WO2022077223A1 - 交互式分子积木及分子积木交互系统 - Google Patents

交互式分子积木及分子积木交互系统 Download PDF

Info

Publication number
WO2022077223A1
WO2022077223A1 PCT/CN2020/120661 CN2020120661W WO2022077223A1 WO 2022077223 A1 WO2022077223 A1 WO 2022077223A1 CN 2020120661 W CN2020120661 W CN 2020120661W WO 2022077223 A1 WO2022077223 A1 WO 2022077223A1
Authority
WO
WIPO (PCT)
Prior art keywords
module
bond
molecular
molecular bond
atomic
Prior art date
Application number
PCT/CN2020/120661
Other languages
English (en)
French (fr)
Inventor
师雪坤
温书豪
马健
赖力鹏
Original Assignee
深圳晶泰科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳晶泰科技有限公司 filed Critical 深圳晶泰科技有限公司
Priority to PCT/CN2020/120661 priority Critical patent/WO2022077223A1/zh
Publication of WO2022077223A1 publication Critical patent/WO2022077223A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09BEDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
    • G09B23/00Models for scientific, medical, or mathematical purposes, e.g. full-sized devices for demonstration purposes
    • G09B23/26Models for scientific, medical, or mathematical purposes, e.g. full-sized devices for demonstration purposes for molecular structures; for crystallography

Definitions

  • the invention relates to building blocks, in particular to an interactive molecular building block and a molecular building block interaction system.
  • Molecular mockups currently used in research and development and teaching are basically ball-and-stick blocks made of plastic or metal. Such blocks consist of solid balls of different sizes (representing different atoms) and solid rods of different lengths (representing different chemical bonds). Users can splicing building blocks according to the structure of the target molecule (including which atoms are inside and how the atoms are connected by chemical bonds) to obtain the corresponding entity chemical molecular structure model.
  • the current technology is just a simple building block, and it can only simply indicate that the microscopic molecular structure is enlarged to the size of the building block to give users an intuitive feeling.
  • the rotation of the intramolecular flexible angle will have a great impact on the energy and stability of the molecule itself.
  • the current technology is very difficult if you want to visually see what the most stable molecular structures look like when they are actually magnified.
  • An interactive molecular building block includes: a control socket module, an atomic ball module, and a molecular bond module.
  • the control socket module includes: a socket body and a socket connector arranged on the socket body
  • the atomic ball module includes: : the atomic ball body, and the atomic ball connector arranged on the atomic ball body and matched with the socket connector, the atomic ball module is provided with a plurality of the atomic ball connectors
  • the molecular bond module includes: A conventional molecular bond module, and a flexible molecular bond module
  • the conventional molecular bond module includes: a single bond module, a double bond module, and a triple bond module
  • the single bond module or the double bond module or the triple bond module includes: a conventional molecular bond module body, and a conventional molecular bond connector arranged at the end of the conventional molecular bond body and matched with the atomic ball connector
  • the flexible molecular bond module : a flexible molecular bond body, and a flexible molecular bond body
  • the socket body is provided with a control module, a power supply connected to the control module and supplying power, and a communication module connected to the control module and controlled to communicate, the socket connector connected with the control module.
  • the socket body is a hollow structure, forming a socket inner cavity;
  • the socket connector includes: a socket connector body, a socket plug baffle provided on the socket connector body, and a socket connector provided on the socket connector body.
  • the atomic ball module or the molecular bond module has an identification ID
  • the atomic ball module further includes an atomic ball processing module built in the atomic ball body, and the atomic ball connector is connected to the atomic ball
  • the processing module is electrically connected, and the atomic ball processing module records the identification ID of the atomic ball module, the attribute, and the coordinates or position of the atomic ball connector.
  • the atomic ball body is a hollow structure
  • the atomic ball processing module is arranged in the hollow structure
  • the atomic ball connector includes: a key port and a slot provided in the key port, The angles between the key openings are different to correspond to different molecular bond angles, each key opening is connected to the atomic sphere processing module and is set with a number, and the properties of the atomic sphere module include: the represented atom.
  • the key ports include: a first key port U, a second key port D, a third key port N, a fourth key port S, a fifth key port W, a sixth key port E, a third key port
  • the coordinates of the atomic ball connector include: The longitude and latitude coordinates on the spherical surface of the atomic sphere body, the longitude and latitude coordinates of the first key port U are N90°/E0°, the longitude and latitude coordinates of the second key port D are S90°/E0°, and the third bond
  • the latitude and longitude coordinates of port N are N0°/E180°
  • the single bond module or the double bond module or the triple bond module further comprises: a conventional molecular bond processing module built in the conventional molecular bond body, the conventional molecular bond connector and the conventional molecular bond
  • the bond processing module is electrically connected, the conventional molecular bond processing module records the identification ID and attribute of the conventional molecular bond module, and a conventional molecular bond plug stopper is arranged between the conventional molecular bond bond body and the conventional molecular bond connector
  • the board, the conventional molecular bond body is a hollow structure, and the conventional molecular bond connector comprises: a molecular bond plug arranged at the end of the conventional molecular bond body, and a connection interface arranged at one end of the molecular bond plug .
  • the flexible molecular bond module further comprises: a flexible molecular bond processing module built in the flexible molecular bond body, the flexible molecular bond processing module records the identification ID and attribute of the flexible molecular bond module , the flexible molecular bond connector is electrically connected with the flexible molecular bond processing module, a flexible molecular bond plug baffle is arranged between one end of the flexible molecular bond body and the flexible molecular bond connector, and the flexible molecular bond The other end of the molecular bond body connected with another flexible molecular bond connector is provided with an encoder, the encoder is electrically connected with the flexible molecular bond processing module, the flexible molecular bond body is a hollow structure, and the The flexible molecular bond connector comprises: a flexible molecular bond plug arranged at the end of the flexible molecular bond body, and a connection interface arranged at one end of the flexible molecular bond plug.
  • a molecular building block interaction system comprising:
  • the molecular bond module includes: conventional molecular bond module, and flexible molecular bond module.
  • the conventional molecular bond module represents the molecular bond formed between two atoms in the molecule.
  • Molecular bond module represents a flexible molecular bond formed between two atoms in a molecule.
  • Conventional molecular bond modules include: single bond module, double bond module, triple bond module, single bond module represents single bond, double bond module represents double bond, triple bond module
  • the bond module represents a triple bond
  • the conventional molecular bond type of the virtual molecule is determined according to the type of the conventional molecular bond module
  • Analysis and calculation perform analysis and calculation according to the constructed virtual molecular structure.
  • the determining of the atomic and molecular bonds further includes: detecting an encoder of the flexible molecular bond module, reading the current rotation angle of the flexible molecular bond module according to the encoder on the flexible molecular bond, and changing the flexibility according to the rotation of the flexible molecular bond module The relative angle between the molecular groups at both ends of the molecular bond; the atomic ball module property includes: the represented atom, and the molecular bond module property includes: the represented molecular bond type.
  • the molecular bond modules of the above-mentioned interactive molecular building blocks and the molecular building block interaction system include: a conventional molecular bond module and a flexible molecular bond module.
  • the communication between the ball module and the molecular bond module, at the same time, the interactive communication between the molecular model and the interactive system is also realized through the control socket module.
  • the molecular model and the virtual model in the interactive system realize the digital twin, and the user operates the entity.
  • the interactive system will conduct real-time simulation and support the calculation of molecular energy; users can precisely manipulate the molecular structure through this set of building blocks, and get feedback in the software in real time, which greatly improves the quality of research and development and teaching. efficiency.
  • FIG. 1 is a partial structural schematic diagram of a control socket module of an interactive molecular building block according to an embodiment of the present invention
  • FIG. 2 is a partial structural schematic diagram of an atomic ball module of an interactive molecular building block according to an embodiment of the present invention
  • FIG. 3 is a partial structural schematic diagram of a conventional molecular bond module of an interactive molecular building block according to an embodiment of the present invention
  • FIG. 4 is a partial structural schematic diagram of a flexible molecular bond module of an interactive molecular building block according to an embodiment of the present invention.
  • an interactive molecular building block includes: a control socket module 20 , an atomic ball module 40 , and a molecular bond module.
  • the control socket module 20 includes a socket body 22 and a socket connector 24 provided on the socket body 22 .
  • the socket body 22 of this embodiment is a hollow structure, forming a socket inner cavity 222 .
  • the socket body 22 of this embodiment is provided with a control module, a power supply connected to the control module and supplying power, and a communication module connected to the control module and controlled to communicate.
  • the communication module may be a Bluetooth module.
  • the socket connector of this embodiment is connected to the control module.
  • the socket connector 24 of this embodiment includes: a socket connector body 242 , a socket plug 244 provided at one end of the socket connector body 242 , a connection interface 246 provided at one end of the socket plug 244 , and a socket connector body 242 Receptacle plug shutter 248 between receptacle plugs 244 .
  • the connection interface 246 in this embodiment is preferably a Type-C interface.
  • the control socket module 20 is a key component for the control and interaction with the software system of the entire building block.
  • the outer shape of the main body of the control socket 20 may be a cube, a sphere and other shapes.
  • the inside of the control socket module 20 is hollow and has a built-in circuit board, a battery and a Bluetooth module.
  • the socket body 22 of the control socket module 20 has a protruding cylindrical socket connector 24 and the end of the socket connector 24 is provided with a Type-C interface.
  • the atomic balls described later have corresponding key sockets.
  • the atomic ball module 40 can be directly inserted into the socket connector 24 to communicate through the Type-C interface.
  • a socket plug baffle 248 is provided on the socket connector body 242 of the socket connector 24 to prevent the Type-C interface and other communication lines from being damaged by excessive force during insertion.
  • the control socket module 20 of this embodiment collects the data information of the connected atomic ball module 40 and the molecular bond module including the conventional molecular bond module 62 and the flexible molecular bond module 64 through the Type-C connection interface, and then collects the data and sends it in real time through Bluetooth To the supporting software system. In this way, the software system can construct and update the virtual molecular structure in real time, and calculate the energy of the molecule.
  • Each building block of the interactive molecular building block of this embodiment has a built-in chip, and a unique identification ID (Identity document, identification number) of the building block and the attributes of the building block are recorded in the chip.
  • the properties of different building blocks can be represented by codes or letters, such as A for atomic ball modules and B for molecular bond modules.
  • Atomic ball module attribute if the building block type attribute is A, the atom represented by the atomic ball module attribute is the letter code of the atom, such as hydrogen is H, carbon is C, oxygen is O; if the building block type attribute is B, the attribute is null.
  • Molecular bond module attribute if the block type attribute is B, and the block is a regular molecular bond module, the attribute is N; the building block is a flexible molecular bond module, the attribute is R. If the block type property is A, the property is null.
  • control socket module 20 When a building block is inserted into the control socket module 20 or other building blocks connected to the control socket module 20, the control socket module 20 will read out the ID of the building block and the properties of the building block. Through the properties of the building blocks, the system can determine what atoms are inserted, and what molecular bonds.
  • the atomic ball module 40 of this embodiment includes: an atomic ball body 42 , and an atomic ball connector 44 arranged on the atomic ball body 42 and mated with the socket connector 24 .
  • the atomic ball module 40 is provided with a plurality of atomic ball connectors 44 .
  • the Atomic Ball module has an identifying ID.
  • the atomic ball module 40 in this embodiment further includes: an atomic ball processing module built in the atomic ball body 42 .
  • the atomic ball processing module records the identification ID of the atomic ball module, the attribute, and the coordinates or position of the atomic ball connector.
  • the atomic ball connector 44 is electrically connected to the atomic ball processing module.
  • the atomic ball body 42 in this embodiment is a hollow structure.
  • the atomic ball processing module is arranged in the hollow structure.
  • the atomic ball connector 44 includes a key opening and a slot provided in the key opening. The angles between the bond openings are different to correspond to different molecular bond angles.
  • Each key port is connected to the atomic ball processing module and is set with a number.
  • the properties of the Atomic Ball module include: Represented atoms.
  • Different atoms can be determined by the properties of the building blocks.
  • the key ports on the atomic ball module 40 are all numbered, and the circuits of these key ports will be connected to the chip of the atomic ball processing module and correspond to the numbers one by one. If a key port is inserted into a molecular key module, the chip will send the corresponding key port number and insertion state to the system. The system can calculate different positions according to its latitude and longitude coordinates through different key port numbers.
  • Atomic sphere module 40 is a set of sphere structures that represent atoms inside a molecule.
  • the structure of this set of spheres is consistent, and the spheres representing different atoms will vary in size. In practical use, the size ratio of the spheres representing each atom can be made in proportion to the atomic radius. There is no limit to the number of spheres in this set, which can be produced on demand based on the number of atoms in the molecule and the number of molecules that need to be assembled.
  • the key opening in this embodiment is cylindrical and concave inward on the spherical surface of the atomic ball body 42 .
  • the slot in this embodiment is preferably a Type-C slot. There is a Type-C slot inside each key port.
  • the conventional molecular bond module and the flexible molecular bond module can be directly inserted into the key port, and then communicate through the Type-C connection interface.
  • the number of angles between each key port is different, corresponding to different molecular bond angles.
  • the key openings in this embodiment include 16 key openings that can form common molecular bond angles. If other special angles are required in use, corresponding key ports can also be added according to the same design.
  • Table 1 The distribution of the key openings of this embodiment on the spherical surface of the atomic ball body 42 is as follows:
  • the inside of the ball of the atomic ball module 40 is hollow and has a built-in circuit board for processing the information of the Type-C interface of each key port.
  • the socket plug 244 of the control socket module 20 can be inserted into any key port, and the atomic ball module 40 transmits information to the control socket module 20 through the Type-C interface.
  • the molecular bond module of this embodiment has an identification ID.
  • the molecular bond modules include: a conventional molecular bond module 62 and a flexible molecular bond module 64 .
  • the conventional molecular bond module 62 includes: a single bond module, a double bond module, and a triple bond module.
  • the single bond module or the double bond module or the triple bond module includes: a conventional molecular bond body 622, and a conventional molecular bond connector 624 arranged at the end 622 of the conventional molecular bond body and matched with the atomic ball connector.
  • the single bond module or the double bond module or the triple bond module further includes: a conventional molecular bond processing module built into the conventional molecular bond body 622 .
  • the conventional molecular bond connector 624 is electrically connected to the conventional molecular bond processing module.
  • the conventional molecular bond processing module records the identification ID and attribute of the conventional molecular bond module.
  • Conventional molecular bonds are hollow structures.
  • a conventional molecular bond plug baffle 626 is provided between the conventional molecular bond body 622 and the conventional molecular bond connector 624 in this embodiment.
  • the conventional molecular bond connector 624 of this embodiment includes a molecular bond plug 6242 arranged at the end of the conventional molecular bond body 622 and a connection interface 6244 arranged at one end of the molecular bond plug 6242 .
  • the conventional molecular bond module 62 of the present embodiment is cylindrical, representing the molecular bond formed between two atoms in the molecule.
  • the conventional molecular bond body is a hollow structure with a built-in circuit board. Both ends of the conventional molecular bond body 622 are provided with conventional molecular bond connectors 624, and both ends are equipped with Type-C interfaces.
  • the molecular bond plug 6242 is inserted into the key port of the atomic ball module 40, the atomic ball module 40 and the conventional molecular
  • the key module 62 can communicate through a Type-C interface.
  • Both ends of the conventional molecular bond module 62 are respectively provided with a conventional molecular bond plug baffle 626 to prevent the Type-C interface and other communication lines from being damaged by excessive force during insertion.
  • the conventional molecular bond module 62 can produce bond bodies with different lengths and thicknesses according to the length ratio of the actual molecular bond and the type of the bond (eg single bond, double bond, triple bond). For example, single bond, double bond and triple bond can be produced according to the ratio of thickness 1:2:3.
  • the flexible molecular bond module 64 of this embodiment includes a flexible molecular bond body 642 , and a flexible molecular bond connector disposed at the end of the flexible molecular bond body 642 and cooperating with the atomic ball connector. 644.
  • the flexible molecular bond module 64 in this embodiment further includes: a flexible molecular bond processing module built in the flexible molecular bond bond body 642 .
  • the flexible molecular bond processing module of this embodiment records the identification ID and attribute of the flexible molecular bond module.
  • the flexible molecular bond connector 644 is electrically connected to the flexible molecular bond processing module.
  • a flexible molecular bond plug baffle 646 is disposed between one end of the flexible molecular bond body 642 and the flexible molecular bond connector 644 in this embodiment.
  • An encoder 648 is provided at the other end of the flexible molecular bond body 642 connected to another flexible molecular bond connector 644 .
  • the encoder 648 is electrically connected with the flexible molecular bond processing module.
  • the encoder in this embodiment is an absolute encoder.
  • the flexible molecular bond body 642 is a hollow structure.
  • the flexible molecular bond connector 644 includes: a flexible molecular bond plug 6442 provided at the end of the flexible molecular bond body 642 , and a connection interface 6444 provided at one end of the flexible molecular bond plug 6442 .
  • the connection interface 6444 of the flexible molecular bond connector 644 in this embodiment is a Type-C interface.
  • the flexible molecular bond module in this embodiment is cylindrical, representing a flexible molecular bond formed between two atoms in the molecule.
  • Flexible molecular bonds are intramolecular rotatable single bonds. Usually when a sigma bond is formed between two atoms, the groups at both ends of the bond can rotate along the bond axis to form different molecular conformations.
  • the structure of the flexible molecular bond module of this embodiment is basically the same as that of the conventional molecular bond module. The difference is that an absolute encoder is installed at one end of the flexible molecular bond module at the position of the flexible molecular bond plug baffle 646 .
  • a rotary encoder measures the angle of rotation.
  • Such an encoder is memorized by a photoelectric encoder.
  • the absolute encoder is coded by the mechanical position. It does not need to memorize, do not need to find a reference point, and does not need to count all the time. When you need to know the position, you can read its position. In this way, the anti-interference characteristics of the encoder and the reliability of the data are greatly improved.
  • the absolute value rotates the single-turn absolute value encoder to measure each line of the photoelectric encoder during rotation to obtain a unique code, when the rotation exceeds 360 degrees,
  • the encoding returns to the origin, which does not conform to the principle of unique absolute encoding.
  • Such encoding can only be used for measurements within a rotation range of 360 degrees, which is called a single-turn absolute encoder.
  • the inner side of the absolute value rotary encoder is provided with a zero-degree marking pointer 649, and the flexible molecular bond key body 642 has a corresponding scale of 0-360 degrees.
  • the encoder can rotate along the axis of the flexible molecular bond body 642.
  • the zero-degree mark pointer on the flexible molecular bond body 642 points to 0, which is the angle reading of the encoder is also 0.
  • the user can rotate the encoder, and one end of the key body connected to the encoder forms a rotation angle with the other end of the key body, and this angle can be read from the encoder.
  • the matching software system of the present invention can be installed on a computer or a mobile phone.
  • the software receives the information from the control socket module 20 through the Bluetooth module of the computer or the mobile phone, and completes the communication between the device and the software.
  • the supporting software can display in real time the atomic ball modules and molecular bond modules currently connected to the control socket module 20 (including other atomic ball modules and molecular bond modules connected to these atomic ball modules and molecular bond modules).
  • the supporting software has a built-in molecular energy calculation module, which supports calculation of energy by force field, semi-empirical methods and high-precision quantum chemical methods.
  • the supporting software system can be installed on a computer or a mobile phone.
  • the software receives the information from the control socket through the Bluetooth module of the computer or mobile phone, and completes the communication between the device and the software.
  • the supporting software can display in real time the atomic ball modules and molecular bond modules currently connected to the control socket module (including other atomic ball modules and molecular bond modules connected to these atomic ball modules and molecular bond modules).
  • the supporting software has a built-in molecular energy calculation module, which supports calculation of energy by force field, semi-empirical methods and high-precision quantum chemical methods.
  • the control socket module After selecting the initial atom, take an atomic ball module, and determine the bond opening to be used according to the type of atom and the type of bond angle (see Table 2 for the determination rules). Then plug any unused key port into the control socket module. At this time, the control socket module obtains the model through the Type-C interface and inserts an atomic ball module, and transmits this information to the supporting software. The supporting software will display an atomic ball on the interface. The user can edit the atom type corresponding to the atomic ball module in the software, which is consistent with the target molecule.
  • the corresponding molecular bond module select the corresponding molecular bond module according to the type of molecular bond between this atom and other atoms. If it is a flexible bond, select a flexible molecular bond module, and select a conventional molecular bond module for other types of bonds. Then, according to the key opening determined in the previous step, insert the molecular bond module into the key opening of the atomic ball module. At this time, the atomic ball module will send the key port number of the inserted molecular bond to the control socket module, and the control socket module will send the information to the supporting software. The software will display on the interface that these molecular bond modules are inserted into the atomic sphere module. The user can edit the bond type corresponding to these molecular bonds in the software, which is consistent with the target molecule. The above process is repeated according to the combination of atoms and molecular bonds in the target molecule until the entire molecular model is assembled.
  • the atomic ball module 40 or the molecular bond module connected to the control socket module will send a disconnection signal to the control socket module 20 through the connection.
  • the software The system will delete the display of the disconnected part, and only keep the display of the molecular group connected to the 20 part of the control socket module.
  • the user can change the relative angle between the molecular groups at both ends by rotating the flexible molecular bond module around the bond axis.
  • the encoder will read the current rotation angle in real time, and transmit the information to the control socket module all the way through the Type-C interface.
  • the control socket module transmits the information to the supporting software, and the software will update the display according to the rotation angle of the flexible key module.
  • the molecular energy calculation function can be activated through the supporting software.
  • the software calculates the energy based on the three-dimensional structure of the current molecular model. If the user rotates the flexible molecular bonds in the model, the software will adjust the three-dimensional structure of the simulated molecular model in real time according to the rotation angle, and calculate the energy.
  • Detect the control socket module connected to the communication connection detect the atomic ball module connected to the control socket module, the molecular bond module connected between the atomic ball modules, detect the properties of the atomic ball module and the molecular bond module, and determine the atomic ball Modules represent atoms and molecular bonds represented by molecular bond modules.
  • Molecular bond modules include: conventional molecular bond modules and flexible molecular bond modules.
  • Conventional molecular bond modules represent molecular bonds formed between two atoms in a molecule.
  • Flexible molecular bond modules Represents a flexible molecular bond formed between two atoms in a molecule.
  • Conventional molecular bond modules include: single bond module, double bond module, triple bond module, single bond module represents single bond, double bond module represents double bond, triple bond module represents Triple bond, the conventional molecular bond type of the virtual molecule is determined according to the type of conventional molecular bond module;
  • Analysis and calculation perform analysis and calculation according to the constructed virtual molecular structure.
  • determining the atomic and molecular bonds in this embodiment further includes: detecting an encoder of the flexible molecular bond module, reading the current rotation angle of the flexible molecular bond module according to the encoder on the flexible molecular bond, and changing the flexible molecular bond module according to the rotation of the flexible molecular bond The relative angle between the molecular groups at both ends of a flexible molecular bond.
  • the atomic ball module property includes: the represented atom
  • the molecular bond module property includes: the represented molecular bond type.
  • the molecular building block interaction system of this embodiment can display the constructed virtual ball modules and molecular bond modules in real time according to the atomic ball modules and molecular bond modules currently connected to the control socket module (including other atomic ball modules and molecular bond modules connected to these atomic ball modules and molecular bond modules).
  • the control socket module including other atomic ball modules and molecular bond modules connected to these atomic ball modules and molecular bond modules.
  • the molecular building block interaction system of this embodiment has a built-in molecular energy calculation module, which supports energy calculation by force field, semi-empirical method and high-precision quantum chemical method.
  • the control socket module 20 After selecting the initial atom, take an atom ball, and determine the bond opening to be used according to the type of atom and the type of bond angle (see Table 2 for the determination rules). Then, insert the key ports of any unused atomic ball modules 40 into the control socket module 20 . At this time, the control socket module obtains the model through the Type-C interface and inserts an atomic ball module, and transmits this information to the molecular building block interactive system, which will display an atomic ball on the interface. The user can edit the atom type corresponding to the atomic ball in the molecular building block interactive system, which is consistent with the target molecule.
  • the corresponding molecular bond module selects the corresponding molecular bond module. If it is a flexible molecular bond, the flexible molecular bond module 64 is selected, and for other types of bonds, the conventional molecular bond module 62 is selected. Then, according to the key opening determined in the previous step, insert the molecular bond module into the key opening of the atomic ball module 40 . At this time, the atomic ball module 40 will send the key port number inserted into the molecular bond module to the control socket module 20, and the control socket module 20 will send the information to the molecular building block interaction system.
  • the molecular building block interaction system will display that these molecular bonds are inserted into atoms according to the molecular bond modules inserted into the atomic ball module 40 on the interface. Users can edit the bond types corresponding to these molecular bonds in the molecular building block interactive system, which is consistent with the target molecule. The above process is repeated according to the combination of atoms and molecular bonds in the target molecule until the entire molecular model is assembled.
  • the atomic ball module or the molecular bond module connected to the control socket module will send a disconnection signal to the control socket module through the connection, and the molecular building blocks interact with each other.
  • the system deletes the display of the disconnected part, leaving only the display of the molecular groups connected to the control socket module.
  • the user can change the relative angle between the molecular groups at both ends by rotating the flexible molecular bond module 64 around the bond axis.
  • the encoder will read the current rotation angle in real time, and transmit the information to the control socket module all the way through the Type-C interface.
  • the control socket module transmits information to the molecular building block interaction system, and the molecular building block interaction system will rotate the corresponding flexible key to a corresponding angle according to the rotation control of the flexible molecular bond module 64, and update the display.
  • the molecular energy calculation function can be activated through the molecular building block interactive system.
  • the molecular building block interaction system will calculate the energy according to the three-dimensional structure of the current molecular model. If the user rotates the flexible molecular bond module 64 in the model, the molecular building block interaction system will adjust the three-dimensional structure of the simulated molecular model in real time according to the rotation angle of the flexible molecular bond module 64, and calculate the energy.
  • the molecular building block interaction system directly constructs a virtual molecular structure by acquiring the IDs of the atomic ball module 40 and the molecular bond module connected to the control socket module 20, the properties of the building block and the position of the inserted key port.
  • the virtual molecular structure can be stored in the format of a mol file, which records all the information that needs to be calculated.
  • Molecular energy calculation supports energy calculation methods based on molecular force fields and quantum chemical calculation methods based on first principles.
  • Common tools for calculating energy in molecular force fields include Amber, charmm, etc.
  • common tools for calculating energy in quantum chemistry include Gaussian, Psi4, etc.
  • the invention realizes the communication between each atomic ball module and the molecular bond module in the molecular model, and supports the accurate digital measurement of the angle of the flexible molecular bond in the molecule.
  • the interactive communication between the molecular model and the software system is also realized through the control socket module 20 .
  • the molecular model and the virtual model in the software system realize a digital twin.
  • the software system will simulate in real time and support the calculation of molecular energy. Users can precisely manipulate the molecular structure through this set of building blocks and get feedback in the software in real time, which greatly improves the quality and efficiency of research and development and teaching.
  • the embodiments of the present application may be provided as a method, a system, or a computer program product. Accordingly, the present application may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects. Furthermore, the present application may take the form of a computer program product embodied on one or more computer-usable storage media (including, but not limited to, disk storage, CD-ROM, optical storage, etc.) having computer-usable program code embodied therein.
  • computer-usable storage media including, but not limited to, disk storage, CD-ROM, optical storage, etc.
  • These computer program instructions may also be stored in a computer-readable memory capable of directing a computer or other programmable data processing apparatus to function in a particular manner, such that the instructions stored in the computer-readable memory result in an article of manufacture comprising instruction means, the instructions
  • the apparatus implements the functions specified in the flow or flow of the flowcharts and/or the block or blocks of the block diagrams.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Algebra (AREA)
  • Pure & Applied Mathematics (AREA)
  • Computational Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Mathematical Physics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Business, Economics & Management (AREA)
  • Chemical & Material Sciences (AREA)
  • Educational Administration (AREA)
  • Educational Technology (AREA)
  • Theoretical Computer Science (AREA)
  • Position Input By Displaying (AREA)

Abstract

一种交互式分子积木及分子积木交互系统,包括:控制插座模块(20)、原子球模块(40)、分子键模块,控制插座模块(20)包括:插座本体(22)、插座连接器(24),原子球模块(40)包括:原子球本体(42)、原子球连接器(44),原子球模块(40)上设置有多个原子球连接器(44),分子键模块包括:常规分子键模块(62)、柔性分子键模块(64),常规分子键模块(62)包括:单键模块、双键模块、三键模块,单键模块或双键模块或三键模块包括:常规分子键键体(622)、常规分子键连接器(624),柔性分子键模块(64)包括:柔性分子键键体(642)、柔性分子键连接器(644);交互式分子积木及分子积木交互系统通过设置柔性分子键模块(64)支持分子内柔性分子键角度的精确数字化度量,通过控制插座模块(20)实现分子模型和交互系统的交互,操作实体模型时,交互系统实时进行模拟。

Description

交互式分子积木及分子积木交互系统 技术领域
本发明涉及积木,特别涉及一种交互式分子积木及分子积木交互系统。
背景技术
当前用于研发和教学用的分子实体模型基本都是塑料或金属制成的球棍积木。这样的积木由不同大小的实体球(代表不同的原子)和不同长短的实体短棒(代表不同的化学键)构成。使用者可以根据目标分子的结构(包括内部由哪些原子,原子之间是怎样的化学键连接),来拼接积木,得到对应的实体化学分子结构模型。
当前的技术只是一个简单的积木,只能简单示意一下微观的分子结构被放大到积木大小时给使用者以直观感受。在实际研发中,需要结合计算机更精确的操作分子结构积木,并能与积木形成实时的反馈。比如,在药物分子研发过程中,分子内柔性角的转动会对分子本身的能量和稳定性产生非常大的影响。如果希望直观的看到最稳定的分子结构被真实放大后的情况,当前的技术就非常困难。
另一方面,之前这些研发操作都是直接通过计算机模拟完成的,这样使用者只能通过显示器看到一个虚拟的分子结构模型。这就需要使用者有较强的想象力,将虚拟场景在脑海中转化为实体的情形。而在实际研发和教学过程中,能真实触摸和操作的模型会更直观,达成的效果更好。
发明内容
基于此,有必要提供一种可提高交互性的交互式分子积木。
同时,提供一种可提高交互性的晶体交互系统。
一种交互式分子积木,包括:控制插座模块、原子球模块、分子键模块,所述控制插座模块包括:插座本体、及设置在所述插座本体上的插座连接器,所述原子球模块包括:原子球本体、及设置在原子球本体上并与所述插座连接器配合的原子球连接器,所述原子球模块上设置有多个所述原子球连接器,所述分子键模块包括:常规分子键模块、与柔性分子键模块,所述常规分子键模 块包括:单键模块、双键模块、三键模块,所述单键模块或双键模块或三键模块包括:常规分子键键体、及设置在所述常规分子键键体端部并与原子球连接器配合的常规分子键连接器,所述柔性分子键模块:柔性分子键键体、及设置在所述柔性分子键键体端部并与所述原子球连接器配合设置的柔性分子键连接器。
在优选的实施例中,所述插座本体中设置有控制模块、与所述控制模块连接并进行供电的电源、及与所述控制模块连接并受控进行通信的通信模块,所述插座连接器与所述控制模块连接。
在优选的实施例中,所述插座本体为中空结构,形成插座内腔;所述插座连接器包括:插座连接器本体、及设置在所述插座连接器本体上的插座插头挡板、及设置所述插座连接器本体一端的插座插头、及设置在插座插头一端的连接接口。
在优选的实施例中,所述原子球模块或分子键模块具有识别ID,所述原子球模块还包括内置在原子球本体中的原子球处理模块,所述原子球连接器与所述原子球处理模块电性连接,所述原子球处理模块记录该原子球模块的识别ID、属性、原子球连接器的坐标或位置。
在优选的实施例中,所述原子球本体为中空结构,所述原子球处理模块设置在中空结构中,所述原子球连接器包括:键口、及设置在所述键口内的插槽,所述键口之间的夹角不同以对应不同的分子键夹角,每个键口连接至所述原子球处理模块并设置有编号,所述原子球模块的属性包括:代表的原子。
在优选的实施例中,所述键口包括:第一键口U、第二键口D、第三键口N、第四键口S、第五键口W、第六键口E、第七键口105-1、第八键口105-2、第九键口107-1、第十键口107-2、第十一键口107-3、第十二键口109-2、第十三键口109-3、第十四键口109-4、第十五键口120-2、第十六键口120-3,所述原子球连接器的坐标包括:键口圆心在所述原子球本体的球面上的经纬度坐标,所述第一键口U的经纬度坐标为N90°/E0°,所述第二键口D的经纬度坐标为S90°/E0°,所述第三键口N的经纬度坐标为N0°/E180°,所述第四键口S的经纬度坐标为N0°/E0°,所述第五键口W的经纬度坐标为N0°/W90°,所述第六 键口E的经纬度坐标为N0°/E90°,所述第七键口105-1的经纬度坐标为N37°30'/E90°,所述第八键口105-2的经纬度坐标为N37°30'/W90°,所述第九键口107-1的经纬度坐标为N30°/E120°,所述第十键口107-2的经纬度坐标为N30°/W120°,所述第十一键口107-3的经纬度坐标为N30°/E0°,所述第十二键口109-2的经纬度坐标为S19°28'/E30°,所述第十三键口109-3的经纬度坐标为S19°28'/W90°,所述第十四键口109-4的经纬度坐标为S19°28'/E150°,所述第十五键口120-2的经纬度坐标为N0°/W30°,所述第十六键口120-3的经纬度坐标为N0°/W150°。
在优选的实施例中,所述单键模块或双键模块或三键模块还包括:内置在常规分子键键体中的常规分子键处理模块,所述常规分子键连接器与所述常规分子键处理模块电性连接,所述常规分子键处理模块记录该常规分子键模块的识别ID、属性,所述常规分子键键体与所述常规分子键连接器之间设置有常规分子键插头挡板,所述常规分子键键体为中空结构,所述常规分子键连接器包括:设置在所述常规分子键键体端部的分子键插头、及设置在所述分子键插头一端的连接接口。
在优选的实施例中,所述柔性分子键模块还包括:内置在柔性分子键键体中的有柔性分子键处理模块,所述柔性分子键处理模块记录该柔性分子键模块的识别ID、属性,所述柔性分子键连接器与所述柔性分子键处理模块电性连接,所述柔性分子键键体一端与所述柔性分子键连接器之间设置有柔性分子键插头挡板,所述柔性分子键键体与另一个柔性分子键连接器连接的另一端设置有编码器,所述编码器与所述柔性分子键处理模块电性连接,所述柔性分子键键体为中空结构,所述柔性分子键连接器包括:设置在所述柔性分子键键体端部的柔性分子键插头、及设置在所述柔性分子键插头一端的连接接口。
一种分子积木交互系统,包括:
确定原子与分子键:检测通信连接的控制插座模块,检测与控制插座模块连接的原子球模块、原子球模块之间连接的分子键模块,检测原子球模块、分子键模块的识别ID、属性,确定原子球模块代表的代表原子、分子键模块代表的分子键,分子键模块包括:常规分子键模块、与柔性分子键模块,常规分子 键模块代表分子内两原子之间形成的分子键,柔性分子键模块代表分子内两原子之间的形成的柔性分子键,常规分子键模块包括:单键模块、双键模块、三键模块,单键模块代表单键,双键模块代表双键,三键模块代表三键,根据常规分子键模块的类型确定虚拟分子的常规分子键类型;
构建虚拟分子:检测分子键模块与原子球模块连接的原子球模块上的键口编号,根据键口编号确定键口坐标,根据键口坐标计算位置,根据原子球模块、分子键模块的属性、及分子键模块插入连接至原子球模块中的键口位置构建虚拟分子结构;
分析计算:根据构建的虚拟分子结构进行分析计算。
在优选的实施例中,还包括:断开显示:若检测到与控制插座模块连接的原子球模块或分子键模块断开,控制删除断开部分的显示,保留与所述控制插座模块连接部分的显示;所述确定原子与分子键还包括:检测柔性分子键模块的编码器,根据柔性分子键上的编码器读取柔性分子键模块的当前旋转角度,根据柔性分子键模块的旋转改变柔性分子键两端分子基团的相对夹角;所述原子球模块属性包括:代表的原子,所述分子键模块属性包括:代表的分子键类型。
上述交互式分子积木及分子积木交互系统的分子键模块包括:常规分子键模块、与柔性分子键模块,通过设置柔性分子键模块支持分子内柔性分子键角度的精确数字化度量,分子模型内部各原子球模块和分子键模块之间的通信,同时,也通过控制插座模块实现了分子模型和交互系统之间的交互通信,分子模型和交互系统中的虚拟模型就实现了数字孪生,使用者操作实体模型时,交互系统中就会实时进行模拟,并支持分子能量的计算;使用者可以通过这套积木精确操作分子结构,并实时在软件中得到反馈,极大的提升了研发和教学的质量和效率。
附图说明
图1为本发明一实施例的交互式分子积木的控制插座模块的部分结构示意图;
图2为本发明一实施例的交互式分子积木的原子球模块的部分结构示意图;
图3为本发明一实施例的交互式分子积木的常规分子键模块的部分结构示 意图;
图4为本发明一实施例的交互式分子积木的柔性分子键模块的部分结构示意图。
具体实施方式
如图1至图4所示,本发明一实施例的交互式分子积木包括:控制插座模块20、原子球模块40、分子键模块。
控制插座模块20包括:插座本体22、及设置在插座本体22上的插座连接器24。
进一步,本实施例的插座本体22为中空结构,形成插座内腔222。
进一步,本实施例的插座本体22中设置有控制模块、与控制模块连接并进行供电的电源、及与控制模块连接并受控进行通信的通信模块。本实施例中,优选的,通信模块可以为蓝牙模块。本实施例的插座连接器与控制模块连接。
进一步,本实施例的插座连接器24包括:插座连接器本体242、设置插座连接器本体242一端的插座插头244、及设置在插座插头244一端的连接接口246、及设置在插座连接器本体242与插座插头244之间的插座插头挡板248。本实施例的连接接口246优选为Type-C接口。
控制插座模块20是整个积木的控制和与软件系统交互的关键部件。控制插座20的主体的外形可以是方体、球体等其他形状。控制插座模块20内部是中空的,内置电路板、电池以及蓝牙模块。控制插座模块20的插座本体22外有一个伸出来的圆柱形的插座连接器24插座连接器24的端部安装Type-C接口。后面介绍的原子球有与之对应的键口插座。
原子球模块40就可以直接插在插座连接器24,通过Type-C接口进行通信。插座连接器24的插座连接器本体242上设置插座插头挡板248防止插入的时候用力过大损坏Type-C接口和其他通信线路的。
本实施例的控制插座模块20通过Type-C连接接口采集连接的原子球模块40、分子键模块包括常规分子键模块62和柔性分子键模块64的数据信息,然后将数据汇总后通过蓝牙实时发送给配套的软件系统。这样软件系统就可以实时构建和更新虚拟的分子结构,并对分子的能量进行计算。
本实施例的交互式分子积木的每个积木有内置的芯片,芯片内会记录这个积木的一个唯一的识别ID(Identity document,身份标识号码),以及这个积木的属性。
可通过代码或字母表示不同的积木类型属性如用A表示原子球模块,B表 示分子键模块。
原子球模块属性,如果积木类型属性为A,原子球模块属性为代表的原子如原子的字母代号,比如氢为H,碳为C,氧为O;如果积木类型属性为B,则该属性为null。
分子键模块属性,如果积木类型属性为B,且该积木为常规分子键模块,则属性为N;该积木为柔性分子键模块,则属性为R。如果积木类型属性为A,则该属性为null。
当积木插到控制控制插座模块20上或控制插座模块20连接的其他积木上,控制插座模块20会读出这个积木的ID和其积木的属性。通过积木的属性,系统可以判断出插入的是什么原子,以及是什么分子键。
如图2所示,进一步,本实施例的原子球模块40包括:原子球本体42、及设置在原子球本体42上并与插座连接器24配合的原子球连接器44。原子球模块40上设置有多个原子球连接器44。原子球模块具有识别ID。
进一步,本实施例的原子球模块40还包括:内置在原子球本体42中的原子球处理模块。原子球处理模块记录该原子球模块的识别ID、属性、原子球连接器的坐标或位置。原子球连接器44与原子球处理模块电性连接。
进一步,本实施例的原子球本体42为中空结构。原子球处理模块设置在中空结构中。原子球连接器44包括:键口、及设置在键口内的插槽。键口之间的夹角不同以对应不同的分子键夹角。每个键口连接至原子球处理模块并设置有编号。原子球模块的属性包括:代表的原子。
可以通过积木属性判断出不同的原子。
原子球模块40上的键口都有编号,这些键口的电路会连接到原子球处理模块的芯片上,并与之编号一一对应。如果一个键口插入了分子键模块,则芯片会将对应的键口编号和插入状态发送给系统。系统通过不同的键口编号可以根据其经纬度坐标计算出不同的位置。
原子球模块40是一组代表分子内部原子的球体结构。这一组球的构造是一致的,代表不同原子的球的尺寸会有差异。在实际使用中,代表各原子的球的尺寸比例可以按照原子半径的比例来制造。这一组球的个数没有什么限制,可根据分子内原子的数量和需要组装的分子数量来按需生产。本实施例的键口为圆柱形并于原子球本体42的球表面有向内凹。本实施例的插槽优选为Type-C插槽。每个键口内有Type-C插槽。
常规分子键模块和柔性分子键模块可以直接插入键口,然后通过Type-C连接接口通信。各键口之间的夹角度数不同,对应了不同的分子键夹角。本实施 例的键口包括可组成常见分子键角的16个键口。如果在使用中需要的其他特殊角度,也可以按同样的设计增加相应的键口。
表一:本实施例的键口在原子球本体42的球面上的分布如下:
Figure PCTCN2020120661-appb-000001
表二:键口对应的常见分子键角的详细说明如下:
Figure PCTCN2020120661-appb-000002
Figure PCTCN2020120661-appb-000003
Figure PCTCN2020120661-appb-000004
原子球模块40的球内是中空的,内置电路板,用于处理各键口Type-C接口的信息。控制插座模块20的插座插头244可以插入任一键口内,原子球模块40通过Type-C接口向控制插座模块20传递信息。
进一步,本实施例的分子键模块具有识别ID。分子键模块包括:常规分子键模块62、与柔性分子键模块64。
如图3所示,常规分子键模块62包括:单键模块、双键模块、三键模块。单键模块或双键模块或三键模块包括:常规分子键键体622、及设置在常规分子键键体端部622并与原子球连接器配合的常规分子键连接器624。
单键模块或双键模块或三键模块还包括:内置在常规分子键键体622中的常规分子键处理模块。常规分子键连接器624与常规分子键处理模块电性连接。常规分子键处理模块记录该常规分子键模块的识别ID、属性。常规分子键键体为中空结构。
进一步,本实施例的常规分子键键体622与常规分子键连接器624之间设置有常规分子键插头挡板626。
进一步,本实施例的常规分子键连接器624:设置在常规分子键键体622端部的分子键插头6242、及设置在分子键插头6242一端的连接接口6244。
本实施例的常规分子键模块62为圆柱形,代表分子内两个原子之间形成的分子键。常规分子键键体为中空结构,内置电路板。常规分子键键体622两端都设置有常规分子键连接器624,两端都装有Type-C接口,当分子键插头6242插入原子球模块40的键口后,原子球模块40和常规分子键模块62可以通过Type-C接口进行通信。常规分子键模块62的两端分别有一个常规分子键插头挡板626,防止插入的时候用力过大损坏Type-C接口和其他通信线路的。
常规分子键模块62可根据实际分子键的长短比例和键的类型(如单键、双键、三键),生产不同长度和粗细的键体。如可将单键、双键、三键可以按粗细1:2:3的比例生产。
如图4所示,进一步,本实施例的柔性分子键模块64:柔性分子键键体642、及设置在柔性分子键键体642端部并与原子球连接器配合设置的柔性分子键连 接器644。
进一步,本实施例的柔性分子键模块64还包括:内置在柔性分子键键体642中的有柔性分子键处理模块。
本实施例的柔性分子键处理模块记录该柔性分子键模块的识别ID、属性。柔性分子键连接器644与柔性分子键处理模块电性连接。
进一步,本实施例的柔性分子键键体642一端与柔性分子键连接器644之间设置有柔性分子键插头挡板646。柔性分子键键体642与另一个柔性分子键连接器644连接的另一端设置有编码器648。编码器648与柔性分子键处理模块电性连接。优选的,本实施例的编码器为绝对编码器。柔性分子键键体642为中空结构。柔性分子键连接器644包括:设置在柔性分子键键体642端部的柔性分子键插头6442、及设置在柔性分子键插头6442一端的连接接口6444。优选的,本实施例的柔性分子键连接器644的连接接口6444为Type-C接口。
本实施例的柔性分子键模块为圆柱形,代表分子内两个原子之间形成的柔性分子键。
柔性分子键是分子内可旋转的单键。通常当两个原子之间形成σ键的时候,键两端的基团可以沿着键轴旋转,形成不同的分子构象。
本实施例的柔性分子键模块的的构造与常规分子键模块基本相同。区别在于在柔性分子键模块的一端于柔性分子键插头挡板646的位置安装了一个绝对编码器。
旋转编码器测量旋转角度。绝对值旋转编码器光码盘上有许多道光通道刻线,每道刻线依次以2线、4线、8线、16线编排,这样,在编码器的每一个位置,通过读取每道刻线的通、暗,获得一组从2的零次方到2的n-1次方的唯一的2进制编码(格雷码),这就称为n位绝对编码器。这样的编码器是由光电码盘进行记忆的。
绝对编码器由机械位置确定编码,它无需记忆,无需找参考点,而且不用一直计数,什么时候需要知道位置,什么时候就去读取它的位置。这样,编码器的抗干扰特性、数据的可靠性大大提高了。
从单圈绝对值编码器到多圈绝对值编码器,绝对值旋转单圈绝对值编码器,以转动中测量光电码盘各道刻线,以获取唯一的编码,当转动超过360度时,编码又回到原点,这样就不符合绝对编码唯一的原则,这样的编码只能用于旋转范围360度以内的测量,称为单圈绝对值编码器。
绝对值旋转编码器的内侧装有一个零度标记指针649,柔性分子键键体642上有与之对应的0~360度的刻度。编码器可以沿柔性分子键键体642的轴旋转, 在初始状态,柔性分子键键体642上的零度标记指针指向0,这是编码器的角度读数也是0。在使用过程中,使用者可以旋转编码器,编码器连接的一端键体会与另一端键体形成旋转角度,这个角度可以从编码器中读出。
本发明的配套的软件系统可以安装在计算机上或手机上。软件通过计算机或手机的蓝牙模块接收控制插座模块20传来的信息,完成设备与软件之间的通信。
配套的软件可以实时显示当前控制插座模块20上连接的原子球模块和分子键模块(包括这些原子球模块和分子键模块连接的其他原子球模块和分子键模块)。
配套的软件内置分子能量计算模块,支持用力场、半经验方法和高精度量子化学方法计算能量。
配套的软件系统可以安装在计算机上或手机上。软件通过计算机或手机的蓝牙模块接收控制插座传来的信息,完成设备与软件之间的通信。
配套的软件可以实时显示当前控制插座模块上连接的原子球模块和分子键模块(包括这些原子球模块和分子键模块连接的其他原子球模块和分子键模块)。
配套的软件内置分子能量计算模块,支持用力场、半经验方法和高精度量子化学方法计算能量。
当使用者需要搭建分子模型时,首先需要从分子内的所有原子中选择一个合适作为初始位置的原子。选择没有特定的要求,但从使用便捷性考虑,建议选择最边缘,键连最少的原子作为初始原子。
选好初始原子后,取一个原子球模块,根据原子的类型和键角的类型,确定需要使用的键口(确定规则见表2)。然后将任意一个非使用的键口插入到控制插座模块上。这时,控制插座模块通过Type-C接口获取到模型插入了一个原子球模块,并会将这个信息传输给配套软件。配套软件会在界面上显示一个原子球。使用者可以在软件中编辑这个原子球模块对应的原子类型,与目标分子一致。
接下来根据这个原子与其他原子之间的分子键的类型,选取相应的分子键模块。如果是柔性键,就选择柔性分子键模块,其他类型的键选择常规分子键模块。然后根据上一步确定好的键口,将分子键模块插入原子球模块的键口内。这时,这个原子球模块会将插入分子键的键口编号发给控制插座模块,控制插座模块会将信息发给配套软件。软件会在界面上显示这个些分子键模块插在了原子球模块上。使用者可以在软件中编辑这些分子键对应的键类型,与目标分 子一致。按目标分子内原子和分子键的组合方式重复上述过程,直到整个分子模型组装完成。
如果将分子键模块从原子球模块40的键口内拔出,则与控制插座模块相连部分的原子球模块40或分子键模块会通过连接向控制插座模块20发出断开连接的信号,这时软件系统会删除断开部分的显示,只保留连接在控制插座模块20部分的分子基团的显示。
如果搭建好的分子模型中包括了柔性分子键模块,使用者可以通过绕键轴旋转柔性分子键模块来改变两端分子基团的相对夹角。使用者在旋转的时候,编码器会实时读取当前旋转的角度,并通过Type-C接口一路将信息传输给控制插座模块。控制插座模块将信息传输给配套软件,软件会按柔性键模块的旋转角度,更新显示出来。
当使用者搭好分子模型后,可以通过配套软件启动分子能量计算功能。这时软件会根据当前分子模型的三维结构计算能量。如果使用者旋转模型中的柔性分子键时,软件会根据转动的角度实时调整模拟的分子模型的三维结构,并计算能量。
本发明一实施例的分子积木交互系统,包括:
确定原子与分子键:检测通信连接的控制插座模块,检测与控制插座模块连接的原子球模块、原子球模块之间连接的分子键模块,检测原子球模块、分子键模块的属性,确定原子球模块代表的代表原子、分子键模块代表的分子键,分子键模块包括:常规分子键模块、与柔性分子键模块,常规分子键模块代表分子内两原子之间形成的分子键,柔性分子键模块代表分子内两原子之间的形成的柔性分子键,常规分子键模块包括:单键模块、双键模块、三键模块,单键模块代表单键,双键模块代表双键,三键模块代表三键,根据常规分子键模块的类型确定虚拟分子的常规分子键类型;
构建虚拟分子:检测分子键模块与原子球模块连接的原子球模块上的键口编号,根据键口编号确定键口坐标,根据键口坐标计算位置,根据原子球模块、分子键模块的属性、及分子键模块插入连接至原子球模块中的键口位置构建虚拟分子结构;
分析计算:根据构建的虚拟分子结构进行分析计算。
进一步,本实施例的确定原子与分子键还包括:检测柔性分子键模块的编码器,根据柔性分子键上的编码器读取柔性分子键模块的当前旋转角度,根据柔性分子键模块的旋转改变柔性分子键两端分子基团的相对夹角。
原子球模块属性包括:代表的原子,所述分子键模块属性包括:代表的分 子键类型。
本实施例的分子积木交互系统可以根据当前控制插座模块上连接的原子球模块和分子键模块(包括这些原子球模块和分子键模块连接的其他原子球模块和分子键模块)实时显示构建的虚拟分子结构。
本实施例的分子积木交互系统内置分子能量计算模块,支持用力场、半经验方法和高精度量子化学方法计算能量。
当使用者需要搭建分子模型时,首先需要从分子内的所有原子中选择一个合适作为初始位置的原子。选择没有特定的要求,可以从使用便捷性考虑,建议选择最边缘,键连最少的原子作为初始原子。
选好初始原子后,取一个原子球,根据原子的类型和键角的类型,确定需要使用的键口(确定规则见表2)。然后将任意个非使用的原子球模块40的键口插入到控制插座模块20上。这时,控制插座模块通过Type-C接口获取到模型插入了一个原子球模块,并会将这个信息传输分子积木交互系统,分子积木交互系统会在界面上显示一个原子球。使用者可以在分子积木交互系统中编辑这个原子球对应的原子类型,与目标分子一致。
根据这个原子与其他原子之间的分子键的类型,选取相应的分子键模块。如果是柔性分子键,就选择柔性分子键模块64,其他类型的键选择常规分子键模块62。然后根据上一步确定好的键口,将分子键模块插入原子球模块40的键口内。这时,这个原子球模块40会将插入分子键模块的键口编号发给控制插座模块20,控制插座模块20会将信息发给分子积木交互系统。分子积木交互系统会在界面上根据这个些分子键模块插在了原子球模块40上显示这个些分子键插在了原子上。使用者可以在分子积木交互系统中编辑这些分子键对应的键类型,与目标分子一致。按目标分子内原子和分子键的组合方式重复上述过程,直到整个分子模型组装完成。
如果将分子键模块从原子球模块40的键口内拔出,则与控制插座模块相连部分的原子球模块或分子键模块会通过连接向控制插座模块发出断开连接的信号,这时分子积木交互系统会删除断开部分的显示,只保留连接在控制插座模块的分子基团的显示。
如果搭建好的分子模型中包括了柔性分子键,使用者可以通过绕键轴旋转柔性分子键模块64来改变两端分子基团的相对夹角。使用者在旋转的时候,编码器会实时读取当前旋转的角度,并通过Type-C接口一路将信息传输给控制插座模块。控制插座模块将信息传输给分子积木交互系统,分子积木交互系统会根据柔性分子键模块64的旋转控制旋转相应的柔性键的至相应角度,更新显示 出来。
当使用者搭好分子模型后,可以通过分子积木交互系统启动分子能量计算功能。这时分子积木交互系统会根据当前分子模型的三维结构计算能量。如果使用者旋转模型中的柔性分子键模块64时,分子积木交互系统会根据柔性分子键模块64的转动角度实时调整模拟的分子模型的三维结构,并计算能量。
分子积木交互系统通过获取控制插座模块20上连接的原子球模块40和分子键模块的ID,积木属性和插入的键口位置,直接构建出虚拟的分子结构。虚拟分子结构可以以mol文件的格式存储的,这个mol文件记载需要计算的全部信息。
分子能量计算支持可以基于分子力场的能量计算方法和基于第一性原理的量子化学计算方法。分子力场计算能量的常用工具包括Amber、charmm等,量子化学计算能量的常用工具包括Gaussian,Psi4等。
本发明实现了分子模型内部各原子球模块和分子键模块之间的通信,并支持了分子内柔性分子键角度的精确数字化度量。同时,也通过控制插座模块20实现了分子模型和软件系统之间的交互通信。这样分子模型和软件系统中的虚拟模型就实现了数字孪生,使用者操作实体模型时,软件系统中就会实时进行模拟,并支持分子能量的计算。使用者可以通过这套积木精确操作分子结构,并实时在软件中得到反馈,极大的提升了研发和教学的质量和效率。
以上述依据本申请的理想实施例为启示,通过上述的说明内容,相关工作人员完全可以在不偏离本项申请技术思想的范围内,进行多样的变更以及修改。本项申请的技术性范围并不局限于说明书上的内容,必须要根据权利要求范围来确定其技术性范围。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流 程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。

Claims (10)

  1. 一种交互式分子积木,其特征在于,包括:控制插座模块、原子球模块、分子键模块,所述控制插座模块包括:插座本体、及设置在所述插座本体上的插座连接器,所述原子球模块包括:原子球本体、及设置在原子球本体上并与所述插座连接器配合的原子球连接器,所述原子球模块上设置有多个所述原子球连接器,所述分子键模块包括:常规分子键模块、与柔性分子键模块,所述常规分子键模块包括:单键模块、双键模块、三键模块,所述单键模块或双键模块或三键模块包括:常规分子键键体、及设置在所述常规分子键键体端部并与原子球连接器配合的常规分子键连接器,所述柔性分子键模块:柔性分子键键体、及设置在所述柔性分子键键体端部并与所述原子球连接器配合设置的柔性分子键连接器。
  2. 根据权利要求1所述的交互式分子积木,其特征在于,所述插座本体中设置有控制模块、与所述控制模块连接并进行供电的电源、及与所述控制模块连接并受控进行通信的通信模块,所述插座连接器与所述控制模块连接。
  3. 根据权利要求2所述的交互式分子积木,其特征在于,所述插座本体为中空结构,形成插座内腔;所述插座连接器包括:插座连接器本体、及设置在所述插座连接器本体上的插座插头挡板、及设置所述插座连接器本体一端的插座插头、及设置在插座插头一端的连接接口。
  4. 根据权利要求1至3任意所述的交互式分子积木,其特征在于,所述原子球模块或分子键模块具有识别ID,所述原子球模块还包括内置在原子球本体中的原子球处理模块,所述原子球连接器与所述原子球处理模块电性连接,所述原子球处理模块记录该原子球模块的识别ID、属性、原子球连接器的坐标或位置。
  5. 根据权利要求4所述的交互式分子积木,其特征在于,所述原子球本体为中空结构,所述原子球处理模块设置在中空结构中,所述原子球连接器包括:键口、及设置在所述键口内的插槽,所述键口之间的夹角不同以对应不同的分子键夹角,每个键口连接至所述原子球处理模块并设置有编号,所述原子球模块的属性包括:代表的原子。
  6. 根据权利要求5所述的交互式分子积木,其特征在于,所述键口包括:第一键口、第二键口、第三键口、第四键口、第五键口、第六键口、第七键口、第八键口、第九键口、第十键口、第十一键口、第十二键口、第十三键口、第十四键口、第十五键口、第十六键口,所述原子球连接器的坐标包括:键 口圆心在所述原子球本体的球面上的经纬度坐标,所述第一键口的经纬度坐标为N90°/E0°,所述第二键口的经纬度坐标为S90°/E0°,所述第三键口的经纬度坐标为N0°/E180°,所述第四键口的经纬度坐标为N0°/E0°,所述第五键口的经纬度坐标为N0°/W90°,所述第六键口的经纬度坐标为N0°/E90°,所述第七键口的经纬度坐标为N37°30'/E90°,所述第八键口的经纬度坐标为N37°30'/W90°,所述第九键口的经纬度坐标为N30°/E120°,所述第十键口的经纬度坐标为N30°/W120°,所述第十一键口的经纬度坐标为N30°/E0°,所述第十二键口的经纬度坐标为S19°28'/E30°,所述第十三键口的经纬度坐标为S19°28'/W90°,所述第十四键口的经纬度坐标为S19°28'/E150°,所述第十五键口的经纬度坐标为N0°/W30°,所述第十六键口的经纬度坐标为N0°/W150°。
  7. 根据权利要求4所述的交互式分子积木,其特征在于,所述单键模块或双键模块或三键模块还包括:内置在常规分子键键体中的常规分子键处理模块,所述常规分子键连接器与所述常规分子键处理模块电性连接,所述常规分子键处理模块记录该常规分子键模块的识别ID、属性,所述常规分子键键体与所述常规分子键连接器之间设置有常规分子键插头挡板,所述常规分子键键体为中空结构,所述常规分子键连接器包括:设置在所述常规分子键键体端部的分子键插头、及设置在所述分子键插头一端的连接接口。
  8. 根据权利要求4所述的交互式分子积木,其特征在于,所述柔性分子键模块还包括:内置在柔性分子键键体中的有柔性分子键处理模块,所述柔性分子键处理模块记录该柔性分子键模块的识别ID、属性,所述柔性分子键连接器与所述柔性分子键处理模块电性连接,所述柔性分子键键体一端与所述柔性分子键连接器之间设置有柔性分子键插头挡板,所述柔性分子键键体与另一个柔性分子键连接器连接的另一端设置有编码器,所述编码器与所述柔性分子键处理模块电性连接,所述柔性分子键键体为中空结构,所述柔性分子键连接器包括:设置在所述柔性分子键键体端部的柔性分子键插头、及设置在所述柔性分子键插头一端的连接接口。
  9. 一种分子积木交互系统,其特征在于,包括:
    确定原子与分子键:检测通信连接的控制插座模块,检测与控制插座模块连接的原子球模块、原子球模块之间连接的分子键模块,检测原子球模块、分子键模块的识别ID、属性,确定原子球模块代表的代表原子、分子键模块代 表的分子键,分子键模块包括:常规分子键模块、与柔性分子键模块,常规分子键模块代表分子内两原子之间形成的分子键,柔性分子键模块代表分子内两原子之间的形成的柔性分子键,常规分子键模块包括:单键模块、双键模块、三键模块,单键模块代表单键,双键模块代表双键,三键模块代表三键,根据常规分子键模块的类型确定虚拟分子的常规分子键类型;
    构建虚拟分子:检测分子键模块与原子球模块连接的原子球模块上的键口编号,根据键口编号确定键口坐标,根据键口坐标计算位置,根据原子球模块、分子键模块的属性、及分子键模块插入连接至原子球模块中的键口位置构建虚拟分子结构;
    分析计算:根据构建的虚拟分子结构进行分析计算。
  10. 根据权利要求9所述的分子积木交互系统,其特征在于,还包括:断开显示:若检测到与控制插座模块连接的原子球模块或分子键模块断开,控制删除断开部分的显示,保留与所述控制插座模块连接部分的显示;所述确定原子与分子键还包括:检测柔性分子键模块的编码器,根据柔性分子键上的编码器读取柔性分子键模块的当前旋转角度,根据柔性分子键模块的旋转改变柔性分子键两端分子基团的相对夹角;所述原子球模块属性包括:代表的原子,所述分子键模块属性包括:代表的分子键类型。
PCT/CN2020/120661 2020-10-13 2020-10-13 交互式分子积木及分子积木交互系统 WO2022077223A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/120661 WO2022077223A1 (zh) 2020-10-13 2020-10-13 交互式分子积木及分子积木交互系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/120661 WO2022077223A1 (zh) 2020-10-13 2020-10-13 交互式分子积木及分子积木交互系统

Publications (1)

Publication Number Publication Date
WO2022077223A1 true WO2022077223A1 (zh) 2022-04-21

Family

ID=81208856

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/120661 WO2022077223A1 (zh) 2020-10-13 2020-10-13 交互式分子积木及分子积木交互系统

Country Status (1)

Country Link
WO (1) WO2022077223A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040076941A1 (en) * 2002-10-16 2004-04-22 Kaplan, Inc. Online curriculum handling system including content assembly from structured storage of reusable components
CN1519791A (zh) * 2003-01-31 2004-08-11 株式会社日之本合成树脂制作所 分子模型
CN107221242A (zh) * 2017-07-13 2017-09-29 燕山大学 一种多面体球棍模型
CN107862958A (zh) * 2017-12-05 2018-03-30 中国地质大学(武汉) 一种分子结构组合模型
CN109686209A (zh) * 2019-02-21 2019-04-26 南京南欣医药技术研究院有限公司 分子结构模型构建方法及装置
CN110890005A (zh) * 2018-09-08 2020-03-17 余海东 一种基于物联网的积木式智能编程学习系统
CN210229145U (zh) * 2019-07-19 2020-04-03 北京博识郎教育咨询股份有限公司 一种编程积木及编程积木组件

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040076941A1 (en) * 2002-10-16 2004-04-22 Kaplan, Inc. Online curriculum handling system including content assembly from structured storage of reusable components
CN1519791A (zh) * 2003-01-31 2004-08-11 株式会社日之本合成树脂制作所 分子模型
CN107221242A (zh) * 2017-07-13 2017-09-29 燕山大学 一种多面体球棍模型
CN107862958A (zh) * 2017-12-05 2018-03-30 中国地质大学(武汉) 一种分子结构组合模型
CN110890005A (zh) * 2018-09-08 2020-03-17 余海东 一种基于物联网的积木式智能编程学习系统
CN109686209A (zh) * 2019-02-21 2019-04-26 南京南欣医药技术研究院有限公司 分子结构模型构建方法及装置
CN210229145U (zh) * 2019-07-19 2020-04-03 北京博识郎教育咨询股份有限公司 一种编程积木及编程积木组件

Similar Documents

Publication Publication Date Title
Jacobson et al. Tangible and modular input device for character articulation
CN101164084B (zh) 图像处理方法和图像处理设备
CA2825834C (en) Automated frame of reference calibration for augmented reality
CN108759665B (zh) 一种基于坐标转换的空间目标三维重建精度分析方法
Leen et al. StrutModeling: A low-fidelity construction kit to iteratively model, test, and adapt 3D objects
CN104010706B (zh) 视频游戏的方向输入
CN105264571A (zh) Hud对象设计和方法
CN107240156A (zh) 一种高精度室外增强现实空间信息显示系统及方法
Wang et al. Single view metrology from scene constraints
CN112162640B (zh) 晶体显示方法及系统
WO2022077223A1 (zh) 交互式分子积木及分子积木交互系统
CN114088012B (zh) 测量装置的补偿方法、装置、三维扫描系统和存储介质
CN201689383U (zh) 增强现实地理信息系统的智能交互实现装置
Fabbri et al. Camera pose estimation using first-order curve differential geometry
CN112164292B (zh) 交互式分子积木及分子积木交互系统
CN109147057A (zh) 一种面向穿戴式触觉设备的虚拟手碰撞检测方法
Kaneko et al. Ear shape modeling for 3D audio and acoustic virtual reality: The shape-based average HRTF
Rebernik et al. Accuracy assessment of two electromagnetic articulographs: Northern digital inc. wave and northern digital inc. vox
Wang et al. Twistblocks: Pluggable and twistable modular tui for armature interaction in 3d design
CN1922464B (zh) 表面计量装置
CN105654466B (zh) 地球仪的位姿检测方法及其装置
Eng et al. Flexm: Designing a physical construction kit for 3d modeling
CN118409126A (zh) 一种智能魔方的转动状态检测装置及方法
CN111207747B (zh) 基于HoloLens眼镜的空间定位方法
Düwel et al. Combining embedded computation and image tracking for composing tangible augmented reality

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20957004

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205N DATED 07/06/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20957004

Country of ref document: EP

Kind code of ref document: A1