WO2022075478A1 - Therapeutic agent for glioblastoma, screening method, efficacy determination method, and prognosis determination method - Google Patents

Therapeutic agent for glioblastoma, screening method, efficacy determination method, and prognosis determination method Download PDF

Info

Publication number
WO2022075478A1
WO2022075478A1 PCT/JP2021/037488 JP2021037488W WO2022075478A1 WO 2022075478 A1 WO2022075478 A1 WO 2022075478A1 JP 2021037488 W JP2021037488 W JP 2021037488W WO 2022075478 A1 WO2022075478 A1 WO 2022075478A1
Authority
WO
WIPO (PCT)
Prior art keywords
selenoprotein
glioblastoma
antibody
apoer2
gbm
Prior art date
Application number
PCT/JP2021/037488
Other languages
French (fr)
Japanese (ja)
Inventor
芳郎 斎藤
喬士 外山
ひかり 杉浦
Original Assignee
国立大学法人東北大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東北大学 filed Critical 国立大学法人東北大学
Publication of WO2022075478A1 publication Critical patent/WO2022075478A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/12Ketones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/12Ketones
    • A61K31/122Ketones having the oxygen directly attached to a ring, e.g. quinones, vitamin K1, anthralin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/21Esters, e.g. nitroglycerine, selenocyanates
    • A61K31/26Cyanate or isocyanate esters; Thiocyanate or isothiocyanate esters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/335Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
    • A61K31/35Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having six-membered rings with one oxygen as the only ring hetero atom
    • A61K31/352Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having six-membered rings with one oxygen as the only ring hetero atom condensed with carbocyclic rings, e.g. methantheline 
    • A61K31/3533,4-Dihydrobenzopyrans, e.g. chroman, catechin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • A61K31/7105Natural ribonucleic acids, i.e. containing only riboses attached to adenine, guanine, cytosine or uracil and having 3'-5' phosphodiester links
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/395Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/02Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • C12Q1/6851Quantitative amplification
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • C12Q1/686Polymerase chain reaction [PCR]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/15Medicinal preparations ; Physical properties thereof, e.g. dissolubility
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids

Definitions

  • the present invention relates to a glioblastoma therapeutic agent, a screening method for a glioblastoma therapeutic agent, a method for determining the efficacy of a glioblastoma therapeutic agent, and a method for determining the prognosis of a glioblastoma patient.
  • Glioma is a malignant tumor that develops in the brain and is classified into four grades (grades I to IV) according to the standards of the World Health Organization (WHO) (see Non-Patent Document 1). Among them, grade IV glioblastoma (GBM) is a serious fatal disease with a high frequency of 40% of adult glioblastoma and a 5-year survival rate of 20% or less.
  • WHO World Health Organization
  • the standard treatment for GBM is to remove the tumor as much as possible by surgery and then perform radiation therapy and chemotherapy with temozolomide (TMZ).
  • TMZ temozolomide
  • GBM shows high resistance to drugs such as irradiation and TMZ, the prognostic survival time has hardly improved in recent decades even by the above-mentioned standard treatment methods. ..
  • selenoprotein is a general term for proteins containing selenocysteine residues in which sulfur in cysteine residues is replaced with selenium.
  • glutathione peroxidase (GPx) glutathione peroxidase (GPx), thioredoxin reductase (TR), iodothyronine deiodination enzyme, selenophosphate synthesizer, selenoprotein P (SeP), selenoprotein W, 15 kDa selenoprotein and the like are known, and these are cells. It is also known to be a protein involved in oxidative reduction within.
  • selenoprotein P which is mainly biosynthesized in the liver, is known to be a major selenoprotein in plasma (concentration in plasma is 5.3 ⁇ g / ml) and a glycoprotein of 69 kDa (362 amino acids). ing.
  • the relationship between the amino acid primary structure and function of selenoprotein P has been studied in detail, and the C-terminal side, which has an enzyme active site on the N-terminal side and is rich in selenocysteine residues, exerts the function of supplying selenium to cells. Is believed to be. It is also known to have a histidine-rich domain in a region that is neither the N-terminal nor the C-terminal (Non-Patent Documents 2 to 5).
  • An object of the present invention is to provide a development target for a new therapeutic agent for GBM. It is also an object of the present invention to provide a new therapeutic agent for GBM. Furthermore, it is an object of the present invention to provide a novel screening method for a therapeutic agent for GBM. In addition, it is an object of the present invention to provide a new method for determining the efficacy or feasibility of administration of a GBM therapeutic agent. Furthermore, it is an object of the present invention to provide a new method for determining the prognosis of a glioblastoma patient.
  • selenoprotein P is a target for GBM therapeutic agents, and that a component having a selenoprotein P inhibitory action can suppress the cell proliferation rate.
  • selenoprotein P are highly expressed in GBM cells, which are found to have low temozolomid sensitivity, and it has been clarified that a component having a selenoprotein P inhibitory action is useful as a therapeutic agent for GBM.
  • the present invention has been completed based on these findings, and includes a wide range of inventions shown below.
  • the component having an inhibitory effect on selenoprotein P is siRNA against the mRNA of the selenoprotein P gene, an antibody that specifically binds to an epitope present in the amino acid sequence of selenoprotein P, sulforaphane and its derivatives, curcumin and its derivatives, Item 2.
  • [Item 3A] A method for determining the efficacy or administration of the prophylactic or therapeutic agent according to Item 1 or 2, using the expression level or the degree of function of selenoprotein P or ApoER2 in a biological sample derived from a subject as an index.
  • Item 3B Item 3. The method for determining the efficacy or administration of a prophylactic or therapeutic agent according to Item 1 or 2, which comprises a step of measuring the expression level or the degree of function of selenoprotein P or ApoER2 in a biological sample derived from a subject.
  • [Item 4] A method for determining the prognosis of glioblastoma using the expression level or the degree of function of selenoprotein P or ApoER2 in a biological sample derived from a subject as an index.
  • Item 5 Item 3. The method according to Item 3 or 4, wherein the biological sample derived from the subject is a glioblastoma cell.
  • Item 6 A therapeutic agent for glioblastoma, in which glioblastoma cells are cultured in the presence and absence of a test substance, and the expression level or the degree of function of selenoprotein P or ApoER2 is compared in the presence and absence of the test substance. Screening method.
  • Item 7 Item 6.
  • the component having an inhibitory effect on selenoprotein P is siRNA against the mRNA of the selenoprotein P gene, an antibody that specifically binds to an epitope present in the amino acid sequence of selenoprotein P, sulforaphane and its derivatives, curcumin and its derivatives, Item 6.
  • [Item 9] A method for preventing or treating glioblastoma, which comprises administering to a subject an effective amount of an ingredient having an inhibitory effect on selenoprotein P.
  • [Item 10] A pharmaceutical composition for preventing or treating glioblastoma, which comprises a component having an inhibitory effect on selenoprotein P and a pharmaceutical carrier.
  • Item 12] Item 3. A method for treating glioblastoma, which comprises the step of administering the prophylactic or therapeutic agent according to Item 1 or 2 to a subject determined to be effective or administrable in the method of Item 3.
  • selenoprotein P can be used as a therapeutic drug target for GBM.
  • a novel therapeutic agent for GBM can be provided by using a component having a selenoprotein P inhibitory action.
  • the expression level of selenoprotein P in GBM patients can be used as an index for determining the efficacy and prognosis of a GBM therapeutic agent.
  • the mRNA expression level of selenoprotein P after 48 hours of culture in Example 1 is shown.
  • the fluorescence intensity measurement result of the temozolomide susceptibility test of T98G and A172 in Example 2 is shown.
  • the cell proliferation rate of each glioma cell in Example 3 is shown.
  • the amount of mRNA in T98G after knockdown of selenoprotein P by siRNA of selenoprotein P in Example 4 is shown.
  • the cell proliferation rate in T98G after knockdown of selenoprotein P by siRNA of selenoprotein P in Example 4 is shown.
  • the number of cells in T98G 72 hours after the addition of the selenoprotein P neutralizing antibody in Example 5 is shown.
  • Example 6 The comparison result of the expression level of ApoER2 in each cell type in Example 6 is shown.
  • the result of the decrease in the amount of T98G ApoER2 mRNA by the treatment with ApoER2 siRNA in Example 7 is shown.
  • the number of T98G cells after 72 hours by ApoER2 siRNA treatment in Example 7 is shown.
  • the results of the cell viability of T98G when the compound having a selenoprotein P inhibitory action is added in Example 8 are shown. Results at 24, 48, 72 hours with the addition of each selenoprotein P inhibitor (sulforaphane (SFN), curcumin (CCM), epigallocatechin gallate (EGCg), parabenzoquinone (p-benzoquinone)). ..
  • SFN selenoprotein P inhibitor
  • CCM curcumin
  • EMCg epigallocatechin gallate
  • p-benzoquinone parabenzoquinone
  • Example 9 The examination result of the CCDC gene expression condition in Example 9 is shown. The results of confirming the effect of high expression of CCDC on T98G on cell proliferation in Example 10 are shown. The results of immunohistochemical staining in human brain tumor tissue in Example 11 are shown. A: Selenoprotein P negative (Anaplastic astrocytoma), B: Selenoprotein P positive (glioblastoma). The elemental analysis result in the plasma of a brain tumor patient in Example 13 is shown.
  • the term "treatment” means to obtain a desired pharmacological and / or physiological effect.
  • This effect includes partial or complete cure of the disease and / or the adverse effects caused by the disease (pathology, symptoms, etc.).
  • the above-mentioned effects include the effect of blocking or delaying the progression of the disease and / or the adverse effect (pathology, symptom, etc.) caused by the disease, and alleviating the pathology and / or the symptom (relapse or progression of the disease, symptom, etc.).
  • the effect of causing reversal), the effect of preventing recurrence, etc. are included.
  • the above effects may have a predisposition to the disease and / or adverse effects caused by the disease (pathological condition, symptom, etc.), but in individuals who have not yet been diagnosed as having the disease, the disease and / or the adverse effects caused by the disease. It includes the effect of partially or completely preventing the occurrence of (pathology, symptoms, etc.). Therefore, the term “treatment” also includes meanings such as “remission”, “prevention of recurrence", and "prevention”.
  • the present invention provides a screening method for a therapeutic agent for GBM or a candidate substance thereof.
  • the screening method of the present invention compares the steps of culturing GBM cells in the presence and absence of a test substance, and the degree of expression or function of selenoprotein P or ApoER2 under both conditions. Including the process of
  • test substance selected by the screening method of the present invention is useful as a therapeutic agent of the present invention, and can be suitably used for the treatment of GBM.
  • test substance selected by the present screening method is useful as a candidate substance for the GBM therapeutic agent of the present invention, and may become the therapeutic agent of the present invention after further screening.
  • test substance used in the screening method of the present invention is not particularly limited, and is limited to nucleic acids, peptides, proteins, non-peptide compounds, synthetic compounds, fermentation products, cell extracts, cell culture supernatants, plant extracts, and mammals.
  • the tissue extract, plasma, etc. may be used.
  • the test substance may be a novel substance or a known substance. These test substances may form salts.
  • a salt with a physiologically acceptable acid or base is preferable.
  • a step of culturing GBM cells in the presence and absence of a test substance is performed.
  • the GBM cell include tumor cells collected from the brain tumor tissue of a glioblastoma patient, and those known in the technical field to which the present invention belongs can be used.
  • the GBM cell may be a primary cultured cell or a cell subcultured in a suitable medium.
  • a medium that can be used for culturing GBM cells can be appropriately used, and for example, RPMI-1640 medium, D'MEM medium, E'MEM. Examples include a medium.
  • FBS penicillin, streptomycin, sodium selenite and the like may be added to the above medium. Since the content of selenium is low in FBS, it is preferable to add sodium selenite when adding FBS to the medium.
  • the amount of sodium selenite added is preferably 5 to 2000 nM, more preferably 50 to 200 nM.
  • a pH adjuster, sodium hydrogencarbonate, or the like may be added to the medium as an option.
  • the medium for culturing the GBM cells in the presence of the test substance the medium exemplified for the subculture can be used.
  • the concentration of the test substance in the medium is not particularly limited, but can be set, for example, in the range of 0.1 to 100 ⁇ g / mL, preferably 1 to 20 ⁇ g / mL.
  • the culture temperature is preferably in the range of 36 to 38 ° C.
  • the pH of the medium is preferably 7.3 to 7.6.
  • the culture time can be set in the range of 12 to 72 hours, preferably 24 to 36 hours.
  • GBM cells are cultured in the same manner as above except that a medium to which no test substance is added is used.
  • selenoprotein P consists of the amino acid sequence set forth in SEQ ID NO: 21 and ApoER2 consists of the amino acid sequence set forth in SEQ ID NO: 39.
  • a preset cutoff value can be used as a selection criterion for a substance having an effect of inhibiting selenoprotein P.
  • the cutoff value can be set, for example, in the range of 0.6 to 0.7.
  • the step of measuring the expression level of selenoprotein P in GBM cells cultured under both of the above conditions will be described below.
  • the expression level of selenoprotein P is measured by quantifying the mRNA of selenoprotein P or by quantifying the protein amount of selenoprotein P.
  • the quantification of selenoprotein P mRNA is carried out by a known method such as RT-PCR method or Northern blotting method using RNA isolated from cells cultured under the above culture conditions or complementary polynucleotide transcribed from the RNA. be able to.
  • An internal standard target gene can be used for quantification of selenoprotein P mRNA, and examples of the internal standard target gene include GAPDH mRNA and Actin mRNA.
  • a known method such as Western blotting using an antibody that recognizes selenoprotein P can be used for the lysate of cells cultured under the above culture conditions.
  • the antibody that recognizes selenoprotein P for example, the antibody described in the following "Antibody that specifically binds to an epitope present in the amino acid sequence of selenoprotein P" can be used.
  • the expression level of selenoprotein P mRNA or selenoprotein P protein in cells cultured in a medium supplemented with the test substance is that of selenoprotein P mRNA or selenoprotein P protein in cells cultured in a medium not supplemented with the test substance. If it is 70% or less, preferably 60% or less of the expression level, the test substance can be selected as a substance having an effect of inhibiting selenoprotein P.
  • the membrane fraction of GBM cells is isolated according to a conventional method, and labeled selenoprotein P is used in the presence and absence of the test substance.
  • a method of contacting and comparing the amount of selenoprotein P bound to the cell membrane fraction in the presence and absence of the test substance can be mentioned.
  • the binding protein of selenoprotein P include ApoER2 and the like.
  • the test substance can be selected as a substance having an effect of inhibiting selenoprotein P.
  • the reference value T (%) can be set in the range of, for example, 50 ⁇ T ⁇ 80, preferably 60 ⁇ T ⁇ 70.
  • a known method such as Western blotting using an antibody that recognizes glutathione peroxidase against a lysate of cells cultured in the presence or absence of a test substance.
  • an antibody that recognizes glutathione peroxidase for example, an antibody such as ab22604 (Abcam, Anti-Glutathione peroxidase 1), ab125066 (Abcam, Anti-Glutathione peroxidase 4) can be used.
  • the amount of glutathione peroxidase in the lysate of cells cultured in the presence of the test substance is less than or equal to the preset reference value T% as compared with the amount of glutathione peroxidase in the lysate of cells cultured in the absence of the test substance. If so, the test substance can be selected as a substance having an effect of inhibiting selenoprotein P.
  • the reference value T (%) can be set in the range of, for example, 50 ⁇ T ⁇ 80, preferably 60 ⁇ T ⁇ 70.
  • the step of measuring the expression level of ApoER2 in GBM cells cultured under both of the above conditions will be described below.
  • the expression level of ApoER2 is measured by quantifying the mRNA of ApoER2 or by quantifying the amount of protein of ApoER2.
  • the quantification of ApoER2 mRNA can be performed by a known method such as RT-PCR method or Northern blotting method using RNA isolated from cells cultured under the above culture conditions or complementary polynucleotide transcribed from the RNA. can.
  • An internal standard target gene can be used for quantification of ApoER2 mRNA, and examples of the internal standard target gene include GAPDH mRNA and Actin mRNA.
  • a known method such as Western blotting using an antibody that recognizes ApoER2 can be used for the lysate of cells cultured under the above culture conditions.
  • an antibody that recognizes ApoER2 for example, Anti-ApoER2 antibody [EPR3326] (ab108208) can be used.
  • the expression level of ApoER2 mRNA or ApoER2 in the cells cultured in the medium supplemented with the test substance is 70% or less as compared with the expression level of the ApoER2 mRNA or ApoER2 in the cells cultured in the medium not supplemented with the test substance. If it is preferably 60% or less, the test substance can be selected as a substance having an effect of inhibiting selenoprotein P.
  • the membrane fraction of GBM cells is isolated according to a conventional method, and labeled selenoprotein P is used in the presence and absence of a test substance.
  • a method of contacting and comparing the amount of selenoprotein P bound to the cell membrane fraction in the presence and absence of the test substance can be mentioned.
  • the test substance If the amount of ApoER2 bound to the cell membrane fraction in the presence of the test substance is T% or less of the preset reference value as compared with the amount of ApoER2 bound to the cell membrane fraction in the absence of the test substance, the test substance. Can be selected as a substance having an effect of inhibiting selenoprotein P.
  • the reference value T (%) can be set in the range of, for example, 50 ⁇ T ⁇ 80, preferably 60 ⁇ T ⁇ 70.
  • a screening method focusing on the intermolecular interaction between ApoER2 and its binding protein, for example, only the extracellular domain of ApoER2 is expressed in GBM cells, a recombinant of the extracellular domain of ApoER2 is prepared, and in the presence of a test substance. And a method of comparing molecular interactions with selenoprotein P in the absence.
  • a known method such as a surface plasmon resonance method can be used.
  • the test substance If the analysis result of the intermolecular interaction in the presence of the test substance is less than or equal to the preset reference value T% as compared with the analysis result of the intermolecular interaction in the absence of the test substance, the test substance. Can be selected as a substance having an effect of inhibiting selenoprotein P.
  • the reference value T (%) can be set in the range of, for example, 50 ⁇ T ⁇ 80, preferably 60 ⁇ T ⁇ 70.
  • a component having an inhibitory effect on selenoprotein P is selected as a GBM therapeutic agent or a candidate substance thereof.
  • the term "component having an inhibitory effect on selenoprotein P” refers to any substance that inhibits the action of selenoprotein P, and its mechanism of action is to inhibit the expression of selenoprotein P and to function. Includes inhibition, etc.
  • the "component having an inhibitory action on selenoprotein P” is a substance that inhibits the expression of selenoprotein P, a substance that inhibits the function of selenoprotein P, and finally seleno even if the mechanism of action is unknown. Contains any substance that inhibits the action of protein P.
  • Examples of known components having an inhibitory effect on selenoprotein P include siRNA against mRNA of the selenoprotein P gene, an antibody that specifically binds to an epitope present in the amino acid sequence of selenoprotein P, and the like.
  • siRNA against mRNA of the selenoprotein P gene an antibody that specifically binds to an epitope present in the amino acid sequence of selenoprotein P, and the like.
  • Compounds such as 4,4a, 5,6,6a, 11,12b, 13, 14, 14a, 14b-tetradecahydropicene-2-carboxylate and the like can also be mentioned.
  • Double-stranded RNA consisting of an oligo RNA complementary to the mRNA of the selenoprotein P gene and its complementary strand, so-called siRNA, is effective in suppressing the expression of selenoprotein P.
  • siRNA oligo RNA complementary to the mRNA of the selenoprotein P gene and its complementary strand
  • the sequence targeted by siRNA is a continuous 19 to 27 bases, preferably 21 to 23 bases, selected from the group consisting of the bases of the base numbers 1 to 2056 of SEQ ID NO: 22 (selenoprotein P). It is desirable that the siRNA of the present invention and the target sequence are the same, but they may be substantially the same, that is, homologous sequences as long as the RNA interference can be induced. Specifically, as long as the antisense strand sequence of the siRNA of the present invention and the target sequence hybridize, there may be one or several (for example, a few) mismatches.
  • the siRNA of the present invention is one in which one or several bases are substituted, added, or deleted from the target sequence and can induce RNA interference, or 90% or more, preferably 90% or more of the target sequence. Those having 95% or more, more preferably 98% or more homology, and capable of inducing RNA interference are included.
  • siRNA may have a protruding sequence at the 3'end, and specific examples thereof include those to which dTdT (dT represents a deoxythymidine residue of a deoxyribonucleic acid) is added. Further, it may have a blunt end without end addition.
  • dTdT represents a deoxythymidine residue of a deoxyribonucleic acid
  • the ribonucleoside molecule constituting siRNA can be subjected to various chemical modifications in order to improve chemical stability and / or anti-enzymatic stability, and / or affinity with RNA.
  • replacement of all ribonucleoside molecules in native RNA with modified forms may result in loss of RNA activity, requiring the introduction of minimal modified nucleosides.
  • Specific examples of the modification include Accell modification, siSTABLE modification and the like.
  • the sense strand and antisense strand of the target sequence on the mRNA are synthesized by a DNA / RNA automatic synthetic group, respectively, and denatured in a suitable annealing buffer at about 90 to 95 ° C. for about 1 minute, and then about 1 minute. It can be prepared by annealing at 35-40 ° C. for about 1-2 hours.
  • siRNA sequence for the mRNA of the selenoprotein P gene examples include selenoprotein P siRNA # 1 (SEQ ID NO: 23). GAGAUAUGCCAGCAAGUGA [dT] [dT] and its complementary strand annealed Selenoprotein P siRNA # 2 (SEQ ID NO: 24) GCAUAUCCUGUUUAUCAA [dT] [dT] and its complementary strand annealed Selenoprotein P siRNA # 3 (SEQ ID NO: 25) Examples thereof include those obtained by annealing GAGAAUGACCUCAUCAAACUA [dT] [dT] and its complementary strand.
  • nucleic acids designed to be capable of producing siRNA against selenoprotein P mRNA in vivo are also included in the components that inhibit selenoprotein P.
  • examples of such nucleic acids include expression vectors constructed to express the above siRNA.
  • Antibodies that specifically bind to an epitope present in the amino acid sequence of selenoprotein P include a wide range of antibodies that specifically bind to selenoprotein P. Preferably, it comprises an antibody that specifically binds to an epitope present in the amino acid sequence 204-261 of selenoprotein P. An antibody that specifically binds to an epitope present in the amino acid sequence 204 to 254, and more preferably to an epitope present in the amino acid sequence 204 to 217.
  • the antibody exerts an effect of inhibiting the intracellular uptake of selenoprotein P by specifically binding to an epitope present in the amino acid sequence of positions 204 to 261 of selenoprotein P.
  • the antibody also exerts an effect of suppressing the induction of intracellular glutathione peroxidase.
  • the above term “specifically binds” is not limited to selectively binding to an epitope present in, for example, the 204th to 261st amino acid sequences of selenoprotein P, and the 204th to 261st positions of selenoprotein P.
  • a molecule having a primary or higher-order structure similar to selenoprotein P such as a homologue of selenoprotein P, coexists with selenoprotein P in an amino acid sequence other than the amino acid sequence of selenoprotein P, 204 to It is explained by preferentially binding to an epitope present in the 261st amino acid sequence.
  • the degree of specific binding of such an antibody to an epitope present in, for example, the amino acid sequence 204 to 261 of selenoprotein P is also evaluated by reaction rate constants such as Kd value, Koff value, or Kon value. Will be done.
  • Kd value is a value obtained by dividing the Koff value by the Kon value.
  • the reaction rate constant for binding to the epitope present in the 204 to 261st amino acid sequence of selenoprotein P of the above antibody is not particularly limited, but for example, if it is a Kd value, it is usually about 0.01 to 100 nM. Is.
  • the above antibody may be a monoclonal antibody or a polyclonal antibody. Further, the origin of the antibody is not particularly limited.
  • the structure of the above antibody is not limited to the immunoglobulin (Ig) molecule, and may be a fragment thereof.
  • a fragment may include a heavy chain and / or a light chain variable region, and may have a structure in which such a fragment is appropriately reconstructed.
  • Specific structures of such an antibody include, for example, F (ab') 2 , Fab, Fv, scFv, scFv-Fc, tetrabody, minibody and the like.
  • the isotype of the above-mentioned immunoglobulin is not limited, and examples thereof include IgA, IgD, IgE, IgG, IgM, and IgY.
  • the subclass of IgG is also not particularly limited, and examples thereof include IgG1, IgG2, IgG2a, IgG2b, IgG3, and IgG4.
  • the above antibody can be an embodiment having a heavy chain variable region and / or a light chain variable region containing a specific amino acid sequence.
  • Heavy chain CDR1 consisting of the amino acid sequence shown in SEQ ID NO: 3 or 13.
  • Heavy chain CDR2 consisting of the amino acid sequence shown in SEQ ID NO: 4 or 14, and heavy chain CDR3 consisting of the amino acid sequence shown in SEQ ID NO: 5 or 15.
  • Light chain CDR1 consisting of a heavy chain variable region comprising, and / or the amino acid sequence set forth in SEQ ID NO: 8 or 18.
  • Light chain CDR2 consisting of the amino acid sequence shown in SEQ ID NO: 9 or 19, and light chain CDR3 consisting of the amino acid sequence shown in SEQ ID NO: 10 or 20. Included are antibodies having a light chain variable region comprising.
  • Heavy chain CDR1 consisting of the amino acid sequence shown in SEQ ID NO: 3
  • Heavy chain CDR2 consisting of the amino acid sequence shown in SEQ ID NO: 4
  • heavy chain CDR3 consisting of the amino acid sequence shown in SEQ ID NO: 5.
  • Heavy chain variable region containing, or heavy chain CDR1 consisting of the amino acid sequence shown in SEQ ID NO: 13.
  • Heavy chain CDR2 consisting of the amino acid sequence shown in SEQ ID NO: 14 and heavy chain CDR3 consisting of the amino acid sequence shown in SEQ ID NO: 15.
  • Light chain CDR1, consisting of a heavy chain variable region comprising, and / or the amino acid sequence set forth in SEQ ID NO: 8.
  • Light chain CDR2 consisting of the amino acid sequence shown in SEQ ID NO: 9 and light chain CDR3 consisting of the amino acid sequence shown in SEQ ID NO: 10.
  • Light chain variable region comprising, or light chain CDR1 consisting of the amino acid sequence set forth in SEQ ID NO: 18.
  • Light chain CDR2 consisting of the amino acid sequence shown in SEQ ID NO: 19 and light chain CDR3 consisting of the amino acid sequence shown in SEQ ID NO: 20. Included are antibodies having a light chain variable region comprising.
  • Heavy chain CDR1 consisting of the amino acid sequence shown in SEQ ID NO: 3
  • Heavy chain CDR2 consisting of the amino acid sequence shown in SEQ ID NO: 4
  • heavy chain CDR3 consisting of the amino acid sequence shown in SEQ ID NO: 5.
  • Light chain CDR1 consisting of a heavy chain variable region containing the above and the amino acid sequence shown in SEQ ID NO: 8.
  • Light chain CDR2 consisting of the amino acid sequence shown in SEQ ID NO: 9 and light chain CDR3 consisting of the amino acid sequence shown in SEQ ID NO: 10.
  • Light chain variable region comprising; or heavy chain CDR1, consisting of the amino acid sequence set forth in SEQ ID NO: 13.
  • Heavy chain CDR2 consisting of the amino acid sequence shown in SEQ ID NO: 14 and heavy chain CDR3 consisting of the amino acid sequence shown in SEQ ID NO: 15.
  • Light chain CDR1, consisting of a heavy chain variable region comprising, and an amino acid sequence set forth in SEQ ID NO: 18.
  • Light chain CDR2 consisting of the amino acid sequence shown in SEQ ID NO: 19 and light chain CDR3 consisting of the amino acid sequence shown in SEQ ID NO: 20. Included are antibodies having a light chain variable region comprising.
  • the antibody having the heavy chain variable region and / or the light chain variable region described above may further contain a framework region (FR) or a quasi-region thereof.
  • FR framework region
  • the amino acid sequence constituting FR can be appropriately determined by a known method. Specifically, the information described on the website (http://www.ncbi.nlm.nih.gov/) of The National Center for Biotechnology Information (NCBI) may be referred to.
  • FR obtained from human-derived functional germ cells include KOL, NEWM, REI, EU, TUR, TEI, LAY, POM and the like. Examples of these human-type FRs are described in Kabat, et. al. "Sequences of Products of Immunological Interest”: US Department of Health AND human Services, NIH (1991) USA, or Wu TT, Kabat EA. "An analysis of the equations of the variable regions of Bence Jones protein and myeloma lights" chains and ther impedanceMiplications for 132: 211-50 (1970) and the like may be referred to.
  • an antibody having such a heavy chain variable region and / or a light chain variable region containing FR for example, a heavy chain variable region containing the amino acid sequence shown in SEQ ID NO: 2 or 12, and / or an amino acid shown in SEQ ID NO: 7 or 17.
  • a heavy chain variable region containing the amino acid sequence shown in SEQ ID NO: 2 or 12 and / or an amino acid shown in SEQ ID NO: 7 or 17.
  • examples thereof include antibodies having a light chain variable region containing a sequence.
  • Examples thereof include antibodies having a light chain variable region containing an amino acid sequence.
  • the antibody having the heavy chain variable region and / or the light chain variable region described above may further have a constant region.
  • these antibodies may be humanized or chimeric.
  • the humanized antibody means an antibody in which the FRs in the constant region and the variable region are amino acid sequences derived from humans, and the other portions are amino acid sequences derived from organisms other than humans. Further, the chimerization is an amino acid sequence in which the constant region is derived from a human and the variable region is an amino acid sequence derived from a species other than human.
  • Such non-human species are not particularly limited, and examples thereof include mice, rats, rabbits, ostriches, monkeys, chimpanzees, horses, donkeys, hamsters, and guinea pigs.
  • Examples of such a constant region include, in the case of a heavy chain constant region, an amino acid sequence having ETT in order from the N-terminal, and more preferably a constant region containing an amino acid sequence having ETTA in order from the N-terminal. Further, in the case of the light chain constant region, an amino acid sequence having RA in order from the N-terminal, more preferably a constant region containing an amino acid sequence having RAA in order from the N-terminal can be mentioned.
  • Examples thereof include an antibody having a heavy chain containing the amino acid sequence shown in SEQ ID NO: 1 or 11 and / or a light chain containing the amino acid sequence shown in SEQ ID NO: 6 or 16.
  • An antibody having a heavy chain containing the amino acid sequence shown in SEQ ID NO: 1 and a light chain containing the amino acid sequence shown in SEQ ID NO: 6 or a heavy chain containing the amino acid sequence shown in SEQ ID NO: 11 and a light chain containing the amino acid sequence shown in SEQ ID NO: 16. Can be mentioned.
  • the above amino acid sequence may be appropriately mutated as long as the function, effect, etc. of the above antibody are not attenuated.
  • the specific number of mutations introduced is not particularly limited, but usually, the identity with the amino acid sequence before the mutation is 85% or more, preferably 90% or more, more preferably 95% or more, and most preferably 99% or more.
  • the number of mutations introduced may be set so as to be a mutant having.
  • the location where the mutation is introduced is not particularly limited, but it is preferable to introduce the mutation into, for example, the above-mentioned FR region, constant region, etc., in view of not attenuating the function, effect, etc. of the antibody of the present invention.
  • identity refers to the degree to which two or more comparable amino acid sequences or base sequences have the same amino acid sequence or base sequence with respect to each other. Therefore, the higher the identity of two amino acid sequences or base sequences, the higher the identity or similarity of those sequences.
  • the level of amino acid sequence or base sequence identity is usually determined using the sequence analysis tool FASTA and using default parameters.
  • BLAST by Karlin and Altschul (eg, Karlin S, Altschul SF.Proc.Natur Acad Sci USA.87: 2264-2268 (1990), Karlin S, Altschul SF.Natur Acad Sci USA.90). It can be determined by using 1993) etc.).
  • a program called BLASTN or BLASTX based on such a BLAST algorithm has been developed (for example, Altschul SF, GishW, Miller W, Myers EW, Lipman DJ.J Mol Biol. 215: 403-10 (1990), etc. ). Specific methods of these analysis methods are known, and IgBLAST (http://www.ncbi.nlm.nih.gov/igblast/) provided by the NCBI website may be referred to.
  • the above mutation introduction is substitution, deletion, insertion, etc.
  • a known method can be adopted for specific mutagenesis, and the present invention is not particularly limited, but for example, in the case of substitution, a conservative substitution technique may be adopted.
  • conservative substitution technique means a technique in which an amino acid residue is replaced with an amino acid residue having a similar side chain.
  • substitution between amino acid residues having basic side chains such as lysine, arginine, and histidine is a conservative substitution technique.
  • Other amino acid residues having acidic side chains such as aspartic acid and glutamic acid; amino acid residues having non-charged polar side chains such as glycine, asparagine, glutamine, serine, threonine, tyrosine and cysteine; alanine, valine, leucine, isoleucine, Amino acid residues with non-polar side chains such as proline, phenylalanine, methionine and tryptophan; amino acid residues with ⁇ -branched side chains such as threonine, valine and isoleucine, and aromatic side chains such as tyrosine, phenylalanine, tryptophan and histidine.
  • Substitution between amino acid residues is also a conservative substitution technique.
  • the above-mentioned antibody production method may be produced by using a known method described in Japanese Patent Application Laid-Open No. 2015-64513.
  • Compounds that inhibit selenoprotein P other than the above include sulforaphane and its derivatives, curcumin and its derivatives, which are polyphenol derivatives having a diphenylheptanoid skeleton, sanguinarine, bufazienolide, and methyl 10-hydroxy-2,4a, 6a, 9, Compounds such as 12b, 14a-hexamethyl-11-oxo-1,2,3,4,4a, 5,6,6a, 11,12b, 13,14,14a, 14b-tetradecahydropicene-2-carboxylate, etc. Or the salt thereof.
  • catechin compounds which are polyoxy derivatives of 3-oxyflavan (for example, epigallocatechin gallate and its derivatives, etc.), benzoquinone and its derivatives, hydrogen peroxide and the like can also be mentioned.
  • sulforaphane and its derivatives, curcumin and its derivatives are particularly preferable.
  • Examples of sulforaphane and its derivatives include sulforaphane, sulforaphane glucosinolate, sulforaphane nitrile and the like.
  • Examples of curcumin and its derivatives include curcumin, demethoxycurcumin, bisdemethoxycurcumin and the like.
  • Examples of the catechin compound include catechin, epicatechin, gallocatechin, epigalocatechin, catechin gallate, epicatechin gallate, gallocatechin gallate, epigallocatechin gallate and the like.
  • Examples of benzoquinone and its derivatives include 1,4-benzoquinone, 1,2-benzoquinone and the like.
  • the CCDC gene which is a non-coding RNA, has an effect of suppressing the expression of selenoprotein P.
  • the region of the CCDC gene may be a region that has an effect of suppressing the expression of selenoprotein P by overexpressing it, and is not particularly limited, but is not particularly limited, for example, NCBI ACCESSION No. NM_001134848; VERSION. Examples thereof include a gene having the base sequence (SEQ ID NO: 26) described in No. NM_001134848.1, particularly a gene consisting of the base sequence.
  • mutant of the base sequence shown in SEQ ID NO: 26 is also included in the CCDC gene, as long as it has the effect of suppressing the expression of selenoprotein P.
  • Such mutants are not particularly limited.
  • a variant in which one or more bases are mutated such as insertion, addition or deletion with respect to the base sequence shown in SEQ ID NO: 26 can be mentioned.
  • the degree of such mutation is not particularly limited as long as it is within the range in which the above effects are exhibited.
  • the homology of the base sequence before and after the mutation can be usually about 90% or more, preferably about 95% or more, and more preferably about 98% or more.
  • nucleic acids designed to generate the CCDC gene in vivo are also included in the components that inhibit selenoprotein P.
  • examples of such nucleic acids include expression vectors constructed to express the CCDC gene.
  • the present invention provides a prophylactic or therapeutic agent for GBM containing a component having an inhibitory effect on selenoprotein P.
  • the target disease of the prophylactic or therapeutic agent in the present embodiment is GBM, and among them, GBM in which the expression level of selenoprotein P is high is preferable.
  • the patients to be treated include GBM patients having a high expression level of selenoprotein P. preferable.
  • the component having an inhibitory action on selenoprotein P those listed above are preferably used.
  • one type of component having an inhibitory effect on selenoprotein P may be used alone, or two or more types may be mixed and used.
  • the GBM prophylactic or therapeutic agent of the present invention may further contain an existing GBM therapeutic agent (eg, temozolomide, bevacizumab, glioblastoma, nidoran, etc., preferably temozolomide, etc.).
  • the content of the above-mentioned component having an inhibitory effect on selenoprotein P in the GBM prophylactic or therapeutic agent according to the present invention is usually about 0.001 to 100 weight by weight with respect to 100 parts by weight of the GBM prophylactic or therapeutic agent. And it is sufficient. That is, the above-mentioned component itself having an inhibitory effect on selenoprotein P may be used as a prophylactic or therapeutic agent for GBM according to the present invention.
  • the GBM prophylactic or therapeutic agent according to the present invention may contain a known pharmaceutically acceptable carrier or additive used in producing a composition in the pharmaceutical field.
  • a known pharmaceutically acceptable carrier or additive used in producing a composition in the pharmaceutical field.
  • Specific examples of such carriers or additives include arbitrary carriers, diluents, excipients, suspending agents, lubricants, adjuvants, media, delivery systems, emulsifiers, tablet degradants, absorbents, preservatives, surfactants. Examples thereof include activators, colorants, fragrances, sweeteners and the like.
  • the GBM prophylactic or therapeutic agent according to the present invention can be formed into any dosage form by appropriately combining the above carriers or formulations.
  • specific dosage forms include intraventricular injections, intravenous injections, infusions, implantable injections, continuous injections and other injections; uncoated tablets, sugar-coated tablets, film-coated tablets, enteric coated tablets.
  • the target animal for using the intracellular uptake inhibitor of selenoprotein P according to the present invention is not limited to humans as long as it is a living body, and any individual animal can be targeted.
  • experimental animals such as mice, rats, rabbits, hamsters, guinea pigs, monkeys and chimpanzees; pet animals such as dogs and cats; and all other animal species requiring protection.
  • the method for administering the GBM prophylactic or therapeutic agent according to the present invention is not particularly limited, and a known administration method may be adopted in consideration of the above-mentioned administration target, dosage form and the like. Specific examples thereof include oral administration, intramuscular injection, intravenous administration, intraarterial administration, intraarachnoid space, intraventricular administration, and the like.
  • the dose of the preventive or therapeutic agent for GBM according to the present invention may be usually about 1 to 10 mg / kg, and if the animal to be administered is a mouse, the dose is usually 1 to 1 to 10. It may be about 10 mg / kg. For other animals to be administered, it can be appropriately set based on the above-mentioned doses in humans and mice.
  • the amount of the GBM prophylactic or therapeutic agent according to the present invention is usually 0.5 to 50 mg in terms of the amount of the above-mentioned component having an inhibitory effect on selenoprotein P. It may be used in an amount of about / kg (individual body weight).
  • the GBM prophylactic or therapeutic agent according to the present invention may be administered in the above amount once a day or in several divided doses.
  • the administration interval may be daily, every other day, every other week, every two to three weeks, every month, every other month, or every two to three months as long as it has a therapeutic effect on the above-mentioned diseases.
  • two or more kinds of GBM prophylactic or therapeutic agents containing components having different selenoprotein P inhibitory effects may be used in combination, and the GBM prophylactic or therapeutic agent according to the present invention may be used as an existing GBM prophylactic or therapeutic agent. It can also be used in combination with temozolomide or the like.
  • Prognosis determination method 3-1 Prognosis determination method using brain tumor tissue of glioblastoma patient
  • the present invention determines the degree of expression or function of selenoprotein P or ApoER2, and determines the prognosis of glioblastoma. Provide a method as an index for doing so.
  • the present embodiment is a method for determining the prognosis of GBM, which comprises a step of measuring the expression level or the degree of function of serenoprotein P or ApoER2 in GBM cells collected from the brain tumor tissue of a glioblastoma patient.
  • the disease activity of GBM is determined based on the expression level or the degree of function of glioblastoma P or ApoER2, and the prognosis of GBM is determined based on the disease activity.
  • the steps for measuring the expression level or the degree of function of selenoprotein P or ApoER2 in GBM cells collected from the brain tumor tissue of a glioblastoma patient are as follows.
  • a step of culturing GBM cells is performed.
  • the GBM cell include tumor cells collected from the brain tumor tissue of a glioblastoma patient, and those known in the technical field to which the present invention belongs can be used.
  • the GBM cell may be a primary cultured cell or a cell subcultured in a suitable medium.
  • a medium that can be used for culturing GBM cells can be appropriately used, and for example, RPMI-1640 medium, D'MEM medium, E'MEM.
  • Examples include a medium.
  • FBS, penicillin, streptomycin, sodium selenite and the like may be added to the above medium. Since the content of selenium is low in FBS, it is preferable to add sodium selenite when adding FBS to the medium.
  • the amount of sodium selenite added is preferably 5 to 2000 nM, more preferably 50 to 200 nM.
  • a pH adjuster, sodium hydrogencarbonate, or the like may be added to the medium as an option.
  • the medium for culturing the GBM cells in the presence of the test substance the medium exemplified for the subculture can be used.
  • the concentration of the test substance in the medium is not particularly limited, but can be set, for example, in the range of 0.1 to 100 ⁇ g / mL, preferably 1 to 20 ⁇ g / mL.
  • the culture temperature is preferably in the range of 36 to 38 ° C.
  • the pH of the medium is preferably 7.3 to 7.6.
  • the culture time can be set in the range of 12 to 72 hours, preferably 24 to 36 hours.
  • selenoprotein P consists of the amino acid sequence set forth in SEQ ID NO: 21 and ApoER2 consists of the amino acid sequence set forth in SEQ ID NO: 39.
  • the step of measuring the expression level of selenoprotein P in GBM cells will be described below.
  • the expression level of selenoprotein P is measured by quantifying the mRNA of selenoprotein P or by quantifying the protein amount of selenoprotein P.
  • the quantification of selenoprotein P mRNA is carried out by a known method such as RT-PCR method or Northern blotting method using RNA isolated from cells cultured under the above culture conditions or complementary polynucleotide transcribed from the RNA. be able to.
  • An internal standard target gene can be used for quantification of selenoprotein P mRNA, and examples of the internal standard target gene include GAPDH mRNA and Actin mRNA.
  • a known method for quantifying the amount of protein of selenoprotein P a known method such as Western blotting using an antibody that recognizes selenoprotein P can be used for the lysate of cells cultured under the above culture conditions.
  • the antibody that recognizes selenoprotein P for example, the antibody described in "Antibody that specifically binds to an epitope present in the amino acid sequence of selenoprotein P" can be used.
  • the prognosis is determined by comparing the expression level of selenoprotein P mRNA or selenoprotein P protein in GBM cells with a preset cutoff value. For example, if it is equal to or higher than a preset cutoff value, it can be determined that there is a possibility of poor prognosis.
  • the membrane fraction of GBM cells is isolated according to a conventional method, and in the presence or absence of a test substance. Then, a method of contacting the labeled selenoprotein P and comparing the amount of selenoprotein P bound to the cell membrane fraction in the presence and absence of the test substance can be mentioned.
  • the binding protein of selenoprotein P include ApoER2 and the like.
  • the prognosis is determined by comparing the amount of selenoprotein P bound to the cell membrane fraction of GBM cells with a preset cutoff value. For example, if it is equal to or higher than a preset cutoff value, it can be determined that there is a possibility of poor prognosis.
  • an antibody that recognizes glutathione peroxidase was used against the lysate of cells cultured in the presence and absence of the test substance.
  • a known method such as Western blotting can be used.
  • an antibody that recognizes glutathione peroxidase for example, an antibody such as ab22604 (Abcam, Anti-Glutathione peroxidase 1), ab125066 (Abcam, Anti-Glutathione peroxidase 4) can be used.
  • the prognosis is determined by comparing the amount of glutathione peroxidase in the lysate of GBM cells with a preset cutoff value. For example, if it is equal to or higher than a preset cutoff value, it can be determined that there is a possibility of poor prognosis.
  • the step of measuring the expression level of ApoER2 in GBM cells will be described below.
  • the expression level of ApoER2 is measured by quantifying the mRNA of ApoER2 or by quantifying the amount of protein of ApoER2.
  • the quantification of ApoER2 mRNA can be performed by a known method such as RT-PCR method or Northern blotting method using RNA isolated from cells cultured under the above culture conditions or complementary polynucleotide transcribed from the RNA. can.
  • An internal standard target gene can be used for quantification of ApoER2 mRNA, and examples of the internal standard target gene include GAPDH mRNA and Actin mRNA.
  • a known method such as Western blotting using an antibody that recognizes ApoER2 or immunohistochemical staining can be used for the lysate of cells cultured under the above culture conditions.
  • an antibody that recognizes ApoER2 for example, Anti-ApoER2 antibody [EPR3326] (ab108208) can be used.
  • the prognosis is determined by comparing the expression level of ApoER2 mRNA or ApoER2 in GBM cells with a preset cutoff value. For example, if it is equal to or higher than a preset cutoff value, it can be determined that there is a possibility of poor prognosis.
  • Functions of ApoER2 include binding of ApoER2 to its binding protein (selenoprotein P, etc.). Therefore, as a method for measuring the degree of function of ApoER2, attention can be paid to the binding inhibitory activity between ApoER2 and its binding protein, the intramolecular interaction between ApoER2 and its binding protein, and the like.
  • the membrane fraction of GBM cells was isolated according to a conventional method and labeled in the presence and absence of a test substance.
  • a method of contacting selenoprotein P and comparing the amount of selenoprotein P bound to the cell membrane fraction in the presence and absence of the test substance can be mentioned.
  • the prognosis is determined by comparing the amount of ApoER2 present in the cell membrane fraction of GBM cells with a preset cutoff value. For example, if it is equal to or higher than a preset cutoff value, it can be determined that there is a possibility of poor prognosis.
  • the prognosis is determined by comparing the analysis result of the intramolecular interaction in the absence of the test substance with the preset cutoff value. For example, if it is equal to or higher than a preset cutoff value, it can be determined that there is a possibility of poor prognosis.
  • the cutoff value can be set by a statistically conventional calculation method as the method for setting the cutoff value in the present embodiment.
  • the cutoff value is applied to the minimum p-value method determined by the logrank test. Can be set. It can also be set using an ROC curve or the like.
  • the method for determining the prognosis of GBM in the present embodiment is intended to be able to evaluate a statistically significant proportion of subjects. Therefore, the method for determining the prognosis of GBM according to the present invention includes the case where correct results cannot always be obtained for all of the evaluation targets (that is, 100%). Statistically superior proportions can be determined using various well-known statistical tabulation tools such as confidence interval determination, p-value determination, Student's t-test, Mann-Whitney test, and the like. It was
  • the present invention uses the selenoprotein P concentration or a specific element concentration in the blood of a glioblastoma patient to determine the prognosis of glioblastoma.
  • a method as an index for determining a method for determining the prognosis of GBM, which comprises a step of measuring a selenoprotein P concentration in the blood of a glioblastoma patient or a specific element concentration, and comprises a step of measuring the selenoprotein P concentration in the blood.
  • the disease activity of GBM is determined based on a specific element concentration
  • the prognosis of GBM is determined based on the disease activity.
  • an ELISA method using an antibody that recognizes selenoprotein P For the measurement of the selenoprotein P concentration in the blood of a glioblastoma patient, an ELISA method using an antibody that recognizes selenoprotein P, a western blotting method, an immunoprecipitation method, a radioimmunoassay method, etc. It can be carried out by using a known method of.
  • the antibody that recognizes selenoprotein P for example, the antibody described in "Antibody that specifically binds to an epitope present in the amino acid sequence of selenoprotein P" can be used.
  • the prognosis is determined by comparing the selenoprotein P concentration in the blood with the preset cutoff value. For example, if it is equal to or higher than a preset cutoff value, it can be determined that there is a possibility of poor prognosis.
  • ICP mass spectrometry As a measurement of a specific element concentration in the blood of a glioblastoma patient, ICP mass spectrometry, colorimetric method, atomic absorption spectrometry, X-ray fluorescence spectrometry, ion chromatograph, ICP emission spectrometry are performed on the blood component of the subject. It can be carried out by using a known element concentration measuring method such as a method.
  • the specific element include Se, Zn, Cu, Fe, V, Cr, K, Ca, Mn, Co, As, Mo, Ag, Cd, Na, Mg, Al, Si, P, S, Ni and Sn. , Sb, Hg, Pb, preferably Se, Zn, Cu, Fe, V, Cr, K, Ca, Mn, Co, As, Mo, Ag, Cd.
  • the prognosis is determined by comparing the concentration of the specific element in blood with a preset cutoff value. For example, for Se, V, Ca, Mn, Mo, Ag, and Cd, if it is at least a preset cutoff value, it can be determined that there is a possibility of poor prognosis. Further, if Zn, Cu, Fe, Cr, K, Co, and As are equal to or less than the preset cutoff values, it can be determined that the prognosis may be poor.
  • the cutoff value can be set by a statistically conventional calculation method as the method for setting the cutoff value in the present embodiment.
  • the cutoff value is applied to the minimum p-value method determined by the logrank test. Can be set. It can also be set using an ROC curve or the like.
  • the method for determining the prognosis of GBM in the present embodiment is intended to be able to evaluate a statistically significant proportion of subjects. Therefore, the method for determining the prognosis of GBM according to the present invention includes the case where correct results cannot always be obtained for all of the evaluation targets (that is, 100%). Statistically superior proportions can be determined using various well-known statistical tabulation tools such as confidence interval determination, p-value determination, Student's t-test, Mann-Whitney test, and the like. It was
  • tissue staining by tissue staining the brain tumor tissue of a glioblastoma patient, the expression of selenoprotein P in GBM cells is qualitatively observed to determine the prognosis. It is also possible to do.
  • tissue staining include immunohistochemical staining, immunoblotting and the like, and immunohistochemical staining is preferably used.
  • an antibody that recognizes selenoprotein P is used in brain tumor tissue, if expression of selenoprotein P is observed, it can be determined that the prognosis may be poor.
  • the antibody that recognizes selenoprotein P for example, the antibody described in "Antibody that specifically binds to an epitope present in the amino acid sequence of selenoprotein P" can be used.
  • Immunohistochemical staining using brain tumor tissue of glioblastoma patients can be performed according to a known method. Immunohistochemical staining is preferably performed on a fixed tissue specimen prepared by fixing the tissue specimen to be evaluated. Physical modification with temperature and / or pressure (eg, thermal coagulation, freezing, etc.) may be used for fixation, but chemical treatment with a fixative is preferred.
  • the fixative is not particularly limited, but is, for example, formalin fixative, phosphate buffered formalin fixative, paraformaldehyde fixative, glutaaldehyde fixative, buoy fixative, zamboni fixative, osmium fixative, zinc fixative, Hollande.
  • fixatives examples include fixatives, alcohol fixatives, alcohol / formalin fixatives, FAA fixatives and the like.
  • Preferred fixatives include formalin fixatives, phosphate buffered formalin fixatives and the like. These can be used alone or in combination of two or more. Further, additives such as buffers, salts and sugars may be used in combination as appropriate.
  • the fixed time can be appropriately determined as appropriate, and is preferably 24 hours to 48 hours.
  • the fixed temperature is preferably 15 to 25 ° C.
  • the fixed tissue specimen can be observed with an optical microscope, for example, after further cutting, dehydrating, embedding, slicing, and / or staining.
  • the cutout may be performed by reducing the size of the specimen to a size suitable for observation and making it easier to observe the lesioned part and the normal part in the specimen.
  • the embedding method is not particularly limited, and examples thereof include a paraffin embedding method, a celloidin embedding method, an OCT compound embedding method, a gelatin embedding method, and a synthetic resin embedding method.
  • a microtome may be used for slicing.
  • the target antigen in the specimen may be activated in some cases. , The staining may be enhanced. It was
  • the method for activating the antigen is not particularly limited, but is, for example, treatment with a proteolytic enzyme such as pepsin, trypsin, pronase or protein kinase K; heat treatment by microwave, autoclave or boiling; alkali or acid (for example, hydrochloric acid or Treatment with formic acid) and the like can be mentioned.
  • a method using a citric acid buffer or a neutral buffer is preferable.
  • the antigen activation treatment is preferably carried out at room temperature for 1 to 5 minutes.
  • the antibody causes a non-specific adsorption reaction with other than the target protein
  • pretreatment using a blocking agent can be performed in order to prevent non-specific adsorption.
  • the blocking agent include biological proteins such as normal serum (eg, goat, horse, rabbit, etc.), bovine serum albumin, gelatin, skim milk, and the like.
  • surfactants for example, TWEEN (registered trademark) 20 etc.
  • hydroxyalkyl cellulose for example, TWEEN (registered trademark) 20 etc.
  • polyvinyl alcohol polyvinyl alcohol and the like
  • an enzyme antibody method may be used in which the antibody is labeled with a specific enzyme, the substrate is reacted, and the coloration of the formed dye product is observed with an optical microscope or the like.
  • the enzyme antibody method a known method can be used, for example, a direct method in which a primary antibody is labeled and an antigen-antibody reaction is performed only once, and a first antigen-antibody reaction using an unlabeled primary antibody. This is an indirect method in which the primary antibody itself is used as an antigen, another antibody (secondary antibody) is labeled, and the reaction is further carried out to carry out an antigen-antibody reaction two or more times.
  • Indirect methods include the PAP method using a soluble immune complex (PAP) of peroxidase / anti-peroxidase antibody, the LAB (Linked Avidin-Biotin) method, the ABC method using an avidin / biotin complex, and the LSAB (Linked) using streptavidin.
  • PAP soluble immune complex
  • LAB Linked Avidin-Biotin
  • ABC avidin / biotin complex
  • LSAB Linked
  • the color development method in the enzyme antibody method is not limited, but for example, the DAB method in which peroxidase is reacted with the color-developing substrate diaminobenzidine (DAB) as a labeling enzyme; the DAB method is performed in the presence of nickel ions, the nickel DAB method; A method of reacting peroxidase with the color-developing substrate aminoethylcarbazole (AEC); or a method of reacting an alkali phosphatase as a labeling enzyme with the color-developing substrate BCIP / NBT, a method of reacting with the color-developing substrate Fast Red, or a method of reacting with the color-developing substrate Fast. Examples thereof include a method of reacting with Blue.
  • the antibody of the present invention (concentration 20 to 40 ⁇ g / mL) is added to a specimen as a primary antibody, and the sample is reacted at 4 ° C to room temperature for 1 to 12 hours, and then the primary antibody is washed. Then, a labeled antibody (concentration 1 to 10 ⁇ g / mL) is added as a secondary antibody, and the reaction is carried out at 4 ° C. to room temperature for 30 minutes to 12 hours, and then the secondary antibody is washed and then colored. You may. Alternatively, the ABC method may be used to increase the detection sensitivity.
  • the antibodies of the present invention concentration 20 to 40 ⁇ g / mL
  • an autoradiography method in which a radioactive isotope is bound to an antibody and exposed to a printing paper; the antibody is bound to a visible substance such as gold particles.
  • Colloidal gold method for observing with an electron microscope or the like; a fluorescent antibody method may be used in which an antibody is labeled with a fluorescent dye, and after an antigen-antibody reaction, an excitation wavelength is applied to develop fluorescent color and the antibody is observed with a fluorescent microscope.
  • the preferred conditions for immunohistochemical staining are autoclave 121 ° C. for 5 minutes treatment with a neutral buffer for antigen activation, and the antibody of the present invention as the primary antibody in a concentration range of 2 to 40 ⁇ g / mL. Conditions used at (preferably 21.25 ⁇ g / mL) can be mentioned.
  • the present invention determines the expression level or the degree of function of selenoprotein P or ApoER2, and the efficacy or administration of the preventive or therapeutic agent for GBM of the present invention.
  • a method as an index for determining the propriety of the above it is a method for determining the efficacy or administration of the preventive or therapeutic agent for GBM of the present invention, and the expression level or function of selenoprotein P or ApoER2 in a biological sample of a gliobrostoma patient.
  • the high sensitivity to the component having an inhibitory effect on selenoprotein P is determined based on the expression level or the degree of function of selenoprotein P or ApoER2, and based on the high sensitivity, Whether or not the prophylactic or therapeutic agent for GBM of the present invention is effective or administerable is determined.
  • the biological sample of the glioblastoma patient is not particularly limited, and examples thereof include brain tumor tissue and blood, and brain tumor tissue is preferable.
  • the step of measuring the expression level or the degree of function of selenoprotein P or ApoER2 in a biological sample of a glioblastoma patient is "3-1 prognosis determination method using brain tumor tissue of glioblastoma patient” or "3-2 glioblastoma”.
  • the measurement method described in the section "Prognosis determination method using blood of glioblastoma patient” is preferably used.
  • the measured value of the expression level or the degree of function of selenoprotein P or ApoER2 in the biological sample of the glioblastoma patient is compared with the preset cutoff value, and the sensitivity to the component having an inhibitory effect on selenoprotein P is high. Is determined. For example, if it is equal to or higher than a preset cutoff value, it can be determined that the sensitivity to a component having an inhibitory effect on selenoprotein P may be high.
  • the prophylactic or therapeutic agent for GBM of the present invention is likely to act effectively, or the GBM of the present invention. It can be determined that the prophylactic or therapeutic agent can be administered to the glioblastoma patient to be tested. On the other hand, when it is determined that the sensitivity to the component having an inhibitory effect on selenoprotein P may be low, it is unlikely that the preventive or therapeutic agent for GBM of the present invention acts effectively, or the present invention It can be determined that the preventive or therapeutic agent for GBM cannot be administered to the glioblastoma patient to be tested.
  • the prophylactic or therapeutic agent for GBM of the present invention is likely to act effectively by the above-mentioned determination method, or the prophylactic or therapeutic agent for GBM of the present invention is administered to a gliobrostoma patient as a subject.
  • a method for treating glioblastoma which comprises a step of administering a prophylactic or therapeutic agent for GBM of the present invention to a glioblastoma patient as a subject determined to be possible.
  • the dose of the preventive or therapeutic agent for GBM of the present invention is usually about 0.5 to 50 mg / kg (individual body weight) in terms of the amount of the component having an inhibitory effect on selenoprotein P of the present invention. It may be used in quantity.
  • the GBM prophylactic or therapeutic agent according to the present invention may be administered in the above amount once a day or in several divided doses.
  • the administration interval may be daily, every other day, every week, every other week, every two to three weeks, every month, every other month, or every two to three months, as long as it has a therapeutic effect on glioblastoma.
  • two or more kinds of prophylactic or therapeutic agents for glioblastoma containing components having different selenoprotein P inhibitory effects may be used in combination, and the prophylactic or therapeutic agent for glioblastoma according to the present invention may be used as an existing glioblastoma. It can also be used in combination with temozolomide, which is a prophylactic or therapeutic drug for glioblastoma.
  • a diagnostic agent for determining the efficacy or administration of the preventive or therapeutic agent for GBM of the present invention is provided.
  • the component of the diagnostic agent is not particularly limited as long as it can quantitatively evaluate the expression level or the degree of function of selenoprotein P or ApoER2, but an antibody that recognizes selenoprotein P or an antibody that recognizes ApoER2 is preferably used. Be done.
  • the antibody that recognizes selenoprotein P include the antibody described in "Antibody that specifically binds to an epitope present in the amino acid sequence of selenoprotein P".
  • Examples of the antibody that recognizes ApoER2 include Anti-ApoER2 antibody [EPR3326] (ab108208).
  • T98G, YKG1, and A172 cells were obtained from the Cell Bank of the Institute of Aging Medicine, Tohoku University.
  • T98G and A172 are RPMI-1640 medium (10% FBS, 10 Units / mL penicillin, 10 ⁇ g / mL streptomycin)
  • YKG1 is D'MEM (10% FBS, 10 Units / mL penicillin, 10 ⁇ g / mL streptomycin).
  • the cells were cultured in a wet incubator under the conditions of 37 ° C., 5% CO 2 , 95% indoor air.
  • Sodium selenite (100 nM) maintained and subcultured in the presence or absence of each for 2 weeks or more was used for each experiment.
  • Example 1 Examination of mRNA level of selenoprotein P by qPCR> Each cell was seeded on a 12-well plate (A172: 7 ⁇ 10 4 cells / well, T98G, YKG1: 1 ⁇ 10 5 cells / well), washed with PBS after 24 hours, and attached with Isogen2 (Nippon Gene). Total RNA was adjusted according to the instructions. The reverse transcription reaction was carried out at PrimeScript RT (Takara) according to the attached instructions. Quantitative PCR was performed by KAPA SYBR® (KAPA Bioscience) using the Thermal Cycle Disk real time system (Takara). The PCR reaction cycle consists of one cycle of 95 ° C. for 30 seconds, then 40 cycles of 95 ° C.
  • the measured mRNA amount of selenoprotein P was corrected using the GAPDH mRNA level as an internal standard target gene.
  • the sequence of primers used for quantitative PCR is shown below.
  • Example 2 Measurement of cell viability> Each cell was seeded on a 96-well plate at 3.5 ⁇ 10 3 cells / well, and after 24 hours, the medium was replaced with a temozolomide-containing medium. After 72 hours, the medium was replaced with a medium containing 10% AramarBlue and cultured for 2 hours. After coloration, firefly light of AramarBlue was measured with a plate reader at an excitation wavelength of 544 nm and a fluorescence wavelength of 590 nm (SpectraMax iD5, Molecular Devices). The results are shown in FIG. As shown in FIG. 2, it was found that the temozolomide sensitivity of T98G was lower than that of A172 in the presence of selenous acid. From this result, it was found that there is a correlation between the expression level of selenoprotein P and the sensitivity to temozolomide.
  • Example 3 Measurement of cell proliferation rate> Each cell was seeded on a 6-well plate at 7 ⁇ 10 4 cells / well, and after a predetermined time, the cells were treated with trypsin, the detached cells were collected, and cell counting was performed after trypan blue staining. The results are shown in FIG. From FIG. 3, it was suggested that the cells having a high expression level of selenoprotein P among the glioblastoma cells had a faster cell proliferation rate.
  • Example 4 Selenoprotein P expression suppression>
  • the siRNA for selenoprotein P used had the following sequence.
  • MISSION siRNA Universal Negative Control (Sigma) was used.
  • T98G cells (2.0 ⁇ 10 5 cells / well) were seeded on the 6-well plate, and 24 hours later, each siRNA was transfected. After further culturing for 24 hours, the cells were reseeded into a 6-well plate so as to have 7 ⁇ 10 4 cells / well, and the increase in the number of cells over time was measured by the method described in Example 3. The amount of mRNA level was measured by the method described in Example 1. The results are shown in FIGS. 4 and 5. From this result, it was clarified that the cell proliferation rate was significantly reduced in T98G cells in which selenoprotein P was knocked down by siRNA.
  • Example 5 Examination of an antibody that specifically binds to selenoprotein P> AA3 and BD3, which are antibodies (neutralizing antibodies) that specifically bind to selenoprotein P, were used for the study.
  • culture without addition of neutralizing antibody and culture with addition of IgG were also examined. Then, the increase in the number of cells over time was measured for each by the method described in Example 3. The results are shown in FIG. From this result, it was clarified that the antibody that specifically binds to selenoprotein P has an effect of suppressing cell proliferation of T98G.
  • Example 7 Suppression of ApoER2 expression> Transfection of siRNA of ApoER2, which is a selenoprotein P receptor, was performed by the forward transfection method in Lipofectamine RNAiMAX according to the attached instructions. T98G cells (2.0 ⁇ 10 5 cells / well) were seeded on the 6-well plate, and 24 hours later, each siRNA was transfected. After further culturing for 24 hours, the cells were reseeded into a 6-well plate to 7 ⁇ 10 4 cells / well, and the mRNA after 48 hours was measured by the method described in Example 1. In addition, cell proliferation at 72 hours was measured by the method described in Example 3. The results are shown in FIGS. 8 and 9.
  • siRNA had the following sequence.
  • Control siRNA MISSION siRNA Universal Negative Control (Sigma) was used.
  • ApoER2 siRNA # 1 (# 1) forward: CGCUGAUCUCCUCCACUGA [dT] [dT] (SEQ ID NO: 33) reverse: UCAGUGGAGAGAGAUCAGCG [dT] [dT] (SEQ ID NO: 34)
  • ApoER2 siRNA # 2 (# 2) forward: GUGACCUCUCCUACCGUAA [dT] [dT] (SEQ ID NO: 35) reverse: UUACGGUAGGAGAGGUCAC [dT] [dT] (SEQ ID NO: 36)
  • ApoER2 siRNA # 3 (# 3) forward: GACCUACUGACCAAGAACU [dT] [dT] (SEQ ID NO: 37) reverse: AGUUCUGGUCAGUAGGUC [dT] [dT] (SEQ ID NO: 38)
  • Example 8 Confirmation of the effect of a compound having a selenoprotein P inhibitory effect on cell proliferation> T98G cells were seeded on a 96-well plate at 3.5 ⁇ 10 3 cells / well (similar to Example 2), and 24 hours later, each selenoprotein P inhibitor (sulforaphan (SFN), curcumin (CCM)) was placed in the medium. , Epigallocatechin gallate (EGCg), 1,4-benzoquinone (p-benzoquinone)) was added. The effect of T98G on the cell viability (proliferation) after 24, 48, and 72 hours was examined by the same AramarBlue method as in Example 2. The results are shown in FIG. As shown in FIG. 10, selenoprotein P inhibitors have been shown to significantly reduce the cell viability of T98G.
  • SFN selenoprotein P inhibitor
  • CCM curcumin
  • Example 9 Examination of CCDC gene expression conditions in T98G>
  • the CCDC expression plasmid that suppresses selenoprotein P expression was carried out with polyethyleneimine (PEI MAX) according to the attached instructions.
  • PET cells 2.5 ⁇ 10 5 cells / well
  • the transfection mix meaning
  • CCDC mRNA was quantified by the same method as in Example 1. The results are shown in FIG. From this result, high expression of the CCDC gene in T98G was confirmed.
  • Example 10 Confirmation of the effect of high expression of CCDC gene on T98G on cell proliferation>
  • the CCDC expression plasmid was carried out with polyethyleneimine (PEIMAX) in the same manner as in Example 9 according to the attached instructions.
  • T98G cells (2.5 ⁇ 10 5 cells / well) were seeded on a 6-well plate, and 24 hours later, a transfection mix was prepared at a ratio of 2.5 ⁇ g of DNA / 5 ⁇ L of PEI and added to the medium.
  • Example 11 Selenoprotein P immunohistochemical staining in human brain tumor tissue>
  • tissue sections of brain tumor patients were immunostained with selenoprotein P antibody (BD1) by the following method, there were cases of staining in glioblastoma patients.
  • the results are shown in FIG. FIG. 13A shows an image of a human brain tumor tissue not a glioblastoma patient
  • FIG. 13B shows an image of a human brain tumor tissue of a glioblastoma patient.
  • human brain tumor tissues of glioblastoma patients were immunostained with selenoprotein P antibody.
  • the immunostaining method is as follows.
  • the specimen was immersed in methanol supplemented with 0.3% H2O 2 and reacted for 30 minutes, then the specimen was washed with PBS and then a biotin-labeled antibody (4 ⁇ g / g /) as a secondary antibody. mL) was added and reacted at room temperature for 30 minutes, then washed with PBS, then HRP-labeled streptavidin was added and reacted at room temperature for 30 minutes, and then washed with PBS.
  • Example 12 Selenoprotein P immunohistochemical staining in human brain tumor tissue> Selenoprotein P in plasma of brain tumor patients (23 samples) and plasma of healthy subjects (261 samples) was quantified by the sandwich ELISA method using AA3 antibody or BD1 antibody (both antibodies against selenoprotein P). The results are shown in Table 1. As a result of ELISA with BD1 antibody, a slight and significant increase in plasma selenoprotein P was observed in patients with brain tumors.
  • Example 13 Elemental analysis in crystals of brain tumor patient> 100 ⁇ L of plasma of brain tumor patients (44 samples) and plasma of healthy subjects (261 samples) were incinerated with 500 ⁇ L of 70% nitrate, diluted with 1400 ⁇ L of milliQ water, and then the elements in the sample were collected by ICP / MS (Agilent). Was quantitatively analyzed. The results are shown in Table 2 and FIG. Significant changes in 14 elements were observed in patients with brain tumors.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Immunology (AREA)
  • Biochemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Zoology (AREA)
  • Physics & Mathematics (AREA)
  • Microbiology (AREA)
  • Wood Science & Technology (AREA)
  • Biophysics (AREA)
  • Analytical Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Urology & Nephrology (AREA)
  • Biomedical Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Hematology (AREA)
  • General Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Cell Biology (AREA)
  • Toxicology (AREA)
  • Emergency Medicine (AREA)
  • Gastroenterology & Hepatology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Mycology (AREA)

Abstract

The present invention addresses the problem of providing: a therapeutic agent for glioblastoma; a screening method; a method for determining the efficacy of a therapeutic agent; and a method for determining a prognosis. In the present invention, a screening method is performed using selenoprotein P as a target molecule for GBM to provide a therapeutic agent for GBM which comprises a component having a selenoprotein P inhibiting effect. In addition, the expression amount of selenoprotein P or the like is used as a measure for the determination of the efficacy of a therapeutic agent for GBM and a measure for the determination of a prognosis.

Description

グリオブラストーマ治療薬、スクリーニング方法、有効性の判定方法、予後判定方法Glioblastoma drug, screening method, efficacy determination method, prognosis determination method
 [関連出願の相互参照]
 本出願は、2020年10月9日に出願された、日本国特許出願第2020-171561号明細書(その開示全体が参照により本明細書中に援用される)に基づく優先権を主張する。本発明は、グリオブラストーマ治療薬、グリオブラストーマ治療薬のスクリーニング方法、グリオブラストーマ治療薬の有効性の判定方法、並びにグリオブラストーマ患者の予後判定方法に関する。
[Cross-reference of related applications]
This application claims priority based on Japanese Patent Application No. 2020-171561, which was filed on October 9, 2020, the entire disclosure of which is incorporated herein by reference. The present invention relates to a glioblastoma therapeutic agent, a screening method for a glioblastoma therapeutic agent, a method for determining the efficacy of a glioblastoma therapeutic agent, and a method for determining the prognosis of a glioblastoma patient.
グリオーマ(神経膠腫)は脳に発生する悪性腫瘍であり、世界保健機関(WHO)の基準に従って4つのグレード(グレードI~IV)に分類される(非特許文献1参照)。その中で、グレードIVに該当するグリオブラストーマ(GBM)は成人のグリオーマの40%と頻度が高く、5年生存率が20%以下という重篤な致死性疾患である。 Glioma (glioma) is a malignant tumor that develops in the brain and is classified into four grades (grades I to IV) according to the standards of the World Health Organization (WHO) (see Non-Patent Document 1). Among them, grade IV glioblastoma (GBM) is a serious fatal disease with a high frequency of 40% of adult glioblastoma and a 5-year survival rate of 20% or less.
 GBMの治療としては、手術により可能な限り腫瘍を摘出し、放射線療法及びテモゾロミド(TMZ)による化学療法を行うことが標準的である。しかし、GBMは放射線照射、TMZ等の薬剤に対して高い抵抗性を示すために、前述のような標準的治療法によっても予後生存期間はこの数十年ほとんど改善されていないのが現状である。 The standard treatment for GBM is to remove the tumor as much as possible by surgery and then perform radiation therapy and chemotherapy with temozolomide (TMZ). However, since GBM shows high resistance to drugs such as irradiation and TMZ, the prognostic survival time has hardly improved in recent decades even by the above-mentioned standard treatment methods. ..
 一方、セレノプロテインは、システイン残基の硫黄がセレンに置き換わったセレノシステイン残基を含むタンパク質の総称である。哺乳類のセレノプロテインとして、グルタチオンペルオキシダーゼ(GPx)、チオレドキシンレダクターゼ(TR)、ヨードチロニン脱ヨード酵素、セレノホスフェートシンセターゼ、セレノプロテインP(SeP)、セレノプロテインW、15kDaセレノプロテイン等が知られ、これらは細胞内の酸化還元に関与するタンパク質であることも知られている。 On the other hand, selenoprotein is a general term for proteins containing selenocysteine residues in which sulfur in cysteine residues is replaced with selenium. As mammalian selenoproteins, glutathione peroxidase (GPx), thioredoxin reductase (TR), iodothyronine deiodination enzyme, selenophosphate synthesizer, selenoprotein P (SeP), selenoprotein W, 15 kDa selenoprotein and the like are known, and these are cells. It is also known to be a protein involved in oxidative reduction within.
 中でも、主に肝臓で生合成されるセレノプロテインPは、血漿中の主要なセレノプロテインで(血漿中の濃度は5.3μg/ml)、69kDa(362アミノ酸)の糖タンパク質であることが知られている。セレノプロテインPのアミノ酸一次構造と機能との関係が詳細に研究されており、N末端側に酵素活性部位を有し、セレノシステイン残基に富むC末端側が細胞へセレンを供給する機能を発揮していると考えられている。また、N末端でもC末端でもない領域にヒスチジンリッチドメインを有していることも知られている(非特許文献2~5)。 Among them, selenoprotein P, which is mainly biosynthesized in the liver, is known to be a major selenoprotein in plasma (concentration in plasma is 5.3 μg / ml) and a glycoprotein of 69 kDa (362 amino acids). ing. The relationship between the amino acid primary structure and function of selenoprotein P has been studied in detail, and the C-terminal side, which has an enzyme active site on the N-terminal side and is rich in selenocysteine residues, exerts the function of supplying selenium to cells. Is believed to be. It is also known to have a histidine-rich domain in a region that is neither the N-terminal nor the C-terminal (Non-Patent Documents 2 to 5).
日本国特開2015-63513号公報Japanese Patent Application Laid-Open No. 2015-63513
 本発明は、新たなGBM治療薬の開発標的を提供することを課題とする。また、新規のGBM治療薬を提供することを目的とする。さらに、本発明は、GBM治療薬の新規スクリーニング方法を提供することを課題とする。加えて、GBM治療薬の有効性又は投与の可否を判定するための新たな方法を提供することを目的とする。さらにまた、本発明は、グリオブラストーマ患者の予後を判定するための新たな方法を提供することを目的とする。 An object of the present invention is to provide a development target for a new therapeutic agent for GBM. It is also an object of the present invention to provide a new therapeutic agent for GBM. Furthermore, it is an object of the present invention to provide a novel screening method for a therapeutic agent for GBM. In addition, it is an object of the present invention to provide a new method for determining the efficacy or feasibility of administration of a GBM therapeutic agent. Furthermore, it is an object of the present invention to provide a new method for determining the prognosis of a glioblastoma patient.
 上記課題を解決すべく、発明者らは鋭意研究を重ねた結果、セレノプロテインPがGBM治療薬の標的となることを見出し、また、セレノプロテインP阻害作用を有する成分が細胞増殖速度を抑制できること、及びセレノプロテインPが高発現しているGBM細胞においてはテモゾロミド感受性が低いことを見出し、セレノプロテインP阻害作用を有する成分が、GBM治療薬として有用であることを明らかにした。本発明はこれらの知見に基づいて完成されたものであり、以下に示す広い態様の発明を含むものである。
[項1]
 セレノプロテインPの阻害作用を有する成分を含有する、グリオブラストーマの予防又は治療薬。
[項2]
 前記セレノプロテインPの阻害作用を有する成分が、セレノプロテインP遺伝子のmRNAに対するsiRNA、セレノプロテインPのアミノ酸配列内に存在するエピトープに特異的に結合する抗体、スルフォラファン及びその誘導体、クルクミン及びその誘導体、エピガロカテキンガレート及びその誘導体、パラベンゾキノン及びその誘導体、CCDC遺伝子からなる群から選択される少なくとも1種である、項1に記載のグリオブラストーマの予防又は治療薬。
[項3A]
 被験者由来の生体試料におけるセレノプロテインP又はApoER2の発現量又は機能の程度を指標とし、項1又は2に記載の予防又は治療薬の有効性、又は投与の可否を判定する方法。
[項3B]
 被験者由来の生体試料におけるセレノプロテインP又はApoER2の発現量又は機能の程度を測定する工程を含む、項1又は2に記載の予防又は治療薬の有効性又は投与の可否を判定する方法。
[項4]
 被験者由来の生体試料におけるセレノプロテインP又はApoER2の発現量又は機能の程度を指標とし、グリオブラストーマの予後を判定する方法。
[項5]
 前記被験者由来の生体試料がグリオブラストーマ細胞である、項3又は4に記載の方法。
[項6]
 グリオブラストーマ細胞を被験物質の存在下及び非存在下に培養し、当該被験物質の存在下及び非存在下におけるセレノプロテインP又はApoER2の発現量又は機能の程度を比較する、グリオブラストーマ治療薬のスクリーニング方法。
[項7]
 セレノプロテインPの阻害作用を有する成分を選択する、項6に記載のグリオブラストーマ治療薬のスクリーニング方法。
[項8]
 前記セレノプロテインPの阻害作用を有する成分が、セレノプロテインP遺伝子のmRNAに対するsiRNA、セレノプロテインPのアミノ酸配列内に存在するエピトープに特異的に結合する抗体、スルフォラファン及びその誘導体、クルクミン及びその誘導体、エピガロカテキンガレート及びその誘導体、パラベンゾキノン及びその誘導体、CCDC遺伝子からなる群から選択される少なくとも1種である、項6又は7に記載のグリオブラストーマ治療薬のスクリーニング方法。
[項9]
 被験者にセレノプロテインPの阻害作用を有する成分の有効量を投与することを含む、グリオブラストーマを予防又は治療する方法。
[項10] 
 セレノプロテインPの阻害作用を有する成分及び薬学的担体を含有する、グリオブラストーマを予防又は治療するための医薬組成物。
[項11] 
 グリオブラストーマの予防又は治療薬を製造するための、セレノプロテインPの阻害作用を有する成分の使用。
[項12]
 項3の方法において、有効性あり又は投与可能と判定された被験者に対し、項1又は2に記載の予防又は治療薬を投与する工程を含む、グリオブラストーマの治療方法。
As a result of diligent research to solve the above problems, the inventors have found that selenoprotein P is a target for GBM therapeutic agents, and that a component having a selenoprotein P inhibitory action can suppress the cell proliferation rate. , And selenoprotein P are highly expressed in GBM cells, which are found to have low temozolomid sensitivity, and it has been clarified that a component having a selenoprotein P inhibitory action is useful as a therapeutic agent for GBM. The present invention has been completed based on these findings, and includes a wide range of inventions shown below.
[Item 1]
A prophylactic or therapeutic agent for glioblastoma containing a component having an inhibitory effect on selenoprotein P.
[Item 2]
The component having an inhibitory effect on selenoprotein P is siRNA against the mRNA of the selenoprotein P gene, an antibody that specifically binds to an epitope present in the amino acid sequence of selenoprotein P, sulforaphane and its derivatives, curcumin and its derivatives, Item 2. The prophylactic or therapeutic agent for glioblastoma according to Item 1, which is at least one selected from the group consisting of epigalocatecingalate and its derivatives, parabenzoquinone and its derivatives, and the CCDC gene.
[Item 3A]
A method for determining the efficacy or administration of the prophylactic or therapeutic agent according to Item 1 or 2, using the expression level or the degree of function of selenoprotein P or ApoER2 in a biological sample derived from a subject as an index.
[Item 3B]
Item 3. The method for determining the efficacy or administration of a prophylactic or therapeutic agent according to Item 1 or 2, which comprises a step of measuring the expression level or the degree of function of selenoprotein P or ApoER2 in a biological sample derived from a subject.
[Item 4]
A method for determining the prognosis of glioblastoma using the expression level or the degree of function of selenoprotein P or ApoER2 in a biological sample derived from a subject as an index.
[Item 5]
Item 3. The method according to Item 3 or 4, wherein the biological sample derived from the subject is a glioblastoma cell.
[Item 6]
A therapeutic agent for glioblastoma, in which glioblastoma cells are cultured in the presence and absence of a test substance, and the expression level or the degree of function of selenoprotein P or ApoER2 is compared in the presence and absence of the test substance. Screening method.
[Item 7]
Item 6. The method for screening a glioblastoma therapeutic agent according to Item 6, wherein a component having an inhibitory effect on selenoprotein P is selected.
[Item 8]
The component having an inhibitory effect on selenoprotein P is siRNA against the mRNA of the selenoprotein P gene, an antibody that specifically binds to an epitope present in the amino acid sequence of selenoprotein P, sulforaphane and its derivatives, curcumin and its derivatives, Item 6. The method for screening a glioblastoma therapeutic agent according to Item 6 or 7, which is at least one selected from the group consisting of epigalocatecingalate and its derivatives, parabenzoquinone and its derivatives, and the CCDC gene.
[Item 9]
A method for preventing or treating glioblastoma, which comprises administering to a subject an effective amount of an ingredient having an inhibitory effect on selenoprotein P.
[Item 10]
A pharmaceutical composition for preventing or treating glioblastoma, which comprises a component having an inhibitory effect on selenoprotein P and a pharmaceutical carrier.
[Item 11]
Use of ingredients that have an inhibitory effect on selenoprotein P for the production of prophylactic or therapeutic agents for glioblastoma.
[Item 12]
Item 3. A method for treating glioblastoma, which comprises the step of administering the prophylactic or therapeutic agent according to Item 1 or 2 to a subject determined to be effective or administrable in the method of Item 3.
 本発明によれば、GBMの治療薬標的として、セレノプロテインPを用いることができる。また、本発明によれば、セレノプロテインP阻害作用を有する成分を用いることによって、新規のGBMの治療薬を提供することができる。さらに、本発明により、GBM患者のセレノプロテインP発現量をGBM治療薬の有効性及び予後判定の指標とすることができる。 According to the present invention, selenoprotein P can be used as a therapeutic drug target for GBM. Further, according to the present invention, a novel therapeutic agent for GBM can be provided by using a component having a selenoprotein P inhibitory action. Furthermore, according to the present invention, the expression level of selenoprotein P in GBM patients can be used as an index for determining the efficacy and prognosis of a GBM therapeutic agent.
実施例1における、培養48時間後のセレノプロテインPのmRNA発現量を示す。The mRNA expression level of selenoprotein P after 48 hours of culture in Example 1 is shown. 実施例2における、T98G及びA172のテモゾロミド感受性試験の蛍光強度測定結果を示す。The fluorescence intensity measurement result of the temozolomide susceptibility test of T98G and A172 in Example 2 is shown. 実施例3における、各グリオーマ細胞の細胞増殖速度を示す。The cell proliferation rate of each glioma cell in Example 3 is shown. 実施例4における、セレノプロテインPのsiRNAによる、セレノプロテインPノックダウン後のT98GにおけるmRNA量を示す。The amount of mRNA in T98G after knockdown of selenoprotein P by siRNA of selenoprotein P in Example 4 is shown. 実施例4における、セレノプロテインPのsiRNAによるセレノプロテインPノックダウン後のT98Gにおける細胞増殖速度を示す。The cell proliferation rate in T98G after knockdown of selenoprotein P by siRNA of selenoprotein P in Example 4 is shown. 実施例5における、セレノプロテインP中和抗体添加72時間後のT98Gにおける細胞数を示す。The number of cells in T98G 72 hours after the addition of the selenoprotein P neutralizing antibody in Example 5 is shown. 実施例6における、各細胞種におけるApoER2の発現量の比較結果を示す。The comparison result of the expression level of ApoER2 in each cell type in Example 6 is shown. 実施例7における、ApoER2 siRNA処理によるT98G ApoER2 mRNA量の低下の結果を示す。The result of the decrease in the amount of T98G ApoER2 mRNA by the treatment with ApoER2 siRNA in Example 7 is shown. 実施例7における、ApoER2 siRNA処理による72時間後のT98G細胞数を示す。The number of T98G cells after 72 hours by ApoER2 siRNA treatment in Example 7 is shown. 実施例8における、セレノプロテインP阻害作用を有する化合物を添加した際のT98Gの細胞生存率の結果を示す。各セレノプロテインP阻害作用物質 (スルフォラファン (SFN)、クルクミン (CCM)、エピガロカテキンガレート(EGCg)、パラベンゾキノン (p-benzoquinone)) を添加した場合の24,48,72時間での結果である。The results of the cell viability of T98G when the compound having a selenoprotein P inhibitory action is added in Example 8 are shown. Results at 24, 48, 72 hours with the addition of each selenoprotein P inhibitor (sulforaphane (SFN), curcumin (CCM), epigallocatechin gallate (EGCg), parabenzoquinone (p-benzoquinone)). .. 実施例9における、CCDC遺伝子発現条件の検討結果を示す。The examination result of the CCDC gene expression condition in Example 9 is shown. 実施例10における、T98GにおけるCCDCの高発現が細胞増殖に与える影響の確認結果を示す。The results of confirming the effect of high expression of CCDC on T98G on cell proliferation in Example 10 are shown. 実施例11における、ヒト脳腫瘍組織における免疫組織染色結果を示す。A:セレノプロテインP陰性 (Anaplastic astrocytoma)、B:セレノプロテインP陽性(グリオブラストーマ)。The results of immunohistochemical staining in human brain tumor tissue in Example 11 are shown. A: Selenoprotein P negative (Anaplastic astrocytoma), B: Selenoprotein P positive (glioblastoma). 実施例13における、脳腫瘍患者血漿中の元素分析結果を示す。The elemental analysis result in the plasma of a brain tumor patient in Example 13 is shown.
 本明細書において、単数形(a、an、the)は、本明細書で別途明示がある場合又は文脈上明らかに矛盾する場合を除き、単数と複数を含むものとする。 In the present specification, the singular form (a, an, the) shall include the singular and the plural unless otherwise specified in the present specification or there is a clear contradiction in the context.
 本発明において、用語『治療』とは、所望の薬理学的効果及び/又は生理学的効果を得ることを意味する。この効果は、疾病及び/又は疾病に起因する悪影響(病態、症状等)を、部分的又は完全に治癒することを含む。また、上記効果には、疾病及び/又は疾病に起因する悪影響(病態、症状等)の進行を阻止又は遅延する効果、病態及び/又は症状を緩和する(疾病、症状等の後退、又は進行の逆転を引き起こす)効果、再発を阻止する効果等が含まれる。 In the present invention, the term "treatment" means to obtain a desired pharmacological and / or physiological effect. This effect includes partial or complete cure of the disease and / or the adverse effects caused by the disease (pathology, symptoms, etc.). In addition, the above-mentioned effects include the effect of blocking or delaying the progression of the disease and / or the adverse effect (pathology, symptom, etc.) caused by the disease, and alleviating the pathology and / or the symptom (relapse or progression of the disease, symptom, etc.). The effect of causing reversal), the effect of preventing recurrence, etc. are included.
 また、上記効果には、疾病及び/又は疾病に起因する悪影響(病態、症状等)の素因を持ち得るが、まだ持っていると診断されていない個体において、疾病及び/又は疾病に起因する悪影響(病態、症状等)が起こることを部分的又は完全に防止する効果が含まれる。従って、『治療』なる用語には、『緩解』、『再発防止』、『予防』等の意味も含まれる。 In addition, the above effects may have a predisposition to the disease and / or adverse effects caused by the disease (pathological condition, symptom, etc.), but in individuals who have not yet been diagnosed as having the disease, the disease and / or the adverse effects caused by the disease. It includes the effect of partially or completely preventing the occurrence of (pathology, symptoms, etc.). Therefore, the term "treatment" also includes meanings such as "remission", "prevention of recurrence", and "prevention".
 1.スクリーニング方法
 本発明は、GBMの治療薬又はその候補物質のスクリーニング方法を提供する。本発明においては、被験物質がセレノプロテインPを阻害する効果を有する物質であるか否かを確認することによりGBMの治療薬又はその候補物質として有効であるか否かを判定することができる。典型的な実施形態において、本発明のスクリーニング方法は、GBM細胞を被験物質の存在下及び非存在下に培養する工程、及び両条件下におけるセレノプロテインP又はApoER2の発現量又は機能の程度を比較する工程を含む。
1. 1. Screening Method The present invention provides a screening method for a therapeutic agent for GBM or a candidate substance thereof. In the present invention, it is possible to determine whether or not the test substance is effective as a therapeutic agent for GBM or a candidate substance thereof by confirming whether or not the test substance is a substance having an effect of inhibiting selenoprotein P. In a typical embodiment, the screening method of the present invention compares the steps of culturing GBM cells in the presence and absence of a test substance, and the degree of expression or function of selenoprotein P or ApoER2 under both conditions. Including the process of
 本発明のスクリーニング方法により選択された被験物質は、本発明の治療薬として有用であり、GBMの治療に好適に用いることができる。また、本スクリーニング方法により選択された被験物質は、上記本発明のGBM治療薬の候補物質として有用であり、さらなるスクリーニングを経て、上記本発明の治療薬となる可能性を有する。 The test substance selected by the screening method of the present invention is useful as a therapeutic agent of the present invention, and can be suitably used for the treatment of GBM. In addition, the test substance selected by the present screening method is useful as a candidate substance for the GBM therapeutic agent of the present invention, and may become the therapeutic agent of the present invention after further screening.
 本発明のスクリーニング方法に供される被験物質は特に限定されず、核酸、ペプチド、タンパク質、非ペプチド性化合物、合成化合物、発酵生産物、細胞抽出液、細胞培養上清、植物抽出液、哺乳動物の組織抽出液、血漿等であっても良い。被験物質は、新規な物質であっても良いし、公知の物質であっても良い。これらの被験物質は塩を形成していても良い。被験物質の塩としては、生理学的に許容される酸又は塩基との塩が好ましい。 The test substance used in the screening method of the present invention is not particularly limited, and is limited to nucleic acids, peptides, proteins, non-peptide compounds, synthetic compounds, fermentation products, cell extracts, cell culture supernatants, plant extracts, and mammals. The tissue extract, plasma, etc. may be used. The test substance may be a novel substance or a known substance. These test substances may form salts. As the salt of the test substance, a salt with a physiologically acceptable acid or base is preferable.
 本発明の典型的な実施形態において、まずGBM細胞を被験物質の存在下及び非存在下に培養する工程を行う。GBM細胞としては、グリオブラストーマ患者の脳腫瘍組織から採取した腫瘍細胞が挙げられ、本発明の属する技術分野において知られているもの等を用いることができる。GBM細胞は、初代培養細胞であっても、好適な培地で継代培養した細胞であってもよい。継代培養した細胞を用いる場合、継代培養に用いる培地としては、GBM細胞の培養に使用され得る培地を適宜使用することができ、例えば、RPMI-1640培地、D’MEM培地、E’MEM培地等が挙げられる。上記培地には、FBS、ペニシリン、ストレプトマイシン、亜セレン酸ナトリウム等を添加しても良い。FBSにはセレンの含有量が少ないため、培地にFBSを添加する際には、亜セレン酸ナトリウムを添加することが好ましい。亜セレン酸ナトリウムの添加量としては、5~2000nMが好ましく、50~200nMがより好ましい。また、上記培地には、任意選択で、pH調整剤、炭酸水素ナトリウム等を添加してもよい。 In a typical embodiment of the present invention, first, a step of culturing GBM cells in the presence and absence of a test substance is performed. Examples of the GBM cell include tumor cells collected from the brain tumor tissue of a glioblastoma patient, and those known in the technical field to which the present invention belongs can be used. The GBM cell may be a primary cultured cell or a cell subcultured in a suitable medium. When subcultured cells are used, as the medium used for subculture, a medium that can be used for culturing GBM cells can be appropriately used, and for example, RPMI-1640 medium, D'MEM medium, E'MEM. Examples include a medium. FBS, penicillin, streptomycin, sodium selenite and the like may be added to the above medium. Since the content of selenium is low in FBS, it is preferable to add sodium selenite when adding FBS to the medium. The amount of sodium selenite added is preferably 5 to 2000 nM, more preferably 50 to 200 nM. Further, a pH adjuster, sodium hydrogencarbonate, or the like may be added to the medium as an option.
 本発明においては、上記GBM細胞を被験物質の存在で培養する際の培地としては、上記継代培養を行う場合に例示したものを使用することができる。培地中の被験物質の濃度としては特に限定されないが、例えば、0.1~100μg/mL、好ましくは1~20μg/mLの範囲で設定できる。培養温度としては、36~38℃の範囲が好ましい。培地のpHは7.3~7.6であることが好ましい。培養時間としては、12~72時間の範囲で設定でき、24~36時間が好ましい。 In the present invention, as the medium for culturing the GBM cells in the presence of the test substance, the medium exemplified for the subculture can be used. The concentration of the test substance in the medium is not particularly limited, but can be set, for example, in the range of 0.1 to 100 μg / mL, preferably 1 to 20 μg / mL. The culture temperature is preferably in the range of 36 to 38 ° C. The pH of the medium is preferably 7.3 to 7.6. The culture time can be set in the range of 12 to 72 hours, preferably 24 to 36 hours.
 さらに、比較対照として、被験物質を添加しない培地を用いる以外上記と同様にして、GBM細胞を培養する。 Furthermore, as a comparative control, GBM cells are cultured in the same manner as above except that a medium to which no test substance is added is used.
 本実施形態において、次に、被験物質の存在下及び非存在下の両条件下における、セレノプロテインP又はApoER2の発現量又は機能の程度を比較する。なお、ApoER2はセレノプロテインPの受容体タンパク質である。典型的な本発明の実施形態においては、セレノプロテインPは配列番号21に示されるアミノ酸配列からなるものであり、また、ApoER2は配列番号39に示されるアミノ酸配列からなるものである。 In the present embodiment, next, the expression level or the degree of function of selenoprotein P or ApoER2 is compared under both the presence and absence of the test substance. ApoER2 is a receptor protein for selenoprotein P. In a typical embodiment of the invention, selenoprotein P consists of the amino acid sequence set forth in SEQ ID NO: 21 and ApoER2 consists of the amino acid sequence set forth in SEQ ID NO: 39.
 セレノプロテインPを阻害する効果を有する物質の選択基準として、あらかじめ設定されたカットオフ値を使用することができる。被験物質非存在下で培養した細胞による測定結果に対する、被験物質存在下で培養した細胞による測定結果の比が、あらかじめ設定したカットオフ値より小さい場合に、セレノプロテインPを阻害する効果を有する物質であると判定することができる。カットオフ値としては例えば、0.6~0.7の範囲に設定することができる。 A preset cutoff value can be used as a selection criterion for a substance having an effect of inhibiting selenoprotein P. A substance having the effect of inhibiting selenoprotein P when the ratio of the measurement result of the cells cultured in the presence of the test substance to the measurement result of the cells cultured in the absence of the test substance is smaller than the preset cutoff value. Can be determined to be. The cutoff value can be set, for example, in the range of 0.6 to 0.7.
(セレノプロテインPの発現量の測定)
 前記両条件下において培養されたGBM細胞におけるセレノプロテインPの発現量を測定する工程について、以下に説明する。セレノプロテインPの発現量の測定は、セレノプロテインPのmRNAを定量すること、又はセレノプロテインPのタンパク質量の定量により行う。
(Measurement of expression level of selenoprotein P)
The step of measuring the expression level of selenoprotein P in GBM cells cultured under both of the above conditions will be described below. The expression level of selenoprotein P is measured by quantifying the mRNA of selenoprotein P or by quantifying the protein amount of selenoprotein P.
 セレノプロテインPのmRNAの定量は、前記培養条件において培養した細胞から単離したRNA又はそれから転写された相補的なポリヌクレオチドを用いて、RT-PCR法、ノーザンブロット法等の公知の方法で行うことができる。セレノプロテインPのmRNAの定量には、内部標準対象遺伝子を用いることができ、内部標準対象遺伝子としてはGAPDH mRNA、Actin mRNA等が挙げられる。 The quantification of selenoprotein P mRNA is carried out by a known method such as RT-PCR method or Northern blotting method using RNA isolated from cells cultured under the above culture conditions or complementary polynucleotide transcribed from the RNA. be able to. An internal standard target gene can be used for quantification of selenoprotein P mRNA, and examples of the internal standard target gene include GAPDH mRNA and Actin mRNA.
 セレノプロテインPのタンパク質量の定量方法としては、前記培養条件において培養した細胞の溶解液に対して、セレノプロテインPを認識する抗体を用いたウェスタンブロット法等の公知の方法を用いることができる。セレノプロテインPを認識する抗体としては例えば、下記「セレノプロテインPのアミノ酸配列内に存在するエピトープに特異的に結合する抗体」に記載の抗体を用いることができる。 As a method for quantifying the amount of protein of selenoprotein P, a known method such as Western blotting using an antibody that recognizes selenoprotein P can be used for the lysate of cells cultured under the above culture conditions. As the antibody that recognizes selenoprotein P, for example, the antibody described in the following "Antibody that specifically binds to an epitope present in the amino acid sequence of selenoprotein P" can be used.
 被験物質を添加した培地で培養した細胞におけるセレノプロテインPのmRNA又はセレノプロテインPタンパク質の発現量が、被験物質を添加していない培地で培養した細胞におけるセレノプロテインPのmRNA又はセレノプロテインPタンパク質の発現量と比較して70%以下、好ましくは60%以下であれば、該被験物質はセレノプロテインPを阻害する効果がある物質として選択することができる。 The expression level of selenoprotein P mRNA or selenoprotein P protein in cells cultured in a medium supplemented with the test substance is that of selenoprotein P mRNA or selenoprotein P protein in cells cultured in a medium not supplemented with the test substance. If it is 70% or less, preferably 60% or less of the expression level, the test substance can be selected as a substance having an effect of inhibiting selenoprotein P.
(セレノプロテインPの機能の程度の測定)
 前記両条件下において培養されたGBM細胞におけるセレノプロテインPの機能の程度を測定する工程について、以下に説明する。セレノプロテインPの機能としては、セレノプロテインPとその結合タンパク質(セレノプロテインP受容体等)との結合;グルタチオンペルオキシダーゼの誘導等が挙げられる。よって、セレノプロテインPを阻害する効果を有する物質を選択するスクリーニング方法として、セレノプロテインPとその結合タンパク質との結合阻害活性;グルタチオンペルオキシダーゼの誘導抑制等に注目することができる。
(Measurement of the degree of function of selenoprotein P)
The step of measuring the degree of function of selenoprotein P in GBM cells cultured under both of the above conditions will be described below. Functions of selenoprotein P include binding of selenoprotein P to its binding protein (selenoprotein P receptor, etc.); induction of glutathione peroxidase, and the like. Therefore, as a screening method for selecting a substance having an effect of inhibiting selenoprotein P, attention can be paid to the binding inhibitory activity between selenoprotein P and its binding protein; inhibition of induction of glutathione peroxidase, and the like.
 セレノプロテインPとその結合タンパク質との結合阻害活性に着目したスクリーニング方法としては、GBM細胞の膜画分を常法に従って単離し、被験物質の存在下及び非存在下で、標識したセレノプロテインPを接触させ、被験物質の存在下及び非存在下で細胞膜画分に結合したセレノプロテインP量を比較する方法が挙げられる。セレノプロテインPの結合タンパク質としては、例えばApoER2等が挙げられる。 As a screening method focusing on the binding inhibitory activity between selenoprotein P and its binding protein, the membrane fraction of GBM cells is isolated according to a conventional method, and labeled selenoprotein P is used in the presence and absence of the test substance. A method of contacting and comparing the amount of selenoprotein P bound to the cell membrane fraction in the presence and absence of the test substance can be mentioned. Examples of the binding protein of selenoprotein P include ApoER2 and the like.
 被験物質の非存在下で細胞膜画分に結合したセレノプロテインP量と比較して、被験物質の存在下で細胞膜画分に結合したセレノプロテインP量が予め設定した基準値T%以下であれば、該被験物質はセレノプロテインPを阻害する効果がある物質として選択することができる。基準値T(%)としては、例えば、50≦T≦80、好ましくは60≦T≦70の範囲で設定できる。 If the amount of selenoprotein P bound to the cell membrane fraction in the presence of the test substance is T% or less of the preset reference value as compared with the amount of selenoprotein P bound to the cell membrane fraction in the absence of the test substance. , The test substance can be selected as a substance having an effect of inhibiting selenoprotein P. The reference value T (%) can be set in the range of, for example, 50 ≦ T ≦ 80, preferably 60 ≦ T ≦ 70.
 グルタチオンペルオキシダーゼの誘導抑制に着目したスクリーニング方法としては、被験物質の存在下及び非存在下で培養した細胞の溶解液に対して、グルタチオンペルオキシダーゼを認識する抗体を用いたウェスタンブロット法等の公知の方法を用いることができる。グルタチオンペルオキシダーゼを認識する抗体としては例えば、ab22604(アブカム社、Anti-Glutathione peroxidase 1)、ab125066(アブカム社、Anti-Glutathione peroxidase 4)、等の抗体を用いることができる。 As a screening method focusing on the suppression of induction of glutathione peroxidase, a known method such as Western blotting using an antibody that recognizes glutathione peroxidase against a lysate of cells cultured in the presence or absence of a test substance. Can be used. As an antibody that recognizes glutathione peroxidase, for example, an antibody such as ab22604 (Abcam, Anti-Glutathione peroxidase 1), ab125066 (Abcam, Anti-Glutathione peroxidase 4) can be used.
 被験物質の非存在下で培養した細胞の溶解液中のグルタチオンペルオキシダーゼ量と比較して、被験物質の存在下で培養した細胞の溶解液中のグルタチオンペルオキシダーゼ量が予め設定した基準値T%以下であれば、該被験物質はセレノプロテインPを阻害する効果がある物質として選択することができる。基準値T(%)としては、例えば、50≦T≦80、好ましくは60≦T≦70の範囲で設定できる。 The amount of glutathione peroxidase in the lysate of cells cultured in the presence of the test substance is less than or equal to the preset reference value T% as compared with the amount of glutathione peroxidase in the lysate of cells cultured in the absence of the test substance. If so, the test substance can be selected as a substance having an effect of inhibiting selenoprotein P. The reference value T (%) can be set in the range of, for example, 50 ≦ T ≦ 80, preferably 60 ≦ T ≦ 70.
(ApoER2の発現量の測定)
 前記両条件下において培養されたGBM細胞におけるApoER2の発現量を測定する工程について、以下に説明する。ApoER2の発現量の測定は、ApoER2のmRNAを定量すること、又はApoER2のタンパク質量の定量により行う。
(Measurement of ApoER2 expression level)
The step of measuring the expression level of ApoER2 in GBM cells cultured under both of the above conditions will be described below. The expression level of ApoER2 is measured by quantifying the mRNA of ApoER2 or by quantifying the amount of protein of ApoER2.
 ApoER2のmRNAの定量は、前記培養条件において培養した細胞から単離したRNA又はそれから転写された相補的なポリヌクレオチドを用いて、RT-PCR法、ノーザンブロット法等の公知の方法で行うことができる。ApoER2のmRNAの定量には、内部標準対象遺伝子を用いることができ、内部標準対象遺伝子としてはGAPDH mRNA、Actin mRNA等が挙げられる。 The quantification of ApoER2 mRNA can be performed by a known method such as RT-PCR method or Northern blotting method using RNA isolated from cells cultured under the above culture conditions or complementary polynucleotide transcribed from the RNA. can. An internal standard target gene can be used for quantification of ApoER2 mRNA, and examples of the internal standard target gene include GAPDH mRNA and Actin mRNA.
 ApoER2のタンパク質量の定量方法としては、前記培養条件において培養した細胞の溶解液に対して、ApoER2を認識する抗体を用いたウェスタンブロット法等の公知の方法を用いることができる。ApoER2を認識する抗体としては例えば、Anti-ApoER2 抗体 [EPR3326] (ab108208)を用いることができる。 As a method for quantifying the amount of protein of ApoER2, a known method such as Western blotting using an antibody that recognizes ApoER2 can be used for the lysate of cells cultured under the above culture conditions. As an antibody that recognizes ApoER2, for example, Anti-ApoER2 antibody [EPR3326] (ab108208) can be used.
 被験物質を添加した培地で培養した細胞におけるApoER2のmRNA又はApoER2の発現量が、被験物質を添加していない培地で培養した細胞におけるApoER2のmRNA又はApoER2の発現量と比較して70%以下、好ましくは60%以下であれば、該被験物質はセレノプロテインPを阻害する効果がある物質として選択することができる。 The expression level of ApoER2 mRNA or ApoER2 in the cells cultured in the medium supplemented with the test substance is 70% or less as compared with the expression level of the ApoER2 mRNA or ApoER2 in the cells cultured in the medium not supplemented with the test substance. If it is preferably 60% or less, the test substance can be selected as a substance having an effect of inhibiting selenoprotein P.
(ApoER2の機能の程度の測定)
 前記両条件下において培養されたGBM細胞におけるApoER2の機能の程度を測定する工程について、以下に説明する。ApoER2の機能としては、ApoER2とその結合タンパク質(セレノプロテインP等)との結合等が挙げられる。よって、セレノプロテインPを阻害する効果を有する物質を選択するスクリーニング方法として、ApoER2とその結合タンパク質との結合阻害活性、ApoER2とその結合タンパク質との分子間相互作用等に注目することができる。
(Measurement of the degree of function of ApoER2)
The step of measuring the degree of function of ApoER2 in GBM cells cultured under both of the above conditions will be described below. Functions of ApoER2 include binding of ApoER2 to its binding protein (selenoprotein P, etc.). Therefore, as a screening method for selecting a substance having an effect of inhibiting selenoprotein P, attention can be paid to the binding inhibitory activity between ApoER2 and its binding protein, the intramolecular interaction between ApoER2 and its binding protein, and the like.
 ApoER2とその結合タンパク質との結合阻害活性に着目したスクリーニング方法としては、例えば、GBM細胞の膜画分を常法に従って単離し、被験物質の存在下及び非存在下で、標識したセレノプロテインPを接触させ、被験物質の存在下及び非存在下で細胞膜画分に結合したセレノプロテインP量を比較する方法が挙げられる。 As a screening method focusing on the binding inhibitory activity of ApoER2 and its binding protein, for example, the membrane fraction of GBM cells is isolated according to a conventional method, and labeled selenoprotein P is used in the presence and absence of a test substance. A method of contacting and comparing the amount of selenoprotein P bound to the cell membrane fraction in the presence and absence of the test substance can be mentioned.
 被験物質の非存在下で細胞膜画分に結合したApoER2量と比較して、被験物質の存在下で細胞膜画分に結合したApoER2量が予め設定した基準値T%以下であれば、該被験物質はセレノプロテインPを阻害する効果がある物質として選択することができる。基準値T(%)としては、例えば、50≦T≦80、好ましくは60≦T≦70の範囲で設定できる。 If the amount of ApoER2 bound to the cell membrane fraction in the presence of the test substance is T% or less of the preset reference value as compared with the amount of ApoER2 bound to the cell membrane fraction in the absence of the test substance, the test substance. Can be selected as a substance having an effect of inhibiting selenoprotein P. The reference value T (%) can be set in the range of, for example, 50 ≦ T ≦ 80, preferably 60 ≦ T ≦ 70.
 ApoER2とその結合タンパク質との分子間相互作用に着目したスクリーニング方法としては、例えば、ApoER2の細胞外ドメインのみをGBM細胞に発現させ、ApoER2の細胞外ドメインのリコンビナントを調製し、被験物質の存在下及び非存在下でセレノプロテインPとの分子間相互作用を比較する方法が挙げられる。分子間相互作用を解析する方法としては、表面プラズモン共鳴法等、公知の方法を用いることができる。 As a screening method focusing on the intermolecular interaction between ApoER2 and its binding protein, for example, only the extracellular domain of ApoER2 is expressed in GBM cells, a recombinant of the extracellular domain of ApoER2 is prepared, and in the presence of a test substance. And a method of comparing molecular interactions with selenoprotein P in the absence. As a method for analyzing the intramolecular interaction, a known method such as a surface plasmon resonance method can be used.
 被験物質の非存在下での分子間相互作用の解析結果と比較して、被験物質の存在下での分子間相互作用の解析結果が予め設定した基準値T%以下であれば、該被験物質はセレノプロテインPを阻害する効果がある物質として選択することができる。基準値T(%)としては、例えば、50≦T≦80、好ましくは60≦T≦70の範囲で設定できる。 If the analysis result of the intermolecular interaction in the presence of the test substance is less than or equal to the preset reference value T% as compared with the analysis result of the intermolecular interaction in the absence of the test substance, the test substance. Can be selected as a substance having an effect of inhibiting selenoprotein P. The reference value T (%) can be set in the range of, for example, 50 ≦ T ≦ 80, preferably 60 ≦ T ≦ 70.
(セレノプロテインPの阻害作用を有する成分)
 典型的な実施形態において、本発明のスクリーニング方法では、セレノプロテインPの阻害作用を有する成分をGBM治療薬又はその候補物質として選択する。本明細書において、「セレノプロテインPの阻害作用を有する成分」とは、セレノプロテインPの作用を阻害する任意の物質をいい、その作用機序はセレノプロテインPの発現を阻害すること、機能を阻害すること等を含む。したがって、「セレノプロテインPの阻害作用を有する成分」は、セレノプロテインPの発現を阻害する物質及びセレノプロテインPの機能を阻害する物質、このほか作用機序は不明であっても最終的にセレノプロテインPの作用が阻害される任意の物質を含む。
(Ingredients that have an inhibitory effect on selenoprotein P)
In a typical embodiment, in the screening method of the present invention, a component having an inhibitory effect on selenoprotein P is selected as a GBM therapeutic agent or a candidate substance thereof. As used herein, the term "component having an inhibitory effect on selenoprotein P" refers to any substance that inhibits the action of selenoprotein P, and its mechanism of action is to inhibit the expression of selenoprotein P and to function. Includes inhibition, etc. Therefore, the "component having an inhibitory action on selenoprotein P" is a substance that inhibits the expression of selenoprotein P, a substance that inhibits the function of selenoprotein P, and finally seleno even if the mechanism of action is unknown. Contains any substance that inhibits the action of protein P.
 公知のセレノプロテインPの阻害作用を有する成分としては、例えば、セレノプロテインP遺伝子のmRNAに対するsiRNA、セレノプロテインPのアミノ酸配列内に存在するエピトープに特異的に結合する抗体、等が挙げられる。また、そのほかに、スルフォラファン、クルクミン、エピガロカテキンガレート、パラベンゾキノン、サンギナリン、ブファジエノリド、メチル 10-ヒドロキシ-2,4a,6a,9,12b,14a-ヘキサメチル-11-オキソ-1,2,3,4,4a,5,6,6a,11,12b,13,14,14a,14b-テトラデカヒドロピセン-2-カルボキシレート等といった化合物も挙げることができる。 Examples of known components having an inhibitory effect on selenoprotein P include siRNA against mRNA of the selenoprotein P gene, an antibody that specifically binds to an epitope present in the amino acid sequence of selenoprotein P, and the like. In addition, sulforaphane, curcumin, epigallocatechin gallate, parabenzoquinone, sanguinarine, bufazienolide, methyl 10-hydroxy-2,4a, 6a, 9,12b, 14a-hexamethyl-11-oxo-1,2,3 Compounds such as 4,4a, 5,6,6a, 11,12b, 13, 14, 14a, 14b-tetradecahydropicene-2-carboxylate and the like can also be mentioned.
(セレノプロテインP遺伝子のmRNAに対するsiRNA)
 セレノプロテインP遺伝子のmRNAに相補的なオリゴRNAとその相補鎖とからなる二本鎖RNA、いわゆるsiRNAは、セレノプロテインPの発現抑制に効果がある。短い二本鎖RNAを細胞内に導入するとそのRNAに相補的なmRNAが分解される、RNA干渉と呼ばれる現象が起き、当該セレノプロテインP遺伝子の発現を阻害する能力を有する。
(SiRNA for mRNA of selenoprotein P gene)
Double-stranded RNA consisting of an oligo RNA complementary to the mRNA of the selenoprotein P gene and its complementary strand, so-called siRNA, is effective in suppressing the expression of selenoprotein P. When a short double-stranded RNA is introduced into a cell, a phenomenon called RNA interference occurs in which mRNA complementary to the RNA is degraded, and has the ability to inhibit the expression of the selenoprotein P gene.
 siRNAが標的とする配列は、配列番号22(セレノプロテインP)の塩基番号1~2056の塩基よりなる群から選ばれる連続する19~27塩基、好ましくは21~23塩基である。本発明のsiRNAと標的配列は、同一であることが望ましいが、上記RNA干渉が誘導できる範囲において、実質的に同一、すなわち相同な配列であっても良い。具体的には、本発明のsiRNAのアンチセンス鎖配列と標的配列がハイブリダイズする限り、1又は数個(例えば、2,3個)のミスマッチがあっても良い。すなわち、本発明のsiRNAには、標的配列に対して1又は数個の塩基が置換、付加、もしくは欠失したものであってRNA干渉を誘導できるもの、あるいは標的配列と90%以上、好ましくは95%以上、さらに好ましくは98%以上の相同性を有し、かつRNA干渉が誘導できるものが包含される。 The sequence targeted by siRNA is a continuous 19 to 27 bases, preferably 21 to 23 bases, selected from the group consisting of the bases of the base numbers 1 to 2056 of SEQ ID NO: 22 (selenoprotein P). It is desirable that the siRNA of the present invention and the target sequence are the same, but they may be substantially the same, that is, homologous sequences as long as the RNA interference can be induced. Specifically, as long as the antisense strand sequence of the siRNA of the present invention and the target sequence hybridize, there may be one or several (for example, a few) mismatches. That is, the siRNA of the present invention is one in which one or several bases are substituted, added, or deleted from the target sequence and can induce RNA interference, or 90% or more, preferably 90% or more of the target sequence. Those having 95% or more, more preferably 98% or more homology, and capable of inducing RNA interference are included.
 また、siRNAは、3’末端に突出部配列を有していても良く、具体的には、dTdT(dTはデオキシリボ核酸のデオキシチミジン残基を表す)を付加したものが挙げられる。また末端付加がない平滑末端であっても良い。 Further, siRNA may have a protruding sequence at the 3'end, and specific examples thereof include those to which dTdT (dT represents a deoxythymidine residue of a deoxyribonucleic acid) is added. Further, it may have a blunt end without end addition.
 siRNAを構成するリボヌクレオシド分子は、化学的安定性及び/もしくは対酵素安定性、ならびに/又はRNAとの親和性を向上させるために、種々の化学修飾を施すことができる。ただし、天然型RNA中のすべてのリボヌクレオシド分子を修飾型で置換すると、RNA活性が失われる場合があるので、最小限の修飾ヌクレオシドの導入が必要である。当該修飾として具体的には、例えばAccell修飾、siSTABLE修飾等が挙げられる。 The ribonucleoside molecule constituting siRNA can be subjected to various chemical modifications in order to improve chemical stability and / or anti-enzymatic stability, and / or affinity with RNA. However, replacement of all ribonucleoside molecules in native RNA with modified forms may result in loss of RNA activity, requiring the introduction of minimal modified nucleosides. Specific examples of the modification include Accell modification, siSTABLE modification and the like.
 siRNAは、mRNA上の標的配列のセンス鎖及びアンチセンス鎖をDNA/RNA自動合成基でそれぞれ合成し、好適なアニーリング緩衝液中、約90~95℃で約1分程度変性させた後、約35~40℃で約1~2時間アニーリングさせることにより調製することができる。 For siRNA, the sense strand and antisense strand of the target sequence on the mRNA are synthesized by a DNA / RNA automatic synthetic group, respectively, and denatured in a suitable annealing buffer at about 90 to 95 ° C. for about 1 minute, and then about 1 minute. It can be prepared by annealing at 35-40 ° C. for about 1-2 hours.
 セレノプロテインP遺伝子のmRNAに対するsiRNAの配列としては例えば、セレノプロテインP siRNA #1 (配列番号23)
GAGAUAUGCCAGCAAGUGA[dT][dT] とその相補鎖をアニーリングさせたもの
セレノプロテインP siRNA #2 (配列番号24)
GCAUAUUCCUGUUUAUCAA[dT][dT] とその相補鎖をアニーリングさせたもの
セレノプロテインP siRNA #3 (配列番号25)
GAGAAUGACCUUCAAACUA[dT][dT] とその相補鎖をアニーリングさせたもの
等が挙げられる。
Examples of the siRNA sequence for the mRNA of the selenoprotein P gene include selenoprotein P siRNA # 1 (SEQ ID NO: 23).
GAGAUAUGCCAGCAAGUGA [dT] [dT] and its complementary strand annealed Selenoprotein P siRNA # 2 (SEQ ID NO: 24)
GCAUAUCCUGUUUAUCAA [dT] [dT] and its complementary strand annealed Selenoprotein P siRNA # 3 (SEQ ID NO: 25)
Examples thereof include those obtained by annealing GAGAAUGACCUCAUCAAACUA [dT] [dT] and its complementary strand.
 本明細書においては、生体内でセレノプロテインPのmRNAに対するsiRNAを生成し得るようにデザインされた核酸もまた、セレノプロテインPを阻害する成分に包含される。そのような核酸としては、上記siRNAを発現するように構築された発現ベクター等が挙げられる。 As used herein, nucleic acids designed to be capable of producing siRNA against selenoprotein P mRNA in vivo are also included in the components that inhibit selenoprotein P. Examples of such nucleic acids include expression vectors constructed to express the above siRNA.
(セレノプロテインPのアミノ酸配列内に存在するエピトープに特異的に結合する抗体)
 セレノプロテインPのアミノ酸配列内に存在するエピトープに特異的に結合する抗体としては、セレノプロテインPに特異的に結合する抗体を広く含む。好ましくは、セレノプロテインPの204~261番目のアミノ酸配列内に存在するエピトープに特異的に結合する抗体を含む。より好ましくは204~254番目のアミノ酸配列内に存在するエピトープに、更に好ましくは、204~217番目のアミノ酸配列内に存在するエピトープに特異的に結合する抗体である。上記抗体は、セレノプロテインPの204~261番目のアミノ酸配列内に存在するエピトープに特異的に結合することによって、セレノプロテインPの細胞内取り込みを阻害する効果を発揮する。また、上記抗体は細胞内グルタチオンペルオキシダーゼの誘導を抑制する効果も発揮する。
(Antibody that specifically binds to an epitope present in the amino acid sequence of selenoprotein P)
Antibodies that specifically bind to an epitope present in the amino acid sequence of selenoprotein P include a wide range of antibodies that specifically bind to selenoprotein P. Preferably, it comprises an antibody that specifically binds to an epitope present in the amino acid sequence 204-261 of selenoprotein P. An antibody that specifically binds to an epitope present in the amino acid sequence 204 to 254, and more preferably to an epitope present in the amino acid sequence 204 to 217. The antibody exerts an effect of inhibiting the intracellular uptake of selenoprotein P by specifically binding to an epitope present in the amino acid sequence of positions 204 to 261 of selenoprotein P. The antibody also exerts an effect of suppressing the induction of intracellular glutathione peroxidase.
 上記の用語『特異的に結合する』とは、セレノプロテインPの例えば204~261番目のアミノ酸配列内に存在するエピトープに選択的に結合することに限定されず、セレノプロテインPの204~261番目のアミノ酸配列以外のアミノ酸配列に、特にセレノプロテインPのホモログ等といった、セレノプロテインPと一次又は高次構造的に類似する分子がセレノプロテインPと共存している場合に、セレノプロテインPの204~261番目のアミノ酸配列内に存在するエピトープと優先的に結合することで説明される。 The above term "specifically binds" is not limited to selectively binding to an epitope present in, for example, the 204th to 261st amino acid sequences of selenoprotein P, and the 204th to 261st positions of selenoprotein P. When a molecule having a primary or higher-order structure similar to selenoprotein P, such as a homologue of selenoprotein P, coexists with selenoprotein P in an amino acid sequence other than the amino acid sequence of selenoprotein P, 204 to It is explained by preferentially binding to an epitope present in the 261st amino acid sequence.
 なお、上記の抗体が、セレノプロテインPの204~261番目のアミノ酸配列内に存在するエピトープに特異的に結合するということは、上記したセレノプロテインPのホモログ等の特定のアミノ酸配列内に存在するエピトープとの結合が排除されるものではない。 The fact that the above antibody specifically binds to an epitope present in the 204th to 261st amino acid sequences of selenoprotein P is present in a specific amino acid sequence such as the homolog of selenoprotein P described above. Binding to epitopes is not excluded.
 このような上記の抗体の、セレノプロテインPの例えば204~261番目のアミノ酸配列内に存在するエピトープとの特異的な結合の程度は、Kd値、Koff値、又はKon値といった反応速度定数でも評価される。なお、Kd値とは、Koff値をKon値で除して得られる値である。 The degree of specific binding of such an antibody to an epitope present in, for example, the amino acid sequence 204 to 261 of selenoprotein P is also evaluated by reaction rate constants such as Kd value, Koff value, or Kon value. Will be done. The Kd value is a value obtained by dividing the Koff value by the Kon value.
 このような上記の抗体のセレノプロテインPの204~261番目のアミノ酸配列内に存在するエピトープとの結合に関する反応速度定数は特に限定されないが、例えばKd値であれば、通常0.01~100nM程度である。 The reaction rate constant for binding to the epitope present in the 204 to 261st amino acid sequence of selenoprotein P of the above antibody is not particularly limited, but for example, if it is a Kd value, it is usually about 0.01 to 100 nM. Is.
 上記の抗体は、モノクローナル抗体であってもポリクローナル抗体であってもよい。また、抗体の由来も特に限定はされない。 The above antibody may be a monoclonal antibody or a polyclonal antibody. Further, the origin of the antibody is not particularly limited.
 上記の抗体の構造は、イムノグロブリン(Ig)分子に限定はされず、その断片であってもよい。この様な断片としては重鎖及び/又は軽鎖可変領域を含んでいればよく、斯かる断片を適宜再構成した構造であってもよい。 The structure of the above antibody is not limited to the immunoglobulin (Ig) molecule, and may be a fragment thereof. Such a fragment may include a heavy chain and / or a light chain variable region, and may have a structure in which such a fragment is appropriately reconstructed.
 このような上記の抗体の具体的な構造として、例えばF(ab’)、Fab、Fv、scFv、scFv-Fc、テトラボディー、ミニボディー等が挙げられる。 Specific structures of such an antibody include, for example, F (ab') 2 , Fab, Fv, scFv, scFv-Fc, tetrabody, minibody and the like.
 また、上記イムノグロブリンも、そのアイソタイプは限定されず、IgA、IgD、IgE、IgG、IgM、IgY等が挙げられる。そして、IgGのサブクラスも特に限定はされず、IgG1、IgG2、IgG2a、IgG2b、IgG3、IgG4等が挙げられる。 The isotype of the above-mentioned immunoglobulin is not limited, and examples thereof include IgA, IgD, IgE, IgG, IgM, and IgY. The subclass of IgG is also not particularly limited, and examples thereof include IgG1, IgG2, IgG2a, IgG2b, IgG3, and IgG4.
 上記の抗体は、特定のアミノ酸配列を含む重鎖可変領域及び/又は軽鎖可変領域を有する態様であることができる。具体的には、
配列番号3又は13に示すアミノ酸配列からなる重鎖CDR1、
配列番号4又は14に示すアミノ酸配列からなる重鎖CDR2、及び
配列番号5又は15に示すアミノ酸配列からなる重鎖CDR3
を含む重鎖可変領域、及び/又は
配列番号8又は18に示すアミノ酸配列からなる軽鎖CDR1、
配列番号9又は19に示すアミノ酸配列からなる軽鎖CDR2、及び
配列番号10又は20に示すアミノ酸配列からなる軽鎖CDR3
を含む軽鎖可変領域
を有する抗体が挙げられる。
The above antibody can be an embodiment having a heavy chain variable region and / or a light chain variable region containing a specific amino acid sequence. specifically,
Heavy chain CDR1, consisting of the amino acid sequence shown in SEQ ID NO: 3 or 13.
Heavy chain CDR2 consisting of the amino acid sequence shown in SEQ ID NO: 4 or 14, and heavy chain CDR3 consisting of the amino acid sequence shown in SEQ ID NO: 5 or 15.
Light chain CDR1 consisting of a heavy chain variable region comprising, and / or the amino acid sequence set forth in SEQ ID NO: 8 or 18.
Light chain CDR2 consisting of the amino acid sequence shown in SEQ ID NO: 9 or 19, and light chain CDR3 consisting of the amino acid sequence shown in SEQ ID NO: 10 or 20.
Included are antibodies having a light chain variable region comprising.
 好ましくは、
配列番号3に示すアミノ酸配列からなる重鎖CDR1、
配列番号4に示すアミノ酸配列からなる重鎖CDR2、及び
配列番号5に示すアミノ酸配列からなる重鎖CDR3
を含む重鎖可変領域、又は
配列番号13に示すアミノ酸配列からなる重鎖CDR1、
配列番号14に示すアミノ酸配列からなる重鎖CDR2、及び
配列番号15に示すアミノ酸配列からなる重鎖CDR3
を含む重鎖可変領域及び/又は
配列番号8に示すアミノ酸配列からなる軽鎖CDR1、
配列番号9に示すアミノ酸配列からなる軽鎖CDR2、及び
配列番号10に示すアミノ酸配列からなる軽鎖CDR3
を含む軽鎖可変領域、又は
配列番号18に示すアミノ酸配列からなる軽鎖CDR1、
配列番号19に示すアミノ酸配列からなる軽鎖CDR2、及び
配列番号20に示すアミノ酸配列からなる軽鎖CDR3
を含む軽鎖可変領域
を有する抗体が挙げられる。
Preferably,
Heavy chain CDR1, consisting of the amino acid sequence shown in SEQ ID NO: 3,
Heavy chain CDR2 consisting of the amino acid sequence shown in SEQ ID NO: 4 and heavy chain CDR3 consisting of the amino acid sequence shown in SEQ ID NO: 5.
Heavy chain variable region containing, or heavy chain CDR1 consisting of the amino acid sequence shown in SEQ ID NO: 13.
Heavy chain CDR2 consisting of the amino acid sequence shown in SEQ ID NO: 14 and heavy chain CDR3 consisting of the amino acid sequence shown in SEQ ID NO: 15.
Light chain CDR1, consisting of a heavy chain variable region comprising, and / or the amino acid sequence set forth in SEQ ID NO: 8.
Light chain CDR2 consisting of the amino acid sequence shown in SEQ ID NO: 9 and light chain CDR3 consisting of the amino acid sequence shown in SEQ ID NO: 10.
Light chain variable region comprising, or light chain CDR1 consisting of the amino acid sequence set forth in SEQ ID NO: 18.
Light chain CDR2 consisting of the amino acid sequence shown in SEQ ID NO: 19 and light chain CDR3 consisting of the amino acid sequence shown in SEQ ID NO: 20.
Included are antibodies having a light chain variable region comprising.
 更に好ましくは、
配列番号3に示すアミノ酸配列からなる重鎖CDR1、
配列番号4に示すアミノ酸配列からなる重鎖CDR2、及び
配列番号5に示すアミノ酸配列からなる重鎖CDR3
を含む重鎖可変領域、及び
配列番号8に示すアミノ酸配列からなる軽鎖CDR1、
配列番号9に示すアミノ酸配列からなる軽鎖CDR2、及び
配列番号10に示すアミノ酸配列からなる軽鎖CDR3
を含む軽鎖可変領域;又は
配列番号13に示すアミノ酸配列からなる重鎖CDR1、
配列番号14に示すアミノ酸配列からなる重鎖CDR2、及び
配列番号15に示すアミノ酸配列からなる重鎖CDR3
を含む重鎖可変領域、及び
配列番号18に示すアミノ酸配列からなる軽鎖CDR1、
配列番号19に示すアミノ酸配列からなる軽鎖CDR2、及び
配列番号20に示すアミノ酸配列からなる軽鎖CDR3
を含む軽鎖可変領域
を有する抗体が挙げられる。
More preferably
Heavy chain CDR1, consisting of the amino acid sequence shown in SEQ ID NO: 3,
Heavy chain CDR2 consisting of the amino acid sequence shown in SEQ ID NO: 4 and heavy chain CDR3 consisting of the amino acid sequence shown in SEQ ID NO: 5.
Light chain CDR1 consisting of a heavy chain variable region containing the above and the amino acid sequence shown in SEQ ID NO: 8.
Light chain CDR2 consisting of the amino acid sequence shown in SEQ ID NO: 9 and light chain CDR3 consisting of the amino acid sequence shown in SEQ ID NO: 10.
Light chain variable region comprising; or heavy chain CDR1, consisting of the amino acid sequence set forth in SEQ ID NO: 13.
Heavy chain CDR2 consisting of the amino acid sequence shown in SEQ ID NO: 14 and heavy chain CDR3 consisting of the amino acid sequence shown in SEQ ID NO: 15.
Light chain CDR1, consisting of a heavy chain variable region comprising, and an amino acid sequence set forth in SEQ ID NO: 18.
Light chain CDR2 consisting of the amino acid sequence shown in SEQ ID NO: 19 and light chain CDR3 consisting of the amino acid sequence shown in SEQ ID NO: 20.
Included are antibodies having a light chain variable region comprising.
 上記の重鎖可変領域及び/又は軽鎖可変領域を有する抗体は、更にフレームワーク領域(FR)又はその準領域を含んでいてもよい。FRを構成するアミノ酸配列は、公知の方法によって適宜決定することができる。具体的には、The National Center for Biotechnology Information(NCBI)のウェブサイト(http://www.ncbi.nlm.nih.gov/)に記載の情報を参照すればよい。 The antibody having the heavy chain variable region and / or the light chain variable region described above may further contain a framework region (FR) or a quasi-region thereof. The amino acid sequence constituting FR can be appropriately determined by a known method. Specifically, the information described on the website (http://www.ncbi.nlm.nih.gov/) of The National Center for Biotechnology Information (NCBI) may be referred to.
 ヒト由来の機能的生殖細胞から得られるFRとして、例えばKOL、NEWM、REI、EU、TUR、TEI、LAY、POM等が挙げられる。これらのヒト型のFRの例は、Kabat,et.al.”Sequences of Proteins of Immunological Interest”:US Department of Health AND human Services、NIH(1991) USA、又はWu TT,Kabat EA.“An analysis of the sequences of the variable regions of Bence Jones proteins and myeloma light chains and their implications for antibody complementarity.”J Exp Med.132:211-50(1970)等を参照すればよい。 Examples of FR obtained from human-derived functional germ cells include KOL, NEWM, REI, EU, TUR, TEI, LAY, POM and the like. Examples of these human-type FRs are described in Kabat, et. al. "Sequences of Products of Immunological Interest": US Department of Health AND human Services, NIH (1991) USA, or Wu TT, Kabat EA. "An analysis of the equations of the variable regions of Bence Jones protein and myeloma lights" chains and ther impedanceMiplications for 132: 211-50 (1970) and the like may be referred to.
 このようなFRを含む重鎖可変領域及び/又は軽鎖可変領域を有する抗体として、例えば
配列番号2又は12に示すアミノ酸配列を含む重鎖可変領域、及び/又は
配列番号7又は17に示すアミノ酸配列を含む軽鎖可変領域
を有する抗体が挙げられる。
As an antibody having such a heavy chain variable region and / or a light chain variable region containing FR, for example, a heavy chain variable region containing the amino acid sequence shown in SEQ ID NO: 2 or 12, and / or an amino acid shown in SEQ ID NO: 7 or 17. Examples thereof include antibodies having a light chain variable region containing a sequence.
 より好ましくは、
配列番号2に示すアミノ酸配列を含む重鎖可変領域、及び
配列番号7に示すアミノ酸配列を含む軽鎖可変領域;又は
配列番号12に示すアミノ酸配列を含む重鎖可変領域、及び
配列番号17に示すアミノ酸配列を含む軽鎖可変領域
を有する抗体が挙げられる。
More preferably
A heavy chain variable region containing the amino acid sequence shown in SEQ ID NO: 2 and a light chain variable region containing the amino acid sequence shown in SEQ ID NO: 7; or a heavy chain variable region containing the amino acid sequence shown in SEQ ID NO: 12 and shown in SEQ ID NO: 17. Examples thereof include antibodies having a light chain variable region containing an amino acid sequence.
 上記の重鎖可変領域及び/又は軽鎖可変領域を有する抗体は、更に定常領域を有していてもよい。また、これらの抗体は、ヒト化されていても、キメラ化されていてもよい。 The antibody having the heavy chain variable region and / or the light chain variable region described above may further have a constant region. In addition, these antibodies may be humanized or chimeric.
 ヒト化抗体とは、定常領域及び可変領域のFRがヒト由来のアミノ酸配列であり、それ以外の部分がヒト以外の生物種に由来するアミノ酸配列である抗体を意味する。また、キメラ化とは、定常領域がヒト由来のアミノ酸配列であり、可変領域がヒト以外の生物種に由来するアミノ酸配列である。 The humanized antibody means an antibody in which the FRs in the constant region and the variable region are amino acid sequences derived from humans, and the other portions are amino acid sequences derived from organisms other than humans. Further, the chimerization is an amino acid sequence in which the constant region is derived from a human and the variable region is an amino acid sequence derived from a species other than human.
 このようなヒト以外の生物種とは、特に限定はされないが、例えばマウス、ラット、ウサギ、ダチョウ、サル、チンパンジー、ウマ、ロバ、ハムスター、モルモット等が挙げられる。 Such non-human species are not particularly limited, and examples thereof include mice, rats, rabbits, ostriches, monkeys, chimpanzees, horses, donkeys, hamsters, and guinea pigs.
 このような定常領域は、例えば重鎖定常領域であれば、N末端から順にETTを有するアミノ酸配列、より好ましくはN末端から順にETTAを有するアミノ酸配列を含む定常領域が挙げられる。また、軽鎖定常領域であれば、N末端から順にRAを有するアミノ酸配列、より好ましくはN末端から順にRAAを有するアミノ酸配列を含む定常領域が挙げられる。 Examples of such a constant region include, in the case of a heavy chain constant region, an amino acid sequence having ETT in order from the N-terminal, and more preferably a constant region containing an amino acid sequence having ETTA in order from the N-terminal. Further, in the case of the light chain constant region, an amino acid sequence having RA in order from the N-terminal, more preferably a constant region containing an amino acid sequence having RAA in order from the N-terminal can be mentioned.
 上記の定常領域を有する抗体として、例えば、
配列番号1又は11に示すアミノ酸配列を含む重鎖及び/又は
配列番号6又は16に示すアミノ酸配列を含む軽鎖
を有する抗体が挙げられる。
As an antibody having the above constant region, for example,
Examples thereof include an antibody having a heavy chain containing the amino acid sequence shown in SEQ ID NO: 1 or 11 and / or a light chain containing the amino acid sequence shown in SEQ ID NO: 6 or 16.
 好ましくは、
配列番号1に示すアミノ酸配列を含む重鎖及び
配列番号6に示すアミノ酸配列を含む軽鎖又は
配列番号11に示すアミノ酸配列を含む重鎖及び
配列番号16に示すアミノ酸配列を含む軽鎖
を有する抗体が挙げられる。
Preferably,
An antibody having a heavy chain containing the amino acid sequence shown in SEQ ID NO: 1 and a light chain containing the amino acid sequence shown in SEQ ID NO: 6 or a heavy chain containing the amino acid sequence shown in SEQ ID NO: 11 and a light chain containing the amino acid sequence shown in SEQ ID NO: 16. Can be mentioned.
 なお、上記のアミノ酸配列には、上記の抗体の機能、効果等を減衰させない範囲に限り、適宜変異が施されていてもよい。具体的な変異導入の数は、共に特に限定はされないが、通常は変異前のアミノ酸配列と85%以上、好ましくは90%以上、より好ましくは95%以上、最も好ましくは99%以上の同一性を有する変異体となるような変異導入数とすればよい。 The above amino acid sequence may be appropriately mutated as long as the function, effect, etc. of the above antibody are not attenuated. The specific number of mutations introduced is not particularly limited, but usually, the identity with the amino acid sequence before the mutation is 85% or more, preferably 90% or more, more preferably 95% or more, and most preferably 99% or more. The number of mutations introduced may be set so as to be a mutant having.
 変異の導入箇所は、特に限定はされないが、本発明の抗体の機能、効果等を減衰させないことに鑑みて、例えば、上述したFR領域、定常領域等に変異を導入することが好ましい。 The location where the mutation is introduced is not particularly limited, but it is preferable to introduce the mutation into, for example, the above-mentioned FR region, constant region, etc., in view of not attenuating the function, effect, etc. of the antibody of the present invention.
 本明細書にて使用する用語、『同一性』とは、2以上の対比可能なアミノ酸配列又は塩基配列の、お互いに対する同一のアミノ酸配列又は塩基配列の程度をいう。従って、ある2つのアミノ酸配列又は塩基配列の同一性が高いほど、それらの配列の同一性又は類似性は高い。アミノ酸配列又は塩基配列の同一性のレベルは、通常は、配列分析用ツールであるFASTAを用い、デフォルトパラメーターを用いて決定される。 The term "identity" as used herein refers to the degree to which two or more comparable amino acid sequences or base sequences have the same amino acid sequence or base sequence with respect to each other. Therefore, the higher the identity of two amino acid sequences or base sequences, the higher the identity or similarity of those sequences. The level of amino acid sequence or base sequence identity is usually determined using the sequence analysis tool FASTA and using default parameters.
 若しくは、Karlin及びAltschulによるアルゴリズムBLAST(例えば、Karlin S,Altschul SF.Proc.Natl Acad Sci USA.87:2264-2268(1990)、Karlin S,Altschul SF.Natl Acad Sci USA.90:5873-7(1993)等)を用いて決定できる。このようなBLASTのアルゴリズムに基づいたBLASTN又はBLASTXと呼ばれるプログラムが開発されている(例えば、Altschul SF,GishW,Miller W,Myers EW,Lipman DJ.J Mol Biol.215:403-10(1990)等)。これらの解析方法の具体的な手法は公知であり、NCBIのウェブサイトが提供しているIgBLAST(http://www.ncbi.nlm.nih.gov/igblast/)を参照すればよい。 Alternatively, the algorithm BLAST by Karlin and Altschul (eg, Karlin S, Altschul SF.Proc.Natur Acad Sci USA.87: 2264-2268 (1990), Karlin S, Altschul SF.Natur Acad Sci USA.90). It can be determined by using 1993) etc.). A program called BLASTN or BLASTX based on such a BLAST algorithm has been developed (for example, Altschul SF, GishW, Miller W, Myers EW, Lipman DJ.J Mol Biol. 215: 403-10 (1990), etc. ). Specific methods of these analysis methods are known, and IgBLAST (http://www.ncbi.nlm.nih.gov/igblast/) provided by the NCBI website may be referred to.
 上記の変異導入とは、置換、欠失、挿入等である。具体的な変異導入については、公知の方法を採用することができ、特に限定はされないが、例えば置換であれば保存的な置換技術を採用すればよい。 The above mutation introduction is substitution, deletion, insertion, etc. A known method can be adopted for specific mutagenesis, and the present invention is not particularly limited, but for example, in the case of substitution, a conservative substitution technique may be adopted.
 本明細書にて使用する用語『保存的な置換技術』とは、アミノ酸残基が類似の側鎖を有するアミノ酸残基に置換される技術を意味する。 The term "conservative substitution technique" as used herein means a technique in which an amino acid residue is replaced with an amino acid residue having a similar side chain.
 例えば、リジン、アルギニン、ヒスチジンといった塩基性側鎖を有するアミノ酸残基同士で置換されることが、保存的な置換技術にあたる。その他、アスパラギン酸、グルタミン酸といった酸性側鎖を有するアミノ酸残基;グリシン、アスパラギン、グルタミン、セリン、スレオニン、チロシン、システインといった非帯電性極性側鎖を有するアミノ酸残基;アラニン、バリン、ロイシン、イソロイシン、プロリン、フェニルアラニン、メチオニン、トリプトファンといった非極性側鎖を有するアミノ酸残基;スレオニン、バリン、イソロイシンといったβ-分枝側鎖を有するアミノ酸残基、チロシン、フェニルアラニン、トリプトファン、ヒスチジンといった芳香族側鎖を有するアミノ酸残基同士での置換も同様に、保存的な置換技術にあたる。 For example, substitution between amino acid residues having basic side chains such as lysine, arginine, and histidine is a conservative substitution technique. Other amino acid residues having acidic side chains such as aspartic acid and glutamic acid; amino acid residues having non-charged polar side chains such as glycine, asparagine, glutamine, serine, threonine, tyrosine and cysteine; alanine, valine, leucine, isoleucine, Amino acid residues with non-polar side chains such as proline, phenylalanine, methionine and tryptophan; amino acid residues with β-branched side chains such as threonine, valine and isoleucine, and aromatic side chains such as tyrosine, phenylalanine, tryptophan and histidine. Substitution between amino acid residues is also a conservative substitution technique.
 上記の抗体の製造方法は、特開2015-64513号公報等に記載されている、公知の方法を用いて作成すればよい。 The above-mentioned antibody production method may be produced by using a known method described in Japanese Patent Application Laid-Open No. 2015-64513.
(セレノプロテインPの阻害作用を有する化合物)
 上記以外のセレノプロテインPを阻害する化合物としては、スルフォラファン及びその誘導体、ジフェニルヘプタノイド骨格を有するポリフェノール誘導体であるクルクミン及びその誘導体、サンギナリン、ブファジエノリド、メチル 10-ヒドロキシ-2,4a,6a,9,12b,14a-ヘキサメチル-11-オキソ-1,2,3,4,4a,5,6,6a,11,12b,13,14,14a,14b-テトラデカヒドロピセン-2-カルボキシレート等の化合物又はその塩が挙げられる。その他、3-オキシフラバンのポリオキシ誘導体であるカテキン化合物(例えばエピガロカテキンガレート及びその誘導体等)、ベンゾキノン及びその誘導体、過酸化水素等も挙げられる。この中でも特に、スルフォラファン及びその誘導体、クルクミン及びその誘導体が好ましい。
(Compound having an inhibitory effect on selenoprotein P)
Compounds that inhibit selenoprotein P other than the above include sulforaphane and its derivatives, curcumin and its derivatives, which are polyphenol derivatives having a diphenylheptanoid skeleton, sanguinarine, bufazienolide, and methyl 10-hydroxy-2,4a, 6a, 9, Compounds such as 12b, 14a-hexamethyl-11-oxo-1,2,3,4,4a, 5,6,6a, 11,12b, 13,14,14a, 14b-tetradecahydropicene-2-carboxylate, etc. Or the salt thereof. In addition, catechin compounds which are polyoxy derivatives of 3-oxyflavan (for example, epigallocatechin gallate and its derivatives, etc.), benzoquinone and its derivatives, hydrogen peroxide and the like can also be mentioned. Of these, sulforaphane and its derivatives, curcumin and its derivatives are particularly preferable.
 スルフォラファン及びその誘導体としては例えば、スルフォラファン、スルフォラファングルコシノレート、スルフォラファンニトリル等が挙げられる。クルクミン及びその誘導体としては例えば、クルクミン、デメトキシクルクミン、ビスデメトキシクルクミン等が挙げられる。カテキン化合物としては例えば、カテキン、エピカテキン、ガロカテキン、エピガロカテキン、カテキンガレート、エピカテキンガレート、ガロカテキンガレート、エピガロカテキンガレート等が挙げられる。ベンゾキノン及びその誘導体としては、1,4-ベンゾキノン、1,2-ベンゾキノン等が挙げられる。 Examples of sulforaphane and its derivatives include sulforaphane, sulforaphane glucosinolate, sulforaphane nitrile and the like. Examples of curcumin and its derivatives include curcumin, demethoxycurcumin, bisdemethoxycurcumin and the like. Examples of the catechin compound include catechin, epicatechin, gallocatechin, epigalocatechin, catechin gallate, epicatechin gallate, gallocatechin gallate, epigallocatechin gallate and the like. Examples of benzoquinone and its derivatives include 1,4-benzoquinone, 1,2-benzoquinone and the like.
(セレノプロテインPの発現抑制効果を有する遺伝子:CCDC遺伝子)
 Non-coding RNAであるCCDC遺伝子は、セレノプロテインPの発現抑制効果を有する。CCDC遺伝子の領域は、これが過剰発現することにより、セレノプロテインPの発現が抑制される効果を奏する領域であればよく、それを限度として特に限定されないものの、例えば、NCBIのACCESSION No. NM_001134848; VERSION No. NM_001134848.1に記載される塩基配列(配列番号26)を有する遺伝子、特に当該塩基配列からなる遺伝子を挙げることができる。また、セレノプロテインPの発現を抑制する効果を奏する範囲に限って、上記する配列番号26に示す塩基配列の変異体も、上記するCCDC遺伝子に包含される。このような変異体とは特に限定されない。例えば、配列番号26に示す塩基配列に対して、1個又は複数の塩基が、挿入、付加又は欠失等の変異が施された変異体を挙げることができる。このような変異の程度は、上記効果を奏する範囲であれば、特に限定されない。例えば、変異前後の塩基配列の相同性を、通常は90%程度以上とすることができ、好ましくは95%程度以上、より好ましくは98%程度以上である。
(Gene with selenoprotein P expression inhibitory effect: CCDC gene)
The CCDC gene, which is a non-coding RNA, has an effect of suppressing the expression of selenoprotein P. The region of the CCDC gene may be a region that has an effect of suppressing the expression of selenoprotein P by overexpressing it, and is not particularly limited, but is not particularly limited, for example, NCBI ACCESSION No. NM_001134848; VERSION. Examples thereof include a gene having the base sequence (SEQ ID NO: 26) described in No. NM_001134848.1, particularly a gene consisting of the base sequence. Further, the mutant of the base sequence shown in SEQ ID NO: 26 is also included in the CCDC gene, as long as it has the effect of suppressing the expression of selenoprotein P. Such mutants are not particularly limited. For example, a variant in which one or more bases are mutated such as insertion, addition or deletion with respect to the base sequence shown in SEQ ID NO: 26 can be mentioned. The degree of such mutation is not particularly limited as long as it is within the range in which the above effects are exhibited. For example, the homology of the base sequence before and after the mutation can be usually about 90% or more, preferably about 95% or more, and more preferably about 98% or more.
 本明細書においては、生体内でCCDC遺伝子を生成し得るようにデザインされた核酸もまた、セレノプロテインPを阻害する成分に包含される。そのような核酸としては、上記CCDC遺伝子を発現するように構築された発現ベクター等が挙げられる。 As used herein, nucleic acids designed to generate the CCDC gene in vivo are also included in the components that inhibit selenoprotein P. Examples of such nucleic acids include expression vectors constructed to express the CCDC gene.
 2.GBMの予防又は治療薬
 別の実施形態において、本発明は、セレノプロテインPの阻害作用を有する成分を含有する、GBMの予防又は治療薬を提供する。本実施形態における予防又は治療薬の対象疾患はGBMであり、中でも、セレノプロテインPの発現量が高い状態にあるGBMが好ましい。本実施形態において、GBM細胞のテモゾロミド感受性の増加及び/又はGBM細胞の増殖抑制効果が特に発揮されるため、治療対象となる患者としては、セレノプロテインPの発現量が高い状態にあるGBM患者が好ましい。セレノプロテインPの阻害作用を有する成分としては、上記に列挙したものが好ましく使用される。また、本発明において、セレノプロテインPの阻害作用を有する成分を1種単独で使用しても良いし、2種以上を混合して使用しても良い。さらに、本発明のGBMの予防又は治療薬は、既存のGBM治療薬(例えば、テモゾロミド、ベバシズマブ、ギリアデル、ニドラン等、好ましくはテモゾロミド等)をさらに含んでいてもよい。
2. 2. Prophylactic or Therapeutic Agents for GBM In another embodiment, the present invention provides a prophylactic or therapeutic agent for GBM containing a component having an inhibitory effect on selenoprotein P. The target disease of the prophylactic or therapeutic agent in the present embodiment is GBM, and among them, GBM in which the expression level of selenoprotein P is high is preferable. In the present embodiment, since the increase in temozolomide sensitivity of GBM cells and / or the effect of suppressing the growth of GBM cells are particularly exerted, the patients to be treated include GBM patients having a high expression level of selenoprotein P. preferable. As the component having an inhibitory action on selenoprotein P, those listed above are preferably used. Further, in the present invention, one type of component having an inhibitory effect on selenoprotein P may be used alone, or two or more types may be mixed and used. Furthermore, the GBM prophylactic or therapeutic agent of the present invention may further contain an existing GBM therapeutic agent (eg, temozolomide, bevacizumab, glioblastoma, nidoran, etc., preferably temozolomide, etc.).
 本発明に係るGBMの予防又は治療薬における、上記のセレノプロテインPの阻害作用を有する成分の含有量は、GBMの予防又は治療薬100重量部に対して、通常は0.001~100重量程度とすればよい。すなわち、上記のセレノプロテインPの阻害作用を有する成分そのものを、本発明に係るGBMの予防又は治療薬としてもよい。 The content of the above-mentioned component having an inhibitory effect on selenoprotein P in the GBM prophylactic or therapeutic agent according to the present invention is usually about 0.001 to 100 weight by weight with respect to 100 parts by weight of the GBM prophylactic or therapeutic agent. And it is sufficient. That is, the above-mentioned component itself having an inhibitory effect on selenoprotein P may be used as a prophylactic or therapeutic agent for GBM according to the present invention.
 本発明に係るGBMの予防又は治療薬には、薬学分野の組成物を製造する際に使用される薬学的に許容可能な公知の担体又は添加物を配合してもよい。この様な担体或いは添加物の具体例として、任意の担体、希釈剤、賦形剤、懸濁剤、潤滑剤、アジュバント、媒体、送達システム、乳化剤、錠剤分解物質、吸収剤、保存剤、界面活性剤、着色剤、香料、又は甘味料等が挙げられる。 The GBM prophylactic or therapeutic agent according to the present invention may contain a known pharmaceutically acceptable carrier or additive used in producing a composition in the pharmaceutical field. Specific examples of such carriers or additives include arbitrary carriers, diluents, excipients, suspending agents, lubricants, adjuvants, media, delivery systems, emulsifiers, tablet degradants, absorbents, preservatives, surfactants. Examples thereof include activators, colorants, fragrances, sweeteners and the like.
 本発明に係るGBMの予防又は治療薬は上記の担体又は配合物を適宜組み合わせてあらゆる剤形とすることができる。具体的には、具体的な剤形としては、脳室内注射剤、静脈注射剤、輸液剤、埋め込み注射剤、持続性注射剤等の注射剤;素錠、糖衣錠、フィルムコート錠、腸溶錠、口腔内崩壊錠、チュアブル錠、発泡錠、分散錠、溶解錠等の錠剤;硬カプセル錠、軟カプセル錠等のカプセル剤;発泡顆粒剤、徐放性顆粒剤、腸溶性顆粒剤等を含む顆粒剤;散剤;エリキシル剤、懸濁剤、乳剤、リモナーデ剤等の経口液剤;シロップ用剤等のシロップ剤;経口ゼリー剤等が挙げられる。 The GBM prophylactic or therapeutic agent according to the present invention can be formed into any dosage form by appropriately combining the above carriers or formulations. Specifically, specific dosage forms include intraventricular injections, intravenous injections, infusions, implantable injections, continuous injections and other injections; uncoated tablets, sugar-coated tablets, film-coated tablets, enteric coated tablets. , Orally disintegrating tablets, chewable tablets, effervescent tablets, dispersion tablets, dissolving tablets, etc .; capsules such as hard capsule tablets, soft capsule tablets, etc .; including effervescent granules, sustained-release granules, enteric-soluble granules, etc. Examples thereof include granules; powders; oral solutions such as elixirs, suspending agents, emulsions and limonade agents; syrup agents such as syrup agents; oral jelly agents and the like.
 本発明に係るセレノプロテインPの細胞内取り込み阻害剤の使用対象動物は、生体であればヒトに限らずあらゆる動物個体を対象とできる。例えば、マウス、ラット、ウサギ、ハムスター、モルモット、サル、チンパンジー等の実験動物;イヌ、ネコ等の愛玩動物;その他保護を必要とするあらゆる動物種等が挙げられる。 The target animal for using the intracellular uptake inhibitor of selenoprotein P according to the present invention is not limited to humans as long as it is a living body, and any individual animal can be targeted. For example, experimental animals such as mice, rats, rabbits, hamsters, guinea pigs, monkeys and chimpanzees; pet animals such as dogs and cats; and all other animal species requiring protection.
 本発明に係るGBMの予防又は治療薬の投与方法は、特に限定されず、上記の投与対象、剤形等を適宜勘案して公知の投与方法を採用すればよい。具体的には、経口、筋肉内、静脈内、動脈内、くも膜下腔内、脳室内等へ投与する方法が挙げられる。 The method for administering the GBM prophylactic or therapeutic agent according to the present invention is not particularly limited, and a known administration method may be adopted in consideration of the above-mentioned administration target, dosage form and the like. Specific examples thereof include oral administration, intramuscular injection, intravenous administration, intraarterial administration, intraarachnoid space, intraventricular administration, and the like.
 本発明に係るGBMの予防又は治療薬の投与量は、投与対象動物がヒトであれば、通常は1~10mg/kg程度とすればよく、投与対象動物がマウスであれば、通常は1~10mg/kg程度とすればよい。その他の投与対象動物であれば、上記のヒト及びマウスにおける投与量を基に適宜設定することができる。 If the animal to be administered is a human, the dose of the preventive or therapeutic agent for GBM according to the present invention may be usually about 1 to 10 mg / kg, and if the animal to be administered is a mouse, the dose is usually 1 to 1 to 10. It may be about 10 mg / kg. For other animals to be administered, it can be appropriately set based on the above-mentioned doses in humans and mice.
 本発明に係るGBMの予防又は治療薬の使用量は、生体に対して使用する場合、上記のセレノプロテインPの阻害作用を有する成分の量に換算して、通常であれば0.5~50mg/kg(個体体重)程度の量で使用すればよい。 When used for a living body, the amount of the GBM prophylactic or therapeutic agent according to the present invention is usually 0.5 to 50 mg in terms of the amount of the above-mentioned component having an inhibitory effect on selenoprotein P. It may be used in an amount of about / kg (individual body weight).
 本発明に係るGBMの予防又は治療薬の投与は、上記の量を一日に一度に投与してもよく、数回に分けて投与してもよい。また、上記疾患に対する治療効果を有する範囲において、投与間隔は、毎日、隔日、毎週、隔週、2~3週毎、毎月、隔月又は2~3ヶ月毎でもよい。さらに、異なるセレノプロテインPの阻害作用を有する成分を含有するGBMの予防又は治療薬を2種以上併用しても良く、本発明に係るGBMの予防又は治療薬を既存のGBMの予防又は治療薬であるテモゾロミド等と併用することもできる。 The GBM prophylactic or therapeutic agent according to the present invention may be administered in the above amount once a day or in several divided doses. In addition, the administration interval may be daily, every other day, every other week, every two to three weeks, every month, every other month, or every two to three months as long as it has a therapeutic effect on the above-mentioned diseases. Further, two or more kinds of GBM prophylactic or therapeutic agents containing components having different selenoprotein P inhibitory effects may be used in combination, and the GBM prophylactic or therapeutic agent according to the present invention may be used as an existing GBM prophylactic or therapeutic agent. It can also be used in combination with temozolomide or the like.
 3.予後判定方法
 3-1 グリオブラストーマ患者の脳腫瘍組織を用いた予後判定方法
 別の実施形態において、本発明は、セレノプロテインP又はApoER2の発現量又は機能の程度を、グリオブラストーマの予後を判定するための指標とする方法を提供する。本実施形態において、GBMの予後を判定するための方法であって、グリオブラストーマ患者の脳腫瘍組織から採取したGBM細胞のセレノプロテインP又はApoER2の発現量又は機能の程度を測定する工程を含み、セレノプロテインP又はApoER2の発現量又は機能の程度に基づいてGBMの疾患活動性を判定し、疾患活動性に基づいてGBMの予後が判定される。
3. 3. Prognosis determination method 3-1 Prognosis determination method using brain tumor tissue of glioblastoma patient In another embodiment, the present invention determines the degree of expression or function of selenoprotein P or ApoER2, and determines the prognosis of glioblastoma. Provide a method as an index for doing so. The present embodiment is a method for determining the prognosis of GBM, which comprises a step of measuring the expression level or the degree of function of serenoprotein P or ApoER2 in GBM cells collected from the brain tumor tissue of a glioblastoma patient. The disease activity of GBM is determined based on the expression level or the degree of function of glioblastoma P or ApoER2, and the prognosis of GBM is determined based on the disease activity.
 本実施形態において、グリオブラストーマ患者の脳腫瘍組織から採取したGBM細胞のセレノプロテインP又はApoER2の発現量又は機能の程度を測定する工程は、以下の通りである。
 本発明の典型的な実施形態において、まずGBM細胞を培養する工程を行う。GBM細胞としては、グリオブラストーマ患者の脳腫瘍組織から採取した腫瘍細胞が挙げられ、本発明の属する技術分野において知られているもの等を用いることができる。GBM細胞は、初代培養細胞であっても、好適な培地で継代培養した細胞であってもよい。継代培養した細胞を用いる場合、継代培養に用いる培地としては、GBM細胞の培養に使用され得る培地を適宜使用することができ、例えば、RPMI-1640培地、D’MEM培地、E’MEM培地等が挙げられる。上記培地には、FBS、ペニシリン、ストレプトマイシン、亜セレン酸ナトリウム等を添加しても良い。FBSにはセレンの含有量が少ないため、培地にFBSを添加する際には、亜セレン酸ナトリウムを添加することが好ましい。亜セレン酸ナトリウムの添加量としては、5~2000nMが好ましく、50~200nMがより好ましい。また、上記培地には、任意選択で、pH調整剤、炭酸水素ナトリウム等を添加してもよい。
 本発明においては、上記GBM細胞を被験物質の存在で培養する際の培地としては、上記継代培養を行う場合に例示したものを使用することができる。培地中の被験物質の濃度としては特に限定されないが、例えば、0.1~100μg/mL、好ましくは1~20μg/mLの範囲で設定できる。培養温度としては、36~38℃の範囲が好ましい。培地のpHは7.3~7.6であることが好ましい。培養時間としては、12~72時間の範囲で設定でき、24~36時間が好ましい。
In the present embodiment, the steps for measuring the expression level or the degree of function of selenoprotein P or ApoER2 in GBM cells collected from the brain tumor tissue of a glioblastoma patient are as follows.
In a typical embodiment of the present invention, first, a step of culturing GBM cells is performed. Examples of the GBM cell include tumor cells collected from the brain tumor tissue of a glioblastoma patient, and those known in the technical field to which the present invention belongs can be used. The GBM cell may be a primary cultured cell or a cell subcultured in a suitable medium. When subcultured cells are used, as the medium used for subculture, a medium that can be used for culturing GBM cells can be appropriately used, and for example, RPMI-1640 medium, D'MEM medium, E'MEM. Examples include a medium. FBS, penicillin, streptomycin, sodium selenite and the like may be added to the above medium. Since the content of selenium is low in FBS, it is preferable to add sodium selenite when adding FBS to the medium. The amount of sodium selenite added is preferably 5 to 2000 nM, more preferably 50 to 200 nM. Further, a pH adjuster, sodium hydrogencarbonate, or the like may be added to the medium as an option.
In the present invention, as the medium for culturing the GBM cells in the presence of the test substance, the medium exemplified for the subculture can be used. The concentration of the test substance in the medium is not particularly limited, but can be set, for example, in the range of 0.1 to 100 μg / mL, preferably 1 to 20 μg / mL. The culture temperature is preferably in the range of 36 to 38 ° C. The pH of the medium is preferably 7.3 to 7.6. The culture time can be set in the range of 12 to 72 hours, preferably 24 to 36 hours.
 本実施形態において、次に、培養したGBM細胞のセレノプロテインP又はApoER2の発現量又は機能の程度を比較する。典型的な本発明の実施形態においては、セレノプロテインPは配列番号21に示されるアミノ酸配列からなるものであり、また、ApoER2は配列番号39に示されるアミノ酸配列からなるものである。 In the present embodiment, next, the expression level or the degree of function of selenoprotein P or ApoER2 in the cultured GBM cells is compared. In a typical embodiment of the invention, selenoprotein P consists of the amino acid sequence set forth in SEQ ID NO: 21 and ApoER2 consists of the amino acid sequence set forth in SEQ ID NO: 39.
 GBM細胞におけるセレノプロテインPの発現量を測定する工程について、以下に説明する。セレノプロテインPの発現量の測定は、セレノプロテインPのmRNAを定量すること、又はセレノプロテインPのタンパク質量の定量により行う。 The step of measuring the expression level of selenoprotein P in GBM cells will be described below. The expression level of selenoprotein P is measured by quantifying the mRNA of selenoprotein P or by quantifying the protein amount of selenoprotein P.
 セレノプロテインPのmRNAの定量は、前記培養条件において培養した細胞から単離したRNA又はそれから転写された相補的なポリヌクレオチドを用いて、RT-PCR法、ノーザンブロット法等の公知の方法で行うことができる。セレノプロテインPのmRNAの定量には、内部標準対象遺伝子を用いることができ、内部標準対象遺伝子としてはGAPDH mRNA、Actin mRNA等が挙げられる。 The quantification of selenoprotein P mRNA is carried out by a known method such as RT-PCR method or Northern blotting method using RNA isolated from cells cultured under the above culture conditions or complementary polynucleotide transcribed from the RNA. be able to. An internal standard target gene can be used for quantification of selenoprotein P mRNA, and examples of the internal standard target gene include GAPDH mRNA and Actin mRNA.
 セレノプロテインPのタンパク質量の定量方法としては、前記培養条件において培養した細胞の溶解液に対して、セレノプロテインPを認識する抗体を用いたウェスタンブロット法等の公知の方法を用いることができる。セレノプロテインPを認識する抗体としては例えば、「セレノプロテインPのアミノ酸配列内に存在するエピトープに特異的に結合する抗体」に記載の抗体を用いることができる。 As a method for quantifying the amount of protein of selenoprotein P, a known method such as Western blotting using an antibody that recognizes selenoprotein P can be used for the lysate of cells cultured under the above culture conditions. As the antibody that recognizes selenoprotein P, for example, the antibody described in "Antibody that specifically binds to an epitope present in the amino acid sequence of selenoprotein P" can be used.
 GBM細胞におけるセレノプロテインPのmRNA又はセレノプロテインPタンパク質の発現量を、あらかじめ設定されたカットオフ値と比較し、予後を判定する。例えば、あらかじめ設定されたカットオフ値以上であれば、予後不良の可能性があると判定することができる。 The prognosis is determined by comparing the expression level of selenoprotein P mRNA or selenoprotein P protein in GBM cells with a preset cutoff value. For example, if it is equal to or higher than a preset cutoff value, it can be determined that there is a possibility of poor prognosis.
 GBM細胞におけるセレノプロテインPの機能の程度を測定する工程について、以下に説明する。セレノプロテインPの機能としては、セレノプロテインPとその結合タンパク質(セレノプロテインP受容体等)との結合;グルタチオンペルオキシダーゼの誘導等が挙げられる。よって、セレノプロテインPの機能の程度を測定する方法として、セレノプロテインPとその結合タンパク質との結合阻害活性;グルタチオンペルオキシダーゼの誘導抑制等に注目することができる。 The process of measuring the degree of function of selenoprotein P in GBM cells will be described below. Functions of selenoprotein P include binding of selenoprotein P to its binding protein (selenoprotein P receptor, etc.); induction of glutathione peroxidase, and the like. Therefore, as a method for measuring the degree of function of selenoprotein P, attention can be paid to the binding inhibitory activity between selenoprotein P and its binding protein; the inhibition of induction of glutathione peroxidase, and the like.
 セレノプロテインPとその結合タンパク質との結合阻害活性に着目したセレノプロテインPの機能の程度の測定方法としては、GBM細胞の膜画分を常法に従って単離し、被験物質の存在下及び非存在下で、標識したセレノプロテインPを接触させ、被験物質の存在下及び非存在下で細胞膜画分に結合したセレノプロテインP量を比較する方法が挙げられる。セレノプロテインPの結合タンパク質としては、例えばApoER2等が挙げられる。 As a method for measuring the degree of function of selenoprotein P focusing on the binding inhibitory activity between selenoprotein P and its binding protein, the membrane fraction of GBM cells is isolated according to a conventional method, and in the presence or absence of a test substance. Then, a method of contacting the labeled selenoprotein P and comparing the amount of selenoprotein P bound to the cell membrane fraction in the presence and absence of the test substance can be mentioned. Examples of the binding protein of selenoprotein P include ApoER2 and the like.
 GBM細胞の細胞膜画分に結合したセレノプロテインP量を、あらかじめ設定されたカットオフ値と比較し、予後を判定する。例えば、あらかじめ設定されたカットオフ値以上であれば、予後不良の可能性があると判定することができる。 The prognosis is determined by comparing the amount of selenoprotein P bound to the cell membrane fraction of GBM cells with a preset cutoff value. For example, if it is equal to or higher than a preset cutoff value, it can be determined that there is a possibility of poor prognosis.
 グルタチオンペルオキシダーゼの誘導抑制に着目したセレノプロテインPの機能の程度の測定方法としては、被験物質の存在下及び非存在下で培養した細胞の溶解液に対して、グルタチオンペルオキシダーゼを認識する抗体を用いたウェスタンブロット法等の公知の方法を用いることができる。グルタチオンペルオキシダーゼを認識する抗体としては例えば、ab22604(アブカム社、Anti-Glutathione peroxidase 1)、ab125066(アブカム社、Anti-Glutathione peroxidase 4)、等の抗体を用いることができる。 As a method for measuring the degree of function of selenoprotein P focusing on the suppression of induction of glutathione peroxidase, an antibody that recognizes glutathione peroxidase was used against the lysate of cells cultured in the presence and absence of the test substance. A known method such as Western blotting can be used. As an antibody that recognizes glutathione peroxidase, for example, an antibody such as ab22604 (Abcam, Anti-Glutathione peroxidase 1), ab125066 (Abcam, Anti-Glutathione peroxidase 4) can be used.
 GBM細胞の溶解液中のグルタチオンペルオキシダーゼ量を、あらかじめ設定されたカットオフ値と比較し、予後を判定する。例えば、あらかじめ設定されたカットオフ値以上であれば、予後不良の可能性があると判定することができる。 The prognosis is determined by comparing the amount of glutathione peroxidase in the lysate of GBM cells with a preset cutoff value. For example, if it is equal to or higher than a preset cutoff value, it can be determined that there is a possibility of poor prognosis.
 GBM細胞におけるApoER2の発現量を測定する工程について、以下に説明する。ApoER2の発現量の測定は、ApoER2のmRNAを定量すること、又はApoER2のタンパク質量の定量により行う。 The step of measuring the expression level of ApoER2 in GBM cells will be described below. The expression level of ApoER2 is measured by quantifying the mRNA of ApoER2 or by quantifying the amount of protein of ApoER2.
 ApoER2のmRNAの定量は、前記培養条件において培養した細胞から単離したRNA又はそれから転写された相補的なポリヌクレオチドを用いて、RT-PCR法、ノーザンブロット法等の公知の方法で行うことができる。ApoER2のmRNAの定量には、内部標準対象遺伝子を用いることができ、内部標準対象遺伝子としてはGAPDH mRNA、Actin mRNA等が挙げられる。 The quantification of ApoER2 mRNA can be performed by a known method such as RT-PCR method or Northern blotting method using RNA isolated from cells cultured under the above culture conditions or complementary polynucleotide transcribed from the RNA. can. An internal standard target gene can be used for quantification of ApoER2 mRNA, and examples of the internal standard target gene include GAPDH mRNA and Actin mRNA.
 ApoER2のタンパク質量の定量方法としては、前記培養条件において培養した細胞の溶解液に対して、ApoER2を認識する抗体を用いたウェスタンブロット法、免疫組織染色等の公知の方法を用いることができる。ApoER2を認識する抗体としては例えば、Anti-ApoER2 抗体 [EPR3326] (ab108208)を用いることができる。 As a method for quantifying the amount of protein of ApoER2, a known method such as Western blotting using an antibody that recognizes ApoER2 or immunohistochemical staining can be used for the lysate of cells cultured under the above culture conditions. As an antibody that recognizes ApoER2, for example, Anti-ApoER2 antibody [EPR3326] (ab108208) can be used.
 GBM細胞におけるApoER2のmRNA又はApoER2の発現量を、あらかじめ設定されたカットオフ値と比較し、予後を判定する。例えば、あらかじめ設定されたカットオフ値以上であれば、予後不良の可能性があると判定することができる。 The prognosis is determined by comparing the expression level of ApoER2 mRNA or ApoER2 in GBM cells with a preset cutoff value. For example, if it is equal to or higher than a preset cutoff value, it can be determined that there is a possibility of poor prognosis.
 GBM細胞におけるApoER2の機能の程度を測定する工程について、以下に説明する。ApoER2の機能としては、ApoER2とその結合タンパク質(セレノプロテインP等)との結合等が挙げられる。よって、ApoER2の機能の程度を測定する方法として、ApoER2とその結合タンパク質との結合阻害活性、ApoER2とその結合タンパク質との分子間相互作用等に注目することができる。 The process of measuring the degree of function of ApoER2 in GBM cells will be described below. Functions of ApoER2 include binding of ApoER2 to its binding protein (selenoprotein P, etc.). Therefore, as a method for measuring the degree of function of ApoER2, attention can be paid to the binding inhibitory activity between ApoER2 and its binding protein, the intramolecular interaction between ApoER2 and its binding protein, and the like.
 ApoER2とその結合タンパク質との結合阻害活性に着目したApoER2の機能の程度の測定方法としては、GBM細胞の膜画分を常法に従って単離し、被験物質の存在下及び非存在下で、標識したセレノプロテインPを接触させ、被験物質の存在下及び非存在下で細胞膜画分に結合したセレノプロテインP量を比較する方法が挙げられる。ApoER2に対する抗体を使って、ApoER2を吸収した膜画分を用いることで、ApoER2の寄与を判定することができる。 As a method for measuring the degree of function of ApoER2 focusing on the binding inhibitory activity between ApoER2 and its binding protein, the membrane fraction of GBM cells was isolated according to a conventional method and labeled in the presence and absence of a test substance. A method of contacting selenoprotein P and comparing the amount of selenoprotein P bound to the cell membrane fraction in the presence and absence of the test substance can be mentioned. By using an antibody against ApoER2 and using a membrane fraction that has absorbed ApoER2, the contribution of ApoER2 can be determined.
 GBM細胞の細胞膜画分に存在するApoER2量を、あらかじめ設定されたカットオフ値と比較し、予後を判定する。例えば、あらかじめ設定されたカットオフ値以上であれば、予後不良の可能性があると判定することができる。 The prognosis is determined by comparing the amount of ApoER2 present in the cell membrane fraction of GBM cells with a preset cutoff value. For example, if it is equal to or higher than a preset cutoff value, it can be determined that there is a possibility of poor prognosis.
 ApoER2とその結合タンパク質との分子間相互作用に着目したApoER2の機能の程度の測定方法としては、例えば、ApoER2の細胞外ドメインのみをGBM細胞に発現させ、ApoER2の細胞外ドメインのリコンビナントを調製し、被験物質の存在下及び非存在下でセレノプロテインPとの分子間相互作用を比較する方法が挙げられる。分子間相互作用を解析する方法としては、表面プラズモン共鳴法等、公知の方法を用いることができる。 As a method for measuring the degree of function of ApoER2 focusing on the intermolecular interaction between ApoER2 and its binding protein, for example, only the extracellular domain of ApoER2 is expressed in GBM cells, and a recombinant of the extracellular domain of ApoER2 is prepared. , Methods of comparing molecular interactions with selenoprotein P in the presence and absence of the test substance. As a method for analyzing the intramolecular interaction, a known method such as a surface plasmon resonance method can be used.
 被験物質の非存在下での分子間相互作用の解析結果を、あらかじめ設定されたカットオフ値と比較し、予後を判定する。例えば、あらかじめ設定されたカットオフ値以上であれば、予後不良の可能性があると判定することができる。 The prognosis is determined by comparing the analysis result of the intramolecular interaction in the absence of the test substance with the preset cutoff value. For example, if it is equal to or higher than a preset cutoff value, it can be determined that there is a possibility of poor prognosis.
 本実施形態におけるカットオフ値の設定方法としては、統計学的に常法とされる計算方法によって設定することができ、例えば、ログランク検定で決定した最小p値法に適用しカットオフ値を設定することができる。また、ROC曲線等を用いて設定することもできる。 The cutoff value can be set by a statistically conventional calculation method as the method for setting the cutoff value in the present embodiment. For example, the cutoff value is applied to the minimum p-value method determined by the logrank test. Can be set. It can also be set using an ROC curve or the like.
 なお、本実施形態におけるGBMの予後判定方法は、統計学的に有意な割合の対象を評価できることを意図している。よって、本発明に係るGBMの予後判定方法には、評価対象のすべて(すなわち100%)について必ず正しい結果が得られない場合も含まれる。統計学的に優位な割合は、様々な周知の統計表化ツール、例えば信頼区間の決定、p値の決定、スチューデントt検定、マン・ホイットニー検定等を用いて決定することができる。  The method for determining the prognosis of GBM in the present embodiment is intended to be able to evaluate a statistically significant proportion of subjects. Therefore, the method for determining the prognosis of GBM according to the present invention includes the case where correct results cannot always be obtained for all of the evaluation targets (that is, 100%). Statistically superior proportions can be determined using various well-known statistical tabulation tools such as confidence interval determination, p-value determination, Student's t-test, Mann-Whitney test, and the like. It was
 3-2 グリオブラストーマ患者の血液を用いた予後判定方法
 別の実施形態において、本発明は、グリオブラストーマ患者の血液中のセレノプロテインP濃度、又は特定の元素濃度を、グリオブラストーマの予後を判定するための指標とする方法を提供する。本実施形態において、GBMの予後を判定するための方法であって、グリオブラストーマ患者の血液中のセレノプロテインP濃度、又は特定の元素濃度を測定する工程を含み、血液中のセレノプロテインP濃度又は特定の元素濃度に基づいてGBMの疾患活動性を判定し、疾患活動性に基づいてGBMの予後が判定される。
3-2 Prognosis determination method using blood of glioblastoma patient In another embodiment, the present invention uses the selenoprotein P concentration or a specific element concentration in the blood of a glioblastoma patient to determine the prognosis of glioblastoma. Provided a method as an index for determining. In the present embodiment, a method for determining the prognosis of GBM, which comprises a step of measuring a selenoprotein P concentration in the blood of a glioblastoma patient or a specific element concentration, and comprises a step of measuring the selenoprotein P concentration in the blood. Alternatively, the disease activity of GBM is determined based on a specific element concentration, and the prognosis of GBM is determined based on the disease activity.
 グリオブラストーマ患者の血液中のセレノプロテインP濃度の測定としては、被験者の血液試料に対して、セレノプロテインPを認識する抗体を用いたELISA法、ウェスタンブロット法、免疫沈工法、ラジオイムノアッセイ法等の公知の方法を用いることにより行うことができる。セレノプロテインPを認識する抗体としては例えば、「セレノプロテインPのアミノ酸配列内に存在するエピトープに特異的に結合する抗体」に記載の抗体を用いることができる。 For the measurement of the selenoprotein P concentration in the blood of a glioblastoma patient, an ELISA method using an antibody that recognizes selenoprotein P, a western blotting method, an immunoprecipitation method, a radioimmunoassay method, etc. It can be carried out by using a known method of. As the antibody that recognizes selenoprotein P, for example, the antibody described in "Antibody that specifically binds to an epitope present in the amino acid sequence of selenoprotein P" can be used.
 血液中のセレノプロテインP濃度を、あらかじめ設定されたカットオフ値と比較し、予後を判定する。例えば、あらかじめ設定されたカットオフ値以上であれば、予後不良の可能性があると判定することができる。 The prognosis is determined by comparing the selenoprotein P concentration in the blood with the preset cutoff value. For example, if it is equal to or higher than a preset cutoff value, it can be determined that there is a possibility of poor prognosis.
 グリオブラストーマ患者の血液中の特定の元素濃度の測定としては、被験者の血液成分に対し、ICP質量分析法、比色法、原子吸光法、蛍光X線分析法、イオンクロマト法、ICP発光分析法等の公知の元素濃度測定法を用いることにより行うことができる。前記特定の元素としては、Se、Zn、Cu、Fe、V、Cr、K、Ca、Mn、Co、As、Mo、Ag、Cd、Na、Mg、Al、Si、P、S、Ni、Sn、Sb、Hg、Pbが挙げられ、好ましくはSe、Zn、Cu、Fe、V、Cr、K、Ca、Mn、Co、As、Mo、Ag、Cdが挙げられる。 As a measurement of a specific element concentration in the blood of a glioblastoma patient, ICP mass spectrometry, colorimetric method, atomic absorption spectrometry, X-ray fluorescence spectrometry, ion chromatograph, ICP emission spectrometry are performed on the blood component of the subject. It can be carried out by using a known element concentration measuring method such as a method. Examples of the specific element include Se, Zn, Cu, Fe, V, Cr, K, Ca, Mn, Co, As, Mo, Ag, Cd, Na, Mg, Al, Si, P, S, Ni and Sn. , Sb, Hg, Pb, preferably Se, Zn, Cu, Fe, V, Cr, K, Ca, Mn, Co, As, Mo, Ag, Cd.
 血液中の前記特定の元素濃度を、あらかじめ設定されたカットオフ値と比較し、予後を判定する。例えば、Se、V、Ca、Mn、Mo、Ag、Cdについてはあらかじめ設定されたカットオフ値以上であれば、予後不良の可能性があると判定することができる。また、Zn、Cu、Fe、Cr、K、Co、Asについてはあらかじめ設定されたカットオフ値以下であれば、予後不良の可能性があると判定することができる。 The prognosis is determined by comparing the concentration of the specific element in blood with a preset cutoff value. For example, for Se, V, Ca, Mn, Mo, Ag, and Cd, if it is at least a preset cutoff value, it can be determined that there is a possibility of poor prognosis. Further, if Zn, Cu, Fe, Cr, K, Co, and As are equal to or less than the preset cutoff values, it can be determined that the prognosis may be poor.
 本実施形態におけるカットオフ値の設定方法としては、統計学的に常法とされる計算方法によって設定することができ、例えば、ログランク検定で決定した最小p値法に適用しカットオフ値を設定することができる。また、ROC曲線等を用いて設定することもできる。 The cutoff value can be set by a statistically conventional calculation method as the method for setting the cutoff value in the present embodiment. For example, the cutoff value is applied to the minimum p-value method determined by the logrank test. Can be set. It can also be set using an ROC curve or the like.
 なお、本実施形態におけるGBMの予後判定方法は、統計学的に有意な割合の対象を評価できることを意図している。よって、本発明に係るGBMの予後判定方法には、評価対象のすべて(すなわち100%)について必ず正しい結果が得られない場合も含まれる。統計学的に優位な割合は、様々な周知の統計表化ツール、例えば信頼区間の決定、p値の決定、スチューデントt検定、マン・ホイットニー検定等を用いて決定することができる。  The method for determining the prognosis of GBM in the present embodiment is intended to be able to evaluate a statistically significant proportion of subjects. Therefore, the method for determining the prognosis of GBM according to the present invention includes the case where correct results cannot always be obtained for all of the evaluation targets (that is, 100%). Statistically superior proportions can be determined using various well-known statistical tabulation tools such as confidence interval determination, p-value determination, Student's t-test, Mann-Whitney test, and the like. It was
 3-3 組織染色を用いた予後判定方法
 また、別の実施形態において、グリオブラストーマ患者の脳腫瘍組織を組織染色することにより、GBM細胞のセレノプロテインPの発現を定性的に観察し、予後判定を行うことも可能である。組織染色としては、例えば、免疫組織染色、免疫ブロット法等が挙げられ、好ましくは免疫組織染色が使用される。脳腫瘍組織において、セレノプロテインPを認識する抗体を用いた際に、セレノプロテインPの発現が観察された場合に、予後不良の可能性があると判定することができる。セレノプロテインPを認識する抗体としては例えば、「セレノプロテインPのアミノ酸配列内に存在するエピトープに特異的に結合する抗体」に記載の抗体を用いることができる。
3-3 Prognosis determination method using tissue staining Further, in another embodiment, by tissue staining the brain tumor tissue of a glioblastoma patient, the expression of selenoprotein P in GBM cells is qualitatively observed to determine the prognosis. It is also possible to do. Examples of the tissue staining include immunohistochemical staining, immunoblotting and the like, and immunohistochemical staining is preferably used. When an antibody that recognizes selenoprotein P is used in brain tumor tissue, if expression of selenoprotein P is observed, it can be determined that the prognosis may be poor. As the antibody that recognizes selenoprotein P, for example, the antibody described in "Antibody that specifically binds to an epitope present in the amino acid sequence of selenoprotein P" can be used.
 グリオブラストーマ患者の脳腫瘍組織を用いた免疫組織染色は、公知の方法に従って実施することができる。免疫組織染色は、評価対象の組織標本を固定して作成した、固定組織標本に対して行われるのが好ましい。固定には、温度及び/又は圧力による物理的な変性(例えば、熱凝固、凍結等)を利用しても良いが、固定剤による化学的処理が好ましい。固定液は、特に限定されないが、例えば、ホルマリン固定液、リン酸緩衝ホルマリン固定液、パラホルムアルデヒド固定液、グルタルアルデヒド固定液、ブアン固定液、ザンボニ固定液、オスミウム液固定液、亜鉛固定液、Hollande固定液、アルコール固定液、アルコール・ホルマリン混合液、FAA固定液等が挙げられる。好ましい固定液としては、ホルマリン固定液、リン酸緩衝ホルマリン固定液、等が挙げられる。これらは1種単独で、又は2種以上を組み合わせて使用することができる。また、適宜緩衝剤、塩、糖類等の添加剤を組み合わせて用いてもよい。 Immunohistochemical staining using brain tumor tissue of glioblastoma patients can be performed according to a known method. Immunohistochemical staining is preferably performed on a fixed tissue specimen prepared by fixing the tissue specimen to be evaluated. Physical modification with temperature and / or pressure (eg, thermal coagulation, freezing, etc.) may be used for fixation, but chemical treatment with a fixative is preferred. The fixative is not particularly limited, but is, for example, formalin fixative, phosphate buffered formalin fixative, paraformaldehyde fixative, glutaaldehyde fixative, buoy fixative, zamboni fixative, osmium fixative, zinc fixative, Hollande. Examples include fixatives, alcohol fixatives, alcohol / formalin fixatives, FAA fixatives and the like. Preferred fixatives include formalin fixatives, phosphate buffered formalin fixatives and the like. These can be used alone or in combination of two or more. Further, additives such as buffers, salts and sugars may be used in combination as appropriate.
 固定の時間は、適宜最適な時間を決定でき、24時間~48時間が好ましい。固定の温度は、15~25℃が好ましい。 The fixed time can be appropriately determined as appropriate, and is preferably 24 hours to 48 hours. The fixed temperature is preferably 15 to 25 ° C.
 固定された組織標本は、さらに切り出し、脱水、包埋、薄切、及び/又は染色等を行った後に、例えば光学顕微鏡等で観察することができる。 The fixed tissue specimen can be observed with an optical microscope, for example, after further cutting, dehydrating, embedding, slicing, and / or staining.
 切り出しは、標本を観察に好適なサイズに小さくし、また標本中の病変部及び正常部が観察しやすくなるように行ってよい。 The cutout may be performed by reducing the size of the specimen to a size suitable for observation and making it easier to observe the lesioned part and the normal part in the specimen.
 包埋の手法としては、特に限定されないが、例えば、パラフィン包埋法、セロイジン包埋法、OCTコンパウンド包埋法、ゼラチン包埋法、合成樹脂包埋法等が挙げられる。 The embedding method is not particularly limited, and examples thereof include a paraffin embedding method, a celloidin embedding method, an OCT compound embedding method, a gelatin embedding method, and a synthetic resin embedding method.
 薄切にはミクロトームを使用してよい。 A microtome may be used for slicing.
 また、例えば、パラフィン包埋法を用いてパラフィンブロックを作製した場合には、例えば、キシレン、アルコール等を用いて脱パラフィンを行った後、場合により、標本中の目的抗原を賦活化することで、染色を強化してよい。  Further, for example, when a paraffin block is prepared by using the paraffin embedding method, for example, after deparaffinizing with xylene, alcohol or the like, the target antigen in the specimen may be activated in some cases. , The staining may be enhanced. It was
 抗原賦活化の方法としては、特に限定はされないが、例えば、ペプシン、トリプシン、プロナーゼ又はプロテインキナーゼK等のタンパク質分解酵素処理;マイクロウェーブ、オートクレーブ又は煮沸等による加熱処理;アルカリ又は酸(例えば塩酸又はギ酸)による処理等が挙げられる。この中でも、クエン酸バッファー又は中性バッファーを用いる方法が好ましい。抗原賦活化処理は、室温で1分~5分間実施することが好ましい。 The method for activating the antigen is not particularly limited, but is, for example, treatment with a proteolytic enzyme such as pepsin, trypsin, pronase or protein kinase K; heat treatment by microwave, autoclave or boiling; alkali or acid (for example, hydrochloric acid or Treatment with formic acid) and the like can be mentioned. Among these, a method using a citric acid buffer or a neutral buffer is preferable. The antigen activation treatment is preferably carried out at room temperature for 1 to 5 minutes.
 また、抗体は標的タンパク質以外とも非特異な吸着反応を起こすことから、非特異的吸着を防ぐため、ブロッキング剤を用いた前処理を行うこともできる。ブロッキング剤としては、例えば、正常血清(例えば、ヤギ、ウマ、ウサギ等)、ウシ血清アルブミン、ゼラチン、スキムミルクのような生体由来のタンパク質が挙げられる。また、そのほかには、界面活性剤(例えば、TWEEN(登録商標) 20等)、ヒドロキシアルキルセルロース、ポリビニルアルコール等が挙げられる。これらは1種単独で、又は2種以上を組み合わせて使用することができる。 In addition, since the antibody causes a non-specific adsorption reaction with other than the target protein, pretreatment using a blocking agent can be performed in order to prevent non-specific adsorption. Examples of the blocking agent include biological proteins such as normal serum (eg, goat, horse, rabbit, etc.), bovine serum albumin, gelatin, skim milk, and the like. In addition, surfactants (for example, TWEEN (registered trademark) 20 etc.), hydroxyalkyl cellulose, polyvinyl alcohol and the like can be mentioned. These can be used alone or in combination of two or more.
 顕微鏡下での標本の観察を容易にするために、標本を染色することが好ましい。染色方法としては、抗体に特定の酵素を標識した後に基質を反応させて、形成された色素生成物の呈色を光学顕微鏡等で観察する酵素抗体法を用いてよい。酵素抗体法は、公知の方法を用いることができ、例えば、一次抗体を標識し、抗原抗体反応を1度しか行わない直接法と、標識していない一次抗体を用いて1度目の抗原抗体反応を行い、一次抗体自体を抗原とする別の抗体(二次抗体)を標識して、さらに反応させて2回以上抗原抗体反応を行う間接法とが挙げられる。また、間接法として、ペルオキシダーゼ・抗ペルオキシダーゼ抗体の可溶性免疫複合体(PAP)を用いるPAP法、LAB(Linked Avidin-Biotin)法、アビジン・ビオチン複合体を用いるABC法、ストレプトアビジンを用いるLSAB(Linked Streptavidin-Biotin)法、TSA(tyramide signal amplification)法、CARD(catalyzed reporter deposition)法等を用いてもよい。 It is preferable to stain the specimen to facilitate observation of the specimen under a microscope. As a staining method, an enzyme antibody method may be used in which the antibody is labeled with a specific enzyme, the substrate is reacted, and the coloration of the formed dye product is observed with an optical microscope or the like. As the enzyme antibody method, a known method can be used, for example, a direct method in which a primary antibody is labeled and an antigen-antibody reaction is performed only once, and a first antigen-antibody reaction using an unlabeled primary antibody. This is an indirect method in which the primary antibody itself is used as an antigen, another antibody (secondary antibody) is labeled, and the reaction is further carried out to carry out an antigen-antibody reaction two or more times. Indirect methods include the PAP method using a soluble immune complex (PAP) of peroxidase / anti-peroxidase antibody, the LAB (Linked Avidin-Biotin) method, the ABC method using an avidin / biotin complex, and the LSAB (Linked) using streptavidin. A Streptavidin-Biotin) method, a TSA (thyramide signal amplification) method, a CARD (catalyzed reporter departure) method, or the like may be used.
 酵素抗体法での発色方法としては、限定はされないが、例えば、標識酵素としてペルオキシダーゼを発色基質のジアミノベンジジン(DAB)と反応させるDAB法;ニッケルイオン存在下でDAB法を行う、ニッケルDAB法;ペルオキシダーゼを発色基質のアミノエチルカルバゾール(AEC)と反応させる方法;あるいは、標識酵素としてアルカリホスファターゼを発色基質のBCIP/NBTと反応させる方法、発色基質のFast Redと反応させる方法、又は発色基質のFast Blueと反応させる方法等を挙げられる。 The color development method in the enzyme antibody method is not limited, but for example, the DAB method in which peroxidase is reacted with the color-developing substrate diaminobenzidine (DAB) as a labeling enzyme; the DAB method is performed in the presence of nickel ions, the nickel DAB method; A method of reacting peroxidase with the color-developing substrate aminoethylcarbazole (AEC); or a method of reacting an alkali phosphatase as a labeling enzyme with the color-developing substrate BCIP / NBT, a method of reacting with the color-developing substrate Fast Red, or a method of reacting with the color-developing substrate Fast. Examples thereof include a method of reacting with Blue.
 染色は、例えば、一次抗体として、本発明の抗体(濃度20~40μg/mL)を標本に添加して、例えば、4℃~室温で1時間~12時間反応させた後に当該一次抗体を洗浄し、次いで、二次抗体として標識抗体(濃度1~10μg/mL)を添加して、例えば、4℃~室温で30分~12時間反応させた後に当該二次抗体を洗浄してから、発色させてもよい。あるいは、検出感度を高めるために、ABC法を利用してもよい。  For staining, for example, the antibody of the present invention (concentration 20 to 40 μg / mL) is added to a specimen as a primary antibody, and the sample is reacted at 4 ° C to room temperature for 1 to 12 hours, and then the primary antibody is washed. Then, a labeled antibody (concentration 1 to 10 μg / mL) is added as a secondary antibody, and the reaction is carried out at 4 ° C. to room temperature for 30 minutes to 12 hours, and then the secondary antibody is washed and then colored. You may. Alternatively, the ABC method may be used to increase the detection sensitivity. The
 抗原抗体反応を可視化する方法としては、上述の抗原抗体反応の他に、抗体に放射性同位元素を結合させ、印画紙に感光させるオートラジオグラフィー法;金粒子等の可視物質に抗体を結合させておき、電子顕微鏡等で観察する金コロイド法;抗体に蛍光色素を標識しておき、抗原抗体反応の後で励起波長を当てて蛍光発色させ蛍光顕微鏡で観察する蛍光抗体法を用いてもよい。 As a method for visualizing an antigen-antibody reaction, in addition to the above-mentioned antigen-antibody reaction, an autoradiography method in which a radioactive isotope is bound to an antibody and exposed to a printing paper; the antibody is bound to a visible substance such as gold particles. Colloidal gold method for observing with an electron microscope or the like; a fluorescent antibody method may be used in which an antibody is labeled with a fluorescent dye, and after an antigen-antibody reaction, an excitation wavelength is applied to develop fluorescent color and the antibody is observed with a fluorescent microscope.
 1つの実施形態において、好ましい免疫組織染色の条件としては、抗原賦活化に中性バッファーを用いてオートクレーブ121℃5分処理を行い、一次抗体として本発明の抗体を濃度2~40μg/mLの範囲(好ましくは21.25μg/mL)で用いる条件が挙げられる。 In one embodiment, the preferred conditions for immunohistochemical staining are autoclave 121 ° C. for 5 minutes treatment with a neutral buffer for antigen activation, and the antibody of the present invention as the primary antibody in a concentration range of 2 to 40 μg / mL. Conditions used at (preferably 21.25 μg / mL) can be mentioned.
 4.治療薬の有効性、投与の可否の判定方法
 別の実施形態において、本発明は、セレノプロテインP又はApoER2の発現量又は機能の程度を、本発明のGBMの予防又は治療薬の有効性又は投与の可否を判定するための指標とする方法を提供する。本実施形態において、本発明のGBMの予防又は治療薬の有効性又は投与の可否を判定するための方法であって、グリオブラストーマ患者の生体試料におけるセレノプロテインP又はApoER2の発現量又は機能の程度を測定する工程を含み、セレノプロテインP又はApoER2の発現量又は機能の程度に基づいて、セレノプロテインPの阻害作用を有する成分に対する感受性の高さを判定し、感受性の高さに基づいて、本発明のGBMの予防又は治療薬の有効性又は投与の可否が判定される。グリオブラストーマ患者の生体試料としては特に限定されないが、例えば、脳腫瘍組織や血液等が挙げられ、脳腫瘍組織が好ましい。
4. Efficacy of Therapeutic Agent, Method for Determining Appropriateness of Administration In another embodiment, the present invention determines the expression level or the degree of function of selenoprotein P or ApoER2, and the efficacy or administration of the preventive or therapeutic agent for GBM of the present invention. Provided is a method as an index for determining the propriety of the above. In the present embodiment, it is a method for determining the efficacy or administration of the preventive or therapeutic agent for GBM of the present invention, and the expression level or function of selenoprotein P or ApoER2 in a biological sample of a gliobrostoma patient. Including the step of measuring the degree, the high sensitivity to the component having an inhibitory effect on selenoprotein P is determined based on the expression level or the degree of function of selenoprotein P or ApoER2, and based on the high sensitivity, Whether or not the prophylactic or therapeutic agent for GBM of the present invention is effective or administerable is determined. The biological sample of the glioblastoma patient is not particularly limited, and examples thereof include brain tumor tissue and blood, and brain tumor tissue is preferable.
 グリオブラストーマ患者の生体試料におけるセレノプロテインP又はApoER2の発現量又は機能の程度を測定する工程は、「3-1 グリオブラストーマ患者の脳腫瘍組織を用いた予後判定方法」又は「3-2 グリオブラストーマ患者の血液を用いた予後判定方法」の項に記載の測定方法が好ましく用いられる。 The step of measuring the expression level or the degree of function of selenoprotein P or ApoER2 in a biological sample of a glioblastoma patient is "3-1 prognosis determination method using brain tumor tissue of glioblastoma patient" or "3-2 glioblastoma". The measurement method described in the section "Prognosis determination method using blood of glioblastoma patient" is preferably used.
 グリオブラストーマ患者の生体試料におけるセレノプロテインP又はApoER2の発現量又は機能の程度の測定値を、予め設定されたカットオフ値と比較し、セレノプロテインPの阻害作用を有する成分に対する感受性の高さを判定する。例えば、あらかじめ設定されたカットオフ値以上であれば、セレノプロテインPの阻害作用を有する成分に対する感受性が高い可能性があると判定することができる。 The measured value of the expression level or the degree of function of selenoprotein P or ApoER2 in the biological sample of the glioblastoma patient is compared with the preset cutoff value, and the sensitivity to the component having an inhibitory effect on selenoprotein P is high. Is determined. For example, if it is equal to or higher than a preset cutoff value, it can be determined that the sensitivity to a component having an inhibitory effect on selenoprotein P may be high.
 セレノプロテインPの阻害作用を有する成分に対する感受性が高い可能性があると判定される場合には、本発明のGBMの予防又は治療薬が有効に作用する可能性が高い、又は本発明のGBMの予防又は治療薬を被験対象のグリオブラストーマ患者に投与可能、と判定することができる。一方、セレノプロテインPの阻害作用を有する成分に対する感受性が低い可能性があると判定される場合には、本発明のGBMの予防又は治療薬が有効に作用する可能性が低い、又は本発明のGBMの予防又は治療薬を被験対象のグリオブラストーマ患者に投与不可、と判定することができる。 If it is determined that the sensitivity to a component having an inhibitory effect on selenoprotein P may be high, the prophylactic or therapeutic agent for GBM of the present invention is likely to act effectively, or the GBM of the present invention. It can be determined that the prophylactic or therapeutic agent can be administered to the glioblastoma patient to be tested. On the other hand, when it is determined that the sensitivity to the component having an inhibitory effect on selenoprotein P may be low, it is unlikely that the preventive or therapeutic agent for GBM of the present invention acts effectively, or the present invention It can be determined that the preventive or therapeutic agent for GBM cannot be administered to the glioblastoma patient to be tested.
 別の実施形態において、上記判定方法により、本発明のGBMの予防又は治療薬が有効に作用する可能性が高い、又は本発明のGBMの予防又は治療薬を被験対象のグリオブラストーマ患者に投与可能と判定された被験対象のグリオブラストーマ患者に対し、本発明のGBMの予防又は治療薬を投与する工程を含む、グリオブラストーマの治療方法を提供する。 In another embodiment, the prophylactic or therapeutic agent for GBM of the present invention is likely to act effectively by the above-mentioned determination method, or the prophylactic or therapeutic agent for GBM of the present invention is administered to a gliobrostoma patient as a subject. Provided is a method for treating glioblastoma, which comprises a step of administering a prophylactic or therapeutic agent for GBM of the present invention to a glioblastoma patient as a subject determined to be possible.
 本発明のGBMの予防又は治療薬の投与量は、本発明のセレノプロテインPの阻害作用を有する成分の量に換算して、通常であれば0.5~50mg/kg(個体体重)程度の量で使用すればよい。 The dose of the preventive or therapeutic agent for GBM of the present invention is usually about 0.5 to 50 mg / kg (individual body weight) in terms of the amount of the component having an inhibitory effect on selenoprotein P of the present invention. It may be used in quantity.
 本発明に係るGBMの予防又は治療薬の投与は、上記の量を一日に一度に投与してもよく、数回に分けて投与してもよい。また、グリオブラストーマに対する治療効果を有する範囲において、投与間隔は、毎日、隔日、毎週、隔週、2~3週毎、毎月、隔月又は2~3ヶ月毎でもよい。さらに、異なるセレノプロテインPの阻害作用を有する成分を含有するグリオブラストーマの予防又は治療薬を2種以上併用しても良く、本発明に係るグリオブラストーマの予防又は治療薬を既存のグリオブラストーマの予防又は治療薬であるテモゾロミド等と併用することもできる。 The GBM prophylactic or therapeutic agent according to the present invention may be administered in the above amount once a day or in several divided doses. In addition, the administration interval may be daily, every other day, every week, every other week, every two to three weeks, every month, every other month, or every two to three months, as long as it has a therapeutic effect on glioblastoma. Further, two or more kinds of prophylactic or therapeutic agents for glioblastoma containing components having different selenoprotein P inhibitory effects may be used in combination, and the prophylactic or therapeutic agent for glioblastoma according to the present invention may be used as an existing glioblastoma. It can also be used in combination with temozolomide, which is a prophylactic or therapeutic drug for glioblastoma.
 別の実施形態において、本発明のGBMの予防又は治療薬の有効性又は投与の可否を判定する、診断薬を提供する。当該診断薬の成分としては、セレノプロテインP又はApoER2の発現量又は機能の程度を定量評価できるものであれば特に限定されないが、セレノプロテインPを認識する抗体、又はApoER2を認識する抗体が好ましく用いられる。セレノプロテインPを認識する抗体としては例えば、「セレノプロテインPのアミノ酸配列内に存在するエピトープに特異的に結合する抗体」に記載の抗体が挙げられる。また、ApoER2を認識する抗体としては例えば、Anti-ApoER2 抗体 [EPR3326] (ab108208)が挙げられる。 In another embodiment, a diagnostic agent for determining the efficacy or administration of the preventive or therapeutic agent for GBM of the present invention is provided. The component of the diagnostic agent is not particularly limited as long as it can quantitatively evaluate the expression level or the degree of function of selenoprotein P or ApoER2, but an antibody that recognizes selenoprotein P or an antibody that recognizes ApoER2 is preferably used. Be done. Examples of the antibody that recognizes selenoprotein P include the antibody described in "Antibody that specifically binds to an epitope present in the amino acid sequence of selenoprotein P". Examples of the antibody that recognizes ApoER2 include Anti-ApoER2 antibody [EPR3326] (ab108208).
 以下、本発明を実施例によりさらに説明するが、本発明はこれに限定されるものではない。 Hereinafter, the present invention will be further described by way of examples, but the present invention is not limited thereto.
<製造例1:細胞培養>
 GBM細胞である、T98G、YKG1、A172細胞は東北大学加齢医学研究所細胞バンクより入手した。T98G及びA172はRPMI-1640培地 (10% FBS、10 Units/mL ペニシリン、10 μg/mL ストレプトマイシン含有)、YKG1はD’MEM(10% FBS、10 Units/mL ペニシリン、10 μg/mL ストレプトマイシン含有)中で、37℃,5% CO,95%室内空気の条件の下、湿潤インキュベーター内で培養した。それぞれ亜セレン酸ナトリウム (100nM) 存在下又は非存在下で2週間以上維持・継代したものを各実験に使用した。
<Production Example 1: Cell culture>
GBM cells T98G, YKG1, and A172 cells were obtained from the Cell Bank of the Institute of Aging Medicine, Tohoku University. T98G and A172 are RPMI-1640 medium (10% FBS, 10 Units / mL penicillin, 10 μg / mL streptomycin), YKG1 is D'MEM (10% FBS, 10 Units / mL penicillin, 10 μg / mL streptomycin). The cells were cultured in a wet incubator under the conditions of 37 ° C., 5% CO 2 , 95% indoor air. Sodium selenite (100 nM) maintained and subcultured in the presence or absence of each for 2 weeks or more was used for each experiment.
<実施例1:qPCRによるセレノプロテインPのmRNAレベルの検討>
 12‐well plateに各細胞を播種し (A172: 7×10 cells/well, T98G, YKG1: 1×105 cells/well)、24時間後、PBSで洗浄し、Isogen2 (ニッポンジーン) により添付の説明書 に従いtotal RNAを調整した。逆転写反応はPrimeScript RT (Takara) にて、添付の説明書に従い行った。定量PCRはKAPA SYBR(登録商標)(KAPA Bioscience) により、Thermal Cycle Dice real time system (Takara) を用いて実施した。PCR反応のサイクルは、95℃30秒間を1サイクル行った後、95℃5秒及び60℃30秒を40サイクル実施し、その後95℃15秒、60℃30秒及び95℃15秒を1サイクルで実施した。測定したセレノプロテインPのmRNA量は、内標準対象遺伝子としてGAPDH mRNAレベルを用いて補正を行った。定量PCRに使用したプライマーの配列を以下に示す。
セレノプロテインP 
 forward: 5’-CCCCCAGCCTGGAGCATAAG-3’(配列番号27)
 reverse: 5’-TGCACAGGTATCAGCTGGCTT-3’(配列番号28)
GAPDH 
 forward: 5’-GCACCGTCAAGGCTGAGAAC-3’(配列番号29)
 reverse: 5’-TGGTGAAGACGCCAGTGGA-3’(配列番号30)
 結果を図1に示す。図1にある通り、T98GはセレノプロテインPの発現量が高く、A172の発現量は中程度であり、YKG1における発現量は低いことが分かった。
<Example 1: Examination of mRNA level of selenoprotein P by qPCR>
Each cell was seeded on a 12-well plate (A172: 7 × 10 4 cells / well, T98G, YKG1: 1 × 10 5 cells / well), washed with PBS after 24 hours, and attached with Isogen2 (Nippon Gene). Total RNA was adjusted according to the instructions. The reverse transcription reaction was carried out at PrimeScript RT (Takara) according to the attached instructions. Quantitative PCR was performed by KAPA SYBR® (KAPA Bioscience) using the Thermal Cycle Disk real time system (Takara). The PCR reaction cycle consists of one cycle of 95 ° C. for 30 seconds, then 40 cycles of 95 ° C. for 5 seconds and 60 ° C. for 30 seconds, and then one cycle of 95 ° C. for 15 seconds, 60 ° C. for 30 seconds, and 95 ° C. for 15 seconds. It was carried out in. The measured mRNA amount of selenoprotein P was corrected using the GAPDH mRNA level as an internal standard target gene. The sequence of primers used for quantitative PCR is shown below.
Selenoprotein P
forward: 5'-CCCCCAGCCTGGAGCATAAG-3' (SEQ ID NO: 27)
reverse: 5'-TGCACAGGTATCAGCTGGCTT-3'(SEQ ID NO: 28)
GAPDH
forward: 5'-GCACCGTCAAGGCTGAGAC-3' (SEQ ID NO: 29)
reverse: 5'-TGGTGAAGACCGCCAGTGGA-3'(SEQ ID NO: 30)
The results are shown in FIG. As shown in FIG. 1, it was found that the expression level of selenoprotein P was high in T98G, the expression level of A172 was moderate, and the expression level in YKG1 was low.
<実施例2:細胞生存率の測定>
 96-well plateに各細胞を3.5×10 cells/wellで播種し、24時間後、テモゾロミド含有培地に培地交換した。72時間後、10%のAlamarBlue含有培地に交換し、2時間培養した。呈色後、AlamarBlueのホタル光を励起波長544 nm、蛍光波長590 nmでプレートリーダにて測定した (SpectraMax iD5, Molecular Devices)。結果を図2に示す。図2にある通り、亜セレン酸存在下においてT98Gのテモゾロミド感受性がA172よりも低下することが分かった。この結果から、セレノプロテインPの発現量と、テモゾロミド感受性には相関があることが分かった。
<Example 2: Measurement of cell viability>
Each cell was seeded on a 96-well plate at 3.5 × 10 3 cells / well, and after 24 hours, the medium was replaced with a temozolomide-containing medium. After 72 hours, the medium was replaced with a medium containing 10% AramarBlue and cultured for 2 hours. After coloration, firefly light of AramarBlue was measured with a plate reader at an excitation wavelength of 544 nm and a fluorescence wavelength of 590 nm (SpectraMax iD5, Molecular Devices). The results are shown in FIG. As shown in FIG. 2, it was found that the temozolomide sensitivity of T98G was lower than that of A172 in the presence of selenous acid. From this result, it was found that there is a correlation between the expression level of selenoprotein P and the sensitivity to temozolomide.
<実施例3:細胞増殖速度の測定>
 6‐well plateに各細胞を7×10 cells/wellで播種し、所定の時間後に細胞をトリプシンで処理し、剥離した細胞を回収し、トリパンブルー染色後にセルカウントを行った。結果を図3に示す。図3から、グリオブラストーマ細胞においてセレノプロテインP発現量が多い細胞のほうが、細胞増殖速度が速いことが示唆された。
<Example 3: Measurement of cell proliferation rate>
Each cell was seeded on a 6-well plate at 7 × 10 4 cells / well, and after a predetermined time, the cells were treated with trypsin, the detached cells were collected, and cell counting was performed after trypan blue staining. The results are shown in FIG. From FIG. 3, it was suggested that the cells having a high expression level of selenoprotein P among the glioblastoma cells had a faster cell proliferation rate.
<実施例4:セレノプロテインPの発現抑制>
 セレノプロテインPに対するsiRNAは次の配列のものを用いた。
 セレノプロテインP siRNA #1 
 GAGAUAUGCCAGCAAGUGA[dT][dT]とその相補鎖をアニーリングさせたもの(配列番号23)
 セレノプロテインP siRNA #2 
 GCAUAUUCCUGUUUAUCAA[dT][dT] とその相補鎖をアニーリングさせたもの(配列番号24)
 セレノプロテインP siRNA #3
 GAGAAUGACCUUCAAACUA[dT][dT] とその相補鎖をアニーリングさせたもの(配列番号25)
 Control siRNAは、MISSION siRNA Universal Negative Control (Sigma) を用いた。
 siRNAのトランスフェクトはLipofectamine RNAiMAXにて添付の説明書に従い、フォワードトランスフェクション法で実施した。6‐well plateにT98G細胞 (2.0×10 cells/well) を播種し、24時間後、各siRNAをトランスフェクトした。更に24時間培養後、細胞を7×10 cells/wellとなるように、6‐well plateに再播種し、経時的な細胞数の増加を実施例3に記載の方法にて計測した。また、mRNAレベル量に関しては、実施例1に記載の方法にて計測した。結果を図4、図5に示す。この結果から、セレノプロテインPをsiRNAでノックダウンしたT98G細胞においては、細胞増殖速度が有意に低下することが明らかとなった。
<Example 4: Selenoprotein P expression suppression>
The siRNA for selenoprotein P used had the following sequence.
Selenoprotein P siRNA # 1
GAGAUAUGCCAGCAAGUGA [dT] [dT] and its complementary strand annealed (SEQ ID NO: 23).
Selenoprotein P siRNA # 2
GCAUAUCCUGUUUAUCAA [dT] [dT] and its complementary strand annealed (SEQ ID NO: 24).
Selenoprotein P siRNA # 3
GAGAAUGACCUCAUCAAACUA [dT] [dT] and its complementary strand annealed (SEQ ID NO: 25)
As the Control siRNA, MISSION siRNA Universal Negative Control (Sigma) was used.
Transfection of siRNA was performed by the forward transfection method in Lipofectamine RNAiMAX according to the attached instructions. T98G cells (2.0 × 10 5 cells / well) were seeded on the 6-well plate, and 24 hours later, each siRNA was transfected. After further culturing for 24 hours, the cells were reseeded into a 6-well plate so as to have 7 × 10 4 cells / well, and the increase in the number of cells over time was measured by the method described in Example 3. The amount of mRNA level was measured by the method described in Example 1. The results are shown in FIGS. 4 and 5. From this result, it was clarified that the cell proliferation rate was significantly reduced in T98G cells in which selenoprotein P was knocked down by siRNA.
<実施例5:セレノプロテインPに特異的に結合する抗体の検討>
 セレノプロテインPに特異的に結合する抗体(中和抗体)であるAA3及びBD3を検討に使用した。T98G細胞 (7.0×10 cells/1.9mL)と0.4mMに希釈した中和抗体0.1mLを混合し、6‐well plateにて、各中和抗体添加条件でのT98G細胞を72時間培養した。また、比較対象として、中和抗体非添加での培養、及びIgG添加での培養も検討した。その後、それぞれについて経時的な細胞数の増加を実施例3に記載の方法にて計測した。結果を図6に示す。この結果から、セレノプロテインPに特異的に結合する抗体は、T98Gの細胞増殖を抑制させる効果があることが明らかとなった。
<Example 5: Examination of an antibody that specifically binds to selenoprotein P>
AA3 and BD3, which are antibodies (neutralizing antibodies) that specifically bind to selenoprotein P, were used for the study. Mix T98G cells (7.0 × 10 4 cells / 1.9 mL) and 0.1 mL of neutralizing antibody diluted to 0.4 mM, and use 6-well plate to remove T98G cells under the conditions for adding each neutralizing antibody. It was cultured for 72 hours. In addition, as a comparison target, culture without addition of neutralizing antibody and culture with addition of IgG were also examined. Then, the increase in the number of cells over time was measured for each by the method described in Example 3. The results are shown in FIG. From this result, it was clarified that the antibody that specifically binds to selenoprotein P has an effect of suppressing cell proliferation of T98G.
<実施例6:各細胞種におけるApoER2の発現量の測定>
 様々な培養細胞において代表的なセレノプロテインP受容体であるApoER2の発現について実施例1と同様の条件で解析した。各細胞を培養24時間後に細胞を回収し、ApoER2に対するプライマーによりRT-qPCR法によりmRNAを定量した。GAPDHのmRNAレベルで補正したデータ (n=3) を図7に示す。その結果、グリオブラストーマの中でもT98Gにおいて高いApoER2の発現が認められた。使用したプライマーの配列を以下に示す。
forward: 5’-GTTGCCACCAATCGCATCT-3’(配列番号31)
reverse: 5’-TCGGGTCACTGGCCTTGT-3’(配列番号32)
<Example 6: Measurement of ApoER2 expression level in each cell type>
The expression of ApoER2, which is a typical selenoprotein P receptor, in various cultured cells was analyzed under the same conditions as in Example 1. After 24 hours of culturing each cell, the cells were collected and mRNA was quantified by the RT-qPCR method with a primer for ApoER2. The data (n = 3) corrected for the mRNA level of GAPDH is shown in FIG. As a result, high expression of ApoER2 was observed in T98G among glioblastomas. The sequences of the primers used are shown below.
forward: 5'-GTTGCCACCAATCGCATCT-3' (SEQ ID NO: 31)
reverse: 5'-TCGGGTCACTGGCCTTGT-3'(SEQ ID NO: 32)
<実施例7:ApoER2の発現抑制>
 セレノプロテインP受容体であるApoER2のsiRNAのトランスフェクトはLipofectamine RNAiMAXにて添付の説明書に従い、フォワードトランスフェクション法で実施した。6‐well plateにT98G細胞 (2.0×10 cells/well) を播種し、24時間後、各siRNAをトランスフェクトした。更に24時間培養後、細胞を7×10 cells/wellとなるように、6‐well plateに再播種し、48時間後のmRNAを実施例1に記載の方法にて計測した。また、72時間での細胞増殖について、実施例3に記載の方法にて計測した。結果を図8、図9に示す。この結果から、ApoER2遺伝子をsiRNAで発現抑制したT98G細胞においては、細胞増殖速度が有意に低下することが明らかとなった。なお、siRNAは以下の配列のものを用いた。また、Control siRNAは、MISSION siRNA Universal Negative Control (Sigma) を用いた。
ApoER2 siRNA #1 (#1)
forward: CGCUGAUCUCCUCCACUGA[dT][dT](配列番号33)
reverse: UCAGUGGAGGAGAUCAGCG[dT][dT](配列番号34)
ApoER2 siRNA #2 (#2)
forward: GUGACCUCUCCUACCGUAA[dT][dT](配列番号35)
reverse: UUACGGUAGGAGAGGUCAC[dT][dT](配列番号36)
ApoER2 siRNA #3 (#3)
forward: GACCUACUGACCAAGAACU[dT][dT](配列番号37)
reverse: AGUUCUUGGUCAGUAGGUC[dT][dT](配列番号38)
<Example 7: Suppression of ApoER2 expression>
Transfection of siRNA of ApoER2, which is a selenoprotein P receptor, was performed by the forward transfection method in Lipofectamine RNAiMAX according to the attached instructions. T98G cells (2.0 × 10 5 cells / well) were seeded on the 6-well plate, and 24 hours later, each siRNA was transfected. After further culturing for 24 hours, the cells were reseeded into a 6-well plate to 7 × 10 4 cells / well, and the mRNA after 48 hours was measured by the method described in Example 1. In addition, cell proliferation at 72 hours was measured by the method described in Example 3. The results are shown in FIGS. 8 and 9. From this result, it was clarified that the cell proliferation rate was significantly reduced in T98G cells in which the expression of the ApoER2 gene was suppressed by siRNA. The siRNA used had the following sequence. As the Control siRNA, MISSION siRNA Universal Negative Control (Sigma) was used.
ApoER2 siRNA # 1 (# 1)
forward: CGCUGAUCUCCUCCACUGA [dT] [dT] (SEQ ID NO: 33)
reverse: UCAGUGGAGAGAGAUCAGCG [dT] [dT] (SEQ ID NO: 34)
ApoER2 siRNA # 2 (# 2)
forward: GUGACCUCUCCUACCGUAA [dT] [dT] (SEQ ID NO: 35)
reverse: UUACGGUAGGAGAGGUCAC [dT] [dT] (SEQ ID NO: 36)
ApoER2 siRNA # 3 (# 3)
forward: GACCUACUGACCAAGAACU [dT] [dT] (SEQ ID NO: 37)
reverse: AGUUCUGGUCAGUAGGUC [dT] [dT] (SEQ ID NO: 38)
<実施例8:セレノプロテインP阻害作用を有する化合物が細胞増殖に与える影響の確認>
 96-well plateにT98G細胞を3.5×10 cells/wellで播種し (実施例2と同様)、24時間後に培地に各セレノプロテインP阻害作用物質 (スルフォラファン (SFN)、クルクミン (CCM)、エピガロカテキンガレート(EGCg)、1,4-ベンゾキノン (p-benzoquinone)) を添加した。24、48,72時間後におけるT98Gの細胞生存率 (増殖) に与える影響について、実施例2と同様のAlamarBlue法により検討した。結果を図10に示す。図10にある通り、セレノプロテインP阻害物質はT98Gの細胞生存率を有意に低下させることが示された。
<Example 8: Confirmation of the effect of a compound having a selenoprotein P inhibitory effect on cell proliferation>
T98G cells were seeded on a 96-well plate at 3.5 × 10 3 cells / well (similar to Example 2), and 24 hours later, each selenoprotein P inhibitor (sulforaphan (SFN), curcumin (CCM)) was placed in the medium. , Epigallocatechin gallate (EGCg), 1,4-benzoquinone (p-benzoquinone)) was added. The effect of T98G on the cell viability (proliferation) after 24, 48, and 72 hours was examined by the same AramarBlue method as in Example 2. The results are shown in FIG. As shown in FIG. 10, selenoprotein P inhibitors have been shown to significantly reduce the cell viability of T98G.
<実施例9:T98GにおけるCCDC遺伝子発現条件の検討>
 セレノプロテインP発現を抑制するCCDC発現プラスミドはポリエチレンイミン (PEI MAX) にて添付の説明書に従い実施した。6‐well plateにT98G細胞 (2.5×10 cells/well) を播種し、24時間後、図11に記載の比率(例えば、DNA2/PEI8の場合はDNA(2μg)/PEI(8μL)を意味する)のトランスフェクションミックスを培地に添加した。更に24時間培養後、実施例1と同様の方法にて、CCDC mRNAを定量した。結果を図11に示す。この結果から、T98GにおけるCCDC遺伝子の高発現が確認された。
<Example 9: Examination of CCDC gene expression conditions in T98G>
The CCDC expression plasmid that suppresses selenoprotein P expression was carried out with polyethyleneimine (PEI MAX) according to the attached instructions. T98G cells (2.5 × 10 5 cells / well) were seeded on the 6-well plate, and 24 hours later, the ratio shown in FIG. 11 (for example, DNA (2 μg) / PEI (8 μL) for DNA2 / PEI8). The transfection mix (meaning) was added to the medium. After further culturing for 24 hours, CCDC mRNA was quantified by the same method as in Example 1. The results are shown in FIG. From this result, high expression of the CCDC gene in T98G was confirmed.
<実施例10:T98GにおけるCCDC遺伝子の高発現が細胞増殖に与える影響の確認>
 CCDC発現プラスミドは実施例9と同様、ポリエチレンイミン (PEI MAX) にて添付の説明書に従い実施した。6‐well plateにT98G細胞 (2.5×10 cells/well) を播種し、24時間後、DNA2.5μg/PEI5μLの比率でトランスフェクションミックスを作成し、培地に添加した。更に24時間培養後、細胞を(3.5×10 cells/well) で96 wellプレートに播種し、24,48,96時間培養後、実施例2と同様にAlamarBlue法で細胞生存率を検討した。結果を図12に示す。この結果から、T98GにおけるCCDCの高発現により、細胞増殖が阻害されることが判明した。
<Example 10: Confirmation of the effect of high expression of CCDC gene on T98G on cell proliferation>
The CCDC expression plasmid was carried out with polyethyleneimine (PEIMAX) in the same manner as in Example 9 according to the attached instructions. T98G cells (2.5 × 10 5 cells / well) were seeded on a 6-well plate, and 24 hours later, a transfection mix was prepared at a ratio of 2.5 μg of DNA / 5 μL of PEI and added to the medium. After further culturing for 24 hours, the cells were seeded on a 96-well plate at (3.5 × 10 3 cells / well), and after culturing for 24, 48, 96 hours, the cell viability was examined by the AramarBlue method in the same manner as in Example 2. bottom. The results are shown in FIG. From this result, it was found that the high expression of CCDC in T98G inhibits cell proliferation.
<実施例11:ヒト脳腫瘍組織におけるセレノプロテインP免疫組織染色>
 脳腫瘍患者の組織切片について、セレノプロテインP抗体(BD1)を用いて以下の方法で免疫染色したところ、グリオブラストーマ患者において染色される例が認められた。結果を図13に示す。図13Aにグリオブラストーマ患者でないヒト脳腫瘍組織の画像、図13Bにグリオブラストーマ患者のヒト脳腫瘍組織の画像を示す。図13に示すように、グリオブラストーマ患者のヒト脳腫瘍組織は、セレノプロテインP抗体を用いて免疫染色された。免疫染色法は以下のとおりである。
<Example 11: Selenoprotein P immunohistochemical staining in human brain tumor tissue>
When tissue sections of brain tumor patients were immunostained with selenoprotein P antibody (BD1) by the following method, there were cases of staining in glioblastoma patients. The results are shown in FIG. FIG. 13A shows an image of a human brain tumor tissue not a glioblastoma patient, and FIG. 13B shows an image of a human brain tumor tissue of a glioblastoma patient. As shown in FIG. 13, human brain tumor tissues of glioblastoma patients were immunostained with selenoprotein P antibody. The immunostaining method is as follows.
(免疫染色)
 標本を脱パラ、水洗した後、中性バッファーを用いてオートクレーブにて121℃ 5分の処理を行った後、切片の傷みを最小限にするために容器ごと氷水に浸けてバッファーを36℃まで下げた後、標本をPBSで洗浄した。ブロッキングとして10%ヤギ正常血清を標本に添加し、室温で30分反応させた後、本発明の抗体(濃度21.25μg/mL)を標本に添加し4℃で12~16時間反応させ、PBSで洗浄した。内在性ペルオキシダーゼのブロックのために、0.3%Hを添加したメタノールに標本を浸けて30分反応させた後、標本をPBSで洗浄し次いで二次抗体としてビオチン標識抗体(4μg/mL)を添加して室温で30分反応させた後、PBSで洗浄した後、HRP標識ストレプトアビジンを添加して室温で30分反応させた後PBSで洗浄した。DAB溶液100mLに30%Hを10~20μL添加し、7~10分反応させて発色した後、ヘマトキシリンにて核染色を行い、脱水・透徹・封入を行った。
(Immunostaining)
After removing the specimens and washing them with water, they were treated in an autoclave at 121 ° C for 5 minutes using a neutral buffer, and then the whole container was soaked in ice water to 36 ° C to minimize damage to the sections. After lowering, the specimen was washed with PBS. As blocking, 10% normal goat serum was added to the specimen and reacted at room temperature for 30 minutes, then the antibody of the present invention (concentration 21.25 μg / mL) was added to the specimen and reacted at 4 ° C. for 12 to 16 hours, and PBS was used. Washed with. For blocking of endogenous peroxidase, the specimen was immersed in methanol supplemented with 0.3% H2O 2 and reacted for 30 minutes, then the specimen was washed with PBS and then a biotin-labeled antibody (4 μg / g /) as a secondary antibody. mL) was added and reacted at room temperature for 30 minutes, then washed with PBS, then HRP-labeled streptavidin was added and reacted at room temperature for 30 minutes, and then washed with PBS. After adding 10 to 20 μL of 30% H 2 O 2 to 100 mL of DAB solution and reacting for 7 to 10 minutes to develop color, nuclear staining was performed with hematoxylin, and dehydration, permeation, and encapsulation were performed.
<実施例12:ヒト脳腫瘍組織におけるセレノプロテインP免疫組織染色>
 脳腫瘍患者の血漿 (23検体)、及び健常人の血漿 (261検体) のセレノプロテインPを、AA3抗体、又はBD1抗体 (いずれもセレノプロテインPに対する抗体) を用いたサンドイッチELISA法により定量した。結果を表1に示す。BD1抗体でのELISAの結果、脳腫瘍患者において、若干ながら有意な血漿中セレノプロテインPの増加が認められた。
Figure JPOXMLDOC01-appb-T000001
<Example 12: Selenoprotein P immunohistochemical staining in human brain tumor tissue>
Selenoprotein P in plasma of brain tumor patients (23 samples) and plasma of healthy subjects (261 samples) was quantified by the sandwich ELISA method using AA3 antibody or BD1 antibody (both antibodies against selenoprotein P). The results are shown in Table 1. As a result of ELISA with BD1 antibody, a slight and significant increase in plasma selenoprotein P was observed in patients with brain tumors.
Figure JPOXMLDOC01-appb-T000001
<実施例13:脳腫瘍患者結晶中の元素分析>
 脳腫瘍患者の血漿 (44検体)、及び健常人の血漿 (261検体) 、それぞれ100μLを70%硝酸500μLで灰化し、1400μLのmilliQ水で希釈した後、ICP/MS (Agilent) でサンプル内の元素を定量分析した。結果を表2及び図14に示す。脳腫瘍患者において、14元素の有意な変動が認められた。
Figure JPOXMLDOC01-appb-T000002
<Example 13: Elemental analysis in crystals of brain tumor patient>
100 μL of plasma of brain tumor patients (44 samples) and plasma of healthy subjects (261 samples) were incinerated with 500 μL of 70% nitrate, diluted with 1400 μL of milliQ water, and then the elements in the sample were collected by ICP / MS (Agilent). Was quantitatively analyzed. The results are shown in Table 2 and FIG. Significant changes in 14 elements were observed in patients with brain tumors.
Figure JPOXMLDOC01-appb-T000002

Claims (9)

  1.  セレノプロテインPの阻害作用を有する成分を含有する、グリオブラストーマの予防又は治療薬。 A prophylactic or therapeutic drug for glioblastoma containing a component having an inhibitory effect on selenoprotein P.
  2.  前記セレノプロテインPの阻害作用を有する成分が、セレノプロテインP遺伝子のmRNAに対するsiRNA、セレノプロテインPのアミノ酸配列内に存在するエピトープに特異的に結合する抗体、スルフォラファン及びその誘導体、クルクミン及びその誘導体、エピガロカテキンガレート及びその誘導体、パラベンゾキノン及びその誘導体、CCDC遺伝子からなる群から選択される少なくとも1種である、請求項1に記載のグリオブラストーマの予防又は治療薬。 The component having an inhibitory effect on selenoprotein P is siRNA against the mRNA of the selenoprotein P gene, an antibody that specifically binds to an epitope present in the amino acid sequence of selenoprotein P, sulforaphane and its derivatives, curcumin and its derivatives, The prophylactic or therapeutic agent for glioblastoma according to claim 1, which is at least one selected from the group consisting of epigalocatecingalate and its derivatives, parabenzoquinone and its derivatives, and the CCDC gene.
  3.  被験者由来の生体試料におけるセレノプロテインP又はApoER2の発現量又は機能の程度を指標とし、請求項1又は2に記載の予防又は治療薬の有効性、又は投与の可否を判定する方法。 A method for determining the efficacy or administration of the prophylactic or therapeutic agent according to claim 1 or 2, using the expression level or the degree of function of selenoprotein P or ApoER2 in a biological sample derived from a subject as an index.
  4.  被験者由来の生体試料におけるセレノプロテインP又はApoER2の発現量又は機能の程度を指標とし、グリオブラストーマの予後を判定する方法。 A method for determining the prognosis of glioblastoma using the expression level or the degree of function of selenoprotein P or ApoER2 in a biological sample derived from a subject as an index.
  5.  前記被験者由来の生体試料がグリオブラストーマ細胞である、請求項3又は4に記載の方法。 The method according to claim 3 or 4, wherein the biological sample derived from the subject is a glioblastoma cell.
  6.  グリオブラストーマ細胞を被験物質の存在下及び非存在下に培養し、当該被験物質の存在下及び非存在下におけるセレノプロテインP又はApoER2の発現量又は機能の程度を比較する、グリオブラストーマ治療薬のスクリーニング方法。 A therapeutic agent for glioblastoma, in which glioblastoma cells are cultured in the presence and absence of a test substance, and the expression level or the degree of function of selenoprotein P or ApoER2 is compared in the presence and absence of the test substance. Screening method.
  7.  セレノプロテインPの阻害作用を有する成分を選択する、請求項6に記載のグリオブラストーマ治療薬のスクリーニング方法。 The screening method for a glioblastoma therapeutic agent according to claim 6, wherein a component having an inhibitory effect on selenoprotein P is selected.
  8.  前記セレノプロテインPの阻害作用を有する成分が、セレノプロテインP遺伝子のmRNAに対するsiRNA、セレノプロテインPのアミノ酸配列内に存在するエピトープに特異的に結合する抗体、スルフォラファン及びその誘導体、クルクミン及びその誘導体、エピガロカテキンガレート及びその誘導体、パラベンゾキノン及びその誘導体、CCDC遺伝子からなる群から選択される少なくとも1種である、請求項6又は7に記載のグリオブラストーマ治療薬のスクリーニング方法。 The component having an inhibitory effect on selenoprotein P is siRNA against the mRNA of the selenoprotein P gene, an antibody that specifically binds to an epitope present in the amino acid sequence of selenoprotein P, sulforaphane and its derivatives, curcumin and its derivatives, The method for screening a glioblastoma therapeutic agent according to claim 6 or 7, which is at least one selected from the group consisting of epigalocatecingalate and its derivatives, parabenzoquinone and its derivatives, and the CCDC gene.
  9.  被験者にセレノプロテインPの阻害作用を有する成分の有効量を投与することを含む、グリオブラストーマを予防又は治療する方法。  A method for preventing or treating glioblastoma, which comprises administering to a subject an effective amount of an ingredient having an inhibitory effect on selenoprotein P. The
PCT/JP2021/037488 2020-10-09 2021-10-08 Therapeutic agent for glioblastoma, screening method, efficacy determination method, and prognosis determination method WO2022075478A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-171561 2020-10-09
JP2020171561 2020-10-09

Publications (1)

Publication Number Publication Date
WO2022075478A1 true WO2022075478A1 (en) 2022-04-14

Family

ID=81126530

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/037488 WO2022075478A1 (en) 2020-10-09 2021-10-08 Therapeutic agent for glioblastoma, screening method, efficacy determination method, and prognosis determination method

Country Status (1)

Country Link
WO (1) WO2022075478A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080254033A1 (en) * 2004-01-21 2008-10-16 Kristen Pierce Pharmaceutical Compositions Containing Antagonists to Lrp4, Lrp8 or Megalin for Treatment of Diseases
WO2009068322A1 (en) * 2007-11-27 2009-06-04 Max-Planck-Gesellschaft Zur Förderung Der Wissens Chaften E.V. Selective inhibition of polo-like kinase 1
US20140011702A1 (en) * 2011-03-23 2014-01-09 Centre Hospitalier Universitaire Pontchaillou Biomarkers and methods for the prognosis of glioblastoma
JP2019006773A (en) * 2017-06-23 2019-01-17 学校法人同志社 Selenoprotein p expression inhibitor and use thereof
US20200255838A1 (en) * 2017-09-07 2020-08-13 University Of Massachusetts Selenium Cancer Therapy

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080254033A1 (en) * 2004-01-21 2008-10-16 Kristen Pierce Pharmaceutical Compositions Containing Antagonists to Lrp4, Lrp8 or Megalin for Treatment of Diseases
WO2009068322A1 (en) * 2007-11-27 2009-06-04 Max-Planck-Gesellschaft Zur Förderung Der Wissens Chaften E.V. Selective inhibition of polo-like kinase 1
US20140011702A1 (en) * 2011-03-23 2014-01-09 Centre Hospitalier Universitaire Pontchaillou Biomarkers and methods for the prognosis of glioblastoma
JP2019006773A (en) * 2017-06-23 2019-01-17 学校法人同志社 Selenoprotein p expression inhibitor and use thereof
US20200255838A1 (en) * 2017-09-07 2020-08-13 University Of Massachusetts Selenium Cancer Therapy

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
MIAO ZIWEI, YU FEI, REN YAHAO, YANG JUN: "d,l-Sulforaphane Induces ROS-Dependent Apoptosis in Human Gliomablastoma Cells by Inactivating STAT3 Signaling Pathway", INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, vol. 18, no. 1, 4 January 2017 (2017-01-04), pages 1 - 14, XP055919686, DOI: 10.3390/ijms18010072 *
OKUNO, TOMOFUMI: "28PA-am045 Effect of Amyloid beta on Human Astrocytoma U251 Cells", PROCEEDINGS OF THE PHARMACEUTICAL SOCIETY OF JAPAN; MARCH 25-28, 2015, vol. 135, 1 January 2015 (2015-01-01) - 28 March 2015 (2015-03-28), JP , pages 220, XP009535567, ISSN: 0918-9823 *
WANG ZEXIA; LIU FEI; LIAO WENLI; YU LIANGZHU; HU ZHENWU; LI MINCAI; XIA HONGLI: "Curcumin suppresses glioblastoma cell proliferation by p-AKT/mTOR pathway and increases the PTEN expression", ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS, ACADEMIC PRESS, US, vol. 689, 21 May 2020 (2020-05-21), US , XP086210474, ISSN: 0003-9861, DOI: 10.1016/j.abb.2020.108412 *
YOKOYAMA SHUNICHI, HIRANO HIROFUMI, WAKIMARU NARUHITO, SARKER KRISHNA PADA, KURATSU JUN-ICHI: "Inhibitory effect of epigallocatechin-gallate on brain tumor cell lines in vitro", NEURO-ONCOLOGY, 1 January 2001 (2001-01-01), XP055919683, Retrieved from the Internet <URL:https://watermark.silverchair.com/p22.pdf?token=AQECAHi208BE49Ooan9kkhW_Ercy7Dm3ZL_9Cf3qfKAc485ysgAAAuMwggLfBgkqhkiG9w0BBwagggLQMIICzAIBADCCAsUGCSqGSIb3DQEHATAeBglghkgBZQMEAS4wEQQMfXg2YquZM9O2rMCRAgEQgIIClnFq9d5kzMwO6EtTaIFki_AfQMUtlHpl3ldAqr-9NcAF55WNVmV1AV5nvK_ogkMoBfIauZn8v3Tl-_TK2lPNckAxSQrLHO1b0GUooU9Q1T3xofGO6kyxomk5HUpcocH1tZgcrhMqe1pGICsB7-dPdAwiH-ZtBp9lPuH1vNwfm5yCv1LsafpDcKuuCkRegNS9l015Xj3mN9ibf5mw4Ak7cMidu8zVXTeEHWeRXjx5vu6AZYmvimjIwomV6NVFxY7OcjSXdx6vptWcmTANXBfARi5k6f8YVCr6wrxjogrKimEhiESJh-bRQKovkxKg7TY-TFRXh36dTotvmQsdxQqqIVI4n2a3LgH2QTRW914BO-iP4uyckcgNZPHGd1A_Jild91ykIcjomkGNbm3ztUeHGvv_BRUo2dpe54oqMSKX-KeIUFnsWxgyZddkVD0raiqxjw-m-E2uKJEachEU106Iffn3i5FSfueX9kismGTYF-BeDtPLILPKptOZPjNM6-k0i9pG9JXqLIbYe3- *

Similar Documents

Publication Publication Date Title
JP6983746B2 (en) Antibodies and assays for the detection of folic acid receptor 1
JP6666905B2 (en) PD-L1 antibody and use thereof
AU2015265976B2 (en) Anti-B7-H3 antibodies and diagnostic uses thereof
US20110027186A1 (en) Taz/wwtr1 for diagnosis and treatment of cancer
KR20150119164A (en) Therapeutic and diagnostic target for cancer comprising dll3 binding reagents
DK2876446T3 (en) Method for detecting cancer
CA2813098C (en) Means and methods for diagnosing cancer using an antibody which specifically binds to braf v600e
Yu et al. Mesothelin as a potential therapeutic target in human cholangiocarcinoma
JP6588893B2 (en) Autoantibody biomarkers for ovarian cancer
JP6599861B2 (en) Antibodies, compounds, and derivatives for the treatment of male infertility
JP5654989B2 (en) Goodpasture antigen binding protein and its detection
Park et al. PGK1 modulates balance between pro-and anti-inflammatory cytokines by interacting with ITI-H4
Frische et al. AE2 isoforms in rat kidney: immunohistochemical localization and regulation in response to chronic NH4Cl loading
TW200427463A (en) Compositions and methods for the detection and treatment of methylthioadenosine phosphorylase deficient cancers
DK2984108T3 (en) Anti-s100a7 antibodies for the treatment and diagnosis of cancer
WO2022075478A1 (en) Therapeutic agent for glioblastoma, screening method, efficacy determination method, and prognosis determination method
WO2017173250A1 (en) Methods and compositions for sirt1 expression as a marker for endometriosis and subfertility
JP2014517911A (en) Adiponectin receptor C-terminal fragment (CTF) immunoglobulin
KR20210126057A (en) Methods for treating or preventing cancer by targeting the extracellular portion of keratin 14 (KRT14) present in cancer cells
AU2009246994B2 (en) Treatment prediction involving HMGCR protein
US20110189707A1 (en) Goodpasture Antigen Binding Protein and its Detection
KR101567053B1 (en) Biomarkers for predicting liver damage caused by radiation exposure and a predicting method thereof
Yue Supplemental file
Abboud et al. Skin hepcidin initiates psoriasiform skin inflammation via Fe-driven hyperproliferation and neutrophil recruitment
Anzai et al. Distribution of the organic anion transporters NaDC3 and OAT1-3 along the human nephron 2

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21877777

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21877777

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP