WO2022075770A1 - 안테나 장치 및 그를 포함하는 전자 장치 - Google Patents

안테나 장치 및 그를 포함하는 전자 장치 Download PDF

Info

Publication number
WO2022075770A1
WO2022075770A1 PCT/KR2021/013784 KR2021013784W WO2022075770A1 WO 2022075770 A1 WO2022075770 A1 WO 2022075770A1 KR 2021013784 W KR2021013784 W KR 2021013784W WO 2022075770 A1 WO2022075770 A1 WO 2022075770A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
radiation
disposed
isolator
conductive pad
Prior art date
Application number
PCT/KR2021/013784
Other languages
English (en)
French (fr)
Inventor
이준석
허진수
김영섭
박정호
백광현
이영주
정경호
하도혁
Original Assignee
삼성전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020210056285A external-priority patent/KR20220046416A/ko
Application filed by 삼성전자 주식회사 filed Critical 삼성전자 주식회사
Priority to US17/496,326 priority Critical patent/US20220109249A1/en
Priority to AU2021358560A priority patent/AU2021358560A1/en
Priority to CN202180065701.1A priority patent/CN116195134A/zh
Priority to EP21878020.3A priority patent/EP4184718A4/en
Publication of WO2022075770A1 publication Critical patent/WO2022075770A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/30Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas

Definitions

  • the present disclosure relates to an electronic device, for example, an antenna device and an electronic device including the same.
  • a smart phone includes functions such as a sound reproduction device, an imaging device, or an electronic notebook as well as a communication function, and more various functions may be implemented in the smart phone through additional installation of applications.
  • the electronic device may be provided with various information in real time by not only executing a loaded application or stored file, but also accessing a server or other electronic device in a wired or wireless manner.
  • the user is not limited to functions (eg, applications) or information installed in the electronic device itself, and may search for, select, and obtain more information by accessing a network.
  • a direct access method eg, wired communication
  • the utilization area may be limited to a fixed location or a certain amount of space.
  • the wireless communication method has few restrictions on location or space, and the transmission speed and stability of the wireless communication method are gradually reaching the same level as the direct access method. expected to provide
  • the electronic device may include a plurality of antenna devices conforming to various communication protocols, and the wireless communication relay equipment of the base station may also include an antenna capable of covering a sufficient area.
  • the 5th generation wireless communication system is implemented in a millimeter wave (mmWave) band, and an electronic device or a base station carried by a user may include a phased array antenna.
  • the millimeter wave band radio signal can have high straightness and high directivity, and the phased array antenna can secure sufficient coverage by performing beam tilting using phase difference feeding.
  • the phased array antenna may include a plurality of radiation patches or radiation conductors, and one radiation patch may have a size of several mm or less and may be arranged at smaller intervals.
  • interference between adjacent radiating patches may degrade antenna performance.
  • Stable antenna performance may be maintained by forming an isolation structure between adjacent radiating patches to secure isolation, but deviations may occur in antenna performance depending on the direction in which beam tilting is performed.
  • An embodiment of the present disclosure may provide an antenna device including an isolation structure that creates a stable operating environment of adjacent radiation patches (or radiation conductors) in an antenna array and/or an electronic device including the same.
  • One embodiment of the present disclosure may provide a phased array antenna device and/or an electronic device including the same in which distortion or antenna performance deviation according to a directing direction is improved in the process of performing beam tilting.
  • an antenna device and/or an electronic device including the same may use at least one of a first antenna array including an arrangement of a plurality of first radiation patches and the first radiation patches.
  • at least one first isolator comprising a communication circuit configured to transmit and/or receive a radio signal to each other, and a conductor, the at least one first isolator disposed in a region between two adjacent first radiating patches of the first radiating patches wherein the first isolator includes a first part, a second part arranged in parallel with the first part, and a third part electrically connecting the first part and the second part,
  • the first portion and the second portion may be configured to produce a flow of current that is 180 degrees out of phase with respect to each other.
  • an electronic device includes a housing and at least one antenna module disposed in the housing, wherein the antenna module includes a first first radiation patch including an arrangement of a plurality of first radiation patches. between two first radiating patches adjacent to each other and comprising an antenna array, communication circuitry configured to transmit and/or receive wireless signals using at least one of the first radiating patches, and a conductor; at least one first isolator disposed in a region of and a third part connected to the , wherein the first part and the second part may be configured to generate a flow of current having a phase difference of 180 degrees with respect to each other.
  • an isolator(s) may be disposed between the radiation patches or radiation conductors to block interference between two adjacent radiation patches or two radiation conductors.
  • the isolator can function as an absorber by creating a flow of current that is 180 degrees out of phase in two different parts.
  • the antenna device and/or the electronic device according to an embodiment of the present disclosure may have stable wireless communication performance.
  • the isolator may suppress or prevent distortion or antenna performance deviation according to a directing direction when performing a beam tilting function in the phased array antenna.
  • various effects recognized directly or indirectly through this document may be provided.
  • FIG. 1 is a block diagram illustrating an exemplary electronic device in a network environment, according to various embodiments.
  • FIG. 2 is a perspective view illustrating a front surface of an electronic device according to various embodiments of the present disclosure
  • FIG. 3 is a perspective view illustrating a rear surface of an electronic device according to various embodiments of FIG. 2 .
  • FIG. 4 is an exploded perspective view illustrating an electronic device according to various embodiments of FIG. 2 ;
  • FIG. 5 is a configuration diagram illustrating an electronic device according to various embodiments of the present disclosure.
  • FIG. 6 is an exploded perspective view illustrating an antenna device according to various embodiments of the present disclosure.
  • FIG. 7 is a diagram illustrating an antenna device according to various embodiments.
  • FIG. 8 is a perspective view illustrating an isolator of an antenna device according to various embodiments of the present disclosure
  • FIG. 9 is a diagram illustrating an exemplary isolator of an antenna device according to various embodiments of the present disclosure.
  • FIG. 10 is a diagram illustrating an exemplary isolator in an antenna device according to various embodiments of the present disclosure
  • FIG. 11 is a diagram illustrating an exemplary isolator in an antenna device according to various embodiments of the present disclosure
  • FIG. 12 is a diagram illustrating an exemplary isolator in an antenna device according to various embodiments of the present disclosure
  • FIG. 13 is a view for explaining a current flow in an isolator when an antenna device according to various embodiments operates.
  • FIG. 14 is an exploded perspective view illustrating an antenna device according to various embodiments of the present disclosure.
  • FIG. 15 is a perspective view illustrating an antenna device according to various embodiments of the present disclosure.
  • FIG. 16 is an enlarged exploded perspective view of a portion of an antenna device according to various embodiments of the present disclosure
  • 17 is a diagram illustrating a state in which an isolator is disposed in an antenna device according to various embodiments of the present disclosure
  • FIG. 18 is a graph showing the measurement of isolation characteristics between radiation patches in the antenna device according to various embodiments of FIG. 17 .
  • FIG. 19 is a perspective view illustrating a radiation power distribution before an isolator is disposed in the antenna device according to various embodiments of the present disclosure
  • 20 is a diagram illustrating a radiation power distribution of an antenna device according to various embodiments.
  • 21 is a diagram illustrating an example in which an isolator is disposed in an antenna device according to various embodiments of the present disclosure
  • FIG. 22 is a graph illustrating the measurement of isolation characteristics between radiation patches in the antenna device according to various embodiments of FIG. 21 .
  • FIG. 23 is a graph illustrating measurement of beam tilting performance before an isolator is disposed in the antenna device according to various embodiments of the present disclosure
  • 24 is a graph illustrating measurement of beam tilting performance of an antenna device according to various embodiments of the present disclosure.
  • 25 is a diagram illustrating an example of a line unit for providing a feed signal in an antenna device according to various embodiments of the present disclosure
  • 26 is a diagram illustrating another example of a line unit for providing a feed signal in an antenna device according to various embodiments of the present disclosure
  • FIG. 27 is a diagram illustrating another example of a line unit for providing a feed signal in an antenna device according to various embodiments of the present disclosure
  • FIG. 1 is a block diagram of an electronic device 101 in a network environment 100 according to various embodiments.
  • an electronic device 101 communicates with an electronic device 102 through a first network 198 (eg, a short-range wireless communication network) or a second network 199 . It may communicate with at least one of the electronic device 104 and the server 108 through (eg, a long-distance wireless communication network). According to an embodiment, the electronic device 101 may communicate with the electronic device 104 through the server 108 .
  • a first network 198 eg, a short-range wireless communication network
  • a second network 199 e.g., a second network 199
  • the electronic device 101 may communicate with the electronic device 104 through the server 108 .
  • the electronic device 101 includes a processor 120 , a memory 130 , an input module 150 , a sound output module 155 , a display module 160 , an audio module 170 , and a sensor module ( 176), interface 177, connection terminal 178, haptic module 179, camera module 180, power management module 188, battery 189, communication module 190, subscriber identification module 196 , or an antenna module 197 may be included.
  • at least one of these components eg, the connection terminal 178
  • may be omitted or one or more other components may be added to the electronic device 101 .
  • some of these components are integrated into one component (eg, display module 160 ). can be
  • the processor 120 for example, executes software (eg, a program 140) to execute at least one other component (eg, a hardware or software component) of the electronic device 101 connected to the processor 120 . It can control and perform various data processing or operations. According to an exemplary embodiment, as at least part of data processing or operation, the processor 120 stores commands or data received from other components (eg, the sensor module 176 or the communication module 190 ) into the volatile memory 132 . ), process commands or data stored in the volatile memory 132 , and store the result data in the non-volatile memory 134 .
  • software eg, a program 140
  • the processor 120 stores commands or data received from other components (eg, the sensor module 176 or the communication module 190 ) into the volatile memory 132 . ), process commands or data stored in the volatile memory 132 , and store the result data in the non-volatile memory 134 .
  • the processor 120 is the main processor 121 (eg, a central processing unit or an application processor), or a secondary processor 123 (eg, a graphic processing unit, a neural network processing unit) that can be operated independently or together with the main processor 121 .
  • a secondary processor 123 eg, a graphic processing unit, a neural network processing unit
  • the main processor 121 e.g., a central processing unit or an application processor
  • a secondary processor 123 eg, a graphic processing unit, a neural network processing unit
  • the main processor 121 e.g, a central processing unit or an application processor
  • a secondary processor 123 eg, a graphic processing unit, a neural network processing unit
  • image signal processor e.g., image signal processor, sensor hub processor, or communication processor.
  • the sub-processor 123 may use less power than the main processor 121 or may be set to be specialized for a specified function.
  • the auxiliary processor 123 may be implemented separately from or as a part of the main
  • the auxiliary processor 123 is, for example, on behalf of the main processor 121 while the main processor 121 is in an inactive (eg, sleep) state, or the main processor 121 is active (eg, executing an application). ), together with the main processor 121, at least one of the components of the electronic device 101 (eg, the display module 160, the sensor module 176, or the communication module 190) It is possible to control at least some of the related functions or states.
  • the co-processor 123 eg, an image signal processor or a communication processor
  • may be implemented as part of another functionally related component eg, the camera module 180 or the communication module 190. there is.
  • the auxiliary processor 123 may include a hardware structure specialized for processing an artificial intelligence model.
  • Artificial intelligence models can be created through machine learning. Such learning may be performed, for example, in the electronic device 101 itself on which the artificial intelligence model is performed, or may be performed through a separate server (eg, the server 108).
  • the learning algorithm may include, for example, supervised learning, unsupervised learning, semi-supervised learning, or reinforcement learning, but in the above example not limited
  • the artificial intelligence model may include a plurality of artificial neural network layers.
  • Artificial neural networks include deep neural networks (DNNs), convolutional neural networks (CNNs), recurrent neural networks (RNNs), restricted boltzmann machines (RBMs), deep belief networks (DBNs), bidirectional recurrent deep neural networks (BRDNNs), It may be one of deep Q-networks or a combination of two or more of the above, but is not limited to the above example.
  • the artificial intelligence model may include, in addition to, or alternatively, a software structure in addition to the hardware structure.
  • the memory 130 may store various data used by at least one component of the electronic device 101 (eg, the processor 120 or the sensor module 176 ).
  • the data may include, for example, input data or output data for software (eg, the program 140 ) and instructions related thereto.
  • the memory 130 may include a volatile memory 132 or a non-volatile memory 134 .
  • the program 140 may be stored as software in the memory 130 , and may include, for example, an operating system 142 , middleware 144 , or an application 146 .
  • the input module 150 may receive a command or data to be used in a component (eg, the processor 120 ) of the electronic device 101 from the outside (eg, a user) of the electronic device 101 .
  • the input module 150 may include, for example, a microphone, a mouse, a keyboard, a key (eg, a button), or a digital pen (eg, a stylus pen).
  • the sound output module 155 may output a sound signal to the outside of the electronic device 101 .
  • the sound output module 155 may include, for example, a speaker or a receiver.
  • the speaker can be used for general purposes such as multimedia playback or recording playback.
  • the receiver may be used to receive an incoming call. According to one embodiment, the receiver may be implemented separately from or as part of the speaker.
  • the display module 160 may visually provide information to the outside (eg, a user) of the electronic device 101 .
  • the display module 160 may include, for example, a control circuit for controlling a display, a hologram device, or a projector and a corresponding device.
  • the display module 160 may include a touch sensor configured to sense a touch or a pressure sensor configured to measure the intensity of a force generated by the touch.
  • the audio module 170 may convert a sound into an electric signal or, conversely, convert an electric signal into a sound. According to an embodiment, the audio module 170 acquires a sound through the input module 150 , or an external electronic device (eg, the sound output module 155 ) directly or wirelessly connected to the electronic device 101 . : A sound may be output through the electronic device 102 (eg, a speaker or a headphone).
  • the sensor module 176 detects an operating state (eg, power or temperature) of the electronic device 101 or an external environmental state (eg, user state), and generates an electrical signal or data value corresponding to the sensed state. can do.
  • the sensor module 176 may include, for example, a gesture sensor, a gyro sensor, a barometric pressure sensor, a magnetic sensor, an acceleration sensor, a grip sensor, a proximity sensor, a color sensor, an IR (infrared) sensor, a biometric sensor, It may include a temperature sensor, a humidity sensor, or an illuminance sensor.
  • the interface 177 may support one or more designated protocols that may be used for the electronic device 101 to directly or wirelessly connect with an external electronic device (eg, the electronic device 102 ).
  • the interface 177 may include, for example, a high definition multimedia interface (HDMI), a universal serial bus (USB) interface, an SD card interface, or an audio interface.
  • HDMI high definition multimedia interface
  • USB universal serial bus
  • SD card interface Secure Digital Card
  • the connection terminal 178 may include a connector through which the electronic device 101 can be physically connected to an external electronic device (eg, the electronic device 102 ).
  • the connection terminal 178 may include, for example, an HDMI connector, a USB connector, an SD card connector, or an audio connector (eg, a headphone connector).
  • the haptic module 179 may convert an electrical signal into a mechanical stimulus (eg, vibration or movement) or an electrical stimulus that the user can perceive through tactile or kinesthetic sense.
  • the haptic module 179 may include, for example, a motor, a piezoelectric element, or an electrical stimulation device.
  • the camera module 180 may capture still images and moving images. According to an embodiment, the camera module 180 may include one or more lenses, image sensors, image signal processors, or flashes.
  • the power management module 188 may manage power supplied to the electronic device 101 .
  • the power management module 188 may be implemented as at least part of a power management integrated circuit (PMIC), for example.
  • PMIC power management integrated circuit
  • the battery 189 may supply power to at least one component of the electronic device 101 .
  • battery 189 may include, for example, a non-rechargeable primary cell, a rechargeable secondary cell, or a fuel cell.
  • the communication module 190 is a direct (eg, wired) communication channel or a wireless communication channel between the electronic device 101 and an external electronic device (eg, the electronic device 102, the electronic device 104, or the server 108). It can support establishment of and communication performance through the established communication channel.
  • the communication module 190 may include one or more communication processors that operate independently of the processor 120 (eg, an application processor) and support direct (eg, wired) communication or wireless communication.
  • the communication module 190 is a wireless communication module 192 (eg, a cellular communication module, a short-range wireless communication module, or a global navigation satellite system (GNSS) communication module) or a wired communication module 194 (eg, : It may include a LAN (local area network) communication module, or a power line communication module).
  • GNSS global navigation satellite system
  • a corresponding communication module among these communication modules is a first network 198 (eg, a short-range communication network such as Bluetooth, wireless fidelity (WiFi) direct, or infrared data association (IrDA)) or a second network 199 (eg, legacy It may communicate with an external electronic device through a cellular network, a 5G network, a next-generation communication network, the Internet, or a telecommunication network such as a computer network (eg, LAN or WAN).
  • a first network 198 eg, a short-range communication network such as Bluetooth, wireless fidelity (WiFi) direct, or infrared data association (IrDA)
  • a second network 199 eg, legacy It may communicate with an external electronic device through a cellular network, a 5G network, a next-generation communication network, the Internet, or a telecommunication network such as a computer network (eg, LAN or WAN).
  • a telecommunication network such as a computer network (eg, LAN
  • the wireless communication module 192 uses the subscriber information (eg, International Mobile Subscriber Identifier (IMSI)) stored in the subscriber identification module 196 within a communication network such as the first network 198 or the second network 199 .
  • the electronic device 101 may be identified or authenticated.
  • the wireless communication module 192 may support a 5G network after a 4G network and a next-generation communication technology, for example, a new radio access technology (NR).
  • NR access technology includes high-speed transmission of high-capacity data (eMBB (enhanced mobile broadband)), minimization of terminal power and access to multiple terminals (mMTC (massive machine type communications)), or high reliability and low latency (URLLC (ultra-reliable and low-latency) -latency communications)).
  • eMBB enhanced mobile broadband
  • mMTC massive machine type communications
  • URLLC ultra-reliable and low-latency
  • the wireless communication module 192 may support a high frequency band (eg, mmWave band) to achieve a high data rate, for example.
  • a high frequency band eg, mmWave band
  • the wireless communication module 192 includes various technologies for securing performance in a high-frequency band, for example, beamforming, massive multiple-input and multiple-output (MIMO), all-dimensional multiplexing. It may support technologies such as full dimensional MIMO (FD-MIMO), a phased array antenna, analog beam-forming, or a large scale antenna.
  • the wireless communication module 192 may support various requirements specified in the electronic device 101 , an external electronic device (eg, the electronic device 104 ), or a network system (eg, the second network 199 ).
  • the wireless communication module 192 may include a peak data rate (eg, 20 Gbps or more) for realizing eMBB, loss coverage (eg, 164 dB or less) for realizing mMTC, or U-plane latency for realizing URLLC ( Example: downlink (DL) and uplink (UL) each 0.5 ms or less, or round trip 1 ms or less).
  • a peak data rate eg, 20 Gbps or more
  • loss coverage eg, 164 dB or less
  • U-plane latency for realizing URLLC
  • the antenna module 197 may transmit or receive a signal or power to the outside (eg, an external electronic device).
  • the antenna module may include an antenna including a conductor formed on a substrate (eg, a PCB) or a radiator formed of a conductive pattern.
  • the antenna module 197 may include a plurality of antennas (eg, a phased array antenna). In this case, at least one antenna suitable for a communication method used in a communication network such as the first network 198 or the second network 199 is connected from the plurality of antennas by, for example, the communication module 190 . can be selected. A signal or power may be transmitted or received between the communication module 190 and an external electronic device through the selected at least one antenna.
  • other components eg, a radio frequency integrated circuit (RFIC)
  • RFIC radio frequency integrated circuit
  • the antenna module 197 may form a mmWave antenna module.
  • the mmWave antenna module comprises a printed circuit board, an RFIC disposed on or adjacent to a first side (eg, bottom side) of the printed circuit board and capable of supporting a designated high frequency band (eg, mmWave band); and a plurality of antennas (eg, phased array antennas) disposed on or adjacent to the second side (eg, top or side) of the printed circuit board and capable of transmitting or receiving signals of the designated high frequency band.
  • a designated high frequency band eg, mmWave band
  • a plurality of antennas eg, phased array antennas
  • peripheral devices eg, a bus, general purpose input and output (GPIO), serial peripheral interface (SPI), or mobile industry processor interface (MIPI)
  • GPIO general purpose input and output
  • SPI serial peripheral interface
  • MIPI mobile industry processor interface
  • the command or data may be transmitted or received between the electronic device 101 and the external electronic device 104 through the server 108 connected to the second network 199 .
  • Each of the external electronic devices 102 or 104 may be the same as or different from the electronic device 101 .
  • all or part of the operations performed by the electronic device 101 may be executed by one or more external devices among the external electronic devices 102 , 104 , or 108 .
  • the electronic device 101 may perform the function or service itself instead of executing the function or service itself.
  • one or more external electronic devices may be requested to perform at least a part of the function or the service.
  • One or more external electronic devices that have received the request may execute at least a part of the requested function or service, or an additional function or service related to the request, and transmit a result of the execution to the electronic device 101 .
  • the electronic device 101 may process the result as it is or additionally and provide it as at least a part of a response to the request.
  • cloud computing, distributed computing, mobile edge computing (MEC) or client-server computing technology may be used.
  • the electronic device 101 may provide an ultra-low latency service using, for example, distributed computing or mobile edge computing.
  • the external electronic device 104 may include an Internet of things (IoT) device.
  • Server 108 may be an intelligent server using machine learning and/or neural networks.
  • the external electronic device 104 or the server 108 may be included in the second network 199 .
  • the electronic device 101 may be applied to an intelligent service (eg, smart home, smart city, smart car, or health care) based on 5G communication technology and IoT-related technology.
  • Electronic devices may have various types of devices.
  • the electronic device may include, for example, a portable communication device (eg, a smart phone), a computer device, a portable multimedia device, a portable medical device, a camera, a wearable device, a home appliance device, and the like.
  • a portable communication device eg, a smart phone
  • a computer device e.g., a laptop, a desktop, a tablet, or the like
  • portable multimedia device e.g., a portable medical device
  • a camera e.g., a portable medical device
  • a camera e.g., a portable medical device
  • a camera e.g., a portable medical device
  • a camera e.g., a portable medical device
  • a camera e.g., a camera
  • a wearable device e.g., a smart watch, a smart watch, a smart watch, a smart watch, a smart watch, a smart watch, a smart watch
  • first”, “second”, or “first” or “second” may simply be used to distinguish the component from other components in question, and may refer to components in other aspects (e.g., importance or order) is not limited. that one (eg first) component is “coupled” or “connected” to another (eg, second) component with or without the terms “functionally” or “communicatively” Where referenced, it may be understood that one component is connected to the other component directly (eg, by wire), wirelessly, or via a third component.
  • module used in various embodiments of the present document may include a unit implemented in hardware, software, or firmware, or any combination thereof, for example, logic or a logic block. , component, or circuit may be used interchangeably with the terms.
  • a module may be an integrally formed part or a minimum unit or a part of the part that performs one or more functions.
  • the module may be implemented in the form of an application-specific integrated circuit (ASIC).
  • ASIC application-specific integrated circuit
  • a storage medium eg, internal memory or external memory
  • a machine eg, electronic device
  • a processor eg, processor
  • the one or more instructions may include code generated by a compiler or code executable by an interpreter.
  • the device-readable storage medium may be provided in the form of a non-transitory storage medium.
  • the 'non-transitory' storage medium is a tangible device and may not include a signal (eg, electromagnetic wave), and this term refers to a case in which data is semi-permanently stored in a storage medium and a temporary storage medium. It does not distinguish between cases where
  • the method according to the embodiments of the present disclosure may be provided by being included in a computer program product.
  • Computer program products may be traded between sellers and buyers as commodities.
  • the computer program product is distributed in the form of a machine-readable storage medium (eg compact disc read only memory (CD-ROM)), or via an application store (eg Play Store TM ) or on two user devices ( It can be distributed online (eg download or upload), directly between smartphones (eg smartphones).
  • a part of the computer program product may be temporarily stored or temporarily generated in a machine-readable storage medium such as a memory of a server of a manufacturer, a server of an application store, or a relay server.
  • each component eg, a module or a program of the above-described components may include a singular or a plurality of entities, and some of the plurality of entities may be separately disposed in other components. there is.
  • one or more components or operations among the above-described corresponding components may be omitted, or one or more other components or operations may be added.
  • a plurality of components eg, a module or a program
  • the integrated component may perform one or more functions of each component of the plurality of components identically or similarly to those performed by the corresponding component among the plurality of components prior to the integration. .
  • operations performed by a module, program, or other component are executed sequentially, in parallel, repeatedly, or heuristically, or one or more of the operations are executed in a different order, or omitted. or one or more other operations may be added.
  • FIG. 2 is a perspective view illustrating a front surface of an electronic device 200 according to various embodiments of the present disclosure.
  • 3 is a perspective view illustrating a rear surface of the electronic device 200 according to various embodiments of FIG. 2 .
  • the electronic device 200 has a first side (or front side) 210A, a second side (or back side) 210B, and a first side 210A. and a housing 210 including a side surface 210C surrounding the space between the second surfaces 210B.
  • the housing may refer to a structure forming a part of the first surface 210A, the second surface 210B, and the side surface 210C of FIG. 2 .
  • the first surface 210A may be formed by a front plate 202 (eg, a glass plate including various coating layers, or a polymer plate) that is at least partially transparent.
  • the second surface 210B may be formed by the substantially opaque back plate 211 .
  • the back plate 211 is formed by, for example, coated or colored glass, ceramic, polymer, metal (eg, aluminum, stainless steel (STS), or magnesium), or a combination of at least two of the above materials.
  • the side surface 210C may be formed by a side structure (or "side structure") 218 coupled to the front plate 202 and the back plate 211 and including a metal and/or a polymer.
  • the back plate 211 and the side structure 218 are integrally formed and may include the same material (eg, a metal material such as aluminum).
  • the front plate 202 includes two first regions 210D that extend seamlessly from the first surface 210A toward the rear plate 211 by bending the front plate. It can include both ends of the long edge (long edge) of (202).
  • the rear plate 211 has two second regions 210E that extend seamlessly by bending from the second surface 210B toward the front plate 202 with long edges. It can be included at both ends.
  • the front plate 202 (or the rear plate 211 ) may include only one of the first regions 210D (or the second regions 210E). In one embodiment, some of the first regions 210D or the second regions 210E may not be included.
  • the side structure 218 when viewed from the side of the electronic device 200 , is the second side structure in which the first regions 210D or the second regions 210E are not included. It may have a thickness (or width) of 1, and a second thickness that is thinner than the first thickness on the side surface including the first regions 210D or the second regions 210E.
  • the electronic device 200 includes a display 201 , an audio module 203 , 207 , 214 , a sensor module 204 , 216 , 219 , a camera module 205 , 212 , 213 , and a key input. at least one of a device 217 , a light emitting element 206 , and connector holes 208 , 209 . In various embodiments, the electronic device 200 may omit at least one of the components (eg, the key input device 217 or the light emitting device 206 ) or additionally include other components.
  • the display 201 can be visually seen through, for example, a substantial portion of the front plate 202 .
  • at least a portion of the display 201 may be visually viewed through the front plate 202 forming the first areas 210D of the first surface 210A and the side surface 210C. there is.
  • the edge of the display 201 may be formed to be substantially the same as an adjacent outer shape of the front plate 202 .
  • the distance between the outer periphery of the display 201 and the outer periphery of the front plate 202 may be substantially the same.
  • an audio module 214 that forms a recess or opening in a part of the screen display area of the display 201 and is aligned with the recess or opening, a sensor It may include at least one of a module 204 , a camera module 205 , and a light emitting device 206 .
  • an audio module 214 , a sensor module 204 , a camera module 205 , a fingerprint sensor 216 , and a light emitting element 206 . ) may include at least one or more of.
  • the display 201 is coupled to or adjacent to a touch sensing circuit, a pressure sensor capable of measuring the intensity (pressure) of a touch, and/or a digitizer that detects a magnetic field type stylus pen. can be placed.
  • a touch sensing circuit capable of measuring the intensity (pressure) of a touch
  • a digitizer capable of measuring the intensity (pressure) of a touch
  • a digitizer that detects a magnetic field type stylus pen.
  • at least a portion of the sensor module 204 , 219 , and/or at least a portion of a key input device 217 may include the first regions 210D, and/or the second region 210E. can be placed in
  • the audio modules 203 , 207 , and 214 may include a microphone hole 203 and speaker holes 207 and 214 .
  • a microphone for acquiring an external sound may be disposed therein, and in various embodiments, a plurality of microphones may be disposed to sense the direction of the sound.
  • the speaker holes 207 and 214 may include an external speaker hole 207 and a receiver hole 214 for a call.
  • the speaker holes 207 and 214 and the microphone hole 203 may be implemented as a single hole, or a speaker may be included without the speaker holes 207 and 214 (eg, a piezo speaker).
  • the sensor modules 204 , 216 , and 219 may generate electrical signals or data values corresponding to an internal operating state of the electronic device 200 or an external environmental state.
  • the sensor modules 204 , 216 , 219 include, for example, a first sensor module 204 (eg, a proximity sensor) and/or a second sensor module ( (not shown) (eg, a fingerprint sensor), and/or a third sensor module 219 (eg, HRM sensor) and/or a fourth sensor module 216 disposed on the second side 210B of the housing 210 . ) (eg fingerprint sensor).
  • the fingerprint sensor may be disposed on the second surface 210B as well as the first surface 210A (eg, the display 201) of the housing 210 .
  • the electronic device 200 may include a sensor module not shown, for example, a gesture sensor, a gyro sensor, a barometric pressure sensor, a magnetic sensor, an acceleration sensor, a grip sensor, a color sensor, an infrared (IR) sensor, a biometric sensor, a temperature sensor, It may further include at least one of a humidity sensor and an illuminance sensor.
  • a sensor module not shown, for example, a gesture sensor, a gyro sensor, a barometric pressure sensor, a magnetic sensor, an acceleration sensor, a grip sensor, a color sensor, an infrared (IR) sensor, a biometric sensor, a temperature sensor, It may further include at least one of a humidity sensor and an illuminance sensor.
  • the camera modules 205 , 212 , and 213 include a first camera device 205 disposed on the first surface 210A of the electronic device 200 , and a second camera device 212 disposed on the second surface 210B of the electronic device 200 . ), and/or a flash 213 .
  • the camera devices 205 and 212 may include one or more lenses, an image sensor, and/or an image signal processor.
  • the flash 213 may include, for example, a light emitting diode or a xenon lamp. In various embodiments, two or more lenses (infrared cameras, wide-angle and telephoto lenses) and image sensors may be disposed on one side of the electronic device 200 .
  • the key input device 217 may be disposed on the side surface 210C of the housing 210 .
  • the electronic device 200 may not include some or all of the key input devices 217 mentioned above and the not included key input devices 217 may be displayed on the display 201 as soft keys, etc. It can be implemented in the form
  • the key input device may include a sensor module 216 disposed on the second surface 210B of the housing 210 .
  • the light emitting device 206 may be disposed, for example, on the first surface 210A of the housing 210 .
  • the light emitting device 206 may provide, for example, state information of the electronic device 200 in the form of light.
  • the light emitting device 206 may provide, for example, a light source that is interlocked with the operation of the camera module 205 .
  • Light emitting element 206 may include, for example, LEDs, IR LEDs, and xenon lamps.
  • the connector holes 208 and 209 include a first connector hole 208 capable of receiving a connector (eg, a USB connector) for transmitting and receiving power and/or data to and from an external electronic device, and/or an external electronic device. and a second connector hole (eg, earphone jack) 209 capable of accommodating a connector for transmitting and receiving audio signals.
  • a connector eg, a USB connector
  • a second connector hole eg, earphone jack
  • FIG. 4 is an exploded perspective view illustrating the electronic device 300 according to various embodiments of FIG. 2 .
  • the electronic device 300 includes a side structure 310 (eg, a bezel), a first support member 311 (eg, a bracket), a front plate 320 , and a display 330 . , a printed circuit board 340 , a battery 350 , a second support member 360 (eg, a rear case), an antenna 370 , and a rear plate 380 .
  • the electronic device 300 may omit at least one of the components (eg, the first support member 311 or the second support member 360 ) or additionally include other components. At least one of the components of the electronic device 300 may be the same as or similar to at least one of the components of the electronic device 200 of FIG. 2 or 3 , and overlapping descriptions will be omitted below.
  • the first support member 311 may be disposed inside the electronic device 300 and connected to the side structure 310 , or may be integrally formed with the side structure 310 .
  • the first support member 311 may be formed of, for example, a metal material and/or a non-metal (eg, polymer) material.
  • the first support member 311 may have a display 330 coupled to one surface and a printed circuit board 340 coupled to the other surface.
  • the printed circuit board 340 may be equipped with a processor, memory, and/or an interface.
  • the processor may include, for example, one or more of a central processing unit, an application processor, a graphics processing unit, an image signal processor, a sensor hub processor, or a communication processor.
  • Memory may include, for example, volatile memory or non-volatile memory.
  • the interface may include, for example, a high definition multimedia interface (HDMI), a universal serial bus (USB) interface, an SD card interface, and/or an audio interface.
  • HDMI high definition multimedia interface
  • USB universal serial bus
  • the interface may, for example, electrically or physically connect the electronic device 300 to an external electronic device, and may include a USB connector, an SD card/MMC connector, or an audio connector.
  • the battery 350 is a device for supplying power to at least one component of the electronic device 300 and may include, for example, a non-rechargeable primary battery, a rechargeable secondary battery, or a fuel cell. . At least a portion of the battery 350 may be disposed substantially on the same plane as the printed circuit board 340 . The battery 350 may be integrally disposed inside the electronic device 300 , or may be disposed detachably from the electronic device 300 .
  • the antenna 370 may be disposed between the rear plate 380 and the battery 350 .
  • the antenna 370 may include, for example, a near field communication (NFC) antenna, a wireless charging antenna, and/or a magnetic secure transmission (MST) antenna.
  • the antenna 370 may, for example, perform short-range communication with an external device or wirelessly transmit/receive power required for charging.
  • an antenna structure may be formed by a part of the side structure 310 and/or the first support member 311 or a combination thereof.
  • FIG. 5 is an exemplary configuration diagram for describing an electronic device 400 (eg, the electronic devices 200 and 300 of FIGS. 2 to 4 ) according to various embodiments of the present disclosure.
  • the electronic device 400 is spaced apart from the first plate or the front plate (eg, the front plate 202 of FIG. 2 ) and the first plate 202 in the opposite direction.
  • the facing second plate or rear plate eg, the rear plate 211 in FIG. 3
  • a side structure surrounding the space between the first plate 202 and the second plate 211 eg, the side structure in FIG. 2 ) 218)
  • the side structure 218 may include an electrically conductive portion 218a or a non electrically conductive portion 218b.
  • the electronic device 400 includes a main printed circuit board (main PCB) (eg, the printed circuit board 340 of FIG. 4 ) accommodated in a space between the first plate 202 and the second plate 211 . )), and/or a mid-plate (eg, the first or second support member 311 , 360 of FIG. 4 ), and may optionally further include various other components.
  • main PCB main printed circuit board
  • mid-plate eg, the first or second support member 311 , 360 of FIG. 4
  • the electronic device 400 may include at least one legacy antenna (not shown) using at least a portion of the conductive material portion 218a as a radiation conductor, and the legacy antenna(s) include, for example, For example, it may be used for cellular communications (eg second generation (2G), 3G, 4G or LTE), short-range communications (eg WiFi, Bluetooth or NFC) and/or global navigation satellite system (GNSS).
  • the electronic device 400 may include a first antenna module 461 , a second antenna module 463 , and/or a third antenna module 465 for forming a directional beam.
  • the antenna modules 461 , 463 , and 465 may be used for 5G network communication, mmWave communication, 60 GHz communication, or WiGig communication.
  • the antenna modules 461 , 463 , and 465 are spaced apart from the metal member of the electronic device 400 (eg, the conductive material portion 218a of the side member 218 ) and/or the legacy antenna(s) by a predetermined distance or more. It may be disposed inside the housing 210 .
  • the first antenna module 461 is located at the upper end from the left side (eg, the edge facing the -Y direction), and the second antenna module 463 is located at the upper end (eg, +X). edge facing the direction), and the third antenna module 465 may be located at the middle or lower end on the right side (eg, the edge facing the +Y direction).
  • a plurality of second antenna modules 463 may be provided to radiate a radio signal in a +X direction or a -Z direction.
  • the electronic device 400 may include additional antenna modules in an additional position (eg, in the middle of the bottom (-X direction edge)) or some of the antenna modules 461 , 463 , and 465 may be omitted.
  • the antenna modules 461 , 463 , and 465 are mounted on a main PCB (eg, the printed circuit board 340 of FIG. 4 ) using a conductive line (eg, a coaxial cable or a conductive line provided in the FPCB). It may be electrically connected to at least one communication processor (eg, the processor 120 or the communication module 190 of FIG. 1 ).
  • the antenna modules 461 , 463 , 465 may include an antenna array (eg, a patch antenna array or a dipole antenna array), A wireless signal may be transmitted/received through the non-conductive material portion 218b.
  • the configuration of the antenna modules 461 , 463 , and 465 will be described with further reference to FIGS. 6 and 7 .
  • FIG. 6 is an exploded perspective view illustrating the antenna device 500 (eg, at least one of the antenna module 197 of FIG. 1 or the antenna modules 461 , 463 , and 465 of FIG. 5 ) according to various embodiments of the present disclosure.
  • 7 is a diagram illustrating an antenna device 500 according to various embodiments.
  • the antenna device 500 includes an antenna array 502 including an arrangement of a plurality of radiation patches 521a (or radiation conductors 521b), and It may include a communication circuit (eg, the processor 120 or the communication module 190 of FIG. 1 ) set to transmit and receive a wireless signal using at least one of the radiation patch 521a (or the radiation conductor 521b).
  • a communication circuit eg, the processor 120 or the communication module 190 of FIG. 1
  • an isolator 525 disposed in a region between two adjacent radiation patches 521a (or radiation conductors 521b).
  • the isolator 525 may block electromagnetic interference (EMI) between the two radiation patches 521a by providing an isolation structure between the two adjacent radiation patches 521a, for example.
  • EMI electromagnetic interference
  • the communication circuit may be disposed on a main circuit board (eg, the printed circuit board 340 and/or the first base board 501 of FIG. 4 ) in the form of an electronic component such as an integrated circuit chip, and the antenna
  • the array 502 may include a second base substrate 521 on which radiation patches 521a (or radiation conductors 521b) are disposed. Note that it may be integrally formed with the first base substrate 501.
  • the first base substrate 501 may include a plurality of power feeding pads 513a and 513b disposed on one surface, as shown.
  • an integrated circuit chip may include a first base It may be provided on the other surface of the substrate 501 and may be molded with an insulating resin.
  • the feeding pads 513a and 513b are provided on the first base substrate 501 with a line (eg, a microstrip line). ) or may be electrically connected to a connector or an integrated circuit chip through a via, and may provide a power supply signal to the second base substrate 521 or the antenna array 502 .
  • the radiation patches 521a or the radiation conductors 521b may be arranged on the second base substrate 521 .
  • the radiation patches 521a may perform broad side radiation on the second base substrate 521
  • the radiation conductors 521b may perform end fire radiation.
  • the second base substrate 521 may include feeding ports 523a and 523b corresponding to the feeding pads 513a and 513b. Feed ports 523a and 523b are connected to one of the radiation patches 521a (or radiation conductors 521b) through traces (eg, transmission lines such as microstrip lines) and/or vias provided on the second base substrate 521 . It may be electrically connected to any one.
  • the feed pads 513a and 513b and the feed ports 523a and 523b form an electrical connection to form an electrical connection to the radiation patch 521a.
  • the radiation conductors 521b may provide a feed signal.
  • the radiation patches 521a may transmit and receive broadside radiation, for example, a radio signal in a direction in which one side of the second base substrate 521 faces, and the radiation conductors 521b are radiation patches.
  • 521a may transmit/receive radio signals in a direction crossing the direction in which radio signals are transmitted/received.
  • a direction in which the radiation conductors 521b transmit and receive radio signals may be substantially parallel to one surface of the second base substrate 521 .
  • phases difference feeding is provided to the radiation patches 521a, directions in which the radiation patches 521a transmit and receive radio signals in a specified angular range may be varied.
  • the radiation patches 521a may transmit and receive radio signals in the -Y direction, and the radiation conductors 521b are wireless in the -Z direction or +Z direction. Signals can be sent and received.
  • the radiation patches 521a may be formed in a polygonal flat plate, and the radiation conductor 521b may be formed in a monopole structure or a dipole structure.
  • the radiation patches 521a form a 1*4 arrangement on the second base substrate 521
  • the radiation conductors 521b are formed around the area where the radiation patches 521a are arranged (eg, the second edge of the base substrate 521) may be arranged to form a 1*4 arrangement.
  • one embodiment of the present disclosure is not limited thereto, and the number and arrangement of the radiation patches 521a or radiation conductors 521b may be appropriately changed according to a space in which the antenna device 500 is disposed.
  • the feed ports 523a, 523b may be disposed in the same layer as the radiation patches 521a or radiation conductors 521b or in a different layer, and , may be electrically connected to the radiation patches 521a or the radiation conductors 521b through traces or vias provided on the second base substrate 521 .
  • the radiation patches 521a may receive a feed signal from the first feed pad 513a or the first base substrate 501 through the first feed ports 523a among the feed ports 523a and 523b.
  • the radiation conductors 521b may receive a feed signal from the second feed pad 513b or the first base substrate 501 through the second feed ports 523b among the feed ports 523a and 523b.
  • the isolator 525 may include a region between two adjacent radiating patches 521a, a region between two adjacent radiating conductors 521b, and/or one radiating patch 521a and its adjacent regions. and may be disposed in the region between one radiation conductor 521b. In various embodiments, a plurality of isolators 525 may be arranged to surround one radiation patch 521a or radiation conductor 521b. In one embodiment, a plurality of isolators 525 may be disposed in the region between two adjacent radiating patches 521a, in the region between two adjacent radiating conductors 521b, and/or one radiating patch.
  • a plurality of isolators 525 may also be disposed in a region between 521a and one radiation conductor 521b adjacent thereto.
  • the isolator 525 may suppress or block electromagnetic interference between two adjacent radiation patches 521a (or radiation conductors 521b). For example, when any one radiation patch 521a or radiation conductor 521b transmits/receives a radio signal, it is possible to block the signal power from being interfered or induced in the other radiation patch 521a or radiation conductor 521b in the vicinity. can
  • FIG. 8 is an isolator 525 (eg, FIG. 6 ) of an antenna device (eg, the antenna modules 461 , 463 , 465 or the antenna device 500 of FIGS. 5 to 8 ) according to one embodiment of the present disclosure. Alternatively, it is a perspective view showing the isolator 525 of FIG. 7 ).
  • an antenna device eg, the antenna modules 461 , 463 , 465 or the antenna device 500 of FIGS. 5 to 8 .
  • the isolator 525 may include a first portion, a second portion, and/or a third portion.
  • the first conductive pad 525a and the second conductive pad 525b having a flat plate shape forming the first part and the second part may be disposed in parallel or to face each other, and the first conductive pad 525a may be disposed to face each other.
  • the connecting conductor 525c disposed between the second conductive pad 525b may form a third portion of the isolator 525 .
  • the connection conductor 525c may have one end electrically connected to the first conductive pad 525a and the other end electrically connected to the second conductive pad 525b.
  • first conductive pad 525a and the second conductive pad 525b may be electrically connected through a connection conductor 525c.
  • the flow of current may pass through a third portion (eg, the connecting conductor 525c), the first conductive pad 525a and the second The conductive pads 525b may generate current flow in opposite directions with respect to each other.
  • the first conductive pad 525a and the second conductive pad 525b may have substantially the same shape and may be disposed to overlap each other when viewed in a drawing.
  • the first conductive pad 525a and the second conductive pad 525b may include slot 525d(s) extending inwardly from the edge.
  • the first conductive pad 525a and the second conductive pad 525b may have a meander line shape, and the electrical length compared to the external size may be adjusted. .
  • the shape and external size of the conductive pads 525a and 525b will be described with reference to FIGS. 9 to 12 .
  • 9 is an isolator (eg, the isolator 525 of FIG. 8 or the first It is a figure which shows the conductive pad 525a).
  • 10 is a diagram illustrating an isolator 525 in the antenna device 500 according to various embodiments of the present disclosure.
  • 11 is a diagram illustrating an isolator 525 in the antenna device 500 according to various embodiments of the present disclosure.
  • 12 is a diagram illustrating an isolator 525 in the antenna device 500 according to various embodiments of the present disclosure.
  • first conductive pad 525a or second conductive pad 525b for example, the arrangement of slots 525d, 525e)(s)
  • the shape according to is illustrated.
  • the first conductive pad 525a and the second conductive pad 525b may include at least one slot 525d and 525e extending inward from a portion of the edge.
  • the first conductive pad 525a and the second conductive pad 525b formed on the second base substrate 521 may have a slightly different shape or size within a manufacturing tolerance allowable range.
  • the first conductive pads 525a and the second conductive pads 525b are opposite each other, and/or the first conductive pads 525a face each other. and in the second conductive pad 525b, the length or width in which the slots 525d and 525e(s) extend may be slightly different. According to one embodiment, the shape or size of the slots 525d and 525e(s) according to the manufacturing tolerance may not substantially affect the isolation structure using the isolator 525 or the characteristics of the cutoff frequency. For example, the isolation structure using the isolator 525 or the characteristics of the cutoff frequency may be determined by the electrical length of the first conductive pad 525a and/or the second conductive pad 525b.
  • the first conductive pad 525a and the second conductive pad 525b may have a polygonal shape that does not include the slots 525d and 525e(s).
  • the conduction of FIG. 9 including slots 525d, 525e(s) may have an electrical length longer than that of the conductive pad of FIG. 12 .
  • the electrical length of the conductive pad 525a of FIG. 9 may be greater than the first length L1
  • the conductive pad of FIG. 12 may have an electrical length substantially corresponding to the second length L2 .
  • the slots 525d and 525e(s) are formed to form the external size of the first conductive pad 525a (eg, the first length L1 ). ) or the second length L2) may be reduced.
  • the first length L1 may be smaller than the second length L2.
  • the external size of the conductive pad eg, the first length L1 or the second length of FIGS. 9 and 12
  • the isolator 525 can be miniaturized.
  • an antenna eg, the antenna device 500 of FIG. 6
  • one radiation patch eg, the radiation patch 521a or the radiation conductor 521b in FIG.
  • the isolator 525 is miniaturized so that it can be easily disposed between the radiation patches 521a.
  • the isolator 525 may improve antenna performance by blocking electromagnetic interference between the radiation patches (eg, the radiation patches 521a or the radiation conductors 521b of FIG. 6 ), and in beam tilting It is possible to suppress the antenna performance deviation according to the directing direction.
  • the first conductive pad 525a and the second conductive pad 525b may be disposed to substantially overlap each other when viewed in the drawing, and may be electrically connected to each other through the connection conductor 525c.
  • the first conductive pad 525a and the second conductive pad 525b may generate a current flow having a phase difference of 180 degrees with respect to each other.
  • FIG. 13 illustrates a current flow in the isolator 525 when the antenna device (eg, the antenna modules 461 , 463 , 465 or the antenna device 500 of FIGS. 5 to 7 ) according to various embodiments operates It is a drawing for
  • any one of the first conductive pad 525a or the second conductive pad 525b, in the other A flow of current may be generated in a direction opposite to the first direction.
  • the second conductive pad 525b moves away from the connection conductor 525c.
  • a flow of current directed in the direction can be created.
  • the current flow in the first conductive pad 525a may have a phase difference of 180 degrees with respect to the current flow in the second conductive pad 525b.
  • the isolator 525 may have a substantially 'H' shape or a 'U' shape when viewed from a side view.
  • isolator 525 between two adjacent radiating conductors may serve as an electromagnetic shielding structure or isolation structure.
  • electromagnetic energy generated in either of two radiating conductors eg, first radiating patch 521a or radiating conductor 521b in FIG. 6 or FIG. 7
  • the radiation Currents in opposite directions to each other may be generated in the first conductive pad 525a and the second conductive pad 525b by the generated electromagnetic energy, and the isolator 525 substantially blocks electromagnetic energy induced or interfered with by the other radiation conductors. can be absorbed or blocked.
  • the radiation conductors eg, the first radiation patch 521a or the radiation conductor 521b of FIG. 6 or FIG. 7
  • the radiation conductors may perform the designed radiation performance or beam tilting without causing interference with each other.
  • the above-described isolator 525 may be disposed in a wireless communication relay device of a base station, for example, an antenna device for transmitting and receiving a millimeter wave band wireless signal.
  • the degree of freedom in design may be higher than that of a personal electronic device (eg, the electronic devices 101 , 102 , 104 , 200 , 300 , and 400 of FIGS. 1 to 5 ).
  • the antenna device may be reduced in radiant power or coverage to the antenna of the personal electronic device (eg, the antenna modules 461 , 463 , 465 in FIG. 5 ). It can have higher performance.
  • FIGS. 14 to 16 Such an antenna device will be described with reference to FIGS. 14 to 16 .
  • the same reference numerals in the drawings are given or omitted for configurations that can be easily understood through the above-described embodiment(s), and detailed descriptions thereof may also be omitted.
  • FIG. 14 is an antenna device 600 (eg, the antenna module 197 of FIG. 1 , the antenna modules 461 , 463 , 465 of FIG. 5 , or the antenna device 500 of FIGS. 6 to 7 ) according to various embodiments. It is an exploded perspective view showing. 15 is a perspective view illustrating an antenna device 600 according to various embodiments. 16 is an enlarged exploded perspective view of a portion of the antenna device 600 according to various embodiments of the present disclosure.
  • the antenna device 600 includes a first antenna array 602 (eg, the antenna array 502 of FIG. 6 ), a second antenna array 603 , a mesh plate 604 and It may include a communication circuit (eg, the processor 120 or the communication module 190 of FIG. 1 ), and the communication circuit may be provided in the form of an integrated circuit chip disposed on the first base substrate 601 .
  • a communication circuit eg, the processor 120 or the communication module 190 of FIG. 1
  • the communication circuit may be provided in the form of an integrated circuit chip disposed on the first base substrate 601 .
  • all or at least a portion of the communication circuitry may be disposed on the printed circuit board 340 of FIG. 4 , and the remainder of the communication circuitry when a portion of the communication circuitry is disposed on the printed circuit board 340 of FIG. 4 .
  • a portion may be disposed on the first base substrate 601 .
  • the first base substrate 601 may include traces (eg, a transmission line such as a microstrip line) and/or vias electrically connecting the feeding pad 513a and the communication circuit, and the first antenna array 602 .
  • at least one isolator 525 (eg, the isolator 525 of FIG. 8 ) is disposed between two adjacent first radiating patches 521a so that the two first radiating patches 521a are electromagnetically to prevent mutual interference.
  • the configuration of the first antenna array 602, the communication circuit, and/or the isolator 525 may be similar to that of the antenna device 500 of FIG. 6, a detailed description thereof will be omitted.
  • a configuration in which the first radiation patches 521a form a 16*16 array is exemplified according to one embodiment, but various embodiments are not limited thereto, and specifications required for the antenna device 600 are not limited thereto.
  • the number or arrangement of the first radiation patches 521a may be variously changed according to (eg, radiation power or coverage).
  • the second antenna array 603 is disposed to face the first antenna array 602 , and a plurality of second radiation conductors (or second radiation patches) provided on the third base substrate 631 ( 631a).
  • the second radiation conductors 631a form a 16*16 array and may be disposed to face any one of the first radiation patches 521a.
  • the second radiation conductors 631a and/or the second antenna array 603 are formed when the first radiation patches 521a and/or the first antenna array 602 transmit and receive a radio signal, It can convert electromagnetic waves or suppress the generation of side lobes.
  • the second radiation conductors 631a and/or the second antenna array 603 may convert an electromagnetic wave radiated from the first radiation patches 521a and/or the first antenna array 602 into a plane wave, or , it is possible to improve the power efficiency of the antenna device 600 by concentrating or aligning the radiation power in the directional direction.
  • the mesh plate 604 may be disposed between the first antenna array 602 and the second antenna array 603 to function as a spacer.
  • the mesh plate 604 may include a plurality of cavities 641 and a diaphragm 643 formed between two adjacent cavities 641 .
  • the diaphragm 643 may be a wall structure that substantially defines a cavity 641 , wherein the cavities 641 have first radiating patches 521a or second radiating conductors 631a. ) can be arranged according to the arrangement of the For example, the cavity 641 may form a 16*16 arrangement, wherein the second radiation patches 631a face any one of the first radiation patches 521a through any one of the cavities 641 . can be placed.
  • the diaphragm 643 may be disposed at a position corresponding to the isolator 525 , for example, in a region between two adjacent first radiation patches 521a .
  • mesh plate 604 may at least partially include an electromagnetic shielding material and may block electromagnetic interference between two adjacent first radiating patches 521a together with isolator 525 .
  • the mesh plate 604 together with the isolator 525 may block electromagnetic interference between two adjacent second radiating patches 631a.
  • FIG. 17 is a perspective view illustrating a state in which an isolator 525 is disposed in an antenna device (eg, the antenna device 600 of FIGS. 14 to 16 ) according to various embodiments of the present disclosure.
  • 18 is a graph illustrating the measurement of isolation characteristics between radiation patches (eg, the first radiation patches 521a of FIG. 16 ) in the antenna device 600 according to various embodiments of FIG. 17 .
  • 17 is a configuration in which, in the antenna device 600, a diaphragm 643 of a mesh plate 604 and one isolator 525 form an isolation structure in a region between two adjacent first radiation patches 521a.
  • 18 is a graph showing the results of measuring the transmission coefficient S21 before and after one isolator 525 is disposed, and the graph indicated by 'N' is the transmission coefficient before the isolator 525 is disposed , the graph indicated by 'P1' shows the result of measuring the transmittance coefficient S21 measured in a state where one isolator 525 is disposed.
  • the antenna device 600 when performing wireless communication, a surface wave having a vertically polarized component of the substrate may be generated, thereby generating an adjacent radiation patch (eg, : A poor isolation environment may be created between the first radiation patches 521a of FIG. 16 ).
  • the antenna device 600 includes the isolator 525, thereby suppressing the generation of surface waves to ensure sufficient isolation between at least two adjacent first radiation patches 521a, and , which can be confirmed through the transmission coefficient S21 measurement result of FIG. 18 .
  • the antenna device 600 may have an improved transmission coefficient S21 in a frequency band of about 40 GHz or less.
  • 19 is a diagram illustrating radiation power distribution before the isolator 525 is disposed in the antenna device (eg, the antenna device 600 of FIGS. 14 to 16 ) according to various embodiments.
  • 20 is a diagram illustrating a radiation power distribution of an antenna device (eg, the antenna device 600 of FIGS. 14 to 16 ) according to various embodiments.
  • the first radiation patch 521a is formed in a layer constituting the surface of the second base substrate 621 or on the surface may be disposed in a layer adjacent to .
  • at least one of the conductive pads eg, first conductive pad 525a or second conductive pad 525b in FIG. 8
  • first conductive pad 525a is substantially radiating a first radiation.
  • the other conductive pad (eg, the second conductive pad 525b) is disposed on a layer different from that of the first radiation patch 521a and a connection conductor (eg, the connection in FIG. 8 ).
  • the conductor 525c) may be electrically connected to the first conductive pad 525a.
  • the first antenna array 602 , the second antenna array 603 , and/or the mesh plate 604 may be arranged to substantially form a single substrate.
  • the second radiation patch 631a is formed in a substantially different layer from the first radiation patch 521a , the first conductive pad 525a , and/or the second conductive pad 525b in one substrate. It may be disposed to face the first radiation patch 521a with a gap or cavity provided by the mesh plate 604 (eg, the cavity 641 of FIG. 16 ) therebetween.
  • FIG. 19 illustrates the distribution of radiation power formed around any one of two adjacent radiation conductors (eg, the first radiation patch 521a of FIG. 16 ) in an antenna device having a structure in which an isolator is not disposed
  • FIG. 20 is an isolator (eg, the isolator 525 of FIG. 16 ) is disposed in the antenna device (eg, the antenna device 600 of FIGS. 13 to 16 ) two adjacent radiation conductors (eg, the first in FIG. 16 )
  • the distribution of radiation power formed around any one of the radiation patches 521a) is illustrated.
  • the isolator 525 according to various embodiments is disposed, so that more radiation power P is distributed in the radiation direction R or in the directing direction of the first radiation patch 521a and , it can be seen that the interference or induced (I) of the other first radiation patch 521a is suppressed.
  • the antenna device 600 since the antenna device 600 according to an embodiment of the present disclosure includes the isolator 525, the degree of isolation between the radiation conductors (eg, the first radiation patches 521a) may be improved, and the antenna The radiation efficiency of the device 600 may be improved.
  • the antenna device 600 includes the isolator 525, thereby suppressing the deviation of the antenna performance (eg, the deviation of the radiation power) according to the directing direction in the beam tilting using the phase difference feeding and improving the beam tilting performance.
  • the deviation of the antenna performance eg, the deviation of the radiation power
  • 21 is a perspective view illustrating an example in which an isolator 525 is disposed in an antenna device (eg, the antenna device 600 of FIGS. 14 to 16 ) according to various embodiments.
  • 22 is a graph illustrating the measurement of isolation characteristics between radiation patches (eg, the first radiation patches 521a of FIG. 16 ) in the antenna device 600 according to various embodiments of FIG. 21 .
  • a plurality of isolators 525 may be disposed in a region between two adjacent radiation patches (eg, the first radiation patch 521a of FIG. 16 ).
  • the first conductive pad 525a and the second conductive pad 525b of the isolator 525 can be implemented in various shapes, and the external size compared to the electrical length ( Example: It may be implemented by reducing the first and second lengths L1 and L2 of FIG. 9 or FIG. 12 .
  • a configuration in which two isolators 525 are disposed in a position or region corresponding to the diaphragm 643 is exemplified, but one embodiment of the present disclosure is not limited thereto, and an isolator actually manufactured (eg, the first
  • the number of isolators 525 disposed to correspond to one diaphragm 643 may vary according to the external size of the conductive pad 525a and/or the second conductive pad 525b).
  • the graph indicated by 'N' is the transmission coefficient before the isolator 525 is disposed
  • the graph indicated by 'P2' is the transmission coefficient S21 measured in the state in which the two isolators 525 are disposed. shows the measurement results.
  • the transmission coefficient S21 is improved up to approximately 41.25 GHz band compared to the structure in which the isolators 525 are not disposed.
  • at least one isolator 525 is disposed in a region between two adjacent radiation patches (eg, the first radiation patch 521a), so that the degree of isolation between the radiation patches is improved, and the antenna device 600 is Stable operating performance can be ensured.
  • the shape or number of isolators 525 may vary depending on the embodiment, and the degree of improvement of the isolation (eg, the degree of improvement of the transmission coefficient S21 ) or degree of isolation may vary depending on the shape or number of isolators 525 .
  • the frequency band to be improved may be varied.
  • one embodiment of the present disclosure is not limited to the illustrated numerical values or graphs.
  • 23 is a graph showing the measurement of beam tilting performance before the isolator 525 is disposed in the antenna device (eg, the antenna device 600 of FIGS. 14 to 16 ) according to various embodiments.
  • 24 is a graph illustrating measurement of beam tilting performance of an antenna device (eg, the antenna device 600 of FIGS. 14 to 16 ) according to various embodiments.
  • the antenna device 600 may perform beam tilting in a specified angular range (eg, approximately +/-50 degree angular range), and the angular range of such beam tilting is an area in which the antenna device 600 is actually placed or It can be designed in various ways considering the environment of the space.
  • a specified angular range eg, approximately +/-50 degree angular range
  • the antenna device having a structure in which the isolator 525 is not disposed when the antenna device having a structure in which the isolator 525 is not disposed performs beam tilting in an angular direction of approximately +30 degrees to +50 degrees, radiation is more than in other angular directions. It can be seen that the power is lowered or deteriorated (d). For example, in a state in which the isolator 525 is not disposed, a deviation or distortion may occur in the radiation performance of the antenna device according to the directing direction.
  • the antenna device 600 when the antenna device is disposed as a relay device of a mobile communication base station, if there is a deviation, distortion, or deterioration (d) in radiation performance depending on the direction of orientation, even if it is at the same distance from the base station, depending on the arrangement of the antenna device There may be differences in communication quality.
  • FIG. 24 it can be seen that by including the isolator 525 in the antenna device 600 according to various embodiments, the deviation or distortion of radiation performance according to the directing direction or the radiation direction is improved.
  • the antenna device 600 may provide a uniform and stable communication environment throughout the designed beam tilting angle range.
  • the antenna device 600 according to an embodiment of the present disclosure is provided as a relay device, if it is at least the same distance, it is possible to prevent a deviation in communication quality according to directions from occurring and provide a stable communication environment.
  • 25 is an antenna device according to various embodiments (eg, the antenna modules 197, 461, 463, 465 or the antenna devices 500 and 600 of FIGS. 1, 5 to 7 and/or 14 to 16) , it is a diagram illustrating an example of the line unit 700 for providing a power supply signal.
  • 26 is a diagram illustrating an example of a line unit 800 for providing a feed signal in the antenna devices 500 and 600 according to various embodiments of the present disclosure.
  • 27 is a diagram illustrating an example of a line unit 900 for providing a feed signal in the antenna devices 500 and 600 according to various embodiments of the present disclosure.
  • the antenna devices 500 , 600 may include a radiating patch (eg, radiating patch 521a in FIG. 6 or FIG. 16 )(s) and/or a radiating conductor (eg, radiating conductor 521b in FIG. 6 ). ) may include a line unit (700, 800, 900) for providing a feed signal to (s). In wireless communication prior to the 4th generation, a line unit providing a power supply signal may be provided in the same form as a coaxial cable.
  • the line parts 700, 800, 900 may be provided in the form of a printed circuit pattern (eg, microstrip line).
  • a very high frequency signal (eg, a signal having a frequency of several tens of GHz band) is transmitted
  • the lines may be arranged at least partially adjacent to each other.
  • an isolation structure may be provided between the transmission lines, and the above-described isolator (eg, the isolator 525 of FIGS. 6, 8, or 16) is used between the transmission lines. It may be at least part of an isolation structure provided therebetween.
  • these transmission lines may provide a feed signal to the radiating patch or radiating conductors described above.
  • the radiation patch(s) and/or radiation conductor(s) provide a feed signal through the line units 700 , 800 and 900 of FIGS. 25 to 27 . can receive
  • the line unit 700 has an isolation structure disposed in a region between a plurality of transmission lines 721a extending in parallel at positions adjacent to each other and two transmission lines 721a disposed adjacent to each other.
  • the isolation structure may be formed of a plurality of via conductors 729 arranged along the direction in which the transmission line 721a(s) extend.
  • the transmission lines 721a may be configured to provide a feed signal to the above-described first radiation patch or radiation conductor (eg, radiation patch 521a or radiation conductor 521b of FIG. 6 or FIG. 16 ). there is.
  • the transmission line 721a(s) may be implemented as a microstrip line formed on or inside the substrate 721 , and input terminals T1 and T3 provided at both ends of the microstrip line. ) and output terminals T2 and T4.
  • an isolation structure using an arrangement of via conductors 729 may be relatively uniform and have good blocking or isolation performance in a measurement frequency band (eg, approximately 30 GHz to 50 GHz).
  • the blocking or isolation performance of an isolation structure using an arrangement of via conductors 729 may vary substantially by the spacing of the via conductors 729 . For example, when the via conductors have a spacing of less than about 1 mm, it was measured to have a blocking performance of about -30 dB or more over the entire measurement frequency band.
  • the line unit 800 may include a plurality of isolators 825 , thereby providing an isolation structure between the transmission lines 721a.
  • the isolators 825 may be arranged along the direction in which the transmission lines 721a extend in a region between two adjacent transmission lines 721a.
  • the isolator 825 includes a first extension 825a, a second extension 825b, and/or a connector electrically connecting the first extension 825a and the second extension 825b ( 825c).
  • the first extension portion 825a extends in parallel with two adjacent transmission lines 721a
  • the second extension portion 825b includes one of the two adjacent transmission lines 721a and the first extension portion 825b. It may be disposed in a region between the extension portions 825a.
  • the second extension portion 825b may extend substantially in parallel with the first extension portion 825a and may be electrically connected to the first extension portion 825a through the connection portion 825c.
  • the first extension 825a may be similar to the first conductive pad 525a of FIG. 8 or 13
  • the second extension 825b is the second conductive pad 525b of FIG. 8 or 13 . It may be similar to pad 525b.
  • the first extension 825a and the second extension 825b when an ultra-high frequency signal is transmitted through at least one of the transmission lines 721a, the first extension 825a and the second extension 825b generate a flow of current having a phase difference of 180 degrees with respect to each other.
  • the electromagnetic field formed around the transmission line 721a is substantially absorbed by the isolator 825, and the other transmission line 721a may not interfere with
  • the isolator 825 may be positioned in a layer in which the transmission lines 721a (eg, microstrip lines) are disposed.
  • the isolator 825 may be formed substantially simultaneously with the transmission line 721a in a process of substantially forming the transmission line 721a through plating, deposition, and etching processes.
  • the line portion 700 of FIG. 25 includes an isolation structure using a via conductor 729, so that, compared to the line portion 800 of FIG. can be excellent As will be seen later, the isolation structure using the isolator 825 of FIG.
  • an antenna device or a line unit may perform communication using a radio signal of a designated frequency band, and in this case, the isolation structure may be designed in consideration of the corresponding frequency band.
  • the line portion 700 including the isolation structure of FIG. 25 has good isolation performance irrespective of the frequency band, but when compared to the line portion 700 of FIG. 25 , the line portion 800 of FIG. 26 . ) is easy to manufacture while providing good isolation performance in a desired frequency band, and manufacturing cost can be reduced.
  • the antenna devices 500 and 600 and/or the line unit 800 according to an embodiment of the present disclosure may be easily manufactured while having good isolation performance in a desired frequency band.
  • the line unit 900 may further include a second isolator (eg, the via conductor 729 of FIG. 25 ).
  • the second isolator 729 may be disposed, for example, in a region between two adjacent transmission lines 721a and may be disposed between the isolators 825 .
  • the isolator 825 and the second isolator 729 may be alternately disposed.
  • the second isolator 729 may include a via conductor formed in the substrate 721 , and may extend in a direction crossing the direction in which the transmission lines 721a extend.
  • Various combinations using the shape or arrangement of the isolators 825 and 729 may facilitate tuning to a desired frequency band in securing the degree of isolation between the transmission lines 721a. This will be further described with reference to FIG. 28 .
  • FIG. 28 is a diagram illustrating isolation of line units (eg, line units 800 and 900 of FIGS. 26 and 27 ) in the antenna device (eg, the antenna devices 500 and 600 of FIGS. 6 or 16 ) according to various embodiments. It is a graph showing by measuring the characteristics.
  • line units eg, line units 800 and 900 of FIGS. 26 and 27
  • the antenna device eg, the antenna devices 500 and 600 of FIGS. 6 or 16
  • 'S41_1' is an example of a transmission coefficient between transmission lines 721a in the line unit 800 of FIG. 26, and 'S41_2' is a transmission line ( 721a) to illustrate the transmission coefficient.
  • the line portions 800 and 900 exhibit good isolation characteristics in a frequency range of approximately 35 GHz to 39 GHz, and block according to a combination of the isolators 825 and 729 It can be seen that the frequency changes.
  • the line unit 800 of FIG. 26 blocks interference of electromagnetic energy between the transmission lines 721a in a bandwidth of approximately 2 GHz centered on a frequency of approximately 38.5 GHz.
  • an antenna device eg, the antenna modules 197 , 461 , 463 , 465 or the antenna devices 500 and 600 of FIGS. 1 , 4 , 6 and/or 16
  • an electronic device including the same eg, the electronic devices 101, 102, 104, 200, 300, 400 of FIGS. 1 to 5
  • a first antenna array eg, antenna arrays 502 and 602 of FIG. 6 or FIG.
  • At least one first isolator eg, the isolator 525 of FIGS. 6, 8, or 16 disposed in the region of a first conductive pad 525a), a second portion arranged in parallel with the first portion (eg, the second conductive pad 525b of FIG. 6 or 8), and the first portion and the second portion a third portion electrically connecting (eg, connecting conductor 525c in FIG. 8 ), wherein the first portion and the second portion may be configured to produce a flow of current that is 180 degrees out of phase with respect to each other. there is.
  • any one of the first part and the second part generates a flow of a first current in a direction toward a point where the third part is connected, and the first part and the second part In another one of the third parts may be configured to generate a flow of a second current in a direction away from the point to which it is connected.
  • the first isolator may be configured to block electromagnetic interference between two adjacent first radiating patches.
  • the antenna device and/or electronic device as described above includes a second antenna array ( Example: the second antenna array 603 of FIGS. 14 to 16 ), wherein the second antenna array is disposed to face the first antenna array, and is disposed between the first antenna array and the second antenna array It may further include a mesh plate (eg, the mesh plate 604 of FIGS. 14 to 16 ).
  • the mesh plate may include an arrangement of a plurality of cavities (eg, the cavity 641 of FIG. 16 ) and a diaphragm (eg, the diaphragm ( ) of FIG. 16 ) formed between two adjacent cavities. 643)), wherein the second radiation patches are disposed to face any one of the first radiation patches through any one of the cavities, and the diaphragm may be disposed to face the first isolator. .
  • the mesh plate may be configured to block electromagnetic interference between two adjacent first radiation patches or between two adjacent second radiation patches.
  • the first isolator forms a plate-shaped first conductive pad (eg, the first conductive pad 525a in FIG. 8 ) forming the first part, and the second part, A flat second conductive pad (eg, the second conductive pad 525b of FIG. 8 ) disposed to face the first conductive pad, and a connection conductor disposed between the first conductive pad and the second conductive pad (eg, the first connection conductor 525c of FIG. 8 ), wherein the connection conductor has one end connected to the first conductive pad and the other end connected to the second conductive pad, such that the first conductive pad and the The second conductive pad may be electrically connected.
  • the first isolator may include at least one first slot (eg, the slot of FIGS. 8 to 11 525d and 525e), and at least one second slot extending inwardly of the second conductive pad from a portion of an edge of the second conductive pad (eg, slots 525d and 525e of FIGS. 8 to 11).
  • the second slot may be disposed to face the first slot.
  • the antenna device and/or the electronic device as described above further includes a plurality of radiation conductors (eg, radiation conductor 521b in FIG. 6 ) disposed around the first radiation patches, and , the first isolator may be further disposed in a region between two adjacent radiation conductors or in a region between one of the first radiation patches and one of the radiation conductors adjacent thereto.
  • a plurality of radiation conductors eg, radiation conductor 521b in FIG. 6
  • the first isolator may be further disposed in a region between two adjacent radiation conductors or in a region between one of the first radiation patches and one of the radiation conductors adjacent thereto.
  • the radiation conductor may be set to radiate a radio signal in a direction crossing the direction in which the first radiation patch radiates a radio signal.
  • the antenna device and/or the electronic device as described above includes a plurality of transmission lines (eg, the transmission line 721a of FIG. 26 or FIG. 27 ) configured to provide a feed signal to the first radiation patches. )), and at least one second isolator (eg, the isolator 825 of FIG. 26 or FIG. 27 ) disposed in a region between two adjacent transmission lines among the transmission lines, wherein the second isolator is a first extension extending in parallel with two adjacent transmission lines (eg, the first extension portion 825a in FIG. 26 ), extending in parallel with the first extension portion, and extending in parallel with the two adjacent transmission lines A second extension portion (eg, the second extension portion 825b of FIG.
  • connection portion electrically connecting the first extension portion and the second extension portion (eg, the connection part 825c of FIG. 26 ), and the first extension part and the second extension part may be configured to generate a flow of current having a phase difference of 180 degrees with respect to each other.
  • the antenna device and/or the electronic device as described above includes a plurality of third isolators (eg, the second isolator 729 of FIG. 27 ) disposed in an area between two adjacent transmission lines. ), and a plurality of the second isolators may be alternately disposed with the third isolator along a direction in which the transmission lines extend.
  • a plurality of third isolators eg, the second isolator 729 of FIG. 27
  • the second isolators may be alternately disposed with the third isolator along a direction in which the transmission lines extend.
  • the third isolator may include a via conductor extending in a direction crossing a direction in which the transmission lines extend.
  • an electronic device (eg, the electronic devices 101 , 102 , 104 , 200 , 300 , and 400 of FIGS. 1 to 5 ) includes a housing (eg, the housing 210 of FIG. 2 ). )) and at least one antenna module disposed in the housing (eg, the antenna modules 197, 461, 463, 465 of FIGS. ), and the antenna module includes a first antenna array (eg, the antenna of FIG. 6 or 16 ) including an arrangement of a plurality of first radiation patches (eg, the radiation patch 521a of FIG. 6 or FIG. 16 ).
  • a first antenna array eg, the antenna of FIG. 6 or 16
  • first radiation patches eg, the radiation patch 521a of FIG. 6 or FIG. 16
  • the first isolator includes a first part (eg, the first conductive pad 525a of FIG. 6 or FIG. 8 ) and a second part (eg, FIG. 6 or FIG. 6 or FIG. 8 ) arranged in parallel with the first part. a second conductive pad 525b of FIG. 8), and a third part electrically connecting the first part and the second part (eg, the connection conductor 525c of FIG. 8), the first part and The second portion may be configured to produce a flow of current that is 180 degrees out of phase with respect to each other.
  • the first isolator includes a flat first conductive pad (eg, the first conductive pad 525a of FIG. 6 or FIG. 8 ) forming the first part, and the second part a second conductive pad (eg, the second conductive pad 525b of FIG. 6 or FIG. 8 ) of a flat plate shape disposed to face the first conductive pad, and the first conductive pad and the second conductive pad and a connecting conductor (eg, the connecting conductor 525c of FIG. 6 ) disposed therebetween, wherein one end of the connecting conductor is connected to the first conductive pad and the other end is connected to the second conductive pad, so that the first The conductive pad and the second conductive pad may be electrically connected.
  • a flat first conductive pad eg, the first conductive pad 525a of FIG. 6 or FIG. 8
  • a second conductive pad eg, the second conductive pad 525b of FIG. 6 or FIG. 8
  • a connecting conductor eg, the connecting conductor 525
  • the first isolator may include at least one first slot (eg, the slot of FIGS. 8 to 11 525d and 525e), and at least one second slot extending inwardly of the second conductive pad from a portion of an edge of the second conductive pad (eg, slots 525d and 525e of FIGS. 8 to 11).
  • the second slot may be disposed to face the first slot.
  • the antenna module further includes a plurality of radiation conductors (eg, radiation conductor 521b in FIG. 6 ) disposed around the first radiation patches, and the first isolator is adjacent to It may be further disposed in a region between the two radiation conductors, or in a region between one of the first radiation patches and one of the radiation conductors adjacent thereto.
  • a plurality of radiation conductors eg, radiation conductor 521b in FIG. 6
  • the first isolator is adjacent to It may be further disposed in a region between the two radiation conductors, or in a region between one of the first radiation patches and one of the radiation conductors adjacent thereto.
  • the radiation conductor may be set to radiate a radio signal in a direction crossing the direction in which the first radiation patch radiates a radio signal.
  • the antenna module includes a multi-layer circuit board, and in the multi-layer circuit board, any one of the first part and the second part is disposed on the same layer as the first radiation patch can be
  • the antenna module may further include a plurality of radiation conductors disposed on the multilayer circuit board around the first radiation patches.

Landscapes

  • Telephone Function (AREA)

Abstract

본 개시의 한 실시예에 따르면, 안테나 장치 및/또는 그를 포함하는 전자 장치는, 복수의 제1 방사 패치의 배열을 포함하는 제1 안테나 어레이, 상기 제1 방사 패치들 중 적어도 하나를 이용하여 무선 신호를 송신 및/또는 수신하도록 설정된 통신 회로, 및 도전체(conductor)를 포함하고 상기 제1 방사 패치들 중 서로 인접하는 두 제1 방사 패치 사이의 영역에 배치된 적어도 하나의 제1 아이솔레이터를 포함하고, 상기 제1 아이솔레이터는, 제1 부분, 상기 제1 부분과 나란하게 배치된 제2 부분, 및 상기 제1 부분과 상기 제2 부분을 전기적으로 연결하는 제3 부분을 포함하고, 상기 제1 부분과 상기 제2 부분은 서로에 대하여 180도 위상차를 가진 전류의 흐름을 생성하도록 구성될 수 있다.

Description

안테나 장치 및 그를 포함하는 전자 장치
본 개시는 전자 장치에 관한 것으로서, 예를 들면, 안테나 장치 및 그를 포함하는 전자 장치에 관한 것이다.
전자, 정보, 통신 기술이 발달하면서, 하나의 전자 장치에 다양한 기능이 통합되고 있다. 예를 들어, 스마트 폰은 통신 기능과 아울러, 음향 재생 기기, 촬상 기기, 또는 전자 수첩과 같은 기능을 포함하고 있으며, 어플리케이션의 추가 설치를 통해 더욱 다양한 기능이 스마트 폰에서 구현될 수 있다. 전자 장치는 탑재된 어플리케이션이나 저장된 파일의 실행뿐만 아니라, 유선 또는 무선 방식으로 서버 또는 다른 전자 장치에 접속하여 다양한 정보들을 실시간으로 제공받을 수 있다.
사용자는, 전자 장치 자체에 탑재된 기능(예: 어플리케이션)이나 정보에 한정되지 않고, 네트워크에 접속함으로써 더 많은 정보를 검색, 선별하여 획득할 수 있다. 네트워크에 접속함에 있어, 직접 접속 방식(예: 유선 통신)은 빠르고 안정된 통신 수립을 제공할 수 있지만, 활용 영역이 고정된 위치 또는 일정 정도의 공간으로 제한될 수 있다. 네트워크에 접속함에 있어, 무선 통신 방식은 위치나 공간의 제약이 적고, 무선 통신 방식의 전송 속도나 안정성은 점차 직접 접속 방식과 동등한 수준에 이르고 있으며, 향후에는 직접 접속 방식보다 더 빠르고 안정된 통신 수립을 제공할 것으로 예상된다.
무선 접속을 제공함에 있어서, 전자 장치는 다양한 통신 규약에 부합하는 복수의 안테나 장치를 포함할 수 있으며, 기지국의 무선 통신 중계 장비 또한 충분한 영역을 커버할 수 있는 안테나를 포함할 수 있다. 4세대 무선통신 시스템이 상용화된 이후, 지속적으로 증가하는 무선 데이터 트래픽 수요를 충족하기 위해 5세대 무선 통신 시스템으로 점차 전환되고 있다. 5세대 무선 통신 시스템은 밀리미터 파(mmWave) 대역에서 구현되고 있으며, 사용자가 휴대하는 전자 장치 또는 기지국에서는 위상 배열 안테나(array antenna)를 포함할 수 있다. 밀리미터 파 대역의 무선 신호는 높은 직진성과 높은 지향성을 가질 수 있으며, 위상 배열 안테나는 위상차 급전을 이용한 빔 틸팅(beam tilting)을 수행함으로써 충분한 커버리지를 확보할 수 있다.
위상 배열 안테나는 다수의 방사 패치 또는 방사 도체를 포함할 수 있으며, 하나의 방사 패치는 수 mm 이하의 크기를 가지면서 더 작은 간격으로 배열될 수 있다. 이러한 위상 배열 안테나가 동작함에 있어, 인접하는 방사 패치들 간의 간섭은 안테나 성능을 저하시킬 수 있다. 인접하는 방사 패치들 사이에 격리 구조를 형성하여 격리도를 확보함으로써 안정된 안테나 성능이 유지될 수 있지만, 빔 틸팅을 수행하는 과정에서 지향 방향에 따라 안테나 성능에 편차가 발생될 수 있다.
본 개시의 한 실시예는, 안테나 어레이에서, 인접하는 방사 패치(또는 방사 도체)들의 안정된 동작 환경을 조성하는 격리 구조를 포함하는 안테나 장치 및/또는 그를 포함하는 전자 장치를 제공할 수 있다.
본 개시의 한 실시예는, 빔 틸팅을 수행하는 과정에서 지향 방향에 따른 왜곡이나 안테나 성능 편차가 개선된 위상 배열 안테나 장치 및/또는 그를 포함하는 전자 장치를 제공할 수 있다.
본 개시의 다양한 예시적인 실시예에 따르면, 안테나 장치 및/또는 그를 포함하는 전자 장치는, 복수의 제1 방사 패치의 배열을 포함하는 제1 안테나 어레이, 상기 제1 방사 패치들 중 적어도 하나를 이용하여 무선 신호를 송신 및/또는 수신하도록 설정된 통신 회로, 및 도전체(conductor)를 포함하고 상기 제1 방사 패치들 중 서로 인접하는 두 제1 방사 패치 사이의 영역에 배치된 적어도 하나의 제1 아이솔레이터를 포함하고, 상기 제1 아이솔레이터는, 제1 부분, 상기 제1 부분과 나란하게 배치된 제2 부분, 및 상기 제1 부분과 상기 제2 부분을 전기적으로 연결하는 제3 부분을 포함하고, 상기 제1 부분과 상기 제2 부분은 서로에 대하여 180도 위상차를 가진 전류의 흐름을 생성하도록 구성될 수 있다.
본 개시의 다양한 예시적인 실시예에 따르면, 전자 장치는, 하우징 및, 상기 하우징에 배치된 적어도 하나의 안테나 모듈을 포함하고, 상기 안테나 모듈은, 복수의 제1 방사 패치의 배열을 포함하는 제1 안테나 어레이, 상기 제1 방사 패치들 중 적어도 하나를 이용하여 무선 신호를 송신 및/또는 수신하도록 설정된 통신 회로, 및 도전체를 포함하고 상기 제1 방사 패치들 중 서로 인접하는 두 제1 방사 패치 사이의 영역에 배치된 적어도 하나의 제1 아이솔레이터를 포함하며, 상기 제1 아이솔레이터는, 제1 부분, 상기 제1 부분과 나란하게 배치된 제2 부분, 및 상기 제1 부분과 상기 제2 부분을 전기적으로 연결하는 제3 부분을 포함하고, 상기 제1 부분과 상기 제2 부분은 서로에 대하여 180도 위상차를 가진 전류의 흐름을 생성하도록 구성될 수 있다.
본 개시의 다양한 예시적인 실시예에 따르면, 방사 패치들 또는 방사 도체들 사이에 아이솔레이터(들)가 배치됨으로써 인접하는 두 방사 패치 또는 두 방사 도체 사이의 간섭을 차단할 수 있다. 다양한 실시예에서, 아이솔레이터는 서로 다른 두 부분에서 180도 위상차를 가진 전류의 흐름을 생성함으로써, 흡수체로서 기능할 수 있다. 예컨대, 본 개시의 한 실시예에 따른 안테나 장치 및/또는 전자 장치는 안정된 무선 통신 성능을 가질 수 있다. 다양한 실시예에서, 아이솔레이터는, 위상 배열 안테나에서 빔 틸팅 기능을 수행함에 있어, 지향 방향에 따른 왜곡이나 안테나 성능 편차를 억제 또는 방지할 수 있다. 이 외에, 본 문서를 통해 직접적으로 또는 간접적으로 파악되는 다양한 효과들이 제공될 수 있다.
본 개시의 한 실시예에 관해 상술한 측면 또는 다른 측면, 장점 및 주요 구성들은 첨부된 도면을 참조하는 다음의 상세한 설명을 통해 더욱 명확해질 수 있다.
도 1은 다양한 실시예에 따른, 네트워크 환경 내의 예시적인 전자 장치를 나타내는 블록도이다.
도 2는 다양한 실시예에 따른 전자 장치의 전면을 나타내는 사시도이다.
도 3은 도 2의 다양한 실시예에 따른 전자 장치의 후면을 나타내는 사시도이다.
도 4는 도 2의 다양한 실시예에 따른 전자 장치를 나타내는 분리 사시도이다.
도 5는 다양한 실시예에 따른 전자 장치를 설명하기 위한 구성도이다.
도 6은 다양한 실시예에 따른 안테나 장치를 나타내는 분리 사시도이다.
도 7은 다양한 실시예에 따른 안테나 장치를 나타내는 도면이다.
도 8은 다양한 실시예에 따른 안테나 장치의 아이솔레이터를 나타내는 사시도이다.
도 9는 다양한 실시예에 따른 안테나 장치의 예시적인 아이솔레이터를 나타내는 도면이다.
도 10은 다양한 실시예에 따른 안테나 장치에서, 예시적인 아이솔레이터를 나타내는 도면이다.
도 11은 다양한 실시예에 따른 안테나 장치에서, 예시적인 아이솔레이터를 나타내는 도면이다.
도 12는 다양한 실시예에 따른 안테나 장치에서, 예시적인 아이솔레이터를 나타내는 도면이다.
도 13은 다양한 실시예에 따른 안테나 장치가 동작할 때, 아이솔레이터에서의 전류 흐름을 설명하기 위한 도면이다.
도 14는 다양한 실시예에 따른 안테나 장치를 나타내는 분리 사시도이다.
도 15는 다양한 실시예에 따른 안테나 장치를 나타내는 사시도이다.
도 16은 다양한 실시예에 따른 안테나 장치의 일부분을 확대하여 나타내는 분리 사시도이다.
도 17은 다양한 실시예에 따른 안테나 장치에서 아이솔레이터가 배치된 모습을 나타내는 도면이다.
도 18은 도 17의 다양한 실시예에 따른 안테나 장치에서, 방사 패치들 사이의 격리도 특성을 측정하여 나타내는 그래프이다.
도 19는 다양한 실시예에 따른 안테나 장치에서, 아이솔레이터가 배치되기 전의 방사 파워 분포를 예시하는 사시도이다.
도 20은 다양한 실시예에 따른 안테나 장치의 방사 파워 분포를 예시하는 도면이다.
도 21은 다양한 실시예에 따른 안테나 장치에서 아이솔레이터가 배치된 예를 나타내는 도면이다.
도 22는 도 21의 다양한 실시예에 따른 안테나 장치에서, 방사 패치들 사이의 격리도 특성을 측정하여 나타내는 그래프이다.
도 23은 다양한 실시예에 따른 안테나 장치에서, 아이솔레이터가 배치되기 전의 빔 틸팅 성능을 측정하여 나타내는 그래프이다.
도 24는 다양한 실시예에 따른 안테나 장치의 빔 틸팅 성능을 측정하여 나타내는 그래프이다.
도 25는 다양한 실시예에 따른 안테나 장치에서, 급전 신호를 제공하기 위한 선로부의 한 예를 나타내는 도면이다.
도 26은 다양한 실시예에 따른 안테나 장치에서, 급전 신호를 제공하기 위한 선로부의 다른 예를 나타내는 도면이다.
도 27은 다양한 실시예에 따른 안테나 장치에서, 급전 신호를 제공하기 위한 선로부의 또 다른 예를 나타내는 도면이다.
도 28은 다양한 실시예에 따른 안테나 장치에서, 선로부들의 격리도 특성을 측정하여 나타내는 그래프이다.
도 1은, 다양한 실시예들에 따른, 네트워크 환경(100) 내의 전자 장치(101)의 블록도이다. 도 1을 참조하면, 네트워크 환경(100)에서 전자 장치(101)는 제1 네트워크(198)(예: 근거리 무선 통신 네트워크)를 통하여 전자 장치(102)와 통신하거나, 또는 제2 네트워크(199)(예: 원거리 무선 통신 네트워크)를 통하여 전자 장치(104) 또는 서버(108) 중 적어도 하나와 통신할 수 있다. 일실시예에 따르면, 전자 장치(101)는 서버(108)를 통하여 전자 장치(104)와 통신할 수 있다. 일실시예에 따르면, 전자 장치(101)는 프로세서(120), 메모리(130), 입력 모듈(150), 음향 출력 모듈(155), 디스플레이 모듈(160), 오디오 모듈(170), 센서 모듈(176), 인터페이스(177), 연결 단자(178), 햅틱 모듈(179), 카메라 모듈(180), 전력 관리 모듈(188), 배터리(189), 통신 모듈(190), 가입자 식별 모듈(196), 또는 안테나 모듈(197)을 포함할 수 있다. 다양한 실시예에서는, 전자 장치(101)에는, 이 구성요소들 중 적어도 하나(예: 연결 단자(178))가 생략되거나, 하나 이상의 다른 구성 요소가 추가될 수 있다. 다양한 실시예에서는, 이 구성요소들 중 일부들(예: 센서 모듈(176), 카메라 모듈(180), 또는 안테나 모듈(197))은 하나의 구성요소(예: 디스플레이 모듈(160))로 통합될 수 있다.
프로세서(120)는, 예를 들면, 소프트웨어(예: 프로그램(140))를 실행하여 프로세서(120)에 연결된 전자 장치(101)의 적어도 하나의 다른 구성요소(예: 하드웨어 또는 소프트웨어 구성요소)를 제어할 수 있고, 다양한 데이터 처리 또는 연산을 수행할 수 있다. 예시적인 실시예에 따르면, 데이터 처리 또는 연산의 적어도 일부로서, 프로세서(120)는 다른 구성요소(예: 센서 모듈(176) 또는 통신 모듈(190))로부터 수신된 명령 또는 데이터를 휘발성 메모리(132)에 저장하고, 휘발성 메모리(132)에 저장된 명령 또는 데이터를 처리하고, 결과 데이터를 비휘발성 메모리(134)에 저장할 수 있다. 일실시예에 따르면, 프로세서(120)는 메인 프로세서(121)(예: 중앙 처리 장치 또는 어플리케이션 프로세서), 또는 이와는 독립적으로 또는 함께 운영 가능한 보조 프로세서(123)(예: 그래픽 처리 장치, 신경망 처리 장치(NPU; neural processing unit), 이미지 시그널 프로세서, 센서 허브 프로세서, 또는 커뮤니케이션 프로세서)를 포함할 수 있다. 예를 들어, 전자 장치(101)가 메인 프로세서(121) 및 보조 프로세서(123)를 포함하는 경우, 보조 프로세서(123)는 메인 프로세서(121)보다 저전력을 사용하거나, 지정된 기능에 특화되도록 설정될 수 있다. 보조 프로세서(123)는 메인 프로세서(121)와 별개로, 또는 그 일부로서 구현될 수 있다.
보조 프로세서(123)는, 예를 들면, 메인 프로세서(121)가 인액티브(예: 슬립) 상태에 있는 동안 메인 프로세서(121)를 대신하여, 또는 메인 프로세서(121)가 액티브(예: 어플리케이션 실행) 상태에 있는 동안 메인 프로세서(121)와 함께, 전자 장치(101)의 구성요소들 중 적어도 하나의 구성요소(예: 디스플레이 모듈(160), 센서 모듈(176), 또는 통신 모듈(190))와 관련된 기능 또는 상태들의 적어도 일부를 제어할 수 있다. 일실시예에 따르면, 보조 프로세서(123)(예: 이미지 시그널 프로세서 또는 커뮤니케이션 프로세서)는 기능적으로 관련 있는 다른 구성 요소(예: 카메라 모듈(180) 또는 통신 모듈(190))의 일부로서 구현될 수 있다. 일실시예에 따르면, 보조 프로세서(123)(예: 신경망 처리 장치)는 인공지능 모델의 처리에 특화된 하드웨어 구조를 포함할 수 있다. 인공지능 모델은 기계 학습을 통해 생성될 수 있다. 이러한 학습은, 예를 들어, 인공지능 모델이 수행되는 전자 장치(101) 자체에서 수행될 수 있고, 별도의 서버(예: 서버(108))를 통해 수행될 수도 있다. 학습 알고리즘은, 예를 들어, 지도형 학습(supervised learning), 비지도형 학습(unsupervised learning), 준지도형 학습(semi-supervised learning) 또는 강화 학습(reinforcement learning)을 포함할 수 있으나, 전술한 예에 한정되지 않는다. 인공지능 모델은, 복수의 인공 신경망 레이어들을 포함할 수 있다. 인공 신경망은 심층 신경망(DNN: deep neural network), CNN(convolutional neural network), RNN(recurrent neural network), RBM(restricted boltzmann machine), DBN(deep belief network), BRDNN(bidirectional recurrent deep neural network), 심층 Q-네트워크(deep Q-networks) 또는 상기 중 둘 이상의 조합 중 하나일 수 있으나, 전술한 예에 한정되지 않는다. 인공지능 모델은 하드웨어 구조 이외에, 추가적으로 또는 대체적으로, 소프트웨어 구조를 포함할 수 있다.
메모리(130)는, 전자 장치(101)의 적어도 하나의 구성요소(예: 프로세서(120) 또는 센서 모듈(176))에 의해 사용되는 다양한 데이터를 저장할 수 있다. 데이터는, 예를 들어, 소프트웨어(예: 프로그램(140)) 및, 이와 관련된 명령에 대한 입력 데이터 또는 출력 데이터를 포함할 수 있다. 메모리(130)는, 휘발성 메모리(132) 또는 비휘발성 메모리(134)를 포함할 수 있다.
프로그램(140)은 메모리(130)에 소프트웨어로서 저장될 수 있으며, 예를 들면, 운영 체제(142), 미들 웨어(144) 또는 어플리케이션(146)을 포함할 수 있다.
입력 모듈(150)은, 전자 장치(101)의 구성요소(예: 프로세서(120))에 사용될 명령 또는 데이터를 전자 장치(101)의 외부(예: 사용자)로부터 수신할 수 있다. 입력 모듈(150)은, 예를 들면, 마이크, 마우스, 키보드, 키(예: 버튼) 또는 디지털 펜(예:스타일러스 펜)을 포함할 수 있다.
음향 출력 모듈(155)은 음향 신호를 전자 장치(101)의 외부로 출력할 수 있다. 음향 출력 모듈(155)은, 예를 들면, 스피커 또는 리시버를 포함할 수 있다. 스피커는 멀티미디어 재생 또는 녹음 재생과 같이 일반적인 용도로 사용될 수 있다. 리시버는 착신 전화를 수신하기 위해 사용될 수 있다. 일실시예에 따르면, 리시버는 스피커와 별개로, 또는 그 일부로서 구현될 수 있다.
디스플레이 모듈(160)은 전자 장치(101)의 외부(예: 사용자)로 정보를 시각적으로 제공할 수 있다. 디스플레이 모듈(160)은, 예를 들면, 디스플레이, 홀로그램 장치, 또는 프로젝터 및 해당 장치를 제어하기 위한 제어 회로를 포함할 수 있다. 일실시예에 따르면, 디스플레이 모듈(160)은 터치를 감지하도록 설정된 터치 센서, 또는 상기 터치에 의해 발생되는 힘의 세기를 측정하도록 설정된 압력 센서를 포함할 수 있다.
오디오 모듈(170)은 소리를 전기 신호로 변환시키거나, 반대로 전기 신호를 소리로 변환시킬 수 있다. 일실시예에 따르면, 오디오 모듈(170)은, 입력 모듈(150)을 통해 소리를 획득하거나, 음향 출력 모듈(155), 또는 전자 장치(101)와 직접 또는 무선으로 연결된 외부의 전자 장치(예: 전자 장치(102))(예: 스피커 또는 헤드폰))를 통해 소리를 출력할 수 있다.
센서 모듈(176)은 전자 장치(101)의 작동 상태(예: 전력 또는 온도), 또는 외부의 환경 상태(예: 사용자 상태)를 감지하고, 감지된 상태에 대응하는 전기 신호 또는 데이터 값을 생성할 수 있다. 일실시예에 따르면, 센서 모듈(176)은, 예를 들면, 제스처 센서, 자이로 센서, 기압 센서, 마그네틱 센서, 가속도 센서, 그립 센서, 근접 센서, 컬러 센서, IR(infrared) 센서, 생체 센서, 온도 센서, 습도 센서, 또는 조도 센서를 포함할 수 있다.
인터페이스(177)는 전자 장치(101)가 외부의 전자 장치(예: 전자 장치(102))와 직접 또는 무선으로 연결되기 위해 사용될 수 있는 하나 이상의 지정된 프로토콜들을 지원할 수 있다. 일실시예에 따르면, 인터페이스(177)는, 예를 들면, HDMI(high definition multimedia interface), USB(universal serial bus) 인터페이스, SD카드 인터페이스, 또는 오디오 인터페이스를 포함할 수 있다.
연결 단자(178)는, 그를 통해서 전자 장치(101)가 외부의 전자 장치(예: 전자 장치(102))와 물리적으로 연결될 수 있는 커넥터를 포함할 수 있다. 일실시예에 따르면, 연결 단자(178)는, 예를 들면, HDMI 커넥터, USB 커넥터, SD 카드 커넥터, 또는 오디오 커넥터(예: 헤드폰 커넥터)를 포함할 수 있다.
햅틱 모듈(179)은 전기적 신호를 사용자가 촉각 또는 운동 감각을 통해서 인지할 수 있는 기계적인 자극(예: 진동 또는 움직임) 또는 전기적인 자극으로 변환할 수 있다. 일실시예에 따르면, 햅틱 모듈(179)은, 예를 들면, 모터, 압전 소자, 또는 전기 자극 장치를 포함할 수 있다.
카메라 모듈(180)은 정지 영상 및 동영상을 촬영할 수 있다. 일실시예에 따르면, 카메라 모듈(180)은 하나 이상의 렌즈들, 이미지 센서들, 이미지 시그널 프로세서들, 또는 플래시들을 포함할 수 있다.
전력 관리 모듈(188)은 전자 장치(101)에 공급되는 전력을 관리할 수 있다. 예시적인 실시예에 따르면, 전력 관리 모듈(188)은, 예를 들면, PMIC(power management integrated circuit)의 적어도 일부로서 구현될 수 있다.
배터리(189)는 전자 장치(101)의 적어도 하나의 구성 요소에 전력을 공급할 수 있다. 일실시예에 따르면, 배터리(189)는, 예를 들면, 재충전 불가능한 1차 전지, 재충전 가능한 2차 전지 또는 연료 전지를 포함할 수 있다.
통신 모듈(190)은 전자 장치(101)와 외부의 전자 장치(예: 전자 장치(102), 전자 장치(104), 또는 서버(108))간의 직접(예: 유선) 통신 채널 또는 무선 통신 채널의 수립, 및 수립된 통신 채널을 통한 통신 수행을 지원할 수 있다. 통신 모듈(190)은 프로세서(120)(예: 어플리케이션 프로세서)와 독립적으로 운영되고, 직접(예: 유선) 통신 또는 무선 통신을 지원하는 하나 이상의 커뮤니케이션 프로세서를 포함할 수 있다. 일실시예에 따르면, 통신 모듈(190)은 무선 통신 모듈(192)(예: 셀룰러 통신 모듈, 근거리 무선 통신 모듈, 또는 GNSS(global navigation satellite system) 통신 모듈) 또는 유선 통신 모듈(194)(예: LAN(local area network) 통신 모듈, 또는 전력선 통신 모듈)을 포함할 수 있다. 이들 통신 모듈 중 해당하는 통신 모듈은 제1 네트워크(198)(예: 블루투스, WiFi(wireless fidelity) direct 또는 IrDA(infrared data association)와 같은 근거리 통신 네트워크) 또는 제2 네트워크(199)(예: 레거시 셀룰러 네트워크, 5G 네트워크, 차세대 통신 네트워크, 인터넷, 또는 컴퓨터 네트워크(예: LAN 또는 WAN)와 같은 원거리 통신 네트워크)를 통하여 외부의 전자 장치와 통신할 수 있다. 이런 여러 종류의 통신 모듈들은 하나의 구성 요소(예: 단일 칩)으로 통합되거나, 또는 서로 별도의 복수의 구성 요소들(예: 복수 칩들)로 구현될 수 있다. 무선 통신 모듈(192)은 가입자 식별 모듈(196)에 저장된 가입자 정보(예: 국제 모바일 가입자 식별자(IMSI))를 이용하여 제1 네트워크(198) 또는 제2 네트워크(199)와 같은 통신 네트워크 내에서 전자 장치(101)를 확인 또는 인증할 수 있다.
무선 통신 모듈(192)은 4G 네트워크 이후의 5G 네트워크 및 차세대 통신 기술, 예를 들어, NR 접속 기술(new radio access technology)을 지원할 수 있다. NR 접속 기술은 고용량 데이터의 고속 전송(eMBB(enhanced mobile broadband)), 단말 전력 최소화와 다수 단말의 접속(mMTC(massive machine type communications)), 또는 고신뢰도와 저지연(URLLC(ultra-reliable and low-latency communications))을 지원할 수 있다. 무선 통신 모듈(192)은, 예를 들어, 높은 데이터 전송률 달성을 위해, 고주파 대역(예: mmWave 대역)을 지원할 수 있다. 무선 통신 모듈(192)은 고주파 대역에서의 성능 확보를 위한 다양한 기술들, 예를 들어, 빔포밍(beamforming), 거대 배열 다중 입출력(massive MIMO(multiple-input and multiple-output)), 전차원 다중입출력(FD-MIMO: full dimensional MIMO), 위상 배열 안테나(array antenna), 아날로그 빔형성(analog beam-forming), 또는 대규모 안테나(large scale antenna)와 같은 기술들을 지원할 수 있다. 무선 통신 모듈(192)은 전자 장치(101), 외부의 전자 장치(예: 전자 장치(104)) 또는 네트워크 시스템(예: 제2 네트워크(199))에 규정되는 다양한 요구사항을 지원할 수 있다. 일실시예에 따르면, 무선 통신 모듈(192)은 eMBB 실현을 위한 Peak data rate(예: 20Gbps 이상), mMTC 실현을 위한 손실 Coverage(예: 164dB 이하), 또는 URLLC 실현을 위한 U-plane latency(예: 다운링크(DL) 및 업링크(UL) 각각 0.5ms 이하, 또는 라운드 트립 1ms 이하)를 지원할 수 있다.
안테나 모듈(197)은 신호 또는 전력을 외부(예: 외부의 전자 장치)로 송신하거나 외부로부터 수신할 수 있다. 일실시예에 따르면, 안테나 모듈은 서브스트레이트(예: PCB) 위에 형성된 도전체 또는 도전성 패턴으로 이루어진 방사체를 포함하는 안테나를 포함할 수 있다. 일실시예에 따르면, 안테나 모듈(197)은 복수의 안테나들(예: 위상 배열 안테나)을 포함할 수 있다. 이런 경우, 제1 네트워크(198) 또는 제2 네트워크(199)와 같은 통신 네트워크에서 사용되는 통신 방식에 적합한 적어도 하나의 안테나가, 예를 들면, 통신 모듈(190)에 의하여 상기 복수의 안테나들로부터 선택될 수 있다. 신호 또는 전력은 상기 선택된 적어도 하나의 안테나를 통하여 통신 모듈(190)과 외부의 전자 장치 간에 송신되거나 수신될 수 있다. 다양한 실시예에 따르면, 방사체 이외에 다른 부품(예: RFIC(radio frequency integrated circuit))이 추가로 안테나 모듈(197)의 일부로 형성될 수 있다.
다양한 실시예에 따르면, 안테나 모듈(197)은 mmWave 안테나 모듈을 형성할 수 있다. 일실시예에 따르면, mmWave 안테나 모듈은 인쇄 회로 기판, 상기 인쇄 회로 기판의 제1 면(예: 아래 면)에 또는 그에 인접하여 배치되고 지정된 고주파 대역(예: mmWave 대역)을 지원할 수 있는 RFIC, 및 상기 인쇄 회로 기판의 제2 면(예: 윗 면 또는 측 면)에 또는 그에 인접하여 배치되고 상기 지정된 고주파 대역의 신호를 송신 또는 수신할 수 있는 복수의 안테나들(예: 위상 배열 안테나)을 포함할 수 있다.
상기 구성요소들 중 적어도 일부는 주변 기기들간 통신 방식(예: 버스, GPIO(general purpose input and output), SPI(serial peripheral interface), 또는 MIPI(mobile industry processor interface))를 통해 서로 연결되고 신호(예: 명령 또는 데이터)를 상호간에 교환할 수 있다.
일실시예에 따르면, 명령 또는 데이터는 제2 네트워크(199)에 연결된 서버(108)를 통해서 전자 장치(101)와 외부의 전자 장치(104)간에 송신 또는 수신될 수 있다. 외부의 전자 장치(102 또는 104) 각각은 전자 장치(101)와 동일한 또는 다른 종류의 장치일 수 있다. 일실시예에 따르면, 전자 장치(101)에서 실행되는 동작들의 전부 또는 일부는 외부의 전자 장치들(102, 104 또는 108) 중 하나 이상의 외부 장치들에서 실행될 수 있다. 예를 들면, 전자 장치(101)가 어떤 기능이나 서비스를 자동으로, 또는 사용자 또는 다른 장치로부터의 요청에 반응하여 수행해야 할 경우에, 전자 장치(101)는 기능 또는 서비스를 자체적으로 실행시키는 대신에 또는 추가적으로, 하나 이상의 외부의 전자 장치들에게 그 기능 또는 그 서비스의 적어도 일부를 수행하라고 요청할 수 있다. 상기 요청을 수신한 하나 이상의 외부의 전자 장치들은 요청된 기능 또는 서비스의 적어도 일부, 또는 상기 요청과 관련된 추가 기능 또는 서비스를 실행하고, 그 실행의 결과를 전자 장치(101)로 전달할 수 있다. 전자 장치(101)는 상기 결과를, 그대로 또는 추가적으로 처리하여, 상기 요청에 대한 응답의 적어도 일부로서 제공할 수 있다. 이를 위하여, 예를 들면, 클라우드 컴퓨팅, 분산 컴퓨팅, 모바일 에지 컴퓨팅(MEC; mobile edge computing) 또는 클라이언트-서버 컴퓨팅 기술이 이용될 수 있다. 전자 장치(101)는, 예를 들어, 분산 컴퓨팅 또는 모바일 에지 컴퓨팅을 이용하여 초저지연 서비스를 제공할 수 있다. 한 실시예에 있어서, 외부의 전자 장치(104)는 IoT(internet of things) 기기를 포함할 수 있다. 서버(108)는 기계 학습 및/또는 신경망을 이용한 지능형 서버일 수 있다. 일실시예에 따르면, 외부의 전자 장치(104) 또는 서버(108)는 제2 네트워크(199) 내에 포함될 수 있다. 전자 장치(101)는 5G 통신 기술 및 IoT 관련 기술을 기반으로 지능형 서비스(예: 스마트 홈, 스마트 시티, 스마트 카, 또는 헬스 케어)에 적용될 수 있다.
본 개시의 한 실시예들에 따른 전자 장치는 다양한 형태의 장치가 될 수 있다. 전자 장치는, 예를 들면, 휴대용 통신 장치(예: 스마트폰), 컴퓨터 장치, 휴대용 멀티미디어 장치, 휴대용 의료 기기, 카메라, 웨어러블 장치, 가전 장치 등을 포함할 수 있다. 본 문서의 실시예에 따른 전자 장치는 전술한 기기들에 한정되지 않는다.
본 문서의 다양한 실시예들 및 이에 사용된 용어들은 본 문서에 기재된 기술적 특징들을 특정한 실시예들로 한정하려는 것이 아니며, 해당 실시예의 다양한 변경, 균등물, 또는 대체물을 포함하는 것으로 이해되어야 한다. 도면의 설명과 관련하여, 유사한 또는 관련된 구성요소에 대해서는 유사한 참조 부호가 사용될 수 있다. 아이템에 대응하는 명사의 단수 형은 관련된 문맥상 명백하게 다르게 지시하지 않는 한, 상기 아이템 한 개 또는 복수 개를 포함할 수 있다. 본 문서에서, "A 또는 B", "A 및 B 중 적어도 하나",“A 또는 B 중 적어도 하나”, "A, B 또는 C", "A, B 및 C 중 적어도 하나”, 및 “A, B, 또는 C 중 적어도 하나"와 같은 문구들 각각은 그 문구들 중 해당하는 문구에 함께 나열된 항목들 중 어느 하나, 또는 그들의 모든 가능한 조합을 포함할 수 있다. "제1", "제2", 또는 "첫째" 또는 "둘째"와 같은 용어들은 단순히 해당 구성요소를 다른 해당 구성요소와 구분하기 위해 사용될 수 있으며, 해당 구성요소들을 다른 측면(예: 중요성 또는 순서)에서 한정하지 않는다. 어떤(예: 제1) 구성요소가 다른(예: 제2) 구성요소에, “기능적으로” 또는 “통신적으로”라는 용어와 함께 또는 이런 용어없이, “커플드” 또는 “커넥티드”라고 언급된 경우, 그것은 상기 어떤 구성요소가 상기 다른 구성요소에 직접적으로(예: 유선으로), 무선으로, 또는 제3 구성요소를 통하여 연결된 것으로 이해될 수 있다.
본 문서의 다양한 실시예들에서 사용된 용어 "모듈"은 하드웨어, 소프트웨어 또는 펌웨어로 구현된 유닛, 또는 이들의 선택적인 조합(any combination thereof)을 포함할 수 있으며, 예를 들면, 로직, 논리 블록, 부품, 또는 회로 등의 용어와 상호 호환적으로 사용될 수 있다. 모듈은, 일체로 구성된 부품 또는 하나 또는 그 이상의 기능을 수행하는, 상기 부품의 최소 단위 또는 그 일부가 될 수 있다. 예를 들면, 일실시예에 따르면, 모듈은 ASIC(application-specific integrated circuit)의 형태로 구현될 수 있다.
본 문서의 다양한 실시예들은 기기(machine)(예: 전자 장치) 의해 읽을 수 있는 저장 매체(storage medium)(예: 내장 메모리 또는 외장 메모리)에 저장된 하나 이상의 명령어들을 포함하는 소프트웨어(예: 프로그램)로서 구현될 수 있다. 예를 들면, 기기(예: 전자 장치)의 프로세서(예: 프로세서)는, 저장 매체로부터 저장된 하나 이상의 명령어들 중 적어도 하나의 명령을 호출하고, 그것을 실행할 수 있다. 이것은 기기가 상기 호출된 적어도 하나의 명령어에 따라 적어도 하나의 기능을 수행하도록 운영되는 것을 가능하게 한다. 상기 하나 이상의 명령어들은 컴파일러에 의해 생성된 코드 또는 인터프리터에 의해 실행될 수 있는 코드를 포함할 수 있다. 기기로 읽을 수 있는 저장매체는, 비일시적(non-transitory) 저장매체의 형태로 제공될 수 있다. 여기서, ‘비일시적’ 저장매체는 실재(tangible)하는 장치이고, 신호(signal)(예: 전자기파)를 포함하지 않을 수 있으며, 이 용어는 데이터가 저장매체에 반영구적으로 저장되는 경우와 임시적으로 저장되는 경우를 구분하지 않는다.
일실시예에 따르면, 본 개시의 한 실시예들에 따른 방법은 컴퓨터 프로그램 제품(computer program product)에 포함되어 제공될 수 있다. 컴퓨터 프로그램 제품은 상품으로서 판매자 및 구매자 간에 거래될 수 있다. 컴퓨터 프로그램 제품은 기기로 읽을 수 있는 저장 매체(예: compact disc read only memory (CD-ROM))의 형태로 배포되거나, 또는 어플리케이션 스토어(예: 플레이 스토어TM)를 통해 또는 두개의 사용자 장치들(예: 스마트폰들) 간에 직접, 온라인으로 배포(예: 다운로드 또는 업로드)될 수 있다. 온라인 배포의 경우에, 컴퓨터 프로그램 제품의 적어도 일부는 제조사의 서버, 어플리케이션 스토어의 서버, 또는 중계 서버의 메모리와 같은 기기로 읽을 수 있는 저장 매체에 적어도 일시 저장되거나, 임시적으로 생성될 수 있다.
다양한 실시예들에 따르면, 상기 기술한 구성요소들의 각각의 구성요소(예: 모듈 또는 프로그램)는 단수 또는 복수의 개체를 포함할 수 있으며, 복수의 개체 중 일부는 다른 구성요소에 분리 배치될 수 있다. 다양한 실시예들에 따르면, 전술한 해당 구성요소들 중 하나 이상의 구성요소들 또는 동작들이 생략되거나, 또는 하나 이상의 다른 구성요소들 또는 동작들이 추가될 수 있다. 대체적으로 또는 추가적으로, 복수의 구성요소들(예: 모듈 또는 프로그램)은 하나의 구성요소로 통합될 수 있다. 이런 경우, 통합된 구성요소는 상기 복수의 구성요소들 각각의 구성요소의 하나 이상의 기능들을 상기 통합 이전에 상기 복수의 구성요소들 중 해당 구성요소에 의해 수행되는 것과 동일 또는 유사하게 수행할 수 있다. 다양한 실시예들에 따르면, 모듈, 프로그램 또는 다른 구성요소에 의해 수행되는 동작들은 순차적으로, 병렬적으로, 반복적으로, 또는 휴리스틱하게 실행되거나, 상기 동작들 중 하나 이상이 다른 순서로 실행되거나, 생략되거나, 또는 하나 이상의 다른 동작들이 추가될 수 있다.
도 2는 다양한 실시예에 따른 전자 장치(200)의 전면을 나타내는 사시도이다. 도 3은 도 2의 다양한 실시예에 따른 전자 장치(200)의 후면을 나타내는 사시도이다.
도 2 및 도 3을 참조하면, 일 실시예에 따른 전자 장치(200)는, 제1 면(또는 전면)(210A), 제2 면(또는 후면)(210B), 및 제1 면(210A) 및 제2 면(210B) 사이의 공간을 둘러싸는 측면(210C)을 포함하는 하우징(210)을 포함할 수 있다. 한 실시예(미도시)에서는, 하우징은, 도 2의 제1 면(210A), 제2 면(210B) 및 측면(210C)들 중 일부를 형성하는 구조를 지칭할 수도 있다. 일 실시예에 따르면, 제1 면(210A)은 적어도 일부분이 실질적으로 투명한 전면 플레이트(202)(예: 다양한 코팅 레이어들을 포함하는 글라스 플레이트, 또는 폴리머 플레이트)에 의하여 형성될 수 있다. 제2 면(210B)은 실질적으로 불투명한 후면 플레이트(211)에 의하여 형성될 수 있다. 상기 후면 플레이트(211)는, 예를 들어, 코팅 또는 착색된 유리, 세라믹, 폴리머, 금속(예: 알루미늄, 스테인레스 스틸(STS), 또는 마그네슘), 또는 상기 물질들 중 적어도 둘의 조합에 의하여 형성될 수 있다. 상기 측면(210C)은, 전면 플레이트(202) 및 후면 플레이트(211)와 결합하며, 금속 및/또는 폴리머를 포함하는 측면 구조 (또는 "측면 구조")(218)에 의하여 형성될 수 있다. 다양한 실시예에서는, 후면 플레이트(211) 및 측면 구조(218)는 일체로 형성되고 동일한 물질(예: 알루미늄과 같은 금속 물질)을 포함할 수 있다.
도시된 실시예에서는, 상기 전면 플레이트(202)는, 상기 제1 면(210A)으로부터 상기 후면 플레이트(211) 쪽으로 휘어져 심리스하게(seamless) 연장된 2개의 제1 영역(210D)들을, 상기 전면 플레이트(202)의 긴 엣지(long edge) 양단에 포함할 수 있다. 도시된 실시예(도 3 참조)에서, 상기 후면 플레이트(211)는, 상기 제2 면(210B)으로부터 상기 전면 플레이트(202) 쪽으로 휘어져 심리스하게 연장된 2개의 제2 영역(210E)들을 긴 엣지 양단에 포함할 수 있다. 다양한 실시예에서는, 상기 전면 플레이트(202)(또는 상기 후면 플레이트(211))가 상기 제1 영역(210D)들(또는 상기 제2 영역(210E)들) 중 하나 만을 포함할 수 있다. 한 실시예에서는, 상기 제1 영역(210D)들 또는 제2 영역(210E)들 중 일부가 포함되지 않을 수 있다. 상기 실시예들에서, 상기 전자 장치(200)의 측면에서 볼 때, 측면 구조(218)는, 상기와 같은 제1 영역(210D)들 또는 제2 영역(210E)들이 포함되지 않는 측면 쪽에서는 제1 두께(또는 폭)을 가지고, 상기 제1 영역(210D)들 또는 제2 영역(210E)들을 포함한 측면 쪽에서는 상기 제1 두께보다 얇은 제2 두께를 가질 수 있다.
일 실시예에 따르면, 전자 장치(200)는, 디스플레이(201), 오디오 모듈(203, 207, 214), 센서 모듈(204, 216, 219), 카메라 모듈(205, 212, 213), 키 입력 장치(217), 발광 소자(206), 및 커넥터 홀(208, 209) 중 적어도 하나 이상을 포함할 수 있다. 다양한 실시예에서는, 전자 장치(200)는, 구성요소들 중 적어도 하나(예: 키 입력 장치(217), 또는 발광 소자(206))를 생략하거나 다른 구성요소를 추가적으로 포함할 수 있다.
디스플레이(201)는, 예를 들어, 전면 플레이트(202)의 상당 부분을 통하여 시각적으로 보여질 수 있다. 다양한 실시예에서는, 상기 제1 면(210A), 및 상기 측면(210C)의 제1 영역(210D)들을 형성하는 전면 플레이트(202)를 통하여 상기 디스플레이(201)의 적어도 일부가 시각적으로 보여질 수 있다. 다양한 실시예에서는, 디스플레이(201)의 모서리를 상기 전면 플레이트(202)의 인접한 외곽 형상과 대체로 동일하게 형성할 수 있다. 한 실시예(미도시)에서는, 디스플레이(201)가 시각적으로 보여지는 면적을 확장하기 위하여, 디스플레이(201)의 외곽과 전면 플레이트(202)의 외곽간의 간격이 대체로 동일하게 형성될 수 있다.
한 실시예(미도시)에서는, 디스플레이(201)의 화면 표시 영역의 일부에 리세스 또는 개구부(opening)을 형성하고, 상기 리세스 또는 상기 개구부(opening)와 정렬되는 오디오 모듈(214), 센서 모듈(204), 카메라 모듈(205), 및 발광 소자(206) 중 적어도 하나 이상을 포함할 수 있다. 한 실시예(미도시)에서는, 디스플레이(201)의 화면 표시 영역의 배면에, 오디오 모듈(214), 센서 모듈(204), 카메라 모듈(205), 지문 센서(216), 및 발광 소자(206) 중 적어도 하나 이상을 포함할 수 있다. 한 실시예(미도시)에서는, 디스플레이(201)는, 터치 감지 회로, 터치의 세기(압력)를 측정할 수 있는 압력 센서, 및/또는 자기장 방식의 스타일러스 펜을 검출하는 디지타이저와 결합되거나 인접하여 배치될 수 있다. 다양한 실시예에서는, 상기 센서 모듈(204, 219)의 적어도 일부, 및/또는 키 입력 장치(217)의 적어도 일부가, 상기 제1 영역(210D)들, 및/또는 상기 제2 영역(210E)들에 배치될 수 있다.
오디오 모듈(203, 207, 214)은, 마이크 홀(203) 및 스피커 홀(207, 214)을 포함할 수 있다. 마이크 홀(203)은 외부의 소리를 획득하기 위한 마이크가 내부에 배치될 수 있고, 다양한 실시예에서는 소리의 방향을 감지할 수 있도록 복수개의 마이크가 배치될 수 있다. 스피커 홀(207, 214)은, 외부 스피커 홀(207) 및 통화용 리시버 홀(214)을 포함할 수 있다. 다양한 실시예에서는 스피커 홀(207, 214)과 마이크 홀(203)이 하나의 홀로 구현 되거나, 스피커 홀(207, 214) 없이 스피커가 포함될 수 있다(예: 피에조 스피커).
센서 모듈(204, 216, 219)은, 전자 장치(200)의 내부의 작동 상태, 또는 외부의 환경 상태에 대응하는 전기 신호 또는 데이터 값을 생성할 수 있다. 센서 모듈(204, 216, 219)은, 예를 들어, 하우징(210)의 제1 면(210A)에 배치된 제1 센서 모듈(204)(예: 근접 센서) 및/또는 제2 센서 모듈(미도시)(예: 지문 센서), 및/또는 상기 하우징(210)의 제2 면(210B)에 배치된 제3 센서 모듈(219)(예: HRM 센서) 및/또는 제 4 센서 모듈(216)(예: 지문 센서)을 포함할 수 있다. 상기 지문 센서는 하우징(210)의 제1 면(210A)(예: 디스플레이(201)) 뿐만 아니라 제2 면(210B)에 배치될 수 있다. 전자 장치(200)는, 도시되지 않은 센서 모듈, 예를 들어, 제스처 센서, 자이로 센서, 기압 센서, 마그네틱 센서, 가속도 센서, 그립 센서, 컬러 센서, IR(infrared) 센서, 생체 센서, 온도 센서, 습도 센서, 또는 조도 센서 중 적어도 하나를 더 포함할 수 있다.
카메라 모듈(205, 212, 213)은, 전자 장치(200)의 제1 면(210A)에 배치된 제1 카메라 장치(205), 및 제2 면(210B)에 배치된 제2 카메라 장치(212), 및/또는 플래시(213)를 포함할 수 있다. 상기 카메라 장치들(205, 212)은, 하나 또는 복수의 렌즈들, 이미지 센서, 및/또는 이미지 시그널 프로세서를 포함할 수 있다. 플래시(213)는, 예를 들어, 발광 다이오드 또는 제논 램프(xenon lamp)를 포함할 수 있다. 다양한 실시예에서는, 2개 이상의 렌즈들(적외선 카메라, 광각 및 망원 렌즈) 및 이미지 센서들이 전자 장치(200)의 한 면에 배치될 수 있다.
키 입력 장치(217)는, 하우징(210)의 측면(210C)에 배치될 수 있다. 한 실시예에서는, 전자 장치(200)는 상기 언급된 키 입력 장치(217) 중 일부 또는 전부를 포함하지 않을 수 있고 포함되지 않은 키 입력 장치(217)는 디스플레이(201) 상에 소프트 키 등 다른 형태로 구현될 수 있다. 다양한 실시예에서, 키 입력 장치는 하우징(210)의 제2면(210B)에 배치된 센서 모듈(216)을 포함할 수 있다.
발광 소자(206)는, 예를 들어, 하우징(210)의 제1 면(210A)에 배치될 수 있다. 발광 소자(206)는, 예를 들어, 전자 장치(200)의 상태 정보를 광 형태로 제공할 수 있다. 한 실시예에서는, 발광 소자(206)는, 예를 들어, 카메라 모듈(205)의 동작과 연동되는 광원을 제공할 수 있다. 발광 소자(206)는, 예를 들어, LED, IR LED 및 제논 램프를 포함할 수 있다.
커넥터 홀(208, 209)은, 외부 전자 장치와 전력 및/또는 데이터를 송수신하기 위한 커넥터(예를 들어, USB 커넥터)를 수용할 수 있는 제1 커넥터 홀(208), 및/또는 외부 전자 장치와 오디오 신호를 송수신하기 위한 커넥터를 수용할 수 있는 제2 커넥터 홀(예를 들어, 이어폰 잭)(209)을 포함할 수 있다.
도 4는 도 2의 다양한 실시예에 따른 전자 장치(300)를 나타내는 분리 사시도이다.
도 4를 참조하면, 전자 장치(300)는, 측면 구조(310)(예: 베젤(bezel)), 제1 지지 부재(311)(예: 브라켓), 전면 플레이트(320), 디스플레이(330), 인쇄 회로 기판(340), 배터리(350), 제2 지지 부재(360)(예: 리어 케이스), 안테나(370) 및 후면 플레이트(380)를 포함할 수 있다. 다양한 실시예에서는, 전자 장치(300)는, 구성요소들 중 적어도 하나(예: 제1 지지 부재(311) 또는 제2 지지 부재(360))를 생략하거나 다른 구성요소를 추가적으로 포함할 수 있다. 전자 장치(300)의 구성요소들 중 적어도 하나는, 도 2 또는 도 3의 전자 장치(200)의 구성요소들 중 적어도 하나와 동일 또는 유사할 수 있으며, 중복되는 설명은 이하 생략한다.
제1 지지 부재(311)는, 전자 장치(300) 내부에 배치되어 측면 구조(310)와 연결될 수 있거나, 측면 구조(310)와 일체로 형성될 수 있다. 제1 지지 부재(311)는, 예를 들어, 금속 재질 및/또는 비금속(예: 폴리머) 재질로 형성될 수 있다. 제1 지지 부재(311)는, 일면에 디스플레이(330)가 결합되고 타면에 인쇄 회로 기판(340)이 결합될 수 있다. 인쇄 회로 기판(340)에는, 프로세서, 메모리, 및/또는 인터페이스가 장착될 수 있다. 프로세서는, 예를 들어, 중앙처리장치, 어플리케이션 프로세서, 그래픽 처리 장치, 이미지 시그널 프로세서, 센서 허브 프로세서, 또는 커뮤니케이션 프로세서 중 하나 또는 그 이상을 포함할 수 있다.
메모리는, 예를 들어, 휘발성 메모리 또는 비휘발성 메모리를 포함할 수 있다.
인터페이스는, 예를 들어, HDMI(high definition multimedia interface), USB(universal serial bus) 인터페이스, SD카드 인터페이스, 및/또는 오디오 인터페이스를 포함할 수 있다. 인터페이스는, 예를 들어, 전자 장치(300)를 외부 전자 장치와 전기적 또는 물리적으로 연결시킬 수 있으며, USB 커넥터, SD 카드/MMC 커넥터, 또는 오디오 커넥터를 포함할 수 있다.
배터리(350)는 전자 장치(300)의 적어도 하나의 구성 요소에 전력을 공급하기 위한 장치로서, 예를 들면, 재충전 불가능한 1차 전지, 또는 재충전 가능한 2차 전지, 또는 연료 전지를 포함할 수 있다. 배터리(350)의 적어도 일부는, 예를 들어, 인쇄 회로 기판(340)과 실질적으로 동일 평면 상에 배치될 수 있다. 배터리(350)는 전자 장치(300) 내부에 일체로 배치될 수 있고, 전자 장치(300)와 탈부착 가능하게 배치될 수도 있다.
안테나(370)는, 후면 플레이트(380)와 배터리(350) 사이에 배치될 수 있다. 안테나(370)는, 예를 들어, NFC(near field communication) 안테나, 무선 충전 안테나, 및/또는 MST(magnetic secure transmission) 안테나를 포함할 수 있다. 안테나(370)는, 예를 들어, 외부 장치와 근거리 통신을 하거나, 충전에 필요한 전력을 무선으로 송수신 할 수 있다. 한 실시예에서는, 측면 구조(310) 및/또는 상기 제1 지지 부재(311)의 일부 또는 그 조합에 의하여 안테나 구조가 형성될 수 있다.
도 5는 다양한 실시예에 따른 전자 장치(400)(예: 도 2 내지 도 4의 전자 장치(200, 300))를 설명하기 위한 예시적인 구성도이다.
도 5를 참조하면, 도시된 실시예에서, 전자 장치(400)는, 제1 플레이트 또는 전면 플레이트(예: 도 2의 전면 플레이트(202)), 제1 플레이트(202)와 이격되고 반대 방향으로 향하는 제2 플레이트 또는 후면 플레이트(예: 도 3의 후면 플레이트(211)) 및 제1 플레이트(202)와 제2 플레이트(211) 사이의 공간을 둘러싸는 측면 구조(예: 도 2의 측면 구조(218))를 포함하는 하우징(예: 도 2의 하우징(210))을 포함할 수 있다. 도시된 실시예에서, 측면 구조(218)는, 도전성 재질 부분(electrically conductive portion)(218a) 또는 비도전성 재질 부분(non electrically conductive portion)(218b)을 포함할 수 있다.
다양한 실시예에 따르면, 전자 장치(400)는, 제1 플레이트(202)와 제2 플레이트(211) 사이의 공간에 수용된 메인 인쇄 회로 기판(main PCB)(예: 도 4의 인쇄 회로 기판(340)), 및/또는 중간 플레이트(mid-plate)(예: 도 4의 제1 또는 제2 지지 부재(311, 360))를 포함할 수 있고, 선택적으로 다양한 다른 부품들을 더 포함할 수 있다.
일 실시예에 따르면, 전자 장치(400)는, 도전성 재질 부분(218a)의 적어도 일부를 방사 도체로 이용하는 적어도 하나의 레거시 안테나(미도시)를 포함할 수 있으며, 레거시 안테나(들)은, 예를 들어, 셀룰러 통신(예: 2세대(2G), 3G, 4G 또는 LTE), 근거리 통신(예: WiFi, Bluetooth 또는 NFC) 및/또는 GNSS(global navigation satellite system)에 이용될 수 있다. 다양한 실시예에서, 전자 장치(400)는, 방향성 빔(directional beam)을 형성하기 위한 제1 안테나 모듈(461), 제2 안테나 모듈(463) 및/또는 제3 안테나 모듈(465)을 포함할 수 있다. 안테나 모듈(461, 463, 465)들은 5G 네트워크 통신, mmWave 통신, 60 GHz 통신 또는 WiGig 통신을 위해 사용될 수 있다. 안테나 모듈(461, 463, 465)들은, 전자 장치(400)의 금속 부재(예: 상기 측면 부재(218)의 도전성 재질 부분(218a)) 및/또는 레거시 안테나(들)와 일정 간격 이상 이격되도록 하우징(210) 내부에 배치될 수 있다.
다양한 실시예에 따르면, 하우징(210) 상에서, 제1 안테나 모듈(461)은 좌측(예: -Y 방향을 향하는 가장자리)에서 상단부에 위치하고, 제2 안테나 모듈(463)은 상단(예: +X 방향을 향하는 가장자리)에 위치하고, 제3 안테나 모듈(465)은 우측(예: +Y 방향을 향하는 가장자리)에서 중간 또는 하단부에 위치할 수 있다. 한 실시예에 따르면, 제2 안테나 모듈(463)은 복수로 제공되어 +X 방향 또는 -Z 방향으로 무선 신호를 방사할 수 있다. 한 실시예에서, 전자 장치(400)는 추가적인 안테나 모듈들을 추가적인 위치(예: 하단(-X 방향 가장자리) 중간)에 포함하거나 또는 안테나 모듈(461, 463, 465)들 중 일부는 생략될 수 있다. 일 실시예에 따르면, 안테나 모듈(461, 463, 465)들은 도전성 라인(예: 동축 케이블 또는 FPCB에 제공된 도전성 라인)을 이용하여 메인 PCB(예: 도 4의 인쇄 회로 기판(340)) 상에 있는 적어도 하나의 통신 프로세서(예: 도 1의 프로세서(120) 또는 통신 모듈(190))와 전기적으로 연결될 수 있다.
다양한 실시예에 따르면, 안테나 모듈(461, 463, 465)(예: 도 6의 안테나 모듈 또는 안테나 장치(500))들은 안테나 어레이(예: 패치 안테나 어레이 또는 다이폴 안테나 어레이)를 포함할 수 있으며, 비도전성 재질 부분(218b)을 통해 무선 신호를 송수신할 수 있다. 안테나 모듈(461, 463, 465)들의 구성에 관해서는 도 6과 도 7을 더 참조하여 살펴보기로 한다.
도 6은 다양한 실시예에 따른 안테나 장치(500)(예: 도 1의 안테나 모듈(197) 또는 도 5의 안테나 모듈(461, 463, 465)들 중 적어도 하나)를 나타내는 분리 사시도이다. 도 7은 다양한 실시예에 따른 안테나 장치(500)를 나타내는 도면이다.
도 6과 도 7을 더 참조하면, 안테나 장치(500)는, 복수의 방사 패치(521a)(또는 방사 도체(521b))의 배열을 포함하는 안테나 어레이(502)와, 안테나 어레이(502)의 방사 패치(521a)(또는 방사 도체(521b))들 중 적어도 하나를 이용하여 무선 신호를 송수신하도록 설정된 통신 회로(예: 도 1의 프로세서(120) 또는 통신 모듈(190))를 포함할 수 있으며, 인접하는 두 방사 패치(521a)(또는 방사 도체(521b))들 사이의 영역에 배치된 아이솔레이터(525)를 포함할 수 있다. 아이솔레이터(525)는, 예를 들면, 인접하는 두 방사 패치(521a) 사이에 격리 구조를 제공함으로써, 두 방사 패치(521a) 사이의 전자기적인 간섭(electromagnetic interference; EMI)을 차단할 수 있다.
다양한 실시예에 따르면, 통신 회로는 집적회로 칩과 같은 전자 부품 형태로 주 회로 기판(예: 도 4의 인쇄 회로 기판(340) 및/또는 제1 베이스 기판(501)에 배치될 수 있으며, 안테나 어레이(502)는 방사 패치(521a)(또는 방사 도체(521b))들이 배치된 제2 베이스 기판(521)을 포함할 수 있다. 실시예에 따라, 제2 베이스 기판(521)은 실질적으로 제1 베이스 기판(501)과 일체형으로 형성될 수 있음에 유의한다. 한 실시예에서, 제1 베이스 기판(501)은 일면에 배치된 다수의 급전 패드(513a, 513b)들을 포함할 수 있으며, 도시되지는 않지만, 주 회로 기판(예: 도 4의 인쇄 회로 기판(340))과의 접속을 위한 커넥터를 포함할 수 있다. 한 실시예에서, 집적회로 칩(예: 통신 회로)은 제1 베이스 기판(501)의 타면에 제공될 수 있으며, 절연성 수지에 의해 몰딩될 수 있다. 다양한 실시예에서, 급전 패드(513a, 513b)들은 제1 베이스 기판(501)에 제공된 선로(예: 마이크로스트립 라인) 또는 비아를 통해 커넥터 또는 집적회로 칩과 전기적으로 연결될 수 있으며, 제2 베이스 기판(521) 또는 안테나 어레이(502)로 급전 신호를 제공할 수 있다.
다양한 실시예에 따르면, 방사 패치(521a)들 또는 방사 도체(521b)들은 제2 베이스 기판(521) 상에 배열될 수 있다. 한 실시예에서, 제2 베이스 기판(521) 상에서 방사 패치(521a)들은 브로드사이드(broad side) 방사를 수행하고, 방사 도체(521b)들은 엔드파이어(end fire) 방사를 수행할 수 있다. 한 실시예에서, 제2 베이스 기판(521)은 급전 패드(513a, 513b)들에 상응하는 급전 포트(523a, 523b)들을 포함할 수 있다. 급전 포트(523a, 523b)들은 제2 베이스 기판(521)에 제공된 트레이스(예: 마이크로스트립 라인과 같은 전송 선로) 및/또는 비아를 통해 방사 패치(521a)(또는 방사 도체(521b))들 중 어느 하나와 전기적으로 연결될 수 있다. 예컨대, 제2 베이스 기판(521)이 제1 베이스 기판(501)과 마주보게 결합함으로써, 급전 패드(513a, 513b)들과 급전 포트(523a, 523b)들이 전기적인 연결을 형성하여 방사 패치(521a)들 또는 방사 도체(521b)들로 급전 신호를 제공할 수 있다.
다양한 실시예에 따르면, 방사 패치(521a)들은 브로드사이드 방사, 예를 들어, 제2 베이스 기판(521)의 한 면이 향하는 방향에서 무선 신호를 송수신할 수 있으며, 방사 도체(521b)들은 방사 패치(521a)들이 무선 신호를 송수신하는 방향에 교차하는 방향으로 무선 신호를 송수신할 수 있다. 다양한 실시예에서, 방사 도체(521b)들이 무선 신호를 송수신하는 방향은 제2 베이스 기판(521)의 한 면과 실질적으로 평행할 수 있다. 한 실시예에서, 방사 패치(521a)들에 위상차 급전이 제공됨으로써, 지정된 각도 범위에서 방사 패치(521a)들이 무선 신호를 송수신하는 방향은 다양할 수 있다. 한 실시예에서, 도 5의 제1 안테나 모듈(461)이라면, 방사 패치(521a)들은 -Y 방향에서 무신 신호를 송수신할 수 있으며, 방사 도체(521b)들은 -Z 방향 또는 +Z 방향에서 무선 신호를 송수신할 수 있다. 한 실시예에 따르면, 방사 패치(521a)들은 다각형 형태의 평판으로 형성될 수 있으며, 방사 도체(521b)는 모노폴 구조 또는 다이폴 구조로 형성될 수 있다. 도시된 실시예에서, 방사 패치(521a)들은 제2 베이스 기판(521) 상에서 1*4 배열을 형성하며, 방사 도체(521b)들은 방사 패치(521a)들이 배열된 영역의 주위(예: 제2 베이스 기판(521)의 가장자리)에서 1*4 배열을 형성하도록 배치될 수 있다. 하지만, 본 개시의 한 실시예가 이에 한정되지 않으며, 방사 패치(521a)들 또는 방사 도체(521b)들의 수와 배열은 안테나 장치(500)가 배치될 공간에 따라 적절하게 변경될 수 있다.
다양한 실시예에 따르면, 제2 베이스 기판(521) 상에서, 급전 포트(523a, 523b)들은 방사 패치(521a)들 또는 방사 도체(521b)들과 동일한 계층(layer) 또는 다른 계층에 배치될 수 있으며, 제2 베이스 기판(521)에 제공된 트레이스 또는 비아를 통해 방사 패치(521a)들 또는 방사 도체(521b)들과 전기적으로 연결될 수 있다. 예를 들어, 방사 패치(521a)들은 급전 포트(523a, 523b)들 중 제1 급전 포트(523a)들을 통해 제1 급전 패드(513a) 또는 제1 베이스 기판(501)으로부터 급전 신호를 제공받을 수 있으며, 방사 도체(521b)들은 급전 포트(523a, 523b)들 중 제2 급전 포트(523b)들을 통해 제2 급전 패드(513b) 또는 제1 베이스 기판(501)으로부터 급전 신호를 제공받을 수 있다.
다양한 실시예에 따르면, 아이솔레이터(525)는 인접하는 두 방사 패치(521a)들 사이의 영역, 인접하는 두 방사 도체(521b)들 사이의 영역, 및/또는 하나의 방사 패치(521a)와 그에 인접하는 하나의 방사 도체(521b) 사이의 영역에 배치될 수 있다. 다양한 실시예에서, 다수의 아이솔레이터(525)가 하나의 방사 패치(521a) 또는 방사 도체(521b)를 둘러싸는 형태로 배열될 수 있다. 한 실시예에서, 인접하는 두 방사 패치(521a)들 사이의 영역에 복수의 아이솔레이터(525)가 배치될 수 있으며, 인접하는 두 방사 도체(521b)들 사이의 영역, 및/또는 하나의 방사 패치(521a)와 그에 인접하는 하나의 방사 도체(521b) 사이의 영역에도 복수의 아이솔레이터(525)가 배치될 수 있다. 한 실시예에서, 아이솔레이터(525)는 인접하는 두 방사 패치(521a)들(또는 방사 도체(521b)들) 간의 전자기적인 간섭을 억제 또는 차단할 수 있다. 예를 들어, 어느 하나의 방사 패치(521a) 또는 방사 도체(521b)가 무선 신호를 송수신할 때, 주위의 다른 방사 패치(521a) 또는 방사 도체(521b)에 신호 전력이 간섭 또는 유기되는 것을 차단할 수 있다.
도 8은 본 개시의 한 실시예 중 하나에 따른 안테나 장치(예: 도 5 내지 도 8의 안테나 모듈(461, 463, 465) 또는 안테나 장치(500))의 아이솔레이터(525)(예: 도 6 또는 도 7의 아이솔레이터(525))를 나타내는 사시도이다.
도 8을 더 참조하면, 아이솔레이터(525)는, 제1 부분, 제2 부분 및/또는 제3 부분을 포함할 수 있다. 예를 들어, 제1 부분과 제2 부분을 형성하는 평판 형상의 제1 도전 패드(525a)와 제2 도전 패드(525b)가 서로 나란하게 또는 마주보게 배치될 수 있으며, 제1 도전 패드(525a)와 제2 도전 패드(525b) 사이에 배치된 연결 도체(525c)가 아이솔레이터(525)의 제3 부분을 형성할 수 있다. 연결 도체(525c)는 일단이 제1 도전 패드(525a)에, 타단이 제2 도전 패드(525b)에 전기적으로 연결될 수 있다. 예컨대, 제1 도전 패드(525a)와 제2 도전 패드(525b)는 연결 도체(525c)를 통해 전기적으로 연결될 수 있다. 한 실시예에서, 아이솔레이터(525)에 전류의 흐름이 생성될 때, 전류의 흐름은 제3 부분(예: 연결 도체(525c))를 경유할 수 있으며, 제1 도전 패드(525a)와 제2 도전 패드(525b)는 서로에 대하여 역방향으로 전류의 흐름을 생성할 수 있다.
다양한 실시예에 따르면, 제1 도전 패드(525a)와 제2 도전 패드(525b)는 실질적으로 동일한 형상으로서, 도면로 볼 때 서로 중첩하게 배치될 수 있다. 다양한 실시예에서, 제1 도전 패드(525a)와 제2 도전 패드(525b)는 가장자리로부터 내측으로 연장된 슬롯(525d)(들)을 포함할 수 있다. 슬롯(525d)(들)의 위치에 따라 제1 도전 패드(525a)와 제2 도전 패드(525b)는 사행(meander line) 형상을 가질 수 있으며, 외형적인 크기 대비 전기적인 길이가 조절될 수 있다. 도전 패드(525a, 525b)들의 형상이나 외형적인 크기에 관해서는 도 9 내지 도 12를 참조하여 살펴보기로 한다.
도 9는 다양한 실시예에 따른 안테나 장치(예: 도 5 내지 도 7의 안테나 모듈(461, 463, 465) 또는 안테나 장치(500))의 아이솔레이터(예: 도 8의 아이솔레이터(525) 또는 제1 도전 패드(525a))를 나타내는 도면이다. 도 10은 다양한 실시예에 따른 안테나 장치(500)에서, 아이솔레이터(525)를 나타내는 도면이다. 도 11은 다양한 실시예에 따른 안테나 장치(500)에서, 아이솔레이터(525)를 나타내는 도면이다. 도 12는 다양한 실시예에 따른 안테나 장치(500)에서, 아이솔레이터(525)를 나타내는 도면이다.
도 9 내지 도 12는, 예를 들면, 제1 도전 패드(525a) 또는 제2 도전 패드(525b)의 다양한 형태를 예시한 것으로서, 예를 들어, 슬롯(525d, 525e))(들)의 배치에 따른 형상을 예시한 것이다. 도 9 내지 도 12를 참조하면, 제1 도전 패드(525a)와 제2 도전 패드(525b)는 가장자리의 일부에서 내측으로 연장된 적어도 하나의 슬롯(525d, 525e)을 포함할 수 있다. 다양한 실시예에서, 제2 베이스 기판(521) 상에 형성된 제1 도전 패드(525a)와 제2 도전 패드(525b)는 제작 공차가 허용하는 범위에서 형상이나 크기에 다소 차이가 있을 수 있다. 예를 들어, 하나의 제2 베이스 기판(521)에서, 제1 도전 패드(525a)들 서로 간에, 제2 도전 패드(525b)들 서로 간에, 및/또는 서로 마주보는 제1 도전 패드(525a)와 제2 도전 패드(525b)에서, 슬롯(525d, 525e)(들)이 연장된 길이나 폭은 다소 차이가 있을 수 있다. 한 실시예에 따르면, 제작 공차에 따른 슬롯(525d, 525e)(들)의 형상이나 크기는 실질적으로 아이솔레이터(525)를 이용한 격리 구조 또는 차단 주파수의 특성에 영향을 미치지 않을 수 있다. 예를 들어, 아이솔레이터(525)를 이용한 격리 구조 또는 차단 주파수의 특성은 제1 도전 패드(525a) 및/또는 제2 도전 패드(525b)의 전기적인 길이에 의해 결정될 수 있다.
다양한 실시예에 따르면, 도 12에서와 같이 제1 도전 패드(525a)와 제2 도전 패드(525b)는 슬롯(525d, 525e)(들)을 포함하지 않는 다각형 형상일 수 있다. 한 실시예에 따르면, 도 9에 예시된 제1 길이(L1)와 도 12에 예시된 제2 길이(L2)가 동일할 때, 슬롯(525d, 525e)(들)을 포함하는 도 9의 도전 패드(예: 제1 도전 패드(525a))는 도 12의 도전 패드보다 전기적인 길이가 길어질 수 있다. 예를 들어, 도 9의 도전 패드(525a)의 전기적인 길이는 제1 길이(L1)보다 클 수 있으며, 도 12의 도전 패드는 실질적으로 제2 길이(L2)에 상응하는 전기적인 길이를 가질 수 있다. 다양한 실시예에서, 동일한 전기적인 길이를 가진 도전 패드를 제작하고자 할 때, 슬롯(525d, 525e)(들)이 형성됨으로써 제1 도전 패드(525a)의 외형적인 크기(예: 제1 길이(L1) 또는 제2 길이(L2))가 작아질 수 있다. 예를 들어, 도 9와 도 12의 도전 패드(예: 제1 도전 패드(525a))가 동일한 전기적인 길이를 가진다면, 제1 길이(L1)는 제2 길이(L2)보다 작을 수 있다.
다양한 실시예에 따르면, 동일한 전기적인 길이를 가지면서 슬롯(525d, 525e)(들)을 포함함으로써 도전 패드의 외형적인 크기(예: 도 9와 도 12의 제1 길이(L1) 또는 제2 길이(L2))가 작아지는 만큼, 아이솔레이터(525)가 소형화될 수 있다. 한 실시예에서, 아이솔레이터(525)가 소형화됨에 따라, 밀리미터 파 대역의 무선 신호를 송수신하기 위한 안테나(예: 도 6의 안테나 장치(500))가 용이하게 구현될 수 있다. 예컨대, 하나의 방사 패치(예: 도 6의 방사 패치(521a) 또는 방사 도체(521b))가 수 mm에 불과하고, 그보다 더 작은 간격으로 방사 패치들이 배열되어 위상 배열 안테나를 구현함에 있어, 아이솔레이터(525)가 소형화되어 방사 패치(521a)들 사이에 용이하게 배치될 수 있다. 한 실시예에서, 아이솔레이터(525)는 방사 패치(예: 도 6의 방사 패치(521a) 또는 방사 도체(521b))들 사이에서 전자기적인 간섭을 차단함으로써 안테나 성능을 향상시킬 수 있으며, 빔 틸팅에서 지향 방향에 따른 안테나 성능 편차를 억제할 수 있다.
앞서 언급한 바와 같이, 제1 도전 패드(525a)와 제2 도전 패드(525b)는, 도면로 볼 때 실질적으로 서로 중첩하게 배치될 수 있으며, 연결 도체(525c)를 통해 전기적으로 연결될 수 있다. 예를 들어, 아이솔레이터(525) 상에서 전류의 흐름이 생성될 때, 제1 도전 패드(525a)와 제2 도전 패드(525b)는 서로에 대하여 180도 위상차를 가진 전류의 흐름을 생성할 수 있다.
도 13은 다양한 실시예에 따른 안테나 장치(예: 도 5 내지 도 7의 안테나 모듈(461, 463, 465) 또는 안테나 장치(500))가 동작할 때, 아이솔레이터(525)에서의 전류 흐름을 설명하기 위한 도면이다.
도 13을 더 참조하면, 아이솔레이터(525), 예를 들어, 제1 도전 패드(525a) 또는 제2 도전 패드(525b) 중 어느 하나에 제1 방향으로 전류의 흐름이 생성될 때, 다른 하나에서는 제1 방향의 역방향으로 전류의 흐름이 생성될 수 있다. 예를 들어, 도 13에서와 같이, 제1 도전 패드(525a)에서 연결 도체(525c)에 연결된 지점을 향하는 전류의 흐름이 생성되면, 제2 도전 패드(525b)에서는 연결 도체(525c)로부터 멀어지는 방향으로 향하는 전류의 흐름이 생성될 수 있다. 이때, 제1 도전 패드(525a)에서의 전류 흐름은 제2 도전 패드(525b)에서의 전류 흐름에 대하여 180도 위상차를 가질 수 있다. 다양한 실시예에서, 연결 도체(525c)가 연결된 지점에 따라, 아이솔레이터(525)는 측면도로 볼 때, 실질적으로 알파벳 'H'자 형상 또는 'U'자 형상을 가질 수 있다.
다양한 실시예에 따르면, 인접하는 두 방사 도체(예: 도 6 또는 도 7의 제1 방사 패치(521a) 또는 방사 도체(521b)) 사이에서 아이솔레이터(525)는 전자기 차폐 구조 또는 격리 구조로서 기능할 수 있다. 예를 들어, 두 방사 도체(예: 도 6 또는 도 7의 제1 방사 패치(521a) 또는 방사 도체(521b)) 중 어느 하나에서 발생된 전자기 에너지가 다른 방사 도체에 간섭되거나 유기될 때, 방사된 전자기 에너지에 의해 제1 도전 패드(525a)와 제2 도전 패드(525b)에서 서로에 대하여 역방향의 전류가 생성될 수 있으며, 아이솔레이터(525)는 다른 방사 도체로 간섭 또는 유기되는 전자기 에너지를 실질적으로 흡수 또는 차단할 수 있다. 이로써 방사 도체(예: 도 6 또는 도 7의 제1 방사 패치(521a) 또는 방사 도체(521b))들은 서로에 대하여 간섭을 일으키지 않고 설계된 방사 성능 또는 빔 틸팅을 수행할 수 있다.
본 개시의 한 실시예에 따르면, 상술한 아이솔레이터(525)는, 기지국의 무선 통신 중계 장비, 예를 들면, 밀리미터 파 대역의 무선 신호를 송수신하는 안테나 장치에 배치될 수 있다. 무선 통신 중계 장비의 안테나 장치에서는, 개인용 전자 장치(예: 도 1 내지 도 5의 전자 장치(101, 102, 104, 200, 300, 400))보다 설계 자유도가 높을 수 있다. 예를 들어, 더 많은 수의 방사 패치들을 포함하는 안테나 어레이를 포함함으로써, 안테나 장치는 방사 파워나 커버리지에 있어 개인용 전자 장치의 안테나(예: 도 5의 안테나 모듈(461, 463, 465)들)보다 높은 성능을 가질 수 있다. 이러한 안테나 장치에 관해서는 도 14 내지 도 16을 참조하여 살펴보기로 한다. 이하의 상세한 설명에서는 상술한 실시예(들)를 통해 용이하게 이해할 수 있는 구성에 대해서는 도면의 참조번호를 동일하게 부여하거나 생략하고, 그 상세한 설명 또한 생략될 수 있다.
도 14는 다양한 실시예에 따른 안테나 장치(600)(예: 도 1의 안테나 모듈(197), 도 5의 안테나 모듈(461, 463, 465) 또는 도 6 내지 도 7의 안테나 장치500))를 나타내는 분리 사시도이다. 도 15는 다양한 실시예에 따른 안테나 장치(600)를 나타내는 사시도이다. 도 16은 다양한 실시예에 따른 안테나 장치(600)의 일부분을 확대하여 나타내는 분리 사시도이다.
도 14 내지 도 16을 참조하면, 안테나 장치(600)는, 제1 안테나 어레이(602)(예: 도 6의 안테나 어레이(502)), 제2 안테나 어레이(603), 메쉬 플레이트(604) 및 통신 회로(예: 도 1의 프로세서(120) 또는 통신 모듈(190))를 포함할 수 있으며, 통신 회로는 제1 베이스 기판(601)에 배치된 집적회로 칩 형태로 제공될 수 있다. 다양한 실시예에서, 통신 회로의 전체 또는 적어도 일부는 도 4의 인쇄 회로 기판(340)에 배치될 수 있으며, 통신 회로의 일부가 도 4의 인쇄 회로 기판(340)에 배치된 경우 통신 회로의 나머지 일부가 제1 베이스 기판(601)에 배치될 수 있다. 제1 베이스 기판(601)은 급전 패드(513a)와 통신 회로를 전기적으로 연결하는 트레이스(예: 마이크로스트립 라인과 같은 전송 선로) 및/또는 비아를 포함할 수 있고, 제1 안테나 어레이(602)는, 예를 들면, 제2 베이스 기판(621) 상에서 16*16 배열을 형성하는 제1 방사 패치(521a)(예: 도 6 또는 도 7의 방사 패치(521a))들을 포함할 수 있다. 한 실시예에서, 인접하는 두 제1 방사 패치(521a)들 사이에는 적어도 하나의 아이솔레이터(525)(예: 도 8의 아이솔레이터(525))가 배치되어 두 제1 방사 패치(521a)가 전자기적으로 상호 간섭되는 것을 차단할 수 있다. 제1 안테나 어레이(602), 통신 회로 및/또는 아이솔레이터(525)의 구성은 도 6의 안테나 장치(500)와 유사할 수 있으므로, 그 상세한 설명을 생략하기로 한다. 본 실시예를 설명함에 있어, 한 실시예에 따라 제1 방사 패치(521a)들이 16*16 배열을 형성하는 구성을 예시하지만, 다양한 실시예가 이에 한정되지 않으며, 안테나 장치(600)에 요구되는 사양(예: 방사 파워 또는 커버리지)에 따라 제1 방사 패치(521a)들의 수나 배열은 다양하게 변경될 수 있다.
다양한 실시예에 따르면, 제2 안테나 어레이(603)는 제1 안테나 어레이(602)와 마주보게 배치되며, 제3 베이스 기판(631)에 제공된 복수의 제2 방사 도체(또는 제2 방사 패치)(631a)를 포함할 수 있다. 예를 들어, 제2 방사 도체(631a)들은 16*16 배열을 형성하며 제1 방사 패치(521a)들 중 어느 하나와 마주보게 배치될 수 있다. 한 실시예에서, 제2 방사 도체(631a)들 및/또는 제2 안테나 어레이(603)는 제1 방사 패치(521a)들 및/또는 제1 안테나 어레이(602)가 무선 신호를 송수신할 때, 전자기파를 변환하거나 부엽(side lobe)의 발생을 억제할 수 있다. 예를 들어, 제2 방사 도체(631a)들 및/또는 제2 안테나 어레이(603)는 제1 방사 패치(521a)들 및/또는 제1 안테나 어레이(602)에서 방사되는 전자기파를 평면파로 변환하거나, 지향 방향으로 방사 파워를 집중 또는 정렬함으로써 안테나 장치(600)의 전력 효율을 향상시킬 수 있다.
다양한 실시예에 따르면, 메쉬 플레이트(604)는 제1 안테나 어레이(602)와 제2 안테나 어레이(603) 사이에 배치되어 스페이서(spacer)로서 기능할 수 있다. 한 실시예에 따르면, 메쉬 플레이트(604)는 다수의 캐비티(cavity)(641)와, 인접하는 두 캐비티(641) 사이에 형성된 격막(643)을 포함할 수 있다. 예를 들어, 격막(643)은 실질적으로 캐비티(641)를 정의하는(defining) 벽체(wall structure)일 수 있으며, 캐비티(641)들은 제1 방사 패치(521a)들 또는 제2 방사 도체(631a)들의 배열에 상응하게 배열될 수 있다. 예컨대, 캐비티(641)는 16*16 배열을 형성할 수 있으며, 제2 방사 패치(631a)들은 캐피티(641)들 중 어느 하나를 통해 제1 방사 패치(521a)들 중 어느 하나와 마주보게 배치될 수 있다. 격막(643)은 아이솔레이터(525)와 상응하는 위치, 예를 들어, 인접하는 두 제1 방사 패치(521a)들 사이의 영역에 배치될 수 있다. 다양한 실시예에서, 메쉬 플레이트(604)는 적어도 부분적으로 전자기 차폐 물질을 포함할 수 있으며, 아이솔레이터(525)와 함께 인접하는 두 제1 방사 패치(521a)들 사이에서 전자기 간섭을 차단할 수 있다. 한 실시예에서, 전자기 차폐 물질을 포함할 때, 아이솔레이터(525)와 함께 메쉬 플레이트(604)가 인접하는 두 제2 방사 패치(631a)들 사이에서 전자기 간섭을 차단할 수 있다.
도 17은 다양한 실시예에 따른 안테나 장치(예: 도 14 내지 도 16의 안테나 장치(600))에서 아이솔레이터(525)가 배치된 모습을 나타내는 사시도이다. 도 18은 도 17의 다양한 실시예에 따른 안테나 장치(600)에서, 방사 패치(예: 도 16의 제1 방사 패치(521a))들 사이의 격리도 특성을 측정하여 나타내는 그래프이다.
도 17은, 안테나 장치(600)에서, 인접하는 두 제1 방사 패치(521a)들 사이의 영역에 메쉬 플레이트(604)의 격막(643)과 하나의 아이솔레이터(525)가 격리 구조를 형성한 구성을 예시하고 있으며, 도 18은 하나의 아이솔레이터(525)가 배치되기 전과, 후의 투과 계수 S21을 측정한 결과를 나타내는 그래프로서, 'N'으로 지시된 그래프는 아이솔레이터(525)가 배치된 전의 투과 계수를, 'P1'으로 지시된 그래프는 하나의 아이솔레이터(525)가 배치된 상태에서 측정된 투과 계수 S21을 측정한 결과를 나타내고 있다.
다양한 실시예에서, 위상 배열 구조의 안테나 장치(600)에서, 무선 통신을 수행할 때, 기판의 수직 방향 편파 성분을 가지는 표면파(surface wave)가 발생될 수 있으며, 이로 인해 인접하는 방사 패치(예: 도 16의 제1 방사 패치(521a))들 사이에 열악한 격리도 환경이 조성될 수 있다. 본 개시의 한 실시예에 따르면, 안테나 장치(600)는 아이솔레이터(525)를 포함함으로써, 표면파의 발생을 억제하여 적어도 인접하는 두 제1 방사 패치(521a)들 사이에 충분한 격리도를 확보할 수 있으며, 이는 도 18의 투과 계수 S21 측정 결과를 통해 확인할 수 있다. 예를 들어, 아이솔레이터(525)가 배치되지 않은 구조와 비교할 때, 안테나 장치(600)는 대략 40GHz 이하의 주파수 대역에서 투과 계수 S21이 개선될 수 있다.
도 19는 다양한 실시예에 따른 안테나 장치(예: 도 14 내지 도 16의 안테나 장치(600))에서, 아이솔레이터(525)가 배치되기 전의 방사 파워 분포를 예시하는 도면이다. 도 20은 다양한 실시예에 따른 안테나 장치(예: 도 14 내지 도 16의 안테나 장치(600))의 방사 파워 분포를 예시하는 도면이다.
도 19와 도 20을 참조하면, 제2 베이스 기판(621)이 다층 회로 기판의 구조를 가질 때, 제1 방사 패치(521a)는 제2 베이스 기판(621)의 표면을 이루는 계층에 또는, 표면에 인접하는 계층에 배치될 수 있다. 한 실시예에서, 도전 패드(예: 도 8의 제1 도전 패드(525a) 또는 제2 도전 패드(525b))들 중 적어도 하나(예: 제1 도전 패드(525a))는 실질적으로 제1 방사 패치(521a)와 동일 계층에 배치되고, 다른 하나의 도전 패드(예: 제2 도전 패드(525b))는 제1 방사 패치(521a)와는 다른 계층에 배치되면서 연결 도체(예: 도 8의 연결 도체(525c))를 통해 제1 도전 패드(525a)와 전기적으로 연결될 수 있다. 다양한 실시예에서, 제1 안테나 어레이(602), 제2 안테나 어레이(603) 및/또는 메쉬 플레이트(604)는 실질적으로 하나의 기판 형태를 이루도록 배치될 수 있다. 예를 들어, 제2 방사 패치(631a)는 실질적으로 하나의 기판 내에서, 제1 방사 패치(521a), 제1 도전 패드(525a) 및/또는 제2 도전 패드(525b)와는 다른 계층에 형성되면서, 메쉬 플레이트(604)가 제공하는 간격 또는 캐비티(예: 도 16의 캐피티(641))를 사이에 두고 제1 방사 패치(521a)와 마주보게 배치될 수 있다.
도 19는 아이솔레이터가 배치되지 않은 구조의 안테나 장치에서 인접하는 두 방사 도체(예: 도 16의 제1 방사 패치(521a)) 중 어느 하나의 주위에 형성되는 방사 파워의 분포를 예시하고 있으며, 도 20은 아이솔레이터(예: 도 16의 아이솔레이터(525))가 배치된 구조의 안테나 장치(예: 도 13 내지 도 16의 안테나 장치(600))에서 인접하는 두 방사 도체(예: 도 16의 제1 방사 패치(521a)) 중 어느 하나의 주위에 형성되는 방사 파워의 분포를 예시하고 있다.
도 19와 도 20을 비교해 보면, 다양한 실시예에 따른 아이솔레이터(525)가 배치됨으로써, 방사 방향(R)에서 또는 제1 방사 패치(521a)의 지향 방향에서 더 많은 방사 파워(P)가 분포되고, 다른 제1 방사 패치(521a)에 간섭 또는 유기(I)되는 것을 억제함을 알 수 있다. 예를 들어, 본 개시의 한 실시예에 따른 안테나 장치(600)는 아이솔레이터(525)를 포함함으로써, 방사 도체(예: 제1 방사 패치(521a))들 사이에서 향상된 격리도를 가질 수 있으며, 안테나 장치(600)의 방사 효율이 향상될 수 있다. 다양한 실시예에서, 안테나 장치(600)는 아이솔레이터(525)를 포함함으로써, 위상차 급전을 이용한 빔 틸팅에서 지향 방향에 따른 안테나 성능의 편차(예: 방사 파워의 편차)를 억제하고 빔 틸팅 성능이 개선될 수 있다. 이에 관해서는 도 23과 도 24를 참조하여 살펴보게 될 것이다.
도 21은 다양한 실시예에 따른 안테나 장치(예: 도 14 내지 도 16의 안테나 장치(600))에서 아이솔레이터(525)가 배치된 예시를 나타내는 사시도이다. 도 22는 도 21의 다양한 실시예에 따른 안테나 장치(600)에서, 방사 패치(예: 도 16의 제1 방사 패치(521a))들 사이의 격리도 특성을 측정하여 나타내는 그래프이다.
도 21을 참조하면, 인접하는 두 방사 패치(예: 도 16의 제1 방사 패치(521a)) 사이의 영역에는 복수의 아이솔레이터(525)가 배치될 수 있다. 이는 도 9 내지 도 12를 참조해 살펴본 바와 같이, 아이솔레이터(525)의 제1 도전 패드(525a)와 제2 도전 패드(525b)가 다양한 형상으로 구현될 수 있으며, 전기적인 길이 대비 외형적인 크기(예: 도 9 또는 도 12의 제1, 제2 길이(L1, L2))가 작아짐으로써 구현될 수 있다. 본 예시에서, 격막(643)에 상응하는 위치 또는 영역에서 2개의 아이솔레이터(525)가 배치된 구성이 예시되지만, 본 개시의 한 실시예는 이에 한정되지 않으며, 실제 제작되는 아이솔레이터(예: 제1 도전 패드(525a) 및/또는 제2 도전 패드(525b))의 외형적인 크기에 따라 하나의 격막(643)에 상응하게 배치되는 아이솔레이터(525)의 수는 다양할 수 있다.
도 22를 참조하면, 'N'으로 지시된 그래프는 아이솔레이터(525)가 배치된 전의 투과 계수를, 'P2'로 지시된 그래프는 두 개의 아이솔레이터(525)가 배치된 상태에서 측정된 투과 계수 S21을 측정한 결과를 나타내고 있다. 복수의 아이솔레이터(525)가 배치됨으로써, 아이솔레이터(525)가 배치되지 않은 구조와 비교할 때, 대략 41.25GHz 대역까지 투과 계수 S21이 개선됨을 알 수 있다. 이와 같이, 적어도 하나의 아이솔레이터(525)가 인접하는 두 방사 패치(예: 제1 방사 패치(521a)) 사이의 영역에 배치됨으로써, 방사 패치들 사이의 격리도가 향상되고, 안테나 장치(600)는 안정된 작동 성능을 확보할 수 있다. 다양한 실시예에서, 아이솔레이터(525)의 형상이나 수는 실시예에 따라 다양할 수 있으며, 아이솔레이터(525)의 형상이나 수에 따라 격리도의 개선 정도(예: 투과 계수 S21의 개선 정도)나 격리도가 개선되는 주파수의 대역은 다양할 수 있다. 예컨대, 본 개시의 한 실시예는, 예시된 수치나 그래프에 한정되지 않음에 유의한다.
도 23은 다양한 실시예에 따른 안테나 장치(예: 도 14 내지 도 16의 안테나 장치(600))에서, 아이솔레이터(525)가 배치되기 전의 빔 틸팅 성능을 측정하여 나타내는 그래프이다. 도 24는 다양한 실시예에 따른 안테나 장치(예: 도 14 내지 도 16의 안테나 장치(600))의 빔 틸팅 성능을 측정하여 나타내는 그래프이다.
도 23과 도 24는, 안테나 장치(600)에서 위상차 급전을 통한 빔 틸팅을 수행함에 있어, 지향 방향 또는 방사 방향에서의 방사 파워를 측정한 예시를 나타내고 있다. 대체로, 안테나 장치(600)는 지정된 각도 범위(예: 대략 +/-50도 각도 범위)에서 빔 틸팅을 수행할 수 있으며, 이러한 빔 틸팅의 각도 범위는 안테나 장치(600)가 실제 배치될 지역이나 공간의 환경을 고려하여 다양하게 설계될 수 있다.
다양한 실시예에 따르면, 도 23에 예시된 바와 같이, 아이솔레이터(525)가 배치되지 않은 구조의 안테나 장치가 대략 +30도 내지 +50도 각도 방향으로 빔 틸팅을 수행할 때, 다른 각도 방향보다 방사 파워가 저하 또는 열화(d)되는 것을 알 수 있다. 예컨대, 아이솔레이터(525)가 배치되지 않은 상태에서는 지향 방향에 따라 안테나 장치의 방사 성능에 편차 또는 왜곡이 발생될 수 있다. 다양한 실시예에서, 안테나 장치가 이동통신 기지국의 중계 장비로서 배치된 때, 지향 방향에 따라 방사 성능에서 편차, 왜곡 또는 열화(d)되면, 기지국으로부터 동일한 거리에 있다 하더라도, 안테나 장치의 배치에 따라 통신 품질에 차이가 발생될 수 있다. 도 24를 참조하면, 다양한 실시예에 따른 안테나 장치(600)는 아이솔레이터(525)를 포함함으로써, 지향 방향 또는 방사 방향에 따른 방사 성능의 편차 또는 왜곡이 개선됨을 알 수 있다. 예컨대, 설계된 빔 틸팅 각도 범위 전체에서 안테나 장치(600)는 균일하고 안정된 통신 환경을 제공할 수 있다. 예컨대, 본 개시의 한 실시예에 따른 안테나 장치(600)는, 중계 장비로서 제공된 때, 적어도 동일 거리에 있다면 방향에 따른 통신 품질의 편차가 발생되는 것을 방지하고 안정된 통신 환경을 제공할 수 있다.
도 25는 다양한 실시예에 따른 안테나 장치(예: 도 1, 도 5 내지 도 7 및/또는 도 14 내지 도 16의 안테나 모듈(197, 461, 463, 465) 또는 안테나 장치(500, 600))에서, 급전 신호를 제공하기 위한 선로부(700)의 한 예를 나타내는 도면이다. 도 26은 다양한 실시예에 따른 안테나 장치(500, 600)에서, 급전 신호를 제공하기 위한 선로부(800)의 한 예를 나타내는 도면이다. 도 27은 다양한 실시예에 따른 안테나 장치(500, 600)에서, 급전 신호를 제공하기 위한 선로부(900)의 한 예를 나타내는 도면이다.
다양한 실시예에 따르면, 안테나 장치(500, 600)는 방사 패치(예: 도 6 또는 도 16의 방사 패치(521a))(들) 및/또는 방사 도체(예: 도 6의 방사 도체(521b))(들)로 급전 신호를 제공하는 선로부(700, 800, 900)를 포함할 수 있다. 4세대 이전의 무선 통신에서 급전 신호를 제공하는 선로부는 동축 케이블과 같은 형태로 제공될 수 있다. 5세대 이후의 무선 통신에서의 방사 패치(들) 및/또는 방사 도체(들)은 수 mm 이내의 크기로 제작되고, 배열 간격은 이러한 크기보다 작을 수 있으므로, 선로부(700, 800, 900)는 인쇄 회로 패턴(예: 마이크로스트립 라인)과 같은 형태로 제공될 수 있다.
다양한 실시예에 따르면, 방사 패치(들) 및/또는 방사 도체(들)의 크기나 배열이 수 mm 이내인 상당히 조밀한 구조에서, 초고주파 신호(예: 수십GHz 대역의 주파수를 가진 신호)를 전송하는 선로들이 적어도 부분적으로 인접하게 배치될 수 있다. 초고주파 신호를 전송하는 선로들이 인접하게 배치되는 경우, 전송 선로들 사이에서 격리 구조가 제공될 수 있으며, 상술한 아이솔레이터(예: 도 6, 도 8 또는 도 16의 아이솔레이터(525))는 전송 선로들 사이에 제공되는 격리 구조의 적어도 일부일 수 있다. 다양한 실시예에서, 이러한 전송 선로들은 상술한 방사 패치 또는 방사 도체들로 급전 신호를 제공할 수 있다. 예를 들어, 상술한 안테나 장치(500, 600)에서, 방사 패치(들) 및/또는 방사 도체(들)은 도 25 내지 도 27의 선로부(700, 800, 900)를 통해 급전 신호를 제공받을 수 있다.
먼저 도 25를 참조하면, 선로부(700)는, 서로 인접하는 위치에서 나란하게 연장된 복수의 전송 선로(721a)와, 인접하게 배치된 두 전송 선로(721a) 사이의 영역에 배치된 격리 구조를 포함할 수 있다. 한 실시예에서, 격리 구조는 전송 선로(721a)(들)가 연장된 방향을 따라 배열된 다수의 비아 도체(729)로 형성될 수 있다. 한 실시예에서, 전송 선로(721a)들은 상술한 제1 방사 패치 또는 방사 도체(예: 도 6 또는 도 16의 방사 패치(521a) 또는 방사 도체(521b))로 급전 신호를 제공하도록 구성될 수 있다. 다양한 실시예에서, 전송 선로(721a)(들)는 기판(721) 상에 또는 기판(721)의 내부에 형성된 마이크로스트립 라인으로 구현될 수 있으며, 마이크로스트립 라인의 양단에 제공된 입력단(T1, T3)과 출력단(T2, T4)을 포함할 수 있다.
다양한 실시예에 따르면, 비아 도체(729)들의 배열을 이용하는 격리 구조는, 주파수 대역에 따라 대략 5-10 dB 정도의 편차는 있지만, 주파수 차이에 따른 투과 계수 S41의 임계적인 변화가 측정되지 않을 수 있다. 예컨대, 비아 도체(729)들의 배열을 이용하는 격리 구조는 측정 주파수 대역(예: 대략 30 GHz 내지 50GHz)에서 비교적 균일하고 양호한 차단 또는 격리도 성능을 가질 수 있다. 다양한 실시예에서, 비아 도체(729)들의 배열을 이용하는 격리 구조의 차단 또는 격리도 성능은 실질적으로 비아 도체(729)들의 간격에 의해 달라질 수 있다. 예를 들어, 비아 도체들이 대략 1mm 이내의 간격을 가질 때, 측정 주파수 대역 전체에서 대략 -30 dB 이상의 차단 성능을 가지는 것으로 측정되었다.
도 26을 참조하면, 선로부(800)는 복수의 아이솔레이터(825)를 포함함으로써, 전송 선로(721a)들 사이에 격리 구조를 제공할 수 있다. 한 실시예에서, 아이솔레이터(825)들은 인접하는 두 전송 선로(721a) 사이의 영역에서 전송 선로(721a)들이 연장된 방향을 따라 배열될 수 있다. 다양한 실시예에서, 아이솔레이터(825)는 제1 연장부(825a), 제2 연장부(825b) 및/또는 제1 연장부(825a)와 제2 연장부(825b)를 전기적으로 연결하는 연결부(825c)를 포함할 수 있다. 한 실시예에서, 제1 연장부(825a)는 인접하는 두 개의 전송 선로(721a)와 나란하게 연장되며, 제2 연장부(825b)는 인접하는 두 전송 선로(721a) 중 어느 하나와 제1 연장부(825a) 사이의 영역에 배치될 수 있다. 제2 연장부(825b)는 실질적으로 제1 연장부(825a)와 나란하게 연장되며, 연결부(825c)를 통해 제1 연장부(825a)와 전기적으로 연결될 수 있다.
다양한 실시예에 따르면, 제1 연장부(825a)는 도 8 또는 도 13의 제1 도전 패드(525a)와 유사할 수 있고, 제2 연장부(825b)는 도 8 또는 도 13의 제2 도전 패드(525b)와 유사할 수 있다. 예컨대, 전송 선로(721a)들 중 적어도 하나를 통해 초고주파 신호가 전송될 때, 제1 연장부(825a)와 제2 연장부(825b)는 서로에 대하여 180도 위상차를 가진 전류의 흐름을 생성할 수 있다. 예를 들어, 전송 선로(721a)들 중 적어도 하나를 통해 초고주파 신호가 전송될 때, 전송 선로(721a)의 주변에 형성되는 전자기장은 실질적으로 아이솔레이터(825)에 흡수되며, 다른 전송 선로(721a)에 간섭되지 않을 수 있다.
다양한 실시예에 따르면, 기판(721) 내에서, 아이솔레이터(825)는 전송 선로(721a)(예: 마이크로스트립 라인)들이 배치된 계층에 위치될 수 있다. 예를 들어, 아이솔레이터(825)는 도금, 증착, 에칭 공정을 통해 실질적으로 전송 선로(721a)를 형성하는 공정에서 전송 선로(721a)와 실질적으로 동시에 형성될 수 있다. 한 실시예에서, 도 25의 선로부(700)는 비아 도체(729)를 이용한 격리 구조를 포함함으로써, 도 26의 선로부(800)과 비교할 때, 더 넓은 주파수 대역에서 차단 또는 격리도 특성이 우수할 수 있다. 이후에서 살펴보겠지만, 도 26의 아이솔레이터(825)를 이용한 격리 구조는 대략 38.5GHz를 중심으로 대략 1.5GHz 대역폭에서 -37.5dB 정도의 차단 또는 격리도를 제공할 수 있다. 일반적으로 안테나 장치 또는 선로부는 지정된 주파수 대역의 무선 신호를 이용하여 통신을 수행할 수 있으며, 이 경우, 격리 구조는 해당 주파수 대역을 고려하여 설계될 수 있다. 다양한 실시예에서, 도 25의 격리 구조를 포함하는 선로부(700)는 주파수 대역에 상관없이 양호한 격리도 성능을 가지지만, 도 25의 선로부(700)와 비교할 때 도 26의 선로부(800)는 원하는 주파수 대역에서 양호한 격리도 성능을 제공하면서 제작이 용이하고, 제작 비용이 절감될 수 있다. 예컨대, 본 개시의 한 실시예에 따른 안테나 장치(500, 600) 및/또는 선로부(800)는 원하는 주파수 대역에서 양호한 격리도 성능을 가지면서 제작이 용이할 수 있다.
도 27을 참조하면, 선로부(900)는 제2 아이솔레이터(예: 도 25의 비아 도체(729))를 더 포함할 수 있다. 제2 아이솔레이터(729)는 예를 들어, 인접하는 두 전송 선로(721a) 사이의 영역에 배치되며, 아이솔레이터(825) 사이에 배치될 수 있다. 예를 들어, 전송 선로(721a)가 연장된 방향을 따라, 아이솔레이터(825)와 제2 아이솔레이터(729)가 번갈아가며 배치될 수 있다. 한 실시예에 따르면, 제2 아이솔레이터(729)는 기판(721) 내에 형성된 비아 도체를 포함할 수 있으며, 전송 선로(721a)들이 연장된 방향에 대하여 교차하는 방향으로 연장될 수 있다. 아이솔레이터(825, 729)들의 형상이나 배열을 이용한 다양한 조합은, 전송 선로(721a)들 사이의 격리도를 확보함에 있어, 원하는 주파수 대역으로의 조율을 용이하게 할 수 있다. 이에 관해서는 도 28을 더 참조하여 살펴보기로 한다.
도 28은 다양한 실시예에 따른 안테나 장치(예: 도 6 또는 도 16의 안테나 장치(500, 600))에서, 선로부들(예: 도 26과 도 27의 선로부들(800, 900))의 격리도 특성을 측정하여 나타내는 그래프이다.
도 28을 참조하면, 'S41_1'은 도 26의 선로부(800)에서 전송 선로(721a)들 사이의 투과 계수를 예시된 것이고, 'S41_2'는 도 27의 선로부(900)에서 전송 선로(721a) 사이의 투과 계수를 예시한 것이다. 도 28에 나타낸 바와 같이, 다양한 실시예에서, 선로부(800, 900)는 대략 35GHz 내지 39GHz의 주파수 범위에서 양호한 격리도 특성을 나타냄을 알 수 있으며, 아이솔레이터(825, 729)들의 조합에 따라 차단 주파수가 변화됨을 알 수 있다. 예를 들어, -37.5 dB의 투과 계수를 기준으로 할 때, 도 26의 선로부(800)는 대략 38.5GHz 주파수를 중심으로 대략 2GHz 대역폭에서 전송 선로(721a)들 사이에서 전자기 에너지의 간섭을 차단할 수 있다. 도 27의 선로(900)는, 예를 들어, -37.5 dB의 투과 계수를 기준으로 할 때, 대략 37.5GHz 주파수를 중심으로 대략 3GHz 대역폭에서 전송 선로(721a)들 사이에서 전자기 에너지의 간섭을 차단할 수 있다. 예컨대, 아이솔레이터(825, 729)의 크기나 형상 또는 평면형 아이솔레이터(825)와 비아 도체형 아이솔레이터(729)의 조합을 이용하여, 원하는 주파수 대역에서 전송 선로(721a)들 사이에 안정된 격리도 특성이 확보될 수 있다.
본 개시의 다양한 예시적인 실시예에 따르면, 안테나 장치(예: 도 1, 도 4, 도 6 및/또는 도 16의 안테나 모듈(197, 461, 463, 465) 또는 안테나 장치(500, 600)) 및/또는 그를 포함하는 전자 장치(예: 도 1 내지 도 5의 전자 장치(101, 102, 104, 200, 300, 400))는, 복수의 제1 방사 패치(예: 도 6 또는 도 16의 방사 패치(521a))의 배열을 포함하는 제1 안테나 어레이(예: 도 6 또는 도 16의 안테나 어레이(502, 602)), 상기 제1 방사 패치들 중 적어도 하나를 이용하여 무선 신호를 송신 및/또는 수신하도록 설정된 통신 회로(예: 도 1의 프로세서(120) 또는 통신 모듈(190)), 및 도전체(conductor)를 포함하고 상기 제1 방사 패치들 중 서로 인접하는 두 제1 방사 패치 사이의 영역에 배치된 적어도 하나의 제1 아이솔레이터(예: 도 6, 도 8 또는 도 16의 아이솔레이터(525))를 포함하고, 상기 제1 아이솔레이터는, 제1 부분(예: 도 6 또는 도 8의 제1 도전 패드(525a)), 상기 제1 부분과 나란하게 배치된 제2 부분(예: 도 6 또는 도 8의 제2 도전 패드(525b)), 및 상기 제1 부분과 상기 제2 부분을 전기적으로 연결하는 제3 부분(예: 도 8의 연결 도체(525c))을 포함하고, 상기 제1 부분과 상기 제2 부분은 서로에 대하여 180도 위상차를 가진 전류의 흐름을 생성하도록 구성될 수 있다.
다양한 예시적인 실시예에 따르면, 상기 제1 부분과 상기 제2 부분 중 어느 하나에서 상기 제3 부분이 연결된 지점을 향하는 방향으로 제1 전류의 흐름을 생성하고, 상기 제1 부분과 상기 제2 부분 중 다른 하나에서 상기 제3 부분이 연결된 지점으로부터 멀어지는 방향으로 제2 전류의 흐름을 생성하도록 구성될 수 있다.
다양한 예시적인 실시예에 따르면, 상기 제1 아이솔레이터는 인접하는 두 개의 상기 제1 방사 패치 사이에서 전자기 간섭을 차단하도록 구성될 수 있다.
다양한 예시적인 실시예에 따르면, 상기와 같은 안테나 장치 및/또는 전자 장치는, 복수의 제2 방사 패치(예: 도 16의 제2 방사 패치(631a))의 배열을 포함하는 제2 안테나 어레이(예: 도 14 내지 도 16의 제2 안테나 어레이(603))로서, 상기 제1 안테나 어레이와 마주보게 배치된 상기 제2 안테나 어레이, 및 상기 제1 안테나 어레이와 상기 제2 안테나 어레이 사이에 배치된 메쉬 플레이트(mesh plate)(예: 도 14 내지 도 16의 메쉬 플레이트(604))을 더 포함할 수 있다.
다양한 예시적인 실시예에 따르면, 상기 메쉬 플레이트는, 다수의 캐비티(cavity)(예: 도 16의 캐비티(641))의 배열과, 인접하는 두 캐비티 사이에 형성된 격막(예: 도 16의 격막(643))을 포함하고, 상기 제2 방사 패치들은 상기 캐비티들 중 어느 하나를 통해 상기 제1 방사 패치들 중 어느 하나와 마주보게 배치되고, 상기 격막은 상기 제1 아이솔레이터와 마주보게 배치될 수 있다.
다양한 예시적인 실시예에 따르면, 상기 메쉬 플레이트는, 인접하는 두 개의 상기 제1 방사 패치들 사이 또는 인접하는 두 개의 상기 제2 방사 패치 사이에서 전자기 간섭을 차단하도록 구성될 수 있다.
다양한 예시적인 실시예에 따르면, 상기 제1 아이솔레이터는, 상기 제1 부분을 형성하는 평판 형상의 제1 도전 패드(예: 도 8의 제1 도전 패드(525a)), 상기 제2 부분을 형성하며 상기 제1 도전 패드와 마주보게 배치된 평판 형상의 제2 도전 패드(예: 도 8의 제2 도전 패드(525b)), 및 상기 제1 도전 패드와 상기 제2 도전 패드 사이에 배치된 연결 도체(예: 도 8의 제1 연결 도체(525c))를 포함하고, 상기 연결 도체는, 일단이 상기 제1 도전 패드에 연결되고 타단이 상기 제2 도전 패드에 연결됨으로써 상기 제1 도전 패드와 상기 제2 도전 패드를 전기적으로 연결할 수 있다.
다양한 예시적인 실시예에 따르면, 상기 제1 아이솔레이터는, 상기 제1 도전 패드의 가장자리 일부로부터 상기 제1 도전 패드의 내측으로 연정된 적어도 하나의 제1 슬롯(예: 도 8 내지 도 11의 슬롯(525d, 525e)), 및 상기 제2 도전 패드의 가장자리 일부로부터 상기 제2 도전 패드의 내측으로 연정된 적어도 하나의 제2 슬롯(예: 도 8 내지 도 11의 슬롯(525d, 525e))을 더 포함하고, 상기 제2 슬롯은 상기 제1 슬롯과 마주보게 배치될 수 있다.
다양한 예시적인 실시예에 따르면, 상기와 같은 안테나 장치 및/또는 전자 장치는, 상기 제1 방사 패치들의 주위에 배치된 복수의 방사 도체(예: 도 6의 방사 도체(521b))를 더 포함하고, 상기 제1 아이솔레이터는, 인접하는 두 개의 상기 방사 도체 사이의 영역 또는, 상기 제1 방사 패치들 중 하나와 그에 인접하는 상기 방사 도체들 중 하나 사이의 영역에 더 배치될 수 있다.
다양한 예시적인 실시예에 따르면, 상기 방사 도체는, 상기 제1 방사 패치가 무선 신호를 방사하는 방향에 교차하는 방향으로 무선 신호를 방사하도록 설정될 수 있다.
다양한 예시적인 실시예에 따르면, 상기와 같은 안테나 장치 및/또는 전자 장치는, 상기 제1 방사 패치들에 급전 신호를 제공하도록 구성된 복수의 전송 선로(예: 도 26 또는 도 27의 전송 선로(721a)), 및 상기 전송 선로들 중 인접하는 두 개의 전송 선로 사이의 영역에 배치된 적어도 하나의 제2 아이솔레이터(예: 도 26 또는 도 27의 아이솔레이터(825))를 더 포함하고, 상기 제2 아이솔레이터는, 인접하는 두 개의 상기 전송 선로와 나란하게 연장된 제1 연장부(예: 도 26의 제1 연장부(825a)), 상기 제1 연장부와 나란하게 연장되며, 인접하는 두 개의 상기 전송 선로 중 어느 하나와 상기 제1 연장부 사이에 배치된 제2 연장부(예: 도 26의 제2 연장부(825b)), 및 상기 제1 연장부와 상기 제2 연장부를 전기적으로 연결하는 연결부(예: 도 26의 연결부(825c))를 포함하고, 상기 제1 연장부와 상기 제2 연장부는 서로에 대하여 180도 위상차를 가진 전류의 흐름을 생성하도록 구성될 수 있다.
다양한 예시적인 실시예에 따르면, 상기와 같은 안테나 장치 및/또는 전자 장치는, 인접하는 두 개의 상기 전송 선로 사이의 영역에 배치된 복수의 제3 아이솔레이터(예: 도 27의 제2 아이솔레이터(729))를 더 포함하고, 복수의 상기 제2 아이솔레이터가, 상기 전송 선로들이 연장된 방향을 따라 상기 제3 아이솔레이터와 번갈가며 배치될 수 있다.
다양한 예시적인 실시예에 따르면, 상기 제3 아이솔레이터는 상기 전송 선로들이 연장된 방향과 교차하는 방향으로 연장된 비아 도체(via conductor)를 포함할 수 있다.
본 개시의 다양한 예시적인 실시예에 따르면, 전자 장치(예: 도 1 내지 도 5의 전자 장치(101, 102, 104, 200, 300, 400))는, 하우징(예: 도 2의 하우징(210)) 및, 상기 하우징에 배치된 적어도 하나의 안테나 모듈(예: 도 1, 도 4, 도 6 및/또는 도 16의 안테나 모듈(197, 461, 463, 465) 또는 안테나 장치(500, 600))을 포함하고, 상기 안테나 모듈은, 복수의 제1 방사 패치(예: 도 6 또는 도 16의 방사 패치(521a))의 배열을 포함하는 제1 안테나 어레이(예: 도 6 또는 도 16의 안테나 어레이(502, 602)), 상기 제1 방사 패치들 중 적어도 하나를 이용하여 무선 신호를 송신 및/또는 수신하도록 설정된 통신 회로(예: 도 1의 프로세서(120) 또는 통신 모듈(190)), 및 도전체를 포함하고 상기 제1 방사 패치들 중 서로 인접하는 두 제1 방사 패치 사이의 영역에 배치된 적어도 하나의 제1 아이솔레이터(예: 도 6, 도 8 또는 도 16의 아이솔레이터(525))를 포함하며, 상기 제1 아이솔레이터는, 제1 부분(예: 도 6 또는 도 8의 제1 도전 패드(525a)), 상기 제1 부분과 나란하게 배치된 제2 부분(예: 도 6 또는 도 8의 제2 도전 패드(525b)), 및 상기 제1 부분과 상기 제2 부분을 전기적으로 연결하는 제3 부분(예: 도 8의 연결 도체(525c))을 포함하고, 상기 제1 부분과 상기 제2 부분은 서로에 대하여 180도 위상차를 가진 전류의 흐름을 생성하도록 구성될 수 있다.
다양한 예시적인 실시예에 따르면, 상기 제1 아이솔레이터는, 상기 제1 부분을 형성하는 평판 형상의 제1 도전 패드(예: 도 6 또는 도 8의 제1 도전 패드(525a)), 상기 제2 부분을 형성하며 상기 제1 도전 패드와 마주보게 배치된 평판 형상의 제2 도전 패드(예: 도 6 또는 도 8의 제2 도전 패드(525b)), 및 상기 제1 도전 패드와 상기 제2 도전 패드 사이에 배치된 연결 도체(예: 도 6의 연결 도체(525c))를 포함하고, 상기 연결 도체는, 일단이 상기 제1 도전 패드에 연결되고 타단이 상기 제2 도전 패드에 연결됨으로써 상기 제1 도전 패드와 상기 제2 도전 패드를 전기적으로 연결할 수 있다.
다양한 예시적인 실시예에 따르면, 상기 제1 아이솔레이터는, 상기 제1 도전 패드의 가장자리 일부로부터 상기 제1 도전 패드의 내측으로 연정된 적어도 하나의 제1 슬롯(예: 도 8 내지 도 11의 슬롯(525d, 525e)), 및 상기 제2 도전 패드의 가장자리 일부로부터 상기 제2 도전 패드의 내측으로 연정된 적어도 하나의 제2 슬롯(예: 도 8 내지 도 11의 슬롯(525d, 525e))을 더 포함하고, 상기 제2 슬롯은 상기 제1 슬롯과 마주보게 배치될 수 있다.
다양한 예시적인 실시예에 따르면, 상기 안테나 모듈은 상기 제1 방사 패치들의 주위에 배치된 복수의 방사 도체(예: 도 6의 방사 도체(521b))를 더 포함하고, 상기 제1 아이솔레이터는, 인접하는 두 개의 상기 방사 도체 사이의 영역 또는, 상기 제1 방사 패치들 중 하나와 그에 인접하는 상기 방사 도체들 중 하나 사이의 영역에 더 배치될 수 있다.
다양한 예시적인 실시예에 따르면, 상기 방사 도체는, 상기 제1 방사 패치가 무선 신호를 방사하는 방향에 교차하는 방향으로 무선 신호를 방사하도록 설정될 수 있다.
다양한 예시적인 실시예에 따르면, 상기 안테나 모듈은, 다층 회로 기판을 포함하고, 상기 다층 회로 기판 내에서, 상기 제1 부분과 상기 제2 부분 중 어느 하나가 상기 제1 방사 패치와 동일한 계층에 배치될 수 있다.
다양한 예시적인 실시예에 따르면, 상기 안테나 모듈은 상기 제1 방사 패치들의 주위에서 상기 다층 회로 기판에 배치된 복수의 방사 도체를 더 포함할 수 있다.
본 개시는 다양한 실시예에 관해 예시하여 설명되었지만, 다양한 실시예가 본 발명을 한정하는 것이 아니라 예시를 위한 것으로 이해되어야 할 것이다. 첨부된 청구항과 그 균등물을 포함하여, 본 개시의 전체 관점에서 벗어나지 않는 범위에서 그 형식과 세부적인 구성에 다양한 변화가 이루어질 수 있음은 당업자에게 자명하다 할 것이다.

Claims (15)

  1. 안테나 장치에 있어서,
    복수의 제1 방사 패치의 배열을 포함하는 제1 안테나 어레이;
    상기 제1 방사 패치들 중 적어도 하나를 이용하여 무선 신호를 송신 및/또는 수신하도록 설정된 통신 회로; 및
    도전체를 포함하고 상기 제1 방사 패치들 중 서로 인접하는 두 제1 방사 패치 사이의 영역에 배치된 적어도 하나의 제1 아이솔레이터를 포함하고,
    상기 제1 아이솔레이터는,
    제1 부분;
    상기 제1 부분과 나란하게 배치된 제2 부분; 및
    상기 제1 부분과 상기 제2 부분을 전기적으로 연결하는 제3 부분을 포함하고,
    상기 제1 부분과 상기 제2 부분은 서로에 대하여 180도 위상차를 가진 전류의 흐름을 생성하도록 구성된 안테나 장치.
  2. 제1 항에 있어서, 상기 제1 부분과 상기 제2 부분 중 어느 하나에서 상기 제3 부분이 연결된 지점을 향하는 방향으로 제1 전류의 흐름을 생성하고, 상기 제1 부분과 상기 제2 부분 중 다른 하나에서 상기 제3 부분이 연결된 지점으로부터 멀어지는 방향으로 제2 전류의 흐름을 생성하도록 구성된 안테나 장치.
  3. 제1 항에 있어서, 상기 제1 아이솔레이터는 인접하는 두 개의 상기 제1 방사 패치 사이에서 전자기 간섭을 차단하도록 구성된 안테나 장치.
  4. 제1 항에 있어서,
    복수의 제2 방사 패치의 배열을 포함하는 제2 안테나 어레이로서, 상기 제1 안테나 어레이와 마주보게 배치된 상기 제2 안테나 어레이; 및
    상기 제1 안테나 어레이와 상기 제2 안테나 어레이 사이에 배치된 메쉬 플레이트(mesh plate)을 더 포함하는 안테나 장치.
  5. 제4 항에 있어서, 상기 메쉬 플레이트는, 다수의 캐비티(cavity)의 배열과, 인접하는 두 캐비티 사이에 형성된 격막을 포함하고,
    상기 제2 방사 패치들은 상기 캐비티들 중 어느 하나를 통해 상기 제1 방사 패치들 중 어느 하나와 마주보게 배치되고,
    상기 격막은 상기 제1 아이솔레이터와 마주보게 배치된 안테나 장치.
  6. 제4 항에 있어서, 상기 메쉬 플레이트는, 인접하는 두 개의 상기 제1 방사 패치들 사이 또는 인접하는 두 개의 상기 제2 방사 패치 사이에서 전자기 간섭을 차단하도록 구성된 안테나 장치.
  7. 제1 항에 있어서, 상기 제1 아이솔레이터는,
    상기 제1 부분을 형성하는 평판 형상의 제1 도전 패드;
    상기 제2 부분을 형성하며 상기 제1 도전 패드와 마주보게 배치된 평판 형상의 제2 도전 패드; 및
    상기 제3 부분을 형성하며 상기 제1 도전 패드와 상기 제2 도전 패드 사이에 배치된 연결 도체를 포함하고,
    상기 연결 도체는, 일단이 상기 제1 도전 패드에 연결되고 타단이 상기 제2 도전 패드에 연결됨으로써 상기 제1 도전 패드와 상기 제2 도전 패드를 전기적으로 연결하는 안테나 장치.
  8. 제7 항에 있어서, 상기 제1 아이솔레이터는,
    상기 제1 도전 패드의 가장자리 일부로부터 상기 제1 도전 패드의 내측으로 연정된 적어도 하나의 제1 슬롯; 및
    상기 제2 도전 패드의 가장자리 일부로부터 상기 제2 도전 패드의 내측으로 연정된 적어도 하나의 제2 슬롯을 더 포함하고,
    상기 제2 슬롯은 상기 제1 슬롯과 마주보게 배치된 안테나 장치.
  9. 제1 항에 있어서,
    상기 제1 방사 패치들의 주위에 배치된 복수의 방사 도체를 더 포함하고,
    상기 제1 아이솔레이터는, 인접하는 두 개의 상기 방사 도체 사이의 영역 또는, 상기 제1 방사 패치들 중 하나와 상기 제1 방사 패치들 중 상기 하나에 인접하는 상기 방사 도체들 중 하나 사이의 영역에 더 배치된 안테나 장치.
  10. 제9 항에 있어서, 상기 방사 도체는, 상기 제1 방사 패치가 무선 신호를 방사하는 방향에 교차하는 방향으로 무선 신호를 방사하도록 설정된 안테나 장치.
  11. 제1 항에 있어서,
    상기 제1 방사 패치들에 급전 신호를 제공하도록 구성된 복수의 전송 선로; 및
    상기 전송 선로들 중 인접하는 두 개의 전송 선로 사이의 영역에 배치된 적어도 하나의 제2 아이솔레이터를 더 포함하고,
    상기 제2 아이솔레이터는,
    인접하는 두 개의 상기 전송 선로와 나란하게 연장된 제1 연장부;
    상기 제1 연장부와 나란하게 연장되며, 인접하는 두 개의 상기 전송 선로 중 어느 하나와 상기 제1 연장부 사이에 배치된 제2 연장부; 및
    상기 제1 연장부와 상기 제2 연장부를 전기적으로 연결하는 연결부를 포함하고,
    상기 제1 연장부와 상기 제2 연장부는 서로에 대하여 180도 위상차를 가진 전류의 흐름을 생성하도록 구성된 안테나 장치.
  12. 제11 항에 있어서,
    인접하는 두 개의 상기 전송 선로 사이의 영역에 배치된 복수의 제3 아이솔레이터를 더 포함하고,
    복수의 상기 제2 아이솔레이터가, 상기 전송 선로들이 연장된 방향을 따라 상기 제3 아이솔레이터와 번갈가며 배치된 안테나 장치.
  13. 제12 항에 있어서, 상기 제3 아이솔레이터는 상기 전송 선로들이 연장된 방향과 교차하는 방향으로 연장된 비아 도체(via conductor)를 포함하는 안테나 장치.
  14. 전자 장치에 있어서,
    하우징; 및
    상기 하우징에 배치된 적어도 하나의 안테나 모듈을 포함하고,
    상기 안테나 모듈은,
    복수의 제1 방사 패치의 배열을 포함하는 제1 안테나 어레이;
    상기 제1 방사 패치들 중 적어도 하나를 이용하여 무선 신호를 송신 및/또는 수신하도록 설정된 통신 회로; 및
    도전체를 포함하고 상기 제1 방사 패치들 중 서로 인접하는 두 제1 방사 패치 사이의 영역에 배치된 적어도 하나의 제1 아이솔레이터를 포함하며,
    상기 제1 아이솔레이터는,
    제1 부분;
    상기 제1 부분과 나란하게 배치된 제2 부분; 및
    상기 제1 부분과 상기 제2 부분을 전기적으로 연결하는 제3 부분을 포함하고,
    상기 제1 부분과 상기 제2 부분은 서로에 대하여 180도 위상차를 가진 전류의 흐름을 생성하도록 구성된 전자 장치.
  15. 제14 항에 있어서, 상기 안테나 모듈은, 다층 회로 기판을 포함하고,
    상기 다층 회로 기판 내에서, 상기 제1 아이솔레이터의 상기 제1 부분과 상기 제2 부분 중 어느 하나가 상기 제1 방사 패치와 동일한 계층에 배치된 전자 장치.
PCT/KR2021/013784 2020-10-07 2021-10-07 안테나 장치 및 그를 포함하는 전자 장치 WO2022075770A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/496,326 US20220109249A1 (en) 2020-10-07 2021-10-07 Antenna device and electronic device including the same
AU2021358560A AU2021358560A1 (en) 2020-10-07 2021-10-07 Antenna device and electronic device comprising same
CN202180065701.1A CN116195134A (zh) 2020-10-07 2021-10-07 天线装置和包括该天线装置的电子装置
EP21878020.3A EP4184718A4 (en) 2020-10-07 2021-10-07 ANTENNA DEVICE AND ELECTRONIC DEVICE COMPRISING THE SAME

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2020-0129159 2020-10-07
KR20200129159 2020-10-07
KR1020210056285A KR20220046416A (ko) 2020-10-07 2021-04-30 안테나 장치 및 그를 포함하는 전자 장치
KR10-2021-0056285 2021-04-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/496,326 Continuation US20220109249A1 (en) 2020-10-07 2021-10-07 Antenna device and electronic device including the same

Publications (1)

Publication Number Publication Date
WO2022075770A1 true WO2022075770A1 (ko) 2022-04-14

Family

ID=81126298

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/013784 WO2022075770A1 (ko) 2020-10-07 2021-10-07 안테나 장치 및 그를 포함하는 전자 장치

Country Status (1)

Country Link
WO (1) WO2022075770A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100699472B1 (ko) * 2005-09-27 2007-03-26 삼성전자주식회사 아이솔레이션 소자를 포함하는 평판형 미모 어레이 안테나
US20120190296A1 (en) * 2010-05-28 2012-07-26 The Regents Of The University Of Michigan Miniaturized radio repeater
KR20150032972A (ko) * 2013-09-23 2015-04-01 삼성전자주식회사 안테나 장치 및 그를 구비하는 전자 기기
KR20170082838A (ko) * 2016-01-07 2017-07-17 주식회사 에스원 배열 안테나 및 이를 포함하는 레이더 감지기
KR20190027097A (ko) * 2017-09-06 2019-03-14 삼성전자주식회사 안테나 엘리먼트간 격리 구조를 갖는 안테나 장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100699472B1 (ko) * 2005-09-27 2007-03-26 삼성전자주식회사 아이솔레이션 소자를 포함하는 평판형 미모 어레이 안테나
US20120190296A1 (en) * 2010-05-28 2012-07-26 The Regents Of The University Of Michigan Miniaturized radio repeater
KR20150032972A (ko) * 2013-09-23 2015-04-01 삼성전자주식회사 안테나 장치 및 그를 구비하는 전자 기기
KR20170082838A (ko) * 2016-01-07 2017-07-17 주식회사 에스원 배열 안테나 및 이를 포함하는 레이더 감지기
KR20190027097A (ko) * 2017-09-06 2019-03-14 삼성전자주식회사 안테나 엘리먼트간 격리 구조를 갖는 안테나 장치

Similar Documents

Publication Publication Date Title
WO2020166812A1 (ko) 안테나, 안테나 주변에 배치되는 도전성 부재를 포함하는 전자 장치
WO2021107604A1 (en) Electronic device including antenna that radiates waves by a non-conducting portion
WO2021162262A1 (ko) 안테나 및 그것을 포함하는 전자 장치
WO2020106077A1 (ko) 안테나 모듈을 포함하는 전자 장치
WO2021091134A1 (en) Antenna and electronic device including the same
WO2021025393A1 (ko) 안테나 및 그것을 포함하는 전자 장치
WO2022139376A1 (ko) 코일 안테나를 포함하는 전자 장치
WO2022158789A1 (ko) 안테나 및 그것을 포함하는 전자 장치
WO2022139302A1 (ko) 안테나 구조 및 이를 포함하는 전자 장치
WO2022039410A1 (ko) 안테나 모듈을 포함하는 전자장치
WO2021261761A1 (ko) 안테나 및 이를 포함하는 전자 장치
WO2020141692A1 (ko) 도전성 측면 부재를 이용한 안테나 및 그것을 포함하는 전자 장치
WO2022119392A1 (ko) 안테나 모듈을 포함하는 전자 장치
WO2022154643A1 (ko) 안테나 및 이를 포함하는 전자 장치
WO2022145794A1 (ko) 안테나 및 그것을 포함하는 전자 장치
WO2022092862A1 (ko) 폴더블 전자 장치에서의 안테나 모듈 적용 구조
WO2022065746A1 (ko) 키 조립체 및 이를 포함하는 전자 장치
WO2021091264A1 (en) Grip detection method and electronic device supporting same
WO2022075770A1 (ko) 안테나 장치 및 그를 포함하는 전자 장치
WO2024106870A1 (ko) 안테나 모듈 및 상기 안테나 모듈을 포함하는 전자 장치
WO2023182706A1 (ko) 안테나 모듈 및 이를 포함하는 전자 장치
WO2023085675A1 (ko) 안테나를 포함하는 전자 장치
WO2022085980A1 (ko) 안테나 고정 구조 및 이를 포함하는 전자 장치
WO2022191452A1 (ko) 안테나 및 그것을 포함하는 전자 장치
WO2022025521A1 (ko) 안테나 및 그것을 포함하는 전자 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21878020

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021878020

Country of ref document: EP

Effective date: 20230217

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021358560

Country of ref document: AU

Date of ref document: 20211007

Kind code of ref document: A