WO2022075753A1 - 포인트 클라우드 데이터 송신 장치, 포인트 클라우드 데이터 송신 방법, 포인트 클라우드 데이터 수신 장치 및 포인트 클라우드 데이터 수신 방법 - Google Patents

포인트 클라우드 데이터 송신 장치, 포인트 클라우드 데이터 송신 방법, 포인트 클라우드 데이터 수신 장치 및 포인트 클라우드 데이터 수신 방법 Download PDF

Info

Publication number
WO2022075753A1
WO2022075753A1 PCT/KR2021/013722 KR2021013722W WO2022075753A1 WO 2022075753 A1 WO2022075753 A1 WO 2022075753A1 KR 2021013722 W KR2021013722 W KR 2021013722W WO 2022075753 A1 WO2022075753 A1 WO 2022075753A1
Authority
WO
WIPO (PCT)
Prior art keywords
point cloud
bitstream
data
geometry
lod
Prior art date
Application number
PCT/KR2021/013722
Other languages
English (en)
French (fr)
Inventor
오현묵
오세진
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to EP21878004.7A priority Critical patent/EP4228267A1/en
Priority to CN202180068605.2A priority patent/CN116349229A/zh
Priority to US18/028,635 priority patent/US20230334703A1/en
Publication of WO2022075753A1 publication Critical patent/WO2022075753A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/597Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding specially adapted for multi-view video sequence encoding
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T9/00Image coding
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T9/00Image coding
    • G06T9/001Model-based coding, e.g. wire frame
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T9/00Image coding
    • G06T9/40Tree coding, e.g. quadtree, octree
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2210/00Indexing scheme for image generation or computer graphics
    • G06T2210/36Level of detail
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2210/00Indexing scheme for image generation or computer graphics
    • G06T2210/56Particle system, point based geometry or rendering

Definitions

  • Embodiments relate to a method and apparatus for processing point cloud content.
  • the point cloud content is content expressed as a point cloud, which is a set of points (points) belonging to a coordinate system representing a three-dimensional space.
  • Point cloud content can express three-dimensional media, and provides various services such as VR (Virtual Reality), AR (Augmented Reality), MR (Mixed Reality), and autonomous driving service. used to provide However, tens of thousands to hundreds of thousands of point data are needed to express point cloud content. Therefore, a method for efficiently processing a large amount of point data is required.
  • Embodiments provide an apparatus and method for efficiently processing point cloud data.
  • Embodiments provide a point cloud data processing method and apparatus for solving latency and encoding/decoding complexity.
  • a method for transmitting point cloud data may include encoding the point cloud data and transmitting a bitstream including the point cloud data. Also, the method for receiving point cloud data according to embodiments may include receiving a bitstream including the point cloud data and decoding the point cloud data.
  • the apparatus and method according to the embodiments may process point cloud data with high efficiency.
  • the apparatus and method according to the embodiments may provide a high quality point cloud service.
  • the apparatus and method according to the embodiments may provide point cloud content for providing universal services such as a VR service and an autonomous driving service.
  • FIG. 1 shows an example of a point cloud content providing system according to embodiments.
  • FIG. 2 is a block diagram illustrating an operation of providing point cloud content according to embodiments.
  • FIG 3 shows an example of a point cloud video capture process according to embodiments.
  • FIG. 4 shows an example of a point cloud encoder according to embodiments.
  • FIG. 5 illustrates an example of a voxel according to embodiments.
  • FIG. 6 shows an example of an octree and an occupancy code according to embodiments.
  • FIG. 7 shows an example of a neighbor node pattern according to embodiments.
  • FIG. 10 shows an example of a point cloud decoder according to embodiments.
  • FIG. 11 shows an example of a point cloud decoder according to embodiments.
  • FIG. 13 is an example of a receiving apparatus according to embodiments.
  • FIG. 14 illustrates an example of a structure capable of interworking with a method/device for transmitting and receiving point cloud data according to embodiments.
  • 15 shows an encoding, transmission, and decoding process of point cloud data according to embodiments.
  • FIG. 16 illustrates a layer-based point cloud data configuration according to embodiments.
  • 17 shows a geometry and an attribute bitstream structure according to embodiments.
  • 19 shows a bitstream alignment method according to embodiments.
  • 20 shows a bitstream alignment method according to embodiments.
  • 21 illustrates a method of selecting geometry data and attribute data according to embodiments.
  • FIG. 22 illustrates a bitstream selection method according to embodiments.
  • FIG. 23 illustrates a method of constructing a slice including point cloud data according to embodiments.
  • 25 shows syntax of a sequence parameter set and a geometry parameter set according to embodiments.
  • 26 shows the syntax of an attribute parameter set according to embodiments.
  • FIG. 27 shows the syntax of a geometry data unit header according to embodiments.
  • 29 shows a structure of an apparatus for transmitting point cloud data according to embodiments.
  • FIG. 30 shows a structure of an apparatus for receiving point cloud data according to embodiments.
  • 31 is a flowchart of an apparatus for receiving point cloud data according to embodiments.
  • 32 is a process for transmitting and receiving point cloud data according to embodiments.
  • FIG 33 illustrates a single slice and segmented slice-based geometry tree structure according to embodiments.
  • 34 shows a layer group structure of a geometry coding tree and an aligned layer group structure of an attribute coding tree according to embodiments.
  • 35 shows a layer group of a geometry tree and an independent layer group structure of an attribute coding tree according to embodiments.
  • 38 shows a method for transmitting point cloud data according to embodiments.
  • 39 shows a method of receiving point cloud data according to embodiments.
  • FIG. 1 shows an example of a point cloud content providing system according to embodiments.
  • the point cloud content providing system shown in FIG. 1 may include a transmission device 10000 and a reception device 10004 .
  • the transmitting device 10000 and the receiving device 10004 are capable of wired/wireless communication in order to transmit/receive point cloud data.
  • the transmission device 10000 may secure, process, and transmit a point cloud video (or point cloud content).
  • the transmitting device 10000 may be a fixed station, a base transceiver system (BTS), a network, an Ariticial Intelligence (AI) device and/or system, a robot, an AR/VR/XR device and/or a server and the like.
  • BTS base transceiver system
  • AI Ariticial Intelligence
  • the transmission device 10000 uses a radio access technology (eg, 5G NR (New RAT), LTE (Long Term Evolution)) to communicate with a base station and/or other wireless devices; It may include robots, vehicles, AR/VR/XR devices, mobile devices, home appliances, Internet of Things (IoT) devices, AI devices/servers, and the like.
  • a radio access technology eg, 5G NR (New RAT), LTE (Long Term Evolution)
  • 5G NR New RAT
  • LTE Long Term Evolution
  • IoT Internet of Things
  • Transmission device 10000 is a point cloud video acquisition unit (Point Cloud Video Acquisition, 10001), a point cloud video encoder (Point Cloud Video Encoder, 10002) and / or a transmitter (Transmitter (or Communication module), 10003 ) contains
  • the point cloud video acquisition unit 10001 acquires the point cloud video through processing such as capturing, synthesizing, or generating.
  • the point cloud video is point cloud content expressed as a point cloud that is a set of points located in a three-dimensional space, and may be referred to as point cloud video data or the like.
  • a point cloud video according to embodiments may include one or more frames. One frame represents a still image/picture. Accordingly, the point cloud video may include a point cloud image/frame/picture, and may be referred to as any one of a point cloud image, a frame, and a picture.
  • the point cloud video encoder 10002 encodes the obtained point cloud video data.
  • the point cloud video encoder 10002 may encode point cloud video data based on point cloud compression coding.
  • Point cloud compression coding may include Geometry-based Point Cloud Compression (G-PCC) coding and/or Video based Point Cloud Compression (V-PCC) coding or next-generation coding.
  • G-PCC Geometry-based Point Cloud Compression
  • V-PCC Video based Point Cloud Compression
  • the point cloud video encoder 10002 may output a bitstream including encoded point cloud video data.
  • the bitstream may include not only the encoded point cloud video data, but also signaling information related to encoding of the point cloud video data.
  • the transmitter 10003 transmits a bitstream including encoded point cloud video data.
  • the bitstream according to the embodiments is encapsulated into a file or segment (eg, a streaming segment) and transmitted through various networks such as a broadcasting network and/or a broadband network.
  • the transmission device 10000 may include an encapsulation unit (or an encapsulation module) that performs an encapsulation operation.
  • the encapsulation unit may be included in the transmitter 10003 .
  • the file or segment may be transmitted to the receiving device 10004 through a network or stored in a digital storage medium (eg, USB, SD, CD, DVD, Blu-ray, HDD, SSD, etc.).
  • the transmitter 10003 may communicate with the receiving device 10004 (or a receiver 10005) through wired/wireless communication through networks such as 4G, 5G, and 6G. Also, the transmitter 10003 may perform a necessary data processing operation according to a network system (eg, a communication network system such as 4G, 5G, 6G, etc.). Also, the transmission device 10000 may transmit encapsulated data according to an on demand method.
  • a network system eg, a communication network system such as 4G, 5G, 6G, etc.
  • the transmission device 10000 may transmit encapsulated data according to an on demand method.
  • the receiving device 10004 includes a receiver (Receiver, 10005), a point cloud video decoder (Point Cloud Decoder, 10006), and/or a renderer (Renderer, 10007).
  • the receiving device 10004 uses a radio access technology (eg, 5G NR (New RAT), LTE (Long Term Evolution)) to communicate with a base station and/or other wireless devices, a device or a robot , vehicles, AR/VR/XR devices, portable devices, home appliances, Internet of Things (IoT) devices, AI devices/servers, and the like.
  • 5G NR New RAT
  • LTE Long Term Evolution
  • the receiver 10005 receives a bitstream including point cloud video data or a file/segment in which the bitstream is encapsulated from a network or a storage medium.
  • the receiver 10005 may perform a necessary data processing operation according to a network system (eg, a communication network system such as 4G, 5G, or 6G).
  • the receiver 10005 may output a bitstream by decapsulating the received file/segment.
  • the receiver 10005 may include a decapsulation unit (or a decapsulation module) for performing a decapsulation operation.
  • the decapsulation unit may be implemented as an element (or component) separate from the receiver 10005 .
  • the point cloud video decoder 10006 decodes a bitstream including point cloud video data.
  • the point cloud video decoder 10006 may decode the point cloud video data according to an encoded manner (eg, a reverse process of the operation of the point cloud video encoder 10002 ). Accordingly, the point cloud video decoder 10006 may decode the point cloud video data by performing point cloud decompression coding, which is a reverse process of the point cloud compression.
  • Point cloud decompression coding includes G-PCC coding.
  • the renderer 10007 renders the decoded point cloud video data.
  • the renderer 10007 may output point cloud content by rendering audio data as well as point cloud video data.
  • the renderer 10007 may include a display for displaying the point cloud content.
  • the display may not be included in the renderer 10007 and may be implemented as a separate device or component.
  • the feedback information is information for reflecting the interactivity with the user who consumes the point cloud content, and includes user information (eg, head orientation information, viewport information, etc.).
  • user information eg, head orientation information, viewport information, etc.
  • the feedback information is provided by the content transmitting side (eg, the transmission device 10000) and/or the service provider can be passed on to According to embodiments, the feedback information may be used by the receiving device 10004 as well as the transmitting device 10000 or may not be provided.
  • the head orientation information is information about the user's head position, direction, angle, movement, and the like.
  • the reception apparatus 10004 may calculate viewport information based on head orientation information.
  • the viewport information is information about the area of the point cloud video that the user is looking at.
  • a viewpoint is a point at which a user is watching a point cloud video, and may mean a central point of the viewport area. That is, the viewport is an area centered on a viewpoint, and the size and shape of the area may be determined by a Field Of View (FOV).
  • FOV Field Of View
  • the reception device 10004 may extract viewport information based on a vertical or horizontal FOV supported by the device in addition to the head orientation information.
  • the receiving device 10004 checks the user's point cloud consumption method, the point cloud video area the user gazes on, the gaze time, and the like by performing a gaze analysis or the like.
  • the receiving device 10004 may transmit feedback information including the result of the gaze analysis to the transmitting device 10000 .
  • Feedback information may be obtained during rendering and/or display.
  • Feedback information may be secured by one or more sensors included in the receiving device 10004 .
  • the feedback information may be secured by the renderer 10007 or a separate external element (or device, component, etc.).
  • a dotted line in FIG. 1 shows a process of transmitting the feedback information secured by the renderer 10007 .
  • the point cloud content providing system may process (encode/decode) the point cloud data based on the feedback information. Accordingly, the point cloud video data decoder 10006 may perform a decoding operation based on the feedback information. Also, the receiving device 10004 may transmit feedback information to the transmitting device 10000 . The transmission device 10000 (or the point cloud video data encoder 10002 ) may perform an encoding operation based on the feedback information. Therefore, the point cloud content providing system does not process (encode / decode) all point cloud data, but efficiently processes necessary data (for example, point cloud data corresponding to the user's head position) based on the feedback information, and the user can provide point cloud content to
  • the transmitting apparatus 10000 may be referred to as an encoder, a transmitting device, a transmitter, etc.
  • the receiving apparatus 10004 may be referred to as a decoder, a receiving device, a receiver, or the like.
  • Point cloud data (processed in a series of acquisition/encoding/transmission/decoding/rendering) processed in the point cloud content providing system of FIG. 1 according to embodiments may be referred to as point cloud content data or point cloud video data.
  • the point cloud content data may be used as a concept including metadata or signaling information related to the point cloud data.
  • the elements of the point cloud content providing system shown in FIG. 1 may be implemented by hardware, software, a processor and/or a combination thereof.
  • FIG. 2 is a block diagram illustrating an operation of providing point cloud content according to embodiments.
  • the block diagram of FIG. 2 shows the operation of the point cloud content providing system described in FIG. 1 .
  • the point cloud content providing system may process point cloud data based on point cloud compression coding (eg, G-PCC).
  • point cloud compression coding eg, G-PCC
  • the point cloud content providing system may acquire a point cloud video (20000).
  • a point cloud video is expressed as a point cloud belonging to a coordinate system representing a three-dimensional space.
  • the point cloud video according to embodiments may include a Ply (Polygon File format or the Stanford Triangle format) file.
  • the acquired point cloud video may include one or more Ply files.
  • the Ply file contains point cloud data such as the point's geometry and/or attributes. Geometry includes positions of points.
  • the position of each point may be expressed by parameters (eg, values of each of the X-axis, Y-axis, and Z-axis) representing a three-dimensional coordinate system (eg, a coordinate system including XYZ axes).
  • the attribute includes attributes of points (eg, texture information of each point, color (YCbCr or RGB), reflectance (r), transparency, etc.).
  • a point has one or more attributes (or properties).
  • one point may have one attribute of color, or two attributes of color and reflectance.
  • the geometry may be referred to as positions, geometry information, geometry data, and the like, and the attribute may be referred to as attributes, attribute information, attribute data, and the like.
  • the point cloud content providing system receives points from information (eg, depth information, color information, etc.) related to the point cloud video acquisition process. Cloud data can be obtained.
  • the point cloud content providing system may encode the point cloud data (20001).
  • the point cloud content providing system may encode point cloud data based on point cloud compression coding.
  • the point cloud data may include the geometry and attributes of the point.
  • the point cloud content providing system may output a geometry bitstream by performing geometry encoding for encoding the geometry.
  • the point cloud content providing system may output an attribute bitstream by performing attribute encoding for encoding an attribute.
  • the point cloud content providing system may perform attribute encoding based on geometry encoding.
  • the geometry bitstream and the attribute bitstream according to the embodiments may be multiplexed and output as one bitstream.
  • the bitstream according to embodiments may further include signaling information related to geometry encoding and attribute encoding.
  • the point cloud content providing system may transmit the encoded point cloud data (20002).
  • the encoded point cloud data may be expressed as a geometry bitstream and an attribute bitstream.
  • the encoded point cloud data may be transmitted in the form of a bitstream together with signaling information related to encoding of the point cloud data (eg, signaling information related to geometry encoding and attribute encoding).
  • the point cloud content providing system may encapsulate the bitstream for transmitting the encoded point cloud data and transmit it in the form of a file or segment.
  • the point cloud content providing system (eg, the receiving device 10004 or the receiver 10005) according to the embodiments may receive a bitstream including the encoded point cloud data. Also, the point cloud content providing system (eg, the receiving device 10004 or the receiver 10005) may demultiplex the bitstream.
  • the point cloud content providing system may decode the encoded point cloud data (for example, a geometry bitstream, an attribute bitstream) transmitted as a bitstream. there is.
  • the point cloud content providing system (for example, the receiving device 10004 or the point cloud video decoder 10005) may decode the point cloud video data based on signaling information related to encoding of the point cloud video data included in the bitstream. there is.
  • the point cloud content providing system (eg, the receiving device 10004 or the point cloud video decoder 10005) may decode the geometry bitstream to restore positions (geometry) of the points.
  • the point cloud content providing system may restore attributes of points by decoding an attribute bitstream based on the restored geometry.
  • the point cloud content providing system (eg, the receiving device 10004 or the point cloud video decoder 10005) may reconstruct the point cloud video based on positions and decoded attributes according to the reconstructed geometry.
  • the point cloud content providing system may render the decoded point cloud data (20004).
  • the point cloud content providing system may render the geometry and attributes decoded through the decoding process according to various rendering methods according to the rendering method.
  • the points of the point cloud content may be rendered as a vertex having a certain thickness, a cube having a specific minimum size centered at the vertex position, or a circle centered at the vertex position. All or part of the rendered point cloud content is provided to the user through a display (eg, VR/AR display, general display, etc.).
  • the point cloud content providing system (eg, the reception device 10004) according to the embodiments may secure the feedback information (20005).
  • the point cloud content providing system may encode and/or decode the point cloud data based on the feedback information. Since the operation of the feedback information and point cloud content providing system according to the embodiments is the same as the feedback information and operation described with reference to FIG. 1 , a detailed description thereof will be omitted.
  • FIG 3 shows an example of a point cloud video capture process according to embodiments.
  • FIG. 3 shows an example of a point cloud video capture process of the point cloud content providing system described with reference to FIGS. 1 and 2 .
  • the point cloud content is an object located in various three-dimensional spaces (eg, a three-dimensional space representing a real environment, a three-dimensional space representing a virtual environment, etc.) and/or a point cloud video representing the environment (images and/or videos) are included.
  • one or more cameras eg, an infrared camera capable of securing depth information, color information corresponding to depth information
  • the point cloud content providing system according to the embodiments may extract a shape of a geometry composed of points in a three-dimensional space from depth information, and extract an attribute of each point from color information to secure point cloud data.
  • An image and/or an image according to embodiments may be captured based on at least one of an inward-facing method and an outward-facing method.
  • the left side of FIG. 3 shows an inward-pacing scheme.
  • the inward-pacing method refers to a method in which one or more cameras (or camera sensors) located surrounding the central object capture the central object.
  • the inward-facing method provides a 360-degree image of a point cloud content that provides a user with a 360-degree image of a core object (for example, a 360-degree image of an object (e.g., a core object such as a character, player, object, actor, etc.) to the user. It can be used to create VR/AR content).
  • the right side of FIG. 3 shows an outward-pacing scheme.
  • the outward-pacing method refers to a method in which one or more cameras (or camera sensors) positioned surrounding the central object capture the environment of the central object rather than the central object.
  • the outward-pacing method may be used to generate point cloud content (eg, content representing an external environment that may be provided to a user of an autonomous vehicle) for providing a surrounding environment that appears from the user's point of view.
  • point cloud content eg, content representing an external environment that may be provided to a user of an autonomous vehicle
  • the point cloud content may be generated based on a capture operation of one or more cameras.
  • the point cloud content providing system may perform calibration of one or more cameras in order to set a global coordinate system before the capture operation.
  • the point cloud content providing system may generate the point cloud content by synthesizing the image and/or image captured by the above-described capture method and an arbitrary image and/or image.
  • the point cloud content providing system may not perform the capture operation described with reference to FIG. 3 when generating point cloud content representing a virtual space.
  • the point cloud content providing system according to the embodiments may perform post-processing on the captured image and/or the image. That is, the point cloud content providing system removes an unwanted area (eg, a background), recognizes a space where captured images and/or images are connected, and fills in a spatial hole if there is one. can
  • the point cloud content providing system may generate one point cloud content by performing coordinate system transformation on points of the point cloud video secured from each camera.
  • the point cloud content providing system may perform coordinate system transformation of points based on the position coordinates of each camera. Accordingly, the point cloud content providing system may generate content representing one wide range and may generate point cloud content having a high density of points.
  • FIG. 4 shows an example of a point cloud encoder according to embodiments.
  • the point cloud encoder controls point cloud data (eg, positions of points and/or attributes) and perform an encoding operation.
  • point cloud data e.g, positions of points and/or attributes
  • the point cloud content providing system may not be able to stream the corresponding content in real time. Accordingly, the point cloud content providing system may reconfigure the point cloud content based on a maximum target bitrate in order to provide it according to a network environment.
  • the point cloud encoder may perform geometry encoding and attribute encoding. Geometry encoding is performed before attribute encoding.
  • the point cloud encoder may include a coordinate system transformation unit (Transformation Coordinates, 40000), a quantization unit (Quantize and Remove Points (Voxelize), 40001), an octree analysis unit (Analyze Octree, 40002), and a surface appropriation analysis unit ( Analyze Surface Approximation (40003), Arithmetic Encode (40004), Reconstruct Geometry (40005), Color Transformer (Transform Colors, 40006), Attribute Transformer (Transfer Attributes, 40007), RAHT Transform It includes a unit 40008, an LOD generator (Generated LOD, 40009), a lifting transform unit (Lifting) 40010, a coefficient quantization unit (Quantize Coefficients, 40011) and/or an arithmetic encoder (Arithmetic Encode, 40012).
  • a coordinate system transformation unit Transformation Coordinates, 40000
  • a quantization unit Quantization and Remove Points (Voxelize)
  • the coordinate system transformation unit 40000, the quantization unit 40001, the octree analysis unit 40002, the surface approxy analysis unit 40003, the arithmetic encoder 40004, and the geometry reconstruction unit 40005 perform geometry encoding. can do.
  • Geometry encoding according to embodiments may include octree geometry coding, direct coding, trisoup geometry encoding, and entropy encoding. Direct coding and trisup geometry encoding are applied selectively or in combination. Also, geometry encoding is not limited to the above example.
  • the coordinate system conversion unit 40000 receives the positions and converts them into a coordinate system.
  • the positions may be converted into position information in a three-dimensional space (eg, a three-dimensional space expressed in an XYZ coordinate system, etc.).
  • Location information in 3D space may be referred to as geometry information.
  • the quantizer 40001 quantizes the geometry.
  • the quantization unit 40001 may quantize the points based on the minimum position values of all points (eg, the minimum values on each axis with respect to the X-axis, Y-axis, and Z-axis).
  • the quantization unit 40001 performs a quantization operation to find the nearest integer value by multiplying the difference between the minimum position value and the position value of each point by a preset quatization scale value, and then rounding down or rounding it up. Accordingly, one or more points may have the same quantized position (or position value).
  • the quantizer 40001 according to embodiments performs voxelization based on quantized positions to reconstruct quantized points.
  • a minimum unit including 2D image/video information is a pixel, and points of point cloud content (or 3D point cloud video) according to embodiments may be included in one or more voxels.
  • the quantizer 40001 may match groups of points in a 3D space to voxels.
  • one voxel may include only one point.
  • one voxel may include one or more points.
  • a position of a center point of the voxel may be set based on positions of one or more points included in one voxel.
  • attributes of all positions included in one voxel may be combined and assigned to a corresponding voxel.
  • the octree analyzer 40002 performs octree geometry coding (or octree coding) to represent voxels in an octree structure.
  • the octree structure represents points matched to voxels based on the octal tree structure.
  • the surface appropriation analyzer 40003 may analyze and approximate the octree.
  • Octree analysis and approximation is a process of analyzing to voxelize a region including a plurality of points in order to efficiently provide octree and voxelization.
  • the arithmetic encoder 40004 entropy encodes the octree and/or the approximated octree.
  • the encoding method includes an arithmetic encoding method.
  • the encoding results in a geometry bitstream.
  • Color transform unit 40006 performs attribute encoding.
  • one point may have one or more attributes. Attribute encoding according to embodiments is equally applied to attributes of one point. However, when one attribute (eg, color) includes one or more elements, independent attribute encoding is applied to each element.
  • Attribute encoding may include color transform coding, attribute transform coding, region adaptive hierarchical transform (RAHT) coding, interpolaration-based hierarchical nearest-neighbor prediction-Prediction Transform coding, and interpolation-based hierarchical nearest -neighbor prediction with an update/lifting step (Lifting Transform)) may include coding.
  • RAHT region adaptive hierarchical transform
  • coding interpolaration-based hierarchical nearest-neighbor prediction-Prediction Transform coding
  • Lifting Transform interpolation-based hierarchical nearest -neighbor prediction with an update/lifting step
  • attribute encoding is not limited to the above-described example.
  • the color conversion unit 40006 performs color conversion coding for converting color values (or textures) included in attributes.
  • the color converter 40006 may convert the format of color information (eg, convert RGB to YCbCr).
  • the operation of the color converter 40006 according to embodiments may be optionally applied according to color values included in the attributes.
  • the geometry reconstruction unit 40005 reconstructs (decompresses) an octree and/or an approximated octree.
  • the geometry reconstruction unit 40005 reconstructs an octree/voxel based on a result of analyzing the distribution of points.
  • the reconstructed octree/voxel may be referred to as a reconstructed geometry (or a reconstructed geometry).
  • the attribute transform unit 40007 performs an attribute transform that transforms attributes based on positions to which geometry encoding has not been performed and/or a reconstructed geometry. As described above, since the attributes are dependent on the geometry, the attribute transform unit 40007 may transform the attributes based on the reconstructed geometry information. For example, the attribute conversion unit 40007 may convert an attribute of a point at the position based on the position value of the point included in the voxel. As described above, when the position of the center point of a voxel is set based on the positions of one or more points included in one voxel, the attribute conversion unit 40007 converts attributes of the one or more points. When the tri-soup geometry encoding is performed, the attribute conversion unit 40007 may convert the attributes based on the tri-soup geometry encoding.
  • the attribute conversion unit 40007 is an average value of attributes or attribute values (eg, color of each point, reflectance, etc.) of neighboring points within a specific position/radius from the position (or position value) of the central point of each voxel. can be calculated to perform attribute transformation.
  • the attribute conversion unit 40007 may apply a weight according to the distance from the center point to each point when calculating the average value.
  • each voxel has a position and a computed attribute (or attribute value).
  • the attribute conversion unit 40007 may search for neighboring points existing within a specific position/radius from the position of the center point of each voxel based on the K-D tree or the Morton code.
  • the K-D tree is a binary search tree and supports a data structure that can manage points based on location so that Nearest Neighbor Search-NNS is possible quickly.
  • the Molton code represents a coordinate value (eg (x, y, z)) indicating a three-dimensional position of all points as a bit value, and is generated by mixing the bits. For example, if the coordinate value indicating the position of the point is (5, 9, 1), the bit value of the coordinate value is (0101, 1001, 0001).
  • the attribute transform unit 40007 may align the points based on the Molton code value and perform a shortest neighbor search (NNS) through a depth-first traversal process. After the attribute transformation operation, if the nearest neighbor search (NNS) is required in another transformation process for attribute coding, a K-D tree or a Molton code is used.
  • NSS shortest neighbor search
  • the converted attributes are input to the RAHT conversion unit 40008 and/or the LOD generation unit 40009.
  • the RAHT converter 40008 performs RAHT coding for predicting attribute information based on the reconstructed geometry information.
  • the RAHT transform unit 40008 may predict attribute information of a node at an upper level of the octree based on attribute information associated with a node at a lower level of the octree.
  • the LOD generator 40009 generates a level of detail (LOD) to perform predictive transform coding.
  • LOD level of detail
  • the LOD according to the embodiments indicates the detail of the point cloud content, and the smaller the LOD value, the lower the detail of the point cloud content, and the higher the LOD value, the higher the detail of the point cloud content. Points may be classified according to LOD.
  • the lifting transform unit 40010 performs lifting transform coding that transforms the attributes of the point cloud based on weights. As described above, lifting transform coding may be selectively applied.
  • the coefficient quantizer 40011 quantizes the attribute-coded attributes based on coefficients.
  • the arithmetic encoder 40012 encodes the quantized attributes based on arithmetic coding.
  • the elements of the point cloud encoder of FIG. 4 are hardware including one or more processors or integrated circuits configured to communicate with one or more memories included in the point cloud providing device. , software, firmware, or a combination thereof.
  • the one or more processors may perform at least any one or more of the operations and/or functions of the elements of the point cloud encoder of FIG. 4 described above.
  • the one or more processors may operate or execute a set of software programs and/or instructions for performing operations and/or functions of the elements of the point cloud encoder of FIG. 4 .
  • One or more memories in accordance with embodiments may include high speed random access memory, non-volatile memory (eg, one or more magnetic disk storage devices, flash memory devices, or other non-volatile solid state memory). memory devices (such as solid-state memory devices).
  • FIG. 5 illustrates an example of a voxel according to embodiments.
  • voxel 5 is an octree structure that recursively subdivides a bounding box defined by two poles (0,0,0) and (2 d , 2 d , 2 d ).
  • An example of a voxel generated through One voxel includes at least one or more points.
  • a voxel may estimate spatial coordinates from a positional relationship with a voxel group.
  • voxels have attributes (such as color or reflectance) like pixels of a 2D image/image.
  • a detailed description of the voxel is the same as that described with reference to FIG. 4 , and thus will be omitted.
  • FIG. 6 shows an example of an octree and an occupancy code according to embodiments.
  • the point cloud content providing system (point cloud video encoder 10002) or point cloud encoder (eg, octree analysis unit 40002) efficiently manages the area and/or position of voxels
  • octree geometry coding (or octree coding) based on the octree structure is performed.
  • FIG. 6 shows the octree structure.
  • the three-dimensional space of the point cloud content according to embodiments is expressed by axes (eg, X-axis, Y-axis, and Z-axis) of the coordinate system.
  • An octree structure is created by recursive subdividing a bounding box defined by two poles (0,0,0) and (2 d , 2 d , 2 d ). . 2d may be set as a value constituting the smallest bounding box surrounding all points of the point cloud content (or point cloud video).
  • d represents the depth of the octree.
  • the value of d is determined according to the following equation. In the following equation (x int n , y int n , z int n ) represents positions (or position values) of quantized points.
  • the entire 3D space may be divided into eight spaces according to the division.
  • Each divided space is expressed as a cube with six faces.
  • each of the eight spaces is again divided based on the axes of the coordinate system (eg, X-axis, Y-axis, and Z-axis). Therefore, each space is further divided into 8 small spaces.
  • the divided small space is also expressed as a cube with six faces. This division method is applied until a leaf node of the octree becomes a voxel.
  • the lower part of FIG. 6 shows the occupancy code of the octree.
  • the occupancy code of the octree is generated to indicate whether each of the eight divided spaces generated by dividing one space includes at least one point.
  • one occupanci code is expressed by eight child nodes.
  • Each child node represents an occupancies of the divided space, and each child node has a value of 1 bit. Therefore, the occupanci code is expressed as an 8-bit code. That is, if at least one point is included in the space corresponding to the child node, the corresponding node has a value of 1. If the space corresponding to the child node does not contain a point (empty), the node has a value of 0. Since the occupancy code shown in FIG.
  • a point cloud encoder (eg, arithmetic encoder 40004 ) according to embodiments may entropy encode the occult code. In addition, to increase the compression efficiency, the point cloud encoder can intra/inter-code the occupanci code.
  • the receiving apparatus (eg, the receiving apparatus 10004 or the point cloud video decoder 10006) according to embodiments reconstructs an octree based on the occupanci code.
  • the point cloud encoder (eg, the point cloud encoder of FIG. 4 , or the octree analyzer 40002) according to embodiments may perform voxelization and octree coding to store positions of points.
  • the points in the 3D space are not always evenly distributed, there may be a specific area where there are not many points. Therefore, it is inefficient to perform voxelization on the entire 3D space. For example, if there are few points in a specific area, there is no need to perform voxelization up to the corresponding area.
  • the point cloud encoder does not perform voxelization on the above-described specific region (or a node other than a leaf node of an octree), but directly codes positions of points included in the specific region. ) can be done. Coordinates of direct coding points according to embodiments are called direct coding mode (DCM).
  • DCM direct coding mode
  • the point cloud encoder according to embodiments may perform trisoup geometry encoding for reconstructing positions of points in a specific region (or node) based on a voxel based on a surface model.
  • Tri-Soop geometry encoding is a geometry encoding that expresses the representation of an object as a series of triangle meshes.
  • the point cloud decoder can generate a point cloud from the mesh surface.
  • Direct coding and trisup geometry encoding according to embodiments may be selectively performed.
  • direct coding and trisup geometry encoding according to embodiments may be performed in combination with octree geometry coding (or octree coding).
  • the option to use a direct mode for applying direct coding must be activated, and a node to which direct coding is to be applied is not a leaf node, but is less than a threshold within a specific node. points must exist. In addition, the number of whole points to be subjected to direct coding must not exceed a preset limit value. If the above condition is satisfied, the point cloud encoder (or the arithmetic encoder 40004 ) according to the embodiments may entropy-code positions (or position values) of points.
  • the point cloud encoder (for example, the surface appropriation analyzer 40003) according to the embodiments determines a specific level of the octree (when the level is smaller than the depth d of the octree), and from that level, a node using the surface model It is possible to perform tri-soup geometry encoding, which reconstructs the position of a point in a region based on voxels (tri-soup mode).
  • the point cloud encoder may designate a level to which tri-soup geometry encoding is to be applied. For example, if the specified level is equal to the depth of the octree, the point cloud encoder will not operate in tri-soup mode.
  • the point cloud encoder may operate in the tri-soup mode only when the specified level is smaller than the depth value of the octree.
  • a three-dimensional cube region of nodes of a specified level according to embodiments is called a block.
  • One block may include one or more voxels.
  • a block or voxel may correspond to a brick.
  • the geometry is represented as a surface.
  • a surface according to embodiments may intersect each edge of the block at most once.
  • a vertex existing along an edge is detected when there is at least one occupied voxel adjacent to the edge among all blocks sharing the edge.
  • An ocupided voxel means a voxel including a point. The position of the vertex detected along the edge is the average position along the edge of all voxels of all voxels adjacent to the edge among all blocks sharing the edge.
  • the point cloud encoder When a vertex is detected, the point cloud encoder according to the embodiments entropy-codes the starting point (x, y, z) of the edge, the direction vectors ( ⁇ x, ⁇ y, ⁇ z) of the edge, and the vertex position values (relative position values within the edge).
  • the point cloud encoder eg, the geometry reconstruction unit 40005
  • the point cloud encoder performs triangle reconstruction, up-sampling, and voxelization processes. to create a reconstructed geometry (reconstructed geometry).
  • Vertices located on the edge of a block determine the surface that passes through the block.
  • the surface according to embodiments is a non-planar polygon.
  • the triangle reconstruction process reconstructs the surface represented by a triangle based on the starting point of the edge, the direction vector of the edge, and the position value of the vertex.
  • the triangle reconstruction process is as follows. 1 Calculate the centroid of each vertex, 2 perform the square on the values obtained by subtracting the centroid from each vertex value, and obtain the sum of all the values.
  • the minimum value of the added values is obtained, and the projection process is performed along the axis with the minimum value. For example, if the x element is the minimum, each vertex is projected on the x-axis with respect to the center of the block and projected on the (y, z) plane. If the value that comes out when projecting on the (y, z) plane is (ai, bi), the ⁇ value is obtained through atan2(bi, ai), and the vertices are aligned based on the ⁇ value.
  • the table below shows combinations of vertices for generating a triangle according to the number of vertices. Vertices are sorted in order from 1 to n.
  • the table below shows that for four vertices, two triangles can be formed according to a combination of vertices.
  • the first triangle may be composed of 1st, 2nd, and 3rd vertices among the aligned vertices
  • the second triangle may be composed of 3rd, 4th, and 1st vertices among the aligned vertices. .
  • the upsampling process is performed to voxelize the triangle by adding points along the edge of the triangle. Create additional points based on the upsampling factor and the width of the block. The additional points are called refined vertices.
  • the point cloud encoder may voxel the refined vertices.
  • the point cloud encoder may perform attribute encoding based on the voxelized position (or position value).
  • FIG. 7 shows an example of a neighbor node pattern according to embodiments.
  • the point cloud encoder may perform entropy coding based on context adaptive arithmetic coding.
  • the point cloud content providing system or the point cloud encoder directly transmits the occupanci code.
  • Entropy coding is possible.
  • the point cloud content providing system or point cloud encoder performs entropy encoding (intra-encoding) based on the occupancies of the current node and the occupancies of neighboring nodes, or entropy encoding (inter-encoding) based on the occupancies of the previous frame. ) can be done.
  • a frame according to embodiments means a set of point cloud videos generated at the same time.
  • a point cloud encoder determines occupancy of neighboring nodes of each node of an octree and obtains a neighbor pattern value.
  • the neighbor node pattern is used to infer the occupancies pattern of the corresponding node.
  • the left side of FIG. 7 shows a cube corresponding to a node (a cube located in the center) and six cubes (neighboring nodes) that share at least one face with the cube.
  • the nodes shown in the figure are nodes of the same depth (depth).
  • the numbers shown in the figure represent the weights (1, 2, 4, 8, 16, 32, etc.) associated with each of the six nodes. Each weight is sequentially assigned according to the positions of neighboring nodes.
  • the right side of FIG. 7 shows the neighboring node pattern values.
  • the neighbor node pattern value is the sum of values multiplied by the weights of the ocupided neighbor nodes (neighbor nodes with points). Therefore, the neighbor node pattern values range from 0 to 63. When the neighbor node pattern value is 0, it indicates that there is no node (ocupid node) having a point among the neighboring nodes of the corresponding node. When the neighbor node pattern value is 63, it indicates that all of the neighboring nodes are ocupid nodes. As shown in the figure, since neighboring nodes to which weights 1, 2, 4, and 8 are assigned are ocupided nodes, the neighboring node pattern value is 15, which is the sum of 1, 2, 4, and 8.
  • the point cloud encoder may perform coding according to the neighboring node pattern value (eg, when the neighboring node pattern value is 63, 64 types of coding are performed). According to embodiments, the point cloud encoder may change the neighbor node pattern value (eg, based on a table that changes 64 to 10 or 6) to reduce coding complexity.
  • the encoded geometry is reconstructed (decompressed).
  • the geometry reconstruction operation may include changing the arrangement of the direct coded points (eg, placing the direct coded points in front of the point cloud data).
  • tri-soap geometry encoding is applied, the geometry reconstruction process is triangular reconstruction, upsampling, and voxelization. Since the attribute is dependent on the geometry, attribute encoding is performed based on the reconstructed geometry.
  • the point cloud encoder may reorganize the points by LOD.
  • the figure shows the point cloud content corresponding to the LOD.
  • the left side of the figure shows the original point cloud content.
  • the second figure from the left of the figure shows the distribution of the points of the lowest LOD, and the rightmost figure of the figure shows the distribution of the points of the highest LOD. That is, the points of the lowest LOD are sparsely distributed, and the points of the highest LOD are tightly distributed. That is, as the LOD increases according to the direction of the arrow indicated at the bottom of the drawing, the interval (or distance) between the points becomes shorter.
  • the point cloud content providing system or the point cloud encoder (for example, the point cloud video encoder 10002, the point cloud encoder of FIG. 4, or the LOD generator 40009) generates an LOD. can do.
  • the LOD is created by reorganizing the points into a set of refinement levels according to a set LOD distance value (or set of Euclidean Distance).
  • the LOD generation process is performed not only in the point cloud encoder but also in the point cloud decoder.
  • FIG. 9 shows examples (P0 to P9) of points of point cloud content distributed in a three-dimensional space.
  • the original order of FIG. 9 indicates the order of points P0 to P9 before LOD generation.
  • the LOD based order of FIG. 9 indicates the order of points according to the LOD generation. Points are rearranged by LOD. Also, the high LOD includes points belonging to the low LOD.
  • LOD0 includes P0, P5, P4 and P2.
  • LOD1 includes the points of LOD0 and P1, P6 and P3.
  • LOD2 includes points of LOD0, points of LOD1, and P9, P8 and P7.
  • the point cloud encoder may perform predictive transform coding, lifting transform coding, and RAHT transform coding selectively or in combination.
  • the point cloud encoder may generate predictors for points and perform predictive transform coding to set prediction attributes (or prediction attribute values) of each point. That is, N predictors may be generated for N points.
  • the prediction attribute (or attribute value) is a weight calculated based on the distance to each neighboring point in the attributes (or attribute values, for example, color, reflectance, etc.) of neighboring points set in the predictor of each point (or the weight value) is set as the average value of the multiplied value.
  • the point cloud encoder eg, the coefficient quantization unit 40011
  • the quantization process is shown in the following table.
  • the point cloud encoder (eg, the arithmetic encoder 40012) according to the embodiments may entropy-code the quantized and dequantized residual values as described above when there are points adjacent to the predictor of each point.
  • the point cloud encoder according to the examples (eg, the arithmetic encoder 40012) may entropy-code the attributes of each point without performing the above-described process if there are no neighboring points in the predictor of each point.
  • a point cloud encoder (eg, lifting transform unit 40010) generates a predictor of each point, sets an LOD calculated in the predictor, registers neighboring points, and weights according to distances to neighboring points
  • Lifting transform coding can be performed by setting .Lifting transform coding according to embodiments is similar to the aforementioned predictive transform coding, except that a weight is accumulated and applied to an attribute value. The process of cumulatively applying weights to values is as follows.
  • the weights calculated for all predictors are additionally multiplied by the weights stored in the QW corresponding to the predictor index, and the calculated weights are cumulatively added to the update weight array as the indices of neighboring nodes.
  • the value obtained by multiplying the calculated weight by the attribute value of the index of the neighbor node is accumulated and summed.
  • a predicted attribute value is calculated by additionally multiplying an attribute value updated through the lift update process by a weight updated through the lift prediction process (stored in QW).
  • a point cloud encoder eg, the coefficient quantization unit 40011
  • a point cloud encoder eg, arithmetic encoder 40012
  • entropy codes the quantized attribute values.
  • the point cloud encoder (for example, the RAHT transform unit 40008) according to the embodiments may perform RAHT transform coding for estimating the attributes of nodes of a higher level by using an attribute associated with a node at a lower level of the octree.
  • RAHT transform coding is an example of attribute intra coding with octree backward scan.
  • the point cloud encoder according to the embodiments scans the entire area from the voxel, and repeats the merging process up to the root node while merging the voxels into a larger block at each step.
  • the merging process according to the embodiments is performed only for the ocupid node. A merging process is not performed on an empty node, and a merging process is performed on a node immediately above the empty node.
  • g lx, y, and z represent the average attribute values of voxels in level l.
  • g lx, y, z can be calculated from g l+1 2x, y, z and g l+1 2x+1, y, z .
  • g l-1 x, y, z are low-pass values, which are used in the merging process at the next higher level.
  • h l-1 x, y, and z are high-pass coefficients, and the high-pass coefficients in each step are quantized and entropy-coded (eg, encoding of the arithmetic encoder 400012 ).
  • the root node is created as follows through the last g 1 0, 0, 0 and g 1 0, 0, 1 .
  • FIG. 10 shows an example of a point cloud decoder according to embodiments.
  • the point cloud decoder shown in FIG. 10 is an example of the point cloud video decoder 10006 described in FIG. 1 , and may perform the same or similar operations to the operation of the point cloud video decoder 10006 described in FIG. 1 .
  • the point cloud decoder may receive a geometry bitstream and an attribute bitstream included in one or more bitstreams.
  • the point cloud decoder includes a geometry decoder and an attribute decoder.
  • the geometry decoder outputs decoded geometry by performing geometry decoding on the geometry bitstream.
  • the attribute decoder outputs decoded attributes by performing attribute decoding based on the decoded geometry and the attribute bitstream.
  • the decoded geometry and decoded attributes are used to reconstruct the point cloud content (decoded point cloud).
  • FIG. 11 shows an example of a point cloud decoder according to embodiments.
  • the point cloud decoder shown in FIG. 11 is an example of the point cloud decoder described with reference to FIG. 10 , and may perform a decoding operation that is a reverse process of the encoding operation of the point cloud encoder described with reference to FIGS. 1 to 9 .
  • the point cloud decoder may perform geometry decoding and attribute decoding. Geometry decoding is performed before attribute decoding.
  • a point cloud decoder may include an arithmetic decoder 11000, a synthesize octree 11001, a synthesize surface approximation 11002, and a reconstruct geometry , 11003), inverse transform coordinates (11004), arithmetic decoder (11005), inverse quantize (11006), RAHT transform unit (11007), LOD generator (generate LOD, 11008) ), inverse lifting unit (Inverse lifting, 11009), and / or color inverse transform unit (inverse transform colors, 11010).
  • the arithmetic decoder 11000 , the octree synthesizer 11001 , the surface opproximation synthesizer 11002 , the geometry reconstruction unit 11003 , and the coordinate system inverse transformation unit 11004 may perform geometry decoding.
  • Geometry decoding according to embodiments may include direct coding and trisoup geometry decoding. Direct coding and trisup geometry decoding are optionally applied. Also, the geometry decoding is not limited to the above example, and is performed as a reverse process of the geometry encoding described with reference to FIGS. 1 to 9 .
  • the arithmetic decoder 11000 decodes the received geometry bitstream based on arithmetic coding.
  • the operation of the arithmetic decoder 11000 corresponds to the reverse process of the arithmetic encoder 40004 .
  • the octree synthesizer 11001 may generate an octree by obtaining an occupanci code from a decoded geometry bitstream (or information about a geometry secured as a result of decoding).
  • a detailed description of the occupanci code is the same as described with reference to FIGS. 1 to 9 .
  • the surface op-proximation synthesizing unit 11002 may synthesize a surface based on a decoded geometry and/or a generated octree when trisupe geometry encoding is applied.
  • the geometry reconstruction unit 11003 may reconstruct a geometry based on the surface and/or the decoded geometry. As described with reference to FIGS. 1 to 9 , direct coding and tri-soup geometry encoding are selectively applied. Accordingly, the geometry reconstruction unit 11003 directly brings and adds position information of points to which direct coding is applied. In addition, when tri-soap geometry encoding is applied, the geometry reconstruction unit 11003 may perform a reconstruction operation of the geometry reconstruction unit 40005, for example, triangle reconstruction, up-sampling, and voxelization to restore the geometry. there is. Specific details are the same as those described with reference to FIG. 6 and thus will be omitted.
  • the reconstructed geometry may include a point cloud picture or frame that does not include attributes.
  • the coordinate system inverse transform unit 11004 may obtain positions of points by transforming the coordinate system based on the restored geometry.
  • the arithmetic decoder 11005, the inverse quantization unit 11006, the RAHT transform unit 11007, the LOD generator 11008, the inverse lifting unit 11009, and/or the inverse color transform unit 11010 are the attributes described with reference to FIG. decoding can be performed.
  • Attribute decoding according to embodiments includes Region Adaptive Hierarchical Transform (RAHT) decoding, Interpolaration-based hierarchical nearest-neighbor prediction-Prediction Transform decoding, and interpolation-based hierarchical nearest-neighbor prediction with an update/lifting step (Lifting Transform)) decoding may be included.
  • RAHT Region Adaptive Hierarchical Transform
  • Interpolaration-based hierarchical nearest-neighbor prediction-Prediction Transform decoding Interpolaration-based hierarchical nearest-neighbor prediction-Prediction Transform decoding
  • interpolation-based hierarchical nearest-neighbor prediction with an update/lifting step (Lifting Transform)) decoding may be included.
  • the arithmetic decoder 11005 decodes an attribute bitstream by arithmetic coding.
  • the inverse quantization unit 11006 inverse quantizes the decoded attribute bitstream or information on the attribute secured as a result of decoding, and outputs inverse quantized attributes (or attribute values). Inverse quantization may be selectively applied based on attribute encoding of the point cloud encoder.
  • the RAHT transformation unit 11007, the LOD generation unit 11008, and/or the inverse lifting unit 11009 may process the reconstructed geometry and dequantized attributes. As described above, the RAHT converting unit 11007, the LOD generating unit 11008, and/or the inverse lifting unit 11009 may selectively perform a corresponding decoding operation according to the encoding of the point cloud encoder.
  • the color inverse transform unit 11010 performs inverse transform coding for inverse transforming color values (or textures) included in decoded attributes.
  • the operation of the color inverse transform unit 11010 may be selectively performed based on the operation of the color transform unit 40006 of the point cloud encoder.
  • the elements of the point cloud decoder of FIG. 11 are hardware including one or more processors or integrated circuits configured to communicate with one or more memories included in the point cloud providing device. , software, firmware, or a combination thereof.
  • the one or more processors may perform at least any one or more of the operations and/or functions of the elements of the point cloud decoder of FIG. 11 described above.
  • the one or more processors may operate or execute a set of software programs and/or instructions for performing operations and/or functions of the elements of the point cloud decoder of FIG. 11 .
  • the transmission device shown in FIG. 12 is an example of the transmission device 10000 of FIG. 1 (or the point cloud encoder of FIG. 4 ).
  • the transmitting apparatus shown in FIG. 12 may perform at least any one or more of the same or similar operations and methods to the operations and encoding methods of the point cloud encoder described with reference to FIGS. 1 to 9 .
  • the transmission apparatus includes a data input unit 12000 , a quantization processing unit 12001 , a voxelization processing unit 12002 , an occupancy code generation unit 12003 , a surface model processing unit 12004 , and an intra/ Inter-coding processing unit 12005, arithmetic coder 12006, metadata processing unit 12007, color conversion processing unit 12008, attribute conversion processing unit (or attribute conversion processing unit) 12009, prediction/lifting/RAHT conversion It may include a processing unit 12010 , an arithmetic coder 12011 , and/or a transmission processing unit 12012 .
  • the data input unit 12000 receives or acquires point cloud data.
  • the data input unit 12000 may perform the same or similar operation and/or acquisition method to the operation and/or acquisition method of the point cloud video acquisition unit 10001 (or the acquisition process 20000 described in FIG. 2 ).
  • the coder 12006 performs geometry encoding. Since the geometry encoding according to the embodiments is the same as or similar to the geometry encoding described with reference to FIGS. 1 to 9 , a detailed description thereof will be omitted.
  • the quantization processing unit 12001 quantizes a geometry (eg, a position value or a position value of points).
  • the operation and/or quantization of the quantization processing unit 12001 is the same as or similar to the operation and/or quantization of the quantization unit 40001 described with reference to FIG. 4 .
  • a detailed description is the same as that described with reference to FIGS. 1 to 9 .
  • the voxelization processing unit 12002 voxelizes position values of quantized points.
  • the voxelization processing unit 12002 may perform the same or similar operations and/or processes to those of the quantization unit 40001 described with reference to FIG. 4 and/or the voxelization process. A detailed description is the same as that described with reference to FIGS. 1 to 9 .
  • the octree occupancy code generator 12003 performs octree coding on the positions of voxelized points based on the octree structure.
  • the octree occupancy code generator 12003 may generate an occult code.
  • the octree occupancy code generator 12003 may perform the same or similar operations and/or methods to those of the point cloud encoder (or the octree analyzer 40002) described with reference to FIGS. 4 and 6 . A detailed description is the same as that described with reference to FIGS. 1 to 9 .
  • the surface model processing unit 12004 may perform tri-supply geometry encoding for reconstructing positions of points in a specific region (or node) based on voxels based on a surface model.
  • the fore surface model processing unit 12004 may perform the same or similar operations and/or methods to those of the point cloud encoder (eg, the surface appropriation analyzer 40003) described with reference to FIG. 4 .
  • a detailed description is the same as that described with reference to FIGS. 1 to 9 .
  • the intra/inter coding processing unit 12005 may perform intra/inter coding of point cloud data.
  • the intra/inter coding processing unit 12005 may perform the same or similar coding to the intra/inter coding described with reference to FIG. 7 . A detailed description is the same as that described with reference to FIG. 7 .
  • the intra/inter coding processing unit 12005 may be included in the arithmetic coder 12006 .
  • the arithmetic coder 12006 entropy encodes an octree and/or an approximated octree of point cloud data.
  • the encoding method includes an arithmetic encoding method.
  • the arithmetic coder 12006 performs the same or similar operations and/or methods as the operations and/or methods of the arithmetic encoder 40004 .
  • the metadata processing unit 12007 processes metadata related to point cloud data, for example, a setting value, and provides it to necessary processing such as geometry encoding and/or attribute encoding. Also, the metadata processing unit 12007 according to embodiments may generate and/or process signaling information related to geometry encoding and/or attribute encoding. Signaling information according to embodiments may be encoded separately from geometry encoding and/or attribute encoding. Also, signaling information according to embodiments may be interleaved.
  • the color conversion processing unit 12008, the attribute conversion processing unit 12009, the prediction/lifting/RAHT conversion processing unit 12010, and the arithmetic coder 12011 perform attribute encoding. Since the attribute encoding according to the embodiments is the same as or similar to the attribute encoding described with reference to FIGS. 1 to 9 , a detailed description thereof will be omitted.
  • the color conversion processing unit 12008 performs color conversion coding for converting color values included in the attributes.
  • the color conversion processing unit 12008 may perform color conversion coding based on the reconstructed geometry.
  • the description of the reconstructed geometry is the same as described with reference to FIGS. 1 to 9 .
  • the same or similar operation and/or method to the operation and/or method of the color conversion unit 40006 described with reference to FIG. 4 is performed. A detailed description will be omitted.
  • the attribute transformation processing unit 12009 performs an attribute transformation for transforming attributes based on positions where geometry encoding has not been performed and/or a reconstructed geometry.
  • the attribute transformation processing unit 12009 performs the same or similar operations and/or methods to those of the attribute transformation unit 40007 described in FIG. 4 . A detailed description will be omitted.
  • the prediction/lifting/RAHT transform processing unit 12010 may code the transformed attributes in any one or a combination of RAHT coding, predictive transform coding, and lifting transform coding.
  • the prediction/lifting/RAHT transformation processing unit 12010 performs at least one or more of the same or similar operations to the operations of the RAHT transformation unit 40008, the LOD generation unit 40009, and the lifting transformation unit 40010 described with reference to FIG. 4 . do.
  • the descriptions of predictive transform coding, lifting transform coding, and RAHT transform coding are the same as those described in FIGS. 1 to 9 , detailed descriptions thereof will be omitted.
  • the arithmetic coder 12011 may encode coded attributes based on arithmetic coding.
  • the arithmetic coder 12011 performs the same or similar operations and/or methods to the operations and/or methods of the arithmetic encoder 400012 .
  • the transmission processing unit 12012 transmits each bitstream including the encoded geometry and/or encoded attribute and metadata information, or converts the encoded geometry and/or the encoded attribute and metadata information into one It can be transmitted by composing it as a bitstream.
  • the bitstream may include one or more sub-bitstreams.
  • the bitstream according to the embodiments includes a sequence parameter set (SPS) for sequence-level signaling, a geometry parameter set (GPS) for signaling of geometry information coding, an attribute parameter set (APS) for signaling of attribute information coding, and a tile Signaling information including a Tile Parameter Set (TPS) for level signaling and slice data may be included.
  • SPS sequence parameter set
  • GPS geometry parameter set
  • APS attribute parameter set
  • TPS Tile Parameter Set
  • Slice data may include information about one or more slices.
  • One slice according to embodiments may include one geometry bitstream (Geom00) and one or more attribute bitstreams (Attr00, Attr10).
  • a slice refers to a series of syntax elements representing all or a part of a coded point cloud frame.
  • the TPS may include information about each tile (eg, coordinate value information and height/size information of a bounding box, etc.) for one or more tiles.
  • a geometry bitstream may include a header and a payload.
  • the header of the geometry bitstream according to the embodiments may include identification information (geom_ parameter_set_id), a tile identifier (geom_tile_id), a slice identifier (geom_slice_id) of a parameter set included in GPS, and information on data included in a payload, etc.
  • the metadata processing unit 12007 may generate and/or process signaling information and transmit it to the transmission processing unit 12012 .
  • elements performing geometry encoding and elements performing attribute encoding may share data/information with each other as dotted line processing.
  • the transmission processing unit 12012 may perform the same or similar operation and/or transmission method to the operation and/or transmission method of the transmitter 10003 . Since the detailed description is the same as that described with reference to FIGS. 1 to 2 , a detailed description thereof will be omitted.
  • FIG. 13 is an example of a receiving apparatus according to embodiments.
  • the receiving device shown in FIG. 13 is an example of the receiving device 10004 of FIG. 1 (or the point cloud decoder of FIGS. 10 and 11 ).
  • the receiving apparatus shown in FIG. 13 may perform at least any one or more of the same or similar operations and methods to the operations and decoding methods of the point cloud decoder described with reference to FIGS. 1 to 11 .
  • the reception apparatus includes a reception unit 13000 , a reception processing unit 13001 , an arithmetic decoder 13002 , an Occupancy code-based octree reconstruction processing unit 13003 , and a surface model processing unit (triangle reconstruction). , up-sampling, voxelization) 13004, inverse quantization processing unit 13005, metadata parser 13006, arithmetic decoder 13007, inverse quantization processing unit 13008, prediction It may include a /lifting/RAHT inverse transformation processing unit 13009 , an inverse color transformation processing unit 13010 , and/or a renderer 13011 .
  • Each component of decoding according to embodiments may perform a reverse process of a component of encoding according to embodiments.
  • the receiver 13000 receives point cloud data.
  • the receiver 13000 may perform the same or similar operation and/or reception method to the operation and/or reception method of the receiver 10005 of FIG. 1 . A detailed description will be omitted.
  • the reception processing unit 13001 may acquire a geometry bitstream and/or an attribute bitstream from the received data.
  • the reception processing unit 13001 may be included in the reception unit 13000 .
  • the arithmetic decoder 13002 , the occupancy code-based octree reconstruction processing unit 13003 , the surface model processing unit 13004 , and the inverse quantization processing unit 13005 may perform geometry decoding. Since the geometry decoding according to the embodiments is the same as or similar to the geometry decoding described with reference to FIGS. 1 to 10 , a detailed description thereof will be omitted.
  • the arithmetic decoder 13002 may decode a geometry bitstream based on arithmetic coding.
  • the arithmetic decoder 13002 performs the same or similar operations and/or coding to the operations and/or coding of the arithmetic decoder 11000 .
  • the occupancy code-based octree reconstruction processing unit 13003 may reconstruct the octopus by obtaining an occupanci code from a decoded geometry bitstream (or information about a geometry secured as a result of decoding).
  • the occupancy code-based octree reconstruction processing unit 13003 performs the same or similar operations and/or methods to those of the octree synthesis unit 11001 and/or the octree generation method.
  • the surface model processing unit 13004 may decode a trichop geometry based on the surface model method and reconstruct a geometry related thereto (eg, triangle reconstruction, up-sampling, voxelization) based on the surface model method, when trisoop geometry encoding is applied. can be performed.
  • the surface model processing unit 13004 performs the same or similar operations to those of the surface op-proximation synthesis unit 11002 and/or the geometry reconstruction unit 11003 .
  • the inverse quantization processing unit 13005 may inverse quantize the decoded geometry.
  • the metadata parser 13006 may parse metadata included in the received point cloud data, for example, a setting value.
  • the metadata parser 13006 may pass the metadata to geometry decoding and/or attribute decoding. A detailed description of the metadata is the same as that described with reference to FIG. 12 , and thus will be omitted.
  • the arithmetic decoder 13007, the inverse quantization processing unit 13008, the prediction/lifting/RAHT inverse transformation processing unit 13009, and the inverse color transformation processing unit 13010 perform attribute decoding. Since the attribute decoding is the same as or similar to the attribute decoding described with reference to FIGS. 1 to 10 , a detailed description thereof will be omitted.
  • the arithmetic decoder 13007 may decode an attribute bitstream by arithmetic coding.
  • the arithmetic decoder 13007 may perform decoding of the attribute bitstream based on the reconstructed geometry.
  • the arithmetic decoder 13007 performs the same or similar operations and/or coding to the operations and/or coding of the arithmetic decoder 11005 .
  • the inverse quantization processing unit 13008 may inverse quantize the decoded attribute bitstream.
  • the inverse quantization processing unit 13008 performs the same or similar operations and/or methods to those of the inverse quantization unit 11006 and/or the inverse quantization method.
  • the prediction/lifting/RAHT inverse transform processing unit 13009 may process the reconstructed geometry and inverse quantized attributes.
  • the prediction/lifting/RAHT inverse transform processing unit 13009 performs the same or similar operations and/or decodings as the operations and/or decodings of the RAHT transform unit 11007, the LOD generation unit 11008 and/or the inverse lifting unit 11009 and/or At least any one or more of the decodings are performed.
  • the color inverse transform processing unit 13010 according to embodiments performs inverse transform coding for inverse transforming color values (or textures) included in decoded attributes.
  • the color inverse transform processing unit 13010 performs the same or similar operation and/or inverse transform coding to the operation and/or inverse transform coding of the color inverse transform unit 11010 .
  • the renderer 13011 may render point cloud data.
  • FIG. 14 illustrates an example of a structure capable of interworking with a method/device for transmitting and receiving point cloud data according to embodiments.
  • the structure of FIG. 14 includes at least one or more of a server 1460 , a robot 1410 , an autonomous vehicle 1420 , an XR device 1430 , a smartphone 1440 , a home appliance 1450 , and/or an HMD 1470 .
  • a configuration connected to the cloud network 1410 is shown.
  • the robot 1410 , the autonomous driving vehicle 1420 , the XR device 1430 , the smartphone 1440 , or the home appliance 1450 are referred to as devices.
  • the XR device 1430 may correspond to a point cloud data (PCC) device according to embodiments or may be linked with the PCC device.
  • PCC point cloud data
  • the cloud network 1400 may constitute a part of the cloud computing infrastructure or may refer to a network existing in the cloud computing infrastructure.
  • the cloud network 1400 may be configured using a 3G network, a 4G or Long Term Evolution (LTE) network, or a 5G network.
  • LTE Long Term Evolution
  • the server 1460 includes at least one of a robot 1410 , an autonomous vehicle 1420 , an XR device 1430 , a smartphone 1440 , a home appliance 1450 and/or an HMD 1470 , and a cloud network 1400 . It is connected through and may help at least a part of the processing of the connected devices 1410 to 1470 .
  • a Head-Mount Display (HMD) 1470 represents one of the types in which an XR device and/or a PCC device according to embodiments may be implemented.
  • the HMD type device according to the embodiments includes a communication unit, a control unit, a memory unit, an I/O unit, a sensor unit, a power supply unit, and the like.
  • the devices 1410 to 1450 shown in FIG. 14 may be linked/coupled with the point cloud data transmission/reception device according to the above-described embodiments.
  • XR / PCC device 1430 is PCC and / or XR (AR + VR) technology is applied, HMD (Head-Mount Display), HUD (Head-Up Display) provided in the vehicle, television, mobile phone, smart phone, It may be implemented as a computer, a wearable device, a home appliance, a digital signage, a vehicle, a stationary robot, or a mobile robot.
  • HMD Head-Mount Display
  • HUD Head-Up Display
  • the XR/PCC device 1430 analyzes three-dimensional point cloud data or image data acquired through various sensors or from an external device to generate position data and attribute data for three-dimensional points in the surrounding space or real objects. Information can be obtained and the XR object to be output can be rendered and output. For example, the XR/PCC apparatus 1430 may output an XR object including additional information on the recognized object to correspond to the recognized object.
  • the XR/PCC device 1430 may be implemented as a mobile phone 1440 or the like to which PCC technology is applied.
  • the mobile phone 1440 may decode and display the point cloud content based on the PCC technology.
  • the autonomous driving vehicle 1420 may be implemented as a mobile robot, a vehicle, an unmanned aerial vehicle, etc. by applying PCC technology and XR technology.
  • the autonomous driving vehicle 1420 to which the XR/PCC technology is applied may mean an autonomous driving vehicle equipped with a means for providing an XR image or an autonomous driving vehicle subject to control/interaction within the XR image.
  • the autonomous driving vehicle 1420 that is the target of control/interaction within the XR image may be distinguished from the XR device 1430 and may be interlocked with each other.
  • the autonomous vehicle 1420 having means for providing an XR/PCC image may obtain sensor information from sensors including a camera, and output an XR/PCC image generated based on the acquired sensor information.
  • the autonomous vehicle 1420 may provide an XR/PCC object corresponding to a real object or an object in the screen to the occupant by outputting an XR/PCC image with a HUD.
  • the XR/PCC object when the XR/PCC object is output to the HUD, at least a portion of the XR/PCC object may be output to overlap the real object to which the passenger's gaze is directed.
  • the XR/PCC object when the XR/PCC object is output to a display provided inside the autonomous vehicle, at least a portion of the XR/PCC object may be output to overlap the object in the screen.
  • the autonomous vehicle 1220 may output XR/PCC objects corresponding to objects such as a lane, other vehicles, traffic lights, traffic signs, two-wheeled vehicles, pedestrians, and buildings.
  • VR Virtual Reality
  • AR Augmented Reality
  • MR Magnetic Reality
  • PCC Point Cloud Compression
  • VR technology is a display technology that provides objects or backgrounds in the real world only as CG images.
  • AR technology refers to a technology that shows a virtual CG image on top of a real object image.
  • MR technology is similar to the aforementioned AR technology in that it shows virtual objects by mixing and combining them in the real world.
  • real objects and virtual objects made of CG images are clear, and virtual objects are used in a form that complements real objects, whereas in MR technology, virtual objects are regarded as having the same characteristics as real objects. distinct from technology. More specifically, for example, a hologram service to which the aforementioned MR technology is applied.
  • VR, AR, and MR technologies are sometimes called XR (extended reality) technologies rather than clearly distinguishing them. Accordingly, embodiments of the present invention are applicable to all of VR, AR, MR, and XR technologies.
  • encoding/decoding based on PCC, V-PCC, and G-PCC technology may be applied.
  • the PCC method/apparatus according to the embodiments may be applied to a vehicle providing an autonomous driving service.
  • a vehicle providing an autonomous driving service is connected to a PCC device to enable wired/wireless communication.
  • the point cloud data (PCC) transceiver receives/processes AR/VR/PCC service-related content data that can be provided together with the autonomous driving service when connected to a vehicle to enable wired/wireless communication, can be sent to
  • the point cloud transceiver may receive/process AR/VR/PCC service-related content data according to a user input signal input through the user interface device and provide it to the user.
  • a vehicle or a user interface device may receive a user input signal.
  • a user input signal according to embodiments may include a signal indicating an autonomous driving service.
  • a method/apparatus for transmitting point cloud data is a transmitting device 10000 of FIG. 1 , a point cloud video encoder 10002 , a transmitter 10003 , and an acquisition-encoding-transmitting (20000-20001-20002) of FIG. 2 .
  • the encoder of FIG. 4 the transmission apparatus of FIG. 12 , the device of FIG. 14 , the encoder of FIG. 18 , the transmission method of FIG. 30 , and the like.
  • a method/apparatus for receiving point cloud data is a receiving device 10004, a receiver 10005, a point cloud video decoder 10006 of FIG. 1, and a transmission-decoding-rendering (20002-20003-20004) of FIG. , the decoder of Figs. 10-11, the receiving apparatus of Fig. 13, the device of Fig. 14, the decoder of Fig. 19, the receiving method of Fig. 31, and the like.
  • the method/device for transmitting and receiving point cloud data according to the embodiments may be abbreviated as a method/device according to the embodiments.
  • geometry data, geometry information, location information, and the like constituting point cloud data are interpreted to have the same meaning.
  • Attribute data, attribute information, and attribute information constituting the point cloud data are interpreted as the same meaning.
  • the method/apparatus according to the embodiments may process the point cloud data based on the point cloud data structure according to the embodiments in consideration of scalable transmission.
  • the method/device according to the embodiments describes a method for efficiently supporting when selective decoding of a part of data is required due to receiver performance or transmission speed, etc. in transmitting and receiving point cloud data.
  • the proposed method by dividing geometry and attribute data delivered in data units into semantic units such as geometry octree and LoD (Level of Detail), it is necessary in the bitstream unit.
  • semantic units such as geometry octree and LoD (Level of Detail)
  • Techniques for constructing a data structure composed of a point cloud are covered. Specifically, a method for processing packing and related signaling information for effectively delivering PCC data configured based on a layer is described, and based on this, a method applied to a scalable PCC-based service is proposed. .
  • the point cloud data includes the location (geometry: e.g., XYZ coordinates) and properties of each data. It consists of (attributes: e.g., color, reflectance, intensity, grayscale, opacity, etc.).
  • location e.g., XYZ coordinates
  • properties of each data It consists of (attributes: e.g., color, reflectance, intensity, grayscale, opacity, etc.).
  • attribute information is compressed based on this.
  • the PCC transceiver device shown in FIGS. 4 and 11 may process operation(s) according to embodiments through each component device.
  • 15 shows an encoding, transmission, and decoding process of point cloud data according to embodiments.
  • the point cloud encoder 15000 is a transmission device according to embodiments performing a transmission method according to the embodiments, and may scalably encode and transmit point cloud data.
  • the point cloud decoder 15010 is a receiving device according to embodiments that performs a receiving method according to the embodiments, and may scalably decode point cloud data.
  • Source data received by the encoder 15000 may include geometry data and/or attribute data.
  • the encoder 15000 scalably encodes the point cloud data and does not immediately generate a partial PCC bitstream, but receives full geometry data and full attribute data and stores the data in the storage connected to the encoder. For partial encoding, a partial PCC bitstream may be generated and transmitted by transcoding.
  • the decoder 15010 may receive and decode the partial PCC bitstream to reconstruct the partial geometry and/or partial attributes.
  • the encoder 15000 receives the full geometry and full attributes, stores the data in storage connected to the encoder, and transcodes the point cloud data with low QP (quantization parameters) to generate and transmit the entire PCC bitstream.
  • the decoder 15010 may receive and decode the entire PCC bitstream to restore full geometry and/or full attributes.
  • the decoder 15010 may select a partial geometry and/or a partial attribute from the entire PCC bitstream through data selection.
  • the method/device divides feature information such as location information and color/brightness/reflectance of a data point, which is point cloud data, into geometry and attribute information, compresses and transmits, respectively.
  • PCC data may be configured according to an octree structure having layers according to the degree of detail or a level of detail (LoD). Based on this, scalable point cloud data coding and representation are possible. At this time, it is possible to decode or represent only a part of the point cloud data according to the performance or transmission speed of the receiver.
  • the method/apparatus according to the embodiments may remove unnecessary data in advance in this process.
  • the receiver After encoding (15020) or transmitting the whole, the receiver must selectively apply it (15030). However, in case 1), delay may occur due to the time for decoding and re-encoding (15020). In case 2), bandwidth efficiency is lowered due to transmission of unnecessary data, and when using a fixed bandwidth, data quality must be lowered to transmit There is a point (15030).
  • the method/device defines a slice subdivision structure of point cloud data, and signals a scalable layer and slice structure for scalable transmission.
  • Embodiments may divide and process the bitstream into specific units for efficient bitstream delivery and decoding.
  • a unit according to embodiments may be referred to as an LOD, a layer, a slice, or the like.
  • LOD is the same term as LOD in attribute data coding, but as another meaning, it may mean a data unit for a layer structure of a bitstream.
  • a layer is for generating a unit of a sub-bitstream, and is a concept that corresponds to one depth or binds two or more depths, and may correspond to one LOD or two or more LODs.
  • a slice is a unit for constituting a unit of a sub-bitstream, and may correspond to one depth, a part of one depth, or two or more depths. Also, whether it corresponds to one LOD or a part of one LOD, it may correspond to two or more LODs. According to embodiments, the LOD, the layer, and the slice may correspond to each other or may have a containment relationship. Also, a unit according to embodiments may include an LOD, a layer, a slice, a layer group, a subgroup, and the like, and may be referred to as complementary to each other.
  • FIG. 16 illustrates a layer-based point cloud data configuration according to embodiments.
  • the transmission method/apparatus according to the embodiments may encode and decode the point cloud data by configuring the layer-based point cloud data as shown in FIG. 16 .
  • Layering of point cloud data is a layer from various viewpoints such as SNR, spatial resolution, color, temporal frequency, bit depth, etc. depending on the application field.
  • a layer may be formed in a direction in which data density increases.
  • 17 shows a geometry and an attribute bitstream structure according to embodiments.
  • the method/apparatus according to the embodiments may configure, encode, and decode a geometry bitstream and an attribute bitstream as shown in FIG. 17 based on the layering shown in FIG. 16 .
  • a bitstream obtained through point cloud compression of the transmitting device/encoder according to the embodiments is a geometry data bitstream and an attribute data bitstream according to the type of data. (attribute data bitstream) can be divided and transmitted.
  • Each bitstream according to the embodiments may be transmitted by being configured as a slice. Regardless of layer information or LoD information, the geometry data bitstream and the attribute data bitstream can each be configured as one slice and delivered. In this case, if only a part of the layer or LoD If you want to use , 1) decoding the bitstream, 2) selecting only the part you want to use and removing unnecessary parts, 3) you need to go through the process of encoding again based on only necessary information.
  • the transmitting method/apparatus according to the embodiments may generate a bitstream as shown in FIG. 18 , and the receiving method/apparatus according to the embodiments may decode point cloud data included in the bitstream as shown in FIG. 18 .
  • Embodiments may apply a method of dividing and transmitting a bitstream in units of layers (or LoD) in order to avoid unnecessary intermediate processes.
  • LoD-based PCC technology considering the case of LoD-based PCC technology, it has a structure in which a low LoD is included in a high LoD.
  • Information included in the current LoD but not included in the previous LoD, that is, information newly included in each LoD may be referred to as R (rest, Rest).
  • R rest, Rest
  • the initial LoD information and the information R newly included in each LoD may be divided and delivered in each independent unit.
  • a transmission method/apparatus may encode geometry data and generate a geometry bitstream.
  • the geometry bitstream may be configured for each LOD or layer, and the geometry bitstream may include a header (geometry header) for each LOD or layer configuration unit.
  • the header may include reference information for the next LOD or the next layer.
  • the current LOD (layer) may further include R information (geometric data) not included in the previous LOD (layer).
  • a receiving method/apparatus may encode attribute data and generate an attribute bitstream.
  • the attribute bitstream may be configured for each LOD or layer, and the attribute bitstream may include a header (attribute header) for each LOD or layer.
  • the header may include reference information for the next LOD or the next layer.
  • the current LOD (layer) may further include R information (attribute data) not included in the previous LOD (layer).
  • the reception method/apparatus may receive a bitstream composed of LODs or layers and efficiently decode only data to be used without a complicated intermediate process.
  • 19 shows a bitstream alignment method according to embodiments.
  • the method/apparatus according to the embodiments may align the bitstream of FIG. 18 as shown in FIG. 19 .
  • the transmission method/apparatus may serially transmit geometry and attributes as shown in FIG. 19 .
  • the entire geometry information may be transmitted first, and then the attribute information (attribute data) may be transmitted.
  • the attribute information attribute data
  • layers (LODs) including geometry data may be located first in the bitstream, and layers (LODs) including attribute data may be located after the geometry layer. Since the attribute data is dependent on the geometry data, the geometry layer may be placed first. In addition, the position may be variously changed according to embodiments. References between geometry headers are possible, and references between attribute headers and geometry headers are also possible.
  • 20 shows a bitstream alignment method according to embodiments.
  • FIG. 20 is an example of bitstream alignment according to embodiments, like FIG. 19 .
  • Bitstreams constituting the same layer including geometry data and attribute data may be collected and delivered.
  • decoding execution time can be shortened.
  • information that needs to be processed first small LoD, geometry must precede attribute
  • the first layer 2000 includes geometry data and attribute data corresponding to the smallest LOD 0 (layer 0) together with each header, and the second layer 2010 includes LOD 0 (layer 0), It contains the geometry data and attribute data of points for the new and more detailed layer 1 (LOD 1) not in LOD 0 (layer 0) as R1 information.
  • LOD 1 new and more detailed layer 1
  • a third layer 2020 may follow.
  • the transmission/reception method/device may efficiently select a desired layer (or LoD) in an application field at a bitstream level when transmitting and receiving a bitstream.
  • a desired layer or LoD
  • an empty part may occur in the middle after bitstream level selection, and in this case, the bitstream may need to be rearranged.
  • unnecessary information can be selectively removed according to the field of application as follows.
  • 21 illustrates a method of selecting geometry data and attribute data according to embodiments.
  • the method/apparatus may select data at the bitstream level as shown in FIG. 21: 1) Symmetrical geometry and attribute selection, 2) Asymmetrical geometry and attribute choice, 3) or a combination of both methods.
  • FIG. 21 it shows a case where only LoD1 is selected (LOD 0 +R1, 21000) and transmitted or decoded, information corresponding to R2 (new portion of LOD 2) corresponding to an upper layer is removed, and (21010) Transmit and decode.
  • FIG. 22 illustrates a bitstream selection method according to embodiments.
  • a method/apparatus may convey geometry and attributes asymmetrically. Only the upper layer attribute is removed (Attribute R2, 22000) and all geometry (from level 0 (root level) to level 7 (leaf level) of the triangular octree structure) can be selected for transmission/decoding (22010).
  • scalable encoding/decoding when point cloud data is expressed in an octree structure and hierarchically divided by LOD (or layer), scalable encoding/decoding (scalability) may be supported.
  • the scalability function may include slice level scalability and/or octree level scalability.
  • a level of detail (LoD) may be used as a unit for representing a set of one or a plurality of octree layers.
  • it may have the meaning of a bundle of octree layers to be configured in units of slices.
  • the LOD according to the embodiments is a unit for dividing data in detail by extending the meaning of the LOD during attribute encoding/decoding, and may be used in a broad sense.
  • spatial scalability by an actual octree layer may be provided for each octree layer, but bitstream parsing
  • bitstream parsing When scalability is configured in a slice unit before (bitstream parsing), selection may be made in a LoD unit according to embodiments.
  • the octree structure may be LOD 0 from the root level to the 4th level, LOD 1 from the root level to the 5th level, and LOD2 from the root level to the leaf 7 level.
  • the provided scalable stage is LoD0, LoD1, LoD2 in three stages.
  • the scalable step that can be provided in the decoding step by the octree structure becomes eight steps from the root to the leaf.
  • a transcoder (transcoder, FIG. 15 15040 ) of a receiving unit or a transmitting unit 1) LoD0 only for scalable processing or 2) LoD0 and LoD1, or 3) LoD0, LoD1, or LoD2.
  • Example 1 When only LoD0 is selected, the maximum octree level becomes 4, and one scalable layer among the octree layers 0 to 4 can be selected in the decoding process. At this time, the receiver may consider a node size obtainable through the maximum octree depth as a leaf node, and may transmit the node size at this time as signaling information.
  • Example 2 When LoD0 and LoD1 are selected, layer 5 is added, the maximum octree level becomes 5, and one scalable layer among the octree layers 0 to 5 is decoded ( decoding) process.
  • the receiver may consider a node size obtainable through the maximum octree depth as a leaf node, and may transmit the node size at this time as signaling information.
  • an octree depth, an octree layer, an octree level, etc. mean a unit for dividing data in detail.
  • Example 3 When LoD0, LoD1, or LoD2 is selected, layers 6 and 7 are added so that the maximum octree level becomes 7, and one scalable layer among octree layers 0 to 7 can be selected in the decoding process.
  • the receiver may consider a node size that can be obtained through the maximum octree depth as a leaf node, and may transmit the node size at this time as signaling information.
  • FIG. 23 illustrates a method of constructing a slice including point cloud data according to embodiments.
  • the transmission method/apparatus/encoder may be configured by dividing the G-PCC bit stream into a slice structure.
  • a data unit for detailed data representation may be a slice.
  • one or a plurality of octree layers may be matched to one slice.
  • the transmission method/apparatus may configure a slice 2301-based bitstream by scanning a node (point) included in an octree in a scan order 2300 direction.
  • the octree layer (eg, level 0 to level 4) may constitute one slice 2302 .
  • Partial data of the octree layer may configure each slice 2303 , 2304 , and 2305 .
  • level 6 may constitute each slice.
  • Fig. 23(b) An octree layer, for example, some data from level 0 to level 3 and level 4 may be configured as one slice.
  • An octree layer for example, some data of level 4 and some data of level 5 may be configured as one slice.
  • An octree layer for example, some data of level 5 and some data of level 6 may be configured as one slice.
  • An octree layer for example, some data of level 6 may be configured as one slice.
  • An octree layer for example, data from level 0 to level 4 may be configured as one slice.
  • Partial data of each of octree layer level 5, level 6, and level 7 may be configured as one slice.
  • the encoder and the device corresponding to the encoder may encode the point cloud data, and may generate and transmit a bitstream further including the encoded data and parameter information regarding the point cloud data.
  • the bitstream when generating the bitstream, the bitstream may be generated based on the bitstream structure (eg, refer to FIGS. 17 to 23 , etc.) according to embodiments. Accordingly, a receiving device, a decoder, a corresponding device, etc. according to the embodiments may receive and parse a bitstream configured to be suitable for a selective partial data decoding structure, and partially decode and efficiently provide point cloud data (FIG. 15).
  • the point cloud data transmission method/device according to the embodiments may scalably transmit a bitstream including point cloud data, and the point cloud data reception method/device according to the embodiments scalably receives the bitstream and can be decoded.
  • Scalable transmission may mean a case of transmitting or decoding only a part of a bitstream, rather than decoding the entire bitstream, and the result is low-resolution point cloud data. (low resolution point cloud data).
  • bitstream When scalable transmission is applied to an octree-based geometry bitstream, the bitstream of each octree layer (FIG. 16) from a root node to a leaf node For (bitstream), it should be possible to compose point cloud data with only information up to a specific octree layer.
  • all octree layers may support scalable transmission, but scalable transmission may be enabled only for a specific octree layer or less.
  • a part of the octree layer it is possible to determine whether the slice is necessary/not necessary in the bitstream stage by indicating which scalable layer the slice is included in.
  • the yellow marked part starting from the root node does not support scalable transmission and constitutes one scalable layer, and for the following octree layers, it can be configured to match the scalable layer one-to-one. there is.
  • scalability can be supported for a part corresponding to a leaf node.
  • a plurality of octree layers when a plurality of octree layers are included in a slice, it is defined to configure one scalable layer for the corresponding layers. can do.
  • scalable transmission and scalable decoding may be used separately depending on the purpose.
  • scalable transmission it can be used for the purpose of selecting information up to a specific layer without going through a decoder in the transmitting and receiving end.
  • scalable decoding the purpose is to select a specific layer during coding. That is, the scalable transmission supports selection of necessary information without going through a decoder in a compressed state (in the bitstream stage), so that the transmission or receiver can determine it.
  • scalable decoding it can be used in the same case as scalable representation by supporting the case of encoding/decoding only the part required in the encoding/decoding process.
  • the layer configuration for scalable transmission and the layer configuration for scalable decoding may be different.
  • the lower three octree layers including leaf nodes can constitute one layer from the point of view of scalable transmission, but from the point of view of scalable decoding, when all layer information is included, leaf node layer, leaf node layer -1, leaf node Scalable decoding may be possible for each layer -2.
  • the method/apparatus according to the embodiments may generate a bitstream as shown in FIG. 24 .
  • the bitstream includes encoded geometry data and attribute data, and may include parameter information.
  • information on the separated slice may be defined in a parameter set and an SEI message of a bitstream as follows.
  • a bitstream includes a sequence parameter set, a geometry parameter set, an attribute parameter set, and a geometry slice header and an attribute slice header, etc. can do.
  • the application range and application method can be used differently by defining it in a corresponding or separate location. That is, it may have different meanings depending on the location where the signal is transmitted. If defined in SPS, it can be equally applied to the entire sequence. If defined in GPS, it may indicate that it is used for location restoration. It can indicate that it is applied to restoration, and when defined in the TPS, it can indicate that the corresponding signaling is applied only to points within the tile, and when transmitted in a slice unit, it can indicate that the signal is applied only to the corresponding slice.
  • the application range and application method can be used differently by defining it in a corresponding location or a separate location depending on the application or system.
  • the syntax element defined below can be applied to a plurality of point cloud data streams as well as the current point cloud data stream, a parameter set of a higher concept ) and so on.
  • SPS Sequence Parameter Set
  • GPS Geometry Parameter Set
  • APS Attribute Parameter Set
  • TPS Tile Parameter Set
  • the embodiments define the corresponding information independently of the coding technique, it can be defined in conjunction with the coding method, and in order to support regionally different scalability, the tile parameter set of the bitstream.
  • the syntax element defined below can be applied not only to the current point cloud data stream but also to a plurality of point cloud data streams, the It can be passed through a parameter set or the like.
  • a bitstream may be selected at a system level by defining a network abstract layer (NAL) unit for the bitstream and delivering relevant information for selecting a layer, such as a layer ID (layer_id).
  • NAL network abstract layer
  • parameters (metadata, signaling information, and the like) according to the embodiments may be generated in the process of the transmitter according to the embodiments, and transmitted to the receiver according to the embodiments to be used in the reconfiguration process. there is.
  • the parameters according to the embodiments may be generated by the metadata processing unit (or metadata generator) of the transmitting apparatus according to the embodiments to be described later, and may be obtained from the metadata parser of the receiving apparatus according to the embodiments. .
  • 25 shows syntax of a sequence parameter set and a geometry parameter set according to embodiments.
  • 26 shows the syntax of an attribute parameter set according to embodiments.
  • FIG. 27 shows the syntax of a geometry data unit header according to embodiments.
  • Scalable transmission enable flag (scalable_transmission_enable_flag): When 1, it may indicate that a bitstream configuration is configured to be suitable for scalable transmission. That is, information can be selected at the bitstream stage by being composed of a plurality of slices. By transmitting scalable layer configuration information, etc., slice selection is possible in the transmitter or receiver, and it may indicate that geometry and/or attributes are compressed to enable partial decoding.
  • scalable_transmission_enable_flag is 1, a transcoder of a receiver or transmitter may use it to determine that geometry and/or attribute scalable transmission is possible. The transcoder may be coupled to the transmitting device and the receiving device, or may be included.
  • Geometry scalable transmission enable flag (geom_scalable_transmission_enable_flag) and attribute scalable transmission enable flag (attr_scalable_transmission_enable_flag): When 1, it may indicate that geometry or attribute is compressed to enable scalable transmission.
  • it may indicate that it is composed of an octree-based layer or that slice partitioning (refer to FIG. 23, etc.) is made in consideration of scalable transmission.
  • the receiver can know that scalable transmission is possible for geometry or attribute.
  • geom_scalable_transmission_enable_flag 1
  • octree-based geometry coding is used
  • QTBT is disabled
  • BT-QT-OT is coded in order to indicate that the same shape as octree is coded.
  • Attr_scalable_transmission_enable_flag 1
  • pred-Lifting coding is used using scalable LOD generation or that scalable RAHT (eg Haar-based RAHT) is used.
  • scalable RAHT eg Haar-based RAHT
  • the number of scalable layers may indicate the number of layers supporting scalable transmission.
  • a layer according to embodiments may mean an LOD according to embodiments.
  • Scalable layer ID (scalable_layer_id): Indicates an indicator for a layer constituting scalable transmission.
  • scalable_layer_id Indicates an indicator for a layer constituting scalable transmission.
  • common information may be transmitted from the parameter set through scalable_layer_id, and different information may be transmitted from a data unit header according to slices.
  • the number of octree layers in the scalable layer may indicate the number of octree layers included in or corresponding to layers constituting transmission.
  • a scalable layer is not configured based on Octree, it may refer to a corresponding layer.
  • Tree depth start may indicate an octree depth starting (relatively closest to the root) among octree layers included in or corresponding to layers constituting scalable transmission.
  • Tree depth end may indicate the last (relatively closest to leaf) octree depth among octree layers included in or corresponding to layers constituting scalable transmission.
  • Node size When the corresponding scalable layer is restored through scalable transmission, the node size of the output point cloud data may be indicated. For example, if 1, it may indicate a leaf node.
  • the XYZ node size is constant, an arbitrary node size can be indicated by signaling the size in the XYZ direction or each direction in a transformation coordinate system such as (r(radius), phi, theta).
  • Number of nodes may indicate the number of nodes included in the corresponding scalable layer.
  • Number of slices in scalable layer (num_slices_in_scalable_layer): may indicate the number of slices belonging to the scalable layer.
  • Slice ID Indicates an indicator for distinguishing a slice or a data unit, and can deliver an indicator for a data unit belonging to a scalable layer.
  • Aligned slice structure enable flag (aligned_slice_structure_enabled_flag): When 1, it may indicate that the attribute scalable layer structure and/or slice configuration matches the geometry scalable layer structure and/or slice configuration. In this case, information on the attribute scalable layer structure and/or slice configuration can be identified through the geometry scalable layer structure and/or slice configuration information. That is, the geometry layer/slice structure is the same as the attribute layer/slice structure.
  • Slice ID offset may indicate an offset for obtaining attribute slice or data unit based on geometry slice id.
  • aligned_slice_structure_enabled_flag is 1, that is, when the attribute slice structure and the geometry slice structure match, the attribute slice id may be obtained based on the geometry slice id as follows.
  • Slice_id (attr) slice_id (geom) + slice_id_offset
  • the values provided in the geometry parameter set may be used for the variables num_scalable_layers, scalable_layer_id tree_depth_start, tree_depth_end, node_size, num_nodes, and num_slices_in_scalable_layer for configuring the attribute slice structure.
  • Corresponding geometry scalable layer may indicate a geometry scalable layer corresponding to an attribute scalable layer structure.
  • Number of tree depths in a data unit may indicate a tree depth including a node belonging to a data unit.
  • Tree depth (tree_depth): It may indicate the corresponding tree depth.
  • Number of nodes (num_nodes): The number of nodes belonging to tree_depth among nodes belonging to the corresponding data unit may be indicated.
  • Aligned geometry data unit ID (aligned_geom_data_unit_id): When the attribute data unit follows the scalable transmission layer structure/slice structure of the geometry data unit, the corresponding geometry data unit id can be delivered.
  • Reference slice ID (ref_slice_id): Can be used to refer to a slice that must precede the current slice for decoding (eg, refer to between the headers of FIGS. 18-20 )
  • 29 shows a structure of an apparatus for transmitting point cloud data according to embodiments.
  • FIG. 29 is a transmission apparatus according to the embodiments, the transmission apparatus 10000, the point cloud video encoder 10002, the transmitter 10003, the acquisition-encoding-transmission (20000-20001-20002) of FIG. 2 of FIG. Corresponds to the encoder in Fig. 4, the transmission apparatus in Fig. 12, the device in Fig. 14, the encoder in Fig. 18, the transmission method in Fig. 30, and the like.
  • Each component in FIG. 29 may correspond to hardware, software, a processor, and/or a combination thereof.
  • the encoder When the point cloud data is input to the transmitting device, the encoder includes location information (geometry data: e.g., XYZ coordinates, phi-theta coordinates, etc.) and attribute information (attribute data: e.g., color, reflectance, intensity, grayscale, opacity, medium, material, glossiness, etc.) can be encoded individually (geometry encoding and attribute encoding).
  • location information e.g., XYZ coordinates, phi-theta coordinates, etc.
  • attribute information e.g., color, reflectance, intensity, grayscale, opacity, medium, material, glossiness, etc.
  • Compressed (encoded) data is divided into units for transmission, and a unit suitable for selecting necessary information in a bitstream unit according to layering structure information through a sub-bitstream generator can be divided and packed.
  • the layering structure information is information indicating the bitstream configuration, alignment, selection, and slice configuration of FIGS. 16-23 , and means information shown in FIGS. 24-28 and the like.
  • Layering structure information may be generated by the metadata generator.
  • the sub-bitstream generator may segment the bitstream, generate layering structure information indicating segmentation processing, and transmit it to the metadata generator.
  • the metadata generator may receive information indicating the geometry encoding processing and the attribute encoding processing from the encoder and generate it as metadata (parameters).
  • the transmitting apparatus may transmit by muxing a sub-bitstream and a parameter for each layer.
  • FIG. 30 shows a structure of an apparatus for receiving point cloud data according to embodiments.
  • the receiving device includes the receiving device 10004, the receiver 10005, the point cloud video decoder 10006 of FIG. 1, and the transmission-decoding-rendering 20002-20003-20004 of FIG. It corresponds to the decoder of 10-11, the receiving apparatus of Fig. 13, the device of Fig. 14, the decoder of Fig. 19, the receiving method of Fig. 31, and the like.
  • Each component in FIG. 30 may correspond to hardware, software, a processor, and/or a combination thereof.
  • Decoder/receiver operation according to embodiments:
  • the receiver may process the bitstream for location information and the bitstream for attribute information separately (demuxing).
  • the sub-bitstream classifier (or sub-bitstream classifier) may deliver the corresponding sub-bitstream to an appropriate decoder based on the information of the bitstream header.
  • a layer required by the receiver may be selected.
  • the classified bitstream can be converted into a format for final output by the renderer after being restored into geometry data and attribute data in the geometry decoder and attribute decoder, respectively, according to the characteristics of the data.
  • the sub-bitstream classifier may classify/select the bitstream based on the metadata obtained by the metadata parser.
  • the geometry decoder and the attribute decoder may decode the geometry data and the attribute data, respectively, based on the metadata obtained by the metadata parser.
  • each component of the receiving device in Fig. 30 may follow the operation of the corresponding component of the transmitting device in Fig. 29, or the reverse process may be followed.
  • 31 is a flowchart of an apparatus for receiving point cloud data according to embodiments.
  • Fig. 31 shows in more detail an operation flowchart of the sub-bitstream classifier shown in Fig. 30;
  • a receiving device receives data in units of slices, and a metadata parser delivers parameter set information such as SPS, GPS, APS, and TPS. Based on the transmitted information, it is possible to determine whether it is scalable or not. If it is scalable, the slice structure for scalable transmission is identified as shown in FIG. 31 . First, the geometry slice structure can be identified based on information such as num_scalable_layers, scalable_layer_id tree_depth_start, tree_depth_end, node_size, num_nodes, num_slices_in_scalable_layer, and slice_id transmitted through GPS.
  • the attribute slice structure can be identified in the same way (for example, geometry is octree-based, attribute is encoded based on scalable LoD or scalable RAHT, and the geometry/attribute slice pair created through the same slice partitioning is if they have the same number of nodes for the same octree layer).
  • the range of geometry slice id is determined according to the target scalable layer, and the range of attribute slice id is determined through slice_id_offset, and geometry / attribute slice is selected according to the specified range.
  • num_scalable_layers, scalable_layer_id tree_depth_start, tree_depth_end, node_size, num_nodes, num_slices_in_scalable_layer, num_slices_in_scalable_layer, slice_id, etc. delivered through APS are separately identified based on the necessary slice structure attribute slice attribute based on information such as calable slice_id.
  • the range of id can be limited, and a required slice can be selected through each slice id before reconstruction based on this.
  • the geometry / attribute slice selected through the above process is transmitted to the input of the decoder.
  • the decoding process according to the slice structure has been described based on the scalable transmission or the scalable selection of the receiver.
  • the scalable_transmission_enabled_flag is 0, the ranging geom / attr slice id process is omitted and the entire slice is selected so that it can be used for the non-scalable process.
  • information on the preceding slice eg, a slice belonging to a higher layer or a slice specified through ref_slice_id
  • a bitstream may be received based on the scalable transmission, and a scalable bitstream structure may be identified based on parameter information included in the bitstream.
  • a geometric scalable layer can be estimated.
  • a geometry slice may be identified based on the geometry slice ID.
  • the decoder can decode the selected geometry slice.
  • Attribute slices can be accessed based on the slice ID offset.
  • Attribute slices can be selected based on the slice ID.
  • the decoder can decode the selected attribute slice.
  • the attribute scalable layer may be estimated.
  • the attribute slice can be identified based on the attribute slice ID.
  • Attribute slices can be selected based on the slice ID.
  • the transmitting apparatus has the following effects.
  • Compressed data can be divided and transmitted according to any standard for point cloud data.
  • compressed data may be divided and transmitted according to layers. Accordingly, the storage and transmission efficiency of the transmitting end is increased.
  • the compression rate or the number of data can be adjusted according to receiver performance or transmission environment.
  • 32 is a process for transmitting and receiving point cloud data according to embodiments.
  • the method/apparatus according to the embodiments may process point cloud data as shown in FIG. 32 .
  • Embodiments have an advantage in that compressed data is divided according to layers and transmitted, and only a necessary part in the bitstream stage can be selectively transmitted with respect to pre-compressed data without a separate conversion process. This is efficient in terms of storage space as only one storage space per stream is required, and since only the necessary layers are selectively transmitted before transmission (bitstream selector), efficient transmission is possible in terms of bandwidth Do.
  • the receiving method/apparatus according to the embodiments has the following effects.
  • Embodiments may divide and transmit compressed data according to any standard for point cloud data.
  • compressed data can be transmitted by dividing it according to layers. In this case, the efficiency of the receiving end is increased.
  • FIG 15 it shows the operation of the transmitting and receiving end in the case of transmitting the point cloud data consisting of layers.
  • the receiver can selectively deliver the bitstream to the decoder according to the density of the point cloud data to be represented according to the decoder performance or application field.
  • decoder efficiency is increased, and there is an advantage in that decoders of various performances can be supported.
  • the method/apparatus according to the embodiments may transmit a bitstream using a layer group and a sub-group, and may further perform slice segmentation.
  • FIG 33 illustrates a single slice and segmented slice-based geometry tree structure according to embodiments.
  • the method/apparatus according to the embodiments may configure a slice for transmitting point cloud data as shown in FIG. 33 .
  • Fig. 33 is a geometry tree structure included in different slice structures.
  • the entire coded bitstream may be included in a single slice.
  • each slice may contain a sub-bitstream.
  • the order of the slices may be the same as the order of the sub-bitstream.
  • the bitstreams are accumulated in breadth-first order of the geometry tree, and each slice can match a group of tree layers (Fig. 33b).
  • the divided slice may inherit the layering structure of the G-PCC bitstream.
  • Slices may not affect previous slices, just as a higher layer of a geometry tree does not affect lower layers.
  • Segmented slices according to embodiments are effective in terms of error robustness, effective transmission, supporting region of interest, and the like.
  • a divided slice may be more resistant to errors.
  • data loss may affect the entire frame data.
  • some slices that are not affected by the loss even if a portion of the slice is lost can be decoded.
  • a case in which a plurality of decoders having different capabilities can be supported may be considered. If the coded data is in a single slice, the LOD of the coded point cloud may be determined prior to encoding. Accordingly, a plurality of pre-encoded bitstreams having different resolutions of the point cloud data may be independently transmitted. This can be inefficient in terms of large bandwidth or storage space.
  • the single bitstream may support decoders of different levels. From the decoder side, the receiver may select target layers and may deliver the partially selected bitstream to the decoder. Similarly, by using a single PCC bitstream without partitioning the entire bitstream, a partial PCC bitstream can be efficiently generated at the transmitter side.
  • region-based spatial scalability can be defined as follows.
  • a compressed bitstream may be configured to have more than one layer.
  • a particular region of interest may have a high density with additional layers, and the layers may be predicted from lower layers.
  • the decoder may increase the resolution of the region of interest upon request. It can be implemented by using the scalable structure of G-PCC, such as geometry octree and scalable attribute coding scheme. Based on the entire geometry or the current slice structure including attributes, decoders have to access the entire bitstream. This can lead to bandwidth, memory, and decoder inefficiencies.
  • the decoder slices the slice as needed before efficiently parsing the bitstream. can be selected.
  • 34 shows a layer group structure of a geometry coding tree and an aligned layer group structure of an attribute coding tree according to embodiments.
  • the method/apparatus according to the embodiments may generate a slice layer group using a hierarchical structure of point cloud data as shown in FIG. 34 .
  • the method/apparatus according to the embodiments may apply segmentation of geometry and attribute bitstreams included in different slices.
  • a coding tree structure of each slice and geometry and attribute coding included in the partial tree information may be used.
  • FIG. 34(a) an example of a geometry tree structure and a proposed slice segment is shown.
  • a group represents a group of geometry tree layers.
  • text part 1 includes layers 0 to 4
  • group 2 includes layer 5
  • group 3 includes layers 6 and 7.
  • a group may be divided into three sub-groups. Parent and child pairs exist in each sub-group.
  • Groups 3-1 to 3-3 are sub-groups of group 3.
  • the tree structure is the same as the geometry tree structure.
  • the same octree-slice mapping can be used to create attribute slice segments (Fig. 35(b)).
  • Layer group represents a bundle of layer structure units generated in G-PCC coding, such as an octree layer and a LoD layer.
  • One layer group may be represented as a set of adjacent nodes based on location information.
  • the bundle may be configured based on the lowest layer within the layer group (which may mean the layer closest to the root direction, and layer 6 in the case of group 3 of FIG. 34), and is adjacent by Morton code order.
  • a bundle of nodes may be configured, a bundle of distance-based adjacent nodes may be configured, or a bundle of adjacent nodes may be configured according to a coding order.
  • nodes in a parent-child relationship can be specified to exist in one sub-group.
  • a boundary occurs in the middle of the layer, and as to whether to have continuity at the boundary, it informs whether entropy is used continuously, such as sps_entropy_continuation_enabled_flag, gsh_entropy_continuation_flag, etc. continuity can be maintained.
  • 35 shows a layer group of a geometry tree and an independent layer group structure of an attribute coding tree according to embodiments.
  • the method/apparatus according to the embodiments may generate a geometry-based slice and an attribute-based slice layer as shown in FIG. 35 .
  • the attribute coding layer may have a structure different from that of the geometry coding tree. Referring to Fig. 35(b), groups can be defined independently of the geometry tree structure.
  • each slice segment may contain coded data from a layer group.
  • the layer group is defined as a group of consecutive tree layers, the start and end depths of the tree layers may be a specific number in the tree depth, and the start is smaller than the end.
  • each slice segment contains coded data from a layer group, where the layers may be tree depth or LOD according to an attribute coding steam.
  • the order of the coded data in the slice segments may be the same as the order of the coded data in a single slice.
  • the layer group structure corresponding to the geometry tree layers For example, the number of groups, the group identifier, the number of tree depth(s) in the group, the number of sub-group(s) in the group.
  • indication information indicating whether the slice structure is aligned with the geometry slice structure is required.
  • the number of groups, the group identifier, the number of tree depth(s), and the number of segment(s) are defined to describe the layer group structure.
  • each slice's group and sub-group identification is needed: group identifier, sub-group identifier.
  • attribute slice header when the attribute layer structure is not aligned with the geometry group, it is necessary to identify the group and sub-group of each slice.
  • FIG. 36 may be included together with parameter information of FIGS. 25-28 and the like in the bitstream of FIG. 24 .
  • Number of layer groups (num_layer_groups_minus1): If 1 is added to this value, it means the number of layer groups that are a group of consecutive tree layers that are part of a geometry or attribute coding tree structure.
  • Layer group ID indicates a layer group identifier of the i-th layer group.
  • Number of tree depths (num_tree_depth_minus1): If 1 is added to this value, it indicates the number of tree depths included in the i-th layer group.
  • Number of subgroups (num_subgroups_minus1): Adding 1 indicates the number of sub-groups in the i-th layer group.
  • Aligned layer group structure flag (aligned_layer_group_structure_flag): If this value is 1, it indicates that the layer group and sub-group structure of attribute slices are the same as the geometry layer group and sub-group structure. If this value is 0, it indicates that the layer group and sub-group structure of attribute slices is not the same as the geometry layer group and sub-group structure.
  • Geometry parameter set ID (geom_parameter_set_id): The geometry parameter set identifier includes layer group and subgroup structure information, and is aligned with the attribute layer group structure.
  • FIG. 37 may be included together with parameter information of FIGS. 25-28 and the like in the bitstream of FIG. 24 .
  • Subgroup ID Indicative information about a subgroup in a layer group indicated by layer_group_id.
  • the range of the subgroup ID may be 0 to num_subgroups_minus1.
  • layer_group_id and subgroup_id may be used to indicate the order of slices, and may be used to sort slices in bitstream order.
  • the transmission method/apparatus and the encoder may transmit point cloud data by dividing the point cloud data into transmission units.
  • the bitstream generator it is possible to divide and pack information required in the bitstream unit into appropriate units (FIGS. 33-35) according to the layering structure information.
  • the reception method/apparatus and decoder may reconstruct geometry data and attribute data based on a layer of a bitstream ( FIGS. 33-35 ).
  • the sub-bitstream classifier can deliver appropriate data to the decoder based on the information of the bitstream header.
  • a layer required by the receiver may be selected.
  • a geometry slice and/or an attribute slice may be selected for decoding and rendering with reference to necessary parameter information.
  • compressed data can be divided and transmitted according to layers, and only a necessary part of the pre-compressed data can be selectively transmitted in the bitstream step without a separate conversion process. .
  • This is efficient in terms of storage space as only one storage space per stream is required, and since only the necessary layers are selectively transmitted before transmission (bitstream selector), efficient transmission is possible in terms of bandwidth.
  • the reception method/device receives the bitstream by dividing it into slice units, and the receiver may selectively transmit the bitstream to the decoder according to the density of point cloud data to be represented according to decoder performance or application field.
  • the receiver since selection is made before decoding, decoder efficiency is increased, and there is an advantage in that decoders of various performances can be supported.
  • 38 shows a method for transmitting point cloud data according to embodiments.
  • the method for transmitting point cloud data may include encoding the point cloud data.
  • FIG. 1 transmitting apparatus 10000 point cloud video encoder 10002, FIG. 2 encoding 20001, FIG. 4 encoder, FIG. 12 transmitting apparatus, FIG. 14 XR device 1430, and FIG. 15 Encoder, Fig. 16 LOD-based hierarchical data construction, Fig. 17-22 LOD (layer)-based geometry/attribute bitstream construction, Fig. 23 Slice-based bitstream construction, Fig. 24 Parameter-containing bitstream generation, Fig. 25-28 Parameter generation , Fig. 29 geometry/attribute encoder and sub-bitstream generator, metadata generator, mux, Fig. 32 geometry/attribute encoding, bitstream selection, Fig. 33-35 slice segmentation, slice grouping, Fig. 36-37 parameter generation, etc. can do.
  • the method for transmitting point cloud data according to the embodiments may further include transmitting a bitstream including the point cloud data.
  • Transmission operations according to the embodiments include the transmission apparatus 10000 of FIG. 1 , the transmitter 10003 , the transmission 20002 of FIG. 2 , the transmission of an encoded bitstream of FIG. 12 , the data transmission of the XR device 1430 of FIG. Full or partial bitstream transmission according to encoding, Fig. 17-22 LOD (layer)-based geometry/attribute bitstream transmission, Fig. 23 slice-based bitstream transmission, Fig. 24 parameter-containing bitstream transmission, Fig. 25-28 parameter transmission, 29 transmitter, Fig. 32 partial bitstream transmission, Figs. 33-35 slice segmentation bitstream transmission, slice grouping bitstream transmission, and Fig. 36-37 parameter transmission.
  • 39 shows a method of receiving point cloud data according to embodiments.
  • a method for receiving point cloud data may include receiving a bitstream including point cloud data.
  • the reception operation according to the embodiments includes the reception apparatus 10004 of FIG. 1, the receiver 10005, the reception according to the transmission of FIG. 2, the reception of the bitstream of FIG. 13, the reception of data from the XR device 1430 of FIG. 14, and the entire bitstream of FIG. or partial reception, Fig. 17-22 LOD (layer)-based geometry/attribute bitstream reception, Fig. 23 slice-based bitstream reception, Fig. 24 parameter-containing bitstream reception, Fig. 25-28 parameter reception, Fig. 30 receiver, Fig. 31 It may include bitstream reception, partial bitstream reception in FIG. 32, slice segmentation bitstream reception in FIGS. 33-35, slice grouping bitstream reception, parameter reception in FIGS. 36-37, and the like.
  • the method for receiving point cloud data may further include decoding the point cloud data.
  • the decoding operation may include the receiving apparatus 10004 in FIG. 1, the point cloud video decoder 10006, the decoding 20003 in FIG. 2, the 10-11 decoder, the receiving apparatus in FIG. Fig. 15 bitstream full/partial decoding, bitstream selective decoding, Fig. 15 bitstream full or partial decoding, Fig. 17-22 LOD (layer)-based geometry/attribute bitstream decoding, Fig. 23 Slice-based bitstream decoding, Fig. 24 Parameter-containing bitstream decoding, Fig. 25-28 Parameter decoding, Fig. 30 Demux, sub-bitstream classifier, metadata parser, geometry/attribute decoder, renderer, Fig. 31 geometry/attribute slice selection, Fig. 32 partial bitstream decoding , Figure 33-35 slice segmentation bitstream decoding, slice grouping bitstream decoding, Figure 36-37 parameter decoding, and the like.
  • a transmitting method (performed by a transmitting apparatus) may include encoding point cloud data; and transmitting a bitstream including the point cloud data; may include
  • the transmission method (device) may generate the following bitstream to have a structure based on a distinguishing unit such as layer/LOD/slice.
  • the bitstream includes geometry data and attribute data of point cloud data
  • the bitstream for geometry data includes LODs (level of detail)
  • LOD 1 includes geometry data and additional geometry data included in LOD 0.
  • the bitstream for attribute data may include level of detail (LODs), and LOD 1 may include attribute data and additional attribute data included in LOD 0 (FIG. 17-18 LOD-based bitstream configuration method) reference).
  • the number of LODs describes, for example, two, and the bitstream may have more division units according to the degree of data detail division.
  • bitstream for the geometry data in the bitstream is located before the bitstream for the attribute data, or the geometry data corresponding to LOD 0 and the attribute data corresponding to LOD 0 in the bitstream are the geometry corresponding to LOD 1 It may be positioned before the data and attribute data corresponding to LOD 1 (refer to FIG. 19-20 bitstream alignment method).
  • bitstream includes geometry data corresponding to LOD 0, attribute data corresponding to LOD 0, geometry data corresponding to LOD 1, and attribute data corresponding to LOD 1, and geometric data and attribute data corresponding to LOD 2 Data may be excluded from the bitstream.
  • bitstream includes geometry data corresponding to LOD 0, attribute data corresponding to LOD 0, geometry data corresponding to LOD 1, attribute data corresponding to LOD 1, and geometry data corresponding to LOD 2, Attribute data corresponding to can be excluded from the bitstream (see Figs. 21-22: Geometry-attribute symmetry/asymmetry).
  • bitstream may include point cloud data by classifying an LOD-based layer, and may include a slice including point cloud data based on the layer (see FIG. 23: slice configuration).
  • bitstream may include a segmented slice including segmented point cloud data (see Fig. 33: segmented slice structure).
  • a bitstream for geometry data includes a slice including a group including one or more geometric data for one or more layers
  • a bitstream for attribute data includes attribute data for one or more layers. It may include a slice including a group to
  • the layer structure of the bitstream for the geometry data in the bitstream and the layer structure of the bitstream for the attribute data may be the same or different (refer to FIGS. 34-35: Including layer group slices).
  • the point cloud data receiving apparatus corresponding to the transmitting apparatus performing the transmitting method according to the embodiments may be configured as follows to perform the receiving method according to the embodiments.
  • a receiver for receiving a bitstream including point cloud data; and a decoder for decoding the point cloud data may include (see FIG. 1).
  • a bitstream processed by a bitstream classifier for a decoder includes geometry data and attribute data of point cloud data, and a bitstream for geometry data includes LODs (level of detail), LOD 1 may include geometry data included in LOD 0 and additional geometry data.
  • a bitstream for attribute data may include level of detail (LODs), and LOD 1 may include attribute data and additional attribute data included in LOD 0.
  • LODs level of detail
  • bitstream for the geometry data in the bitstream is located before the bitstream for the attribute data, or the geometry data corresponding to LOD 0 and the attribute data corresponding to LOD 0 in the bitstream are geometric data corresponding to LOD 1 and attribute data corresponding to LOD 1.
  • compressed data can be divided and delivered according to layers, and only a necessary part of the pre-compressed data can be selectively delivered in the bitstream step without a separate conversion process.
  • This is efficient in terms of storage space as only one storage space per stream is required, and since only the necessary layers are selectively transmitted before transmission (bitstream selector), efficient transmission is possible in terms of bandwidth.
  • bitstream can be transmitted/received by dividing it into slice units, and the receiver can selectively decode the bitstream according to the density of the point cloud data to be represented according to decoder performance or application field.
  • decoder performance or application field since selection is made before decoding, decoder efficiency is increased, and decoders with various performances can be supported.
  • Various components of the apparatus of the embodiments may be implemented by hardware, software, firmware, or a combination thereof.
  • Various components of the embodiments may be implemented with one chip, for example, one hardware circuit.
  • the components according to the embodiments may be implemented with separate chips.
  • at least one or more of the components of the device according to the embodiments may be composed of one or more processors capable of executing one or more programs, and the one or more programs may be implemented Any one or more of the operations/methods according to the examples may be performed or may include instructions for performing the operations/methods.
  • Executable instructions for performing the method/acts of the apparatus according to the embodiments may be stored in non-transitory CRM or other computer program products configured for execution by one or more processors, or one or more may be stored in temporary CRM or other computer program products configured for execution by processors.
  • the memory according to the embodiments may be used as a concept including not only volatile memory (eg, RAM, etc.) but also non-volatile memory, flash memory, PROM, and the like.
  • it may be implemented in the form of a carrier wave, such as transmission through the Internet may be included.
  • the processor-readable recording medium is distributed in a computer system connected to a network, so that the processor-readable code can be stored and executed in a distributed manner.
  • first, second, etc. may be used to describe various components of the embodiments. However, the interpretation of various components according to the embodiments should not be limited by the above terms. These terms are only used to distinguish one component from another. it is only For example, the first user input signal may be referred to as a second user input signal. Similarly, the second user input signal may be referred to as a first user input signal. Use of these terms should be interpreted as not departing from the scope of the various embodiments. Although both the first user input signal and the second user input signal are user input signals, they do not mean the same user input signals unless the context clearly indicates otherwise.
  • the operations according to the embodiments described in this document may be performed by a transceiver including a memory and/or a processor according to the embodiments.
  • the memory may store programs for processing/controlling operations according to the embodiments, and the processor may control various operations described in this document.
  • the processor may be referred to as a controller or the like.
  • operations may be performed by firmware, software, and/or a combination thereof, and the firmware, software, and/or a combination thereof may be stored in a processor or stored in a memory.
  • the transceiver device may include a transceiver for transmitting and receiving media data, a memory for storing instructions (program code, algorithm, flowchart, and/or data) for a process according to embodiments, and a processor for controlling operations of the transmitting/receiving device.
  • a processor may be referred to as a controller or the like, and may correspond to, for example, hardware, software, and/or a combination thereof. Operations according to the above-described embodiments may be performed by a processor.
  • the processor may be implemented as an encoder/decoder or the like for the operation of the above-described embodiments.
  • the embodiments may be applied in whole or in part to a point cloud data transmission/reception device and system.
  • Embodiments may include modifications/modifications, which do not depart from the scope of the claims and the like.

Abstract

실시예들에 따른 포인트 클라우드 데이터 송신 방법은 포인트 클라우드 데이터를 인코딩하는 단계, 포인트 클라우드 데이터를 포함하는 비트스트림을 전송하는 단계를 포함할 수 있다. 또한, 실시예들에 따른 포인트 클라우드 데이터 수신 방법은 포인트 클라우드 데이터를 포함하는 비트스트림을 수신하는 단계, 포인트 클라우드 데이터를 디코딩하는 단계를 포함할 수 있다.

Description

포인트 클라우드 데이터 송신 장치, 포인트 클라우드 데이터 송신 방법, 포인트 클라우드 데이터 수신 장치 및 포인트 클라우드 데이터 수신 방법
실시예들은 포인트 클라우드 콘텐트(Point Cloud Content)를 처리하는 방법 및 장치에 대한 것이다.
포인트 클라우드 콘텐트는 3차원 공간을 표현하는 좌표계에 속한 점(포인트)들의 집합인 포인트 클라우드로 표현되는 콘텐트이다. 포인트 클라우드 콘텐트는3차원으로 이루어진 미디어를 표현할 수 있으며, VR (Virtual Reality, 가상현실), AR (Augmented Reality, 증강현실), MR (Mixed Reality, 혼합현실), 및 자율 주행 서비스 등의 다양한 서비스를 제공하기 위해 사용된다. 하지만 포인트 클라우드 콘텐트를 표현하기 위해서는 수만개에서 수십만개의 포인트 데이터가 필요하다. 따라서 방대한 양의 포인트 데이터를 효율적으로 처리하기 위한 방법이 요구된다.
실시예들은 포인트 클라우드 데이터를 효율적으로 처리하기 위한 장치 및 방법을 제공한다. 실시예들은 지연시간(latency) 및 인코딩/디코딩 복잡도를 해결하기 위한 포인트 클라우드 데이터 처리 방법 및 장치를 제공한다.
다만, 전술한 기술적 과제만으로 제한되는 것은 아니고, 기재된 전체 내용에 기초하여 당업자가 유추할 수 있는 다른 기술적 과제로 실시예들의 권리범위가 확장될 수 있다.
기술적 과제를 달성하기 위해서, 실시예들에 따른 포인트 클라우드 데이터 송신 방법은 포인트 클라우드 데이터를 인코딩하는 단계, 포인트 클라우드 데이터를 포함하는 비트스트림을 전송하는 단계를 포함할 수 있다. 또한, 실시예들에 따른 포인트 클라우드 데이터 수신 방법은 포인트 클라우드 데이터를 포함하는 비트스트림을 수신하는 단계, 포인트 클라우드 데이터를 디코딩하는 단계를 포함할 수 있다.
실시예들에 따른 장치 및 방법은 높은 효율로 포인트 클라우드 데이터를 처리할 수 있다.
실시예들에 따른 장치 및 방법은 높은 퀄리티의 포인트 클라우드 서비스를 제공할 수 있다.
실시예들에 따른 장치 및 방법은 VR 서비스, 자율주행 서비스 등 범용적인 서비스를 제공하기 위한 포인트 클라우드 콘텐트를 제공할 수 있다.
도면은 실시예들을 더욱 이해하기 위해서 포함되며, 도면은 실시예들에 관련된 설명과 함께 실시예들을 나타낸다. 이하에서 설명하는 다양한 실시예들의 보다 나은 이해를 위하여, 하기 도면들에 걸쳐 유사한 참조 번호들이 대응하는 부분들을 포함하는 다음의 도면들과 관련하여 이하의 실시예들의 설명을 반드시 참조해야 한다.
도1은 실시예들에 따른 포인트 클라우드콘텐츠 제공 시스템의 예시를 나타낸다.
도 2는 실시예들에 따른 포인트 클라우드 콘텐트 제공 동작을 나타내는 블록도이다.
도 3은 실시예들에 따른 포인트 클라우드 비디오 캡쳐 과정의 예시를 나타낸다.
도 4는 실시예들에 따른 포인트 클라우드 인코더(Point Cloud Encoder)의 예시를 나타낸다.
도 5 는 실시예들에 따른 복셀의 예시를 나타낸다.
도 6은 실시예들에 따른 옥트리 및 오큐판시 코드 (occupancy code)의 예시를 나타낸다.
도 7은 실시예들에 따른 이웃 노드 패턴의 예시를 나타낸다.
도 8은 실시예들에 따른 LOD 별 포인트 구성의 예시를 나타낸다.
도 9는 실시예들에 따른 LOD 별 포인트 구성의 예시를 나타낸다.
도 10은 실시예들에 따른 포인트 클라우드 디코더(Point Cloud Decoder)의 예시를 나타낸다.
도 11은 실시예들에 따른 포인트 클라우드 디코더(Point Cloud Decoder)의 예시를 나타낸다.
도 12는 실시예들에 따른 전송 장치의 예시이다.
도 13은 실시예들에 따른 수신 장치의 예시이다.
도 14는 실시예들에 따른 포인트 클라우드 데이터 송수신 방법/장치와 연동 가능한 구조의 예시를 나타낸다.
도15는 실시예들에 따른 포인트 클라우드 데이터의 인코딩, 전송, 디코딩 과정을 나타낸다.
도16은 실시예들에 따른 레이어 기반 포인트 클라우드 데이터 구성을 나타낸다.
도17은 실시예들에 따른 지오메트리 및 어트리뷰트 비트스트림 구조를 나타낸다.
도18은 실시예들에 따른 비트스트림 구성을 나타낸다.
도19는 실시예들에 따른 비트스트림 정렬 방법을 나타낸다.
도20은 실시예들에 따른 비트스트림 정렬 방법을 나타낸다.
도21은 실시예들에 따른 지오메트리 데이터 및 어트리뷰트 데이터의 선택 방법을 나타낸다.
도22는 실시예들에 따른 비트스트림 선택 방법을 나타낸다.
도23은 실시예들에 따른 포인트 클라우드 데이터를 포함하는 슬라이스를 구성하는 방법을 나타낸다.
도24는 실시예들에 따른 비트스트림 구성을 나타낸다.
도25는 실시예들에 따른 시퀀스 파라미터 세트, 지오메트리 파리미터 세트의 신택스를 나타낸다.
도26은 실시예들에 따른 어트리뷰트 파라미터 세트의 신택스를 나타낸다.
도27은 실시예들에 따른 지오메트리 데이터 유닛 헤더의 신택스를 나타낸다.
도28은 실시예들에 따른 어트리뷰트 데이터 유닛 헤더의 신택스를 나타낸다.
도29는 실시예들에 따른 포인트 클라우드 데이터 송신 장치 구조를 나타낸다.
도30은 실시예들에 따른 포인트 클라우드 데이터 수신 장치 구조를 나타낸다.
도31은 실시예들에 따른 포인트 클라우드 데이터 수신 장치의 흐름도를 나타낸다.
도32는 실시예들에 따른 포인트 클라우드 데이터 송수신 과정이다.
도33은 실시예들에 따른 싱글 슬라이스 및 분할된(segmented) 슬라이스 기반 지오메트리 트리 구조를 나타낸다.
도34는 실시예들에 따른 지오메트리 코딩 트리의 레이어 그룹 구조 및 어트리뷰트 코딩 트리의 얼라인된 레이어 그룹 구조를 나타낸다.
도35는 실시예들에 따른 지오메트리 트리의 레이어 그룹 및 어트리뷰트 코딩 트리의 독립된 레이어 그룹 구조를 나타낸다.
도36은 실시예들에 따른 파라미터 세트의 신택스를 나타낸다.
도37은 실시예들에 따른 지오메트리 데이터 유닛 헤더를 나타낸다.
도38은 실시예들에 따른 포인트 클라우드 데이터 송신 방법을 나타낸다.
도39는 실시예들에 따른 포인트 클라우드 데이터 수신 방법을 나타낸다.
실시예들의 바람직한 실시예에 대해 구체적으로 설명하며, 그 예는 첨부된 도면에 나타낸다. 첨부된 도면을 참조한 아래의 상세한 설명은 실시예들의 실시예에 따라 구현될 수 있는 실시예만을 나타내기보다는 실시예들의 바람직한 실시예를 설명하기 위한 것이다. 다음의 상세한 설명은 실시예들에 대한 철저한 이해를 제공하기 위해 세부 사항을 포함한다. 그러나 실시예들이 이러한 세부 사항 없이 실행될 수 있다는 것은 당업자에게 자명하다.
실시예들에서 사용되는 대부분의 용어는 해당 분야에서 널리 사용되는 일반적인 것들에서 선택되지만, 일부 용어는 출원인에 의해 임의로 선택되며 그 의미는 필요에 따라 다음 설명에서 자세히 서술한다. 따라서 실시예들은 용어의 단순한 명칭이나 의미가 아닌 용어의 의도된 의미에 근거하여 이해되어야 한다.
도1은 실시예들에 따른 포인트 클라우드콘텐츠 제공 시스템의 예시를 나타낸다.
도 1에 도시된 포인트 클라우드 콘텐트 제공 시스템은 전송 장치(transmission device)(10000) 및 수신 장치(reception device)(10004)를 포함할 수 있다. 전송 장치(10000) 및 수신 장치(10004)는 포인트 클라우드 데이터를 송수신하기 위해 유무선 통신 가능하다.
. 실시예들에 따른 전송 장치(10000)는 포인트 클라우드 비디오(또는 포인트 클라우드 콘텐트)를 확보하고 처리하여 전송할 수 있다. 실시예들에 따라, 전송 장치(10000)는 고정국(fixed station), BTS(base transceiver system), 네트워크, AI(Ariticial Intelligence) 기기 및/또는 시스템, 로봇, AR/VR/XR 기기 및/또는 서버 등을 포함할 수 있다. 또한 실시예들에 따라 전송 장치(10000)는 무선 접속 기술(예, 5G NR(New RAT), LTE(Long Term Evolution))을 이용하여, 기지국 및/또는 다른 무선 기기와 통신을 수행하는 기기, 로봇, 차량, AR/VR/XR 기기, 휴대기기, 가전, IoT(Internet of Thing)기기, AI 기기/서버 등을 포함할 수 있다.
실시예들에 따른 전송 장치(10000)는 포인트 클라우드 비디오 획득부(Point Cloud Video Acquisition, 10001), 포인트 클라우드 비디오 인코더(Point Cloud Video Encoder, 10002) 및/또는 트랜스미터(Transmitter (or Communication module), 10003)를 포함한다
실시예들에 따른 포인트 클라우드 비디오 획득부(10001)는 캡쳐, 합성 또는 생성 등의 처리 과정을 통해 포인트 클라우드 비디오를 획득한다. 포인트 클라우드 비디오는 3차원 공간에 위치한 포인트들의 집합인 포인트 클라우드로 표현되는 포인트 클라우드 콘텐트로서, 포인트 클라우드 비디오 데이터 등으로 호칭될 수 있다. 실시예들에 따른 포인트 클라우드 비디오는 하나 또는 그 이상의 프레임들을 포함할 수 있다. 하나의 프레임은 정지 영상/픽쳐를 나타낸다. 따라서 포인트 클라우드 비디오는 포인트 클라우드 영상/프레임/픽처를 포함할 수 있으며, 포인트 클라우드 영상, 프레임 및 픽처 중 어느 하나로 호칭될 수 있다.
실시예들에 따른 포인트 클라우드 비디오 인코더(10002)는 확보된 포인트 클라우드 비디오 데이터를 인코딩한다. 포인트 클라우드 비디오 인코더(10002)는 포인트 클라우드 컴프레션(Point Cloud Compression) 코딩을 기반으로 포인트 클라우드 비디오 데이터를 인코딩할 수 있다. 실시예들에 따른 포인트 클라우드 컴프레션 코딩은 G-PCC(Geometry-based Point Cloud Compression) 코딩 및/또는 V-PCC(Video based Point Cloud Compression) 코딩 또는 차세대 코딩을 포함할 수 있다. 또한 실시예들에 따른 포인트 클라우드 컴프레션 코딩은 상술한 실시예에 국한되는 것은 아니다. 포인트 클라우드 비디오 인코더(10002)는 인코딩된 포인트 클라우드 비디오 데이터를 포함하는 비트스트림을 출력할 수 있다. 비트스트림은 인코딩된 포인트 클라우드 비디오 데이터뿐만 아니라, 포인트 클라우드 비디오 데이터의 인코딩과 관련된 시그널링 정보를 포함할 수 있다.
실시예들에 따른 트랜스미터(10003)는 인코딩된 포인트 클라우드 비디오 데이터를 포함하는 비트스트림을 전송한다. 실시예들에 따른 비트스트림은 파일 또는 세그먼트(예를 들면 스트리밍 세그먼트) 등으로 인캡슐레이션되어 방송망 및/또는 브로드밴드 망등의 다양한 네트워크를 통해 전송된다. 도면에 도시되지 않았으나, 전송 장치(10000)는 인캡슐레이션 동작을 수행하는 인캡슐레이션부(또는 인캡슐레이션 모듈)을 포함할 수 있다. 또한 실시예들에 따라 인캡슐레이션부는 트랜스미터(10003)에 포함될 수 있다. 실시예들에 따라 파일 또는 세그먼트는 네트워크를 통해 수신 장치(10004)로 전송되거나, 디지털 저장매체(예를 들면 USB, SD, CD, DVD, 블루레이, HDD, SSD 등)에 저장될 수 있다. 실시예들에 따른 트랜스미터(10003)는 수신 장치(10004) (또는 리시버(Receiver, 10005))와 4G, 5G, 6G 등의 네트워크를 통해 유/무선 통신 가능하다. 또한 트랜스미터(10003)는 네트워크 시스템(예를 들면 4G, 5G, 6G 등의 통신 네트워크 시스템)에 따라 필요한 데이터 처리 동작을 수행할 수 있다. 또한 전송 장치(10000)는 온 디맨드(On Demand) 방식에 따라 인캡슐레이션된 데이터를 전송할 수도 있다.
실시예들에 따른 수신 장치(10004)는 리시버(Receiver, 10005), 포인트 클라우드 비디오 디코더(Point Cloud Decoder, 10006) 및/또는 렌더러(Renderer, 10007)를 포함한다. 실시예들에 따라 수신 장치(10004)는 무선 접속 기술(예, 5G NR(New RAT), LTE(Long Term Evolution))을 이용하여, 기지국 및/또는 다른 무선 기기와 통신을 수행하는 기기, 로봇, 차량, AR/VR/XR 기기, 휴대기기, 가전, IoT(Internet of Thing)기기, AI 기기/서버 등을 포함할 수 있다.
실시예들에 따른 리시버(10005)는 포인트 클라우드 비디오 데이터를 포함하는 비트스트림 또는 비트스트림이 인캡슐레이션된 파일/세그먼트 등을 네트워크 또는 저장매체로부터 수신한다. 리시버(10005)는 네트워크 시스템(예를 들면 4G, 5G, 6G 등의 통신 네트워크 시스템)에 따라 필요한 데이터 처리 동작을 수행할 수 있다. 실시예들에 따른 리시버(10005)는 수신한 파일/세그먼트를 디캡슐레이션하여 비트스트림을 출력할수 있다. 또한 실시예들에 따라 리시버(10005)는 디캡슐레이션 동작을 수행하기 위한 디캡슐레이션부(또는 디캡슐레이션 모듈)을 포함할 수 있다. 또한 디캡슐레이션부는 리시버(10005)와 별개의 엘레멘트(또는 컴포넌트)로 구현될 수 있다.
포인트 클라우드 비디오 디코더(10006)는 포인트 클라우드 비디오 데이터를 포함하는 비트스트림을 디코딩한다. 포인트 클라우드 비디오 디코더(10006)는 포인트 클라우드 비디오 데이터가 인코딩된 방식에 따라 디코딩할 수 있다(예를 들면 포인트 클라우드 비디오 인코더(10002)의 동작의 역과정). 따라서 포인트 클라우드 비디오 디코더(10006)는 포인트 클라우드 컴프레션의 역과정인 포인트 클라우드 디컴프레션 코딩을 수행하여 포인트 클라우드 비디오 데이터를 디코딩할 수 있다. 포인트 클라우드 디컴프레션 코딩은 G-PCC 코딩을 포함한다.
렌더러(10007)는 디코딩된 포인트 클라우드 비디오 데이터를 렌더링한다. 렌더러(10007)는 포인트 클라우드 비디오 데이터 뿐만 아니라 오디오 데이터도 렌더링하여 포인트 클라우드 콘텐트를 출력할 수 있다. 실시예들에 따라 렌더러(10007)는 포인트 클라우드 콘텐트를 디스플레이하기 위한 디스플레이를 포함할 수 있다. 실시예들에 따라 디스플레이는 렌더러(10007)에 포함되지 않고 별도의 디바이스 또는 컴포넌트로 구현될 수 있다.
도면에 점선으로 표시된 화살표는 수신 장치(10004)에서 획득한 피드백 정보(feedback information)의 전송 경로를 나타낸다. 피드백 정보는 포인트 클라우드 컨텐트를 소비하는 사용자와의 인터랙티비를 반영하기 위한 정보로서, 사용자의 정보(예를 들면 헤드 오리엔테이션 정보), 뷰포트(Viewport) 정보 등)을 포함한다. 특히 포인트 클라우드 콘텐트가 사용자와의 상호작용이 필요한 서비스(예를 들면 자율주행 서비스 등)를 위한 콘텐트인 경우, 피드백 정보는 콘텐트 송신측(예를 들면 전송 장치(10000)) 및/또는 서비스 프로바이더에게 전달될 수 있다. 실시예들에 따라 피드백 정보는 전송 장치(10000) 뿐만 아니라 수신 장치(10004)에서도 사용될 수 있으며, 제공되지 않을 수도 있다.
실시예들에 따른 헤드 오리엔테이션 정보는 사용자의 머리 위치, 방향, 각도, 움직임 등에 대한 정보이다. 실시예들에 따른 수신 장치(10004)는 헤드 오리엔테이션 정보를 기반으로 뷰포트 정보를 계산할 수 있다. 뷰포트 정보는 사용자가 바라보고 있는 포인트 클라우드 비디오의 영역에 대한 정보이다. 시점(viewpoint)은 사용자가 포인트 클라우 비디오를 보고 있는 점으로 뷰포트 영역의 정중앙 지점을 의미할 수 있다. 즉, 뷰포트는 시점을 중심으로 한 영역으로서, 영역의 크기, 형태 등은 FOV(Field Of View) 에 의해 결정될 수 있다. 따라서 수신 장치(10004)는 헤드 오리엔테이션 정보 외에 장치가 지원하는 수직(vertical) 혹은 수평(horizontal) FOV 등을 기반으로 뷰포트 정보를 추출할 수 있다. 또한 수신 장치(10004)는 게이즈 분석 (Gaze Analysis) 등을 수행하여 사용자의 포인트 클라우드 소비 방식, 사용자가 응시하는 포인트 클라우 비디오 영역, 응시 시간 등을 확인한다. 실시예들에 따라 수신 장치(10004)는 게이즈 분석 결과를 포함하는 피드백 정보를 송신 장치(10000)로 전송할 수 있다. 실시예들에 따른 피드백 정보는 렌더링 및/또는 디스플레이 과정에서 획득될 수 있다. 실시예들에 따른 피드백 정보는 수신 장치(10004)에 포함된 하나 또는 그 이상의 센서들에 의해 확보될 수 있다. 또한 실시예들에 따라 피드백 정보는 렌더러(10007) 또는 별도의 외부 엘레멘트(또는 디바이스, 컴포넌트 등)에 의해 확보될 수 있다. 도1의 점선은 렌더러(10007)에서 확보한 피드백 정보의 전달 과정을 나타낸다. 포인트 클라우드 콘텐트 제공 시스템은 피드백 정보를 기반으로 포인트 클라우드 데이터를 처리(인코딩/디코딩)할 수 있다. 따라서 포인트 클라우드 비디오 데이터 디코더(10006)는 피드백 정보를 기반으로 디코딩 동작을 수행할 수 있다. 또한 수신 장치(10004)는 피드백 정보를 전송 장치(10000)로 전송할 수 있다. 전송 장치(10000)(또는 포인트 클라우드 비디오 데이터 인코더(10002))는 피드백 정보를 기반으로 인코딩 동작을 수행할 수 있다. 따라서 포인트 클라우드 콘텐트 제공 시스템은 모든 포인트 클라우드 데이터를 처리(인코딩/디코딩)하지 않고, 피드백 정보를 기반으로 필요한 데이터(예를 들면 사용자의 헤드 위치에 대응하는 포인트 클라우드 데이터)를 효율적으로 처리하고, 사용자에게 포인트 클라우드 콘텐트를 제공할 수 있다.
실시예들에 따라, 전송 장치(10000)는 인코더, 전송 디바이스, 전송기 등으로 호칭될 수 있으며, 수신 장치(10004)는 디코더, 수신 디바이스, 수신기 등으로 호칭될 수 있다.
실시예들에 따른 도 1 의 포인트 클라우드 콘텐트 제공 시스템에서 처리되는 (획득/인코딩/전송/디코딩/렌더링의 일련의 과정으로 처리되는) 포인트 클라우드 데이터는 포인트 클라우드 콘텐트 데이터 또는 포인트 클라우드 비디오 데이터라고 호칭할 수 있다. 실시예들에 따라 포인트 클라우드 콘텐트 데이터는 포인트 클라우드 데이터와 관련된 메타데이터 내지 시그널링 정보를 포함하는 개념으로 사용될 수 있다.
도 1에 도시된 포인트 클라우드 콘텐트 제공 시스템의 엘리먼트들은 하드웨어, 소프트웨어, 프로세서 및/또는 그것들의 결합등으로 구현될 수 있다.
도 2는 실시예들에 따른 포인트 클라우드 콘텐트 제공 동작을 나타내는 블록도이다.
도 2의 블록도는 도 1에서 설명한 포인트 클라우드 콘텐트 제공 시스템의 동작을 나타낸다. 상술한 바와 같이 포인트 클라우드 콘텐트 제공 시스템은 포인트 클라우드 컴프레션 코딩(예를 들면 G-PCC)을 기반으로 포인트 클라우드 데이터를 처리할 수 있다.
실시예들에 따른 포인트 클라우드 콘텐트 제공 시스템(예를 들면 포인트 클라우드 전송 장치(10000) 또는 포인트 클라우드 비디오 획득부(10001))은 포인트 클라우드 비디오를 획득할 수 있다(20000). 포인트 클라우드 비디오는 3차원 공간을 표현하는 좌표계에 속한 포인트 클라우드로 표현된다. 실시예들에 따른 포인트 클라우드 비디오는 Ply (Polygon File format or the Stanford Triangle format) 파일을 포함할 수 있다. 포인트 클라우드 비디오가 하나 또는 그 이상의 프레임들을 갖는 경우, 획득한 포인트 클라우드 비디오는 하나 또는 그 이상의 Ply 파일들을 포함할 수 있다. Ply 파일은 포인트의 지오메트리(Geometry) 및/또는 어트리뷰트(Attribute)와 같은 포인트 클라우드 데이터를 포함한다. 지오메트리는 포인트들의 포지션들을 포함한다. 각 포인트의 포지션은 3차원 좌표계(예를 들면 XYZ축들로 이루어진 좌표계 등)를 나타내는 파라미터들(예를 들면 X축, Y축, Z축 각각의 값)로 표현될 수 있다. 어트리뷰트는 포인트들의 어트리뷰트들(예를 들면, 각 포인트의 텍스쳐 정보, 색상(YCbCr 또는 RGB), 반사율(r), 투명도 등)을 포함한다. 하나의 포인트는 하나 또는 그 이상의 어트리뷰트들(또는 속성들)을 가진다. 예를 들어 하나의 포인트는 하나의 색상인 어트리뷰트를 가질 수도 있고, 색상 및 반사율인 두 개의 어트리뷰트들을 가질 수도 있다. 실시예들에 따라, 지오메트리는 포지션들, 지오메트리 정보, 지오메트리 데이터 등으로 호칭 가능하며, 어트리뷰트는 어트리뷰트들, 어트리뷰트 정보, 어트리뷰트 데이터 등으로 호칭할 수 있다. 또한 포인트 클라우드 콘텐트 제공 시스템(예를 들면 포인트 클라우드 전송 장치(10000) 또는 포인트 클라우드 비디오 획득부(10001))은 포인트 클라우드 비디오의 획득 과정과 관련된 정보(예를 들면 깊이 정보, 색상 정보 등)으로부터 포인트 클라우드 데이터를 확보할 수 있다.
실시예들에 따른 포인트 클라우드 콘텐트 제공 시스템(예를 들면 전송 장치(10000) 또는 포인트 클라우드 비디오 인코더(10002))은 포인트 클라우드 데이터를 인코딩할 수 있다(20001). 포인트 클라우드 콘텐트 제공 시스템은 포인트 클라우드 컴프레션 코딩을 기반으로 포인트 클라우드 데이터를 인코딩할 수 있다. 상술한 바와 같이 포인트 클라우드 데이터는 포인트의 지오메트리 및 어트리뷰트를 포함할 수 있다. 따라서 포인트 클라우드 콘텐트 제공 시스템은 지오메트리를 인코딩하는 지오메트리 인코딩을 수행하여 지오메트리 비트스트림을 출력할 수 있다. 포인트 클라우드 콘텐트 제공 시스템은 어트리뷰트를 인코딩하는 어트리뷰트 인코딩을 수행하여 어트리뷰트 비트스트림을 출력할 수 있다. 실시예들에 따라 포인트 클라우드 콘텐트 제공 시스템은 지오메트리 인코딩에 기초하여 어트리뷰트 인코딩을 수행할 수 있다. 실시예들에 따른 지오메트리 비트스트림 및 어트리뷰트 비트스트림은 멀티플렉싱되어 하나의 비트스트림으로 출력될 수 있다. 실시예들에 따른 비트스트림은 지오메트리 인코딩 및 어트리뷰트 인코딩과 관련된 시그널링 정보를 더 포함할 수 있다.
실시예들에 따른 포인트 클라우드 콘텐트 제공 시스템(예를 들면 전송 장치(10000) 또는 트랜스미터(10003))는 인코딩된 포인트 클라우드 데이터를 전송할 수 있다(20002). 도1에서 설명한 바와 같이 인코딩된 포인트 클라우드 데이터는 지오메트리 비트스트림, 어트리뷰트 비트스트림으로 표현될 수 있다. 또한 인코딩된 포인트 클라우드 데이터는 포인트 클라우드 데이터의 인코딩과 관련된 시그널링 정보(예를 들면 지오메트리 인코딩 및 어트리뷰트 인코딩과 관련된 시그널링 정보)과 함께 비트스트림의 형태로 전송될 수 있다. 또한 포인트 클라우드 콘텐트 제공 시스템은 인코딩된 포인트 클라우드 데이터를 전송하는 비트스트림을 인캡슐레이션 하여 파일 또는 세그먼트의 형태로 전송할 수 있다.
실시예들에 따른 포인트 클라우드 콘텐트 제공 시스템(예를 들면 수신 장치(10004) 또는 리시버(10005))은 인코딩된 포인트 클라우드 데이터를 포함하는 비트스트림을 수신할 수 있다. 또한 포인트 클라우드 콘텐트 제공 시스템(예를 들면 수신 장치(10004) 또는 리시버(10005))은 비트스트림을 디멀티플렉싱할 수 있다.
포인트 클라우드 콘텐트 제공 시스템(예를 들면 수신 장치(10004) 또는 포인트 클라우드 비디오 디코더(10005))은 비트스트림으로 전송되는 인코딩된 포인트 클라우드 데이터(예를 들면 지오메트리 비트스트림, 어트리뷰트 비트스트림)을 디코딩할 수 있다. 포인트 클라우드 콘텐트 제공 시스템(예를 들면 수신 장치(10004) 또는 포인트 클라우드 비디오 디코더(10005))은 비트스트림에 포함된 포인트 클라우드 비디오 데이터의 인코딩과 관련된 시그널링 정보를 기반으로 포인트 클라우드 비디오 데이터를 디코딩할 수 있다. 포인트 클라우드 콘텐트 제공 시스템(예를 들면 수신 장치(10004) 또는 포인트 클라우드 비디오 디코더(10005))은 지오메트리 비트스트림을 디코딩하여 포인트들의 포지션들(지오메트리)을 복원할 수 있다. 포인트 클라우드 콘텐트 제공 시스템은 복원한 지오메트리를 기반으로 어트리뷰트 비트스트림을 디코딩하여 포인트들의 어트리뷰트들을 복원할 수 있다. 포인트 클라우드 콘텐트 제공 시스템(예를 들면 수신 장치(10004) 또는 포인트 클라우드 비디오 디코더(10005))은 복원된 지오메트리에 따른 포지션들 및 디코딩된 어트리뷰트를 기반으로 포인트 클라우드 비디오를 복원할 수 있다.
실시예들에 따른 포인트 클라우드 콘텐트 제공 시스템(예를 들면 수신 장치(10004) 또는 렌더러(10007))은 디코딩된 포인트 클라우드 데이터를 렌더링할 수 있다(20004). 포인트 클라우드 콘텐트 제공 시스템(예를 들면 수신 장치(10004) 또는 렌더러(10007))은 디코딩 과정을 통해 디코딩된 지오메트리 및 어트리뷰트들을 다양한 렌더링 방식에 따라 렌더링 방식에 따라 렌더링 할 수 있다. 포인트 클라우드 콘텐트의 포인트들은 일정 두께를 갖는 정점, 해당 정점 위치를 중앙으로 하는 특정 최소 크기를 갖는 정육면체, 또는 정점 위치를 중앙으로 하는 원 등으로 렌더링 될 수도 있다. 렌더링된 포인트 클라우드 콘텐트의 전부 또는 일부 영역은 디스플레이 (예를 들면 VR/AR 디스플레이, 일반 디스플레이 등)을 통해 사용자에게 제공된다.
실시예들에 따른 포인트 클라우드 콘텐트 제공 시스템(예를 들면 수신 장치(10004))는 피드백 정보를 확보할 수 있다(20005). 포인트 클라우드 콘텐트 제공 시스템은 피드백 정보를 기반으로 포인트 클라우드 데이터를 인코딩 및/또는 디코딩할 수 있다. 실시예들에 따른 피드백 정보 및 포인트 클라우드 콘텐트 제공 시스템의 동작은 도 1에서 설명한 피드백 정보 및 동작과 동일하므로 구체적인 설명은 생략한다.
도 3은 실시예들에 따른 포인트 클라우드 비디오 캡쳐 과정의 예시를 나타낸다.
도 3은 도 1 내지 도 2에서 설명한 포인트 클라우드 콘텐트 제공 시스템의 포인트 클라우드 비디오 캡쳐 과정의 예시를 나타낸다.
포인트 클라우드 콘텐트는 다양한 3차원 공간(예를 들면 현실 환경을 나타내는 3차원 공간, 가상 환경을 나타내는3차원 공간 등)에 위치한 오브젝트(object) 및/또는 환경을 나타내는 포인트 클라우드 비디오(이미지들 및/또는 영상들)을 포함한다. 따라서 실시예들에 따른 포인트 클라우드 콘텐트 제공 시스템은 포인트 클라우드 콘텐트를 생성하기 위하여 하나 또는 그 이상의 카메라(camera)들(예를 들면, 깊이 정보를 확보할 수 있는 적외선 카메라, 깊이 정보에 대응되는 색상 정보를 추출 할 수 있는 RGB 카메라 등), 프로젝터(예를 들면 깊이 정보를 확보하기 위한 적외선 패턴 프로젝터 등), 라이다(LiDAR)등을 사용하여 포인트 클라우드 비디오를 캡쳐할 수 있다. 실시예들에 따른 포인트 클라우드 콘텐트 제공 시스템은 깊이 정보로부터 3차원 공간상의 포인트들로 구성된 지오메트리의 형태를 추출하고, 색상정보로부터 각 포인트의 어트리뷰트를 추출하여 포인트 클라우드 데이터를 확보할 수 있다. 실시예들에 따른 이미지 및/또는 영상은 인워드-페이싱(inward-facing) 방식 및 아웃워드-페이싱(outward-facing) 방식 중 적어도 어느 하나 이상을 기반으로 캡쳐될 수 있다.
도3의 왼쪽은 인워드-페이싱 방식을 나타낸다. 인워드-페이싱 방식은 중심 오브젝트를 둘러싸고 위치한 하나 또는 그 이상의 카메라들(또는 카메라 센서들)이 중심 오브젝트를 캡쳐하는 방식을 의미한다. 인워드-페이싱 방식은 핵심 객체에 대한 360도 이미지를 사용자에게 제공하는 포인트 클라우드 콘텐트(예를 들면 사용자에게 객체(예-캐릭터, 선수, 물건, 배우 등 핵심이 되는 객체)의 360도 이미지를 제공하는 VR/AR 콘텐트)를 생성하기 위해 사용될 수 있다.
도3의 오른쪽은 아웃워드-페이싱 방식을 나타낸다. 아웃워드-페이싱 방식은 중심 오브젝트를 둘러싸고 위치한 하나 또는 그 이상의 카메라들(또는 카메라 센서들)이 중심 오브젝트가 아닌 중심 오브젝트의 환경을 캡쳐하는 방식을 의미한다. 아웃워드-페이싱 방식은 사용자의 시점에서 나타나는 주변 환경을 제공하기 위한 포인트 클라우드 콘텐트(예를 들면자율 주행 차량의 사용자에게 제공될 수 있는 외부 환경을 나타내는 콘텐트)를 생성하기 위해 사용될 수 있다.
도면에 도시된 바와 같이, 포인트 클라우드 콘텐트는 하나 또는 그 이상의 카메라들의 캡쳐 동작을 기반으로 생성될 수 있다. 이 경우 각 카메라의 좌표계가 다를 수 있으므로 포인트 클라우드 콘텐트 제공 시스템은 캡쳐 동작 이전에 글로벌 공간 좌표계(global coordinate system)을 설정하기 위하여 하나 또는 그 이상의 카메라들의 캘리브레이션을 수행할 수 있다. 또한 포인트 클라우드 콘텐트 제공 시스템은 상술한 캡쳐 방식으로 캡쳐된 이미지 및/또는 영상과 임의의 이미지 및/또는 영상을 합성하여 포인트 클라우드 콘텐트를 생성할 수 있다. 또한 포인트 클라우드 콘텐트 제공 시스템은 가상 공간을 나타내는 포인트 클라우드 콘텐트를 생성하는 경우 도3에서 설명한 캡쳐 동작을 수행하지 않을 수 있다. 실시예들에 따른 포인트 클라우드 콘텐트 제공 시스템은 캡쳐한 이미지 및/또는 영상에 대해 후처리를 수행할 수 있다. 즉, 포인트 클라우드 콘텐트 제공 시스템은 원하지 않는 영역(예를 들면 배경)을 제거하거나, 캡쳐한 이미지들 및/또는 영상들이 연결된 공간을 인식하고, 구명(spatial hole)이 있는 경우 이를 메우는 동작을 수행할 수 있다.
또한 포인트 클라우드 콘텐트 제공 시스템은 각 카메라로부터 확보한 포인트 클라우드 비디오의 포인트들에 대하여 좌표계 변환을 수행하여 하나의 포인트 클라우드 콘텐트를 생성할 수 있다. 포인트 클라우드 콘텐트 제공 시스템은 각 카메라의 위치 좌표를 기준으로 포인트들의 좌표계 변환을 수행할 수 있다. 이에 따라, 포인트 클라우드 콘텐트 제공 시스템은 하나의 넓은 범위를 나타내는 콘텐트를 생성할 수도 있고, 포인트들의 밀도가 높은 포인트 클라우드 콘텐트를 생성할 수 있다.
도 4는 실시예들에 따른 포인트 클라우드 인코더(Point Cloud Encoder)의 예시를 나타낸다.
도 4는 도 1의 포인트 클라우드 비디오 인코더(10002)의 예시를 나타낸다. 포인트 클라우드 인코더는 네트워크의 상황 혹은 애플리케이션 등에 따라 포인트 클라우드 콘텐트의 질(예를 들어 무손실-lossless, 손실-lossy, near-lossless)을 조절하기 위하여 포인트 클라우드 데이터(예를 들면 포인트들의 포지션들 및/또는 어트리뷰트들)을 재구성하고 인코딩 동작을 수행한다. 포인트 클라우드 콘텐트의 전체 사이즈가 큰 경우(예를 들어 30 fps의 경우 60 Gbps인 포인트 클라우드 콘텐트) 포인트 클라우드 콘텐트 제공 시스템은 해당 콘텐트를 리얼 타임 스트리밍하지 못할 수 있다. 따라서 포인트 클라우드 콘텐트 제공 시스템은 네트워크 환경등에 맞춰 제공하기 위하여 최대 타깃 비트율(bitrate)을 기반으로 포인트 클라우드 콘텐트를 재구성할 수 있다.
도 1 내지 도2 에서 설명한 바와 같이 포인트 클라우드 인코더는 지오메트리 인코딩 및 어트리뷰트 인코딩을 수행할 수 있다. 지오메트리 인코딩은 어트리뷰트 인코딩보다 먼저 수행된다.
실시예들에 따른 포인트 클라우드 인코더는 좌표계 변환부(Transformation Coordinates, 40000), 양자화부(Quantize and Remove Points (Voxelize), 40001), 옥트리 분석부(Analyze Octree, 40002), 서페이스 어프록시메이션 분석부(Analyze Surface Approximation, 40003), 아리스메틱 인코더(Arithmetic Encode, 40004), 지오메트리 리컨스트럭션부(Reconstruct Geometry, 40005), 컬러 변환부(Transform Colors, 40006), 어트리뷰트 변환부(Transfer Attributes, 40007), RAHT 변환부(40008), LOD생성부(Generated LOD, 40009), 리프팅 변환부(Lifting)(40010), 계수 양자화부(Quantize Coefficients, 40011) 및/또는 아리스메틱 인코더(Arithmetic Encode, 40012)를 포함한다.
좌표계 변환부(40000), 양자화부(40001), 옥트리 분석부(40002), 서페이스 어프록시메이션 분석부(40003), 아리스메틱 인코더(40004), 및 지오메트리 리컨스트럭션부(40005)는 지오메트리 인코딩을 수행할 수 있다. 실시예들에 따른 지오메트리 인코딩은 옥트리 지오메트리 코딩, 다이렉트 코딩(direct coding), 트라이숩 지오메트리 인코딩(trisoup geometry encoding) 및 엔트로피 인코딩을 포함할 수 있다. 다이렉트 코딩 및 트라이숩 지오메트리 인코딩은 선택적으로 또는 조합으로 적용된다. 또한 지오메트리 인코딩은 위의 예시에 국한되지 않는다.
도면에 도시된 바와 같이, 실시예들에 따른 좌표계 변환부(40000)는 포지션들을 수신하여 좌표계(coordinate)로 변환한다. 예를 들어, 포지션들은 3차원 공간 (예를 들면XYZ 좌표계로 표현되는 3차원 공간 등)의 위치 정보로 변환될 수 있다. 실시예들에 따른 3차원 공간의 위치 정보는 지오메트리 정보로 지칭될 수 있다.
실시예들에 따른 양자화부(40001)는 지오메트리를 양자화한다. 예를 들어, 양자화부(40001)는 전체 포인트들의 최소 위치 값(예를 들면 X축, Y축, Z축 에 대하여 각축상의 최소 값)을 기반으로 포인트들을 양자화 할 수 있다. 양자화부(40001)는 최소 위치 값과 각 포인트의 위치 값의 차이에 기 설정된 양자 스케일(quatization scale) 값을 곱한 뒤, 내림 또는 올림을 수행하여 가장 가까운 정수 값을 찾는 양자화 동작을 수행한다. 따라서 하나 또는 그 이상의 포인트들은 동일한 양자화된 포지션 (또는 포지션 값)을 가질 수 있다. 실시예들에 따른 양자화부(40001)는 양자화된 포인트들을 재구성하기 위해 양자화된 포지션들을 기반으로 복셀화(voxelization)를 수행한다. 2차원 이미지/비디오 정보를 포함하는 최소 단위는 픽셀(pixel)과 같이, 실시예들에 따른 포인트 클라우드 콘텐트(또는 3차원 포인트 클라우드 비디오)의 포인트들은 하나 또는 그 이상의 복셀(voxel)들에 포함될 수 있다. 복셀은 볼륨(Volume)과 픽셀(Pixel)의 조합어로서, 3차원 공간을 표현하는 축들(예를 들면 X축, Y축, Z축)을 기반으로 3차원 공간을 유닛(unit=1.0) 단위로 나누었을 때 발생하는 3차원 큐빅 공간을 의미한다. 양자화부(40001)는 3차원 공간의 포인트들의 그룹들을 복셀들로 매칭할 수 있다. 실시예들에 따라 하나의 복셀은 하나의 포인트만 포함할 수 있다. 실시예들에 따라 하나의 복셀은 하나 또는 그 이상의 포인트들을 포함할 수 있다. 또한 하나의 복셀을 하나의 포인트로 표현하기 위하여, 하나의 복셀에 포함된 하나 또는 그 이상의 포인트들의 포지션들을 기반으로 해당 복셀의 중앙점(center)의 포지션을 설정할 수 있다. 이 경우 하나의 복셀에 포함된 모든 포지션들의 어트리뷰트들은 통합되어(combined) 해당 복셀에 할당될(assigned)수 있다.
실시예들에 따른 옥트리 분석부(40002)는 복셀을 옥트리(octree) 구조로 나타내기 위한 옥트리 지오메트리 코딩(또는 옥트리 코딩)을 수행한다. 옥트리 구조는 팔진 트리 구조에 기반하여 복셀에 매칭된 포인트들을 표현한다.
실시예들에 따른 서페이스 어프록시메이션 분석부(40003)는 옥트리를 분석하고, 근사화할 수 있다. 실시예들에 따른 옥트리 분석 및 근사화는 효율적으로 옥트리 및 복셀화를 제공하기 위해서 다수의 포인트들을 포함하는 영역에 대해 복셀화하기 위해 분석하는 과정이다.
실시예들에 따른 아리스메틱 인코더(40004)는 옥트리 및/또는 근사화된 옥트리를 엔트로피 인코딩한다. 예를 들어, 인코딩 방식은 아리스메틱(Arithmetic) 인코딩 방법을 포함한다. 인코딩의 결과로 지오메트리 비트스트림이 생성된다.
컬러 변환부(40006), 어트리뷰트 변환부(40007), RAHT 변환부(40008), LOD생성부(40009), 리프팅 변환부(40010), 계수 양자화부(40011) 및/또는 아리스메틱 인코더(40012)는 어트리뷰트 인코딩을 수행한다. 상술한 바와 같이 하나의 포인트는 하나 또는 그 이상의 어트리뷰트들을 가질 수 있다. 실시예들에 따른 어트리뷰트 인코딩은 하나의 포인트가 갖는 어트리뷰트들에 대해 동일하게 적용된다. 다만, 하나의 어트리뷰트(예를 들면 색상)이 하나 또는 그 이상의 요소들을 포함하는 경우, 각 요소마다 독립적인 어트리뷰트 인코딩이 적용된다. 실시예들에 따른 어트리뷰트 인코딩은 컬러 변환 코딩, 어트리뷰트 변환 코딩, RAHT(Region Adaptive Hierarchial Transform) 코딩, 예측 변환(Interpolaration-based hierarchical nearest-neighbour prediction-Prediction Transform) 코딩 및 리프팅 변환 (interpolation-based hierarchical nearest-neighbour prediction with an update/lifting step (Lifting Transform)) 코딩을 포함할 수 있다. 포인트 클라우드 콘텐트에 따라 상술한 RAHT 코딩, 예측 변환 코딩 및 리프팅 변환 코딩은 선택적으로 사용되거나, 하나 또는 그 이상의 코딩들의 조합이 사용될 수 있다. 또한 실시예들에 따른 어트리뷰트 인코딩은 상술한 예시에 국한되는 것은 아니다.
실시예들에 따른 컬러 변환부(40006)는 어트리뷰트들에 포함된 컬러 값(또는 텍스쳐)을 변환하는 컬러 변환 코딩을 수행한다. 예를 들어, 컬러 변환부(40006)는 색상 정보의 포맷을 변환(예를 들어 RGB에서 YCbCr로 변환)할 수 있다. 실시예들에 따른 컬러 변환부(40006)의 동작은 어트리뷰트들에 포함된 컬러값에 따라 옵셔널(optional)하게 적용될 수 있다.
실시예들에 따른 지오메트리 리컨스트럭션부(40005)는 옥트리 및/또는 근사화된 옥트리를 재구성(디컴프레션)한다. 지오메트리 리컨스트럭션부(40005)는 포인트들의 분포를 분석한 결과에 기반하여 옥트리/복셀을 재구성한다. 재구성된 옥트리/복셀은 재구성된 지오메트리(또는 복원된 지오메트리)로 호칭될 수 있다.
실시예들에 따른 어트리뷰트 변환부(40007)는 지오메트리 인코딩이 수행되지 않은 포지션들 및/또는 재구성된 지오메트리를 기반으로 어트리뷰트들을 변환하는 어트리뷰트 변환을 수행한다. 상술한 바와 같이 어트리뷰트들은 지오메트리에 종속되므로, 어트리뷰트 변환부(40007)는 재구성된 지오메트리 정보를 기반으로 어트리뷰트들을 변환할 수 있다. 예를 들어, 어트리뷰트 변환부(40007)는 복셀에 포함된 포인트의 포지션값을 기반으로 그 포지션의 포인트가 가지는 어트리뷰트를 변환할 수 있다. 상술한 바와 같이 하나의 복셀에 포함된 하나 또는 그 이상의 포인트들의 포지션들을 기반으로 해당 복셀의 중앙점의 포지션이 설정된 경우, 어트리뷰트 변환부(40007)는 하나 또는 그 이상의 포인트들의 어트리뷰트들을 변환한다. 트라이숩 지오메트리 인코딩이 수행된 경우, 어트리뷰트 변환부(40007)는 트라이숩 지오메트리 인코딩을 기반으로 어트리뷰트들을 변환할 수 있다.
어트리뷰트 변환부(40007)는 각 복셀의 중앙점의 포지션(또는 포지션 값)으로부터 특정 위치/반경 내에 이웃하고 있는 포인트들의 어트리뷰트들 또는 어트리뷰트 값들(예를 들면 각 포인트의 색상, 또는 반사율 등)의 평균값을 계산하여 어트리뷰트 변환을 수행할 수 있다. 어트리뷰트 변환부(40007)는 평균값 계산시 중앙점으로부터 각 포인트까지의 거리에 따른 가중치를 적용할 수 있다. 따라서 각 복셀은 포지션과 계산된 어트리뷰트(또는 어트리뷰트 값)을 갖게 된다.
어트리뷰트 변환부(40007)는 K-D 트리 또는 몰톤 코드를 기반으로 각 복셀의 중앙점의 포지션으로부터 특정 위치/반경 내에 존재하는 이웃 포인트들을 탐색할 수 있다. K-D 트리는 이진 탐색 트리(binary search tree)로 빠르게 최단 이웃점 탐색(Nearest Neighbor Search-NNS)이 가능하도록 point들을 위치 기반으로 관리할 수 있는 자료 구조를 지원한다. 몰튼 코드는 모든 포인트들의 3차원 포지션을 나타내는 좌표값(예를 들면 (x, y, z))을 비트값으로 나타내고, 비트들을 믹싱하여 생성된다. 예를 들어 포인트의 포지션을 나타내는 좌표값이 (5, 9, 1)일 경우 좌표값의 비트 값은 (0101, 1001, 0001)이다. 비트 값을z, y, x 순서로 비트 인덱스에 맞춰 믹싱하면 010001000111이다. 이 값을 10진수로 나타내면 1095이 된다. 즉, 좌표값이 (5, 9, 1)인 포인트의 몰톤 코드 값은 1095이다. 어트리뷰트 변환부(40007)는 몰튼 코드 값을 기준으로 포인트들을 정렬하고depth-first traversal 과정을 통해 최단 이웃점 탐색(NNS)을 할 수 있다. 어트리뷰트 변환 동작 이후, 어트리뷰트 코딩을 위한 다른 변환 과정에서도 최단 이웃점 탐색(NNS)이 필요한 경우, K-D 트리 또는 몰톤 코드가 활용된다.
도면에 도시된 바와 같이 변환된 어트리뷰트들은 RAHT 변환부(40008) 및/또는 LOD 생성부(40009)로 입력된다.
실시예들에 따른 RAHT 변환부(40008)는 재구성된 지오메트리 정보에 기반하여 어트리뷰트 정보를 예측하는 RAHT코딩을 수행한다. 예를 들어, RAHT 변환부(40008)는 옥트리의 하위 레벨에 있는 노드와 연관된 어트리뷰트 정보에 기반하여 옥트리의 상위 레벨에 있는 노드의 어트리뷰트 정보를 예측할 수 있다.
실시예들에 따른 LOD생성부(40009)는 예측 변환 코딩을 수행하기 위하여LOD(Level of Detail)를 생성한다. 실시예들에 따른 LOD는 포인트 클라우드 콘텐트의 디테일을 나타내는 정도로서, LOD 값이 작을 수록 포인트 클라우드 콘텐트의 디테일이 떨어지고, LOD 값이 클 수록 포인트 클라우드 콘텐트의 디테일이 높음을 나타낸다. 포인트들을 LOD에 따라 분류될 수 있다.
실시예들에 따른 리프팅 변환부(40010)는 포인트 클라우드의 어트리뷰트들을 가중치에 기반하여 변환하는 리프팅 변환 코딩을 수행한다. 상술한 바와 같이 리프팅 변환 코딩은 선택적으로 적용될 수 있다.
실시예들에 따른 계수 양자화부(40011)은 어트리뷰트 코딩된 어트리뷰트들을 계수에 기반하여 양자화한다.
실시예들에 따른 아리스메틱 인코더(40012)는 양자화된 어트리뷰트들을 아리스메틱 코딩 에 기반하여 인코딩한다.
도 4의 포인트 클라우드 인코더의 엘레멘트들은 도면에 도시되지 않았으나 포인트 클라우드 제공 장치에 포함된 하나 또는 그 이상의 메모리들과 통신가능하도록 설정된 하나 또는 그 이상의 프로세서들 또는 집적 회로들(integrated circuits)을 포함하는 하드웨어, 소프트웨어, 펌웨어 또는 이들의 조합으로 구현될 수 있다. 하나 또는 그 이상의 프로세서들은 상술한 도 4의 포인트 클라우드 인코더의 엘레멘트들의 동작들 및/또는 기능들 중 적어도 어느 하나 이상을 수행할 수 있다. 또한 하나 또는 그 이상의 프로세서들은 도 4의 포인트 클라우드 인코더의 엘레멘트들의 동작들 및/또는 기능들을 수행하기 위한 소프트웨어 프로그램들 및/또는 인스트럭션들의 세트를 동작하거나 실행할 수 있다. 실시예들에 따른 하나 또는 그 이상의 메모리들은 하이 스피드 랜덤 억세스 메모리를 포함할 수도 있고, 비휘발성 메모리(예를 들면 하나 또는 그 이상의 마그네틱 디스크 저장 디바이스들, 플래쉬 메모리 디바이스들, 또는 다른 비휘발성 솔리드 스테이트 메모리 디바이스들(Solid-state memory devices)등)를 포함할 수 있다.
도 5 는 실시예들에 따른 복셀의 예시를 나타낸다.
도 5는 X축, Y축, Z축의 3가지 축으로 구성된 좌표계로 표현되는 3차원 공간상에 위치한 복셀을 나타낸다. 도 4에서 설명한 바와 같이 포인트 클라우드 인코더(예를 들면 양자화부(40001) 등)은 복셀화를 수행할 수 있다. 복셀은 3차원 공간을 표현하는 축들(예를 들면 X축, Y축, Z축)을 기반으로 3차원 공간을 유닛(unit=1.0) 단위로 나누었을 때 발생하는 3차원 큐빅 공간을 의미한다. 도 5는 두 개의 극점들(0,0,0) 및 (2d, 2d, 2d) 으로 정의되는 바운딩 박스(cubical axis-aligned bounding box)를 재귀적으로 분할(reculsive subdividing)하는 옥트리 구조를 통해 생성된 복셀의 예시를 나타낸다. 하나의 복셀은 적어도 하나 이상의 포인트를 포함한다. 복셀은 복셀군(voxel group)과의 포지션 관계로부터 공간 좌표를 추정 할 수 있다. 상술한 바와 같이 복셀은 2차원 이미지/영상의 픽셀과 마찬가지로 어트리뷰트(색상 또는 반사율 등)을 가진다. 복셀에 대한 구체적인 설명은 도 4에서 설명한 바와 동일하므로 생략한다.
도 6은 실시예들에 따른 옥트리 및 오큐판시 코드 (occupancy code)의 예시를 나타낸다.
도 1 내지 도 4에서 설명한 바와 같이 포인트 클라우드 콘텐트 제공 시스템(포인트 클라우드 비디오 인코더(10002)) 또는 포인트 클라우드 인코더(예를 들면 옥트리 분석부(40002))는 복셀의 영역 및/또는 포지션을 효율적으로 관리하기 위하여 옥트리 구조 기반의 옥트리 지오메트리 코딩(또는 옥트리 코딩)을 수행한다.
도 6의 상단은 옥트리 구조를 나타낸다. 실시예들에 따른 포인트 클라우드 콘텐트의 3차원 공간은 좌표계의 축들(예를 들면 X축, Y축, Z축)로 표현된다. 옥트리 구조는 두 개의 극점들(0,0,0) 및 (2d, 2d, 2d) 으로 정의되는 바운딩 박스(cubical axis-aligned bounding box)를 재귀적으로 분할(reculsive subdividing)하여 생성된다. 2d는 포인트 클라우드 콘텐트(또는 포인트 클라우드 비디오)의 전체 포인트들을 감싸는 가장 작은 바운딩 박스를 구성하는 값으로 설정될 수 있다. d는 옥트리의 깊이(depth)를 나타낸다. d값은 다음의 식에 따라 결정된다. 하기 식에서 (xint n, yint n, zint n)는 양자화된 포인트들의 포지션들(또는 포지션 값들)을 나타낸다.
d =Ceil(Log2(Max(x_n^int,y_n^int,z_n^int,n=1,…,N)+1))
도 6의 상단의 중간에 도시된 바와 같이, 분할에 따라 전체 3차원 공간은 8개의 공간들로 분할될 수 있다. 분할된 각 공간은 6개의 면들을 갖는 큐브로 표현된다. 도 6 상단의 오른쪽에 도시된 바와 같이 8개의 공간들 각각은 다시 좌표계의 축들(예를 들면 X축, Y축, Z축)을 기반으로 분할된다. 따라서 각 공간은 다시 8개의 작은 공간들로 분할된다. 분할된 작은 공간 역시 6개의 면들을 갖는 큐브로 표현된다. 이와 같은 분할 방식은 옥트리의 리프 노드(leaf node)가 복셀이 될 때까지 적용된다.
도 6의 하단은 옥트리의 오큐판시 코드를 나타낸다. 옥트리의 오큐판시 코드는 하나의 공간이 분할되어 발생되는 8개의 분할된 공간들 각각이 적어도 하나의 포인트를 포함하는지 여부를 나타내기 위해 생성된다. 따라서 하나의 오큐판시 코드는 8개의 자식 노드(child node)들로 표현된다. 각 자식 노드는 분할된 공간의 오큐판시를 나타내며, 자식 노드는 1비트의 값을 갖는다. 따라서 오큐판시 코드는 8 비트 코드로 표현된다. 즉, 자식 노드에 대응하는 공간에 적어도 하나의 포인트가 포함되어 있으면 해당 노드는 1값을 갖는다. 자식 노드에 대응하는 공간에 포인트가 포함되어 있지 않으면 (empty), 해당 노드는 0값을 갖는다. 도 6에 도시된 오큐판시 코드는 00100001이므로 8개의 자식 노드 중 3번째 자식 노드 및 8번째 자식 노드에 대응하는 공간들은 각각 적어도 하나의 포인트를 포함함을 나타낸다. 도면에 도시된 바와 같이 3번째 자식 노드 및 8번째 자식 노드는 각각 8개의 자식 노드를 가지며, 각 자식 노드는 8비트의 오큐판시 코드로 표현된다. 도면은 3번째 자식 노드의 오큐판시 코드가 10000111이고, 8번째 자식 노드의 오큐판시 코드가 01001111임을 나타낸다. 실시예들에 따른 포인트 클라우드 인코더(예를 들면 아리스메틱 인코더(40004))는 오큐판시 코드를 엔트로피 인코딩할 수 있다. 또한 압축 효율을 높이기 위해 포인트 클라우드 인코더는 오큐판시 코드를 인트라/인터 코딩할 수 있다. 실시예들에 따른 수신 장치(예를 들면 수신 장치(10004) 또는 포인트 클라우드 비디오 디코더(10006))는 오큐판시 코드를 기반으로 옥트리를 재구성한다.
실시예들에 따른 포인트 클라우드 인코더(예를 들면 도 4의 포인트 클라우드 인코더, 또는 옥트리 분석부(40002))는 포인트들의 포지션들을 저장하기 위해 복셀화 및 옥트리 코딩을 수행할 수 있다. 하지만 3차원 공간 내 포인트들이 언제나 고르게 분포하는 것은 아니므로, 포인트들이 많이 존재하지 않는 특정 영역이 존재할 수 있다. 따라서 3차원 공간 전체에 대해 복셀화를 수행하는 것은 비효율 적이다. 예를 들어 특정 영역에 포인트가 거의 존재하지 않는다면, 해당 영역까지 복셀화를 수행할 필요가 없다.
따라서 실시예들에 따른 포인트 클라우드 인코더는 상술한 특정 영역(또는 옥트리의 리프 노드를 제외한 노드)에 대해서는 복셀화를 수행하지 않고, 특정 영역에 포함된 포인트들의 포지션을 직접 코딩하는 다이렉트 코딩(Direct coding)을 수행할 수 있다. 실시예들에 따른 다이렉트 코딩 포인트의 좌표들은 다이렉트 코딩 모드(Direct Coding Mode, DCM)으로 호칭된다. 또한 실시예들에 따른 포인트 클라우드 인코더는 표면 모델(surface model)을 기반으로 특정 영역(또는 노드)내의 포인트들의 포지션들을 복셀 기반으로 재구성하는 트라이숩 지오메트리 인코딩(Trisoup geometry encoding)을 수행할 수 있다. 트라이숩 지오메트리 인코딩은 오브젝트의 표현을 삼각형 메쉬(triangle mesh)의 시리즈로 표현하는 지오메트리 인코딩이다. 따라서 포인트 클라우드 디코더는 메쉬 표면으로부터 포인트 클라우드를 생성할 수 있다. 실시예들에 따른 다이렉트 코딩 및 트라이숩 지오메트리 인코딩은 선택적으로 수행될 수 있다. 또한 실시예들에 따른 다이렉트 코딩 및 트라이숩 지오메트리 인코딩은 옥트리 지오메트리 코딩(또는 옥트리 코딩)과 결합되어 수행될 수 있다.
다이렉트 코딩(Direct coding)을 수행하기 위해서는 다이렉트 코딩을 적용하기 위한 직접 모드(direct mode) 사용 옵션이 활성화 되어 있어야 하며, 다이렉트 코딩을 적용할 노드는 리프 노드가 아니고, 특정 노드 내에 한계치(threshold) 이하의 포인트들이 존재해야 한다. 또한 다이텍트 코딩의 대상이 되는 전채 포인트들의 개수는 기설정된 한계값을 넘어서는 안된다. 위의 조건이 만족되면, 실시예들에 따른 포인트 클라우드 인코더(또는 아리스메틱 인코더(40004))는 포인트들의 포지션들(또는 포지션 값들)을 엔트로피 코딩할 수 있다.
실시예들에 따른 포인트 클라우드 인코더(예를 들면 서페이스 어프록시메이션 분석부(40003))는 옥트리의 특정 레벨(레벨은 옥트리의 깊이 d보다는 작은 경우)을 정하고, 그 레벨부터는 표면 모델을 사용하여 노드 영역내의 포인트의 포지션을 복셀 기반으로 재구성하는 트라이숩 지오메트리 인코딩을 수행할 수 있다(트라이숩 모드). 실시예들에 따른 포인트 클라우드 인코더는 트라이숩 지오메트리 인코딩을 적용할 레벨을 지정할 수 있다. 예를 들어, 지정된 레벨이 옥트리의 깊이와 같으면 포인트 클라우드 인코더는 트라이숩 모드로 동작하지 않는다. 즉, 실시예들에 따른 포인트 클라우드 인코더는 지정된 레벨이 옥트리의 깊이값 보다 작은 경우에만 트라이숩 모드로 동작할 수 있다. 실시예들에 따른 지정된 레벨의 노드들의 3차원 정육면체 영역을 블록(block)이라 호칭한다. 하나의 블록은 하나 또는 그 이상의 복셀들을 포함할 수 있다. 블록 또는 복셀은 브릭(brick)에 대응될 수도 있다. 각 블록 내에서 지오메트리는 표면(surface)으로 표현된다. 실시예들에 따른 표면은 최대 한번 블록의 각 엣지(edge, 모서리)와 교차할 수 있다.
하나의 블록은 12개의 엣지들을 가지므로, 하나의 블록 내 적어도 12개의 교차점들이 존재한다. 각 교차점은 버텍스(vertex, 정점 또는 꼭지점)라 호칭된다. 엣지를 따라 존재하는 버텍스은 해당 엣지를 공유하는 모든 블록들 중 그 엣지에 인접한 적어도 하나의 오큐파이드 복셀(occupied voxel)이 있는 경우 감지된다. 실시예들에 따른 오큐파이드 복셀은 포인트를 포함하는 복셀을 의미한다. 엣지를 따라 검출된 버텍스의 포지션은 해당 엣지를 공유하는 모든 블록들 중 해당 엣지에 인접한 모든 복셀들의 엣지에 따른 평균 포지션(the average position along the edge of all voxels)이다.
버텍스가 검출되면 실시예들에 따른 포인트 클라우드 인코더는 엣지의 시작점(x, y, z), 엣지의 방향벡터(Δx, Δy, Δz), 버텍스 위치 값 (엣지 내의 상대적 위치 값)들을 엔트로피코딩할 수 있다. 트라이숩 지오메트리 인코딩이 적용된 경우, 실시예들에 따른 포인트 클라우드 인코더(예를 들면 지오메트리 리컨스트럭션부(40005))는 삼각형 재구성(triangle reconstruction), 업-샘플링(up-sampling), 복셀화 과정을 수행하여 복원된 지오메트리(재구성된 지오메트리)를 생성할 수 있다.
블록의 엣지에 위치한 버텍스들은 블록을 통과하는 표면(surface)를 결정한다. 실시예들에 따른 표면은 비평면 다각형이다. 삼각형 재구성 과정은 엣지의 시작점, 엣지의 방향 벡터와 버텍스의 위치값을 기반으로 삼각형으로 나타내는 표면을 재구성한다. 삼각형 재구성 과정은 다음과 같다. ①각 버텍스들의 중심(centroid)값을 계산하고, ②각 버텍스값에서 중심 값을 뺀 값들에 ③ 자승을 수행하고 그 값을 모두 더한 값을 구한다.
Figure PCTKR2021013722-appb-img-000001
더해진 값의 최소값을 구하고, 최소값이 있는 축에 따라서 프로젝션 (Projection, 투영) 과정을 수행한다. 예를 들어 x 요소(element)가 최소인 경우, 각 버텍스를 블록의 중심을 기준으로 x축으로 프로젝션 시키고, (y, z) 평면으로 프로젝션 시킨다. (y, z)평면으로 프로젝션 시키면 나오는 값이 (ai, bi)라면 atan2(bi, ai)를 통해 θ값을 구하고, θ값을 기준으로 버텍스들(vertices)을 정렬한다. 하기의 표는 버텍스들의 개수에 따라 삼각형을 생성하기 위한 버텍스들의 조합을 나타낸다. 버텍스들은 1부터 n까지의 순서로 정렬된다. 하기 표는4개의 버텍스들에 대하여, 버텍스들의 조합에 따라 두 개의 삼각형들이 구성될 수 있음을 나타낸다. 첫번째 삼각형은 정렬된 버텍스들 중 1, 2, 3번째 버텍스들로 구성되고, 두번째 삼각형은 정렬된 버텍스들 중 3, 4, 1번째 버텍스들로 구성될 수 있다. .
표2-1. Triangles formed from vertices ordered 1,…,n
n triangles
3 (1,2,3)
4 (1,2,3), (3,4,1)
5 (1,2,3), (3,4,5), (5,1,3)
6 (1,2,3), (3,4,5), (5,6,1), (1,3,5)
7 (1,2,3), (3,4,5), (5,6,7), (7,1,3), (3,5,7)
8 (1,2,3), (3,4,5), (5,6,7), (7,8,1), (1,3,5), (5,7,1)
9 (1,2,3), (3,4,5), (5,6,7), (7,8,9), (9,1,3), (3,5,7), (7,9,3)
10 (1,2,3), (3,4,5), (5,6,7), (7,8,9), (9,10,1), (1,3,5), (5,7,9), (9,1,5)
11 (1,2,3), (3,4,5), (5,6,7), (7,8,9), (9,10,11), (11,1,3), (3,5,7), (7,9,11), (11,3,7)
12 (1,2,3), (3,4,5), (5,6,7), (7,8,9), (9,10,11), (11,12,1), (1,3,5), (5,7,9), (9,11,1), (1,5,9)
업샘플링 과정은 삼각형의 엣지를 따라서 중간에 점들을 추가하여 복셀화 하기 위해서 수행된다. 업샘플링 요소 값(upsampling factor)과 블록의 너비를 기준으로 추가 점들을 생성한다. 추가점은 리파인드 버텍스(refined vertice)라고 호칭된다. 실시예들에 따른 포인트 클라우드 인코더는 리파인드 버텍스들을 복셀화할 수 있다. 또한 포인트 클라우드 인코더는 복셀화 된 포지션(또는 포지션 값)을 기반으로 어트리뷰트 인코딩을 수행할 수 있다.
도 7은 실시예들에 따른 이웃 노드 패턴의 예시를 나타낸다.
포인트 클라우드 비디오의 압축 효율을 증가시키기 위하여 실시예들에 따른 포인트 클라우드 인코더는 콘텍스트 어탭티브 아리스메틱 (context adaptive arithmetic) 코딩을 기반으로 엔트로피 코딩을 수행할 수 있다.
도 1 내지 도 6에서 설명한 바와 같이 포인트 클라우드 콘텐트 제공 시스템 또는 포인트 클라우드 인코더(예를 들면 포인트 클라우드 비디오 인코더(10002), 도 4의 포인트 클라우드 인코더 또는 아리스메틱 인코더(40004))는 오큐판시 코드를 곧바로 엔트로피 코딩할 수 있다. 또한 포인트 클라우드 콘텐트 제공 시스템 또는 포인트 클라우드 인코더는 현재 노드의 오큐판시 코드와 이웃 노드들의 오큐판시를 기반으로 엔트로피 인코딩(인트라 인코딩)을 수행하거나, 이전 프레임의 오큐판시 코드를 기반으로 엔트로피 인코딩(인터 인코딩)을 수행할 수 있다. 실시예들에 따른 프레임은 동일한 시간에 생성된 포인트 클라우드 비디오의 집합을 의미한다. 실시예들에 따른 인트라 인코딩/인터 인코딩의 압축 효율은 참조하는 이웃 노드들의 개수에 따라 달라질 수 있다. 비트가 커지면 복잡해지지만 한쪽으로 치우치게 만들어서 압축 효율이 높아질 수 있다. 예를 들어 3-bit context를 가지면, 2의 3승인 = 8가지 방법으로 코딩 해야 한다. 나누어 코딩을 하는 부분은 구현의 복잡도에 영향을 준다. 따라서 압축의 효율과 복잡도의 적정 수준을 맞출 필요가 있다.
도7은 이웃 노드들의 오큐판시를 기반으로 오큐판시 패턴을 구하는 과정을 나타낸다. 실시예들에 따른 포인트 클라우드 인코더는 옥트리의 각 노드의 이웃 노드들의 오큐판시(occupancy)를 판단하고 이웃 노드 패턴(neighbor pattern) 값을 구한다. 이웃 노드 패턴은 해당 노드의 오큐판시 패턴을 추론하기 위해 사용된다. 도7의 왼쪽은 노드에 대응하는 큐브(가운데 위치한 큐브) 및 해당 큐브와 적어도 하나의 면을 공유하는 6개의 큐브들(이웃 노드들)을 나타낸다. 도면에 도시된 노드들은 같은 뎁스(깊이)의 노드들이다. 도면에 도시된 숫자는 6개의 노드들 각각과 연관된 가중치들(1, 2, 4, 8, 16, 32, 등)을 나타낸다. 각 가중치는 이웃 노드들의 위치에 따라 순차적으로 부여된다.
도 7의 오른쪽은 이웃 노드 패턴 값을 나타낸다. 이웃 노드 패턴 값은 오큐파이드 이웃 노드(포인트를 갖는 이웃 노드)의 가중치가 곱해진 값들의 합이다. 따라서 이웃 노드 패턴 값은 0에서 63까지의 값을 갖는다. 이웃 노드 패턴 값이 0 인 경우, 해당 노드의 이웃 노드 중 포인트를 갖는 노드(오큐파이드 노드)가 없음을 나타낸다. 이웃 노드 패턴 값이 63인 경우, 이웃 노드들이 전부 오큐파이드 노드들임을 나타낸다. 도면에 도시된 바와 같이 가중치1, 2, 4, 8가 부여된 이웃 노드들은 오큐파이드 노드들이므로, 이웃 노드 패턴 값은 1, 2, 4, 8을 더한 값인 15이다. 포인트 클라우드 인코더는 이웃 노드 패턴 값에 따라 코딩을 수행할 수 있다(예를 들어 이웃 노드 패턴 값이 63인 경우, 64가지의 코딩을 수행). 실시예들에 따라 포인트 클라우드 인코더는 이웃 노드 패턴 값을 변경 (예를 들면 64를 10 또는 6으로 변경하는 테이블을 기반으로) 하여 코딩의 복잡도를 줄일 수 있다.
도 8은 실시예들에 따른 LOD 별 포인트 구성의 예시를 나타낸다.
도 1 내지 도 7에서 설명한 바와 같이, 어트리뷰트 인코딩이 수행되기 전 인코딩된 지오메트리는 재구성(디컴프레션) 된다. 다이렉트 코딩이 적용된 경우, 지오메트리 재구성 동작은 다이렉트 코딩된 포인트들의 배치를 변경하는 것을 포함할 수 있다(예를 들면 다이렉트 코딩된 포인트들을 포인트 클라우드 데이터의 앞쪽에 배치). 트라이숩 지오메트리 인코딩이 적용된 경우, 지오메트리 재구성 과정은 삼각형 재구성, 업샘플링, 복셀화 과정을 어트리뷰트는 지오메트리에 종속되므로, 어트리뷰트 인코딩은 재구성된 지오메트리를 기반으로 수행된다.
포인트 클라우드 인코더(예를 들면 LOD 생성부(40009))는 포인트들을 LOD별로 분류(reorganization)할 수 있다. 도면은 LOD에 대응하는 포인트 클라우드 콘텐트를 나타낸다. 도면의 왼쪽은 오리지널 포인트 클라우드 콘텐트를 나타낸다. 도면의 왼쪽에서 두번째 그림은 가장 낮은 LOD의 포인트들의 분포를 나타내며, 도면의 가장 오른쪽 그림은 가장 높은 LOD의 포인트들의 분포를 나타낸다. 즉, 가장 낮은 LOD의 포인트들은 드문드문(sparse) 분포하며, 가장 높은 LOD의 포인트들은 촘촘히 분포한다. 즉, 도면 하단에 표시된 화살표 방향에 따라 LOD가 증가할수록 포인트들 간의 간격(또는 거리)는 더 짧아진다.
도 9는 실시예들에 따른 LOD 별 포인트 구성의 예시를 나타낸다.
도 1 내지 도 8에서 설명한 바와 같이 포인트 클라우드 콘텐트 제공 시스템, 또는 포인트 클라우드 인코더(예를 들면 포인트 클라우드 비디오 인코더(10002), 도 4의 포인트 클라우드 인코더, 또는 LOD 생성부(40009))는 LOD를 생성할 수 있다. LOD는 포인트들을 설정된 LOD 거리 값(또는 유클리이디언 디스턴스(Euclidean Distance)의 세트)에 따라 리파인먼트 레벨들(refinement levels)의 세트로 재정열(reorganize)하여 생성된다. LOD 생성 과정은 포인트 클라우드 인코더뿐만 아니라 포인트 클라우드 디코더에서도 수행된다.
도 9의 상단은 3차원 공간에 분포된 포인트 클라우드 콘텐트의 포인트들의 예시(P0내지 P9)를 나타낸다. 도 9의 오리지널 오더(Original order)는 LOD 생성전 포인트들 P0내지 P9의 순서를 나타낸다. 도 9의 LOD 기반 오더 (LOD based order)는 LOD 생성에 따른 포인트들의 순서를 나타낸다. 포인트들은 LOD별 재정열된다. 또한 높은 LOD는 낮은 LOD에 속한 포인트들을 포함한다. 도 9에 도시된 바와 같이 LOD0는 P0, P5, P4 및 P2를 포함한다. LOD1은 LOD0의 포인트들과 P1, P6 및 P3를 포함한다. LOD2는 LOD0의 포인트들, LOD1의 포인트들 및 P9, P8 및 P7을 포함한다.
도 4에서 설명한 바와 같이 실시예들에 따른 포인트 클라우드 인코더는 예측 변환 코딩, 리프팅 변환 코딩 및 RAHT 변환 코딩을 선택적으로 또는 조합하여 수행할 수 있다.
실시예들에 따른 포인트 클라우드 인코더는 포인트들에 대한 예측기(predictor)를 생성하여 각 포인트의 예측 어트리뷰트(또는 예측 어트리뷰트값)을 설정하기 위한 예측 변환 코딩을 수행할 수 있다. 즉, N개의 포인트들에 대하여 N개의 예측기들이 생성될 수 있다. 실시예들에 따른 예측기는 각 포인트의 LOD 값과 LOD별 설정된 거리 내에 존재하는 이웃 포인트들에 대한 인덱싱 정보 및 이웃 포인트들까지의 거리 값을 기반으로 가중치(=1/거리) 값을 계산하할 수 있다.
실시예들에 따른 예측 어트리뷰트(또는 어트리뷰트값)은 각 포인트의 예측기에 설정된 이웃 포인트들의 어트리뷰트들(또는 어트리뷰트 값들, 예를 들면 색상, 반사율 등)에 각 이웃 포인트까지의 거리를 기반으로 계산된 가중치(또는 가중치값)을 곱한 값의 평균값으로 설정된다. 실시예들에 따른 포인트 클라우드 인코더(예를 들면 계수 양자화부(40011)는 각 포인트의 어트리뷰트(어트리뷰트 값)에서 예측 어트리뷰트(어트리뷰트값)을 뺀 잔여값들(residuals, 잔여 어트리뷰트, 잔여 어트리뷰트값, 어트리뷰트 예측 잔여값 등으로 호칭할 수 있다)을 양자화(quatization) 및 역양자화(inverse quantization)할 수 있다. 양자화 과정은 다음의 표에 나타난 바와 같다.
표. Attribute prediction residuals quantization pseudo code
int PCCQuantization(int value, int quantStep) {
if( value >=0) {
return floor(value / quantStep + 1.0 / 3.0);
} else {
return -floor(-value / quantStep + 1.0 / 3.0);
}
}
표. Attribute prediction residuals inverse quantization pseudo code
int PCCInverseQuantization(int value, int quantStep) {
if( quantStep ==0) {
return value;
} else {
return value * quantStep;
}
}
실시예들에 따른 포인트 클라우드 인코더(예를 들면 아리스메틱 인코더(40012)는 각 포인트의 예측기에 이웃한 포인트들이 있는 경우, 상술한 바와 같이 양자화 및 역양자화된 잔여값을 엔트로피 코딩 할 수 있다. 실시예들에 따른 포인트 클라우드 인코더(예를 들면 아리스메틱 인코더(40012)는 각 포인트의 예측기에 이웃한 포인트들이 없으면 상술한 과정을 수행하지 않고 해당 포인트의 어트리뷰트들을 엔트로피 코딩할 수 있다.
실시예들에 따른 포인트 클라우드 인코더 (예를 들면 리프팅 변환부(40010)는 각 포인트의 예측기를 생성하고, 예측기에 계산된 LOD를 설정 및 이웃 포인트들을 등록하고, 이웃 포인트들까지의 거리에 따른 가중치를 설정하여 리프팅 변환 코딩을 수행할 수 있다. 실시예들에 따른 리프팅 변환 코딩은 상술한 예측 변환 코딩과 유사하나, 어트리뷰트값에 가중치를 누적 적용한다는 점에서 차이가 있다. 실시예들에 따른 어트리뷰트값에 가중치를 누적 적용하는 과정은 다음과 같다.
1) 각 포인트의 가중치 값을 저장하는 배열 QW(QuantizationWieght)를 생성한다. QW의 모든 요소들의 초기값은 1.0이다. 예측기에 등록된 이웃 노드의 예측기 인덱스의 QW 값에 현재 포인트의 예측기의 가중치를 곱한 값을 더한다.
2) 리프트 예측 과정: 예측된 어트리뷰트 값을 계산하기 위하여 포인트의 어트리뷰트 값에 가중치를 곱한 값을 기존 어트리뷰트값에서 뺀다.
3) 업데이트웨이트(updateweight) 및 업데이트(update)라는 임시 배열들을 생성하고 임시 배열들을 0으로 초기화한다.
4) 모든 예측기에 대해서 계산된 가중치에 예측기 인덱스에 해당하는 QW에 저장된 가중치를 추가로 곱해서 산출된 가중치를 업데이트웨이트 배열에 이웃 노드의 인덱스로 누적으로 합산한다. 업데이트 배열에는 이웃 노드의 인덱스의 어트리뷰트 값에 산출된 가중치를 곱한 값을 누적 합산한다.
5) 리프트 업데이트 과정: 모든 예측기에 대해서 업데이트 배열의 어트리뷰트 값을 예측기 인덱스의 업데이트웨이트 배열의 가중치 값으로 나누고, 나눈 값에 다시 기존 어트리뷰트 값을 더한다.
6) 모든 예측기에 대해서, 리프트 업데이트 과정을 통해 업데이트된 어트리뷰트 값에 리프트 예측 과정을 통해 업데이트 된(QW에 저장된) 가중치를 추가로 곱하여 예측 어트리뷰트 값을 산출한다. 실시예들에 따른 포인트 클라우드 인코더(예를 들면 계수 양자화부(40011))는 예측 어트리뷰트 값을 양자화한다. 또한 포인트 클라우드 인코더(예를 들면 아리스메틱 인코더(40012))는 양자화된 어트리뷰트 값을 엔트로피 코딩한다.
실시예들에 따른 포인트 클라우드 인코더(예를 들면 RAHT 변환부(40008))는 옥트리의 하위 레벨에 있는 노드와 연관된 어트리뷰트를 사용하여 상위 레벨의 노드들의 어트리뷰트를 에측하는 RAHT 변환 코딩을 수행할 수 있다. RAHT 변환 코딩은 옥트리 백워드 스캔을 통한 어트리뷰트 인트라 코딩의 예시이다. 실시예들에 따른 포인트 클라우드 인코더는 복셀에서 전체 영역으로 스캔하고, 각 스텝에서 복셀을 더 큰 블록으로 합치면서 루트 노드까지의 병합 과정을 반복수행한다. 실시예들에 따른 병합 과정은 오큐파이드 노드에 대해서만 수행된다. 엠티 노드(empty node)에 대해서는 병합 과정이 수행되지 않으며, 엠티 노드의 바로 상위 노드에 대해 병합 과정이 수행된다.
하기의 식은 RAHT 변환 행렬을 나타낸다. gl x, y, z 는 레벨 l에서의 복셀들의 평균 어트리뷰트 값을 나타낸다. gl x, y, z 는 gl+1 2x, y, z와 gl+1 2x+1, y, z로부터 계산될 수 있다. gl 2x, y, z 와 gl 2x+1, y, z 의 가중치를 w1=w l 2x, y, z 과 w2=w l 2x+1, y, z 이다.
Figure PCTKR2021013722-appb-img-000002
gl-1 x, y, z는 로-패스(low-pass) 값으로, 다음 상위 레벨에서의 병합 과정에서 사용된다. hl-1 x, y, z은 하이패스 계수(high-pass coefficients)이며, 각 스텝에서의 하이패스 계수들은 양자화되어 엔트로피 코딩 된다(예를 들면 아리스메틱 인코더(400012)의 인코딩). 가중치는 w l-1 x, y, z=w l 2x, y, z+w l 2x+1, y, z로 계산된다. 루트 노드는 마지막 g1 0, 0, 0 과 g1 0, 0, 1을 통해서 다음과 같이 생성된다.,
Figure PCTKR2021013722-appb-img-000003
도 10은 실시예들에 따른 포인트 클라우드 디코더(Point Cloud Decoder)의 예시를 나타낸다.
도 10에 도시된 포인트 클라우드 디코더는 도 1에서 설명한 포인트 클라우드 비디오 디코더(10006) 예시로서, 도 1에서 설명한 포인트 클라우드 비디오 디코더(10006)의 동작 등과 동일 또는 유사한 동작을 수행할 수 있다. 도면이 도시된 바와 같이 포인트 클라우드 디코더는 하나 또는 그 이상의 비트스트림(bitstream)들에 포함된 지오메트리 비트스트림(geometry bitstream) 및 어트리뷰트 비트스트림(attribute bitstream)을 수신할 수 있다. 포인트 클라우드 디코더는 지오메트리 디코더(geometry decoder)및 어트리뷰트 디코더(attribute decoder)를 포함한다. 지오메트리 디코더는 지오메트리 비트스트림에 대해 지오메트리 디코딩을 수행하여 디코딩된 지오메트리(decoded geometry)를 출력한다. 어트리뷰트 디코더는 디코딩된 지오메트리 및 어트리뷰트 비트스트림을 기반으로 어트리뷰트 디코딩을 수행하여 디코딩된 어트리뷰트들(decoded attributes)을 출력한다. 디코딩된 지오메트리 및 디코딩된 어트리뷰트들은 포인트 클라우드 콘텐트를 복원(decoded point cloud)하는데 사용된다.
도 11은 실시예들에 따른 포인트 클라우드 디코더(Point Cloud Decoder)의 예시를 나타낸다.
도 11에 도시된 포인트 클라우드 디코더는 도 10에서 설명한 포인트 클라우드 디코더의 예시로서, 도 1 내지 도 9에서 설명한 포인트 클라우드 인코더의 인코딩 동작의 역과정인 디코딩 동작을 수행할 수 있다.
도 1 및 도 10에서 설명한 바와 같이 포인트 클라우드 디코더는 지오메트리 디코딩 및 어트리뷰트 디코딩을 수행할 수 있다. 지오메트리 디코딩은 어트리뷰트 디코딩보다 먼저 수행된다.
실시예들에 따른 포인트 클라우드 디코더는 아리스메틱 디코더(arithmetic decode, 11000), 옥트리 합성부(synthesize octree, 11001), 서페이스 오프록시메이션 합성부(synthesize surface approximation, 11002), 지오메트리 리컨스트럭션부(reconstruct geometry, 11003), 좌표계 역변환부(inverse transform coordinates, 11004), 아리스메틱 디코더(arithmetic decode, 11005), 역양자화부(inverse quantize, 11006), RAHT변환부(11007), LOD생성부(generate LOD, 11008), 인버스 리프팅부(Inverse lifting, 11009), 및/또는 컬러 역변환부(inverse transform colors, 11010)를 포함한다.
아리스메틱 디코더(11000), 옥트리 합성부(11001), 서페이스 오프록시메이션 합성부(11002), 지오메트리 리컨스럭션부(11003), 좌표계 역변환부(11004)는 지오메트리 디코딩을 수행할 수 있다. 실시예들에 따른 지오메트리 디코딩은 다이렉트 코딩(direct coding) 및 트라이숩 지오메트리 디코딩(trisoup geometry decoding)을 포함할 수 있다. 다이렉트 코딩 및 트라이숩 지오메트리 디코딩은 선택적으로 적용된다. 또한 지오메트리 디코딩은 위의 예시에 국한되지 않으며, 도 1 내지 도 9에서 설명한 지오메트리 인코딩의 역과정으로 수행된다.
실시예들에 따른 아리스메틱 디코더(11000)는 수신한 지오메트리 비트스트림을 아리스메틱 코딩을 기반으로 디코딩한다. 아리스메틱 디코더(11000)의 동작은 아리스메틱 인코더(40004)의 역과정에 대응한다.
실시예들에 따른 옥트리 합성부(11001)는 디코딩된 지오메트리 비트스트림으로부터 (또는 디코딩 결과 확보된 지오메트리에 관한 정보)로부터 오큐판시 코드를 획득하여 옥트리를 생성할 수 있다. 오큐판시 코드에 대한 구체적인 설명은 도 1 내지 도 9에서 설명한 바와 같다.
실시예들에 따른 서페이스 오프록시메이션 합성부(11002)는 트라이숩 지오메트리 인코딩이 적용된 경우, 디코딩된 지오메트리 및/또는 생성된 옥트리에 기반하여 서페이스를 합성할 수 있다.
실시예들에 따른 지오메트리 리컨스트럭션부(11003)는 서페이스 및 또는 디코딩된 지오메트리에 기반하여 지오메트리를 재생성할 수 있다. 도 1 내지 도 9에서 설명한 바와 같이, 다이렉트 코딩 및 트라이숩 지오메트리 인코딩은 선택적으로 적용된다. 따라서 지오메트리 리컨스트럭션부(11003)는 다이렉트 코딩이 적용된 포인트들의 포지션 정보들을 직접 가져와서 추가한다. 또한, 트라이숩 지오메트리 인코딩이 적용된 경우, 지오메트리 리컨스트럭션부(11003)는 지오메트리 리컨스트럭션부(40005)의 재구성 동작, 예를 들면 삼각형 재구성, 업-샘플링, 복셀화 동작을 수행하여 지오메트리를 복원할 수 있다. 구체적인 내용은 도 6에서 설명한 바와 동일하므로 생략한다. 복원된 지오메트리는 어트리뷰트들을 포함하지 않는 포인트 클라우드 픽쳐 또는 프레임을 포함할 수 있다.
실시예들에 따른 좌표계 역변환부(11004)는 복원된 지오메트리를 기반으로 좌표계를 변환하여 포인트들의 포지션들을 획득할 수 있다.
아리스메틱 디코더(11005), 역양자화부(11006), RAHT 변환부(11007), LOD생성부(11008), 인버스 리프팅부(11009), 및/또는 컬러 역변환부(11010)는 도 10에서 설명한 어트리뷰트 디코딩을 수행할 수 있다. 실시예들에 따른 어트리뷰트 디코딩은 RAHT(Region Adaptive Hierarchial Transform) 디코딩, 예측 변환(Interpolaration-based hierarchical nearest-neighbour prediction-Prediction Transform) 디코딩 및 리프팅 변환 (interpolation-based hierarchical nearest-neighbour prediction with an update/lifting step (Lifting Transform)) 디코딩을 포함할 수 있다. 상술한 3가지의 디코딩들은 선택적으로 사용되거나, 하나 또는 그 이상의 디코딩들의 조합이 사용될 수 있다. 또한 실시예들에 따른 어트리뷰트 디코딩은 상술한 예시에 국한되는 것은 아니다.
실시예들에 따른 아리스메틱 디코더(11005)는 어트리뷰트 비트스트림을 아리스메틱 코딩으로 디코딩한다.
실시예들에 따른 역양자화부(11006)는 디코딩된 어트리뷰트 비트스트림 또는 디코딩 결과 확보한 어트리뷰트에 대한 정보를 역양자화(inverse quantization)하고 역양자화된 어트리뷰트들(또는 어트리뷰트 값들)을 출력한다. 역양자화는 포인트 클라우드 인코더의 어트리뷰트 인코딩에 기반하여 선택적으로 적용될 수 있다.
실시예들에 따라 RAHT 변환부(11007), LOD생성부(11008) 및/또는 인버스 리프팅부(11009)는 재구성된 지오메트리 및 역양자화된 어트리뷰트들을 처리할 수 있다. 상술한 바와 같이 RAHT 변환부(11007), LOD생성부(11008) 및/또는 인버스 리프팅부(11009)는 포인트 클라우드 인코더의 인코딩에 따라 그에 대응하는 디코딩 동작을 선택적으로 수행할 수 있다.
실시예들에 따른 컬러 역변환부(11010)는 디코딩된 어트리뷰트들에 포함된 컬러 값(또는 텍스쳐)을 역변환하기 위한 역변환 코딩을 수행한다. 컬러 역변환부(11010)의 동작은 포인트 클라우드 인코더의 컬러 변환부(40006)의 동작에 기반하여 선택적으로 수행될 수 있다.
도 11의 포인트 클라우드 디코더의 엘레멘트들은 도면에 도시되지 않았으나 포인트 클라우드 제공 장치에 포함된 하나 또는 그 이상의 메모리들과 통신가능하도록 설정된 하나 또는 그 이상의 프로세서들 또는 집적 회로들(integrated circuits)을 포함하는 하드웨어, 소프트웨어, 펌웨어 또는 이들의 조합으로 구현될 수 있다. 하나 또는 그 이상의 프로세서들은 상술한 도 11의 포인트 클라우드 디코더의 엘레멘트들의 동작들 및/또는 기능들 중 적어도 어느 하나 이상을 수행할 수 있다. 또한 하나 또는 그 이상의 프로세서들은 도11의 포인트 클라우드 디코더의 엘레멘트들의 동작들 및/또는 기능들을 수행하기 위한 소프트웨어 프로그램들 및/또는 인스트럭션들의 세트를 동작하거나 실행할 수 있다.
도 12는 실시예들에 따른 전송 장치의 예시이다.
도 12에 도시된 전송 장치는 도 1의 전송장치(10000) (또는 도 4의 포인트 클라우드 인코더)의 예시이다. 도 12에 도시된 전송 장치는 도 1 내지 도 9에서 설명한 포인트 클라우드 인코더의 동작들 및 인코딩 방법들과 동일 또는 유사한 동작들 및 방법들 중 적어도 어느 하나 이상을 수행할 수 있다. 실시예들에 따른 전송 장치는 데이터 입력부(12000), 양자화 처리부(12001), 복셀화 처리부(12002), 옥트리 오큐판시 코드 (Occupancy code) 생성부(12003), 표면 모델 처리부(12004), 인트라/인터 코딩 처리부(12005), 아리스메틱 (Arithmetic) 코더(12006), 메타데이터 처리부(12007), 색상 변환 처리부(12008), 어트리뷰트 변환 처리부(또는 속성 변환 처리부)(12009), 예측/리프팅/RAHT 변환 처리부(12010), 아리스메틱 (Arithmetic) 코더(12011) 및/또는 전송 처리부(12012)를 포함할 수 있다.
실시예들에 따른 데이터 입력부(12000)는 포인트 클라우드 데이터를 수신 또는 획득한다. 데이터 입력부(12000)는 포인트 클라우드 비디오 획득부(10001)의 동작 및/또는 획득 방법(또는 도2에서 설명한 획득과정(20000))과 동일 또는 유사한 동작 및/또는 획득 방법을 수행할 수 있다.
데이터 입력부(12000), 양자화 처리부(12001), 복셀화 처리부(12002), 옥트리 오큐판시 코드 (Occupancy code) 생성부(12003), 표면 모델 처리부(12004), 인트라/인터 코딩 처리부(12005), Arithmetic 코더(12006)는 지오메트리 인코딩을 수행한다. 실시예들에 따른 지오메트리 인코딩은 도 1 내지 도 9에서 설명한 지오메트리 인코딩과 동일 또는 유사하므로 구체적인 설명은 생략한다.
실시예들에 따른 양자화 처리부(12001)는 지오메트리(예를 들면 포인트들의 위치값, 또는 포지션값)을 양자화한다. 양자화 처리부(12001)의 동작 및/또는 양자화는 도 4에서 설명한 양자화부(40001)의 동작 및/또는 양자화와 동일 또는 유사하다. 구체적인 설명은 도 1 내지 도 9에서 설명한 바와 동일하다.
실시예들에 따른 복셀화 처리부(12002)는 양자화된 포인트들의 포지션 값을 복셀화한다. 복셀화 처리부(120002)는 도 4에서 설명한 양자화부(40001)의 동작 및/또는 복셀화 과정과 동일 또는 유사한 동작 및/또는 과정을 수행할 수 있다. 구체적인 설명은 도 1 내지 도 9에서 설명한 바와 동일하다.
실시예들에 따른 옥트리 오큐판시 코드 생성부(12003)는 복셀화된 포인트들의 포지션들을 옥트리 구조를 기반으로 옥트리 코딩을 수행한다. 옥트리 오큐판시 코드 생성부(12003)는 오큐판시 코드를 생성할 수 있다. 옥트리 오큐판시 코드 생성부(12003)는 도 4 및 도 6에서 설명한 포인트 클라우드 인코더 (또는 옥트리 분석부(40002))의 동작 및/또는 방법과 동일 또는 유사한 동작 및/또는 방법을 수행할 수 있다. 구체적인 설명은 도 1 내지 도 9에서 설명한 바와 동일하다.
실시예들에 따른 표면 모델 처리부(12004)는 표면 모델(surface model)을 기반으로 특정 영역(또는 노드)내의 포인트들의 포지션들을 복셀 기반으로 재구성하는 트라이숩 지오메트리 인코딩을 수행할 수 있다. 포면 모델 처리부(12004)는 도 4 에서 설명한 포인트 클라우드 인코더(예를 들면 서페이스 어프록시메이션 분석부(40003))의 동작 및/또는 방법과 동일 또는 유사한 동작 및/또는 방법을 수행할 수 있다. 구체적인 설명은 도 1 내지 도 9에서 설명한 바와 동일하다.
실시예들에 따른 인트라/인터 코딩 처리부(12005)는 포인트 클라우드 데이터를 인트라/인터 코딩할 수 있다. 인트라/인터 코딩 처리부(12005)는 도 7에서 설명한 인트라/인터 코딩과 동일 또는 유사한 코딩을 수행할 수 있다. 구체적인 설명은 도 7에서 설명한 바와 동일하다. 실시예들에 따라 인트라/인터 코딩 처리부(12005)는 아리스메틱 코더(12006)에 포함될 수 있다.
실시예들에 따른 아리스메틱 코더(12006)는 포인트 클라우드 데이터의 옥트리 및/또는 근사화된 옥트리를 엔트로피 인코딩한다. 예를 들어, 인코딩 방식은 아리스메틱(Arithmetic) 인코딩 방법을 포함한다. . 아리스메틱 코더(12006)는 아리스메틱 인코더(40004)의 동작 및/또는 방법과 동일 또는 유사한 동작 및/또는 방법을 수행한다.
실시예들에 따른 메타데이터 처리부(12007)는 포인트 클라우드 데이터에 관한 메타데이터, 예를 들어 설정 값 등을 처리하여 지오메트리 인코딩 및/또는 어트리뷰트 인코딩 등 필요한 처리 과정에 제공한다. 또한 실시예들에 따른 메타데이터 처리부(12007)는 지오메트리 인코딩 및/또는 어트리뷰트 인코딩과 관련된 시그널링 정보를 생성 및/또는 처리할 수 있다. 실시예들에 따른 시그널링 정보는 지오메트리 인코딩 및/또는 어트리뷰트 인코딩과 별도로 인코딩처리될 수 있다. 또한 실시예들에 따른 시그널링 정보는 인터리빙 될 수도 있다.
색상 변환 처리부(12008), 어트리뷰트 변환 처리부(12009), 예측/리프팅/RAHT 변환 처리부(12010), 아리스메틱 (Arithmetic) 코더(12011)는 어트리뷰트 인코딩을 수행한다. 실시예들에 따른 어트리뷰트 인코딩은 도 1 내지 도 9에서 설명한 어트리뷰트 인코딩과 동일 또는 유사하므로 구체적인 설명은 생략한다.
실시예들에 따른 색상 변환 처리부(12008)는 어트리뷰트들에 포함된 색상값을 변환하는 색상 변환 코딩을 수행한다. 색상 변환 처리부(12008)는 재구성된 지오메트리를 기반으로 색상 변환 코딩을 수행할 수 있다. 재구성된 지오메트리에 대한 설명은 도 1 내지 도 9에서 설명한 바와 동일하다. 또한 도 4에서 설명한 컬러 변환부(40006)의 동작 및/또는 방법과 동일 또는 유사한 동작 및/또는 방법을 수행한다. 구체적인 설명은 생략한다.
실시예들에 따른 어트리뷰트 변환 처리부(12009)는 지오메트리 인코딩이 수행되지 않은 포지션들 및/또는 재구성된 지오메트리를 기반으로 어트리뷰트들을 변환하는 어트리뷰트 변환을 수행한다. 어트리뷰트 변환 처리부(12009)는 도 4에 설명한 어트리뷰트 변환부(40007)의 동작 및/또는 방법과 동일 또는 유사한 동작 및/또는 방법을 수행한다. 구체적인 설명은 생략한다. 실시예들에 따른 예측/리프팅/RAHT 변환 처리부(12010)는 변환된 어트리뷰트들을 RAHT 코딩, 예측 변환 코딩 및 리프팅 변환 코딩 중 어느 하나 또는 조합하여 코딩할 수 있다. 예측/리프팅/RAHT 변환 처리부(12010)는 도 4에서 설명한 RAHT 변환부(40008), LOD 생성부(40009) 및 리프팅 변환부(40010)의 동작들과 동일 또는 유사한 동작들 중 적어도 하나 이상을 수행한다. 또한 예측 변환 코딩, 리프팅 변환 코딩 및 RAHT 변환 코딩에 대한 설명은 도 1 내지 도 9에서 설명한 바와 동일하므로 구체적인 설명은 생략한다.
실시예들에 따른 아리스메틱 코더(12011)는 코딩된 어트리뷰트들을 아리스메틱 코딩에 기반하여 인코딩할 수 있다. 아리스메틱 코더(12011)는 아리스메틱 인코더(400012)의 동작 및/또는 방법과 동일 또는 유사한 동작 및/또는 방법을 수행한다.
실시예들에 따른 전송 처리부(12012)는 인코딩된 지오메트리 및/또는 인코딩된 어트리뷰트, 메타 데이터 정보를 포함하는 각 비트스트림을 전송하거나, 인코딩된 지오메트리 및/또는 인코딩된 어트리뷰트, 메타 데이터 정보를 하나의 비트스트림으로 구성하여 전송할 수 있다. 실시예들에 따른 인코딩된 지오메트리 및/또는 인코딩된 어트리뷰트, 메타 데이터 정보가 하나의 비트스트림으로 구성되는 경우, 비트스트림은 하나 또는 그 이상의 서브 비트스트림들을 포함할 수 있다. 실시예들에 따른 비트스트림은 시퀀스 레벨의 시그널링을 위한 SPS (Sequence Parameter Set), 지오메트리 정보 코딩의 시그널링을 위한 GPS(Geometry Parameter Set), 어트리뷰트 정보 코딩의 시그널링을 위한 APS(Attribute Parameter Set), 타일 레벨의 시그널링을 위한 TPS (Tile Parameter Set)를 포함하는 시그널링 정보 및 슬라이스 데이터를 포함할 수 있다. 슬라이스 데이터는 하나 또는 그 이상의 슬라이스들에 대한 정보를 포함할 수 있다. 실시예들에 따른 하나의 슬라이스는 하나의 지오메트리 비트스트림(Geom00) 및 하나 또는 그 이상의 어트리뷰트 비트스트림들(Attr00, Attr10)을 포함할 수 있다.
슬라이스(slice)란, 코딩된 포인트 클라우드 프레임의 전체 또는 일부를 나타내는 신택스 엘리먼트의 시리즈를 말한다.
실시예들에 따른 TPS는 하나 또는 그 이상의 타일들에 대하여 각 타일에 관한 정보(예를 들면 bounding box의 좌표값 정보 및 높이/크기 정보 등)을 포함할 수 있다. 지오메트리 비트스트림은 헤더와 페이로드를 포함할 수 있다. 실시예들에 따른 지오메트리 비트스트림의 헤더는 GPS에 포함된 파라미터 세트의 식별 정보(geom_ parameter_set_id), 타일 식별자(geom_tile_id), 슬라이스 식별자(geom_slice_id) 및 페이로드에 포함된 데이터에 관한 정보 등을 포함할 수 있다. 상술한 바와 같이 실시예들에 따른 메타데이터 처리부(12007)는 시그널링 정보를 생성 및/또는 처리하여 전송 처리부(12012)로 전송할 수 있다. 실시예들에 따라, 지오메트리 인코딩을 수행하는 엘레멘트들 및 어트리뷰트 인코딩을 수행하는 엘레멘트들은 점선 처리된 바와 같이 상호 데이터/정보를 공유할 수 있다. 실시예들에 따른 전송 처리부(12012)는 트랜스미터(10003)의 동작 및/또는 전송 방법과 동일 또는 유사한 동작 및/또는 전송 방법을 수행할 수 있다. 구체적인 설명은 도 1 내지 도 2에서 설명한 바와 동일하므로 생략한다.
도 13은 실시예들에 따른 수신 장치의 예시이다.
도 13에 도시된 수신 장치는 도 1의 수신장치(10004) (또는 도 10 및 도 11의 포인트 클라우드 디코더)의 예시이다. 도 13에 도시된 수신 장치는 도 1 내지 도 11에서 설명한 포인트 클라우드 디코더의 동작들 및 디코딩 방법들과 동일 또는 유사한 동작들 및 방법들 중 적어도 어느 하나 이상을 수행할 수 있다.
실시예들에 따른 수신 장치는 수신부(13000), 수신 처리부(13001), 아리스메틱 (arithmetic) 디코더(13002), 오큐판시 코드 (Occupancy code) 기반 옥트리 재구성 처리부(13003), 표면 모델 처리부(삼각형 재구성, 업-샘플링, 복셀화)(13004), 인버스(inverse) 양자화 처리부(13005), 메타데이터 파서(13006), 아리스메틱 (arithmetic) 디코더(13007), 인버스(inverse)양자화 처리부(13008), 예측/리프팅/RAHT 역변환 처리부(13009), 색상 역변환 처리부(13010) 및/또는 렌더러(13011)를 포함할 수 있다. 실시예들에 따른 디코딩의 각 구성요소는 실시예들에 따른 인코딩의 구성요소의 역과정을 수행할 수 있다.
실시예들에 따른 수신부(13000)는 포인트 클라우드 데이터를 수신한다. 수신부(13000)는 도 1의 리시버(10005)의 동작 및/또는 수신 방법과 동일 또는 유사한 동작 및/또는 수신 방법을 수행할 수 있다. 구체적인 설명은 생략한다.
실시예들에 따른 수신 처리부(13001)는 수신한 데이터로부터 지오메트리 비트스트림 및/또는 어트리뷰트 비트스트림을 획득할 수 있다. 수신 처리부(13001)는 수신부(13000)에 포함될 수 있다.
아리스메틱 디코더(13002), 오큐판시 코드 기반 옥트리 재구성 처리부(13003), 표면 모델 처리부(13004) 및 인버스 양자화 처리부(13005)는 지오메트리 디코딩을 수행할 수 있다. 실시예들에 따른 지오메트리 디코딩은 도 1 내지 도 10에서 설명한 지오메트리 디코딩과 동일 또는 유사하므로 구체적인 설명은 생략한다.
실시예들에 따른 아리스메틱 디코더(13002)는 지오메트리 비트스트림을 아리스메틱 코딩을 기반으로 디코딩할 수 있다. 아리스메틱 디코더(13002)는 아리스메틱 디코더(11000)의 동작 및/또는 코딩과 동일 또는 유사한 동작 및/또는 코딩을 수행한다.
실시예들에 따른 오큐판시 코드 기반 옥트리 재구성 처리부(13003)는 디코딩된 지오메트리 비트스트림으로부터 (또는 디코딩 결과 확보된 지오메트리에 관한 정보)로부터 오큐판시 코드를 획득하여 옥트리를 재구성할 수 있다. 오큐판시 코드 기반 옥트리 재구성 처리부(13003)는 옥트리 합성부(11001)의 동작 및/또는 옥트리 생성 방법과 동일 또는 유사한 동작 및/또는 방법을 수행한다. 실시예들에 따른 표면 모델 처리부(13004)는 트라이숩 지오메트리 인코딩이 적용된 경우, 표면 모델 방식에 기반하여 트라이숩 지오메트리 디코딩 및 이와 관련된 지오메트리 리컨스트럭션(예를 들면 삼각형 재구성, 업-샘플링, 복셀화)을 수행할 수 있다. 표면 모델 처리부(13004)는 서페이스 오프록시메이션 합성부(11002) 및/또는 지오메트리 리컨스트럭션부(11003)의 동작과 동일 또는 유사한 동작을 수행한다.
실시예들에 따른 인버스 양자화 처리부(13005)는 디코딩된 지오메트리를 인버스 양자화할 수 있다.
실시예들에 따른 메타데이터 파서(13006)는 수신한 포인트 클라우드 데이터에 포함된 메타데이터, 예를 들어 설정 값 등을 파싱할 수 있다. 메타데이터 파서(13006)는 메타데이터를 지오메트리 디코딩 및/또는 어트리뷰트 디코딩에 전달할 수 있다. 메타데이터에 대한 구체적인 설명은 도 12에서 설명한 바와 동일하므로 생략한다.
아리스메틱 디코더(13007), 인버스 양자화 처리부(13008), 예측/리프팅/RAHT 역변환 처리부(13009) 및 색상 역변환 처리부(13010)는 어트리뷰트 디코딩을 수행한다. 어트리뷰트 디코딩는 도 1 내지 도 10에서 설명한 어트리뷰트 디코딩과 동일 또는 유사하므로 구체적인 설명은 생략한다.
실시예들에 따른 아리스메틱 디코더(13007)는 어트리뷰트 비트스트림을 아리스메틱 코딩으로 디코딩할 수 있다. 아리스메틱 디코더(13007)는 재구성된 지오메트리를 기반으로 어트리뷰트 비트스트림의 디코딩을 수행할 수 있다. 아리스메틱 디코더(13007)는 아리스메틱 디코더(11005)의 동작 및/또는 코딩과 동일 또는 유사한 동작 및/또는 코딩을 수행한다.
실시예들에 따른 인버스 양자화 처리부(13008)는 디코딩된 어트리뷰트 비트스트림을 인버스 양자화할 수 있다. 인버스 양자화 처리부(13008)는 역양자화부(11006)의 동작 및/또는 역양자화 방법과 동일 또는 유사한 동작 및/또는 방법을 수행한다.
실시예들에 따른 예측/리프팅/RAHT 역변환 처리부(13009)는 재구성된 지오메트리 및 역양자화된 어트리뷰트들을 처리할 수 있다. 예측/리프팅/RAHT 역변환 처리부(13009)는 RAHT 변환부(11007), LOD생성부(11008) 및/또는 인버스 리프팅부(11009)의 동작들 및/또는 디코딩들과 동일 또는 유사한 동작들 및/또는 디코딩들 중 적어도 어느 하나 이상을 수행한다. 실시예들에 따른 색상 역변환 처리부(13010)는 디코딩된 어트리뷰트들에 포함된 컬러 값(또는 텍스쳐)을 역변환하기 위한 역변환 코딩을 수행한다. 색상 역변환 처리부(13010)는 컬러 역변환부(11010)의 동작 및/또는 역변환 코딩과 동일 또는 유사한 동작 및/또는 역변환 코딩을 수행한다. 실시예들에 따른 렌더러(13011)는 포인트 클라우드 데이터를 렌더링할 수 있다.
도 14는 실시예들에 따른 포인트 클라우드 데이터 송수신 방법/장치와 연동 가능한 구조의 예시를 나타낸다.
도 14의 구조는 서버(1460), 로봇(1410), 자율 주행 차량(1420), XR 장치(1430), 스마트폰(1440), 가전(1450) 및/또는 HMD(1470) 중에서 적어도 하나 이상이 클라우드 네트워크(1410)와 연결된 구성을 나타낸다. 로봇(1410), 자율 주행 차량(1420), XR 장치(1430), 스마트폰(1440) 또는 가전(1450) 등은 장치라 호칭된다. 또한, XR 장치(1430)는 실시예들에 따른 포인트 클라우드 데이터 (PCC) 장치에 대응되거나 PCC장치와 연동될 수 있다.
클라우드 네트워크(1400)는 클라우드 컴퓨팅 인프라의 일부를 구성하거나 클라우드 컴퓨팅 인프라 안에 존재하는 네트워크를 의미할 수 있다. 여기서, 클라우드 네트워크(1400)는 3G 네트워크, 4G 또는 LTE(Long Term Evolution) 네트워크 또는 5G 네트워크 등을 이용하여 구성될 수 있다.
서버(1460)는 로봇(1410), 자율 주행 차량(1420), XR 장치(1430), 스마트폰(1440), 가전(1450) 및/또는 HMD(1470) 중에서 적어도 하나 이상과 클라우드 네트워크(1400)을 통하여 연결되고, 연결된 장치들(1410 내지 1470)의 프로세싱을 적어도 일부를 도울 수 있다.
HMD (Head-Mount Display)(1470)는 실시예들에 따른 XR 디바이스 및/또는 PCC 디바이스가 구현될 수 있는 타입 중 하나를 나타낸다. 실시예들에 따른HMD 타입의 디바이스는, 커뮤니케이션 유닛, 컨트롤 유닛, 메모리 유닛, I/O 유닛, 센서 유닛, 그리고 파워 공급 유닛 등을 포함한다.
이하에서는, 상술한 기술이 적용되는 장치(1410 내지 1450)의 다양한 실시 예들을 설명한다. 여기서, 도 14에 도시된 장치(1410 내지 1450)는 상술한 실시예들에 따른 포인트 클라우드 데이터 송수신 장치와 연동/결합될 수 있다.
<PCC+XR>
XR/PCC 장치(1430)는 PCC 및/또는 XR(AR+VR) 기술이 적용되어, HMD(Head-Mount Display), 차량에 구비된 HUD(Head-Up Display), 텔레비전, 휴대폰, 스마트 폰, 컴퓨터, 웨어러블 디바이스, 가전 기기, 디지털 사이니지, 차량, 고정형 로봇이나 이동형 로봇 등으로 구현될 수도 있다.
XR/PCC 장치(1430)는 다양한 센서들을 통해 또는 외부 장치로부터 획득한 3차원 포인트 클라우드 데이터 또는 이미지 데이터를 분석하여 3차원 포인트들에 대한 위치 데이터 및 어트리뷰트 데이터를 생성함으로써 주변 공간 또는 현실 객체에 대한 정보를 획득하고, 출력할 XR 객체를 렌더링하여 출력할 수 있다. 예컨대, XR/PCC 장치(1430)는 인식된 물체에 대한 추가 정보를 포함하는 XR 객체를 해당 인식된 물체에 대응시켜 출력할 수 있다.
<PCC+XR+모바일폰>
XR/PCC 장치(1430)는 PCC기술이 적용되어 모바일폰(1440) 등으로 구현될 수 있다.
모바일폰(1440)은 PCC 기술에 기반하여 포인트 클라우드 콘텐츠를 디코딩하고, 디스플레이할 수 있다.
<PCC+자율주행+XR>
자율 주행 차량(1420)은 PCC 기술 및 XR 기술이 적용되어, 이동형 로봇, 차량, 무인 비행체 등으로 구현될 수 있다.
XR/PCC 기술이 적용된 자율 주행 차량(1420)은 XR 영상을 제공하는 수단을 구비한 자율 주행 차량이나, XR 영상 내에서의 제어/상호작용의 대상이 되는 자율 주행 차량 등을 의미할 수 있다. 특히, XR 영상 내에서의 제어/상호작용의 대상이 되는 자율 주행 차량(1420)은 XR 장치(1430)와 구분되며 서로 연동될 수 있다.
XR/PCC영상을 제공하는 수단을 구비한 자율 주행 차량(1420)은 카메라를 포함하는 센서들로부터 센서 정보를 획득하고, 획득한 센서 정보에 기초하여 생성된 XR/PCC 영상을 출력할 수 있다. 예컨대, 자율 주행 차량(1420)은 HUD를 구비하여 XR/PCC 영상을 출력함으로써, 탑승자에게 현실 객체 또는 화면 속의 객체에 대응되는 XR/PCC 객체를 제공할 수 있다.
이때, XR/PCC 객체가 HUD에 출력되는 경우에는 XR/PCC 객체의 적어도 일부가 탑승자의 시선이 향하는 실제 객체에 오버랩되도록 출력될 수 있다. 반면, XR/PCC 객체가 자율 주행 차량의 내부에 구비되는 디스플레이에 출력되는 경우에는 XR/PCC 객체의 적어도 일부가 화면 속의 객체에 오버랩되도록 출력될 수 있다. 예컨대, 자율 주행 차량(1220)은 차로, 타 차량, 신호등, 교통 표지판, 이륜차, 보행자, 건물 등과 같은 객체와 대응되는 XR/PCC 객체들을 출력할 수 있다.
실시예들에 의한 VR (Virtual Reality) 기술, AR (Augmented Reality) 기술, MR (Mixed Reality) 기술 및/또는 PCC(Point Cloud Compression)기술은, 다양한 디바이스에 적용 가능하다.
즉, VR 기술은, 현실 세계의 객체나 배경 등을 CG 영상으로만 제공하는 디스플레이 기술이다. 반면, AR 기술은, 실제 사물 영상 위에 가상으로 만들어진 CG 영상을 함께 보여 주는 기술을 의미한다. 나아가, MR 기술은, 현실세계에 가상 객체들을 섞고 결합시켜서 보여준다는 점에서 전술한 AR 기술과 유사하다. 그러나, AR 기술에서는 현실 객체와 CG 영상으로 만들어진 가상 객체의 구별이 뚜렷하고, 현실 객체를 보완하는 형태로 가상 객체를 사용하는 반면, MR 기술에서는 가상 객체가 현실 객체와 동등한 성격으로 간주된다는 점에서 AR 기술과는 구별이 된다. 보다 구체적으로 예를 들면, 전술한 MR 기술이 적용된 것이 홀로그램 서비스 이다.
다만, 최근에는 VR, AR, MR 기술을 명확히 구별하기 보다는 XR (extended Reality) 기술로 부르기도 한다. 따라서, 본 발명의 실시예들은 VR, AR, MR, XR 기술 모두에 적용 가능하다. 이러한 기술은 PCC, V-PCC, G-PCC 기술 기반 인코딩/디코딩이 적용될 수 있다.
실시예들에 따른 PCC방법/장치는 자율 주행 서비스를 제공하는 차량에 적용될 수 있다.
자율 주행 서비스를 제공하는 차량은 PCC 디바이스와 유/무선 통신이 가능하도록 연결된다.
실시예들에 따른 포인트 클라우드 데이터 (PCC) 송수신 장치는 차량과 유/무선 통신이 가능하도록 연결된 경우, 자율 주행 서비스와 함께 제공할 수 있는 AR/VR/PCC 서비스 관련 콘텐트 데이터를 수신/처리하여 차량에 전송할 수 있다. 또한 포인트 클라우드 데이터 송수신 장치 차량에 탑재된 경우, 포인트 클라우드 송수신 장치는 사용자 인터페이스 장치를 통해 입력된 사용자 입력 신호에 따라 AR/VR/PCC 서비스 관련 콘텐트 데이터를 수신/처리하여 사용자에게 제공할 수 있다. 실시예들에 따른 차량 또는 사용자 인터페이스 장치는 사용자 입력 신호를 수신할 수 있다. 실시예들에 따른 사용자 입력 신호는 자율 주행 서비스를 지시하는 신호를 포함할 수 있다.
실시예들에 따른 포인트 클라우드 데이터 송신 방법/장치는 도1의 송신 장치(10000), 포인트 클라우드 비디오 인코더(10002), 트랜스미터(10003), 도2의 획득-인코딩-전송(20000-20001-20002), 도4의 인코더, 도12의 송신 장치, 도14의 디바이스, 도18의 인코더, 도30의 송신 방법 등을 지칭하는 용어로 해석된다.
실시예들에 따른 포인트 클라우드 데이터 수신 방법/장치는 도1의 수신 장치(10004), 리시버(10005), 포인트 클라우드 비디오 디코더(10006), 도2의 전송-디코딩-렌더링(20002-20003-20004), 도10-11의 디코더, 도13의 수신 장치, 도14의 디바이스, 도19의 디코더, 도31의 수신 방법 등을 지칭하는 용어로 해석된다.
또한, 실시예들에 따른 포인트 클라우드 데이터 송수신 방법/장치는 실시예들에 따른 방법/장치로 줄여서 호칭될 수 있다.
실시예들에 따라, 포인트 클라우드 데이터를 구성하는 지오메트리 데이터, 지오메트리 정보, 위치 정보 등은 서로 동일한 의미로 해석된다. 포인트 클라우드 데이터를 구성하는 어트리뷰트 데이터, 어트리뷰트 정보, 속성 정보 등은 서로 동일한 의미로 해석된다.
실시예들에 따른 방법/장치는 스케일러블(scalable) 전송을 고려하여 실시예들에 따른 포인트 클라우드 데이터 구조에 기반하여 포인트 클라우드 데이터를 처리할 수 있다.
실시예들에 따른 방법/장치는 포인트 클라우드 데이터를 송수신 함에 있어서 수신기 성능 혹은 전송 속도 등으로 인해 데이터 일부에 대한 선택적 디코딩이 필요한 경우 효율적으로 이를 지원하기 위한 방법을 기술한다. 제안하는 방법에서는 데이터(data) 단위로 전달되는 지오메트리(geometry) 및 어트리뷰트 데이터(attribute data)를 지오메트리 옥트리(geometry octree), LoD (Level of Detail)과 같은 의미 단위로 나누어 줌으로써 비트스트림 단위에서 필요로 하는 정보를 선택하거나 혹은 불필요한 정보를 제거 할 수 있는 방법을 제안한다.
실시예들에 따른 포인트 클라우드 (point cloud)로 구성된 데이터 구조를 구성하기 위한 기술을 다룬다. 구체적으로, 레이어(layer)를 기반으로 구성된 PCC 데이터를 효과적으로 전달하기 위한 패킹(packing) 및 관련한 시그널링 정보 처리 방법을 기술하고, 이를 기반으로 스케일러블 (scalable) PCC 기반 서비스에 적용하는 방법을 제안한다.
도4 및 도11에 도시된 실시예들에 따른 포인트 클라우드 데이터 송수신 장치(또는 인코더/디코더로 줄여서 지칭 가능)를 참조하면, 포인트 클라우드 데이터는 각 데이터의 위치(geometry: e.g., XYZ 좌표)와 속성(attributes: e.g., color, reflectance, intensity, grayscale, opacity 등) 로 구성된다. 포인트 클라우드 압축 (Point Cloud Compression: PCC)에서는 3차원 공간 상에 불균일하게 분포하는 분포 특성을 효율적으로 압축하기 위해 octree 기반 압축을 하며, 이를 기반으로 속성 정보를 압축한다. 도4 및 도11에 도시된 PCC의 송수신 장치는 각 구성 장치를 통해 실시예들에 따른 동작(들)을 처리할 수 있다.
도15는 실시예들에 따른 포인트 클라우드 데이터의 인코딩, 전송, 디코딩 과정을 나타낸다.
포인트 클라우드 인코더(15000)는 실시예들에 따른 송신 방법을 수행하는 실시예들에 따른 송신 장치이고, 스케일러블하게 포인트 클라우드 데이터를 인코딩하고 전송할 수 있다.
포인트 클라우드 디코더(15010)는 실시예들에 따른 수신 방법을 수행하는 실시예들에 따른 수신 장치이고, 스케일러블하게 포인트 클라우드 데이터를 디코딩할 수 있다.
인코더(15000)가 수신하는 소스 데이터는 지오메트리 데이터 및/또는 어트리뷰트 데이터를 포함할 수 있다.
인코더(15000)는 포인트 클라우드 데이터를 스케일러블하게 인코딩하겨 파셜 PCC 비트스트림을 바로 생성하지 않고, 풀(FULL) 지오메트리 데이터 및 풀 어트리뷰트 데이터를 수신하여 인코더에 연결된 스토리지(Storage)에 데이터를 저장한 뒤 파셜 인코딩을 위해서 트랜스 코딩하여 파셜 PCC 비트스트림을 생성하여 전송할 수 있다. 디코더(15010)는 파셜 PCC 비트스트림을 수신하여 디코딩하여 파셜 지오메트리 및/또는 파셜 어트리뷰트를 복원할 수 있다.
인코더(15000)는 풀 지오메트리 및 풀 어트리뷰트를 수신하여 인코더에 연결된 스토리지에 데이터를 저장하고 로우 QP(양자화 파라미터)로 포인트 클라우드 데이터를 트랜스코딩하여 전체 PCC 비트스트림을 생성하여 전송할 수 있다. 디코더(15010)는 전체 PCC비트스트림을 수신하고 디코딩하여 풀 지오메트리 및/또는 풀 어트리뷰트를 복원할 수 있다. 디코더(15010)는 데이터 셀렉션을 통해 전체 PCC비트스트림으로부터 파셜 지오메트리 및/또는 파셜 어트리뷰트를 선택할 수 있다.
실시예들에 따른 방법/장치는 포인트 클라우드 데이터인 데이터 포인트(data point)의 위치 정보 및 색상/밝기/반사도 등의 특징 정보를 지오메트리(geometry) 및 어트리뷰트(attribute) 정보로 나누어 각각 압축하고 전달한다. 이 때, 디테일(detail) 정도에 따라서 레이어(layer)를 갖는 옥트리(octree) 구조 혹은 LoD (Level of Detail)에 따라서 PCC 데이터를 구성할 수 있다. 이를 기반으로 스케일러블 포인트 데이터 코딩(scalable point cloud data coding) 및 리프리젠테이션(representation)이 가능하다. 이 때, 수신기의 성능 혹은 전송 속도에 의해서 포인트 클라우드 데이터의 일부분만을 디코딩(decoding)하거나 리프리젠테이션(representation) 하는 것이 가능다.
실시예들에 따른 방법/장치는 이러한 과정에서 불필요한 데이터를 사전에 제거할 수 있다. 즉, 스케일러블 PCC 비트스트림(scalable PCC bitstream)에 대해 일부만 전송하면 되는 경우 (scalable decoding 중 일부의 layer 만을 decoding 하는 경우) 필요로 하는 부분만을 선택해서 보낼 수 없기 때문에 1) decoding 후 필요한 부분을 재 인코딩 하거나(15020) 2) 전체를 전달한 후 수신부에서 선택적으로 적용 해야한다(15030). 하지만 1)의 경우 디코딩 및 재 인코딩을 위한 시간으로 인해 delay 가 발생할 수 있으며(15020) 2)의 경우 불필요한 데이터까지 전송 함으로 인해 bandwidth 효율이 떨어지고, 고정된 bandwidth를 사용하는 경우 data quality를 낮추어 전송해야 점이 있다(15030).
따라서, 실시예들에 따른 방법/장치는 포인트 클라우드 데이터의 슬라이스(slice) 세분화 구조를 정의하고, 스케일러블 트랜스미션(scalable transmission)을 위한 스케일러블 레이어(scalable layer) 및 슬라이스(slice) 구조를 시그널링할 수 있다.
실시예들은 효율적 비트스트림 전달 및 디코딩을 위해서, 비트스트림을 특정 단위로 구분하여 처리할 수 있다.
실시예들에 따른 단위은 LOD, 레이어, 슬라이스 등으로 지칭될 수 있다. LOD는 어트리뷰트 데이터 코딩의 LOD와 같은 용어이지만, 또 다른 의미로써, 비트스트림의 레이어 구조를 위한 데이터 단위를 의미할 수 있다. 포인트 클라우드 데이터의 계층적 구조, 예를 들어, 옥트리 또는 여러 트리 등의 뎁스(레벨)에 기반한, 하나의 뎁스에 대응하거나 두 개 이상의 뎁스를 묶는 개념일 수 있다. 마찬가지로, 레이어는 서브-비트스트림의 단위를 생성하기 위한 것으로써, 하나의 뎁스에 대응하거나 두 개 이상의 뎁스를 묶는 개념이고, 하나의 LOD에 대응하거나 두 개 이상의 LOD에 대응할 수 있다. 또한, 슬라이스는 서브-비트스트림의 단위를 구성하기 위한 단위로써, 하나의 뎁스에 대응하거나, 하나의 뎁스 일부에 대응하건, 두 개 이상의 뎁스들에 대응할 수 있다. 또한, 하나의 LOD에 대응하거나, 하나의 LOD 일부에 대응하건, 두 개 이상의 LOD들에 대응할 수 있다. 실시예들에 따라, LOD, 레이어, 슬라이스는 서로 대응하거나 포함관계일 수 있다. 또한, 실시예들에 따른 단위는 LOD, 레이어, 슬라이스, 레이어 그룹, 서브 그룹 등을 포함하고, 서로 상호보완하여 지칭될 수 있다.
도16은 실시예들에 따른 레이어 기반 포인트 클라우드 데이터 구성을 나타낸다.
실시예들에 따른 송신 방법/장치는 도16과 같이 레이어 기반 포인트 클라우드 데이터를 구성하여, 포인트 클라우드 데이터를 인코딩하고 디코딩할 수 있다.
포인트 클라우드 데이터의 레이어링(layering)은 응용분야에 따라서 SNR, 공간 레졸루션(sparial resolution), 컬러(color), 템포럴 프리퀀시(temporal frequency), 비트뎁스(bitdepth), 등의 다양한 관점에서의 레이어(layer) 구조를 가질 수 있으며, 옥트리(octree) 구조 혹은 LoD 구조를 기반으로 데이터의 밀도가 증가하는 방향으로 레이어(layer)를 이룰 수 있다.
도17은 실시예들에 따른 지오메트리 및 어트리뷰트 비트스트림 구조를 나타낸다.
실시예들에 따른 방법/장치는 도16과 같은 레이어링에 기반하여 도17과 같은 지오메트리 비트스트림 및 어트리뷰트 비트스트림을 구성하고, 인코딩하고, 디코딩할 수 있다.
실시예들에 따른 송신 장치/인코더의 포인트 클라우드 컴프레션(point cloud compression) 을 통해 획득한 비트스트림(bitstream)을 데이터(data)의 종류에 따라서 지오메트리 데이터 비트스트림(geometry data bitstream)과 어트리뷰트 데이터 비트스트림(attribute data bitstream)으로 나누어 전달할 수 있다.
실시예들에 따른 각각의 비트스트림(bitstream)은 슬라이스(slice)로 구성되어 전달될 수 있다. 레이어(layer) 정보 혹은 LoD 정보와 관련없이 지오메트리 데이터 비트스트림(geometry data bitstream)과 어트리뷰트 데이터 비트스트림(attribute data bitstream을 각각 하나의 slice로 구성하여 전달할 수 있다. 이 경우, 만약 layer 혹은 LoD 중 일부만을 사용하고자 하는 경우 1) bitstream을 decoding 하는 과정 2) 사용하고자 하는 부분만을 선택하고 불필요한 부분을 제거하는 과정 3) 필요한 정보만을 기반으로 다시 encoding 하는 과정을 거쳐야 한다.
도18은 실시예들에 따른 비트스트림 구성을 나타낸다.
실시예들에 따른 송신 방법/장치는 도18과 같은 비트스트림을 생성하고, 실시예들에 따른 수신 방법/장치는 도18과 같은 비트스트림에 포함된 포인트 클라우드 데이터를 디코딩할 수 있다.
실시예들에 따른 비트스트림(bitstream) 구성
실시예들은 불필요한 중간 과정을 피하기 위해 비트스트림을 레이어(layer) (혹은 LoD) 단위로 나누어 전달하는 방법을 적용할 수 있다.
예를 들어 LoD 기반의 PCC 기술의 경우를 고려해보면, 낮은 LoD가 높은 LoD에 포함되는 구조를 갖는다. 현재 LoD에는 포함되지만, 이전 LoD에는 포함되지 않는 정보, 즉, 각 LoD에 대해 신규 포함되는 정보를 R (나머지, Rest)이라고 지칭할 수 있다. 도18과 아래와 같이 초기 LoD 정보 및 각 LoD에서 신규 포함되는 정보 R을 각각의 독립된 단위로 나누어서 전달할 수 있다.
실시예들에 따른 송신 방법/장치는 지오메트리 데이터를 인코딩하고 지오메트리 비트스트림을 생성할 수 있다. 지오메트리 비트스트림을 LOD 또는 레이어 별로 구성할 수 있고, 지오메트리 비트스트림은 LOD 또는 레이어 구성 단위 별로 헤더(지오메트리 헤더)를 포함할 수 있다. 헤더는 다음 LOD 또는 다음 레이어에 대한 참조 정보를 포함할 수 있다. 현재 LOD(레이어)는 이전 LOD(레이어)에 포함되지 않는 R정보(지오메트리 데이터)를 더 포함할 수 있다.
실시예들에 따른 수신 방법/장치는 어트리뷰트 데이터를 인코딩하고 어트리뷰트 비트스트림을 생성할 수 있다. 어트리뷰트 비트스트림을 LOD 또는 레이어 별로 구성할 수 있고, 어트리뷰트 비트스트림은 LOD 또는 레이어 별로 헤더(어트리뷰트 헤더)를 포함할 수 있다. 헤더는 다음 LOD 또는 다음 레이어에 대한 참조 정보를 포함할 수 있다. 현재 LOD(레이어)는 이전 LOD(레이어)에 포함되지 않은 R정보(어트리뷰트 데이터)를 더 포함할 수 있다.
실시예들에 따른 수신 방법/장치는 LOD 또는 레이어로 구성된 비트스트림을 수신하고, 복잡합 중간과정 없이, 사용하고자 하는 데이터만 효율적으로 디코딩할 수 있다.
도19는 실시예들에 따른 비트스트림 정렬 방법을 나타낸다.
실시예들에 따른 방법/장치는 도18의 비트스트림을 도19와 같이 정렬할 수 있다.
실시예들에 따른 비트스트림(bitstream) 정렬 방법
실시예들에 따른 송신 방법/장치는 비트스트림을 전달하는 경우 도19와 같이 지오메트리 및 어트리뷰트를 직렬적으로 전달할 수 있다. 이 때, 데이터의 종류에 따라서 지오메트리 정보(지오메트리 데이터) 전체를 먼저 보낸 후 어트리뷰트 정보(어트리뷰트 데이터)를 전달할 수 있다. 이 경우 전달되는 비트스트림의 정보를 기반으로 지오메트리 정보를 빠르게 복원할 수 있다는 장점이 있다.
도19는 예를 들어, 지오메트리 데이터를 포함하는 레이어(LOD)들이 비트스트림 내 먼저 위치하고, 어트리뷰트 데이터를 포함하는 레이어(LOD)들이 지오메트리 레이어 뒤에 위치할 수 있다. 어트리뷰트 데이터가 지오메트리 데이터에 의존적이므로, 지오메트리 레이어가 먼저 위치할 수 있다. 또한, 위치는 실시예들에 따라 다양하게 변경가능하다. 지오메트리 헤더 간 참조가 가능하고, 어트리뷰트 헤더 및 지오메트리 헤더 간 참조도 가능하다.
도20은 실시예들에 따른 비트스트림 정렬 방법을 나타낸다.
도20은 도19와 같이, 실시예들에 따른 비트스트림 정렬 예시이다.
지오메트리 데이터 및 어트리뷰트 데이터를 포함하는 동일 레이어(layer)를 구성하는 비트스트림을 모아서 전달할 수도 있다. 이 경우 geometry 와 attribute 의 병렬 디코딩이 가능한 압축 기법을 사용하는 경우, 디코딩 수행 시간을 단축시킬 수 있다. 이 때, 먼저 처리해야하는 정보 (작은 LoD, geometry 를 attribute 보다 선행해야 함)를 먼저 배치할 수 있다.
제1레이어(2000)는 가장 작은 LOD 0(레이어 0)에 대응하는 지오메트리 데이터 및 어트리뷰 데이터를 각 헤더와 함께 포함하고, 제2레이어(2010)는 LOD 0(레어어0)를 포함하고, LOD 0 (레이어 0)에 없는 신규하고 더 상세한 레이어1(LOD 1)에 대한 포인트들의 지오메트리 데이터 및 어트리뷰트 데이터를 R1정보로써 포함한다. 마찬가지로, 제3레이어(2020)이 뒤이어 존재할 수 있다.
실시예들에 따른 송수신 방법/장치는 비트스트림을 송신하고 수신하는 경우 응용 분야에서 희망하는 레이어(layer)(혹은 LoD)를 비트스트림 레벨(bitstream level)에서 효율적으로 선택할 수 있다. 실시예들에 따른 비트스트림 정렬 방법 중 지오메트리 정보를 모아서 보내는 경우(도19) 비트스트림 레벨(bitstream level) 선택 후에 중간에 비는 부분이 생길 수 있으며, 이 경우 비트스트림을 재배치 해야할 수 있다. Layer에 따라서 geometry와 attribute를 묶어서 전달하는 경우(도20) 불필요한 정보를 응용 분야에 따라 아래와 같이 선택적으로 제거할 수 있다.
도21은 실시예들에 따른 지오메트리 데이터 및 어트리뷰트 데이터의 선택 방법을 나타낸다.
실시예들에 따른 비트스트림 선택
위와 같이, 비트스트림을 선택해야 하는 경우, 실시예들에 따른 방법/장치는 도21과 같이 비트스트림 레벨에서 데이터를 선택할 수 있다: 1) 대칭적인 지오메트리 및 어트리뷰트 선택, 2) 비대칭적인 지오메트리 및 어트리뷰트 선택, 3) 또는 양 방법의 조합.
1) 대칭적인 geometry-attribute 선택
도21을 참조하면, LoD1 까지만 선택하여(LOD 0 +R1, 21000) 전송 혹은 디코딩 하는 경우를 나타낸 것으로, 상위 레이어(layer)에 해당하는 R2(LOD 2 중에서 신규 부분)에 해당하는 정보를 제거하고(21010) 전송하고, 디코딩한다.
도22는 실시예들에 따른 비트스트림 선택 방법을 나타낸다.
2) 비대칭적인 지오메트리 및 어트리뷰트 선택
실시예들에 따른 방법/장치는 지오메트리 및 어트리뷰트를 비대칭적으로 전달할 수 있다. 상위 layer의 attribute 만을 제거하고(Attribute R2, 22000) geometry 의 전부(삼각형의 octree 구조의 레벨0(루트 레벨)에서 레벨7(리프 레벨)까지)를 선택하여 전송/디코딩 할 수 있다(22010).
도16을 참조하면, 포인트 클라우드 데이터를 옥트리 구조로 표현하고, LOD(혹은 레리어)별로 계층적으로 구분했을 때, 스케일러블한 인코딩/디코딩(스케일러빌리티)를 지원할 수 있다.
실시예들에 따른 스케일러빌리티 기능은 슬라이스 레벨 스케일러빌리티(Slice level scalability) 및/또는 옥트리 레벨 스케일러빌리티(octree level scalability)를 포함할 수 있다.
실시예들에 따른 LoD(level of detail)는 하나 혹은 복수의 옥트리 레이어(octree layer)의 집합을 나타내기 위한 단위로 사용할 수 있다. 또한, 슬라이스(slice) 단위로 구성하기 위한 옥트리 레이어(octree layer)의 묶음의 의미를 가질 수도 있다.
실시예들에 따른 LOD는 어트리뷰트 인코딩/디코딩 시 LOD 의미를 확장하여, 데이터를 디테일하게 분할하는 단위이고, 넓은 의미로 사용될 수 있다.
즉, 실제 옥트리 레이어(octree layer) (혹은 스케일러블 어트리뷰트 레이어(scalable attribute layer))에 의한 스파셜 스케일러빌리티(spatial scalability)는 각각의 옥트리 레이어(octree layer)에 대해 제공될 수 있지만, 비트스트림 파싱(bitstream parsing) 이전에 슬라이스(slice) 단위에서 스케일러빌리티(scalability)를 구성하는 경우 실시예들에 따른 LoD 단위에서 선별할 수 있다.
옥트리 구조에서 루트 레벨부터 4레벨까지 LOD 0일 수 있고, 루트 레벨부터 5레벨까지 LOD 1일 수 있고, 루트 레벨부터 리프7레벨까지 LOD2일 수 있다.
즉, 도16과 같이, 스케일러블 트랜스미션(scalable transmission)과 같이 슬라이스(slice) 단위에서의 스케일러빌리티(scalability)를 활용하는 경우, 제공되는 스케일러블(scalable) 단계는 LoD0, LoD1, LoD2 의 3 단계가 되고, 옥트리(octree) 구조에 의해 디코딩(decoding) 단계에서 제공될 수 있는 스케일러블(scalable) 단계는 루트(root) 로부터 리프(leaf)에 이르는 8 단계가 된다.
실시예들에 따라, 예를 들어, 도16에서, LoD0~LoD2 가 각각의 슬라이스(slice)로 구성된 경우 수신부 혹은 송신부의 트랜스코더(transcoder, 도15 15040)는 스케일러블 처리를 위해서 1) LoD0 만 선택하거나, 2) LoD0 과 LoD1을 선택하거나, 3) LoD0, LoD1, LoD2를 선택할 수 있다.
예시1) LoD0 만 선택하는 경우 최대 octree level은 4가 되며, 0~4 의 octree layer 중 하나의scalable layer를 decoding 과정에서 선택할 수 있다. 이 때 수신기에서는 최대 octree depth 를 통해 획득할 수 있는 노드 사이즈(node size)를 리프 노드(leaf node)로 고려할 수 있으며, 이 때의 노드 사이즈(node size)를 시그널링 정보로써 전달할 수 있다.
예시2) LoD0 과 LoD1을 선택하는 경우 layer 5가 추가되어 최대 옥트리 레벨(octree level)은 5가 되며, 0~5 의 옥트리 레이어(octree layer) 중 하나의 스케일러블 레이어(scalable layer)를 디코딩(decoding) 과정에서 선택할 수 있다. 이 때 수신기에서는 최대 옥트리 뎁스(octree depth) 를 통해 획득할 수 있는 node size를 leaf node로 고려할 수 있으며, 이 때의 node size를 시그널링 정보로써 전달할 수 있다.
실시예들에 따라, 옥트리 뎁스, 옥트리 레이어, 옥트리 레벨 등은 데이터를 디테일하게 분할하는 단위를 의미한다.
예시 3) LoD0, LoD1, LoD2을 선택하는 경우 layer 6, 7이 추가되어 최대 octree level 은 7가 되며, 0~7 의 octree layer 중 하나의scalable layer를 decoding 과정에서 선택할 수 있다. 이 때 수신기에서는 최대 octree depth 를 통해 획득할 수 있는 node size를 leaf node로 고려할 수 있으며, 이 때의 node size를 시그널링 정보로써 전달할 수 있다.
도23은 실시예들에 따른 포인트 클라우드 데이터를 포함하는 슬라이스를 구성하는 방법을 나타낸다.
실시예들에 따른 슬라이스 구성
실시예들에 따른 송신 방법/장치/인코더는 G-PCC 비트 스트림을 슬라이스(slice) 구조로 분할하여 구성할 수 있다. 상세한 데이터 표현을 위한 데이터 단위가 슬라이스일 수 있다.
예를 들어 하나의 slice 에 하나 혹은 복수의 옥트리 레이어(octree layer)들이 매칭될 수 있다.
실시예들에 따른 송신 방법/장치, 예를 들어, 인코더는 스캔 오더(2300) 방향으로 옥트리에 포함된 노드(포인트)를 스캔하여 슬라이스(2301) 기반 비트스트림을 구성할 수 있다.
도23(a): 하나의 slice에 octree layer의 일부 노드가 포함될 수 있다.
옥트리 레이어(예를 들어, 레벨0 내지 레벨4까지)는 하나의 슬라이스(2302)를 구성할 수 있다.
옥트리 레이어, 예를 들어, 레벨5의 일부 데이터는 각 슬라이스(2303, 2304, 2305)를 구성할 수 있다.
옥트리 레이어, 예를 들어, 레벨6의 일부 데이터는 각 슬라이스를 구성할 수 있다.
도23(b)(c): 하나의 slice에 복수의 옥트리 레이어(octree layer)가 매칭될 때 각 layer의 일부의 노드만 포함될 수 있다. 이처럼 복수의 slice가 하나의 geometry/attribute frame을 구성하는 경우 수신기를 위해 layer를 구성하는데 필요한 정보를 전달할 수 있다. 여기에는 각 slice 에 포함된 layer 정보, 각 layer에 포함된 노드 정보 등이 포함될 수 있다.
도23(b): 옥트리 레이어, 예를 들어, 레벨0부터 레벨3까지, 그리고 레벨4의 일부 데이터를 하나의 슬라이스로 구성할 수 있다.
옥트리 레리어, 예를 들어, 레벨4의 일부 데이터 및 레벨5의 일부 데이터를 하나의 슬라이스로 구성할 수 있다.
옥트리 레이어, 예를 들어, 레벨5의 일부 데이터, 레벨6의 일부 데이터를 하나의 슬라이스로 구성할 수 있다.
옥트리 레이어, 예를 들어, 레벨6의 일부 데이터를 하나의 슬라이스로 구성할 수 있다.
도23(c): 옥트리 레이어, 예를 들어, 레벨0부터 레벨4까지의 데이터를 하나의 슬라이스로 구성할 수 있다.
옥트리 레이어 레벨5, 레벨6, 레벨7 각각의 일부 데이터를 하나의 슬라이스로 구성할 수 있다.
실시예들에 따른 인코더 및 인코더에 대응하는 장치 등은 포인트 클라우드 데이터를 인코딩하고, 인코딩된 데이터 및 포인트 클라우드 데이터에 관한 파라미터 정보를 더 포함하는 비트스트림을 생성하고 전송할 수 있다.
나아가, 비트스트림을 생성할 시 실시예들에 따른 비트스트림 구조(예를 들어, 도17-도23 등 참조) 등에 기반하여 비트스트림을 생성할 수 있다. 따라서, 실시예들에 따른 수신 장치, 디코더, 그에 대응하는 장치 등은 선택적 일부 데이터 디코딩 구조에 적합하게 구성된 비트스트림을 수신하고 파싱하여, 포인트 클라우드 데이터를 부분 디코딩하여 효율적으로 제공할 수 있다(도15 참조).
실시예들에 따른 스케일러블 트랜스미션(scalable transmission)
실시예들에 따른 포인트 클라우드 데이터 송신 방법/장치는 포인트 클라우드 데이터를 포함하는 비트스트림을 스케일러블하게 전송할 수 있고, 실시예들에 따른 포인트 클라우드 데이터 수신 방법/장치는 비트스트림을 스케일러블하게 수신하고 디코딩할 수 있다.
도17-23 등 실시예들에 따른 비트스트림이 스케일러블 트랜스미션(scalable transmission) 에 사용되는 경우 수신기에서 필요로하는 슬라이스(slice)를 선별하기 위한 정보를 수신기로 전달할 수 있다. 스케일러블 트랜스미션(Scalable transmission)은 비트스트림(bitstream) 전체를 디코딩(decoding)하는 것이 아니라, 일부의 비트스트림(bitstream)만을 전달하거나 디코딩하는 경우를 의미할 수 있으며, 그 결과는 로우 레졸루션 포인트 클라우드 데이터(low resolution point cloud data)가 될 수 있다.
옥트리(Octree) 기반 지오메트리 비트스트림(geometry bitstream)에 스케일러블 트랜스미션(scalable transmission)을 적용하는 경우, 루트 노드(root node)로부터 리프 노드(leaf node)에 이르는 각 octree layer(도16)의 비트스트림(bitstream)에 대해 특정 octree layer까지만의 정보만을 가지고 포인트 클라우드 데이터를 구성할 수 있어야 한다.
이를 위해서는 목표로 하는 옥트리 레이어(octree layer)에 대해서는 하위 옥트리 레이어(octree layer)정보에 대한 의존성(dependency)이 없어야 한다. 이는 geometry / attribute coding에 대해서 공통적으로 적용하는 제약 사항이 될 수 있다.
또한 scalable transmission 시 송/수신기에서 scalable layer를 선별하기 위한 scalable 구조를 전달할 필요가 있다. 실시들에 따른octree 구조를 고려할 때, 모든 octree layer가 scalable transmission 을 지원할 수도 있지만, 특정 octree layer 이하에 대해서만 scalable transmission 이 가능하도록 할 수 있다. Octree layer 중 일부를 포함하는 경우 해당 slice가 어느 scalable layer에 포함되는지를 알려줌으로써 bitstream 단계에서 해당 slice의 필요/불필요 여부를 판단할 수 있다. 도23(a)의 예에서 루트(root) 노드로부터 시작되는 노란색 표시된 부분에서는 scalable transmission 을 지원하지 않고 하나의 scalable layer를 구성하고, 이하의 octree layer에 대해서는 scalable layer와 일대일 매칭이 되도록 구성 할 수 있다. 일반적으로 리프 노드(leaf node)에 해당하는 부분에 대해 scalability 를 지원할 수 있는데, 도23(c)와 같이 복수의 octree layer가 slice 내에 포함되는 경우 해당 layer 들에 대해서는 하나의 scalable layer를 구성하도록 정의할 수 있다.
이 때, 목적에 따라 scalable transmission과 스케일러블 디코딩(scalable decoding)을 구분하여 사용할 수 있다. Scalable transmission 의 경우 송수신 단에서 디코더(decoder)를 거치지 않고 특정 layer까지의 정보를 선별하기 위한 목적으로 사용할 수 있다. scalable decoding의 경우 coding 하는 중에 특정 layer를 선별하기 위한 목적이다. 즉, scalable transmission 은 압축 된 상태에서 (bitstream 단계에서) decoder를 거치지 않고 필요로 하는 정보 선별을 지원하여 전송 혹은 수신기에서 판별이 가능하도록 할 수 있다. 반면 scalable decoding의 경우 encoding/ decoding 과정에서 필요로하는 부분까지만 encoding/decoding 하는 경우를 지원함으로써 scalable representation 과 같은 경우에 사용될 수 있다.
이 경우, scalable transmission 을 위한 layer 구성과 scalable decoding을 위한 layer 구성이 달라질 수 있다. 예를 들어 leaf node를 포함하는 하위 3개의 octree layer는 scalable transmission 의 관점에서는 하나의 layer를 구성할 수 있지만, scalable decoding 관점에서는 모든 layer 정보를 포함한 경우 leaf node layer, leaf node layer -1, leaf node layer -2 각각에 대해 scalable decoding이 가능할 수 있다.
아래에서는 위에서 설명한 layer 구성을 위한 slice 구조 및 scalable transmission 을 위한 시그널링 방법에 대해서 기술한다.
도24는 실시예들에 따른 비트스트림 구성을 나타낸다.
실시예들에 따른 방법/장치는 도24와 같은 비트스트림을 생성할 수 있다. 비트스트림은 인코딩된 지오메트리 데이터 및 어트리뷰트 데이터를 포함하고, 파라미터 정보를 포함할 수 있다.
파라미터 정보에 관한 신택스 및 시맨틱스(Syntax and semantics)는 다음과 같다.
실시예들에 따르 분리된 slice에 대한 정보를 아래와 같이 비트스트림의 파라미터 세트(parameter set) 및 SEI 메시지(message)에 정의할 수 있다.
비트스트림은 시퀀스 파라미터 세트(sequence parameter set), 지오메트리 파라미터 세트(geometry parameter set), 어트리뷰트파라미터 세트(attribute parameter set)및 지오메트리 슬라이스 헤더(geometry slice header) 및 어트리뷰트 슬라이스 헤더(attribute slice header) 등을 포함할 수 있다. 어플리케이션, 시스템에 따라 상응되는 위치 혹은 별도의 위치에 정의하여 적용 범위, 적용 방법 등을 다르게 사용할 수 있다. 즉 시그널이 전달되는 위치에 따라 서로 다른 의미를 가질 수 있는데 만약 SPS에 정의되는 경우 시퀀스 전체에 동일하게 적용될 수 있으며, GPS에 정의되는 경우 위치 복원에 사용됨을 나타낼 수 있으며, APS에 정의되는 경우 속성 복원에 적용됨을 나타낼 수 있으며, TPS에 정의되는 경우 tile 내의 포인트에 대해서만 해당 시그널링 적용됨을 나타낼 수 있으며, slice 단위에 전달되는 경우 해당 slice 에 대해서만 시그널이 적용됨을 나타낼 수 있다. 또한 어플리케이션, 시스템에 따라 상응되는 위치 혹은 별도의 위치에 정의하여 적용 범위, 적용 방법 등을 다르게 사용할 수 있다. 또한 아래 정의된 신택스 엘리먼트(syntax element)가 현재 포인트 클라우드 데이터 스트림(point cloud data stream) 뿐 아니라 복수의 포인트 클라우드 데이터 스트림(point cloud data stream)에 적용될 수 있는 경우에는 상위 개념의 파라미터 세트(parameter set) 등을 통해 전달할 수 있다.
각 약어는 다음을 의미한다. SPS: Sequence Parameter Set, GPS: Geometry Parameter Set, APS: Attribute Parameter Set, TPS: Tile Parameter Set, Geom: Geometry bitstream = geometry slice header+ geometry slice data, Attr: Attrobite bitstream = attribute slice header + attribute slice data.
실시예들은 코딩(coding) 기법과 독립적으로 해당 정보를 정의하지만, 코딩(coding 방법과 연계하여 정의할 수 있으며, 지역적으로 서로 다른 scalability를 지원하기 위해 비트스트림의 타일 파라미터 세트(tile parameter set)에 정의할 수 있다. 또한 아래 정의된 신택스 엘리먼트(syntax element)가 현재 포인트 클라우드 데이터 스트림(point cloud data stream) 뿐 아니라 복수의 포인트 클라우드 데이터 스트림(point cloud data stream)에 적용될 수 있는 경우에는 상위 개념의 파라미터 세트(parameter set) 등을 통해 전달할 수 있다.
혹은 비트스트림에 대하여NAL (Network abstract layer) 단위를 정의하고 레이어 아이디(layer_id)와 같이 layer를 선택할 수 있는 관련 정보를 전달함으로써 시스템 레벨(system level)에서 비트스트림(bitstream)을 선택할 수도 있다.
이하, 실시예들에 따른 파라미터(메타데이터, 시그널링 정보 등 다양하게 호칭 가능함)는 실시예들에 따른 송신기의 프로세스 상 생성될 수 있고, 실시예들에 따른 수신기에 전달되어 재구성 과정에 이용될 수 있다.
예를 들어, 실시예들에 따른 파라미터는 후술하는 실시예들에 따른 송신 장치의 메타데이터 처리부(또는 메타데이터 제너레이터)에서 생성되고, 실시예들에 따른 수신 장치의 메타데이터 파서에서 획득될 수 있다.
이하, 도25 내지 도28을 참조하여, 비트스트림에 포함된 파라미터의 신택스/시맨틱스를 설명한다.
도25는 실시예들에 따른 시퀀스 파라미터 세트, 지오메트리 파리미터 세트의 신택스를 나타낸다.
도26은 실시예들에 따른 어트리뷰트 파라미터 세트의 신택스를 나타낸다.
도27은 실시예들에 따른 지오메트리 데이터 유닛 헤더의 신택스를 나타낸다.
도28은 실시예들에 따른 어트리뷰트 데이터 유닛 헤더의 신택스를 나타낸다.
도25 내지 도28에 포함된 실시예들에 따른 파라미터들의 시맨틱스는 다음과 같다.
스케일러블 트랜스미션 인에이블 플래그(scalable_transmission_enable_flag): 1인 경우 비트스트림(bitstream) 구성이 스케일러블 트랜스미션(scalable transmission)에 적합하도록 구성되어있음을 나타낼 수 있다. 즉, 복수의 slice로 이루어 짐으로써 bitstream 단계에서 정보를 선별할 수 있다. 스케일러블 레리어(scalable layer) 구성 정보 등이 전달됨으로써 송신기 혹은 수신기에서 슬라이스(slice) 선별이 가능하며, geometry 및 / 혹은 attribute가 partial decoding이 가능하도록 압축되어있음을 나타낼 수 있다. scalable_transmission_enable_flag 가 1인 경우 수신기 혹은 송신기의 트랜스코더(transcoder)가 geometry 혹은/그리고 attribute scalable transmission 이 가능함을 파악하는데 사용할 수 있다. 트랜스코더는 송신 장치 및 수신 장치 연결될 수 있거나, 포함될 수 있다.
지오메트리 스케일러블 트랜스미션 인에이블 플래그(geom_scalable_transmission_enable_flag), 및 어트리뷰트 스케일러블 트랜스미션 인에이블 플래그(attr_scalable_transmission_enable_flag): 1인 경우 geometry 혹은 attribute가 scalable transmission 이 가능하도록 압축되었음을 나타낼 수 있다.
예를 들어 geometry 의 경우 octree 기반의 layer 로 구성되어있거나, scalable transmission 을 고려하여 슬라이스 파티셔닝(slice partitioning, 도23 등 참조) 이 이루어져있음을 나타낼 수 있다.
geom_scalable_transmission_enable_flag 혹은 attr_scalable_transmission_enable_flag가 1인 경우 수신기에서는 geometry 혹은 attribute 에 대해 scalable transmission 이 가능함을 알 수 있다.
예를 들어 geom_scalable_transmission_enable_flag 가 1인 경우 octree 기반 geometry coding이 사용되고, QTBT가 디스에이블(disable) 되거나 혹은 BT- QT-OT의 순으로 코딩 되어 octree 와 같은 모양이으로 코딩되었음을 나타낼 수 있다.
attr_scalable_transmission_enable_flag 가 1인 경우 스케일러블 LOD 제너레이션(scalable LOD generation)을 사용하여 프레딕티스 리프팅 코딩(pred-Lifting coding)이 사용되거나 스케일러블 RAHS(scalable RAHT) (예를 들어 Haar 기반의 RAHT) 가 사용되었음을 나타낼 수 있다.
스케일러블 레이어 개수(num_scalable_layers): scalable transmission 을 지원하는 layer 수를 나타낼 수 있다. 실시예들에 따른 레이어는 실시예들에 따른 LOD를 의미할 수 있다.
스케일러블 레이어 아이디(scalable_layer_id): scalable transmission 을 구성하는 layer에 대한 지시자(indicator)를 나타낸다. 하나의Scalable layer 가 복수의 slice로 구성되는 경우 scalable_layer_id를 통해 공통 정보를 parameter set에서 전달하고, slice에 따라 다른 정보를 데이터 유닛 헤더(data unit header)에서 전달할 수 있다.
스케일러블 레이어 내 옥트리 레이어 개수(num_octree_layers_in_scalable_layer scalable): transmission을 구성하는 layer에 포함되는가 대응되는 octree layer의 수를 나타낼 수 있다. Octree 기반으로 scalable layer가 구성되지 않는 경우 대응되는 layer를 지칭할 수 있다.
트리 뎁스 시작(tree_depth_start): scalable transmission을 구성하는 layer에 포함되거나 대응되는 octree layer 중 시작하는 (상대적으로 root에 가장 가까운) octree depth를 나타낼 수 있다.
트리 뎁스 끝(tree_depth_end): scalable transmission을 구성하는 layer에 포함되거나 대응되는 octree layer 중 마지막 (상대적으로 leaf에 가장 가까운) octree depth를 나타낼 수 있다.
노드 사이즈(node_size): scalable transmission 을 통해 해당 scalable layer를 복원하는 경우 출력 포인트 클라우드 데이터의 노드 크기를 나타낼 수 있으며, 예를 들어 1인 경우 leaf node를 나타낼 수 있다. 실시예들은 XYZ 노드 크기가 일정한 경우를 가정하였지만, XYZ 방향 혹은 (r(radius), phi, theta) 와 같은 변환 좌표계에서의 각 방향으로의 크기를 시그널링 함으로써 임의의 노드 크기를 나타낼 수 있다.
노드 개수(num_nodes): 해당 scalable layer에 포함된 노드의 수를 나타낼 수 있다.
스케일러블 레이어 내 슬라이스 개수(num_slices_in_scalable_layer): scalable layer 에 속한 slice의 수를 나타낼 수 있다.
슬라이스 아이디(slice_id): slice 혹은 data unit을 구분하기 위한 지시자(indicator)를 나타내며, scalable layer에 속한 data unit에 대한 indicator 를 전달할 수 있다.
얼라인된 슬라이스 구조 인에이블 플래그(aligned_slice_structure_enabled_flag): 1인 경우 attribute scalable layer 구조 및/혹은 slice 구성이 geometry scalable layer 구조 및/혹은 slice 구성과 일치함을 나타낼 수 있다. 이 경우 attribute scalable layer 구조 및/혹은 slice 구성에 대한 정보를 geometry scalable layer 구조 및/혹은 slice 구성 정보를 통해 파악할 수 있다. 즉, 지오메트리 레이어/슬라이스 구조는 어트리뷰트 레이어/슬라이스 구조와 동일하다.
슬라이스 아이디 오프셋(slice_id_offset): geometry slice id 를 기준으로 attribute slice 혹은 data unit 를 구하기 위한 offset을 나타낼 수 있다. 실시예들에 따라, aligned_slice_structure_enabled_flag 가 1인 경우, 즉, attribute slice structure와 geometry slice structure 가 일치하는 경우, attribute slice id는 다음과 같이 geometry slice id를 기준으로 구할 수 있다.
Slice_id (attr) = slice_id (geom) + slice_id_offset
이 경우 attribute slice structure를 구성하기 위한 변수 num_scalable_layers, scalable_layer_id tree_depth_start, tree_depth_end, node_size, num_nodes, num_slices_in_scalable_layer 는 geometry parameter set에 제공되는 값을 사용할 수 있다.
대응하는 지오메트리 스케일러블 레이어(corresponding_geom_scalable_layer): attribute scalable layer 구조와 대응되는 geometry scalable layer 를 나타낼 수 있다.
데이터 유닛 내 트리 뎁스 개수(num_tree_depth_in_data_unit): data unit에 속한 node가 포함되는 tree depth 를 나타낼 수 있다.
트리 뎁스(tree_depth): 해당 tree depth를 나타낼 수 있다.
노드 개수(num_nodes): 해당 data unit에 속한 노드 중 tree_depth에 속한 노드의 수를 나타낼 수 있다.
얼라인된 지오메트리 데이터 유닛 아이디(aligned_geom_data_unit_id): attribute data unit 이 geometry data unit의 scalable transmission layer 구조/ slice 구조를 따르는 경우 해당되는 geometry data unit id를 전달할 수 있다.
참조 슬라이스 아이디(ref_slice_id): 현재 slice를 decoding을 위해 선행되어야 하는 slice 를 지칭하는데 사용할 수 있다 (예시, 도18-20 헤더 간 참조)
도29는 실시예들에 따른 포인트 클라우드 데이터 송신 장치 구조를 나타낸다.
도29는 실시예들에 따른 송신 장치는 도1의 송신 장치(10000), 포인트 클라우드 비디오 인코더(10002), 트랜스미터(10003), 도2의 획득-인코딩-전송(20000-20001-20002), 도4의 인코더, 도12의 송신 장치, 도14의 디바이스, 도18의 인코더, 도30의 송신 방법 등에 대응한다. 도29의 각 구성요소는 하드웨어, 소프트웨어, 프로세서, 및/또는 그것들의 조합에 대응할 수 있다.
실시예들에 따른 인코더, 송신부의 동작:
송신 장치에 포인트 클라우드 데이터가 입력되면, 인코더에서는 위치 정보 (geometry data: e.g., XYZ 좌표, phi-theta 좌표 등)와 속성 정보 (attribute data: e.g., color, reflectance, intensity, grayscale, opacity, medium, material, glossiness 등)를 각각 인코딩 할 수 있다(지오메트리 인코딩 및 어트리뷰트 인코딩).
압축된(인코딩된) 데이터는 전송을 위한 단위로 나뉘어지게 되는데, 서브-비트스트림 제너레이터(sub-bitstream generator)를 통해 레이어링 구조 정보(layering structure information)에 따라 bitstream 단위에서 필요한 정보를 선택하기 적절한 단위로 나누어 패킹할 수 있다.
실시예들에 따른 레이어링 구조 정보는 도16-23 비트스트림 구성, 정렬, 선택, 슬라이스 구성을 나타내는 정보이고, 도24-28 등에 도시된 정보를 의미한다. 메타데이터 제너레이터에 의해 레이어링 구조 정보가 생성될 수 있다. 서브-비트스트림 제너레이터는 비트스트림을 분할하고, 분할 처리를 나타내는 레이어링 구조 정보를 생성하여, 메타데이터 제너레이터에 전달할 수 있다. 메타데이터 제너레이터는 지오메트리 인코딩 처리 및 어트리뷰트 인코딩 처리를 나타내는 정보를 인코더로부터 수신하여 메타데이터(파라미터)로 생성할 수 있다.
실시예들에 따른 송신 장치는 레이어 마다 서브-비트스트림 및 파라미터를 먹싱하여 전송할 수 있다.
도30은 실시예들에 따른 포인트 클라우드 데이터 수신 장치 구조를 나타낸다.
도30의 실시예들에 따른 수신 장치는 도1의 수신 장치(10004), 리시버(10005), 포인트 클라우드 비디오 디코더(10006), 도2의 전송-디코딩-렌더링(20002-20003-20004), 도10-11의 디코더, 도13의 수신 장치, 도14의 디바이스, 도19의 디코더, 도31의 수신 방법 등에 대응한다. 도30의 각 구성요소는 하드웨어, 소프트웨어, 프로세서, 및/또는 그것들의 조합에 대응할 수 있다.
실시예들에 따른 디코더 / 수신부 동작:
수신 장치에 비트스트림이 입력되면 수신기는 위치 정보에 대한 비트스트림과 속성 정보에 대한 비트스트림을 구분하여 처리할 수 있다(디먹싱). 이 때, 서브-비트스트림 클래시파이어(혹은 분류기)(sub-bitstream classifier)는 비트스트림 헤더의 정보를 기반으로 적절한 디코더로 해당 서브-비트스트림을 전달할 수 있다. 혹은 이 과정에서 수신기에서 필요로 하는 레이어(layer)를 선택할 수도 있다. 분류된 비트스트림은 데이터의 특성에 따라 geometry decoder 와 attribute decoder에서 각각 geometry data와 attribute data로 복원된 후 renderer 에서 최종 출력을 위한 포맷으로 변환할 수 있다.
서브-비트스트림 분류기는 메타데이터 파서에 의해 획득된 메타데이터에 기반하여 비트스트림을 분류/선택할 수 있다.
지오메트리 디코더 및 어트리뷰트 디코더는 메타데이터 파서에 의해 획득된 메타데이터에 기반하여 지오메트리 데이터 및 어트리뷰트 데이터를 각각 디코딩할 수 있다.
도30 수신 장치의 각 구성요소의 동작은 도29 송신 장치의 대응하는 구성요소의 동작을 따르거나 역과정을 따를 수 있다.
도31은 실시예들에 따른 포인트 클라우드 데이터 수신 장치의 흐름도를 나타낸다.
도31은 도30에 도시된 서브-비트스트림 분류기의 동작 흐름도를 보다 상세하게 도시한다.
수신 장치가 데이터를 Slice 단위로 수신하고 메타데이터 파서(metadata parser)는 SPS, GPS, APS, TPS 등의 parameter set 정보를 전달한다. 전달된 정보를 기준으로 scalable 가능 여부를 판단할 수 있다. scalable 가능한 경우 도31과 같이 scalable transmission 을 위한 slice 구조를 파악한다. 먼저 GPS를 통해 전달되는 num_scalable_layers, scalable_layer_id tree_depth_start, tree_depth_end, node_size, num_nodes, num_slices_in_scalable_layer, slice_id 등의 정보를 기반으로 geometry slice 구조를 파악할 수 있다.
만약 aligned_slice_structure_enabled_flag = 1인 경우 attribute slice 구조도 동일하게 파악할 수 있다 (예를 들어 geometry 가 octree 기반이고, attribute 가 scalable LoD 기반 혹은 scalable RAHT 기반으로 인코딩 되었고, 동일한 slice partitioning을 통해 생성된 geometry/attribute slice 쌍이 동일 octree layer에 대한 동일한 노드 수를 갖는 경우).
구조가 동일한 경우 타겟 스케일러블 레이어(target scalable layer)에 따라 geometry slice id의 범위가 정해지게 되며, slice_id_offset을 통해 attribute slice id 의 범위를 정하고, 정해진 범위에 따라 geometry / attribute slice를 선택한다.
만약 aligned_slice_sturcutre_enabled_flag = 0 인 경우 APS를 통해 전달되는 num_scalable_layers, scalable_layer_id tree_depth_start, tree_depth_end, node_size, num_nodes, num_slices_in_scalable_layer, slice_id 등의 정보를 기반으로 어트리뷰트 슬라이스 attribute slice structure 를 별도로 파악하고, scalable 목적에 따라 필요로 하는 attribute slice id 의 범위를 한정할 수 있으며 이를 기반으로 reconstruction 이전에 각각의 slice id를 통해 필요로 하는 slice를 선택할 수 있다. 이상의 과정을 통해 선택된 geometry / attribute slice 는 decoder의 입력으로 전달한다.
이상의 설명에서는 scalable transmission 혹은 수신기의 scalable selection 을 기준으로 slice 구조에 따른 디코딩과정을 설명했지만, scalable_transmission_enabled_flag 가 0인 경우 ranging geom / attr slice id 과정을 생략하고 전체 slice를 선택함으로써 non-scalable 과정에도 사용할 수 있다. 이 때에도, SPS, GPS, APS, TPS 등의 parameter set 을 통해 전달되는 slice 구조 정보를 통해 선행 slice 에 대한 정보 (예를 들어 상위 layer에 속한 slice 혹은 ref_slice_id 를 통해 특정된 slice) 가 사용될 수 있다.
스케일러블 트랜스미션에 기반하여 비트스트림을 수신하고, 비트스트림에 포함된 파라미터 정보에 기반하여 스케일러블 비트스트림 구조를 파악할 수 있다.
지오메트리 스케일러블 레이어를 추정할 수 있다.
지오메트리 슬라이스 아이디에 기반하여 지오메트리 슬라이스를 파악할 수 있다.
슬라이스 아이디에 기반하여 지오메트리 슬라이스를 선택할 수 있다.
선택된 지오메트리 슬라이스를 디코더가 디코딩할 수 있다.
비트스트림에 포함된 얼라인 슬라이스 구조 인에이블 플래그가 1인 경우, 지오메트 슬라이스와 대응하는 어트리뷰트 슬라이스 아이디를 확인할 수 잇다. 슬라이스 아이디 오프셋에 기반하여 어트리뷰트 슬라이스에 접근할 수 있다.
슬라이스 아이디에 기반하여 어트리뷰트 슬라이스를 선택할 수 있다.
선택된 어트리뷰트 슬라이스를 디코더가 디코딩할 수 있다.
얼라인 슬라이스 구조 인에이블 구조가 1이 아닌 경우, 어트리뷰트 스케일러블 레이어를 추정할 수 있다. 어트리뷰트 슬라이스 아이디에 기반하여 어트리뷰트 슬라이스를 파악할 수 있다.
슬라이스 아이디에 기반하여 어트리뷰트 슬라이스를 선택할 수 있다.
실시예들에 따른 송신 장치는 다음과 같은 효과가 있다.
point cloud data에 대해 일절 기준에 따라 압축 데이터를 나누어 전송할 수 있다. 실시예들에 따른 레이어된 코딩(layered coding)을 사용하는 경우 layer에 따라서 압축 데이터를 나누어 보낼 수 있다. 따라서, 송신단의 저장 및 전송 효율이 증가한다.
도15를 참조하면, point cloud data의 geometry 및 attribute를 압축하여 서비스할 수 있다. PCC 기반 서비스에서 수신기 성능 혹은 전송 환경에 따라 압축율 혹은 데이터 수를 조절하여 보낼 수 있다.
하나의 slice 단위로 point cloud data를 구성하는 경우 수신기 성능 혹은 전송 환경이 변하면, 1) 각 환경에 맞는 bitstream을 미리 변환하여 별도로 저장하고 전송할 때 선택하든지 2) 혹은 전송에 앞서서 변환하는 과정 (transcoding)을 필요로 한다. 이 때, 지원해야하는 수신기 환경이 증가하던지 전송 환경이 수시로 바뀌는 경우 저장 공간의 문제 혹은 변환으로 인한 딜레이(delay)가 문제될 수 있다.
도32는 실시예들에 따른 포인트 클라우드 데이터 송수신 과정이다.
상술한 문제를 해결하기 위해서, 실시예들에 따른 방법/장치는 도32와 같이 포인트 클라우드 데이터를 처리할 수 있다.
실시예들은 layer에 따라서 압축 데이터를 나누어 전달하고 별도의 변환 과정 없이 미리 압축된 데이터에 대해 bitstream 단계에서 필요한 부분만 선택적으로 전달할 수 있다는 장점이 있다. 이는 저장 공간 측면에서도 하나의 스트림 당 하나의 저장 공간만이 필요하기 때문에 효율적이며, 전송 전에 필요한 layer 만을 선택적으로 전송하기 때문에 (비트스트림 셀렉터, bitstream selector) 밴드위드(bandwidth) 측면에서도 효율적인 전송이 가능하다.
실시예들에 따른 수신 방법/장치는 다음과 같은 효과가 있다.
실시예들은 point cloud data에 대해 일절 기준에 따라 압축 데이터를 나누어 전송할 수 있다. layered coding을 사용하는 경우 layer에 따라서 압축 데이터를 나누어 보낼 수 있는데, 이 경우 수신단의 효율이 증가한다.
도15를 참조하면, layer 로 이루어진 point cloud data를 전송하는 경우에 대한 송수신 단의 동작을 나타낸다. 이 때 수신기의 성능과 관계없이 전체 PCC data를 복원할 수 있는 정보를 전달하는 경우, 수신기에서는 디코딩을 통해 point cloud data를 복원한 후에 필요로 하는 layer 에 해당하는 data 만을 선택하는 과정 (data selection 혹은 sub-sampling) 이 필요로 하다. 이 경우 전달된 bitstream을 이미 decoding 하기 때문에 저지연을 목표로 하는 수신기에서 딜레이를 발생시키거나 혹은 수신기 성능에 따라서 decoding을 하지 못할 수도 있다.
따라서, bitstream을 slice 단위로 나누어 전달하게 되는 경우, 수신기에서는 디코더 성능 혹은 응용 분야에 따라 representation 하고자 하는 point cloud data의 밀도에 따라서 bitstream 을 선택적으로 디코더에 전달할 수 있다. 이 경우 디코딩 이전에 선택이 이루어 짐으로써 디코더 효율이 높아지게 되며, 다양한 성능의 디코더를 지원할 수 있다는 장점이 있다.
실시예들에 따른 방법/장치는 레이어 그룹(layer group) 및 서브-그룹(sub-group)을 이용하여 비트스트림을 전달하고, 스라이스 세그멘테이션(slice segmentation)을 더 수행할 수 있다.
도33은 실시예들에 따른 싱글 슬라이스 및 분할된(segmented) 슬라이스 기반 지오메트리 트리 구조를 나타낸다.
실시예들에 따른 방법/장치는 도33과 같이 포인트 클라우드 데이터를 전달하기 위한 슬라이스를 구성할 수 있다.
도33은 서로 다른 슬라이스 구조에 포함되는 지오메트리 트리 구조이다. G-PCC 기술에 따라서, 전체 코딩된 비트스트림이 싱글 슬라이스에 포함될 수 있다. 나아가, 멀티플 슬라이스들을 위해서, 각 슬라이스는 서브-비트스트림을 포함할 수 있다. 슬라이스들의 순서는 서브-비트스트림의 순서와 동일할 수 있다. 비트스트림이 지오메트리 트리의 폭 우선 순서로 축적되고, 각 슬라이스는 트리 레이어들의 그룹과 매치될 수 있다(도33b). 분할된 슬라이스는 G-PCC 비트스트림의 레이어링 구조를 상속받을 수 있다.
지오메트리 트리의 상위 레이어가 하위 레이어들에 영향을 주지 않는 것과 같이, 슬라이스들은 이전 슬라이스들에 영향을 주지 않을 수 있다.
실시예들에 따른 분할된 슬라이스들(segmented slices)은 에러 강건성(error robustness), 효율적 전송(effective transmission), 관심 영역 지원(supporting region of interest) 등 관점에서 효율적이다.
1) 에러 회복성(Error resilience)
싱글 슬라이스 구조와 비교 시, 분할된 슬라이스는 에러에 더 강할 수 있다. 슬라이스가 프레임의 전체 비트스트림을 포함하는 경우, 데이터 로스는 전체 프레임 데이터에 영향을 줄 수 있다. 한편, 비트스트림이 복수의 슬라이스들로 분할되는 경우, 슬라이스 일부가 손실되더라도 손실에 영향을 받지 않는 일부 슬라이스들은 디코딩이 가능하다.
2) 스케일러블 트랜스미션(Scalable transmission)
서로 다른 캐퍼비리티를 가지는 복수의 디코더들을 지원할 수 있는 경우를 고려할 수 있다. 코딩된 데이터가 싱글 슬라이스에 있는 경우, 코딩된 포인트 클라우드의 LOD는 인코딩 이전에 결정될 수 있다. 따라서, 포인트 클라우드 데이터의 서로 다른 해상도를 가지는 복수 개의 사전 인코딩된 비트스트림들은 독립적으로 전달될 수 있다. 이는 큰 밴드위스 또는 스토리지 공간 측면에서 비효율적일 수 있다.
PCC 비트스트림이 생성되고 분할된 슬라이스들에 포함되는 경우, 싱글 비트스트림은 서로 다른 레벨의 디코더를 지원할 수 있다. 디코더 측에서 보면, 수신기는 타겟 레이어들들 선택할 수 있고, 부분적으로 선택된 비트스트림을 디코더에 전달할 수 있다. 유사하게, 전체 비트스트림을 파티셔닝하지 않고, 싱글 PCC비트스트림을 사용함으로써, 파셜 PCC비트스트림은 효율적으로 트랜스미터 측에서 생성될 수 있다.
3) 영역 기반 공간 스케일러빌리티(Region based spatial scalability)
G-PCC 요구조건에서 보면, 영역 기반 공간 스케일러빌리티는 다음과 같이 정의될 수 있다. 압축된 비트스트림은 하나의 레이어 이상을 가지도록 구성될 수 있다. 특정 관심 영역이 추가적인 레이어들과 높은 밀도를 가질 수 있고, 레이어들은 하위 레이어들로부터 예측될 수 있다.
이 요구조건을 지원하기 위해서, 리전에 대한 서로 다른 상세한 표현을 지원하는 것이 필요하다. 예를 들어, VR/AR 어플리케이션에서, 멀리 있는 오브젝트는 낮은 정확도로 표현하고, 높은 정확도로 근처 오브젝트를 표현하는 것이 바람직하다. 혹은 디코더는 요청이 있으면 관심이 있는 영역의 해상도를 증가시킬 수 있다. 지오메트리 옥트리 및 스케일러블 어트리뷰트 코딩 스킴과 같은 G-PCC의 스케일러블 구조를 사용함으로써 구현될 수 있다. 전체 지오메트리 또는 어트리뷰트를 포함하는 현재 슬라이스 구조에 기반하여, 디코더들은 전체 비트스트림에 접근해야 한다. 이는 밴드위스, 메모리, 디코더 비효율성을 야기할 수 있다. 한편, 비트스트림이 복수 개의 슬라이스들로 세그먼트되고, 각 슬라이스가 스케일러블 레이어들에 따른 서브-비트스트림들을 포함하면, 실시예들에 따른 디코더는 효율적으로 비트스트림을 파싱하기 이전에 필요에 따라 슬라이스를 선택할 수 있다.
도34는 실시예들에 따른 지오메트리 코딩 트리의 레이어 그룹 구조 및 어트리뷰트 코딩 트리의 얼라인된 레이어 그룹 구조를 나타낸다.
실시예들에 따른 방법/장치는 도34와 같이 포인트 클라우드 데이터의 계층적 구조를 이용하여 슬라이스 레이어 그룹을 생성할 수 있다.
실시예들에 따른 방법/장치는 서로 다른 슬라이스들에 포함된 지오메트리 및 어트리뷰트 비트스트림의 세그멘테이션을 적용할 수 있다. 또한, 트리 뎁스 관점에서 파셜 트리 정보에 포함된 각 슬라이스 및 지오메트리 및 어트리뷰트 코딩의 코딩 트리 구조를 사용할 수 있다.
도34(a)를 참조하면, 지오메트리 트리 구조 및 제안하는 슬라이스 세그먼트의 예시를 나타낸다.
예를 들어, 옥트리 내 8개의 레이어들이 있고, 5개 슬라이스들은 하나 또는 하나 이상의 레이어들의 서브-비트스트림을 포함하도록 사용될 수 있다. 그룹은 지오메트리 트리 레이어들의 그룹을 나타낸다. 예를 들어, 글부 1은 레이어 0 내지 레이어4로 구성되고, 그룹2는 레이어5를 포함하고, 그룹3은 레이어6 및 레이어7을 포함한다. 또한, 그룹은 3개 서브-그룹들로 분할될 수 있다. 부모 및 자식 페어들은 각 서브-그룹에 존재한다. 그룹3-1 내지 그룹3-3은 그룹3의 서브-그룹이다. 스케일러블 어트리뷰트 코딩이 사용되는 경우 트리 구조는 지오메트리 트리 구조와 동일하다. 동일한 옥트리-슬라이스 맵핑은 어트리뷰트 슬라이스 세그먼트들을 만드는데 사용될 수 있다 (도35(b)).
레이어 그룹(Layer group): 옥트리 레이어(octree layer), LoD layer 등과 같이 G-PCC coding 에서 발생하는 layer 구조 단위의 묶음을 나타낸다.
서브-그룹(Sub-group): 하나의 layer group 에 대해 위치 정보를 기반으로 인접한 노드들의 집합으로 나타낼 수 있다. 혹은 layer group 내의 최하위 layer (root 방향에 가장 가까운 layer를 의미할 수 있으며, 도34의 group 3의 경우 layer 6)를 기준으로 묶음을 구성할 수 있으며, 몰톤 코드 오더(Morton code order)에 의해 인접한 노드들의 묶음을 구성하거나, 거리 기반 인접 노드의 묶음으로 구성하거나, coding 순서에 따라 인접한 노드들의 묶음으로 구성할 수 있다. 추가적으로 부모-자식(parent-child) 관계에 있는 노드들은 하나의 sub-group 내에 존재하도록 규정할 수 있다.
Sub-group 을 정의하는 경우 layer의 중간에서 boundary가 발생하게 되며, boundary 에서 연속성을 갖도록 하는지 여부에 대해서는 sps_entropy_continuation_enabled_flag, gsh_entropy_continuation_flag 등과 같이 엔트로피(entropy)를 연속적으로 사용하는지 여부를 알려주고 및 ref_slice_id 를 알려줌으로써 이전 slice와의 연속성을 계속 유지할 수 있다.
도35는 실시예들에 따른 지오메트리 트리의 레이어 그룹 및 어트리뷰트 코딩 트리의 독립된 레이어 그룹 구조를 나타낸다.
실시예들에 따른 방법/장치는 지오메트리 기반 슬라이스 및 어트리뷰트 기반 슬라이스 레이어를 도35와 같이 생성할 수 있다.
어트리뷰트 코딩 레이어는 지오메트리 코딩 트리와 다른 구조를 가질 수 있다. 도35(b)를 보면, 그룹들은 지오메트리 트리 구조에 독립적으로 정의될 수 있다.
G-PCC 의 레이어링 구조의 효율적 사용을 위해서, 지오메트리 및 어트리뷰트 레이어링 구조와 페어되는 슬라이스를 세그먼트하는 것을 제공할 수 있다.
지오메트리 슬라이스 세그먼트를 위해서, 각 슬라이스 세그먼트는 레이어 그룹으로부터 코딩된 데이터를 포함할 수 있다. 여기서, 레이어 그룹은 연속적 트리 레이어들의 그룹으로 정의되고, 트리 레이어들의 시작 및 종료 뎁스는 트리 뎁스 내 특정 숫자일 수 있고, 시작은 종료보다 작다.
어트리뷰트 슬라이스 세그먼트를 위해서, 각 슬라이스 세그먼트는 레이어 그룹으로부터 코딩된 데이터를 포함하고, 여기서, 레이어들은 어트리뷰트 코딩 스팀에 따른 트리 뎁스 또는 LOD일 수 있다.
슬라이스 세그먼트들 내 코딩된 데이터의 순서는 싱글 슬라이스 내 코딩된 데이터의 순서와 동일할 수 있다.
비트스트림에 포함되는 파라미터 세트들로써, 다음을 제공할 수 있다.
지오메트리 파라미터 세트들 내, 지오메트리 트리 레이어들에 대응하는 레이어 그룹 구조의 설이 필요하다. 예를 들어, 그룹들의 개수, 그룹 식별자, 그룹 내 트리 뎁스(들) 개수, 그룹 내 서브-그룹(들) 개수.
어트리뷰트 파라미터 세트들 내, 슬라이스 구조가 지오메트리 슬라이스 구조와 얼라인되는지를 나타내는 지시 정보가 필요하다. 그룹들 개수, 그룹 식별자, 트리 뎁스(들) 개수, 세그먼트(들) 개수가 레이어 그룹 구조를 설명하기 위해 정의된다.
슬라이스 헤더들 내, 다음이 정의된다.
지오메트리 슬라이스 헤더 내, 각 슬라이스의 그룹 및 서브-그릅위 식별이 필요하다: 그룹 식별자, 서브-그룹 식별자.
어트리뷰트 슬라이스 헤더 내, 어트리뷰트 레이어 구조가 지오메트리 그룹과 얼라인 되지 않는 경우각 슬라이스의 그룹 및 서브-그룹의 식별이 필요하다.
도36은 실시예들에 따른 파라미터 세트의 신택스를 나타낸다.
도36은 도24의 비트스트림 내 도25-28 등의 파라미터 정보와 함께 포함될 수 있다.
레이어 그룹 개수(num_layer_groups_minus1): 이 값에 1을 더하면, 지오메트리 또는 어트리뷰트 코딩 트리 구조의 일부인 연속적 트리 레이어들의 그룹인 레이어 그룹들의 개수를 의미한다.
레이어 그룹 아이디(layer_group_id): i번째 레이어 그룹의 레이어 그룹 식별자를 나타낸다.
트리 뎁스 개수(num_tree_depth_minus1): 이 값에 1을 더하면, i번째 레이어 그룹에 포함된 트리 뎁스 개수를 나타낸다.
서브그룹 개수(num_subgroups_minus1): 1을 더하면, i번째 레이어 그룹 에 서브-그룹들 개수를 나타낸다.
얼라인된 레이어 그룹 구조 플래그(aligned_layer_group_structure_flag): 이 값이 1이면, 어트리뷰트 슬라이스들의 레이어 그룹 및 서브-그룹 구조이 지오메트리 레이어 그룹 및 서브-그룹 구조와 동일함을 나타낸다. 이 값이 0이면, 어트리뷰트 슬라이스들의 레이어 그룹 및 서브-그룹 구조가 지오메트리 레이어 그룹 및 서브-그룹 구조와 동일하지 않음을 나타낸다.
지오메트리 파라미터 세트 아이디(geom_parameter_set_id): 지오메트리 파라미터 세트 식별자는 레이어 그룹 및 서브그룹 구조 정보를 포함하고, 어트리뷰트 레이어 그룹 구조와 얼라인된다.
도37은 실시예들에 따른 지오메트리 데이터 유닛 헤더를 나타낸다.
도37은 도24의 비트스트림 내 도25-28 등의 파라미터 정보와 함께 포함될 수 있다.
서브그룹 아이디(subgroup_id): layer_group_id에 의해 지시되는 레이어 그룹 내 서브 그룹에 관한 지시 정보이다. 서브그룹 아이디의 범위는 0 내지 num_subgroups_minus1일 수 있다.
layer_group_id 와 subgroup_id 는 slice의 순서를 나타내주기 위해 사용될 수 있으며, slice를 bitstream 순서대로 정렬하기 위해 사용될 수 있다.
도29를 참조하면, 실시예들에 따른 송신 방법/장치, 인코더는 포인트 클라우드 데이터를 전송을 위한 단위로 분할하여 전송할 수 있다. bitstream generator를 통해 layering structure information 에 따라 bitstream 단위에서 필요한 정보를 선택하기 적절한 단위(도33-35)로 나누어 패킹할 수 있다.
도30을 참조하면, 실시예들에 따른 수신 방법/장치, 디코더는 비트스트림의 레이어(도33-35)에 기반하여 지오메트리 데이터, 어트리뷰트 데이터를 복원할 수 있다.
이 때, sub-bitstream classifier 에서는 비트스트림 헤더의 정보를 기반으로 적절한 데이터를 디코더로 전달할 수 있다. 혹은 이 과정에서 수신기에서 필요로 하는 layer를 선택할 수도 있다.
도31을 참조하면, 도33-35의 슬라이스 레이어링 비트스트림에 기반하여, 필요한 파라미터 정보를 참고하여, 지오메트리 슬라이스 및/또는 어트리뷰트 슬라이스를 선택하여 디코딩하고 렌더링할 수 있다.
도33-37의 실시예들에 기반하여, 도32와 같이, layer에 따라서 압축 데이터를 나누어 전달할 수 있고, 별도의 변환 과정 없이 미리 압축된 데이터에 대해 bitstream 단계에서 필요한 부분만 선택적으로 전달할 수 있다. 이는 저장 공간 측면에서도 하나의 스트림 당 하나의 저장 공간만이 필요하기 때문에 효율적이며, 전송 전에 필요한 layer 만을 선택적으로 전송하기 때문에 (bitstream selector) bandwidth 측면에서도 효율적인 전송이 가능하다.
또한, 실시예들에 따른 수신 방법/장치는 bitstream을 slice 단위로 나누어 수신하고, 수신기는 디코더 성능 혹은 응용 분야에 따라 representation 하고자 하는 point cloud data의 밀도에 따라서 bitstream 을 선택적으로 디코더에 전달할 수 있다. 이 경우 디코딩 이전에 선택이 이루어 짐으로써 디코더 효율이 높아지게 되며, 다양한 성능의 디코더를 지원할 수 있다는 장점이 있다.
도38은 실시예들에 따른 포인트 클라우드 데이터 송신 방법을 나타낸다.
S3800 실시예들에 따른 포인트 클라우드 데이터 송신 방법은 포인트 클라우드 데이터를 인코딩하는 단계를 포함할 수 있다.
실시예들에 따른 인코딩 동작은 도1 송신 장치(10000), 포인트 클라우드 비디오 인코더(10002), 도2 인코딩(20001), 도4 인코더, 도12 송신 장치, 도14 XR디바이스(1430), 도15 인코더, 도16 LOD 기반 계층적 데이터 구성, 도17-22 LOD(레이어) 기반 지오메트리/어트리뷰트 비트스트림 구성, 도23 슬라이스 기반 비트스트림 구성, 도24 파라미터 포함하는 비트스트림 생성, 도25-28 파라미터 생성, 도29 지오메트리/어트리뷰트 인코더 및 서브-비트스트림 제너레이터, 메타데이터 제너레이터, 먹스, 도32 지오메트리/어트리뷰트 인코딩, 비트스트림 선택, 도33-35 슬라이스 세그멘테이션, 슬라이스 그룹핑, 도36-37 파라미터 생성 등을 포함할 수 있다.
S3801 실시예들에 따른 포인트 클라우드 데이터 송신 방법은 포인트 클라우드 데이터를 포함하는 비트스트림을 전송하는 단계를 더 포함할 수 있다.
실시예들에 따른 전송 동작은 도1 송신 장치(10000), 트랜스미터(10003), 도2 전송(20002), 도12 인코딩된 비트스트림 전송, 도14 XR디바이스(1430)의 데이터 전송, 도15의 인코딩에 따른 전체 또는 부분 비트스트림 전송, 도17-22 LOD(레이어) 기반 지오메트리/어트리뷰트 비트스트림 전송, 도23 슬라이스 기반 비트스트림 전송, 도24 파라미터 포함하는 비트스트림 전송, 도25-28 파라미터 전송, 도29 트랜스미터, 도32 파셜 비트스트림 전송, 도33-35 슬라이스 세그멘테이션 비트스트림 전송, 슬라이스 그룹핑 비트스트림 전송, 도36-37 파라미터 전송 등을 포함할 수 있다.
도39는 실시예들에 따른 포인트 클라우드 데이터 수신 방법을 나타낸다.
S3900 실시예들에 따른 포인트 클라우드 데이터 수신 방법은 포인트 클라우드 데이터를 포함하는 비트스트림을 수신하는 단계를 포함할 수 있다.
실시예들에 따른 수신 동작은 도1 수신 장치(10004), 리시버(10005), 도2 전송에 따른 수신, 도13 비트스트림 수신, 도14 XR디바이스(1430)의 데이터 수신, 도15 비트스트림 전체 또는 부분 수신, 도17-22 LOD(레이어) 기반 지오메트리/어트리뷰트 비트스트림 수신, 도23 슬라이스 기반 비트스트림 수신, 도24 파라미터 포함하는 비트스트림 수신, 도25-28 파라미터 수신, 도30 리시버, 도31 비트스트림 수신, 도32 파셜 비트스트림 수신, 도33-35 슬라이스 세그멘테이션 비트스트림 수신, 슬라이스 그룹핑 비트스트림 수신, 도36-37 파라미터 수신 등을 포함할 수 있다.
S3901 실시예들에 따른 포인트 클라우드 데이터 수신 방법은 포인트 클라우드 데이터를 디코딩하는 단계를 더 포함할 수 있다.
실시예들에 따른 디코딩 동작은 도1 수신 장치(10004), 포인트 클라우드 비디오 디코더(10006), 도2 디코딩(20003), 도10 -11디코더, 도13 수신 장치, 도14 XR디바이스(1430), 도15의 비트스트림 전체/부분 디코딩, 비트스트림 선택 디코딩, 도15 비트스트림 전체 또는 부분 디코딩, 도17-22 LOD(레이어) 기반 지오메트리/어트리뷰트 비트스트림 디코딩, 도23 슬라이스 기반 비트스트림 디코딩, 도24 파라미터 포함하는 비트스트림 디코딩, 도25-28 파라미터 디코딩, 도30 디먹스, 서브-비트스트림 분류기, 메타데이터 파서, 지오메트리/어트리뷰트 디코더, 렌더러, 도31 지오메트리/어트리뷰트 슬라이스 선택, 도32 파셜 비트스트림 디코딩, 도33-35 슬라이스 세그멘테이션 비트스트림 디코딩, 슬라이스 그룹핑 비트스트림 디코딩, 도36-37 파라미터 디코딩 등을 포함할 수 있다.
실시예들에 따른 송신 방법(송신 장치에 의해 수행됨)은 포인트 클라우드 데이터를 인코딩하는 단계; 및 포인트 클라우드 데이터를 포함하는 비트스트림을 전송하는 단계; 를 포함할 수 있다.
실시예들에 따른 송신 방법(장치)는 다음과 같은 비트스트림을 레이어/LOD/슬라이스 등 구별 단위에 기반하여 구조를 가지도록 생성할 수 있다.
구체적으로, 비트스트림은 포인트 클라우드 데이터의 지오메트리 데이터 및 어트리뷰트 데이터를 포함하고 지오메트리 데이터에 대한 비트스트림은 LOD(level of detail)들을 포함하고, LOD 1은 LOD 0에 포함된 지오메트리 데이터 및 추가 지오메트리 데이터를 포함하고, 어트리뷰트 데이터에 대한 비트스트림은 LOD(level of detail)들을 포함하고, LOD 1은 LOD 0에 포함된 어트리뷰트 데이터 및 추가 어트리뷰트 데이터를 포함할 수 있다(도17-18 LOD 기반 비트스트림 구성 방법 참조).
LOD개수는 예를 들어, 2개를 설명한 것이고, 데이터 디테일 구분 정도에 따라서 비트스트림이 더 많은 구분 단위를 가질 수 있다.
또한, 비트스트림 내 지오메트리 데이터에 대한 비트스트림이 어트리뷰트 데이터에 대한 비트스트림보다 앞에 위치하거나, 또는 비트스트림 내 LOD 0에 대응하는 지오메트리 데이터 및 LOD 0에 대응하는 어트리뷰트 데이터가 상 LOD 1에 대응하는 지오메트리 데이터 및 LOD 1에 대응하는 어트리뷰트 데이터보다 앞에 위치할 수 있다(도19-20 비트스트림 정렬 방법 참조).
또한, 비트스트림은 LOD 0에 대응하는 지오메트리 데이터, LOD 0에 대응하는 어트리뷰트 데이터, LOD 1에 대응하는 지오메트리 데이터, 및 LOD 1에 대응하는 어트리뷰트 데이터를 포함하고, LOD 2에 대응하는 지오메트리 데이터 및 어트리뷰트 데이터는 비트스트림에서 제외될 수 있다.
또한, 비트스트림은 LOD 0에 대응하는 지오메트리 데이터, LOD 0에 대응하는 어트리뷰트 데이터, LOD 1에 대응하는 지오메트리 데이터, LOD 1대응하는 어트리뷰트 데이터, 및 LOD 2에 대응하는 지오메트리 데이터를 포함하고, LOD 2에 대응하는 어트리뷰트 데이터는 비트스트림에서 제외될 수 있다 (도21-22: 지오메트리-어트리뷰트 대칭/비대칭 참조).
또한, 비트스트림은 포인트 클라우드 데이터를 LOD기반 레이어를 구분하여 포함하고, 레이어에 기반하여 포인트 클라우드 데이터를 포함하는 슬라이스를 포함할 수 있다 (도23: 슬라이스 구성 참조).
또한, 비트스트림은 분할된 포인트 클라우드 데이터를 포함하는 분할된 슬라이스를 포함할 수 있다 (도33: 분할 슬라이스 구조 참조).
또한, 지오메트리 데이터에 대한 비트스트림은 하나 또는 하나 이상의 레이어들에 대한 지오메트리 데이터를 포함하는 그룹을 포함하는 슬라이스를 포함하고, 어트리뷰트 데이터에 대한 비트스트림은 하나 또는 하나 이상의 레이어들에 대한 어트리뷰트 데이터를 포함하는 그룹을 포함하는 슬라이스를 포함할 수 있다.
또한, 비트스트림 내 지오메트리 데이터에 대한 비트스트림의 레이어 구조 및 어트리뷰트 데이터에 대한 비트스트림의 레이어 구조는 동일하거나, 서로 다를 수 있다 (도34-35: 레이어 그룹 슬라이스 포함 참조).
실시예들에 따른 송신 방법을 수행하는 송신 장치에 대응하는 포인트 클라우드 데이터 수신 장치는 다음과 같이 구성되어 실시예들에 따른 수신 방법을 수행할 수 있다.
포인트 클라우드 데이터를 포함하는 비트스트림을 수신하는 수신부; 및 포인트 클라우드 데이터를 디코딩하는 디코더; 를 포함할 수 있다(도1 참조).
디코더를 위한 비트스트림 분류기(도 30 참조)에 의해 처리되는 비트스트림은 포인트 클라우드 데이터의 지오메트리 데이터 및 어트리뷰트 데이터를 포함하고, 지오메트리 데이터에 대한 비트스트림은 LOD(level of detail)들을 포함하고, LOD 1은 LOD 0에 포함된 지오메트리 데이터 및 추가 지오메트리 데이터를 포함할 수 있다. 어트리뷰트 데이터에 대한 비트스트림은 LOD(level of detail)들을 포함하고, LOD 1은 LOD 0에 포함된 어트리뷰트 데이터 및 추가 어트리뷰트 데이터를 포함할 수 있다.
또한, 비트스트림 내 지오메트리 데이터에 대한 비트스트림이 어트리뷰트 데이터에 대한 비트스트림보다 앞에 위치하거나, 또는 비트스트림 내 LOD 0에 대응하는 지오메트리 데이터 및 LOD 0에 대응하는 어트리뷰트 데이터가 LOD 1에 대응하는 지오메트리 데이터 및 LOD 1에 대응하는 어트리뷰트 데이터보다 앞에 위치할 수 있다.
이로 인하여, layer에 따라서 압축 데이터를 나누어 전달할 수 있고, 별도의 변환 과정 없이 미리 압축된 데이터에 대해 bitstream 단계에서 필요한 부분만 선택적으로 전달할 수 있다. 이는 저장 공간 측면에서도 하나의 스트림 당 하나의 저장 공간만이 필요하기 때문에 효율적이며, 전송 전에 필요한 layer 만을 선택적으로 전송하기 때문에 (bitstream selector) bandwidth 측면에서도 효율적인 전송이 가능하다.
나아가, bitstream을 slice 단위로 나누어 전달/수신할 수 있고, 수신기는 디코더 성능 혹은 응용 분야에 따라 representation 하고자 하는 point cloud data의 밀도에 따라서 bitstream 을 선택적으로 디코딩할 수 있다. 이 경우 디코딩 이전에 선택이 이루어 짐으로써 디코더 효율이 높아지게 되며, 다양한 성능의 디코더를 지원할 수 있다.
실시예들은 방법 및/또는 장치 관점에서 설명되었으며, 방법의 설명 및 장치의 설명은 상호 보완하여 적용될 수 있다.
설명의 편의를 위하여 각 도면을 나누어 설명하였으나, 각 도면에 서술되어 있는 실시 예들을 병합하여 새로운 실시 예를 구현하도록 설계하는 것도 가능하다. 그리고, 통상의 기술자의 필요에 따라, 이전에 설명된 실시 예들을 실행하기 위한 프로그램이 기록되어 있는 컴퓨터에서 판독 가능한 기록 매체를 설계하는 것도 실시예들의 권리범위에 속한다. 실시예들에 따른 장치 및 방법은 상술한 바와 같이 설명된 실시 예들의 구성과 방법이 한정되게 적용될 수 있는 것이 아니라, 실시 예들은 다양한 변형이 이루어질 수 있도록 각 실시 예들의 전부 또는 일부가 선택적으로 조합되어 구성될 수도 있다. 실시예들의 바람직한 실시 예에 대하여 도시하고 설명하였지만, 실시예들은 상술한 특정의 실시 예에 한정되지 아니하며, 청구범위에서 청구하는 실시예들의 요지를 벗어남이 없이 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 다양한 변형실시가 가능한 것은 물론이고, 이러한 변형실시들은 실시예들의 기술적 사상이나 전망으로부터 개별적으로 이해돼서는 안 될 것이다.
실시예들의 장치의 다양한 구성요소들은 하드웨어, 소프트웨어, 펌웨어 또는 그것들의 조합에 의해 수행될 수 있다. 실시예들의 다양한 구성요소들은 하나의 칩, 예를 들면 하나의 하드웨어 서킷으로 구현될 수 있다 실시예들에 따라, 실시예들에 따른 구성요소들은 각각 별도의 칩들로 구현될 수 있다. 실시예들에 따라, 실시예들에 따른 장치의 구성요소들 중 적어도 하나 이상은 하나 또는 그 이상의 프로그램들을 실행 할 수 있는 하나 또는 그 이상의 프로세서들로 구성될 수 있으며, 하나 또는 그 이상의 프로그램들은 실시예들에 따른 동작/방법들 중 어느 하나 또는 그 이상의 동작/방법들을 수행시키거나, 수행시키기 위한 인스트럭션들을 포함할 수 있다. 실시예들에 따른 장치의 방법/동작들을 수행하기 위한 실행 가능한 인스트럭션들은 하나 또는 그 이상의 프로세서들에 의해 실행되기 위해 구성된 일시적이지 않은 CRM 또는 다른 컴퓨터 프로그램 제품들에 저장될 수 있거나, 하나 또는 그 이상의 프로세서들에 의해 실행되기 위해 구성된 일시적인 CRM 또는 다른 컴퓨터 프로그램 제품들에 저장될 수 있다. 또한 실시예들에 따른 메모리는 휘발성 메모리(예를 들면 RAM 등)뿐 만 아니라 비휘발성 메모리, 플래쉬 메모리, PROM등을 전부 포함하는 개념으로 사용될 수 있다. 또한, 인터넷을 통한 전송 등과 같은 캐리어 웨이브의 형태로 구현되는 것도 포함될 수 있다. 또한, 프로세서가 읽을 수 있는 기록매체는 네트워크로 연결된 컴퓨터 시스템에 분산되어, 분산방식으로 프로세서가 읽을 수 있는 코드가 저장되고 실행될 수 있다.
이 문서에서 “/”와 “,”는 “및/또는”으로 해석된다. 예를 들어, “A/B”는 “A 및/또는 B”로 해석되고, “A, B”는 “A 및/또는 B”로 해석된다. 추가적으로, “A/B/C”는 “A, B 및/또는 C 중 적어도 하나”를 의미한다. 또한, “A, B, C”도 “A, B 및/또는 C 중 적어도 하나”를 의미한다. 추가적으로, 이 문서에서 “또는”는 “및/또는”으로 해석된다. 예를 들어, “A 또는 B”은, 1) “A” 만을 의미하고, 2) “B” 만을 의미하거나, 3) “A 및 B”를 의미할 수 있다. 달리 표현하면, 본 문서의 “또는”은 “추가적으로 또는 대체적으로(additionally or alternatively)”를 의미할 수 있다.
제1, 제2 등과 같은 용어는 실시예들의 다양한 구성요소들을 설명하기 위해 사용될 수 있다. 하지만 실시예들에 따른 다양한 구성요소들은 위 용어들에 의해 해석이 제한되어서는 안된다. 이러한 용어는 하나의 구성요소를 다른 구성요소와 구별하기 위해 사욛외는 것에 불과하다. 것에 불과하다. 예를 들어, 제1 사용자 인풋 시그널은 제2사용자 인풋 시그널로 지칭될 수 있다. 이와 유사하게, 제2사용자 인풋 시그널은 제1사용자 인풋시그널로 지칭될 수 있다. 이러한 용어의 사용은 다양한 실시예들의 범위 내에서 벗어나지 않는 것으로 해석되어야만 한다. 제1사용자 인풋 시그널 및 제2사용자 인풋 시그널은 모두 사용자 인풋 시그널들이지만, 문맥 상 명확하게 나타내지 않는 한 동일한 사용자 인풋 시그널들을 의미하지 않는다.
실시예들을 설명하기 위해 사용된 용어는 특정 실시예들을 설명하기 위한 목적으로 사용되고, 실시예들을 제한하기 위해서 의도되지 않는다. 실시예들의 설명 및 청구항에서 사용된 바와 같이, 문맥 상 명확하게 지칭하지 않는 한 단수는 복수를 포함하는 것으로 의도된다. 및/또는 표현은 용어 간의 모든 가능한 결합을 포함하는 의미로 사용된다. 포함한다 표현은 특징들, 수들, 단계들, 엘리먼트들, 및/또는 컴포넌트들이 존재하는 것을 설명하고, 추가적인 특징들, 수들, 단계들, 엘리먼트들, 및/또는 컴포넌트들을 포함하지 않는 것을 의미하지 않는다. 실시예들을 설명하기 위해 사용되는, ~인 경우, ~때 등의 조건 표현은 선택적인 경우로만 제한 해석되지 않는다. 특정 조건을 만족하는 때, 특정 조건에 대응하여 관련 동작을 수행하거나, 관련 정의가 해석되도록 의도되었다.
또한, 본 문서에서 설명하는 실시예들에 따른 동작은 실시예들에 따라서 메모리 및/또는 프로세서를 포함하는 송수신 장치에 의해 수행될 수 있다. 메모리는 실시예들에 따른 동작을 처리/제어하기 위한 프로그램들을 저장할 수 있고, 프로세서는 본 문서에서 설명한 다양한 동작을 제어할 수 있다. 프로세서는 컨트롤러 등으로 지칭가능하다. 실시예들에 동작들은 펌웨어, 소프트웨어, 및/또는 그것들의 조합에 의해 수행될 수 있고, 펌웨어, 소프트웨어, 및/또는 그것들의 조합은 프로세서에 저장되거나 메모리에 저장될 수 있다.
한편, 상술한 실시예들에 따른 동작은 실시예들 따른 송신 장치 및/또는 수신 장치에 의해서 수행될 수 있다. 송수신 장치는 미디어 데이터를 송수신하는 송수신부, 실시예들에 따른 프로세스에 대한 인스트럭션(프로그램 코드, 알고리즘, flowchart 및/또는 데이터)을 저장하는 메모리, 송/수신 장치의 동작들을 제어하는 프로세서를 포함할 수 있다.
프로세서는 컨트롤러 등으로 지칭될 수 있고, 예를 들어, 하드웨어, 소프트웨어, 및/또는 그것들의 조합에 대응할 수 있다. 상술한 실시예들에 따른 동작은 프로세서에 의해 수행될 수 있다. 또한, 프로세서는 상술한 실시예들의 동작을 위한 인코더/디코더 등으로 구현될 수 있다.
상술한 바와 같이, 실시예들을 실시하기 위한 최선의 형태에서 관련 내용을 설명하였다.
상술한 바와 같이, 실시예들은 포인트 클라우드 데이터 송수신 장치 및 시스템에 전체적 또는 부분적으로 적용될 수 있다.
당업자는 실시예들의 범위 내에서 실시예들을 다양하게 변경 또는 변형할 수 있다.
실시예들은 변경/변형들을 포함할 수 있고, 변경/변형은 청구항들 및 그 와 동일한 것들의 범위를 벗어나지 않는다.

Claims (20)

  1. 포인트 클라우드 데이터를 인코딩하는 단계; 및
    상기 포인트 클라우드 데이터를 포함하는 비트스트림을 전송하는 단계; 를 포함하는,
    포인트 클라우드 데이터 송신 방법.
  2. 제1항에 있어서,
    상기 비트스트림은 상기 포인트 클라우드 데이터의 지오메트리 데이터 및 어트리뷰트 데이터를 포함하고,
    상기 지오메트리 데이터에 대한 비트스트림은 LOD(level of detail)들을 포함하고, LOD 1은 LOD 0에 포함된 지오메트리 데이터 및 추가 지오메트리 데이터를 포함하고,
    상기 어트리뷰트 데이터에 대한 비트스트림은 LOD(level of detail)들을 포함하고, LOD 1은 LOD 0에 포함된 어트리뷰트 데이터 및 추가 어트리뷰트 데이터를 포함하는,
    포인트 클라우드 데이터 송신 방법.
  3. 제2항에 있어서,
    상기 비트스트림 내 상기 지오메트리 데이터에 대한 비트스트림이 상기 어트리뷰트 데이터에 대한 비트스트림보다 앞에 위치하거나, 또는
    상기 비트스트림 내 상기 LOD 0에 대응하는 지오메트리 데이터 및 상기 LOD 0에 대응하는 어트리뷰트 데이터가 상기 LOD 1에 대응하는 지오메트리 데이터 및 상기 LOD 1에 대응하는 어트리뷰트 데이터보다 앞에 위치하는,
    포인트 클라우드 데이터 송신 방법.
  4. 제2항에 있어서,
    상기 비트스트림은 상기 LOD 0에 대응하는 지오메트리 데이터, 상기 LOD 0에 대응하는 어트리뷰트 데이터, 상기 LOD 1에 대응하는 지오메트리 데이터, 및 상기 LOD 1에 대응하는 어트리뷰트 데이터를 포함하고, LOD 2에 대응하는 지오메트리 데이터 및 어트리뷰트 데이터는 상기 비트스트림에서 제외되거나, 또는
    상기 비트스트림은 상기 LOD 0에 대응하는 지오메트리 데이터, 상기 LOD 0에 대응하는 어트리뷰트 데이터, 상기 LOD 1에 대응하는 지오메트리 데이터, 상기 LOD 1에 대응하는 어트리뷰트 데이터, 및 LOD 2에 대응하는 지오메트리 데이터를 포함하고, LOD 2에 대응하는 어트리뷰트 데이터는 상기 비트스트림에서 제외되는,
    포인트 클라우드 데이터 송신 방법.
  5. 제1항에 있어서,
    상기 비트스트림은 상기 포인트 클라우드 데이터를 LOD기반 레이어를 구분하여 포함하고, 상기 레이어에 기반하여 포인트 클라우드 데이터를 포함하는 슬라이스를 포함하는,
    포인트 클라우드 데이터 송신 방법.
  6. 제1항에 있어서,
    상기 비트스트림은 분할된 포인트 클라우드 데이터를 포함하는 분할된 슬라이스를 포함하는,
    포인트 클라우드 데이터 송신 방법.
  7. 제6항에 있어서,
    상기 지오메트리 데이터에 대한 비트스트림은 하나 또는 하나 이상의 레이어들에 대한 상기 지오메트리 데이터를 포함하는 그룹을 포함하는 슬라이스를 포함하고, 상기 어트리뷰트 데이터에 대한 비트스트림은 하나 또는 하나 이상의 레이어들에 대한 상기 어트리뷰트 데이터를 포함하는 그룹을 포함하는 슬라이스를 포함하고,
    상기 비트스트림 내 상기 지오메트리 데이터에 대한 비트스트림의 레이어 구조 및 상기 어트리뷰트 데이터에 대한 비트스트림의 레이어 구조는 동일하거나, 서로 다른,
    포인트 클라우드 데이터 송신 방법.
  8. 포인트 클라우드 데이터를 인코딩하는 인코더; 및
    상기 포인트 클라우드 데이터를 포함하는 비트스트림을 전송하는 트랜스미터; 를 포함하는,
    포인트 클라우드 데이터 송신 장치.
  9. 제8항에 있어서,
    상기 인코더를 위한 비트스트림 제너레이터에 의해, 상기 비트스트림은 상기 포인트 클라우드 데이터의 지오메트리 데이터 및 어트리뷰트 데이터를 포함하고,
    상기 지오메트리 데이터에 대한 비트스트림은 LOD(level of detail)들을 포함하고, LOD 1은 LOD 0에 포함된 지오메트리 데이터 및 추가 지오메트리 데이터를 포함하고,
    상기 어트리뷰트 데이터에 대한 비트스트림은 LOD(level of detail)들을 포함하고, LOD 1은 LOD 0에 포함된 어트리뷰트 데이터 및 추가 어트리뷰트 데이터를 포함하고,
    포인트 클라우드 데이터 송신 장치.
  10. 제9항에 있어서,
    상기 비트스트림 내 상기 지오메트리 데이터에 대한 비트스트림이 상기 어트리뷰트 데이터에 대한 비트스트림보다 앞에 위치하거나, 또는
    상기 비트스트림 내 상기 LOD 0에 대응하는 지오메트리 데이터 및 상기 LOD 0에 대응하는 어트리뷰트 데이터가 상기 LOD 1에 대응하는 지오메트리 데이터 및 상기 LOD 1에 대응하는 어트리뷰트 데이터보다 앞에 위치하는,
    포인트 클라우드 데이터 송신 장치.
  11. 제9항에 있어서,
    상기 비트스트림은 상기 LOD 0에 대응하는 지오메트리 데이터, 상기 LOD 0에 대응하는 어트리뷰트 데이터, 상기 LOD 1에 대응하는 지오메트리 데이터, 및 상기 LOD 1에 대응하는 어트리뷰트 데이터를 포함하고, LOD 2에 대응하는 지오메트리 데이터 및 어트리뷰트 데이터는 상기 비트스트림에서 제외되거나, 또는
    상기 비트스트림은 상기 LOD 0에 대응하는 지오메트리 데이터, 상기 LOD 0에 대응하는 어트리뷰트 데이터, 상기 LOD 1에 대응하는 지오메트리 데이터, 상기 LOD 1에 대응하는 어트리뷰트 데이터, 및 LOD 2에 대응하는 지오메트리 데이터를 포함하고, LOD 2에 대응하는 어트리뷰트 데이터는 상기 비트스트림에서 제외되는,
    포인트 클라우드 데이터 송신 장치.
  12. 제8항에 있어서,
    상기 인코더를 위한 비트스트림 제너레이터에 의해, 상기 비트스트림은 상기 포인트 클라우드 데이터를 LOD기반 레이어를 구분하여 포함하고, 상기 레이어에 기반하여 포인트 클라우드 데이터를 포함하는 슬라이스를 포함하는,
    포인트 클라우드 데이터 송신 장치.
  13. 제8항에 있어서,
    상기 인코더를 위한 비트스트림 제너레이터에 의해, 상기 비트스트림은 분할된 포인트 클라우드 데이터를 포함하는 분할된 슬라이스를 포함하는,
    포인트 클라우드 데이터 송신 장치.
  14. 제13항에 있어서,
    상기 지오메트리 데이터에 대한 비트스트림은 하나 또는 하나 이상의 레이어들에 대한 상기 지오메트리 데이터를 포함하는 그룹을 포함하는 슬라이스를 포함하고, 상기 어트리뷰트 데이터에 대한 비트스트림은 하나 또는 하나 이상의 레이어들에 대한 상기 어트리뷰트 데이터를 포함하는 그룹을 포함하는 슬라이스를 포함하고,
    상기 비트스트림 내 상기 지오메트리 데이터에 대한 비트스트림의 레이어 구조 및 상기 어트리뷰트 데이터에 대한 비트스트림의 레이어 구조는 동일하거나, 서로 다른,
    포인트 클라우드 데이터 송신 장치.
  15. 포인트 클라우드 데이터를 포함하는 비트스트림을 수신하는 단계; 및
    상기 포인트 클라우드 데이터를 디코딩하는 단계; 를 포함하는,
    포인트 클라우드 데이터 수신 방법.
  16. 제15항에 있어서,
    상기 비트스트림은 상기 포인트 클라우드 데이터의 지오메트리 데이터 및 어트리뷰트 데이터를 포함하고,
    상기 지오메트리 데이터에 대한 비트스트림은 LOD(level of detail)들을 포함하고, LOD 1은 LOD 0에 포함된 지오메트리 데이터 및 추가 지오메트리 데이터를 포함하고,
    상기 어트리뷰트 데이터에 대한 비트스트림은 LOD(level of detail)들을 포함하고, LOD 1은 LOD 0에 포함된 어트리뷰트 데이터 및 추가 어트리뷰트 데이터를 포함하는,
    포인트 클라우드 데이터 수신 방법.
  17. 제16항에 있어서,
    상기 비트스트림 내 상기 지오메트리 데이터에 대한 비트스트림이 상기 어트리뷰트 데이터에 대한 비트스트림보다 앞에 위치하거나, 또는
    상기 비트스트림 내 상기 LOD 0에 대응하는 지오메트리 데이터 및 상기 LOD 0에 대응하는 어트리뷰트 데이터가 상기 LOD 1에 대응하는 지오메트리 데이터 및 상기 LOD 1에 대응하는 어트리뷰트 데이터보다 앞에 위치하는,
    포인트 클라우드 데이터 수신 방법.
  18. 포인트 클라우드 데이터를 포함하는 비트스트림을 수신하는 수신부; 및
    상기 포인트 클라우드 데이터를 디코딩하는 디코더; 를 포함하는,
    포인트 클라우드 데이터 수신 장치.
  19. 제18항에 있어서,
    상기 디코더를 위한 비트스트림 분류기에 의해 처리되는 상기 비트스트림은 상기 포인트 클라우드 데이터의 지오메트리 데이터 및 어트리뷰트 데이터를 포함하고,
    상기 지오메트리 데이터에 대한 비트스트림은 LOD(level of detail)들을 포함하고, LOD 1은 LOD 0에 포함된 지오메트리 데이터 및 추가 지오메트리 데이터를 포함하고,
    상기 어트리뷰트 데이터에 대한 비트스트림은 LOD(level of detail)들을 포함하고, LOD 1은 LOD 0에 포함된 어트리뷰트 데이터 및 추가 어트리뷰트 데이터를 포함하는,
    포인트 클라우드 데이터 수신 장치.
  20. 제19항에 있어서,
    상기 비트스트림 내 상기 지오메트리 데이터에 대한 비트스트림이 상기 어트리뷰트 데이터에 대한 비트스트림보다 앞에 위치하거나, 또는
    상기 비트스트림 내 상기 LOD 0에 대응하는 지오메트리 데이터 및 상기 LOD 0에 대응하는 어트리뷰트 데이터가 상기 LOD 1에 대응하는 지오메트리 데이터 및 상기 LOD 1에 대응하는 어트리뷰트 데이터보다 앞에 위치하는,
    포인트 클라우드 데이터 수신 장치.
PCT/KR2021/013722 2020-10-06 2021-10-06 포인트 클라우드 데이터 송신 장치, 포인트 클라우드 데이터 송신 방법, 포인트 클라우드 데이터 수신 장치 및 포인트 클라우드 데이터 수신 방법 WO2022075753A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP21878004.7A EP4228267A1 (en) 2020-10-06 2021-10-06 Point cloud data transmission device, point cloud data transmission method, point cloud data reception device, and point cloud data reception method
CN202180068605.2A CN116349229A (zh) 2020-10-06 2021-10-06 点云数据发送装置和方法、点云数据接收装置和方法
US18/028,635 US20230334703A1 (en) 2020-10-06 2021-10-06 Point cloud data transmission device, point cloud data transmission method, point cloud data reception device, and point cloud data reception method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20200128676 2020-10-06
KR10-2020-0128676 2020-10-06
US202063088998P 2020-10-07 2020-10-07
US63/088,998 2020-10-07

Publications (1)

Publication Number Publication Date
WO2022075753A1 true WO2022075753A1 (ko) 2022-04-14

Family

ID=81126287

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/013722 WO2022075753A1 (ko) 2020-10-06 2021-10-06 포인트 클라우드 데이터 송신 장치, 포인트 클라우드 데이터 송신 방법, 포인트 클라우드 데이터 수신 장치 및 포인트 클라우드 데이터 수신 방법

Country Status (4)

Country Link
US (1) US20230334703A1 (ko)
EP (1) EP4228267A1 (ko)
CN (1) CN116349229A (ko)
WO (1) WO2022075753A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023211109A1 (ko) * 2022-04-25 2023-11-02 엘지전자 주식회사 포인트 클라우드 데이터 송신 장치, 포인트 클라우드 데이터 송신 방법, 포인트 클라우드 데이터 수신 장치 및 포인트 클라우드 데이터 수신 방법
WO2023211111A1 (ko) * 2022-04-25 2023-11-02 엘지전자 주식회사 포인트 클라우드 데이터 송신 장치, 포인트 클라우드 데이터 송신 방법, 포인트 클라우드 데이터 수신 장치 및 포인트 클라우드 데이터 수신 방법

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190089115A (ko) * 2018-01-20 2019-07-30 삼성전자주식회사 포인트 클라우드 압축 방법 및 장치
WO2020072665A1 (en) * 2018-10-02 2020-04-09 Futurewei Technologies, Inc. Hierarchical tree attribute coding in point cloud coding
KR20200039757A (ko) * 2017-09-14 2020-04-16 애플 인크. 포인트 클라우드 압축

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200039757A (ko) * 2017-09-14 2020-04-16 애플 인크. 포인트 클라우드 압축
KR20190089115A (ko) * 2018-01-20 2019-07-30 삼성전자주식회사 포인트 클라우드 압축 방법 및 장치
WO2020072665A1 (en) * 2018-10-02 2020-04-09 Futurewei Technologies, Inc. Hierarchical tree attribute coding in point cloud coding

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"G-PCC codec description", 131. MPEG MEETING; 20200629 - 20200703; ONLINE; (MOTION PICTURE EXPERT GROUP OR ISO/IEC JTC1/SC29/WG11), 10 October 2020 (2020-10-10), XP030292244 *
Z. GAO (APPLE), D. FLYNN (APPLE), K. MAMMOU (APPLE): "G-PCC: A method to compute dist2 values for LoD attribute coding", 129. MPEG MEETING; 20200113 - 20200117; BRUSSELS; (MOTION PICTURE EXPERT GROUP OR ISO/IEC JTC1/SC29/WG11), 11 January 2020 (2020-01-11), XP030225216 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023211109A1 (ko) * 2022-04-25 2023-11-02 엘지전자 주식회사 포인트 클라우드 데이터 송신 장치, 포인트 클라우드 데이터 송신 방법, 포인트 클라우드 데이터 수신 장치 및 포인트 클라우드 데이터 수신 방법
WO2023211111A1 (ko) * 2022-04-25 2023-11-02 엘지전자 주식회사 포인트 클라우드 데이터 송신 장치, 포인트 클라우드 데이터 송신 방법, 포인트 클라우드 데이터 수신 장치 및 포인트 클라우드 데이터 수신 방법

Also Published As

Publication number Publication date
US20230334703A1 (en) 2023-10-19
CN116349229A (zh) 2023-06-27
EP4228267A1 (en) 2023-08-16

Similar Documents

Publication Publication Date Title
WO2021066312A1 (ko) 포인트 클라우드 데이터 송신 장치, 포인트 클라우드 데이터 송신 방법, 포인트 클라우드 데이터 수신 장치 및 포인트 클라우드 데이터 수신 방법
WO2021210764A1 (ko) 포인트 클라우드 데이터 송신 장치, 포인트 클라우드 데이터 송신 방법, 포인트 클라우드 데이터 수신 장치 및 포인트 클라우드 데이터 수신 방법
WO2020262831A1 (ko) 포인트 클라우드 데이터 처리 장치 및 방법
WO2021261840A1 (ko) 포인트 클라우드 데이터 송신 장치, 포인트 클라우드 데이터 송신 방법, 포인트 클라우드 데이터 수신 장치 및 포인트 클라우드 데이터 수신 방법
WO2021210743A1 (ko) 포인트 클라우드 데이터 송신 장치, 포인트 클라우드 데이터 송신 방법, 포인트 클라우드 데이터 수신 장치 및 포인트 클라우드 데이터 수신 방법
WO2021215849A1 (ko) 포인트 클라우드 데이터 처리 장치 및 처리 방법
WO2021246843A1 (ko) 포인트 클라우드 데이터 송신 장치, 포인트 클라우드 데이터 송신 방법, 포인트 클라우드 데이터 수신 장치 및 포인트 클라우드 데이터 수신 방법
WO2021141218A1 (ko) 포인트 클라우드 데이터 송신 장치, 포인트 클라우드 데이터 송신 방법, 포인트 클라우드 데이터 수신 장치 및 포인트 클라우드 데이터 수신 방법
WO2022149810A1 (ko) 포인트 클라우드 데이터 송신 장치, 포인트 클라우드 데이터 송신 방법, 포인트 클라우드 데이터 수신 장치 및 포인트 클라우드 데이터 수신 방법
WO2021182937A1 (ko) 포인트 클라우드 데이터 송신 장치, 포인트 클라우드 데이터 송신 방법, 포인트 클라우드 데이터 수신 장치 및 포인트 클라우드 데이터 수신 방법
WO2022098152A1 (ko) 포인트 클라우드 데이터 송신 장치, 포인트 클라우드 데이터 송신 방법, 포인트 클라우드 데이터 수신 장치 및 포인트 클라우드 데이터 수신 방법
WO2022050650A1 (ko) 포인트 클라우드 데이터 송신 장치, 포인트 클라우드 데이터 송신 방법, 포인트 클라우드 데이터 수신 장치 및 포인트 클라우드 데이터 수신 방법
WO2022015006A1 (ko) 포인트 클라우드 데이터 송신 장치, 포인트 클라우드 데이터 송신 방법, 포인트 클라우드 데이터 수신 장치 및 포인트 클라우드 데이터 수신 방법
WO2021029575A1 (ko) 포인트 클라우드 데이터 송신 장치, 포인트 클라우드 데이터 송신 방법, 포인트 클라우드 데이터 수신 장치 및 포인트 클라우드 데이터 수신 방법
WO2021002636A1 (ko) 포인트 클라우드 데이터 송신 장치, 포인트 클라우드 데이터 송신 방법, 포인트 클라우드 데이터 수신 장치 및 포인트 클라우드 데이터 수신 방법
WO2022075753A1 (ko) 포인트 클라우드 데이터 송신 장치, 포인트 클라우드 데이터 송신 방법, 포인트 클라우드 데이터 수신 장치 및 포인트 클라우드 데이터 수신 방법
WO2021045601A1 (ko) 포인트 클라우드 데이터 송신 장치, 포인트 클라우드 데이터 송신 방법, 포인트 클라우드 데이터 수신 장치 및 포인트 클라우드 데이터 수신 방법
WO2022092852A1 (ko) 포인트 클라우드 데이터 송신 장치, 포인트 클라우드 데이터 송신 방법, 포인트 클라우드 데이터 수신 장치 및 포인트 클라우드 데이터 수신 방법
WO2022240128A1 (ko) 포인트 클라우드 데이터 송신 방법, 포인트 클라우드 데이터 송신 장치, 포인트 클라우드 데이터 수신 방법 및 포인트 클라우드 데이터 수신 장치
WO2022092971A1 (ko) 포인트 클라우드 데이터 송신 장치, 포인트 클라우드 데이터 송신 방법, 포인트 클라우드 데이터 수신 장치 및 포인트 클라우드 데이터 수신 방법
WO2021215811A1 (ko) 포인트 클라우드 데이터 송신 장치, 포인트 클라우드 데이터 송신 방법, 포인트 클라우드 데이터 수신 장치 및 포인트 클라우드 데이터 수신 방법
WO2021246837A1 (ko) 포인트 클라우드 데이터 처리 디바이스 및 처리 방법
WO2021141221A1 (ko) 포인트 클라우드 데이터 송신 장치, 포인트 클라우드 데이터 송신 방법, 포인트 클라우드 데이터 수신 장치 및 포인트 클라우드 데이터 수신 방법
WO2021242065A1 (ko) 포인트 클라우드 데이터 송신 장치, 포인트 클라우드 데이터 송신 방법, 포인트 클라우드 데이터 수신 장치 및 포인트 클라우드 데이터 수신 방법
WO2021256885A1 (ko) 포인트 클라우드 데이터 송신 장치, 포인트 클라우드 데이터 송신 방법, 포인트 클라우드 데이터 수신 장치 및 포인트 클라우드 데이터 수신 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21878004

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021878004

Country of ref document: EP

Effective date: 20230508