WO2022075663A1 - Conductive particle, conductive material, and connection structure - Google Patents

Conductive particle, conductive material, and connection structure Download PDF

Info

Publication number
WO2022075663A1
WO2022075663A1 PCT/KR2021/013470 KR2021013470W WO2022075663A1 WO 2022075663 A1 WO2022075663 A1 WO 2022075663A1 KR 2021013470 W KR2021013470 W KR 2021013470W WO 2022075663 A1 WO2022075663 A1 WO 2022075663A1
Authority
WO
WIPO (PCT)
Prior art keywords
palladium
region
core
conductive
particles
Prior art date
Application number
PCT/KR2021/013470
Other languages
French (fr)
Korean (ko)
Inventor
배창완
김태근
김경흠
Original Assignee
덕산하이메탈(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020210027896A external-priority patent/KR102598343B1/en
Application filed by 덕산하이메탈(주) filed Critical 덕산하이메탈(주)
Priority to JP2022562541A priority Critical patent/JP2023544928A/en
Priority to CN202180028854.9A priority patent/CN115428097A/en
Publication of WO2022075663A1 publication Critical patent/WO2022075663A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/02Ingredients treated with inorganic substances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/02Contact members
    • H01R13/03Contact members characterised by the material, e.g. plating, or coating materials

Definitions

  • the present invention relates to conductive particles having a conductive layer on the surface of a core, and more particularly, to conductive particles used as a core conductive material of an anisotropic conductive adhesive material that connects fine-pitch circuits. It also relates to a conductive material and a bonded structure using the conductive particles.
  • Conductive particles are anisotropic conductive materials used in a dispersed form by mixing with a curing agent, adhesive, resin binder, for example, anisotropic conductive film, anisotropic conductive adhesive, anisotropic conductive paste, It is used for anisotropic conductive ink and anisotropic conductive sheet.
  • the anisotropic conductive material is FOG (Film on Glass; flexible substrate - glass substrate), COF (Chip on Film; semiconductor chip - flexible substrate), COG (Chip on Glass; semiconductor chip - glass substrate), FOB (Film on Board); Flexible substrate - glass epoxy substrate), etc.
  • the anisotropic conductive material is, for example, bonding a semiconductor chip and a flexible substrate
  • the anisotropic conductive material is disposed on the flexible substrate and the semiconductor chip is laminated to harden the anisotropic conductive material under pressure/heating, so that the conductive particles are the electrode of the substrate
  • a connection structure for electrically connecting the electrode and the semiconductor chip.
  • the conductive particles When the conductive particles are used in the anisotropic conductive material, they are mixed with a curing agent, an adhesive, a resin binder, etc., and when it becomes a bonded structure after pressing/heating, it maintains the electrical connection between the upper and lower electrodes by curing/adhesiveness of the anisotropic conductive material. do.
  • the present invention has been devised to solve the above problems, and the technical object of the present invention is to provide conductive particles in which the conductive layer is formed with a stable and uniform thickness, and the size of the projections formed on the conductive layer can be adjusted aim to do
  • a conductive particle comprising a core and a conductive layer provided on the surface of the core and having projections,
  • the third palladium region preferably includes palladium nanoclusters having an average particle diameter of 30 nm to 130 nm.
  • the palladium nanoparticles are distributed than the surrounding area, and it is preferable that the palladium nanoparticles are attached to 95% or more of the core surface area.
  • the second palladium region is a region in which palladium nanoparticles are distributed more than the surrounding area.
  • the palladium concentration in the third palladium region is higher than the palladium concentration in the first palladium region or the second palladium region.
  • the conductive layer is preferably made of one or more alloys selected from the group consisting of Ni, Sn, Ag, Cu, Pd, Zn, W, P, B, and Au.
  • insulating layer or insulating particles on the surface of the conductive layer.
  • a hydrophobic rust preventive agent on the outermost layer of the conductive layer to be rust-preventive.
  • Another aspect of the present invention is an anisotropic conductive material comprising the aforementioned conductive particles.
  • connection structure including the conductive particles described above.
  • Another aspect of the present invention comprises the steps of manufacturing a core
  • step B dispersing the core after step B) in a nickel plating solution to form a first nickel region
  • It provides a method of manufacturing conductive particles comprising the step of forming a third nickel region on the second nickel region and the third palladium region.
  • palladium is provided at the interface of the conductive layer with the core so that elements constituting the conductive layer can grow.
  • palladium is included in the conductive layer to have an effect of stably and uniformly forming the conductive layer.
  • palladium is included in the form of nano-clusters inside the protrusions protruding from the conductive layer to perform the protrusion-forming function, and has the effect of controlling the size and height of the protrusions according to the size of the palladium nano-clusters.
  • the conductive layer has a uniform thickness on the core, and the size and height of the protrusions can be adjusted according to the conditions in which they are used. can be manufactured.
  • FIG. 1 is a TEM photograph of conductive particles according to an embodiment of the present invention.
  • FIG. 2 is a TEM photograph of a conductive layer region without projections of conductive particles according to an embodiment of the present invention.
  • 3 is a graph showing the results of EDAX analysis in the middle region where there is no projection of the conductive layer.
  • FIG. 4 is a TEM photograph of a projection region of a conductive layer of conductive particles according to an embodiment of the present invention.
  • 5 is a graph showing the results of EDAX analysis in the middle region of the protrusion.
  • the term comprise, comprises, comprising is meant to include the stated object, step or group of objects, and steps, and any other object. It is not used in the sense of excluding a step or a group of objects or groups of steps.
  • the conductive particles according to an embodiment of the present invention are conductive particles included between electrodes to electrically connect the electrodes, and at least one of the electrodes has an oxide film on its surface.
  • conductive particles are contained in an anisotropic conductive material and are heat-compressed, and the conductive particles are electrically connected between the electrodes in such a way that the size of the conductive particles is deformed during compression and protrusions penetrate the electrodes.
  • the inter-electrode spacing varies depending on the size of the particles used, but is usually about 3 ⁇ m to 20 ⁇ m.
  • the conductive particles include a core and a conductive layer having projections provided on the surface of the core.
  • the core according to the present embodiment is not particularly limited.
  • grains may be used for a core.
  • the resin particles are prepared by seed polymerization, dispersion polymerization, It is a copolymer obtained by polymerization by methods such as suspension polymerization and emulsion polymerization.
  • the organic-inorganic hybrid particles are particles including all organic inorganic particles, and may have a core-shell structure, a compound structure, and a composite structure.
  • the shell is an inorganic material
  • the core is an inorganic material
  • the shell is an organic material.
  • the organic used herein uses the above monomers or modified monomers or mixed monomers, and the inorganic used is oxides including SiO 2 , TiO 2 , Al 2 O 3 , ZrO 2 , AlN, Si 3 N 4 , TiN, BaN Nitride, including WC, TiC, carbide including SiC, etc. can be used.
  • a method of forming the shell may be a chemical coating method, a sol-gel method, a spray coating method, a CVD (chemical vapor deposition method), a PVD (physical vapor deposition method), a plating method, or the like.
  • a material including polysiloxane or metaloxane may be used.
  • the size of the core is not particularly limited, but in consideration of the general electrode shape and surface roughness, it is preferably 6 ⁇ m or less, more preferably 1.5 ⁇ m to 5 ⁇ m, and still more preferably 1.5 ⁇ m to 4.5 ⁇ m.
  • the conductive layer may be composed of one or more elements such as P, B, Cu, Au, Ag, W, Mo, Pd, Co, and Pt on a Ni base. At this time, the conductive layer forms a single layer, but inside it consists of a single layer in which the concentration of each element except Ni is changed.
  • Pd is formed in the first palladium region where the conductive layer is formed at the interface with the core, the second palladium region is formed in the middle of the conductive layer, and the protrusion distributed in the third palladium region.
  • palladium is not distributed at all except for the first palladium region, the second palladium region, and the third palladium region, but it means that the defined palladium region is present in a relatively high concentration compared to other peripheral regions. .
  • FIG. 1 is a TEM photograph of conductive particles according to an embodiment of the present invention. According to this, the conductive particles show a first palladium region 10 , a second palladium region 20 , and a third palladium region 30 according to regions in which palladium is distributed.
  • the first palladium region 10 is formed by including palladium nanoparticles at the interface with the core in the conductive layer, which allows the remaining particles to form the conductive layer to grow well on the palladium nanoparticles. At this time, the palladium nanoparticles are attached to 95% or more of the surface of the core, preferably 99% or more, and more preferably over the entire surface.
  • the second palladium region 20 is formed by including palladium nanoparticles in the middle region of the conductive layer, and the particles to form the conductive layer, mainly Ni particles, are distributed once more in the middle region of the conductive layer. By doing so, the remaining particles constituting the conductive layer are thickly stacked so that the overall conductive layer can be thickened.
  • the third palladium region 30 is a region in which palladium is distributed inside the protrusion region, and palladium is distributed in the widest region.
  • the third palladium region contains palladium nanoclusters, and the palladium clusters are distributed inside the conductive layer and perform the function of forming the core of the projections. to form At this time, it is preferable that the palladium nanoclusters have a particle diameter of 30 nm to 130 nm. If it is less than the above range, it is too small to perform the protrusion forming function, and if it exceeds the above range, there is a problem in that the protrusion becomes excessively large or it is not possible to form the protrusion uniformly.
  • the conductive layer is formed by growing Ni, Pd, P, B, Cu, Au, Ag, W, Mo, Co, and Pt particles to form polycrystals.
  • the thickness of the conductive layer of the conductive particles is suitable about 30 ⁇ 300nm. If the thickness of the conductive layer is thin, the resistance value increases, and if it is too thick, even if the conductive particles are slightly deformed under the heating/pressurization bonding condition of the anisotropic conductive material, the conductive layer and the core are peeled off, resulting in poor product reliability.
  • a preferred thickness is 80-200 nm.
  • noble metals such as gold, silver, platinum, and palladium are included in the surface layer of the conductive layer of the conductive particles. This is because the conductivity of the conductive particles can be increased and an anti-oxidation effect can be obtained.
  • the method of forming the surface layer is not particularly limited, and conventionally known techniques such as general sputtering, plating, and vapor deposition may be used.
  • the shape of the projection of the conductive particles is not particularly limited, and may be a spherical shape, an elliptical shape, or a shape in which several particles gather to form a cluster.
  • the most preferred protrusion shape is a mountain shape.
  • the size of the protrusion is not particularly limited, and it is preferably in a convex shape of 50 to 500 nm. If the size of the projections is too small or large, the effect of breaking the metal oxide layer and the binder resin is weakened, so the more preferable size of the projections is 100 to 300 nm.
  • the method for manufacturing conductive particles according to an embodiment of the present invention is not particularly limited.
  • a catalytic material may be applied to the surface of the core resin fine particles, and a conductive layer and protrusions may be formed through electroless plating.
  • a conductive layer and protrusions may be formed through electroless plating.
  • the outermost conductive particle according to the embodiment of the present invention has an insulating layer. As electronic products are miniaturized and integrated, the pitch of the electrodes becomes smaller.
  • Methods for forming the insulating layer include a method of chemically attaching insulating particles to the outermost layer of conductive particles using a functional group, and a method of dissolving an insulating solution in a solvent and then coating it by spraying or immersion.
  • the conductive layer of the conductive particles of the present invention is preferably subjected to a rust prevention treatment.
  • a rust prevention treatment increases the contact angle with water to increase the reliability in a high-humidity environment, and has the effect of reducing the deterioration of the performance of the connection member by dissolving impurities in the water. Therefore, it is preferable to use a hydrophobic rust inhibitor including a phosphate ester or salt containing phosphoric acid, an alkoxysilane containing silane, an alkylthiol containing thiol, and a dialkyl disulfide containing sulfide. After dissolving the rust inhibitor in a solvent, methods such as immersion and spraying can be used.
  • the size of the conductive particles is not particularly limited, but is preferably 6 ⁇ m or less. More preferably, 5 ⁇ m or less is appropriate. This is because, in the place where the anisotropic conductive material manufactured by using the conductive particles of the present invention is used, the electrode gap is very small, so 6 ⁇ m or more is rarely used.
  • the method for manufacturing conductive particles according to an embodiment of the present invention may include a core dispersing step (S1), a protruding conductive layer forming step (S2), and a rust prevention step (S3), wherein the rust prevention step (S3) is optionally may be included.
  • the core dispersion step (S1) includes a core particle synthesis step (S1a) and a plating catalyst activation step (S1b).
  • urethane-based, styrene-based, acrylate-based, benzene-based, epoxy-based, amine-based, imide-based monomers or modified monomers thereof or mixed monomers of the above monomers are used to seed,
  • the copolymer is prepared by polymerization by methods such as polymerization, dispersion polymerization, suspension polymerization, and emulsion polymerization.
  • the organic-inorganic hybrid particle has a core-shell structure
  • the shell is inorganic
  • the core is inorganic
  • the shell is organic
  • the inorganic materials used include oxides including SiO2, TiO2, Al2O3, ZrO2, nitrides including AlN, Si3N4, TiN, and BaN, WC, TiC, and SiC. carbides and the like can be used.
  • a chemical coating method As a method of forming the shell, a chemical coating method, a sol-gel method, a spray coating method, a CVD (chemical vapor deposition method), a PVD (physical vapor deposition method), a plating method, or the like may be used.
  • an ethoxylate triacrylate monomer and an ethoxylate diacrylate monomer are used to disperse a solution in which a solvent and a polymerization initiator are mixed.
  • the dispersion treatment may include a homogenizer treatment using ultrasonic waves.
  • a solution containing a dispersion stabilizer and a surfactant is added to the dispersion treatment solution, and a polymerization process is performed under elevated temperature conditions to form core resin particles.
  • the core particles prepared in the previous step S1a are activated with the electroless plating catalyst.
  • the core particles are treated with a surfactant and then pretreated using various methods known to sensitize the electroless plating catalyst, and then the sensitized core particles are treated with a precursor of the electroless metal plating catalyst. It is put into the containing solution and the activation treatment is performed.
  • the activated core particles are put into a solution containing a strong acid and stirred at room temperature to perform accelerated treatment, thereby obtaining catalytically treated core particles for electroless plating.
  • the protruding conductive layer forming step (S2) includes a core dispersing step (S2a) and a protruding conductive layer forming step (S2b).
  • the core is dispersed by putting the core in a nickel base alloy plating solution, and nickel particles are plated on the surface of the core with the nickel base plating solution to form a first nickel region.
  • the nickel base alloy plating solution is prepared by sequentially dissolving the precursor of the nickel alloy element, the complexing agent, lactic acid, the stabilizer, and the surfactant, and the catalyst-treated core particles obtained in the step (S1b) are added to the prepared plating solution and dispersion treatment using an ultrasonic homogenizer.
  • the pH of the dispersion treatment solution it is preferable to adjust the pH of the dispersion treatment solution to pH 5.5 to 6.5 using ammonia water, etc., as it is possible to improve the adhesion and dispersibility between the insulating particles and the conductive layer in the initial Ni reduction reaction in the conductive layer forming step (S2b), which will be described later. Do. If the pH is less than 5.5, for example, pH 4 or less, the adhesion and dispersibility are good, but the reactivity is too low, so some particles may not be plated. This can lead to poor adhesion and dispersibility.
  • the step of forming the projection conductive layer (S2b) is a step of forming the conductive layer having projections while injecting the nickel precursor solution and the palladium precursor solution.
  • a reducing agent is added to the core having the first nickel region formed on the surface, and then the palladium precursor solution is injected to form the second palladium region.
  • a nickel precursor is added to the second palladium region to further form a second nickel region to increase the thickness of the conductive layer.
  • a palladium precursor solution and a stabilizer are again introduced on the surface of the second nickel region to form a third palladium region in one region of the surface.
  • the palladium nanoparticles form a cluster to form particles larger than the individual nanoparticles, and are formed in one section on the second nickel region.
  • the surface is divided into a second nickel region and a third palladium region, and when the nickel precursor solution is added to the upper portions again, nickel is formed on the second nickel region upper portion and the third palladium region upper portion to form a projection while forming a conductive layer A third nickel region to be thickened is formed.
  • the mechanism by which the protrusion is formed in the above-described manufacturing method is as follows.
  • a reducing agent and an aqueous Ni solution are added in the plating solution, nickel particles are simultaneously generated by the reducing agent, and the nickel particles are attached to the surface of the microparticles to form a first nickel region.
  • a low concentration Pd precursor solution is added to adsorb Pd particles on the first nickel region, and at the same time, the reduced nickel nanoparticles form a second nickel region.
  • a high concentration of a Pd precursor solution and a stabilizer are added to form large Pd clusters for protrusion formation, and palladium nanoclusters play a role as nuclei in protrusion formation.
  • the Ni precursor solution and the reducing agent are added to form a conductive layer having protrusions in which the palladium nanocluster part protrudes while nickel covers the surface.
  • a solution containing a precursor of at least one element selected from the group consisting of P, B, Cu, Au, Ag, W, Mo, Pd, Co and Pt is dividedly injected to obtain a concentration gradient of each element. It is possible to form a protruding conductive layer with
  • the core dispersion step (S2a) one or more precursors selected from P and B are input, and in the conductive layer forming step (S2b), one type of Cu, Au, Ag, W, Mo, Pd, Co, Pt
  • An alloying element including a precursor of the above-selected element may be dividedly added to form a conductive layer having a concentration gradient and protruding.
  • the divided alloying element may be divided and added 2 to 5 times at intervals of 10 to 30 minutes, and may be divided and added 2 to 4 times at intervals of 15 to 25 minutes.
  • the input amount may be divided into an increased content or input continuously as necessary, but it is preferable to increase the input amount according to the input speed for a certain time period as the concentration increases in the direction of the protrusion.
  • the optionally performed rust prevention step (S3) may be performed by introducing conductive particles into the rust preventive solution, but is not limited thereto.
  • a hydrophobic rust inhibitor including a phosphate ester or salt containing phosphoric acid, an alkoxysilane containing silane, an alkylthiol containing thiol, and a dialkyl disulfide containing sulfide may be used.
  • an electroless nickel rust preventive agent including product name SG-1 sold by MSC may be used.
  • ultrasonic treatment or the like may be performed.
  • An anisotropic conductive material can be prepared by dispersing the conductive particles of the present invention in a binder resin.
  • examples of the anisotropic conductive material include an anisotropic conductive paste, an anisotropic conductive film, and an anisotropic conductive sheet.
  • the resin binder is not particularly limited.
  • vinyl resins such as a styrene type, acryl type, vinyl acetate type, thermoplastic resins, such as a polyolefin type, and a polyamide type, curable resin, such as a urethane type, an epoxy type, etc. are mentioned.
  • the above resins may be used alone or in combination of two or more.
  • a radical initiator such as BPO (Benzoyl peroxide) or a photoinitiator such as TPO (Timethylbenzoyl phenylphosphinate) for the purpose of polymerization or curing to the resin, an epoxy latent curing agent such as HX3941HP, etc. can be used alone or in combination.
  • anisotropic conductive material binder resin may be added to the anisotropic conductive material binder resin within a range that does not impede the achievement of the object of the present invention.
  • colorants for example, colorants, softeners, heat stabilizers, light stabilizers, antioxidants, inorganic particles, and the like.
  • the manufacturing method of the said anisotropic conductive material is not specifically limited.
  • it can be used as an anisotropic conductive paste by uniformly dispersing conductive particles in a resin binder, or it can be used as an anisotropic film by spreading it thinly on a release paper.
  • connection structure connects circuit boards between circuit boards using the conductive particles according to the embodiment of the present invention or the anisotropic conductive material according to the embodiment of the present invention.
  • it can be used as a method of connecting a display semiconductor chip of a smartphone and a glass substrate constituting a circuit or a flexible substrate constituting a circuit, and connecting ⁇ -LED, mini-LED and a circuit board.
  • connection structure of the present invention does not cause malfunction of the circuit due to poor connection of the circuit or a sudden increase in resistance.
  • PVP Polyvinylpyrrolidone
  • Solusol Dioctyl sulfosuccinate sodium salt
  • the first solution and the second solution were put in a 50L reactor, 41,000 g of deionized water was added, treated with an ultrasonic homogenizer (20 kHz, 600 W) for 90 minutes, and the temperature was raised to 85° C. while rotating the solution at 120 rpm. After the solution reached 85°C, it was maintained for 16 hours to carry out polymerization process.
  • the polymerized fine particles were filtered, washed, classified and dried to obtain core resin fine particles.
  • the mode value measured using a Particle Size Analyzer (BECKMAN MULTISIZER TM3) was used. At this time, the number of measured core particles is 75,000. The average diameter was 3.02 mu m.
  • Pd catalyst treatment was carried out. After dissolving 150 g of stannous chloride and 300 g of 35-37% hydrochloric acid in 600 g of deionized water, the washed and degreased fine core resin particles were added, sensitized by immersion and stirring at 30 ° C for 30 minutes, and then washed with water 3 times. .
  • the activated core resin fine particles were put into a solution of 35-37% hydrochloric acid, 100 g of hydrochloric acid, and 600 g of deionized water, and stirred at room temperature for 10 minutes to accelerate treatment. After the accelerated treatment, water washing was performed three times to obtain catalyst-treated core resin fine particles for electroless plating.
  • a solution (c) was prepared by dissolving 350 g of deionized water and 200 g of sodium hypophosphite as a reducing agent in a 1L beaker.
  • a solution (d) was prepared by dissolving 250 g of deionized water, 100 g of nickel sulfate, and 10 g of hydrochloric acid in a 1L beaker.
  • a solution (e) was prepared by dissolving 100 g of deionized water, 0.005 g of PdCl2, and 10 g of hydrochloric acid in a 1L beaker.
  • a solution (f) was prepared by dissolving 400 g of deionized water and 300 g of sodium hypophosphite as a reducing agent in a 1L beaker.
  • a solution (g) was prepared by dissolving 100 g of deionized water, 0.05 g of PdCl2, 30 g of hydrochloric acid, Triton X-100 as a stabilizer, and 10 g of sodium hypophosphite in a 1L beaker.
  • a solution (h) was prepared by dissolving 200 g of deionized water and 150 g of sodium hypophosphite as a reducing agent in a 1L beaker.
  • a solution (i) was prepared by dissolving 150 g of deionized water, 50 g of nickel sulfate, and 10 g of hydrochloric acid in a 1 L beaker.
  • the solution (c) is introduced in an amount of 10 g per minute by a metering pump, and the reactor temperature is heated to reach 75°C in 35 minutes and maintained did
  • solutions (d) and (f) are maintained for 10 minutes after the input is completed, and the cluster is maintained after adding the solution (g).
  • the solution (g) is added and maintained for 10 minutes, and the solution (h) and solution (i) are added in an amount of 10 g per minute with a metering pump.
  • Ni-plated protrusion conductive particles were obtained.
  • Example 1 solution was 200 g of deionized water and 150 g of sodium hypophosphite as a reducing agent, plating was performed, and disintegration fixing was performed to release aggregation of conductive particles, followed by deionized water 200 g and reducing agent hypophosphorous acid.
  • FIG. 2 A TEM photograph of the conductive layer region without projections of the conductive particles according to Example 1 is shown in FIG. 2 . According to this, the second palladium region in which palladium is distributed in the middle region of the non-protrusion conductive layer is confirmed as the bright region.
  • FIG. 3 is an EDAX analysis result of the middle region of the non-protrusion region of the conductive layer, and it is confirmed that Ni is distributed throughout the conductive layer, but there is a second palladium region in the middle region.
  • FIG. 4 A TEM photograph of the projection region of the conductive layer of the conductive particles according to Example 1 is shown in FIG. 4 . According to this, the third palladium region in which palladium is distributed in the middle region of the conductive layer is confirmed as the bright region.
  • FIG. 5 is an EDAX analysis result in the middle region of the protrusion, and it is confirmed that there is a third palladium region in which palladium nanoclusters are distributed in the center of the protrusion.
  • a TEM-EDAX analysis photograph of the conductive particles according to Example 1 is shown in FIG. 2 , and according to this, it was confirmed that there is no Pd or a very small amount in the region where there is no projection of the conductive layer.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Conductive Materials (AREA)
  • Chemically Coating (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

The present invention relates to a conductive particle comprising: a core; and a conductive layer provided on a surface of the core and having protrusions, wherein the conductive particle is characterized by containing palladium distributed in a first palladium zone formed in the interface between the conductive layer and the core and in a third palladium zone formed in the inner region of the protrusions.

Description

도전입자, 도전재료 및 접속 구조체Conductive particles, conductive materials and connection structures
본 발명은 코어 표면부에 전도층이 있는 도전입자에 관한 것으로, 보다 상세하게는 미세 피치의 회로를 이어주는 이방성 도전 접착재료의 핵심 도전재로 사용하는 도전입자에 관한 것이다. 또한 상기 도전입자를 이용한 도전재료 및 접속 구조체에 관한 것이다.The present invention relates to conductive particles having a conductive layer on the surface of a core, and more particularly, to conductive particles used as a core conductive material of an anisotropic conductive adhesive material that connects fine-pitch circuits. It also relates to a conductive material and a bonded structure using the conductive particles.
도전입자는 경화제, 접착제, 수지바인더와 혼합하여 분산된 형태로 사용되는 이방성도전재료 예를 들어 이방성도전필름 (Anisotropic Conductive Film), 이방성도전접착제 (Anisotropic Conductive Adhesive) 이방성도전페이스트 (Anisotropic Conductive Paste), 이방성 도전잉크(Anisotropic Conductive Ink), 이방성도전시트(Anisotropic Conductive Sheet)등에 사용되고 있다. Conductive particles are anisotropic conductive materials used in a dispersed form by mixing with a curing agent, adhesive, resin binder, for example, anisotropic conductive film, anisotropic conductive adhesive, anisotropic conductive paste, It is used for anisotropic conductive ink and anisotropic conductive sheet.
상기 이방성도전재료는 FOG(Film on Glass ; 플렉서블 기판 - 유리기판), COF(Chip on Film ; 반도체 칩 - 플렉서블 기판), COG(Chip on Glass ; 반도체 칩 - 유리기판), FOB(Film on Board ; 플렉서블 기판 - 유리에폭시 기판) 등에 사용되고 있다. The anisotropic conductive material is FOG (Film on Glass; flexible substrate - glass substrate), COF (Chip on Film; semiconductor chip - flexible substrate), COG (Chip on Glass; semiconductor chip - glass substrate), FOB (Film on Board); Flexible substrate - glass epoxy substrate), etc.
상기 이방성도전재료는 예를 들어 반도체 칩과 플렉서블 기판을 접합한다고 가정하면, 플렉서블 기판위에 이방성도전재료를 배치하고 반도체 칩을 적층하여 가압/가열 상태에서 이방성도전재료를 경화시켜 도전입자가 기판의 전극과 반도체 칩의 전극을 전기적으로 연결하는 접속 구조체를 구현할 수 있다. Assuming that the anisotropic conductive material is, for example, bonding a semiconductor chip and a flexible substrate, the anisotropic conductive material is disposed on the flexible substrate and the semiconductor chip is laminated to harden the anisotropic conductive material under pressure/heating, so that the conductive particles are the electrode of the substrate It is possible to implement a connection structure for electrically connecting the electrode and the semiconductor chip.
도전입자는 상기 이방성도전재료에 사용될 경우 경화제, 접착제, 수지바인더 등과 같이 혼합하여 사용되고, 가압/가열 후 접속 구조체로 될 경우 이방성도전재료의 경화/접착에 의해 상/하 전극간 전기 접속을 유지하게 된다.When the conductive particles are used in the anisotropic conductive material, they are mixed with a curing agent, an adhesive, a resin binder, etc., and when it becomes a bonded structure after pressing/heating, it maintains the electrical connection between the upper and lower electrodes by curing/adhesiveness of the anisotropic conductive material. do.
본 발명은 전술한 문제점을 해결하기 위하여 안출된 것으로서, 본 발명이 이루고자 하는 기술적 과제는 전도층이 안정적이고 균일한 두께로 형성되며, 전도층에 형성되는 돌기의 사이즈를 조절할 수 있는 도전입자를 제공하는 것을 목적으로 한다. The present invention has been devised to solve the above problems, and the technical object of the present invention is to provide conductive particles in which the conductive layer is formed with a stable and uniform thickness, and the size of the projections formed on the conductive layer can be adjusted aim to do
본 발명의 일측면에 따른 도전입자는,Conductive particles according to one aspect of the present invention,
코어 및 상기 코어 표면상에 구비되며, 돌기를 구비하는 전도층을 포함하는 도전입자로서, A conductive particle comprising a core and a conductive layer provided on the surface of the core and having projections,
상기 전도층과 상기 코어와의 경계면에서 형성되는 제1팔라듐영역, 및 상기 돌기 내부 영역에 형성되는 제3팔라듐영역에 분포되는 팔라듐을 포함하는 것을 특징으로 한다. and palladium distributed in a first palladium region formed at an interface between the conductive layer and the core, and a third palladium region formed in an inner region of the protrusion.
이 때, 상기 전도층의 중간 내부에 형성되는 제2팔라듐영역을 포함하는 것이 바람직하다. In this case, it is preferable to include a second palladium region formed in the middle of the conductive layer.
또한, 상기 제3팔라듐영역에는 평균입경이 30nm~130nm의 팔라듐 나노클러스터가 포함되는 것이 바람직하다. In addition, the third palladium region preferably includes palladium nanoclusters having an average particle diameter of 30 nm to 130 nm.
또한 상기 제1팔라듐영역은 팔라듐 나노입자가 주변보다 많이 분포되며, 상기 팔라듐 나노입자가 코어 표면적의 95%이상으로 부착되는 것이 바람직하다. In addition, in the first palladium region, more palladium nanoparticles are distributed than the surrounding area, and it is preferable that the palladium nanoparticles are attached to 95% or more of the core surface area.
또한, 상기 제2팔라듐영역은 팔라듐 나노입자가 주변보다 많이 분포 되는 영역이다. In addition, the second palladium region is a region in which palladium nanoparticles are distributed more than the surrounding area.
또한, 상기 제3팔라듐영역에서의 팔라듐 농도가 상기 제1팔라듐영역 또는 상기 제2팔라듐영역의 팔라듐 농도보다 높은 것이 바람직하다. In addition, it is preferable that the palladium concentration in the third palladium region is higher than the palladium concentration in the first palladium region or the second palladium region.
또한, 상기 전도층은 Ni, Sn, Ag, Cu, Pd, Zn, W, P, B, 및 Au로 구성되는 군에서 선택되는 1종 또는 2종이상의 합금으로 이루어지는 것이 바람직하다. In addition, the conductive layer is preferably made of one or more alloys selected from the group consisting of Ni, Sn, Ag, Cu, Pd, Zn, W, P, B, and Au.
또한, 상기 전도층의 표면에 절연층 또는 절연입자를 더 포함하는 것이 바람직하다.In addition, it is preferable to further include an insulating layer or insulating particles on the surface of the conductive layer.
또한, 상기 전도층의 최외각에 소수성 방청제를 사용하여 방청처리 되는 것이 바람직하다. In addition, it is preferable to use a hydrophobic rust preventive agent on the outermost layer of the conductive layer to be rust-preventive.
본 발명의 다른 측면은 전술한 도전입자를 포함하는 이방성도전재료이다. Another aspect of the present invention is an anisotropic conductive material comprising the aforementioned conductive particles.
본 발명의 또 다른 측면은 전술한 도전입자를 포함하는 접속구조체이다. Another aspect of the present invention is a connection structure including the conductive particles described above.
본 발명의 또 다른 측면은, 코어를 제조하는 단계;Another aspect of the present invention comprises the steps of manufacturing a core;
상기 코어의 표면에 팔라듐 입자를 부착하여 제1팔라듐영역을 형성하는 단계;forming a first palladium region by attaching palladium particles to the surface of the core;
상기 B)단계 후의 코어를 니켈도금액에 분산시켜 제1니켈영역을 형성하는 단계;dispersing the core after step B) in a nickel plating solution to form a first nickel region;
상기 C)단계 후의 코어에 환원제를 투입한 후 팔라듐 전구체 용액을 주입하여 제2팔라듐영역을 형성하는 단계;forming a second palladium region by injecting a reducing agent into the core after step C) and then injecting a palladium precursor solution;
상기 D)단계 후에 상기 제2팔라듐영역상에 니켈 전구체를 주입하여 제2니켈영역을 형성하는 단계;forming a second nickel region by injecting a nickel precursor onto the second palladium region after step D);
상기 코어에 팔라듐 전구체 용액과 안정제를 투입하여 제2니켈영역의 표면의 일영역에 팔라듐 나노클러스터를 포함하는 제3팔라듐영역을 형성하는 단계; 및 forming a third palladium region including palladium nanoclusters in one region of the surface of the second nickel region by adding a palladium precursor solution and a stabilizer to the core; and
상기 제2니켈영역과 상기 제3팔라듐영역상에 제3니켈영역을 형성하는 단계를 포함하는 도전입자의 제조방법을 제공한다. It provides a method of manufacturing conductive particles comprising the step of forming a third nickel region on the second nickel region and the third palladium region.
본 발명에 따른 도전입자는 팔라듐이 코어와의 전도층의 경계면에 구비되어 전도층을 이루는 원소들이 성장할 수 있게 한다. In the conductive particles according to the present invention, palladium is provided at the interface of the conductive layer with the core so that elements constituting the conductive layer can grow.
또한, 팔라듐이 전도층 내부에 포함되어 전도층이 안정적이고 균일한 두께로 형성되게 하는 효과가 있다. In addition, palladium is included in the conductive layer to have an effect of stably and uniformly forming the conductive layer.
또한 팔라듐은 전도층에서 돌출되는 돌기 내부에 나노클러스터 형태로 포함되어 돌기형성기능을 수행하며, 팔라듐 나노클러스터의 크기에 따라 돌기의 크기 및 높이를 제어할 수 있는 효과가 있다. In addition, palladium is included in the form of nano-clusters inside the protrusions protruding from the conductive layer to perform the protrusion-forming function, and has the effect of controlling the size and height of the protrusions according to the size of the palladium nano-clusters.
결과적으로 도전층이 코어에 일정한 두께로 균일하고, 돌기도 사용되는 조건에 맞게 크기 및 높이를 조절할 수 있게 되어, 전극의 산화 피막을 용이하게 뚫으며 안정성이 높은 도전입자, 이방성도전재료 및 접속구조체를 제조할 수 있다.As a result, the conductive layer has a uniform thickness on the core, and the size and height of the protrusions can be adjusted according to the conditions in which they are used. can be manufactured.
도 1은 본 발명의 일 실시예에 따른 도전입자의 TEM사진이다. 1 is a TEM photograph of conductive particles according to an embodiment of the present invention.
도 2 본 발명의 일 실시예에 따른 도전입자의 돌기없는 도전층 영역의 TEM 사진이다. 2 is a TEM photograph of a conductive layer region without projections of conductive particles according to an embodiment of the present invention.
도 3은 도전층의 돌기가 없는 중간영역에 EDAX분석결과 그래프이다. 3 is a graph showing the results of EDAX analysis in the middle region where there is no projection of the conductive layer.
도 4는 본 발명의 일 실시예에 따른 도전입자의 도전층의 돌기영역의 TEM 사진. 4 is a TEM photograph of a projection region of a conductive layer of conductive particles according to an embodiment of the present invention.
도 5는 돌기의 중간영역에 EDAX분석결과 그래프이다. 5 is a graph showing the results of EDAX analysis in the middle region of the protrusion.
이하에 본 발명을 상세하게 설명하기에 앞서, 본 명세서에 사용된 용어는 특정의 실시예를 기술하기 위한 것일 뿐 첨부하는 특허청구의 범위에 의해서만 한정되는 본 발명의 범위를 한정하려는 것은 아님을 이해하여야 한다. 본 명세서에 사용되는 모든 기술용어 및 과학용어는 다른 언급이 없는 한은 기술적으로 통상의 기술을 가진 자에게 일반적으로 이해되는 것과 동일한 의미를 가진다.Prior to describing the present invention in detail below, it is to be understood that the terminology used herein is for the purpose of describing specific embodiments and is not intended to limit the scope of the present invention, which is limited only by the appended claims. shall. All technical and scientific terms used herein have the same meaning as commonly understood by those of ordinary skill in the art, unless otherwise stated.
본 명세서 및 청구범위의 전반에 걸쳐, 다른 언급이 없는 한 포함(comprise, comprises, comprising)이라는 용어는 언급된 물건, 단계 또는 일군의 물건, 및 단계를 포함하는 것을 의미하고, 임의의 어떤 다른 물건, 단계 또는 일군의 물건 또는 일군의 단계를 배제하는 의미로 사용된 것은 아니다.Throughout this specification and claims, unless stated otherwise, the term comprise, comprises, comprising is meant to include the stated object, step or group of objects, and steps, and any other object. It is not used in the sense of excluding a step or a group of objects or groups of steps.
한편, 본 발명의 여러 가지 실시예들은 명확한 반대의 지적이 없는 한 그 외의 어떤 다른 실시예들과 결합될 수 있다. 특히 바람직하거나 유리하다고 지시하는 어떤 특징도 바람직하거나 유리하다고 지시한 그 외의 어떤 특징 및 특징들과 결합될 수 있다. 이하, 첨부된 도면을 참조하여 본 발명의 실시예 및 이에 따른 효과를 설명하기로 한다. On the other hand, various embodiments of the present invention may be combined with any other embodiments unless clearly indicated to the contrary. Any feature indicated as particularly preferred or advantageous may be combined with any other feature and features indicated as preferred or advantageous. Hereinafter, embodiments of the present invention and effects thereof will be described with reference to the accompanying drawings.
<도전입자><Challenger>
본 발명의 실시예에 따른 도전입자는 전극들 사이에 포함되어 상기 전극들을 전기적으로 연결하는 도전성입자로서, 상기 전극들 중 적어도 하나는 표면에 산화피막이 구비된다. The conductive particles according to an embodiment of the present invention are conductive particles included between electrodes to electrically connect the electrodes, and at least one of the electrodes has an oxide film on its surface.
일반적으로 도전입자는 이방성 도전재료에 포함되어 가열 압착되는데, 압착시 도전입자 크기의 변형이 일어나면서 돌기가 전극을 뚫고 들어가는 방식으로 전극사이를 전기적으로 연결한다. 이 때, 전극간 간격은 사용되는 입자의 크기에 따라 달라지지만 통상 3㎛~20㎛ 정도이다.In general, conductive particles are contained in an anisotropic conductive material and are heat-compressed, and the conductive particles are electrically connected between the electrodes in such a way that the size of the conductive particles is deformed during compression and protrusions penetrate the electrodes. At this time, the inter-electrode spacing varies depending on the size of the particles used, but is usually about 3 µm to 20 µm.
도전성입자는, 코어, 상기 코어표면상에 구비되는 돌기가 구비된 전도층을 포함한다. The conductive particles include a core and a conductive layer having projections provided on the surface of the core.
본 실시예에 따른 코어는 특별히 한정되지 않는다. 예를 들어 코어는 수지 입자 또는 유무기 하이브리드 입자를 사용해도 된다. The core according to the present embodiment is not particularly limited. For example, a resin particle or organic-inorganic hybrid particle|grains may be used for a core.
상기 수지입자는 우레탄계, 스티렌계, 아크릴레이트계, 벤젠계, 에폭시계, 아민계, 이미드계 등의 단량체 또는 이들의 변형된 단량체 또는 상기 단량체의 혼합된 단량체를 이용하여, 시드중합, 분산중합, 현탁중합, 유화중합 등의 방법으로 중합하여 얻어지는 공중합체이다. The resin particles are prepared by seed polymerization, dispersion polymerization, It is a copolymer obtained by polymerization by methods such as suspension polymerization and emulsion polymerization.
상기 유무기 하이브리드 입자는 유기무기가 모두 포함된 입자로서, 코어쉘구조, 컴파운드구조, 컴포지트구조로 이루어질 수 있다. 이 때, 코어쉘 구조를 갖는 경우 코어가 유기물질일 때 쉘은 무기물질이며, 코어가 무기물질일 때 쉘은 유기물질이다. 여기서 사용되는 유기는 상기의 단량체 또는 변형 단량체 또는 혼합 단량체를 이용하고, 사용되는 무기는 SiO2, TiO2, Al2O3, ZrO2를 비롯한 산화물, AlN, Si3N4, TiN, BaN을 비롯한 질화물, WC, TiC, SiC를 비롯한 탄화물 등을 이용할 수 있다.The organic-inorganic hybrid particles are particles including all organic inorganic particles, and may have a core-shell structure, a compound structure, and a composite structure. At this time, in the case of having a core-shell structure, when the core is an organic material, the shell is an inorganic material, and when the core is an inorganic material, the shell is an organic material. The organic used herein uses the above monomers or modified monomers or mixed monomers, and the inorganic used is oxides including SiO 2 , TiO 2 , Al 2 O 3 , ZrO 2 , AlN, Si 3 N 4 , TiN, BaN Nitride, including WC, TiC, carbide including SiC, etc. can be used.
쉘을 형성하는 방법으로는 화학적 코팅법, 졸-겔법, 스프레이 코팅법, CVD(화학적 증착법), PVD(물리적 증착법), 도금법 등으로 할 수 있다.A method of forming the shell may be a chemical coating method, a sol-gel method, a spray coating method, a CVD (chemical vapor deposition method), a PVD (physical vapor deposition method), a plating method, or the like.
또한, 컴파운드구조인 유기 매트릭스 내에 무기입자가 분산된 형태도 가능하며, 무기 매트릭스에 유기입자가 분산된 형태, 그리고 유기/무기가 50:50으로 서로 분산된 형태도 가능하다. In addition, a form in which inorganic particles are dispersed in an organic matrix having a compound structure is possible, a form in which organic particles are dispersed in an inorganic matrix, and a form in which organic/inorganic are dispersed 50:50 to each other is also possible.
또한 컴파운드구조인 경우 폴리실록산 또는 메탈록산을 포함하는 재료가 사용될 수 있다. In addition, in the case of a compound structure, a material including polysiloxane or metaloxane may be used.
코어의 크기는 특별히 한정되지 않지만, 일반적인 전극의 형태와 표면 거칠기를 고려할 경우 바람직하게는 6㎛이하이며, 더욱 바람직하게는 1.5㎛ 내지 5㎛이이고 더더욱 바람직하게는 1.5~4.5㎛이다.The size of the core is not particularly limited, but in consideration of the general electrode shape and surface roughness, it is preferably 6 μm or less, more preferably 1.5 μm to 5 μm, and still more preferably 1.5 μm to 4.5 μm.
전도층은 Ni 베이스에 P, B, Cu, Au, Ag, W, Mo, Pd, Co, Pt 등의 원소가 1종 또는 그 이상으로 구성될 수 있다. 이 때, 전도층은 하나의 층을 이루나 내부에서는 Ni를 제외한 각 원소들의 농도의 변화가 있는 단일층으로 이루어진다. The conductive layer may be composed of one or more elements such as P, B, Cu, Au, Ag, W, Mo, Pd, Co, and Pt on a Ni base. At this time, the conductive layer forms a single layer, but inside it consists of a single layer in which the concentration of each element except Ni is changed.
본 발명의 실시예들에 따르면, 전도층을 이루는 원소 중 Pd은 전도층이 코어와의 경계면에서 형성되는 제1팔라듐영역, 전도층의 중간 내부에 형성되는 제2팔라듐영역, 및 돌기 내부에 형성되는 제3팔라듐영역에 분포된다. 이 때, 제1팔라듐영역, 제2팔라듐영역, 및 제3팔라듐영역외에는 팔라듐이 전혀 분포하지 않는 것을 의미하는 것은 아니지만 정의된 팔라듐 영역은 다른 주변 영역에 비해 상대적으로 높은 농도로 존재하는 것을 의미한다. According to embodiments of the present invention, among the elements constituting the conductive layer, Pd is formed in the first palladium region where the conductive layer is formed at the interface with the core, the second palladium region is formed in the middle of the conductive layer, and the protrusion distributed in the third palladium region. At this time, it does not mean that palladium is not distributed at all except for the first palladium region, the second palladium region, and the third palladium region, but it means that the defined palladium region is present in a relatively high concentration compared to other peripheral regions. .
도 1은 본 발명의 일 실시예에 따른 도전입자의 TEM사진이다. 이에 따르면 도전입자는 내부에 팔라듐이 분포되는 영역에 따라 제1팔라듐영역(10), 제2팔라듐영역(20), 및 제3팔라윰영역(30)을 도시한다. 1 is a TEM photograph of conductive particles according to an embodiment of the present invention. According to this, the conductive particles show a first palladium region 10 , a second palladium region 20 , and a third palladium region 30 according to regions in which palladium is distributed.
제1팔라듐영역(10)은 전도층 내에서 코어와의 경계면에 팔라듐 나노입자가 포함되어 형성되며, 이는 전도층을 형성할 나머지 입자들이 팔라듐 나노입자 상에서 잘 성장할 수 있도록 하게 해준다. 이 때, 팔라듐 나노입자는 코어의 표면의 95%이상, 바람직하게는 99%이상, 보다 바람직하게 전체면에 걸쳐서 부착되도록 한다. The first palladium region 10 is formed by including palladium nanoparticles at the interface with the core in the conductive layer, which allows the remaining particles to form the conductive layer to grow well on the palladium nanoparticles. At this time, the palladium nanoparticles are attached to 95% or more of the surface of the core, preferably 99% or more, and more preferably over the entire surface.
제2팔라듐영역(20)은 전도층의 중간 영역에 팔라듐 나노입자가 포함되어 형성되며, 이는 전도층을 형성할 입자들, 주로 Ni입자를 팔라듐 나노입자가 전도층의 중간 영역에 한 번 더 분포시킴으로써 전도층을 이루는 나머지 입자들이 두껍게 적층되어 전체적으로 전도층이 두꺼워질 수 있게 한다. The second palladium region 20 is formed by including palladium nanoparticles in the middle region of the conductive layer, and the particles to form the conductive layer, mainly Ni particles, are distributed once more in the middle region of the conductive layer. By doing so, the remaining particles constituting the conductive layer are thickly stacked so that the overall conductive layer can be thickened.
제3팔라듐영역(30)은 돌기 영역 내부에 팔라듐이 분포된 영역으로서 가장 넓은 영역에 팔라듐이 분포되어 있다. 제3팔라듐 영역은 팔라듐 나노클러스터가 포함되며, 전도층 내부에 팔라듐 클러스터가 분포되고 돌기의 코어형성 기능을 수행하며, 그 상부에 전도층을 형성할 입자들 즉 Ni가 결합하여 전도층상에 돌기를 형성한다. 이 때, 팔라듐 나노클러스터는 30nm~130nm의 입경을 가지는 것이 바람직하다. 상기 범위 미만인 경우 너무 작아서 돌기형성기능을 수행하지 못하고, 초과인 경우 과도하게 돌기가 커지거나 균일하게 돌기를 형성하지 못하게되는 문제가 있다. The third palladium region 30 is a region in which palladium is distributed inside the protrusion region, and palladium is distributed in the widest region. The third palladium region contains palladium nanoclusters, and the palladium clusters are distributed inside the conductive layer and perform the function of forming the core of the projections. to form At this time, it is preferable that the palladium nanoclusters have a particle diameter of 30 nm to 130 nm. If it is less than the above range, it is too small to perform the protrusion forming function, and if it exceeds the above range, there is a problem in that the protrusion becomes excessively large or it is not possible to form the protrusion uniformly.
결과적으로 전도층은 Ni, Pd, P, B, Cu, Au, Ag, W, Mo, Co, Pt 입자들이 성장하여 형성한 것으로서 다결정을 이루게 된다. As a result, the conductive layer is formed by growing Ni, Pd, P, B, Cu, Au, Ag, W, Mo, Co, and Pt particles to form polycrystals.
상기 도전입자의 전도층 두께는 30~300nm 정도가 적절하다. 전도층의 두께가 얇으면 저항 값이 증가하고, 너무 두꺼우면 이방성 도전재료의 가열/가압의 접합 조건에서 도전입자가 적게 변형해도 전도층과 코어의 박리가 일어나 제품 신뢰성이 떨어진다. 바람직한 두께는 80~200nm이다. The thickness of the conductive layer of the conductive particles is suitable about 30 ~ 300nm. If the thickness of the conductive layer is thin, the resistance value increases, and if it is too thick, even if the conductive particles are slightly deformed under the heating/pressurization bonding condition of the anisotropic conductive material, the conductive layer and the core are peeled off, resulting in poor product reliability. A preferred thickness is 80-200 nm.
상기 도전입자의 전도층 표층에 금, 은, 백금, 팔라듐과 같은 귀금속을 포함하는 경우도 있다. 이는 도전입자의 전도도를 높이고, 산화방지 효과도 얻을 수 있기 때문이다. 상기 표층의 형성방법은 특별히 한정되지 않으며, 일반적인 스퍼터링, 도금, 증착 등 종래 공지된 기술을 사용할 수 있다.In some cases, noble metals such as gold, silver, platinum, and palladium are included in the surface layer of the conductive layer of the conductive particles. This is because the conductivity of the conductive particles can be increased and an anti-oxidation effect can be obtained. The method of forming the surface layer is not particularly limited, and conventionally known techniques such as general sputtering, plating, and vapor deposition may be used.
상기 도전입자의 돌기 형태는 특별히 한정되지 않고, 구형, 타원형, 여러 입자가 모여 군집을 이루는 형태일 수도 있다. 가장 바람직한 돌기 형태는 산 모양이 좋다. The shape of the projection of the conductive particles is not particularly limited, and may be a spherical shape, an elliptical shape, or a shape in which several particles gather to form a cluster. The most preferred protrusion shape is a mountain shape.
돌기의 크기는 특별히 한정되지 않고, 50~500nm의 볼록한 형태인 것이 바람직하다. 돌기의 크기가 너무 작거나 크면, 금속 산화층과 바인더 수지를 깨뜨릴 수 있는 효과가 약해지기 때문에 더욱 바람직한 돌기의 크기는 100~300nm이다. The size of the protrusion is not particularly limited, and it is preferably in a convex shape of 50 to 500 nm. If the size of the projections is too small or large, the effect of breaking the metal oxide layer and the binder resin is weakened, so the more preferable size of the projections is 100 to 300 nm.
본 발명의 실시예에 따른 도전입자 제조방법은 특별히 한정되지 않는다. 예를 들어, 코어 수지미립자의 표면에 촉매물질을 부여하고, 무전해 도금을 통해서 전도층과 돌기를 형성할 수 있다. 다만 전도층을 형성할 때 필요한 농도 구배를 만들기 위하여 원소들의 농도를 변경하면서 다단계로 투입하는 것이 바람직하다. The method for manufacturing conductive particles according to an embodiment of the present invention is not particularly limited. For example, a catalytic material may be applied to the surface of the core resin fine particles, and a conductive layer and protrusions may be formed through electroless plating. However, in order to create a necessary concentration gradient when forming the conductive layer, it is preferable to input the elements in multiple steps while changing the concentration of the elements.
본 발명의 실시예에 따른 도전입자 최외각에는 절연층이 있는 것이 바람직하다. 전자제품의 소형화와 집적도가 높아질수록 전극의 피치가 작아져 최외각에 절연입자가 없을 경우 인접 전극과 전기적으로 통전되는 현상이 발생된다. It is preferable that the outermost conductive particle according to the embodiment of the present invention has an insulating layer. As electronic products are miniaturized and integrated, the pitch of the electrodes becomes smaller.
절연층을 형성하는 방법에는 절연입자를 도전입자 최외각에 관능기를 이용하여 화학적으로 붙이는 방법, 절연용액을 용매에 녹인 후 분사 혹은 침적으로 코팅하는 방법 등이 있다. Methods for forming the insulating layer include a method of chemically attaching insulating particles to the outermost layer of conductive particles using a functional group, and a method of dissolving an insulating solution in a solvent and then coating it by spraying or immersion.
본 발명의 도전입자의 전도층에는 방청처리를 하는 것이 바람직하다. 왜냐하면 방청처리는 물과의 접촉각을 크게 하여 고습 환경에서의 신뢰성을 높여주게 되고, 불순물이 물에 녹아 접속부재의 성능 저하를 적게 하는 효과가 있다. 따라서 방청제는 인산을 포함하는 인산에스테르계 또는 그 염계, 실란을 포함하는 알콕시실란계, 티올을 갖는 알킬티올계, 황화물을 갖는 디알킬 이황화물계 등을 포함하는 소수성 방청제를 사용하는 것이 바람직하다. 방청제를 용매에 녹인 후 침적, 분사 등의 방법을 사용할 수 있다. The conductive layer of the conductive particles of the present invention is preferably subjected to a rust prevention treatment. This is because the anti-rust treatment increases the contact angle with water to increase the reliability in a high-humidity environment, and has the effect of reducing the deterioration of the performance of the connection member by dissolving impurities in the water. Therefore, it is preferable to use a hydrophobic rust inhibitor including a phosphate ester or salt containing phosphoric acid, an alkoxysilane containing silane, an alkylthiol containing thiol, and a dialkyl disulfide containing sulfide. After dissolving the rust inhibitor in a solvent, methods such as immersion and spraying can be used.
상기 도전입자의 크기는 특별히 한정되지 않지만, 바람직하게는 6㎛이하이다. 더욱 바람직하게는 5㎛ 이하가 적절하다. 왜냐하면 본 발명의 도전입자를 이용하여 제조된 이방성 도전재료가 사용되는 곳은 전극 간격이 매우 작기 때문에 6㎛ 이상은 거의 사용하지 않기 때문이다.The size of the conductive particles is not particularly limited, but is preferably 6 μm or less. More preferably, 5 µm or less is appropriate. This is because, in the place where the anisotropic conductive material manufactured by using the conductive particles of the present invention is used, the electrode gap is very small, so 6㎛ or more is rarely used.
<도전입자의 제조방법><Method for producing conductive particles>
본 발명의 실시예에 따른 도전입자의 제조방법은 코어 분산단계(S1), 돌기있는 전도층 형성단계(S2), 방청단계(S3)를 포함할 수 있으며, 여기서 방청 단계(S3)는 선택적으로 포함될 수 있다.The method for manufacturing conductive particles according to an embodiment of the present invention may include a core dispersing step (S1), a protruding conductive layer forming step (S2), and a rust prevention step (S3), wherein the rust prevention step (S3) is optionally may be included.
이 때, 코어 분산단계(S1)는 코어 입자 합성단계(S1a) 및 도금촉매 활성화단계(S1b)를 포함한다. At this time, the core dispersion step (S1) includes a core particle synthesis step (S1a) and a plating catalyst activation step (S1b).
우선 코어 입자 합성단계(S1a)에서는 우레탄계, 스티렌계, 아크릴레이트계, 벤젠계, 에폭시계, 아민계, 이미드계 등의 단량체 또는 이들의 변형된 단량체 또는 상기 단량체의 혼합된 단량체를 이용하여, 시드중합, 분산중합, 현탁중합, 유화중합 등의 방법으로 중합하여 공중합체를 제조한다.First, in the core particle synthesis step (S1a), urethane-based, styrene-based, acrylate-based, benzene-based, epoxy-based, amine-based, imide-based monomers or modified monomers thereof or mixed monomers of the above monomers are used to seed, The copolymer is prepared by polymerization by methods such as polymerization, dispersion polymerization, suspension polymerization, and emulsion polymerization.
상기 유무기 하이브리드 입자는 코어쉘 구조를 갖는 경우 코어가 유기일 때 쉘은 무기이며, 코어가 무기일 때 쉘은 유기이다. 여기서 사용되는 유기는 상기의 단량체 또는 변형 단량체 또는 혼합 단량체를 이용하고, 사용되는 무기는 SiO2, TiO2, Al2O3, ZrO2를 비롯한 산화물, AlN, Si3N4, TiN, BaN을 비롯한 질화물, WC, TiC, SiC를 비롯한 탄화물 등을 이용할 수 있다.When the organic-inorganic hybrid particle has a core-shell structure, when the core is organic, the shell is inorganic, and when the core is inorganic, the shell is organic. The organic used herein uses the above monomers or modified monomers or mixed monomers, and the inorganic materials used include oxides including SiO2, TiO2, Al2O3, ZrO2, nitrides including AlN, Si3N4, TiN, and BaN, WC, TiC, and SiC. carbides and the like can be used.
쉘을 형성하는 방법으로는 화학적 코팅법, 졸겔, 스프레이 코팅법, CVD(화학적 증착법), PVD(물리적 증착법), 도금법 등으로 할 수 있다.As a method of forming the shell, a chemical coating method, a sol-gel method, a spray coating method, a CVD (chemical vapor deposition method), a PVD (physical vapor deposition method), a plating method, or the like may be used.
또한, 유기 매트릭스 내에 무기입자가 분산된 형태도 가능하며, 무기 매트릭스에 유기입자가 분산된 형태, 그리고 유기/무기가 50:50으로 서로 분산된 형태도 가능하다. In addition, a form in which inorganic particles are dispersed in an organic matrix is also possible, a form in which organic particles are dispersed in an inorganic matrix, and a form in which organic/inorganic are dispersed 50:50 to each other is also possible.
일례로, 상기 유기물질로는 에톡실레이트 트리아크릴레이트 단량체와 에톡실레이트 디아크릴레이트 단량체를 사용하여 용매와 중합 개시제를 혼합한 용액을 분산처리한다. 이때 분산처리로는 초음파를 이용한 호모게나이저 처리를 포함할 수 있다.For example, as the organic material, an ethoxylate triacrylate monomer and an ethoxylate diacrylate monomer are used to disperse a solution in which a solvent and a polymerization initiator are mixed. In this case, the dispersion treatment may include a homogenizer treatment using ultrasonic waves.
또한, 상기 분산 처리액에 분산안정제와 계면활성제를 포함하는 용액을 투입하고 승온 조건 하에 중합공정 처리하여 코어 수지 미립자를 형성한다.In addition, a solution containing a dispersion stabilizer and a surfactant is added to the dispersion treatment solution, and a polymerization process is performed under elevated temperature conditions to form core resin particles.
이어서 도금촉매 활성화단계(S1b)에서는 앞서 S1a단계에서 제조된 코어 입자를 무전해 도금촉매로 활성화한다. Subsequently, in the plating catalyst activation step (S1b), the core particles prepared in the previous step S1a are activated with the electroless plating catalyst.
구체적으로, 도금촉매 활성화단계(S1b)는 코어 입자를 계면활성제 처리 후 무전해 도금촉매를 민감화 처리하는데 공지된 다양한 방법을 사용하여 전처리한 다음 민감화 처리된 코어 입자를 무전해 금속 도금촉매의 전구체를 포함하는 용액에 투입하고 활성화 처리를 수행한다. Specifically, in the plating catalyst activation step (S1b), the core particles are treated with a surfactant and then pretreated using various methods known to sensitize the electroless plating catalyst, and then the sensitized core particles are treated with a precursor of the electroless metal plating catalyst. It is put into the containing solution and the activation treatment is performed.
이와 같이 활성화 처리된 코어 입자는 강산을 포함하는 용액에 넣고 상온 하에 교반하여 가속화 처리를 수행함으로써 무전해 도금을 위한 촉매 처리된 코어 입자를 수득한다. 이 때, 무전해 도금을 위한 촉매로는 팔라듐을 사용하는 것이 바람직하며, 이 때 촉매처리된 팔라듐은 제1팔라듐영역을 형성한다. The activated core particles are put into a solution containing a strong acid and stirred at room temperature to perform accelerated treatment, thereby obtaining catalytically treated core particles for electroless plating. In this case, it is preferable to use palladium as a catalyst for electroless plating, and the catalytically treated palladium forms a first palladium region.
다음으로, 돌기있는 전도층 형성단계(S2)는 코어 분산단계(S2a)와 돌기전도층 형성단계(S2b)를 포함한다. Next, the protruding conductive layer forming step (S2) includes a core dispersing step (S2a) and a protruding conductive layer forming step (S2b).
상기 코어 분산단계(S2a)는 니켈 베이스 합금 도금액에 코어를 투입하여 분산시키며 니켈 베이스 도금액으로 코어 표면에 니켈입자가 도금되어 제1니켈영역을 형성한다. In the core dispersing step (S2a), the core is dispersed by putting the core in a nickel base alloy plating solution, and nickel particles are plated on the surface of the core with the nickel base plating solution to form a first nickel region.
이 때, 니켈 베이스 합금 도금액은 니켈 합금원소의 전구체, 착화제, 젖산, 안정제, 계면활성제를 순차적으로 용해하여 제조하고, 제조된 도금액에는 상기 (S1b)단계에서 수득된 촉매 처리된 코어 입자를 투입하고 초음파 균질기를 사용하여 분산 처리를 수행한다. At this time, the nickel base alloy plating solution is prepared by sequentially dissolving the precursor of the nickel alloy element, the complexing agent, lactic acid, the stabilizer, and the surfactant, and the catalyst-treated core particles obtained in the step (S1b) are added to the prepared plating solution and dispersion treatment using an ultrasonic homogenizer.
분산 처리액의 pH를 암모니아수 등을 사용하여 pH 5.5~6.5로 조절하는 것이 후술하는 전도층 형성단계(S2b)에서 초기 Ni 환원반응에서 절연입자와 전도층의 밀착력과 분산성을 좋게 할 수 있어 바람직하다. pH가 5.5 미만, 예를 들어 pH 4 이하에서는 밀착력과 분산성은 좋으나 반응성이 너무 낮아 일부 입자가 미도금될 가능성이 있고, pH가 6.5를 초과하여 높을 경우에는 Ni의 이상 석출로 전도층 표면이 성기게 생성되어 밀착력과 분산성이 불량해질 수 있다.It is preferable to adjust the pH of the dispersion treatment solution to pH 5.5 to 6.5 using ammonia water, etc., as it is possible to improve the adhesion and dispersibility between the insulating particles and the conductive layer in the initial Ni reduction reaction in the conductive layer forming step (S2b), which will be described later. Do. If the pH is less than 5.5, for example, pH 4 or less, the adhesion and dispersibility are good, but the reactivity is too low, so some particles may not be plated. This can lead to poor adhesion and dispersibility.
돌기전도층을 형성하는 단계(S2b)는 니켈 전구체용액과 팔라듐 전구체 용액을 주입하면서 돌기가 있는 전도층을 형성하는 단계이다. The step of forming the projection conductive layer (S2b) is a step of forming the conductive layer having projections while injecting the nickel precursor solution and the palladium precursor solution.
코어 분산단계(S2a) 후 표면에 제1니켈영역이 형성된 코어에 환원제를 투입한 후 팔라듐 전구체용액을 주입하여 제2팔라듐 영역을 형성한다. 제2팔라듐영역상에 니켈 전구체를 투입하여 제2니켈영역을 더욱 형성하여 전도층의 두께를 두껍게 한다. After the core dispersion step (S2a), a reducing agent is added to the core having the first nickel region formed on the surface, and then the palladium precursor solution is injected to form the second palladium region. A nickel precursor is added to the second palladium region to further form a second nickel region to increase the thickness of the conductive layer.
다음으로 제2니켈영역의 표면상에 다시 팔라듐 전구체 용액과 안정제를 투입하여 표면의 일영역에 제3팔라듐 영역을 형성한다. 이 때 제3팔라듐 영역은 팔라듐 나노입자들이 클러스터를 형성하여 개별 나노입자들보다 큰 입자를 이루며 제2니켈영역상의 일구간에 형성된다. Next, a palladium precursor solution and a stabilizer are again introduced on the surface of the second nickel region to form a third palladium region in one region of the surface. At this time, in the third palladium region, the palladium nanoparticles form a cluster to form particles larger than the individual nanoparticles, and are formed in one section on the second nickel region.
이로써, 표면은 제2니켈영역과 제3팔라듐 영역으로 분할되며, 다시 니켈 전구체용액이 각 상부에 투입되면 니켈은 제2니켈영역 상부와 제3팔라듐영역 상부에 형성되어 돌기를 형성하면서 전도층을 두껍게하는 제3니켈영역을 형성하게 된다. As a result, the surface is divided into a second nickel region and a third palladium region, and when the nickel precursor solution is added to the upper portions again, nickel is formed on the second nickel region upper portion and the third palladium region upper portion to form a projection while forming a conductive layer A third nickel region to be thickened is formed.
즉, 전술한 제조방법에서 돌기가 형성되는 메커니즘은 다음과 같을 것으로 추측된다. 도금 수용액 내 환원제와 Ni 수용액을 첨가하면 환원제에 의해 니켈입자가 동시다발적으로 생성되며, 니켈입자가 미립자 표면에 부착되어 제1니켈영역을 형성한다. 더 두꺼운 도금층을 형성 시키기 위해 낮은 농도의 Pd 전구체 용액을 첨가하여 Pd 입자를 제1니켈영역 위에 흡착시키고 동시에 환원된 니켈 나노입자가 제2니켈영역을 형성한다. 이후 돌기 형성을 위해 높은 농도의 Pd 전구체 용액과 안정제를 첨가하여 크기가 큰 Pd 클러스터를 형성시키는데, 팔라듐 나노클러스터는 돌기형성에서 핵 역할을 담당한다. 이 후 Ni 전구체용액과 환원제를 첨가하여 니켈이 표면을 덮으면서 팔라듐 나노클러스터 부분이 융기한 돌기를 구비한 도전층이 형성된다 That is, it is estimated that the mechanism by which the protrusion is formed in the above-described manufacturing method is as follows. When a reducing agent and an aqueous Ni solution are added in the plating solution, nickel particles are simultaneously generated by the reducing agent, and the nickel particles are attached to the surface of the microparticles to form a first nickel region. To form a thicker plating layer, a low concentration Pd precursor solution is added to adsorb Pd particles on the first nickel region, and at the same time, the reduced nickel nanoparticles form a second nickel region. Thereafter, a high concentration of a Pd precursor solution and a stabilizer are added to form large Pd clusters for protrusion formation, and palladium nanoclusters play a role as nuclei in protrusion formation. After that, the Ni precursor solution and the reducing agent are added to form a conductive layer having protrusions in which the palladium nanocluster part protrudes while nickel covers the surface.
한편 전도층 형성시 P, B, Cu, Au, Ag, W, Mo, Pd, Co 및 Pt로 구성되는 군에서 선택되는 적어도 하나 이상의 원소의 전구체를 포함하는 용액을 분할 투입하여 각원소들의 농도구배가 있는 돌기있는 전도층을 형성할 수 있다. Meanwhile, when the conductive layer is formed, a solution containing a precursor of at least one element selected from the group consisting of P, B, Cu, Au, Ag, W, Mo, Pd, Co and Pt is dividedly injected to obtain a concentration gradient of each element. It is possible to form a protruding conductive layer with
일 예로, 상기 코어 분산단계(S2a)에서 P 및 B 중 선택된 1종 이상의 전구체를 투입하고, 전도층 형성단계(S2b)에서 Cu, Au, Ag, W, Mo, Pd, Co, Pt 중에서 1종 이상 선택된 원소의 전구체를 포함하는 합금원소를 분할 투입하여 농도 구배를 가지고 돌기있는 전도층을 형성할 수 있다. For example, in the core dispersion step (S2a), one or more precursors selected from P and B are input, and in the conductive layer forming step (S2b), one type of Cu, Au, Ag, W, Mo, Pd, Co, Pt An alloying element including a precursor of the above-selected element may be dividedly added to form a conductive layer having a concentration gradient and protruding.
이 때, 분할 투입되는 합금원소는 10~30분 간격으로 2~5회 분할하여 투입할 수 있고, 15~25분 간격으로 2~4회 분할하여 투입할 수 있다. 이 때 투입량은 증가된 함량으로 분할 투입하거나 필요에 따라서는 연속하여 투입하되, 투입속도에 따른 투입량이 일정 시간대별로 증가하게 하는 것이 돌기쪽 방향으로 갈수록 농도를 증가시킬 수 있어 바람직하다.At this time, the divided alloying element may be divided and added 2 to 5 times at intervals of 10 to 30 minutes, and may be divided and added 2 to 4 times at intervals of 15 to 25 minutes. At this time, the input amount may be divided into an increased content or input continuously as necessary, but it is preferable to increase the input amount according to the input speed for a certain time period as the concentration increases in the direction of the protrusion.
선택적으로 수행하는 방청단계(S3)는, 방청제 용액에 도전입자를 투입하여 수행할 수 있으나, 이에 한정하는 것은 아니다. The optionally performed rust prevention step (S3) may be performed by introducing conductive particles into the rust preventive solution, but is not limited thereto.
상기 방청제 용액으로는 인산을 포함하는 인산에스테르계 또는 그 염계, 실란을 포함하는 알콕시실란계, 티올을 갖는 알킬티올계, 황화물을 갖는 디알킬 이황화물계 등을 포함하는 소수성 방청제를 사용할 수 있다. 상기 소수성 방청제로는 MSC사에서 판매하는 제품명 SG-1을 비롯한 무전해 니켈 방청제를 사용할 수 있다. As the rust preventive solution, a hydrophobic rust inhibitor including a phosphate ester or salt containing phosphoric acid, an alkoxysilane containing silane, an alkylthiol containing thiol, and a dialkyl disulfide containing sulfide may be used. As the hydrophobic rust preventive agent, an electroless nickel rust preventive agent including product name SG-1 sold by MSC may be used.
상기 도전입자를 투입한 다음 초음파 처리 등을 수행할 수 있다. After the conductive particles are added, ultrasonic treatment or the like may be performed.
<이방성 도전재료><Anisotropic conductive material>
본 발명의 도전입자를 바인더 수지에 분산하여 이방성 도전재료를 제조할 수 있다. 이방성 도전재료는 예를 들어, 이방성 도전페이스트, 이방성 도전필름, 이방성 도전시트 등을 들 수 있다. An anisotropic conductive material can be prepared by dispersing the conductive particles of the present invention in a binder resin. Examples of the anisotropic conductive material include an anisotropic conductive paste, an anisotropic conductive film, and an anisotropic conductive sheet.
상기 수지 바인더는 특별히 한정되지 않는다. 예를 들어 스티렌계, 아크릴계, 초산비닐계 등의 비닐계 수지, 폴리올레핀계, 폴리아미드계 등의 열가소성 수지, 우레탄계, 에폭시계 등의 경화성 수지 등을 들 수 있다. 상기 수지를 단독 또는 2종 이상 복합적으로 사용될 수 있다. The resin binder is not particularly limited. For example, vinyl resins, such as a styrene type, acryl type, vinyl acetate type, thermoplastic resins, such as a polyolefin type, and a polyamide type, curable resin, such as a urethane type, an epoxy type, etc. are mentioned. The above resins may be used alone or in combination of two or more.
상기 수지에 중합 또는 경화를 목적으로 BPO(Benzoyl peroxide)와 같은 라디칼 개시제 또는 TPO(Timethylbenzoyl phenylphosphinate)와 같은 광개시제, HX3941HP와 같은 에폭시 잠재성 경화제 등을 단독 또는 혼합해서 사용할 수 있다. A radical initiator such as BPO (Benzoyl peroxide) or a photoinitiator such as TPO (Timethylbenzoyl phenylphosphinate) for the purpose of polymerization or curing to the resin, an epoxy latent curing agent such as HX3941HP, etc. can be used alone or in combination.
또한, 이방성 도전재료 바인더 수지에 본 발명의 목적 달성에 저해되지 않는 범위에서 다른 물질을 첨가할 수 있다. 예를 들어 착색제, 연화제, 열안정제, 광안정제, 산화방지제, 무기 입자 등이다. In addition, other substances may be added to the anisotropic conductive material binder resin within a range that does not impede the achievement of the object of the present invention. For example, colorants, softeners, heat stabilizers, light stabilizers, antioxidants, inorganic particles, and the like.
상기 이방성 도전재료의 제조방법은 특별히 한정되지 않는다. 예를 들어 수지 바인더에 도전입자를 균일하게 분산하여 이방성 도전페이스트로 사용할 수 있고, 이형지에 얇게 펴서 이방성 필름으로도 사용할 수 있다. The manufacturing method of the said anisotropic conductive material is not specifically limited. For example, it can be used as an anisotropic conductive paste by uniformly dispersing conductive particles in a resin binder, or it can be used as an anisotropic film by spreading it thinly on a release paper.
<접속 구조체><connection structure>
본 발명의 실시예에 따른 접속구조체는 회로기판간에 본 발명의 실시예에 따른 도전입자 또는 본 발명의 실시예에 따른 이방성 도전재료를 이용하여 회로 기판간을 접속하게 한 것이다. 예를 들어, 스마트폰의 디스플레이 반도체 칩과 회로를 구성하는 유리기판의 접속 또는 회로를 구성하는 플렉서블 기판과의 접속, μ-LED, mini-LED와 회로기판을 접속하는 방법으로도 사용할 수 있다. The connection structure according to an embodiment of the present invention connects circuit boards between circuit boards using the conductive particles according to the embodiment of the present invention or the anisotropic conductive material according to the embodiment of the present invention. For example, it can be used as a method of connecting a display semiconductor chip of a smartphone and a glass substrate constituting a circuit or a flexible substrate constituting a circuit, and connecting μ -LED, mini-LED and a circuit board.
본 발명의 접속 구조체는 회로의 접속 불량이나 저항의 급격한 증가로 인한 회로의 오작동을 일으키지 않는다.The connection structure of the present invention does not cause malfunction of the circuit due to poor connection of the circuit or a sudden increase in resistance.
이하 구체적이고 다양한 실시예를 통해 본 발명을 보다 상세히 설명하고자 하나, 이는 본 발명의 이해를 돕고자 하는 것이며 본 발명의 기술적 사상이 이에 의해 제한되는 것은 아니다.Hereinafter, the present invention will be described in more detail through specific and various examples, which are intended to help the understanding of the present invention, and the technical spirit of the present invention is not limited thereto.
[실시예] [Example]
실시예 1Example 1
1)코어수지미립자 제조(S1a)1) Manufacture of core resin fine particles (S1a)
3L 유리비이커에 모노머 TMPETA(Trimethylolpropane ethoxylate triacrylate) 800g, HDEDA(1,6-Hexanediol ethoxylate diacrylate) 50g, DVB(Divinylbenzrne) 800g 넣고 개시제 BPO 5g 투입 후 40kHz 초음파 bath에서 10분간 처리하여 제 1용액을 준비하였다.In a 3L glass beaker, 800 g of monomer TMPETA (Trimethylolpropane ethoxylate triacrylate), 50 g of HDEDA (1,6-Hexanediol ethoxylate diacrylate), and 800 g of DVB (Divinylbenzrne) were put, 5 g of initiator BPO was added, and treated in a 40 kHz ultrasonic bath for 10 minutes to prepare the first solution. .
5L PP비이커에 탈이온수 4,000g에 분산안정제 PVP (Polyvinylpyrrolidone)-30K 500g과 계면활성제 Solusol (Dioctyl sulfosuccinate sodium salt) 넣고 녹여 제 2 용액을 준비하였다.Dissolve the dispersion stabilizer PVP (Polyvinylpyrrolidone)-30K 500g and the surfactant Solusol (Dioctyl sulfosuccinate sodium salt) in 4,000 g of deionized water in a 5L PP beaker to prepare a second solution.
상기 제 1 용액과, 제 2 용액을 50L 반응기에 넣고 탈이온수 41,000g을 투입하고 초음파 Homogenizer(20kHz, 600W) 90분 처리하고 120rpm으로 용액을 회전시키면서 85℃로 승온하였다. 용액이 85℃에 도달한 뒤 16시간을 유지하여 중합공정처리를 하였다.The first solution and the second solution were put in a 50L reactor, 41,000 g of deionized water was added, treated with an ultrasonic homogenizer (20 kHz, 600 W) for 90 minutes, and the temperature was raised to 85° C. while rotating the solution at 120 rpm. After the solution reached 85°C, it was maintained for 16 hours to carry out polymerization process.
중합처리된 미립자를 여과, 세척, 분급, 건조 공정을 거쳐 코어수지미립자를 얻었다. 상기 제조된 코어수지미립자의 평균직경은 Particle Size Analyzer(BECKMAN MULTISIZER TM3)를 이용하여 측정된 mode값을 이용하였다. 이때 측정된 코어미립자의 수는 75,000개이다. 평균직경은 3.02㎛이었다.The polymerized fine particles were filtered, washed, classified and dried to obtain core resin fine particles. For the average diameter of the prepared core resin fine particles, the mode value measured using a Particle Size Analyzer (BECKMAN MULTISIZER TM3) was used. At this time, the number of measured core particles is 75,000. The average diameter was 3.02 mu m.
2)촉매처리 공정(S1b)2) Catalyst treatment process (S1b)
상기 제조된 코어수지미립자 30g을 탈이온수 800g과 계면활성제 Triton X100 1g 용액에 넣고 초음파 bath에서 1hr 처리하여 코어수지미립자에 존재하는 여분의 미반응 모노머와 기름성분을 제거하는 세정 및 탈지공정을 진행하였다. 상기 세정 및 탈지공정의 마지막은 40℃ 탈이온수를 이용하여 3회 수세 공정을 진행하였다.30 g of the prepared core resin fine particles were placed in 800 g of deionized water and 1 g of the surfactant Triton X100 and treated in an ultrasonic bath for 1 hr to remove excess unreacted monomers and oil components present in the core resin fine particles. A cleaning and degreasing process was performed. . At the end of the washing and degreasing process, a water washing process was performed three times using deionized water at 40°C.
이어서 Pd 촉매 처리를 하였다. 염화제일주석 150g과 35~37% 염산 300g을 탈이온수 600g에 녹인 후 상기 세정 및 탈지처리된 코어수지미립자를 투입하고 30℃ 조건에서 30분간 침적 및 교반하여 민감화 처리를 한 후 수세를 3회 하였다.Then, Pd catalyst treatment was carried out. After dissolving 150 g of stannous chloride and 300 g of 35-37% hydrochloric acid in 600 g of deionized water, the washed and degreased fine core resin particles were added, sensitized by immersion and stirring at 30 ° C for 30 minutes, and then washed with water 3 times. .
민감화 처리된 코어수지미립자를 염화팔라듐 1g, 35~37% 염산 200g을 탈이온수 600g에 투입하고 40℃에서 1시간 활성화 처리를 하였다. 활성화 처리 후 수세 공정을 3회 실시하였다. 1 g of palladium chloride and 200 g of 35-37% hydrochloric acid were added to the sensitized core resin fine particles in 600 g of deionized water, and activation treatment was performed at 40° C. for 1 hour. After the activation treatment, the water washing process was performed three times.
활성화 처리된 코어수지미립자를 35~37%, 염산 100g, 탈이온수 600g의 용액에 넣고 상온에서 10분간 교반하여 가속화처리를 하였다. 가속화 처리 후 수세 3회를 실시하여 무전해 도금을 위한 촉매처리된 코어수지미립자를 얻었다.The activated core resin fine particles were put into a solution of 35-37% hydrochloric acid, 100 g of hydrochloric acid, and 600 g of deionized water, and stirred at room temperature for 10 minutes to accelerate treatment. After the accelerated treatment, water washing was performed three times to obtain catalyst-treated core resin fine particles for electroless plating.
3)코어 분산(S2a)3) Core dispersion (S2a)
5L 반응기에 탈이온수 3,200g에 Ni염으로 황산니켈 260g, 착화제로 초산나트륨 5g, 젖산 2g, 안정제로 Pb-아세테이트 0.001g, 티오황산나트륨 0.001g, 응집방지제로 Triton 80 0.03g을 순서대로 용해하여 도금액(a)을 제조하였다. 제조된 (a)용액에 상기 촉매처리된 코어수지미립자를 투입하고 초음파 Homogenizer를 이용하여 10분간 분산처리를 하였다. 분산처리 후 암모니아수를 이용하여 용액 pH를 5.5로 맞추어 용액(b)를 제조하였다. In a 5L reactor, in 3,200 g of deionized water, 260 g of nickel sulfate as a Ni salt, 5 g of sodium acetate as a complexing agent, 2 g of lactic acid, 0.001 g of Pb-acetate as a stabilizer, 0.001 g of sodium thiosulfate, and 0.03 g of Triton 80 as an anti-agglomeration agent were dissolved in order. (a) was prepared. The catalyst-treated fine core resin particles were added to the prepared solution (a), and dispersion treatment was performed for 10 minutes using an ultrasonic homogenizer. After dispersion treatment, solution (b) was prepared by adjusting the solution pH to 5.5 using ammonia water.
4)돌기있는 전도층 형성(S2b)4) Formation of a conductive layer with projections (S2b)
1L 비이커에 탈이온수 350g과 환원제인 차아인산나트륨 200g을 용해하여 용액 (c)를 제조 하였다. A solution (c) was prepared by dissolving 350 g of deionized water and 200 g of sodium hypophosphite as a reducing agent in a 1L beaker.
1L 비이커에 탈이온수 250g과 황산니켈 100g, 염산 10g을 용해하여 용액(d)를 제조하였다. A solution (d) was prepared by dissolving 250 g of deionized water, 100 g of nickel sulfate, and 10 g of hydrochloric acid in a 1L beaker.
1L 비이커에 탈이온수 100g과 PdCl2 0.005g, 염산 10g을 용해하여 용액(e)를 제조하였다.A solution (e) was prepared by dissolving 100 g of deionized water, 0.005 g of PdCl2, and 10 g of hydrochloric acid in a 1L beaker.
1L 비이커에 탈이온수 400g과 환원제인 차아인산나트륨 300g을 용해하여 용액 (f)를 제조 하였다.A solution (f) was prepared by dissolving 400 g of deionized water and 300 g of sodium hypophosphite as a reducing agent in a 1L beaker.
1L 비이커에 탈이온수 100g과 PdCl2 0.05g, 염산 30g, 안정제인 Triton X-100,차아인산나트륨 10g을 용해하여 용액(g)를 제조하였다.A solution (g) was prepared by dissolving 100 g of deionized water, 0.05 g of PdCl2, 30 g of hydrochloric acid, Triton X-100 as a stabilizer, and 10 g of sodium hypophosphite in a 1L beaker.
1L 비이커에 탈이온수 200g과 환원제인 차아인산나트륨 150g을 용해하여 용액 (h)를 제조 하였다.A solution (h) was prepared by dissolving 200 g of deionized water and 150 g of sodium hypophosphite as a reducing agent in a 1L beaker.
1L 비이커에 탈이온수 150g과 황산니켈 50g, 염산 10g을 용해하여 용액(i)를 제조하였다. A solution (i) was prepared by dissolving 150 g of deionized water, 50 g of nickel sulfate, and 10 g of hydrochloric acid in a 1 L beaker.
상기 5L 반응기(용액(b-1))의 온도를 55℃로 유지하는 상태에서 용액(c)를 정량펌프로 분당 10g의 양으로 투입하고 반응기 온도를 35분에 75℃에 도달하도록 가열하고 유지하였다.In a state where the temperature of the 5L reactor (solution (b-1)) is maintained at 55°C, the solution (c) is introduced in an amount of 10 g per minute by a metering pump, and the reactor temperature is heated to reach 75°C in 35 minutes and maintained did
상기 용액(c)의 투입이 완료되고 10분간 유지하고 용액(e)을 첨가한 후 5분간 유지하고 용액(d)와 (f)를 동시에 정량 펌프로 분당10g의 양으로 투입한다. After the addition of the solution (c) is completed, it is maintained for 10 minutes, and after adding the solution (e), it is maintained for 5 minutes, and the solutions (d) and (f) are simultaneously added in an amount of 10 g per minute by a metering pump.
상기 용액 (d)와(f)가 투입이 완료되고 10분간 유지하고 용액(g)를 첨가한 후 클러스터가 형성되도록 유지한다.The solutions (d) and (f) are maintained for 10 minutes after the input is completed, and the cluster is maintained after adding the solution (g).
상기 용액 (g)가 투입 완료되고 10분간 유지하고 용액(h)와 용액(i)를 정량펌프로 분당 10g의 양으로 투입한다.The solution (g) is added and maintained for 10 minutes, and the solution (h) and solution (i) are added in an amount of 10 g per minute with a metering pump.
상기 용액(h)와 용액(i)가 투입 완료되고 10분간 유지하여 Ni 도금된 돌기 도전입자를 얻었다. After the solution (h) and solution (i) were added and maintained for 10 minutes, Ni-plated protrusion conductive particles were obtained.
비교예 1Comparative Example 1
상기 실시예 1에서 (c)용액을 탈이온수 200g,과 환원제인 차아인산 나트륨 150g로 하고 도금을 진행한 다음 도전입자의 응집을 풀어주기 위해 해쇄고정을 진행 한 뒤 탈이온수 200g과 환원제인 차아인산나트륨 150g, 돌기형성제인 Triton X-100 10g과 안정제인 구연산나트륨 0.05g으로된 (d)용액을 준비한 뒤 정량펌프를 이용하여 실시예1과 동일한 방법으로 진행 하였다.In Example 1, (c) solution was 200 g of deionized water and 150 g of sodium hypophosphite as a reducing agent, plating was performed, and disintegration fixing was performed to release aggregation of conductive particles, followed by deionized water 200 g and reducing agent hypophosphorous acid. (d) solution of 150 g of sodium, 10 g of Triton X-100, a protrusion forming agent, and 0.05 g of sodium citrate, a stabilizer, was prepared, and the same method as in Example 1 was performed using a metering pump.
[실험예] [Experimental example]
실험예 1Experimental Example 1
실시예 1에 따른 도전입자의 돌기없는 도전층 영역의 TEM 사진을 도 2에 도시하였다. 이에 따르면, 돌기없는 도전층의 중간 영역에 팔라듐이 분포하고 있는 제2팔라듐영역이 밝은영역으로 확인된다. A TEM photograph of the conductive layer region without projections of the conductive particles according to Example 1 is shown in FIG. 2 . According to this, the second palladium region in which palladium is distributed in the middle region of the non-protrusion conductive layer is confirmed as the bright region.
또한 도 3은 도전층의 돌기없는 영역의 중간영역의 EDAX분석결과로서 도전층 내부에는 전체적으로 Ni이 분포하나 중간영역에 제2팔라듐영역이 있는 것이 확인된다. In addition, FIG. 3 is an EDAX analysis result of the middle region of the non-protrusion region of the conductive layer, and it is confirmed that Ni is distributed throughout the conductive layer, but there is a second palladium region in the middle region.
실험예 2Experimental Example 2
실시예 1에 따른 도전입자의 도전층의 돌기영역의 TEM 사진을 도 4에 도시하였다. 이에 따르면, 도전층의 중간 영역에 팔라듐이 분포하고 있는 제3팔라듐영역이 밝은영역으로 확인된다. A TEM photograph of the projection region of the conductive layer of the conductive particles according to Example 1 is shown in FIG. 4 . According to this, the third palladium region in which palladium is distributed in the middle region of the conductive layer is confirmed as the bright region.
또한 도 5는 돌기의 중간영역에 EDAX분석결과로서 돌기내부의 중심부에는 팔라듐 나노클러스터가 분포하는 제3팔라듐영역이 있는 것이 확인된다. In addition, FIG. 5 is an EDAX analysis result in the middle region of the protrusion, and it is confirmed that there is a third palladium region in which palladium nanoclusters are distributed in the center of the protrusion.
실시예 1에 따른 도전입자의 TEM-EDAX 분석 사진으로서 이를 도 2에 도시하였으며, 이에 따르면 도전층의 돌기가 없는 영역에서는 Pd이 없거나 극소량 있음을 확인하였다. A TEM-EDAX analysis photograph of the conductive particles according to Example 1 is shown in FIG. 2 , and according to this, it was confirmed that there is no Pd or a very small amount in the region where there is no projection of the conductive layer.
전술한 각 실시예에서 예시된 특징, 구조, 효과 등은 실시예들이 속하는 분야의 통상의 지식을 가지는 자에 의하여 다른 실시예들에 대해서도 조합 또는 변형되어 실시 가능하다. 따라서 이러한 조합과 변형에 관계된 내용들은 본 발명의 범위에 포함되는 것으로 해석되어야 할 것이다.Features, structures, effects, etc. exemplified in each of the above-described embodiments may be combined or modified for other embodiments by those of ordinary skill in the art to which the embodiments belong. Accordingly, the contents related to such combinations and modifications should be interpreted as being included in the scope of the present invention.
<부호의 설명><Explanation of code>
10 : 제1팔라듐영역10: first palladium region
20 : 제2팔라듐영역20: second palladium region
30 : 제3팔라윰영역30: 3rd Palauum area

Claims (12)

  1. 코어 및 상기 코어 표면상에 구비되며, 돌기를 구비하는 전도층을 포함하는 도전입자로서, A conductive particle comprising a core and a conductive layer provided on the surface of the core and having projections,
    상기 전도층과 상기 코어와의 경계면에서 형성되는 제1팔라듐영역, 및 상기 돌기 내부 영역에 형성되는 제3팔라듐영역에 분포되는 팔라듐을 포함하는 도전입자. Conductive particles comprising palladium distributed in a first palladium region formed at an interface between the conductive layer and the core and a third palladium region formed in an inner region of the protrusion.
  2. 제1항에 있어서,The method of claim 1,
    상기 전도층의 중간 내부에 형성되는 제2팔라듐영역을 포함하는 도전입자. Conductive particles including a second palladium region formed in the middle of the conductive layer.
  3. 제1항에 있어서,The method of claim 1,
    상기 제3팔라듐영역에는 평균입경이 30nm~130nm의 팔라듐 나노클러스터가 포함되는 도전입자. Conductive particles comprising palladium nanoclusters having an average particle diameter of 30 nm to 130 nm in the third palladium region.
  4. 제1항에 있어서,The method of claim 1,
    상기 제1팔라듐영역은 팔라듐 나노입자가 주변보다 많이 분포되며, 상기 팔라듐 나노입자가 코어 표면적의 95%이상으로 부착된 도전입자.In the first palladium region, more palladium nanoparticles are distributed than the surrounding conductive particles, and the palladium nanoparticles are attached to 95% or more of the core surface area.
  5. 제1항에 있어서,The method of claim 1,
    상기 제2팔라듐영역에는 팔라듐 나노입자가 주변보다 많이 분포되는 영역인 도전입자.In the second palladium region, the conductive particle is a region in which palladium nanoparticles are distributed more than the periphery.
  6. 제1항에 있어서,The method of claim 1,
    상기 제3팔라듐영역에서의 팔라듐 농도가 상기 제1팔라듐영역 또는 상기 제2팔라듐영역의 팔라듐 농도보다 높은 도전입자.The conductive particles having a palladium concentration in the third palladium region is higher than the palladium concentration in the first palladium region or the second palladium region.
  7. 제6항에 있어서,7. The method of claim 6,
    상기 전도층은 Ni, Sn, Ag, Cu, Pd, Zn, W, P, B, 및 Au로 구성되는 군에서 선택되는 1종 또는 2종이상의 합금으로 이루어지는 도전입자.The conductive layer is conductive particles made of one or more alloys selected from the group consisting of Ni, Sn, Ag, Cu, Pd, Zn, W, P, B, and Au.
  8. 제7항에 있어서,8. The method of claim 7,
    상기 전도층의 표면에 절연층 또는 절연입자를 더 포함하는 것인 도전입자.Conductive particles further comprising an insulating layer or insulating particles on the surface of the conductive layer.
  9. 제8항에 있어서,9. The method of claim 8,
    상기 전도층의 최외각에 소수성 방청제를 사용하여 방청처리 된 것인 도전입자.Conductive particles that are rust-prevented by using a hydrophobic rust preventive agent on the outermost layer of the conductive layer.
  10. 제1항 내지 제9항의 어느 한 항의 도전입자를 포함하는 이방성도전재료.An anisotropic conductive material comprising the conductive particles of any one of claims 1 to 9.
  11. 제1항 내지 제9항의 어느 한 항의 도전입자를 포함하는 접속구조체.A connection structure comprising the conductive particles of any one of claims 1 to 9.
  12. A) 코어를 제조하는 단계;A) preparing the core;
    B) 상기 코어의 표면에 팔라듐 입자를 부착하여 제1팔라듐영역을 형성하는 단계;B) forming a first palladium region by attaching palladium particles to the surface of the core;
    C) 상기 B)단계 후의 코어를 니켈도금액에 분산시켜 제1니켈영역을 형성하는 단계;C) dispersing the core after step B) in a nickel plating solution to form a first nickel region;
    D) 상기 C)단계 후의 코어에 환원제를 투입한 후 팔라듐 전구체 용액을 주입하여 제2팔라듐영역을 형성하는 단계;D) forming a second palladium region by injecting a reducing agent into the core after step C) and then injecting a palladium precursor solution;
    E) 상기 D)단계 후에 상기 제2팔라듐영역상에 니켈 전구체를 주입하여 제2니켈영역을 형성하는 단계;E) forming a second nickel region by injecting a nickel precursor onto the second palladium region after step D);
    F) 상기 코어에 팔라듐 전구체 용액과 안정제를 투입하여 제2니켈영역의 표면의 일영역에 팔라듐 나노클러스터를 포함하는 제3팔라듐영역을 형성하는 단계; 및F) adding a palladium precursor solution and a stabilizer to the core to form a third palladium region including palladium nanoclusters in one region of the surface of the second nickel region; and
    G) 상기 제2니켈영역과 상기 제3팔라듐영역상에 제3니켈영역을 형성하는 단계를 포함하는 도전입자의 제조방법. G) forming a third nickel region on the second nickel region and the third palladium region.
PCT/KR2021/013470 2020-10-06 2021-09-30 Conductive particle, conductive material, and connection structure WO2022075663A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022562541A JP2023544928A (en) 2020-10-06 2021-09-30 Conductive particles, conductive materials and connected structures
CN202180028854.9A CN115428097A (en) 2020-10-06 2021-09-30 Conductive particle, conductive material, and connection structure

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2020-0128831 2020-10-06
KR20200128831 2020-10-06
KR1020210027896A KR102598343B1 (en) 2020-10-06 2021-03-03 Conductive Particles, Conductive materials used the same
KR10-2021-0027896 2021-03-03

Publications (1)

Publication Number Publication Date
WO2022075663A1 true WO2022075663A1 (en) 2022-04-14

Family

ID=81125878

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/013470 WO2022075663A1 (en) 2020-10-06 2021-09-30 Conductive particle, conductive material, and connection structure

Country Status (3)

Country Link
JP (1) JP2023544928A (en)
CN (1) CN115428097A (en)
WO (1) WO2022075663A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100327237A1 (en) * 2008-02-05 2010-12-30 Hitachi Chemical Company, Ltd. Conductive particle and method for producing conductive particle
KR20140135631A (en) * 2013-05-16 2014-11-26 히타치가세이가부시끼가이샤 Conductive particles, insulating coated conductive particles, anisotropic conductive adhesive, and method for producing conductive particles
KR20170073613A (en) * 2014-11-17 2017-06-28 세키스이가가쿠 고교가부시키가이샤 Conductive particle, conductive material, and connection structure
KR20180057001A (en) * 2016-11-21 2018-05-30 삼성전기주식회사 Conductive powder for inner electrode and capacitor
KR20180110019A (en) * 2016-02-10 2018-10-08 히타치가세이가부시끼가이샤 Insulating coated conductive particles, anisotropic conductive adhesive, and connection structure

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100327237A1 (en) * 2008-02-05 2010-12-30 Hitachi Chemical Company, Ltd. Conductive particle and method for producing conductive particle
KR20140135631A (en) * 2013-05-16 2014-11-26 히타치가세이가부시끼가이샤 Conductive particles, insulating coated conductive particles, anisotropic conductive adhesive, and method for producing conductive particles
KR20170073613A (en) * 2014-11-17 2017-06-28 세키스이가가쿠 고교가부시키가이샤 Conductive particle, conductive material, and connection structure
KR20180110019A (en) * 2016-02-10 2018-10-08 히타치가세이가부시끼가이샤 Insulating coated conductive particles, anisotropic conductive adhesive, and connection structure
KR20180057001A (en) * 2016-11-21 2018-05-30 삼성전기주식회사 Conductive powder for inner electrode and capacitor

Also Published As

Publication number Publication date
JP2023544928A (en) 2023-10-26
CN115428097A (en) 2022-12-02

Similar Documents

Publication Publication Date Title
JP3705344B2 (en) Conductive silicone rubber composition
JP4505017B2 (en) Insulating conductive fine particles and anisotropic conductive adhesive film containing the same
CN103360969B (en) Semiconductor device manufacture bonding sheet and semiconductor device and manufacture method thereof
CN111095441B (en) Metal-containing particle, connecting material, connecting structure, method for producing connecting structure, member for conduction test, and conduction test device
EP2426787A1 (en) Circuit connecting material, film-like circuit connecting material using the circuit connecting material, structure for connecting circuit member, and method for connecting circuit member
KR102222105B1 (en) Conductive Particle, Conductive Materials and Structure of Connection
KR100841414B1 (en) Polyimide-metal laminated body and polyimide circuit board
TW200526754A (en) Wiring-connecting material and wiring-connected board production process using the same
KR20070088611A (en) Electroless gold plating pretreatment agent and copper clad laminate for flexible board
GB2037488A (en) Thermoplastics printed circuit board material
KR100720895B1 (en) Conductive particle having a density-gradient in the complex plating layer and Preparation of the same and Conductive adhesives using the same
WO2022075663A1 (en) Conductive particle, conductive material, and connection structure
WO2006006687A1 (en) Conductive microparticle, process for producing the same and anisotropic conductive material
WO2017159694A1 (en) Metal-containing particle, connecting material, connected structure, and method for producing connected structure
JPH07105716A (en) Covering particle and anisotropically conductive adhesive
US20040182714A1 (en) Metal plating method, pretreatment agent, and semiconductor wafer and semiconductor device obtained using these
JP2011026603A (en) Surface treatment method for masking tape and wafer
KR100596186B1 (en) Adhesive sheet for manufacturing semiconductor device, semiconductor device using the same and method of manufaturing thereof
JP2000349417A (en) Manufacture of wiring board
KR20220045876A (en) Conductive Particles, Conductive materials used the same
CN111809170A (en) Gold plating method and plating film
JP2002069661A (en) Surface treatment method for copper
WO2021206202A1 (en) Conductive polymer particles containing silver metal layer
JP6935465B2 (en) Conductive particles, conductive materials and connecting structures using them
KR20200083099A (en) Conductive Particles, Conductive materials and Structure of connnection using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21877915

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022562541

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21877915

Country of ref document: EP

Kind code of ref document: A1