WO2022077237A1 - 无人机测绘方法、装置及无人机 - Google Patents

无人机测绘方法、装置及无人机 Download PDF

Info

Publication number
WO2022077237A1
WO2022077237A1 PCT/CN2020/120704 CN2020120704W WO2022077237A1 WO 2022077237 A1 WO2022077237 A1 WO 2022077237A1 CN 2020120704 W CN2020120704 W CN 2020120704W WO 2022077237 A1 WO2022077237 A1 WO 2022077237A1
Authority
WO
WIPO (PCT)
Prior art keywords
safety
aperture
surveying
mapping
shutter speed
Prior art date
Application number
PCT/CN2020/120704
Other languages
English (en)
French (fr)
Inventor
胡涛
夏斌强
郑子翔
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to PCT/CN2020/120704 priority Critical patent/WO2022077237A1/zh
Publication of WO2022077237A1 publication Critical patent/WO2022077237A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/70Circuitry for compensating brightness variation in the scene

Definitions

  • the present application relates to the technical field of surveying and mapping, and in particular, to a method and device for drone surveying and mapping, a drone and a computer-readable storage medium.
  • UAVs are widely used in the field of aerial photography and mapping.
  • By taking pictures of the ground in the air by drones multiple images required for surveying and mapping can be obtained, so that these images can be used to realize applications such as map making or 3D reconstruction.
  • the user Before performing surveying and mapping, the user needs to calculate in advance the exposure parameters used by the camera during surveying and mapping, and the calculation process will consume the user's time and reduce the efficiency of the surveying and mapping operation.
  • the embodiments of the present application provide a UAV surveying and mapping method, device, UAV and computer-readable storage medium, one of the objectives is to solve the problem of low efficiency of surveying and mapping operations that require users to calculate exposure parameters before surveying and mapping.
  • a first aspect of the embodiments of the present application provides a method for surveying and mapping of unmanned aerial vehicles, including:
  • the exposure parameters used during shooting are controlled, and the target image required for surveying and mapping is obtained by shooting.
  • a second aspect of the embodiments of the present application provides an unmanned aerial vehicle, including:
  • a flight control system for controlling the flight of the UAV
  • the camera system is used to obtain the operation requirements of the surveying and mapping operation; according to the operation requirements and the ambient light brightness, the safety exposure parameters are determined; according to the safety exposure parameters, the exposure parameters used for shooting are controlled, and the shooting requirements are obtained for the surveying and mapping. target image.
  • a third aspect of the embodiments of the present application provides an unmanned aerial vehicle surveying and mapping device, comprising: a processor and a memory storing a computer program, wherein the processor implements the following steps when executing the computer program:
  • the exposure parameters used during shooting are controlled, and the target image required for surveying and mapping is obtained by shooting.
  • a fourth aspect of the embodiments of the present application provides a computer-readable storage medium, wherein the computer-readable storage medium stores a computer program, and when the computer program is executed by a processor, any one of the above-mentioned aspects provided in the first aspect is implemented.
  • a UAV Mapping Method A UAV Mapping Method.
  • the UAV surveying and mapping method provided by the embodiment of the present application can determine the safe exposure parameter according to the operation requirements of the surveying and mapping operation and the brightness of the environment, and can control the exposure parameter used in the surveying and mapping shooting according to the safe exposure parameter, so that it can be used in different
  • the target image with correct exposure can be obtained by shooting under high ambient light brightness, and it can also ensure that the target image obtained by shooting meets the operational requirements of surveying and mapping operations, and can adapt to scenes with large changes in ambient light.
  • the method provided by the embodiments of the present application can automatically determine exposure parameters that are suitable and meet the requirements of surveying and mapping, without the need for manual calculation and setting by the user, greatly improving the efficiency of surveying and mapping operations, and avoiding the problem that manual calculation is prone to errors.
  • FIG. 1 is a scene diagram of a drone surveying and mapping provided by an embodiment of the present application.
  • FIG. 2 is a flow chart of the UAV surveying and mapping method provided by the embodiment of the present application.
  • FIG. 3 is a schematic diagram of the relationship between the hyperfocal length and the flying height of the lens provided by the embodiment of the present application.
  • FIG. 4 is another flowchart of the UAV surveying and mapping method provided by the embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of an unmanned aerial vehicle provided by an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of an unmanned aerial vehicle surveying and mapping device provided by an embodiment of the present application.
  • FIG. 1 is a scene diagram of a drone surveying and mapping provided by an embodiment of the present application.
  • the drone can fly according to the user's control or according to the preset flight trajectory, and take pictures of the surveying and mapping area during the flight, so as to obtain multiple images required for the surveying and mapping.
  • the image obtained by shooting and required for surveying and mapping may be referred to as a target image.
  • a map corresponding to the surveying and mapping area can be generated by using these target images according to requirements, and a three-dimensional reconstruction of the surveying and mapping area can also be performed by using the target image.
  • the drone can be equipped with a camera system, and the camera system can be configured with an automatic exposure algorithm.
  • the automatic exposure algorithm is an algorithm that can automatically adjust the exposure parameters used for shooting according to the measured ambient light brightness.
  • the ambient light brightness may be determined through photometry, and the exposure parameters may at least include one or more of aperture, shutter speed, and sensitivity ISO.
  • the camera can take an image with proper exposure.
  • the surveying and mapping put forward higher requirements for the target image obtained by shooting.
  • the target image may be used to make a map or perform three-dimensional reconstruction, etc.
  • each target image needs to have good consistency in image quality.
  • the image quality is related to the exposure parameters used for shooting. If the automatic exposure algorithm is fully opened during the surveying and mapping operation, the exposure parameters used for shooting different target images may be quite different. The generals are uneven, and it is difficult to meet the consistency of surveying and mapping requirements.
  • the image quality may include sharpness, brightness, motion blur, depth of field, and the like.
  • users can set the camera to S or M when using the drone for surveying and mapping, to limit the adjustable parameters of the automatic exposure algorithm.
  • the adjustable parameters of the automatic exposure algorithm For example, in the S file, the user can specify the shutter speed, and the automatic exposure algorithm can only adjust the aperture and ISO.
  • the automatic exposure algorithm can only adjust the ISO.
  • the user needs to specify one or more exposure parameters, that is, the user needs to calculate the specific setting value of the exposure parameter to be specified in advance, and the calculation process will consume a lot of time for the user. , and is prone to errors.
  • the automatic exposure algorithm is limited, so the camera has poor adaptability to ambient light. When the ambient light brightness changes greatly, the captured target image may not be obtained. Appropriate exposure, there is a problem of overexposure or underexposure.
  • specifying the exposure parameters takes the user's time and reduces the camera's ability to adapt to the scene in exposure. If the exposure parameters are not specified, the image quality of the captured target image may not be uniform, which does not meet the needs of surveying and mapping.
  • FIG. 2 is a flow chart of the UAV surveying and mapping method provided by the embodiment of the present application, and the method may include the following steps:
  • the job requirements may include Ground Sample Distance (GSD).
  • GSD Ground Sample Distance
  • GSD can be used to characterize the actual distance corresponding to a pixel in the captured target image. Therefore, the smaller the GSD, the higher the accuracy of the generated map.
  • the GSD can be determined based on the scale of the map to be made and DPI (Dot per inch).
  • the GSD can be set by the user according to the surveying and mapping requirements.
  • the GSD can also adopt a default value preset in the camera system.
  • motion blur parameters may also be included.
  • the motion blur parameter can be used to represent the number of pixels that the user allows for motion blur in the captured target image.
  • the motion blur parameter can be 1, that is, the user requires the motion blur in the target image to be less than or equal to 1 pixel size, such as motion
  • the blur parameter can be 2, that is, the user requires the motion blur in the target image to be less than or equal to 2 pixels in size.
  • the drone can be connected to the control terminal.
  • the control terminal may include a mobile terminal such as a mobile phone, a tablet, a smart watch, etc., or a remote controller for controlling the drone, or video glasses of the drone, or the like.
  • the control terminal may be a combination of a remote controller and a mobile terminal.
  • the user can input the job requirement of the surveying and mapping operation through the control terminal, and after the control terminal obtains the job requirement input by the user, it can send the job requirement to the UAV, that is, the UAV can obtain the operation requirement from the control terminal.
  • the job requirements of the surveying and mapping job can be input the job requirement of the surveying and mapping operation through the control terminal.
  • S240 Determine safe exposure parameters according to the operation requirements and ambient light brightness.
  • surveying and mapping have higher requirements on the image quality of the captured target images, including higher requirements on the clarity of the images.
  • the sharpness of an image is related to the focal length of the camera when the image was taken.
  • the camera can be allowed to focus through an auto-focus algorithm. Focusing through the autofocus algorithm, although a clear target image can be captured, because different target images may use different focal lengths when shooting, these target images have different fields of view, depth of field, etc. differences, the consistency between target images is poor, which is unacceptable for some high-standard surveying and mapping operations.
  • the physical focal length of the camera lens can be kept unchanged during mapping and shooting, that is, the autofocus algorithm is not allowed to adjust the focus, and at the same time, the hyperfocal length can be adjusted by controlling the aperture, so that the ground objects are all in the lens's focal length. beyond the hyperfocal distance, so that ground objects can be clearly imaged in the target image.
  • the hyperfocal distance is the distance from the front boundary of the depth of field (the closest clear point to the lens) to the lens when the lens is focused at infinity, which can be calculated by the following formula:
  • hf is the hyperfocal length
  • f is the physical focal length of the lens
  • is the diameter of the allowable circle of confusion
  • F is the aperture coefficient
  • GSD can be the job requirement input by the user, which can be calculated by the following formula:
  • H is the flying height
  • Px is the pixel size of the camera sensor
  • f is the physical focal length of the lens.
  • the flying height of the UAV can be determined according to the GSD.
  • the determined flight height in one embodiment, can be sent by the camera system of the UAV to the flight control system, so that the flight control system can control the UAV at the flight height when the UAV performs the surveying and mapping operation flight.
  • the safety aperture can be calculated by combining the calculation formula of the hyperfocal length and the flying height.
  • the safety aperture is a type of safety exposure parameter, which can be used to limit the aperture used for shooting.
  • the size of the aperture is related to the hyperfocal length of the lens. Specifically, the larger the aperture used for shooting, the farther (larger) the hyperfocal length of the lens is. Therefore, when the aperture is greater than a certain threshold, it may lead to Ground objects are within the hyperfocal distance of the lens. Therefore, a safety aperture can be set, and the aperture used for shooting can be limited according to the safety aperture.
  • the automatic exposure algorithm of the camera can be limited according to the safety aperture, so that the aperture determined by the automatic exposure algorithm according to the metering result is smaller than or equal to It is equal to the safety aperture, so that the image of the ground object can be avoided due to the large aperture, so that the hyperfocal distance of the lens can always be kept less than or equal to the flying height of the drone during the shooting process, and a clear target image can be captured.
  • the calculated aperture factor F is the safety aperture.
  • the safety aperture may be a type of safety exposure parameter, and in one embodiment, the safety exposure parameter may further include safety sensitivity and safety shutter speed.
  • the safety sensitivity can be set according to the required image quality, and the automatic exposure algorithm of the camera can be restricted according to the safety sensitivity. , so that the sensitivity determined by the automatic exposure algorithm based on the metering result is less than or equal to the safety sensitivity, so as to avoid the image quality that does not meet the surveying and mapping requirements due to excessive sensitivity.
  • the shutter speed it and the flying speed of the drone jointly affect the sharpness of the captured target image. Specifically, when the flying speed of the drone is determined, the larger the shutter speed used for shooting, the clearer the target image obtained by shooting. Correspondingly, if the shutter speed used for shooting is too small, the obtained target image will be shot.
  • the motion blur will not meet the motion blur parameters set by the user and will not meet the needs of surveying and mapping.
  • the motion blur parameter may be used to represent the user's motion blur requirement for the target image, which has been described in detail above, and will not be repeated here.
  • a safe shutter speed can be set, that is, the shutter speed used for shooting can be limited according to the safety shutter speed, so that the shutter speed used for shooting can be limited.
  • the speed is greater than or equal to the safe shutter speed.
  • the flight speed of the drone can be calculated according to the operation duration set by the user, and then the safe shutter speed can be determined according to the flight speed of the drone and the motion blur parameter set by the user. Specifically, you can refer to the following formula:
  • t is the maximum exposure time
  • Pn is the motion blur parameter
  • v is the flight speed of the drone.
  • the maximum exposure time can be calculated.
  • the larger (faster) shutter speed is, the shorter the corresponding exposure time is, and the smaller (slower) shutter speed is, the longer the corresponding exposure time is. Therefore, the maximum exposure time calculated by the above formula corresponds to the minimum shutter speed, that is, the safe shutter speed.
  • the shutter speed not only affects the clarity of the captured target image together with the flying speed of the drone, but also affects the exposure of the target image together with exposure parameters such as aperture and sensitivity. . Therefore, when determining the safety shutter speed, in one embodiment, the safety shutter speed can also be calculated according to the safety aperture, the safety sensitivity, and the ambient light brightness.
  • safety shutter speed based on the safety aperture, safety sensitivity and ambient light brightness, in one example, it can be calculated by the following formula:
  • AV aperture value
  • TV time value
  • SV speed value
  • BV luminance value
  • AV safe log 2 F safe 2
  • SV safe log 2 N ⁇ ISO safe
  • N a constant
  • t safe is a safe shutter speed
  • F safe is a safety aperture
  • ISO safe is a safe light sensitivity.
  • the safety aperture and the safety sensitivity can be determined through the foregoing description, and the ambient light brightness can be obtained by performing brightness analysis (ie, light metering) on the image collected by the camera.
  • the above formula is related to the APEX exposure equation.
  • TV +AV safe -SV safe can be greater than or equal to BV.
  • the safe flight speed may be calculated according to the safe shutter speed and the motion blur parameter.
  • the safe flight speed can be used to limit the flight speed of the UAV, that is, to limit the flight speed of the UAV to be less than or equal to the safe flight speed.
  • the camera system of the UAV can send the safe flight speed to the flight control system of the UAV after calculating the safe flight speed, so that the flight control system can adjust the flight control system of the UAV according to the safe flight speed. Control the flight speed.
  • the safety shutter speed calculated at different times may be different,
  • the safe flight speeds calculated at different times are also different. Therefore, during the surveying and mapping operation, the flight control system can dynamically adjust the flight speed of the UAV according to the obtained safe flight speed.
  • the motion blur parameter determines the safe shutter speed there is stronger scene adaptability.
  • the first embodiment can adjust the safety shutter speed to make the safety shutter speed smaller, so as to obtain a longer exposure time and ensure the appropriate exposure of the captured target image. At the same time, it can be adjusted accordingly.
  • Safe flight speed reduce the flight speed of the drone, and ensure that the captured target image is clear (motion blur meets the requirements).
  • the second embodiment cannot be linked with the safety shutter speed to adapt to changes in ambient light, so the adaptability of the scene is poor.
  • the exposure parameters used during shooting can be controlled according to the safety exposure parameters.
  • the camera's automatic exposure algorithm can still determine the exposure parameters that can correctly expose the image according to the metering results, but when determining the correct exposure parameters, it is necessary to ensure that the determined exposure parameters meet the safety exposure parameters.
  • Restrictions for example, the determined aperture is less than or equal to the safety aperture, the determined shutter speed is greater than or equal to the safety shutter speed, and the determined sensitivity is less than or equal to the safety sensitivity, so that the captured target image can be obtained at the correct exposure.
  • the UAV surveying and mapping method provided by the embodiment of the present application can determine the safe exposure parameter according to the operation requirements of the surveying and mapping operation and the brightness of the environment, and can control the exposure parameter used in the surveying and mapping shooting according to the safe exposure parameter, so that it can be used in different
  • the target image with correct exposure can be obtained by shooting under high ambient light brightness, and it can also ensure that the target image obtained by shooting meets the operational requirements of surveying and mapping operations, and can adapt to scenes with large changes in ambient light.
  • the method provided by the embodiments of the present application can automatically determine exposure parameters that are suitable and meet the requirements of surveying and mapping, without the need for manual calculation and setting by the user, greatly improving the efficiency of surveying and mapping operations, and avoiding the problem that manual calculation is prone to errors.
  • FIG. 4 is another flowchart of the UAV surveying and mapping method provided by the embodiment of the present application.
  • the drone may be connected to the control terminal, and the drone may include a camera system and a flight control system.
  • the control terminal may implement the following steps:
  • the camera system can implement the following steps:
  • the flight control system can implement the following steps:
  • the camera system can determine the ambient light brightness through photometry in real time, and can dynamically adjust the safety shutter speed and calculate the safe flight speed corresponding to the safety shutter speed according to the determined ambient light brightness, and can also calculate the calculated safe flight speed in real time.
  • the speed is fed back to the flight control system, so that the flight control system can dynamically adjust the flight speed of the drone according to the safe flight speed received in real time.
  • the aperture used for shooting is limited by the safety aperture, so that the hyperfocal distance of the lens can always be less than or equal to the distance from the ground object to the lens, thereby ensuring that the ground object can reach the target Clear imaging in the image; limiting the sensitivity used when shooting through the safety sensitivity, so that the image quality of the target image obtained can meet the needs of surveying and mapping; limiting the shutter speed used when shooting through the safety shutter speed , and by limiting the flight speed of the UAV through the safe flight speed, the captured target image can meet the needs of surveying and mapping in terms of motion blur.
  • the exposure parameters have more room for adjustment than setting the camera to S or M, so that it can adapt to the exposure of more scenes.
  • users only need to input simple operation requirements such as GSD and motion blur parameters during surveying and shooting, and there is no need to manually calculate exposure parameters, which greatly improves the efficiency of surveying and mapping operations.
  • FIG. 5 is a schematic structural diagram of an unmanned aerial vehicle provided by an embodiment of the present application.
  • the drone may include a body 510, a power assembly 520 connected to the body, and a camera 530 connected to the body through a pan/tilt, and may include a camera system 540 and a flight control system 550 in terms of system structure.
  • the flight control system 550 is used to control the flight of the UAV
  • the camera system 540 is used to obtain the operation requirements of the surveying and mapping operation; determine the safety exposure parameters according to the operation requirements and ambient light brightness; desired target image.
  • the operation requirement includes a ground sampling distance.
  • the safety exposure parameter includes a safety aperture
  • the camera system is further configured to determine the flying height of the drone according to the ground sampling distance, and calculate the safety aperture according to the flying height.
  • the camera system when calculating the safety aperture according to the flying height, is used to determine the flying height as the hyperfocal length of the lens, calculate the aperture coefficient corresponding to the hyperfocal length, and obtain the safety aperture.
  • the flying height of the drone is used for the flight control system to control the drone.
  • the safety exposure parameter further includes a safety shutter speed and a safety sensitivity, wherein the safety shutter speed is calculated according to the safety aperture, the safety sensitivity and ambient light brightness.
  • the ambient light brightness is obtained through photometry.
  • the job requirements include motion blur parameters.
  • the safe exposure parameter includes a safe shutter speed
  • the camera system is further configured to determine a safe flight speed according to the motion blur parameter and the safe shutter speed.
  • the safe flight speed is used by the flight control system to control the flight speed of the drone.
  • the safety exposure parameters include safety aperture, safety shutter speed, and safety sensitivity
  • the camera system is used to control the exposure parameters used during shooting according to the safety exposure parameters, and control the aperture used during shooting to be smaller than or equal to the safety aperture, and the shutter speed used is greater than or equal to the safety aperture.
  • Safety shutter speed, the sensitivity used is less than or equal to the said safety sensitivity.
  • the target image is used to generate a map.
  • the target image is used for three-dimensional reconstruction.
  • the job requirement is acquired from the control terminal.
  • the job requirement is input by the user at the control terminal.
  • the unmanned aerial vehicle provided by the embodiment of the present application can determine the safety exposure parameters according to the operation requirements of the surveying and mapping operation and the brightness of the environment, and can control the exposure parameters used in the surveying and mapping shooting according to the safety exposure parameters, so that it can be used in different environments.
  • the target image with correct exposure can be obtained by shooting under light brightness, and it can also ensure that the target image obtained by shooting meets the operational requirements of the surveying and mapping operation, and can adapt to scenes with large changes in ambient light.
  • the method provided by the embodiments of the present application can automatically determine exposure parameters that are suitable and meet the requirements of surveying and mapping, without the need for manual calculation and setting by the user, greatly improving the efficiency of surveying and mapping operations, and avoiding the problem that manual calculation is prone to errors.
  • FIG. 6 is a schematic structural diagram of an unmanned aerial vehicle surveying and mapping device provided by an embodiment of the present application.
  • the apparatus includes: a processor 610 and a memory 620 storing a computer program;
  • the processor implements the following steps when executing the computer program:
  • the exposure parameters used during shooting are controlled, and the target image required for surveying and mapping is obtained by shooting.
  • the operation requirement includes a ground sampling distance.
  • the safety exposure parameter includes a safety aperture
  • the processor is further configured to determine the flying height of the drone according to the ground sampling distance, and calculate the safety aperture according to the flying height.
  • the processor when calculating the safety aperture according to the flying height, is configured to determine the flying height as the hyperfocal length of the lens, calculate the aperture coefficient corresponding to the hyperfocal length, and obtain the safety aperture.
  • the safety exposure parameter further includes a safety shutter speed and a safety sensitivity, wherein the safety shutter speed is calculated according to the safety aperture, the safety sensitivity and ambient light brightness.
  • the ambient light brightness is obtained through photometry.
  • the job requirements include motion blur parameters.
  • the safe exposure parameter includes a safe shutter speed
  • the processor is further configured to determine a safe flight speed according to the motion blur parameter and the safe shutter speed.
  • the safe flight speed is used to control the flight speed of the UAV during surveying and mapping operations.
  • the safety exposure parameters include safety aperture, safety shutter speed, and safety sensitivity
  • the processor is used to control the exposure parameters used during shooting according to the safety exposure parameters, and control the aperture used during shooting to be smaller than or equal to the safety aperture, and the shutter speed used to be greater than or equal to the safety aperture.
  • Safety shutter speed, the sensitivity used is less than or equal to the said safety sensitivity.
  • the target image is used to generate a map.
  • the target image is used for three-dimensional reconstruction.
  • the job requirement is input by a user.
  • the unmanned aerial vehicle surveying and mapping device provided by the embodiment of the present application can determine the safety exposure parameters according to the operation requirements of the surveying and mapping operation and the brightness of the environment, and can control the exposure parameters used in the surveying and mapping shooting according to the safety exposure parameters, so that it can be used in different
  • the target image with correct exposure can be obtained by shooting under high ambient light brightness, and it can also ensure that the target image obtained by shooting meets the operational requirements of surveying and mapping operations, and can adapt to scenes with large changes in ambient light.
  • the method provided by the embodiments of the present application can automatically determine exposure parameters that are suitable and meet the requirements of surveying and mapping, without the need for manual calculation and setting by the user, greatly improving the efficiency of surveying and mapping operations, and avoiding the problem that manual calculation is prone to errors.
  • Embodiments of the present application also provide a computer-readable storage medium, where the computer-readable storage medium stores a computer program, and when the computer program is executed by a processor, implements any of the UAV surveying and mapping methods provided by the embodiments of the present application.
  • Embodiments of the present application may take the form of a computer program product implemented on one or more storage media (including, but not limited to, disk storage, CD-ROM, optical storage, etc.) having program code embodied therein.
  • Computer-usable storage media includes permanent and non-permanent, removable and non-removable media, and storage of information can be accomplished by any method or technology.
  • Information may be computer readable instructions, data structures, modules of programs, or other data.
  • Examples of computer storage media include, but are not limited to, phase-change memory (PRAM), static random access memory (SRAM), dynamic random access memory (DRAM), other types of random access memory (RAM), read only memory (ROM), Electrically Erasable Programmable Read Only Memory (EEPROM), Flash Memory or other memory technology, Compact Disc Read Only Memory (CD-ROM), Digital Versatile Disc (DVD) or other optical storage, Magnetic tape cartridges, magnetic tape magnetic disk storage or other magnetic storage devices or any other non-transmission medium that can be used to store information that can be accessed by a computing device.
  • PRAM phase-change memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • RAM random access memory
  • ROM read only memory
  • EEPROM Electrically Erasable Programmable Read Only Memory
  • Flash Memory or other memory technology
  • CD-ROM Compact Disc Read Only Memory
  • CD-ROM Compact Disc Read Only Memory
  • DVD Digital Versatile Disc
  • Magnetic tape cartridges magnetic tape magnetic disk storage or other magnetic storage devices or any other non-

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Studio Devices (AREA)
  • Exposure Control For Cameras (AREA)

Abstract

一种无人机测绘方法,包括:获取测绘作业的作业需求(S220);根据作业需求和环境光亮度,确定安全曝光参数(S240);根据安全曝光参数,对拍摄时所使用的曝光参数进行控制,拍摄得到测绘所需的目标图像(S260)。由此,可以在不同的环境光亮度下拍摄得到曝光正确的目标图像,并还可以确保拍摄得到的目标图像符合测绘作业的作业需求,能够适应环境光变化较大的场景。并且,可以自动确定合适且符合测绘需求的曝光参数,无需用户人工计算和设定,大大提高测绘作业的效率,避免了人工计算容易出错的问题。

Description

无人机测绘方法、装置及无人机 技术领域
本申请涉及测绘技术领域,尤其涉及一种无人机测绘方法、装置、无人机及计算机可读存储介质。
背景技术
无人机在航拍测绘领域被广泛应用。通过无人机在空中对地进行拍摄,可以得到多张测绘所需的图像,从而可以利用这些图像实现地图制作或三维重建等应用。在进行测绘前,用户需要提前计算测绘拍摄时相机所使用的曝光参数,而该计算过程将耗费用户的时间,降低测绘作业的效率。
发明内容
有鉴于此,本申请实施例是提供一种无人机测绘方法、装置、无人机及计算机可读存储介质,目的之一是解决测绘前需用户计算曝光参数、测绘作业效率低的问题。
本申请实施例第一方面提供一种无人机测绘方法,包括:
获取测绘作业的作业需求;
根据所述作业需求和环境光亮度,确定安全曝光参数;
根据所述安全曝光参数,对拍摄时所使用的曝光参数进行控制,拍摄得到测绘所需的目标图像。
本申请实施例第二方面提供一种无人机,包括:
飞行控制系统,用于对所述无人机的飞行进行控制;
相机系统,用于获取测绘作业的作业需求;根据所述作业需求和环境光亮度,确定安全曝光参数;根据所述安全曝光参数,对拍摄时所使用的曝光参数进行控制,拍摄得到测绘所需的目标图像。
本申请实施例第三方面提供一种无人机测绘装置,包括:处理器和存储有计算机程序的存储器,所述处理器在执行所述计算机程序时实现以下步骤:
获取测绘作业的作业需求;
根据所述作业需求和环境光亮度,确定安全曝光参数;
根据所述安全曝光参数,对拍摄时所使用的曝光参数进行控制,拍摄得到测绘所需的目标图像。
本申请实施例第四方面提供一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机程序,所述计算机程序被处理器执行时实现上述第一方面提供的任一种无人机测绘方法。
本申请实施例提供的无人机测绘方法,可以根据测绘作业的作业需求和环境光亮度确定安全曝光参数,并可以根据安全曝光参数对测绘拍摄时所使用的曝光参数进行控制,从而可以在不同的环境光亮度下拍摄得到曝光正确的目标图像,并还可以确保拍摄得到的目标图像符合测绘作业的作业需求,能够适应环境光变化较大的场景。并且,本申请实施例提供的方法可以自动确定合适且符合测绘需求的曝光参数,无需用户人工计算和设定,大大提高测绘作业的效率,避免了人工计算容易出错的问题。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例提供的无人机测绘场景图。
图2是本申请实施例提供的无人机测绘方法的流程图。
图3是本申请实施例提供的镜头的超焦距与飞行高度的关系示意图。
图4是本申请实施例提供的无人机测绘方法的另一流程图。
图5是本申请实施例提供的一种无人机的结构示意图。
图6是本申请实施例提供的一种无人机测绘装置的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的 所有其他实施例,都属于本申请保护的范围。
无人机被广泛应用于航拍测绘领域。可以参见图1,图1是本申请实施例提供的无人机测绘场景图。在进行测绘作业时,无人机可以根据用户的操控或者按照预先设定的飞行轨迹飞行,并在飞行过程中对测绘区域进行拍摄,从而可以得到测绘所需的多张图像。这里,可以将拍摄得到的、测绘所需的图像称为目标图像。在得到目标图像后,可以根据需求,利用这些目标图像生成测绘区域对应的地图,也可以利用目标图像对测绘区域进行三维重建等。
无人机可以搭载有相机系统,相机系统可以配置有自动曝光算法。可以理解的,自动曝光算法,即可以根据测得的环境光亮度自动调整拍摄所使用的曝光参数的算法。这里,环境光亮度可以通过测光确定,曝光参数可以至少包括光圈、快门速度、感光度ISO中的一种或多种。通过自动曝光算法,相机可以拍摄得到曝光合适的图像。
而在测绘场景中,测绘对拍摄得到的目标图像提出了更高的要求。在一个例子中,由于目标图像后续可能被用于制作地图或进行三维重建等,因此,各张目标图像需要在图像质量上有较好的一致性。但图像质量与拍摄所使用的曝光参数相关,若在测绘作业时完全开放自动曝光算法,则不同目标图像拍摄所使用的曝光参数可能有较大的差别,从而,拍摄得到的目标图像在图像质量上将参差不齐,难以满足测绘要求的一致性。这里,图像质量可以包括清晰度、亮度、运动模糊、景深等。
基于对上述问题的考虑,用户在利用无人机进行测绘时,可以将相机设置在S档或M档,以对自动曝光算法的可调参数进行限制。比如,在S档下,用户可以指定快门速度,限制自动曝光算法仅可以调整光圈和ISO,又比如,在M档下,用户可以指定快门速度和光圈,限制自动曝光算法仅可以调整ISO。通过限制自动曝光算法的可调参数,可以一定程度上使拍摄得到的目标图像较一致的图像质量。
但无论是将相机设置在S档还是M档,都需要用户指定一个或多个曝光参数,即用户需要提前计算出要指定的曝光参数的具体设定值,该计算过程将耗费用户大量的时间,并且容易出错。此外,由于将相机设置在S档或M档,均对自动曝光算法进行了限制,因此相机对环境光的适应能力较差,当环境光亮度变化较大时,拍摄得到的目标图像可能无法得到合适的曝光,出现过曝或欠曝的问题。
可见,指定曝光参数需要耗费用户的时间,且会使相机在曝光上的场景适应能力下降,而不指定曝光参数,拍摄得到的目标图像可能图像质量不统一,不满足测绘需求。
为解决上述问题,本申请实施例提供了一种无人机测绘方法。可以参见图2,图2 是本申请实施例提供的无人机测绘方法的流程图,该方法可以包括以下步骤:
S220、获取测绘作业的作业需求。
不同的测绘作业可以有不同的作业需求。在一种实施方式中,作业需求可以包括地面采样距离(GSD,Ground Sample Distance)。GSD可以用于表征拍摄得到的目标图像中的一个像素所对应的实际距离,因此,GSD越小,生成的地图精度越高。在一个例子中,可以根据要制作的地图的比例尺和DPI(Dot per inch,每1英寸内点的数量)确定GSD。在一种实施方式中,GSD可以由用户根据测绘需求自行设定,在一种实施方式中,GSD也可以采用相机系统中预设的默认值。
对于作业需求,在一种实施方式中,还可以包括运动模糊参数。运动模糊参数可以用于表征用户对拍摄得到的目标图像所允许的运动模糊的像素数,比如运动模糊参数可以是1,即用户要求目标图像中的运动模糊小于或等于1个像素大小,比如运动模糊参数可以是2,即用户要求目标图像中的运动模糊小于或等于2个像素大小。
在一种实施方式中,无人机可以与控制终端连接。这里,控制终端可以包括如手机、平板、智能手表等移动终端,也可以包括用于对无人机进行操控的遥控器,也可以包括无人机的视频眼镜等。如图1所示,控制终端可以是遥控器与移动终端的组合。在一个例子中,用户可以通过控制终端输入测绘作业的作业需求,控制终端在获取到用户输入的作业需求后,可以将作业需求发送给无人机,即无人机可以从控制终端处获取到所述测绘作业的作业需求。
S240、根据所述作业需求和环境光亮度,确定安全曝光参数。
S260、根据所述安全曝光参数,对拍摄时所使用的曝光参数进行控制,拍摄得到测绘所需的目标图像。
如前文所述,测绘对拍摄所得的目标图像有较高的图像质量要求,其中,就包括对图像的清晰度有较高的要求。
图像的清晰度与图像拍摄时相机的焦距有关。当无人机在空中对地进行俯拍时,在一种实施方式中,可以允许相机通过自动对焦算法进行调焦。通过自动对焦算法进行调焦,虽然可以拍摄得到清晰的目标图像,但由于不同的目标图像在拍摄时可能使用的是不同的焦距,从而,这些目标图像之间在视场、景深等方面都有差别,目标图像之间的一致性较差,这对一些高标准的测绘作业而言是不可接受的。并且,在对一些地面高度变化较大的区域(比如有高度参差不齐的建筑)进行拍摄时,自动对焦算法也难以求解出可以使拍摄得到的目标图像各部分均清晰的合适的焦距。
因此,在一种实施方式中,可以在测绘拍摄时保持相机镜头的物理焦距不变,即 不允许自动对焦算法进行调焦,同时,可以通过控制光圈调整超焦距,使得地面物体均处于镜头的超焦距以外,从而地面物体可以在目标图像中的清晰的成像。这里,超焦距是当镜头对焦在无穷远时,景深前界(离镜头最近清晰点)到镜头的距离,其可以通过以下式子计算得到:
Figure PCTCN2020120704-appb-000001
其中,hf为超焦距,f为镜头的物理焦距,δ为可容许弥散圆直径,F为光圈系数。
使地面物体处于镜头的超焦距以外,即使镜头的超焦距小于或等于地面物体到镜头的距离,而地面物体到镜头的距离可以近似认为是无人机的飞行高度,因此,可以通过使测绘拍摄时镜头的超焦距小于或等于无人机的飞行高度,以使地面物体可以在目标图像中的清晰的成像,如图3所示,图3是本申请实施例提供的镜头的超焦距与飞行高度的关系示意图。
对于无人机的飞行高度,在一种实施方式中,可以根据GSD确定。在前文已有提及,GSD可以是用户输入的作业需求,其具体可以通过以下式子计算得到:
Figure PCTCN2020120704-appb-000002
其中,H为飞行高度,Px为相机传感器的像素大小,f为镜头的物理焦距。
可以理解的,由于拍摄时相机镜头的物理焦距可以保持不变,则在获取到测绘作业的作业需求中的GSD后,可以根据GSD确定无人机的飞行高度。确定出的飞行高度,在一种实施方式中,可以由无人机的相机系统发送给飞行控制系统,从而飞行控制系统可以在无人机进行测绘作业时控制无人机在所述飞行高度上飞行。
在确定无人机的飞行高度后,为使镜头的超焦距小于或等于该飞行高度,可以结合超焦距的计算式子与该飞行高度计算得到安全光圈。需要说明的是,安全光圈是安全曝光参数的一种,其可以用于对拍摄时所使用的光圈进行限制。如前文所述,光圈的大小与镜头的超焦距相关,具体的,拍摄所使用的光圈越大,镜头的超焦距就越远(大),从而,当光圈大于某一阈值时,便可能导致地面物体在镜头的超焦距以内。因此,可以设定安全光圈,根据安全光圈对拍摄时所使用的光圈进行限制,例如,可以根据安全光圈对相机的自动曝光算法进行限制,使自动曝光算法根据测光结果所确定的光圈小于或等于该安全光圈,从而可以避免因光圈过大而导致地面物体的成像不清晰,使拍摄过程中镜头的超焦距可以始终保持小于或等于无人机的飞行高度,拍摄得到清晰的目标图像。
在具体计算安全光圈时,可以将飞行高度确定为镜头的超焦距,即令hf=H,结合 上述提供的超焦距的计算式子,可以计算出当hf=H时所对应的光圈系数F,该计算出的光圈系数F即为安全光圈。
安全光圈可以是安全曝光参数的一种,而在一种实施方式中,安全曝光参数还可以包括安全感光度与安全快门速度。
对于感光度,由于拍摄时所使用的感光度与拍摄所得图像的画质是负相关的,即拍摄时所使用的感光度越大,拍摄得到的目标图像的画质越低。而由于不同的测绘作业对图像画质有不同的要求,因此,在一种实施方式中,可以根据所需的图像质量设定安全感光度,可以根据安全感光度对相机的自动曝光算法进行限制,使自动曝光算法根据测光结果所确定的感光度小于或等于安全感光度,避免因感光度过大而导致图像画质不符合测绘需求。
而对于快门速度,其与无人机的飞行速度共同影响着拍摄所得的目标图像的清晰度。具体而言,当无人机的飞行速度确定时,拍摄所使用的快门速度越大,拍摄所得的目标图像越清晰,相应的,若拍摄所使用的快门速度过小,则拍摄所得的目标图像的运动模糊将不符合用户设定的运动模糊参数,不满足测绘需求。这里,运动模糊参数可以用于表征用户对目标图像的运动模糊要求,具体在前文已有说明,在此不再赘述。
为使拍摄得到的目标图像的运动模糊符合测绘需求,在一种实施方式中,可以设定安全快门速度,即可以根据安全快门速度对拍摄所使用的快门速度进行限制,使拍摄所使用的快门速度大于或等于安全快门速度,如此,由于快门速度足够快,拍摄得到的目标图像在运动模糊上能够满足测绘需求。
而在确定安全快门速度时,可以有多种实施方式。在一种实施方式中,可以根据用户设定的作业时长计算无人机的飞行速度,进而可以根据该无人机的飞行速度以及用户设定的运动模糊参数确定安全快门速度。具体的,可以参考以下式子:
Figure PCTCN2020120704-appb-000003
其中,t为最大曝光时间,Pn为运动模糊参数,v为无人机的飞行速度。当无人机的飞行速度确定后,可以计算出最大曝光时间。这里,需要说明的是,快门速度越大(快),所对应的曝光时间越短,快门速度越小(慢),所对应的曝光时间越长。因此,通过上述式子计算出的最大曝光时间对应的是最小的快门速度,即安全快门速度。
但需要注意的是,快门速度除了与无人机的飞行速度共同影响着所拍摄的目标图像的清晰度之外,其另一方面也与光圈、感光度等曝光参数共同影响着目标图像的曝光。因此,在确定安全快门速度时,在一种实施方式中,还可以根据安全光圈、安全 感光度以及环境光亮度计算得到安全快门速度。
在根据安全光圈、安全感光度以及环境光亮度计算得到安全快门速度时,在一个例子中,可以通过以下式子进行计算:
TV safe+AV safe-SV safe≥BV
其中,AV(aperture value)为光圈对应的数值,TV(time value)为快门速度对应的数值,SV(speed value)为感光度对应的数值,BV(luminance value)为环境光亮度对应的数值。
Figure PCTCN2020120704-appb-000004
AV safe=log 2F safe 2,SV safe=log 2N×ISO safe,N为常量,t safe为安全快门速度,F safe为安全光圈,ISO safe为安全感光度。对于安全光圈与安全感光度,通过前文的说明可以确定,而环境光亮度可以通过对相机采集的图像进行亮度分析(即测光)得到。
可以理解的,上述式子与APEX曝光方程相关,APEX曝光方程是自动曝光算法根据测光结果确定曝光参数的依据,其可以表示为:TV+AV-SV=BV。而在计算安全快门速度时,由于安全快门速度是所允许的最小(慢)的快门速度,即安全快门速度对应最大的曝光时间,因此TV safe+AV safe-SV safe可以大于或等于BV。
通过曝光上的约束计算出安全快门速度后,在一种实施方式中,可以根据安全快门速度以及运动模糊参数计算出安全飞行速度。安全飞行速度的具体计算可以参考前文所提供的飞行速度的计算式子,在此不再赘述。这里,安全飞行速度可以用于对无人机的飞行速度进行限制,即将无人机的飞行速度限制为小于或等于安全飞行速度。在一个例子中,无人机的相机系统可以在计算出安全飞行速度后,将安全飞行速度发送给无人机的飞行控制系统,从而,飞行控制系统可以根据该安全飞行速度对无人机的飞行速度进行控制。
需要说明的是,上述计算安全快门速度的实施方式中,由于实际作业过程中环境光亮度是会发生变化的,即BV是一个变量,从而,不同时间计算出的安全快门速度可以是不同的,相应的,不同时间计算出的安全飞行速度也不同。所以,在测绘作业时,飞行控制系统可以根据获取到的安全飞行速度动态调整无人机的飞行速度。
上述先通过曝光上的约束计算出安全快门速度,再根据安全快门速度与运动模糊参数计算出安全飞行速度的第一实施方式,相比根据计划的作业时间确定飞行速度,再根据确定的飞行速度与运动模糊参数确定安全快门速度的第二实施方式而言,有更强的场景适应性。例如在环境光亮度变暗较多时,第一实施方式可以调整安全快门速度,使安全快门速度更小,以取得更大的曝光时间,确保所拍摄的目标图像曝光合适,同时,可以相应的调整安全飞行速度,使无人机的飞行速度下降,确保所拍摄的目标 图像清晰(运动模糊符合要求)。而相对的,第二实施方式由于飞行速度是固定的,无法与安全快门速度联动以适应环境光的变化,因此在场景的适应性上较差。
在安全光圈、安全感光度以及安全快门速度这些安全曝光参数确定之后,可以根据这些安全曝光参数对拍摄时所使用的曝光参数进行控制。具体的,在测绘拍摄时,相机的自动曝光算法仍然可以根据测光结果确定可以使图像正确曝光的曝光参数,但在确定正确的曝光参数时,需要保证所确定的曝光参数符合安全曝光参数的限制,例如,所确定的光圈小于或等于安全光圈,所确定的快门速度大于或等于安全快门速度,所确定的感光度小于或等于安全感光度,从而,拍摄得到的目标图像可以在正确曝光的同时满足测绘作业在清晰度、运动模糊、图像之间的一致性等方面的要求。
本申请实施例提供的无人机测绘方法,可以根据测绘作业的作业需求和环境光亮度确定安全曝光参数,并可以根据安全曝光参数对测绘拍摄时所使用的曝光参数进行控制,从而可以在不同的环境光亮度下拍摄得到曝光正确的目标图像,并还可以确保拍摄得到的目标图像符合测绘作业的作业需求,能够适应环境光变化较大的场景。并且,本申请实施例提供的方法可以自动确定合适且符合测绘需求的曝光参数,无需用户人工计算和设定,大大提高测绘作业的效率,避免了人工计算容易出错的问题。
下面提供一个实施例,可以参见图4,图4是本申请实施例提供的无人机测绘方法的另一流程图。在该实施例中,无人机可以与控制终端连接,无人机可以包括相机系统以及飞行控制系统。其中,控制终端可以实现以下步骤:
S411、获取用户输入的GSD和运动模糊参数。
S412、将GSD和运动模糊参数发送给无人机。
相机系统可以实现以下步骤:
S421、从控制终端处获取用户输入的GSD和运动模糊参数。
S422、根据GSD计算无人机的飞行高度,并将计算出的飞行高度传输给飞行控制系统。
S423、通过将飞行高度作为超焦距计算出安全光圈。
S424、根据安全光圈、安全感光度以及环境光亮度计算安全快门速度。
S425、根据安全快门速度和运动模糊参数计算安全飞行速度,并将计算出的安全飞行速度传输给飞行控制系统。
飞行控制系统可以实现以下步骤:
S431、根据获取到的飞行高度与安全飞行速度对无人机的飞行进行控制。
在上述过程中,相机系统可以实时通过测光确定环境光亮度,并可以根据确定的 环境光亮度动态调整安全快门速度以及计算安全快门速度对应的安全飞行速度,还可以实时将计算出的安全飞行速度反馈给飞行控制系统,从而飞行控制系统可以根据实时接收到的安全飞行速度动态调整无人机的飞行速度。
本申请实施例提供的无人机测绘方法,通过安全光圈对拍摄时所使用的光圈进行限制,可以使镜头的超焦距始终小于或等于地面物体到镜头的距离,从而可以确保地面物体可以在目标图像中清晰的成像;通过安全感光度对拍摄时所使用的感光度进行限制,可以使拍摄得到的目标图像在图像质量上符合测绘需求;通过安全快门速度对拍摄时所使用的快门速度进行限制,以及通过安全飞行速度对无人机的飞行速度进行限制,可以使拍摄得到的目标图像在运动模糊上符合测绘需求。并且,由于光圈、快门速度、感光度均未锁定,因此相比将相机设置在S档或M档,曝光参数有更大的可调空间,从而能够适应更多场景的曝光。另外,对于用户而言,用户在测绘拍摄时只需输入如GSD与运动模糊参数等简单的作业需求即可,无需人工计算曝光参数,测绘作业效率大大提升。
以上为对本申请实施例提供的无人机测绘方法的说明。下面可以参考图5,图5是本申请实施例提供的一种无人机的结构示意图。该无人机从物理构成上可以包括机体510、与机体连接的动力组件520以及通过云台与机体连接的相机530,从系统构成上可以包括相机系统540与飞行控制系统550。
其中,飞行控制系统550,用于对所述无人机的飞行进行控制;
相机系统540,用于获取测绘作业的作业需求;根据所述作业需求和环境光亮度,确定安全曝光参数;根据所述安全曝光参数,对拍摄时所使用的曝光参数进行控制,拍摄得到测绘所需的目标图像。
可选的,所述作业需求包括地面采样距离。
可选的,所述安全曝光参数包括安全光圈,所述相机系统还用于,根据所述地面采样距离确定所述无人机的飞行高度,根据所述飞行高度计算所述安全光圈。
可选的,所述相机系统根据所述飞行高度计算所述安全光圈时用于,将所述飞行高度确定为镜头的超焦距,计算所述超焦距对应的光圈系数,得到所述安全光圈。
可选的,所述无人机的飞行高度用于所述飞行控制系统对所述无人机进行控制。
可选的,所述安全曝光参数还包括安全快门速度及安全感光度,其中,所述安全快门速度是根据所述安全光圈、所述安全感光度以及环境光亮度计算得到的。
可选的,所述环境光亮度是通过测光得到的。
可选的,所述作业需求包括运动模糊参数。
可选的,所述安全曝光参数包括安全快门速度,所述相机系统还用于,根据所述运动模糊参数与所述安全快门速度确定安全飞行速度。
可选的,所述安全飞行速度用于所述飞行控制系统对所述无人机的飞行速度进行控制。
可选的,所述安全曝光参数包括安全光圈、安全快门速度、安全感光度;
所述相机系统根据所述安全曝光参数,对拍摄时所使用的曝光参数进行控制时用于,控制拍摄时所使用的光圈小于或等于所述安全光圈,所使用的快门速度大于或等于所述安全快门速度,所使用的感光度小于或等于所述安全感光度。
可选的,所述目标图像用于生成地图。
可选的,所述目标图像用于三维重建。
可选的,还包括:
通信接口,用于与控制终端连接;
所述作业需求是从所述控制终端获取的。
可选的,所述作业需求是用户在所述控制终端输入的。
以上所提供的各种无人机的实施方式,可以参考前文中相关说明,在此不再赘述。
本申请实施例提供的无人机,可以根据测绘作业的作业需求和环境光亮度确定安全曝光参数,并可以根据安全曝光参数对测绘拍摄时所使用的曝光参数进行控制,从而可以在不同的环境光亮度下拍摄得到曝光正确的目标图像,并还可以确保拍摄得到的目标图像符合测绘作业的作业需求,能够适应环境光变化较大的场景。并且,本申请实施例提供的方法可以自动确定合适且符合测绘需求的曝光参数,无需用户人工计算和设定,大大提高测绘作业的效率,避免了人工计算容易出错的问题。
下面可以参考图6,图6是本申请实施例提供的一种无人机测绘装置的结构示意图。该装置包括:处理器610和存储有计算机程序的存储器620;
所述处理器在执行所述计算机程序时实现以下步骤:
获取测绘作业的作业需求;
根据所述作业需求和环境光亮度,确定安全曝光参数;
根据所述安全曝光参数,对拍摄时所使用的曝光参数进行控制,拍摄得到测绘所需的目标图像。
可选的,所述作业需求包括地面采样距离。
可选的,所述安全曝光参数包括安全光圈,所述处理器还用于,根据所述地面采样距离确定所述无人机的飞行高度,根据所述飞行高度计算所述安全光圈。
可选的,所述处理器根据所述飞行高度计算所述安全光圈时用于,将所述飞行高度确定为镜头的超焦距,计算所述超焦距对应的光圈系数,得到所述安全光圈。
可选的,所述安全曝光参数还包括安全快门速度及安全感光度,其中,所述安全快门速度是根据所述安全光圈、所述安全感光度以及环境光亮度计算得到的。
可选的,所述环境光亮度是通过测光得到的。
可选的,所述作业需求包括运动模糊参数。
可选的,所述安全曝光参数包括安全快门速度,所述处理器还用于,根据所述运动模糊参数与所述安全快门速度确定安全飞行速度。
可选的,所述安全飞行速度用于测绘作业时对所述无人机的飞行速度进行控制。
可选的,所述安全曝光参数包括安全光圈、安全快门速度、安全感光度;
所述处理器根据所述安全曝光参数,对拍摄时所使用的曝光参数进行控制时用于,控制拍摄时所使用的光圈小于或等于所述安全光圈,所使用的快门速度大于或等于所述安全快门速度,所使用的感光度小于或等于所述安全感光度。
可选的,所述目标图像用于生成地图。
可选的,所述目标图像用于三维重建。
可选的,所述作业需求是用户输入的。
以上所提供的各种无人机测绘装置的实施方式,可以参考前文中相关说明,在此不再赘述。
本申请实施例提供的无人机测绘装置,可以根据测绘作业的作业需求和环境光亮度确定安全曝光参数,并可以根据安全曝光参数对测绘拍摄时所使用的曝光参数进行控制,从而可以在不同的环境光亮度下拍摄得到曝光正确的目标图像,并还可以确保拍摄得到的目标图像符合测绘作业的作业需求,能够适应环境光变化较大的场景。并且,本申请实施例提供的方法可以自动确定合适且符合测绘需求的曝光参数,无需用户人工计算和设定,大大提高测绘作业的效率,避免了人工计算容易出错的问题。
本申请实施例还提供了一种计算机可读存储介质,述计算机可读存储介质存储有计算机程序,所述计算机程序被处理器执行时实现本申请实施例提供任一种无人机测绘方法。
以上对本申请实施例的方法提供了多种实施方式,在不存在冲突或矛盾的基础上,本领域技术人员可以根据实际情况自由选择或组合这些实施方式,由此构成各种不同的实施例。而本申请文件限于篇幅,未全面的对各种不同的实施例展开说明,但可以理解的是,各种组合而得的实施例也属于本申请实施例公开的范围。
本申请实施例可采用在一个或多个其中包含有程序代码的存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。计算机可用存储介质包括永久性和非永久性、可移动和非可移动媒体,可以由任何方法或技术来实现信息存储。信息可以是计算机可读指令、数据结构、程序的模块或其他数据。计算机的存储介质的例子包括但不限于:相变内存(PRAM)、静态随机存取存储器(SRAM)、动态随机存取存储器(DRAM)、其他类型的随机存取存储器(RAM)、只读存储器(ROM)、电可擦除可编程只读存储器(EEPROM)、快闪记忆体或其他内存技术、只读光盘只读存储器(CD-ROM)、数字多功能光盘(DVD)或其他光学存储、磁盒式磁带,磁带磁磁盘存储或其他磁性存储设备或任何其他非传输介质,可用于存储可以被计算设备访问的信息。
需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
以上对本申请实施例所提供的方法和装置进行了详细介绍,本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的方法及其核心思想;同时,对于本领域的一般技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本申请的限制。

Claims (42)

  1. 一种无人机测绘方法,其特征在于,包括:
    获取测绘作业的作业需求;
    根据所述作业需求和环境光亮度,确定安全曝光参数;
    根据所述安全曝光参数,对拍摄时所使用的曝光参数进行控制,拍摄得到测绘所需的目标图像。
  2. 根据权利要求1所述的方法,其特征在于,所述作业需求包括地面采样距离。
  3. 根据权利要求2所述的方法,其特征在于,所述安全曝光参数包括安全光圈,所述安全光圈通过以下方式确定:
    根据所述地面采样距离确定所述无人机的飞行高度;
    根据所述飞行高度计算所述安全光圈。
  4. 根据权利要求3所述的方法,其特征在于,所述根据所述飞行高度计算所述安全光圈,包括:
    将所述飞行高度确定为镜头的超焦距;
    计算所述超焦距对应的光圈系数,得到所述安全光圈。
  5. 根据权利要求3所述的方法,其特征在于,所述安全曝光参数还包括安全快门速度及安全感光度,其中,所述安全快门速度是根据所述安全光圈、所述安全感光度以及环境光亮度计算得到的。
  6. 根据权利要求5所述的方法,其特征在于,所述环境光亮度是通过测光得到的。
  7. 根据权利要求1所述的方法,其特征在于,所述作业需求包括运动模糊参数。
  8. 根据权利要求7所述的方法,其特征在于,所述安全曝光参数包括安全快门速度,所述方法还包括:
    根据所述运动模糊参数与所述安全快门速度确定安全飞行速度。
  9. 根据权利要求7所述的方法,其特征在于,所述安全飞行速度用于在测绘作业时对所述无人机的飞行速度进行控制。
  10. 根据权利要求1所述的方法,其特征在于,所述安全曝光参数包括安全光圈、安全快门速度、安全感光度,所述根据所述安全曝光参数,对拍摄时所使用的曝光参数进行控制,包括:
    控制拍摄时所使用的光圈小于或等于所述安全光圈,所使用的快门速度大于或等于所述安全快门速度,所使用的感光度小于或等于所述安全感光度。
  11. 根据权利要求1所述的方法,其特征在于,所述目标图像用于生成地图。
  12. 根据权利要求1所述的方法,其特征在于,所述目标图像用于三维重建。
  13. 根据权利要求1所述的方法,其特征在于,所述作业需求是用户输入的。
  14. 一种无人机,其特征在于,包括:
    飞行控制系统,用于对所述无人机的飞行进行控制;
    相机系统,用于获取测绘作业的作业需求;根据所述作业需求和环境光亮度,确定安全曝光参数;根据所述安全曝光参数,对拍摄时所使用的曝光参数进行控制,拍摄得到测绘所需的目标图像。
  15. 根据权利要求14所述的无人机,其特征在于,所述作业需求包括地面采样距离。
  16. 根据权利要求15所述的无人机,其特征在于,所述安全曝光参数包括安全光圈,所述相机系统还用于,根据所述地面采样距离确定所述无人机的飞行高度,根据所述飞行高度计算所述安全光圈。
  17. 根据权利要求16所述的无人机,其特征在于,所述相机系统根据所述飞行高度计算所述安全光圈时用于,将所述飞行高度确定为镜头的超焦距,计算所述超焦距对应的光圈系数,得到所述安全光圈。
  18. 根据权利要求16所述的无人机,其特征在于,所述无人机的飞行高度用于所述飞行控制系统对所述无人机进行控制。
  19. 根据权利要求16所述的无人机,其特征在于,所述安全曝光参数还包括安全快门速度及安全感光度,其中,所述安全快门速度是根据所述安全光圈、所述安全感光度以及环境光亮度计算得到的。
  20. 根据权利要求19所述的无人机,其特征在于,所述环境光亮度是通过测光得到的。
  21. 根据权利要求14所述的无人机,其特征在于,所述作业需求包括运动模糊参数。
  22. 根据权利要求21所述的无人机,其特征在于,所述安全曝光参数包括安全快门速度,所述相机系统还用于,根据所述运动模糊参数与所述安全快门速度确定安全飞行速度。
  23. 根据权利要求22所述的无人机,其特征在于,所述安全飞行速度用于所述飞行控制系统对所述无人机的飞行速度进行控制。
  24. 根据权利要求14所述的无人机,其特征在于,所述安全曝光参数包括安全光 圈、安全快门速度、安全感光度;
    所述相机系统根据所述安全曝光参数,对拍摄时所使用的曝光参数进行控制时用于,控制拍摄时所使用的光圈小于或等于所述安全光圈,所使用的快门速度大于或等于所述安全快门速度,所使用的感光度小于或等于所述安全感光度。
  25. 根据权利要求14所述的无人机,其特征在于,所述目标图像用于生成地图。
  26. 根据权利要求14所述的无人机,其特征在于,所述目标图像用于三维重建。
  27. 根据权利要求14所述的无人机,其特征在于,还包括:
    通信接口,用于与控制终端连接;
    所述作业需求是从所述控制终端获取的。
  28. 根据权利要求27所述的无人机,其特征在于,所述作业需求是用户在所述控制终端输入的。
  29. 一种无人机测绘装置,其特征在于,包括:处理器和存储有计算机程序的存储器,所述处理器在执行所述计算机程序时实现以下步骤:
    获取测绘作业的作业需求;
    根据所述作业需求和环境光亮度,确定安全曝光参数;
    根据所述安全曝光参数,对拍摄时所使用的曝光参数进行控制,拍摄得到测绘所需的目标图像。
  30. 根据权利要求29所述的装置,其特征在于,所述作业需求包括地面采样距离。
  31. 根据权利要求30所述的装置,其特征在于,所述安全曝光参数包括安全光圈,所述处理器还用于,根据所述地面采样距离确定所述无人机的飞行高度,根据所述飞行高度计算所述安全光圈。
  32. 根据权利要求31所述的装置,其特征在于,所述处理器根据所述飞行高度计算所述安全光圈时用于,将所述飞行高度确定为镜头的超焦距,计算所述超焦距对应的光圈系数,得到所述安全光圈。
  33. 根据权利要求31所述的装置,其特征在于,所述安全曝光参数还包括安全快门速度及安全感光度,其中,所述安全快门速度是根据所述安全光圈、所述安全感光度以及环境光亮度计算得到的。
  34. 根据权利要求33所述的装置,其特征在于,所述环境光亮度是通过测光得到的。
  35. 根据权利要求29所述的装置,其特征在于,所述作业需求包括运动模糊参数。
  36. 根据权利要求35所述的装置,其特征在于,所述安全曝光参数包括安全快门速度,所述处理器还用于,根据所述运动模糊参数与所述安全快门速度确定安全飞行速度。
  37. 根据权利要求36所述的装置,其特征在于,所述安全飞行速度用于测绘作业时对所述无人机的飞行速度进行控制。
  38. 根据权利要求29所述的装置,其特征在于,所述安全曝光参数包括安全光圈、安全快门速度、安全感光度;
    所述处理器根据所述安全曝光参数,对拍摄时所使用的曝光参数进行控制时用于,控制拍摄时所使用的光圈小于或等于所述安全光圈,所使用的快门速度大于或等于所述安全快门速度,所使用的感光度小于或等于所述安全感光度。
  39. 根据权利要求29所述的装置,其特征在于,所述目标图像用于生成地图。
  40. 根据权利要求29所述的装置,其特征在于,所述目标图像用于三维重建。
  41. 根据权利要求27所述的装置,其特征在于,所述作业需求是用户输入的。
  42. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机程序,所述计算机程序被处理器执行时实现如权利要求1-13任一项所述的无人机测绘方法。
PCT/CN2020/120704 2020-10-13 2020-10-13 无人机测绘方法、装置及无人机 WO2022077237A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/120704 WO2022077237A1 (zh) 2020-10-13 2020-10-13 无人机测绘方法、装置及无人机

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/120704 WO2022077237A1 (zh) 2020-10-13 2020-10-13 无人机测绘方法、装置及无人机

Publications (1)

Publication Number Publication Date
WO2022077237A1 true WO2022077237A1 (zh) 2022-04-21

Family

ID=81208858

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/120704 WO2022077237A1 (zh) 2020-10-13 2020-10-13 无人机测绘方法、装置及无人机

Country Status (1)

Country Link
WO (1) WO2022077237A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115683062A (zh) * 2023-01-04 2023-02-03 北京新兴科遥信息技术有限公司 一种国土空间规划检测分析系统
CN116630752A (zh) * 2023-07-25 2023-08-22 广东南方电信规划咨询设计院有限公司 基于ai算法的施工现场目标对象识别方法及装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4490028A (en) * 1981-05-11 1984-12-25 Wild Heerbrugg Aktiengesellschaft Exposure-control device on an aerial camera
CN103763473A (zh) * 2014-01-23 2014-04-30 徐鹏 一种实时调整航拍相机参数的控制装置
CN104853113A (zh) * 2015-05-15 2015-08-19 零度智控(北京)智能科技有限公司 自适应调节相机曝光时间的装置及方法
CN106534710A (zh) * 2015-09-14 2017-03-22 鹦鹉无人机股份有限公司 确定无人机机载相机的曝光历时的方法及相关联的无人机
CN110716586A (zh) * 2019-11-14 2020-01-21 广州极飞科技有限公司 无人机的拍照控制方法、装置、无人机和存储介质
CN111654641A (zh) * 2020-07-20 2020-09-11 浙江大学 一种机载相机曝光参数调节方法及系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4490028A (en) * 1981-05-11 1984-12-25 Wild Heerbrugg Aktiengesellschaft Exposure-control device on an aerial camera
CN103763473A (zh) * 2014-01-23 2014-04-30 徐鹏 一种实时调整航拍相机参数的控制装置
CN104853113A (zh) * 2015-05-15 2015-08-19 零度智控(北京)智能科技有限公司 自适应调节相机曝光时间的装置及方法
CN106534710A (zh) * 2015-09-14 2017-03-22 鹦鹉无人机股份有限公司 确定无人机机载相机的曝光历时的方法及相关联的无人机
CN110716586A (zh) * 2019-11-14 2020-01-21 广州极飞科技有限公司 无人机的拍照控制方法、装置、无人机和存储介质
CN111654641A (zh) * 2020-07-20 2020-09-11 浙江大学 一种机载相机曝光参数调节方法及系统

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115683062A (zh) * 2023-01-04 2023-02-03 北京新兴科遥信息技术有限公司 一种国土空间规划检测分析系统
CN116630752A (zh) * 2023-07-25 2023-08-22 广东南方电信规划咨询设计院有限公司 基于ai算法的施工现场目标对象识别方法及装置
CN116630752B (zh) * 2023-07-25 2023-11-17 广东南方电信规划咨询设计院有限公司 基于ai算法的施工现场目标对象识别方法及装置

Similar Documents

Publication Publication Date Title
US10425638B2 (en) Equipment and method for promptly performing calibration and verification of intrinsic and extrinsic parameters of a plurality of image capturing elements installed on electronic device
KR102143456B1 (ko) 심도 정보 취득 방법 및 장치, 그리고 이미지 수집 디바이스
US9521311B2 (en) Quick automatic focusing method and image acquisition apparatus
US9215381B2 (en) Image blurring method and apparatus, and electronic devices
WO2020200093A1 (zh) 对焦方法、装置、拍摄设备及飞行器
US8072503B2 (en) Methods, apparatuses, systems, and computer program products for real-time high dynamic range imaging
CN104065859B (zh) 一种全景深图像的获取方法及摄像装置
WO2016101742A1 (en) Light field collection control methods and apparatuses, light field collection devices
WO2022077237A1 (zh) 无人机测绘方法、装置及无人机
WO2019105261A1 (zh) 背景虚化处理方法、装置及设备
WO2019037038A1 (zh) 图像处理方法、装置及服务器
CN103763477A (zh) 一种双摄像头拍后调焦成像装置和方法
CN112514368B (zh) 图像采集方法、控制装置及可移动平台
US20180359411A1 (en) Cameras with autonomous adjustment and learning functions, and associated systems and methods
WO2021212445A1 (zh) 拍摄方法、可移动平台、控制设备和存储介质
CN107615744B (zh) 一种图像拍摄参数的确定方法及摄像装置
WO2018010411A1 (zh) 一种拍照方法及终端
WO2021043329A1 (zh) 图像曝光方法、装置、拍摄设备及无人机
WO2019023914A1 (zh) 一种图像处理方法、无人机、地面控制台及其图像处理系统
WO2021051304A1 (zh) 快门速度调节、安全快门标定方法、便携式设备及无人机
WO2017054475A1 (zh) 拍照的方法、装置及终端
JP2021096865A (ja) 情報処理装置、飛行制御指示方法、プログラム、及び記録媒体
WO2022160294A1 (zh) 曝光控制方法、装置及计算机可读存储介质
WO2022082439A1 (zh) 轨迹延时拍摄方法、装置、云台相机、无人机及手持云台
CN104902179A (zh) 一种相机图像的预览方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20957018

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20957018

Country of ref document: EP

Kind code of ref document: A1