轮装置,所述超声刺激装置固定于所述链轮装置的链条上。
在一个实施例中,所述超声刺激控制系统包括超声换能器以及与所述超声换能器固定连接的激光瞄准器。
在一个实施例中,所述激光瞄准器的焦点与所述超声换能器的超声焦点位置相同。
在一个实施例中,所述激光瞄准器的数量为多个,且多个所述激光瞄准器以所述超声换能器的中心周向均匀设置。
在一个实施例中,所述超声换能器具有用于将电信号转换为声信号的压电片。
有益效果
本申请实施例提供的穿戴式红外导航超声刺激系统的有益效果在于:与现有技术相比,本申请穿戴式红外导航超声刺激系统包括红外探测导航系统、超声刺激控制系统、移动定位系统、固定装置及控制反馈系统,红外探测导航系统用于对神经血管成像并检测和记录血管信息,红外探测导航系统检测到的神经血管的位置信息传递至控制反馈系统,控制反馈系统控制移动定位系统移动,从而将超声刺激控制系统移动至正对所需治疗的神经血管位置,可以在无创的前提下实现对神经血管的准确定位。而且,红外探测导航系统还具有监测心率、血压、血氧、体温等血管信息的功能,并能够将上述的血管信息反馈至控制反馈系统,一旦心率、血压、血氧出现异常时,控制反馈系统可以停止超声刺激控制系统的工作,提高该装置使用的安全性。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例或示范性技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。
图1是本申请实施例提供的穿戴式红外导航超声刺激系统的立体结构图;
图2是本申请实施例提供的穿戴式红外导航超声刺激系统的主视图;
图3是本申请实施例提供的控制反馈系统的原理图。
其中,图中各附图标记:
1-红外探测导航系统;11-红外成像装置;111-红外探测外壳;112-红外成像光源;12-红外监测装置;2-超声刺激控制系统;21-超声换能器;22-激光瞄准器;3-移动定位系统;4-固定装置。
本发明的实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本申请。
需说明的是,当部件被称为“固定于”或“设置于”另一个部件,它可以直接在另一个部件上或者间接在该另一个部件上。当一个部件被称为是“连接于”另一个部件,它可以是直接或者间接连接至该另一个部件上。术语“上”、“下”、“左”、“右”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制,对于本领域的普通技术人员而言,可以根据具体情况理解上述术语的具体含义。术语“第一”、“第二”仅用于便于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明技术特征的数量。“多个”的含义是两个或两个以上,除非另有明确具体的限定。
为了说明本申请所提供的技术方案,以下结合具体附图及实施例进行详细说明。
本申请实施例提供的可穿戴超声装置可用于颈部、手腕、脚腕等部位的治疗中。
在本申请的其中一个实施例中,请参阅图1至图3,穿戴式红外导航超声刺激系统,包括红外探测导航系统1、超声刺激控制系统2、移动定位系统3、固定装置4以及控制反馈系统5。红外探测导航系统1用于对神经血管成像并监测和记录血管信息,更具体地,红外探测导航系统1可以发出红外线到达皮肤深处,从而使人体组织内部的神经血管显影,还可以监测和记录血管信息,其中血管信息包括脉搏、心率、血压、血氧等信息。超声刺激控制系统2用于产生超声波刺激人体组织内的神经血管,通过无创的方式对神经系统疾病进行有效治疗。固定装置4用于将红外探测导航系统1、超声刺激控制系统2固定至人体的待治疗部位,如颈部、手腕、脚腕等部位。更具体地说,通过固定装置4可将整个超声刺激装置固定至人体的患处,使该装置可穿戴,便携性更高,使用场景更广泛。红外探测导航系统1、超声刺激控制系统2及移动定位系统3均与控制反馈系统5电连接,控制反馈系统5用于接收红外探测导航系统1的监测信息并根据监测信息控制移动定位系统3及超声刺激控制系统2。更具体地,请参阅图3,在该穿戴式红外导航超声刺激系统工作时,红外探测导航系统1通过红外光的照射,使皮肤内部的神经血管显影,得到神经血管的位置信息,控制反馈系统获取神经血管的位置信息,通过该位置信息控制移动固定系统 3,移动固定系统3带动超声刺激控制系统2移动至所需治疗的神经血管处,释放超声波对患处进行刺激治疗。同时,在超声刺激治疗的过程中,红外探测导航系统1还监测和记录血管信息,一旦心率、血压、血氧出现异常时,控制反馈系统5可以停止超声刺激控制系统 2的工作,提高该装置使用的安全性。控制反馈系统5将收集到的生物信息进行信号处理,及时将变化反馈至超声刺激控制系统2中,调整治疗方案,而且可以将数据实时在显示器中显示,以提醒医护人员。
上述的穿戴式红外导航超声刺激系统,包括红外探测导航系统1、超声刺激控制系统 2、移动定位系统 3、固定装置4及控制反馈系统5,红外探测导航系统1用于对神经血管成像并检测和记录血管信息,红外探测导航系统1检测到的神经血管的位置信息传递至控制反馈系统5,控制反馈系统5控制移动装置3移动,从而将超声刺激控制系统2移动至正对所需治疗的神经血管位置,可以在无创的前提下实现对神经血管的准确定位。而且,红外探测导航系统1还具有监测心率、血压、血氧等血管信息的功能,并能够将上述的血管信息反馈至控制反馈系统,一旦心率、血压、血氧出现异常时,控制反馈系统可以停止超声刺激控制系统2的工作,提高该装置使用的安全性。
在本申请的其中一个实施例中,请参阅图1及图2,红外探测导航系统1包括红外成像装置11,红外成像装置11用于使神经血管显影,便于对患处的神经血管进行定位,从而可以将超声刺激控制系统2对应移动至患处,并对患处进行治疗。红外成像装置11包括红外探测外壳111、红外成像光源112和摄像头。红外成像光源112和摄像头均安装在红外探测外壳111上,红外成像光源112发出红外光照射在人体组织上,使人体组织内部的神经血管显影,摄像头可以对显影处的神经血管进行拍照,使神经血管的位置信息被记录和保存,控制反馈系统可以获取摄像头拍摄的图片,并对图片中神经血管的位置信息进行提取和计算,最终得到神经血管的位置坐标。在得到神经血管的位置坐标后,控制反馈系统将超声刺激控制系统2的位置和待治疗的神经血管位置进行对比,计算得出超声刺激控制系统2需要移动的路径和距离,控制移动定位系统3带动超声刺激装置2根据所需移动的路径和距离移动至患处。
其中,红外探测外壳111可选用树脂材料、塑料、聚醚醚酮(简称为peek)等组织相容性较好的材料,也可为金属等材料,红外探测外壳111的材料此处不作限定。红外成像光源112可选为不同大小、不同类型的光源,如点光源、面光源等。可选地,红外成像光源112为LED。为了保证成像效果,可选为使用850nm至940nm频段的红外光源。红外成像光源112设于红外探测外壳111的内部,或者嵌设于红外探测外壳111中。红外探测外壳111与红外成像光源112的正对处呈透明或半透明状,或者开窗设置,使红外成像光源112发出的光能够穿过红外探测外壳111。摄像头可选为微型摄像头,摄像头的数量及分布此处不作限定,只要其拍摄视野能够满足设计需求即可。可选地,摄像头的拍摄视野与红外成像光源112的显影区域重合,使被显影的区域均能够被拍摄记录。
在本申请的其中一个实施例中,红外探测导航系统1还包括红外监测装置12,红外监测装置12用于监测和记录血管信息,控制反馈系统可以从红外监测装置12获取血管信息,在对神经血管超声刺激的过程中,如果发现监测到的血管信息异常,则立即停止超声刺激控制系统2的工作,保证该超声刺激装置使用的安全性。红外监测装置12包括红外监测光源以及监测器,红外监测光源可为LED。为了保证成像效果,可选为使用850nm至940nm频段的红外光源。红外监测光源设于红外探测外壳111的内部,或者嵌设于红外探测外壳111中。红外探测外壳111与红外监测光源的正对处呈透明或半透明状,或者开窗设置,使红外监测光源发出的光能够穿过红外探测外壳111。在其中一个实施例中,红外成像光源112和红外监测光源为同一光源,即红外成像装置11和红外监测装置12共用同一光源,可以减小该超声刺激装置中的结构部件,降低生产成本。其中,监测器用于监测脉搏、心率、血压、血氧等,监测器的具体型号此处不作限定,目前市场上常用的监测器(如智能手环中的监测器)均适用于本实施例。
可选地,红外探测外壳111供红外成像光源112出光的一面用于面对人体组织设置。红外探测外壳111与固定装置4连接,便于将该超声刺激装置的红外探测外壳111贴紧于人体皮肤上。更进一步地,固定装置4的两端分别与红外探测外壳111可拆卸连接,使得固定装置4可以从红外探测外壳111的两端拆下,可以使红外探测外壳111适配不同的固定装置4。固定装置4与红外探测外壳111通过卡扣或者带扣等可拆卸连接,卡扣、带扣的具体结构此处不作赘述。
可选地,固定结构为长度可以调节的连接带或者固定托。连接带可选为绑带、弹性带、固定托等结构。固定结构为绑带时,绑带包括两根绑带单元,两根绑带单元通过调节扣连接,从而使得绑带的长度可调节,可以将红外探测外壳111发出红外光的一侧紧贴人体皮肤设置。固定结构为弹性带时,弹性带的长度可伸长或者缩短,根据颈部、脚腕、手腕等部位的直径可以不同程度的撑开弹性带,也可使红外探测外壳111发出红外光的一侧紧贴人体皮肤设置。固定结构为固定托时,可配合颈部使用,对颈部的前侧或者后侧支撑,使患者更加舒适。
可选地,红外探测外壳111发出红外光的一侧还设有海绵、乳胶等材料制成的软质层,使得红外探测外壳111紧贴人体皮肤时,人体皮肤更加舒适。
可选地,红外探测外壳111呈弧形,使其更容易与颈部、脚腕、手腕等弧形的人体皮肤表面贴合,相应地,红外成像光源112的红外光及超声刺激控制系统2的超声波均从红外探测外壳111的内弧面发出至人体组织。
在本申请的其中一个实施例中,请参阅图1及图2,红外探测外壳111上设有移动轨道,超声刺激控制系统2滑动连接于移动轨道,使超声刺激控制系统2在移动定位系统3的带动下平稳地移动至患处。
可选地,移动轨道包括第一轨道和第二轨道,第二轨道滑动连接于第一轨道上,第一轨道的长度延伸方向为第一方向,超声刺激控制系统2滑动连接于第二轨道,第二轨道的长度延伸方向为第二方向,第一方向和第二方向呈夹角设置,使得超声刺激控制系统2能够移动至红外成像光源112显影成像的任一位置。其中,第一方向和第二方向可垂直设置。
更具体地,当红外探测外壳111呈弧形时,第一轨道为弧形轨道,第一方向为弧形轨道的周向,弧形轨道的中心与红外探测外壳111的中心同心设置,弧形轨道的数量可选为一个、两个或者多个。例如,弧形轨道的数量为两个时,分别设于红外探测外壳111的轴向两侧。第二轨道为轴向轨道,第一方向为弧形轨道的轴向,轴向轨道的长度方向与红外探测外壳111的轴向方向平行,轴向轨道可部分配合于弧形轨道中,使轴向轨道本身可在弧形轨道上滑动,超声刺激装置则轴向滑动设于轴向轨道中。这样,超声刺激装置既可以沿红外探测外壳111的周向滑动,又可以沿红外探测外壳111的轴向滑动,从而可以使超声刺激装置移动至红外成像光源112显影成像的任一位置。
在本申请的其中一个实施例中,请参阅图1及图2,移动定位系统3包括驱动件及传动装置,还包括上述的移动轨道,超声刺激控制系统2固定于传动装置的动力输出端,使得超声刺激控制系统2能够在传动装置的带动下移动。驱动件和传动装置的结构此处不作限定,可以根据超声刺激控制系统2所需的运动具体选择。
例如,驱动件可选为能够输出旋转运动的电机等,也可为能够输出直线运动的气缸等。传动装置可选为带轮装置或者链轮装置,当传动装置为带轮装置时,超声刺激控制系统2固定于带轮装置的传动带上;当传动装置为链轮装置时,超声刺激控制系统2固定于链轮装置的链条上。
又例如,红外探测外壳111呈弧形,超声刺激控制系统2能够实现以红外探测外壳111为中心的周向摆动以及以红外探测外壳111为中心的轴向移动。驱动件包括周向驱动件和轴向驱动件,周向驱动件为电机,传动装置为减速器,超声刺激控制系统2固定于减速器的输出端。轴向驱动件为电机,传动装置为带轮装置或者链轮装置,使超声刺激控制系统2输出直线运动;或者轴向驱动件为气缸,超声刺激控制系统2直接固定于气缸的输出端。
在其他实施例中,移动定位系统3仅包括上述的移动轨道,通过手动的方式调节超声刺激控制系统2的位置。
在本申请的其中一个实施例中,请参阅图1及图2,超声刺激控制系统2设于红外探测外壳111发出红外光的一侧,红外探测外壳111发出红外光的一侧为红外探测外壳111的发光侧。如此,红外成像光源112避让超声刺激控制系统2设置。具体地,超声刺激控制系统2设于上述发光侧的中心处,为了避让超声刺激控制系统2,红外成像光源112可设于发光侧的上下边缘。
在本申请的其中一个实施例中,请参阅图1及图2,超声刺激控制系统2包括超声换能器21和激光瞄准器22。超声换能器21用于将电能转换为声能,超声换能器21上具有信号输入端口,通过该信号输入端口可以将信号发生器与功率放大器产生的电信号传输到超声换能器21上。超声换能器21具有压电陶瓷片,可以将电信号转换为声信号,激发超声波并传递至人体组织上。超声换能器21根据研究与治疗需要,可以选择不同频率、不同聚焦效果、不同输出能量、不同焦斑大小和不同焦距的超声换能器21,例如,可选为200kHZ-4MHz的低强度聚焦超声换能器。超声换能器21可选为磁兼容的材料制成。激光瞄准器22用于确定超声焦点的位置,并指示超声焦点,便于红外探测导航系统1的摄像头识别超声刺激控制系统2对应的刺激位置。其中,超声换能器21和激光瞄准器22固定连接,在移动定位系统3的作用下,超声换能器21和激光瞄准器22同步运动。
可选地,激光瞄准器22的焦点和超声换能器21的超声焦点位置相同,使得激光瞄准器22指示的方向即为超声换能器21的超声焦点位置,便于摄像头的识别,无需换算超声换能器21的超声焦点位置。
可选地,激光瞄准器22的数量为多个,且多个激光瞄准器22以超声换能器21的中心周向均匀设置。例如,激光瞄准器22的数量为两个,分别设于超声换能器21的相对两侧。
以上仅为本申请的可选实施例而已,并不用于限制本申请。对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的权利要求范围之内。

Claims (15)

  1. 穿戴式红外导航超声刺激系统,其特征在于,包括:
    红外探测导航系统,用于对神经血管显影,标记刺激部位后引导所述超声刺激系统通过移动定位系统到达目标部位,并监测和记录神经血管信息;
    超声刺激控制系统,用于产生并释放超声波穿透皮肤后刺激神经血管;
    移动定位系统,用于移动所述超声刺激控制系统,所述超声刺激控制系统连接于所述移动定位系统;
    固定装置,用于将所述红外探测导航系统和所述超声刺激控制系统固定至人体的检测部位;以及
    控制反馈系统,电性连接于所述红外探测导航系统、所述超声刺激控制系统及所述移动定位系统,用于接收所述红外探测导航系统的监测信息并根据所述监测信息控制所述移动定位系统及所述超声刺激控制系统。
  2. 根据权利要求1所述的穿戴式红外导航超声刺激系统,其特征在于,所述红外探测导航系统包括用于使神经血管显影的红外成像装置,所述红外成像装置包括红外探测外壳、设于所述红外探测外壳内且用于发出红外光的红外成像光源以及用于定位神经血管的摄像头。
  3. 根据权利要求2所述的穿戴式红外导航超声刺激系统,其特征在于,所述红外探测外壳呈弧形,所述固定装置为长度可调节的连接带,所述连接带的两端分别连接于所述红外探测外壳的两端。
  4. 根据权利要求3所述的穿戴式红外导航超声刺激系统,其特征在于,所述红外探测外壳与所述固定装置通过卡扣可拆卸连接。
  5. 根据权利要求2所述的穿戴式红外导航超声刺激系统,其特征在于,所述红外探测导航系统还包括用于监测和记录血管信息的红外监测装置,所述红外监测装置包括红外监测光源以及监测器。
  6. 根据权利要求5所述的穿戴式红外导航超声刺激系统,其特征在于,所述红外成像光源和所述红外监测光源为同一光源。
  7. 根据权利要求2所述的穿戴式红外导航超声刺激系统,其特征在于,所述红外探测外壳上设有移动轨道,所述超声刺激控制系统滑动连接于所述移动轨道。
  8. 根据权利要求7所述的穿戴式红外导航超声刺激系统,其特征在于,所述移动轨道包括第一轨道和滑动连接于所述第一轨道的第二轨道,所述超声刺激控制系统滑动连接于所述第一轨道。
  9. 根据权利要求8所述的穿戴式红外导航超声刺激系统,其特征在于,所述第一轨道呈弧形,所述第二轨道呈直线形。
  10. 根据权利要求1所述的穿戴式红外导航超声刺激系统,其特征在于,所述移动定位系统包括驱动件以及由所述驱动件驱动的传动装置,所述超声刺激控制系统固定于所述传动装置的动力输出端。
  11. 根据权利要求10所述的穿戴式红外导航超声刺激系统,其特征在于,所述传动装置为带轮装置,所述超声刺激装置固定于所述带轮装置的传动带上;或者,所述传动装置为链轮装置,所述超声刺激控制系统固定于所述链轮装置的链条上。
  12. 根据权利要求1所述的穿戴式红外导航超声刺激系统,其特征在于,所述超声刺激控制系统包括超声换能器以及与所述超声换能器固定连接的激光瞄准器。
  13. 根据权利要求12所述的穿戴式红外导航超声刺激系统,其特征在于,所述激光瞄准器的焦点与所述超声换能器的超声焦点位置相同。
  14. 根据权利要求12所述的穿戴式红外导航超声刺激系统,其特征在于,所述激光瞄准器的数量为多个,且多个所述激光瞄准器以所述超声换能器的中心周向均匀设置。
  15. 根据权利要求12所述的穿戴式红外导航超声刺激系统,其特征在于,所述超声换能器具有用于将电信号转换为声信号的压电片。
PCT/CN2020/121490 2020-10-16 2020-10-16 穿戴式红外导航超声刺激系统 WO2022077439A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/121490 WO2022077439A1 (zh) 2020-10-16 2020-10-16 穿戴式红外导航超声刺激系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/121490 WO2022077439A1 (zh) 2020-10-16 2020-10-16 穿戴式红外导航超声刺激系统

Publications (1)

Publication Number Publication Date
WO2022077439A1 true WO2022077439A1 (zh) 2022-04-21

Family

ID=81207590

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/121490 WO2022077439A1 (zh) 2020-10-16 2020-10-16 穿戴式红外导航超声刺激系统

Country Status (1)

Country Link
WO (1) WO2022077439A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117426807A (zh) * 2023-12-18 2024-01-23 中国医学科学院北京协和医院 一种用于腹腔镜手术术中使用的血管红外定位系统

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7510536B2 (en) * 1999-09-17 2009-03-31 University Of Washington Ultrasound guided high intensity focused ultrasound treatment of nerves
US20110301658A1 (en) * 2010-06-03 2011-12-08 Yoo Paul B Spatially selective vagus nerve stimulation
US8301241B2 (en) * 2009-07-15 2012-10-30 Cardiac Pacemakers, Inc. Remote pace detection in an implantable medical device
CN102871645A (zh) * 2011-07-11 2013-01-16 浙江大学 近红外成像超声血管治疗仪
CN103584836A (zh) * 2013-10-25 2014-02-19 浙江大学 一种实时静脉定位显示装置和方法
CN109044307A (zh) * 2018-09-17 2018-12-21 西安交通大学 一种基于超声神经刺激的无创血压调控系统
CN110559564A (zh) * 2019-09-02 2019-12-13 深圳先进技术研究院 一种超声刺激方法及装置
CN110811690A (zh) * 2019-11-19 2020-02-21 深圳先进技术研究院 一种血脑屏障通透性调控装置、方法及存储介质
CN111659034A (zh) * 2020-06-17 2020-09-15 深圳先进技术研究院 穿戴式超声刺激正中神经装置
CN111760208A (zh) * 2020-07-21 2020-10-13 上海交通大学 基于机械臂的人体经颅超声刺激自动定位系统和方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7510536B2 (en) * 1999-09-17 2009-03-31 University Of Washington Ultrasound guided high intensity focused ultrasound treatment of nerves
US8301241B2 (en) * 2009-07-15 2012-10-30 Cardiac Pacemakers, Inc. Remote pace detection in an implantable medical device
US20110301658A1 (en) * 2010-06-03 2011-12-08 Yoo Paul B Spatially selective vagus nerve stimulation
CN102871645A (zh) * 2011-07-11 2013-01-16 浙江大学 近红外成像超声血管治疗仪
CN103584836A (zh) * 2013-10-25 2014-02-19 浙江大学 一种实时静脉定位显示装置和方法
CN109044307A (zh) * 2018-09-17 2018-12-21 西安交通大学 一种基于超声神经刺激的无创血压调控系统
CN110559564A (zh) * 2019-09-02 2019-12-13 深圳先进技术研究院 一种超声刺激方法及装置
CN110811690A (zh) * 2019-11-19 2020-02-21 深圳先进技术研究院 一种血脑屏障通透性调控装置、方法及存储介质
CN111659034A (zh) * 2020-06-17 2020-09-15 深圳先进技术研究院 穿戴式超声刺激正中神经装置
CN111760208A (zh) * 2020-07-21 2020-10-13 上海交通大学 基于机械臂的人体经颅超声刺激自动定位系统和方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117426807A (zh) * 2023-12-18 2024-01-23 中国医学科学院北京协和医院 一种用于腹腔镜手术术中使用的血管红外定位系统
CN117426807B (zh) * 2023-12-18 2024-03-12 中国医学科学院北京协和医院 一种用于腹腔镜手术术中使用的血管红外定位系统

Similar Documents

Publication Publication Date Title
US8613714B2 (en) Non-invasive transcranial ultrasound apparatus
RU2428229C2 (ru) Ультразвуковое терапевтическое устройство
US8603014B2 (en) Hands-free operator-independent transcranial ultrasound apparatus and methods
KR101143645B1 (ko) 경두개 저강도 초음파 전달장치 및 이를 이용한 비침습적 뇌기능 조절방법
US20040243207A1 (en) Medical implant systems
CN110520054B (zh) 医疗用头部装置以及包括医疗用头部装置的经颅超声波传输装置
WO2011082407A2 (en) Portable ultrasound system
WO2017113179A1 (zh) 头戴式超声刺激设备及系统
KR101572898B1 (ko) 초음파 모듈 및 이를 구비하는 헬멧형 저강도 초음파 집속 자극장치
WO2020051071A1 (en) Neuromodulation energy application techniques
CN110662580B (zh) 光治疗装置
WO2022077439A1 (zh) 穿戴式红外导航超声刺激系统
CN112354088A (zh) 穿戴式红外导航超声刺激系统
WO2024013267A1 (en) Wearable and automated ultrasound therapy devices and methods
JP2002360543A (ja) 呼吸位相における同期点決定方法、及びそのために用いる呼吸位相モニタ装置
KR20200008651A (ko) 음향렌즈를 구비한 초음파 의료장치
BR8702633A (pt) Aparelho portatil para eletroterapia de fraturas osseas
CN114225243A (zh) 一种用于血糖调节的神经调控系统
Belavskaya et al. Some actual problems of electronic instrument in the field of reflexotherapy
US20100094177A1 (en) Systems and methods for synchronizing ultrasound treatment of thryoid and parathyroid with movements of patients
JP2024517019A (ja) 患者固有の神経調節調整構造
JP2011062373A (ja) 超音波発振ユニット及び超音波発振システム
WO2023108460A1 (zh) 一种用于血糖调节的神经调控系统
US20190223837A1 (en) Disposable probe
CN217908640U (zh) 一种用于血糖调节的神经调控系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20957217

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20957217

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20957217

Country of ref document: EP

Kind code of ref document: A1