WO2022075317A1 - モータユニットおよびこれを備える電動ポンプ - Google Patents

モータユニットおよびこれを備える電動ポンプ Download PDF

Info

Publication number
WO2022075317A1
WO2022075317A1 PCT/JP2021/036817 JP2021036817W WO2022075317A1 WO 2022075317 A1 WO2022075317 A1 WO 2022075317A1 JP 2021036817 W JP2021036817 W JP 2021036817W WO 2022075317 A1 WO2022075317 A1 WO 2022075317A1
Authority
WO
WIPO (PCT)
Prior art keywords
bus bar
axial direction
terminal
motor unit
electric motor
Prior art date
Application number
PCT/JP2021/036817
Other languages
English (en)
French (fr)
Inventor
直嗣 北山
健児 水尻
Original Assignee
Ntn株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ntn株式会社 filed Critical Ntn株式会社
Publication of WO2022075317A1 publication Critical patent/WO2022075317A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2/00Rotary-piston machines or pumps
    • F04C2/08Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C2/10Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth-equivalents, e.g. rollers, than the inner member
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/20Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for measuring, monitoring, testing, protecting or switching
    • H02K11/21Devices for sensing speed or position, or actuated thereby
    • H02K11/215Magnetic effect devices, e.g. Hall-effect or magneto-resistive elements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/30Structural association with control circuits or drive circuits
    • H02K11/33Drive circuits, e.g. power electronics

Definitions

  • the present invention relates to a motor unit and an electric pump including the motor unit.
  • the electric pump disclosed in Patent Document 1 includes a motor unit (motor unit) and a pump unit (pump unit) that is driven by receiving the output of the motor unit.
  • the motor unit includes an electric motor (for example, a three-phase brushless motor), a substrate on which a control circuit for controlling the operation of the electric motor is formed, and a housing accommodating the electric motor and the substrate.
  • the power supply circuit for supplying power is formed by connecting a bus bar connected to a coil and a power supply connector connected to an external power supply via a control circuit.
  • the substrate is arranged outside the axial direction of the electric motor along a direction orthogonal to the axial direction of the rotation axis of the electric motor.
  • the electric pump (a motor unit constituting the motor unit) of Patent Document 1
  • the substrate on which the control circuit is formed is arranged along the direction orthogonal to the axial direction of the motor rotation axis, the electric pump has at least the thickness of the substrate. Increase in size in the direction of division. As the size of the electric pump increases in the axial direction, it becomes difficult to install the electric pump in applications where it is difficult to secure sufficient axial dimensions for the installation space of the electric pump.
  • the present inventors arrange the substrate on which the control circuit is formed along the axial direction of the rotary shaft of the electric motor (the substrate is arranged parallel to the axial direction of the rotary shaft). ) We examined the motor unit.
  • the bus bar and the control circuit that electrically connect the control circuit and the electric motor are used as in Patent Document 1. More electrical components such as power connectors are needed to electrically connect the power sources. In this case, in order to reduce the manufacturing cost of the motor unit, it is desired that the work of electrically connecting the bus bar and the power connector to the board and the work of assembling the board to the housing can be performed as efficiently as possible.
  • an object of the present invention is to provide a motor unit that is compact in the axial direction and has excellent assemblability.
  • the present invention which was devised to achieve the above object, comprises an electric motor, a substrate on which a control circuit for controlling the electric motor is formed, and a housing containing the electric motor and the substrate, and powers the electric motor.
  • the power supply circuit to be supplied relates to a motor unit formed by connecting a bus bar connected to an electric motor and a power supply connector connected to a power supply via a control circuit, and this motor unit has the following features. It has a specific structure.
  • the substrate is arranged along the axial direction of the rotation shaft of the electric motor, and has a first terminal fitting hole and a second terminal fitting hole opened on both the front and back surfaces thereof.
  • the terminal of the bus bar arranged on one side in the axial direction of the board is fitted into the first terminal fitting hole, and the terminal of the power connector arranged on the other side in the axial direction of the board is fitted into the second terminal fitting hole.
  • the bus bar and the power connector are electrically connected via the control circuit, and the substrate is positioned axially with respect to the housing.
  • the motor unit of Patent Document 1 (electric) in which the substrate is arranged in the direction orthogonal to the axial direction of the rotation axis of the electric motor.
  • the motor unit can be made more compact in the axial direction by at least the thickness of the substrate.
  • the terminal of the bus bar arranged on one side in the axial direction of the board is fitted into the first terminal fitting hole provided on the board, and the terminal of the bus bar arranged on one side in the axial direction of the board is fitted into the second terminal fitting hole provided on the board on the other side in the axial direction of the board.
  • the bus bar (terminal) becomes the board (terminal fitting hole) due to some factor (for example, the cumulative tolerance in the axial direction due to the arrangement of multiple parts side by side in the axial direction). It may be displaced in the axial direction with respect to. In this case, the motor unit cannot be assembled.
  • the motor unit according to the present invention has a structure capable of absorbing the axial positional deviation of the bus bar with respect to the substrate which may occur when the motor unit is assembled. Therefore, it is possible to properly assemble the motor unit even when the positional deviation in the axial direction as described above occurs.
  • the bus bar is provided with a first bus bar whose one end is electrically connected to the electric motor and a terminal at one end which is fitted into the first terminal fitting hole of the substrate. It is divided into two bus bars, the other end of the first bus bar is provided with a first axial terminal extending in the axial direction, and the other end of the second bus bar is extended in the axial direction and overlapped in the thickness direction of the substrate. It can be absorbed by providing the second axial terminal which is coupled to the first axial terminal in the arranged state.
  • the positional deviation in the axial direction can be absorbed by providing the bus bar with a three-dimensional shape portion that can be elastically deformed in the axial direction.
  • the motor unit according to the present invention holds a rotation sensor that detects the rotation angle of the rotation axis of the electric motor, and is arranged on one side of the axis direction of the electric motor along a direction orthogonal to the axis direction of the rotation axis.
  • a sensor substrate can be further provided.
  • the terminals provided at one end of the sensor conductor are fitted into the holes opened on both the front and back surfaces of the sensor board, and the above board (the board on which the control circuit is formed) is formed.
  • the control circuit and the rotation sensor can be electrically connected to form a rotation sensor.
  • the electrical connection state of the control circuit can be easily realized.
  • the motor unit according to the present invention has the above-mentioned characteristics. As a result, it is compact in the axial direction and has good assemblability.
  • FIG. 1 is a cross-sectional view taken along the line AA of FIG.
  • FIG. 1 is a cross-sectional view taken along the line BB of FIG.
  • FIG. 3 is a perspective view of an assembly of a stator, a bus bar unit, a main board, and a sensor board of an electric motor constituting the motor unit shown in FIG. 1.
  • FIG. 10 is a partial vertical sectional view of the assembly shown in FIG.
  • FIG. 1 shows a vertical sectional view of a motor unit 1 according to an embodiment of the present invention.
  • the motor unit 1 is mounted on a vehicle such as an automobile, and constitutes a part of an electric pump (electric oil pump) that generates hydraulic pressure in a transmission while the engine is stopped. That is, the electric pump P as shown in FIG. 2 is configured by combining the motor unit 1 and the pump unit 10 (indicated by a two-dot chain line in FIG. 1) driven by receiving the output of the motor unit 1. Will be done.
  • the motor unit 1 shown in FIG. 1 includes an electric motor 2, a substrate 3 on which a control circuit 30 for controlling the operation of the electric motor 2 is formed (hereinafter referred to as “main substrate 3”), the electric motor 2 and a main substrate. It includes a housing 4 accommodating a housing 4, a bus bar unit 5 holding a bus bar 51 as a conductor, and a power supply connector 6 electrically connected to a power source (not shown).
  • the "axial direction”, “radial direction”, and “circumferential direction” used in the following description to indicate the directionality are directions parallel to the axis O of the rotation axis of the electric motor 2, respectively (output direction).
  • the left side of the paper surface in FIG. 1 is referred to as one side in the axial direction
  • the right side of the paper surface in FIG. 1 is referred to as the other side in the axial direction.
  • the housing 4 integrally has a motor accommodating portion 41 accommodating the electric motor 2, a pump accommodating portion 42 accommodating the pump unit 10, and a substrate accommodating portion 43 accommodating the main substrate 3.
  • the housing 4 is made of a metal material (for example, an aluminum alloy) having conductivity and good thermal conductivity.
  • the electric pump P as a finished product, as shown in FIG. 2, the first cover in which the openings of the motor accommodating portion 41, the pump accommodating portion 42, and the substrate accommodating portion 43 are bolted to the housing 4, respectively. 44, closed by the second cover 45 and the third cover 46.
  • the housing 4 integrally has mounting flanges 47 and 48 for mounting the electric pump P to the mounting target (here, the transmission case).
  • Two bolt holes 49 are formed in each of the mounting flanges 47 and 48, and the electric pump P is mounted on the mounting target by screwing a bolt member (not shown) inserted into the bolt holes 49 into the mounting target.
  • the electric motor 2 is a radial gap type three-phase brushless motor including a cylindrical stator 21 and a rotor 23 arranged radially inside the stator 21 through a gap. Is. Therefore, the stator 21 has a coil (U-phase coil, V-phase coil, and W-phase coil) 22 corresponding to the U-phase, V-phase, and W-phase.
  • a coil U-phase coil, V-phase coil, and W-phase coil
  • the rotor 23 has an output shaft 24 as a rotation shaft of the electric motor 2, and the output shaft 24 projects on both sides of the stator 21 in the axial direction.
  • Bearings for example, rolling bearings such as deep groove ball bearings
  • the output shaft 24 is rotatably supported with respect to the housing 4. Note that FIG. 1 shows only the bearing 25 arranged on the other side in the axial direction of the two bearings.
  • the inner rotor 11 of the pump unit 10 is mounted on the other end of the output shaft 24 in the axial direction.
  • a seal 26 is arranged between the inner rotor 11 and the bearing 25.
  • the motor unit 1 of the present embodiment is provided with a detection unit 7 for detecting the rotation angle of the rotor 23 of the electric motor 2.
  • the detection unit 7 is composed of a sensor magnet 7B attached to one end of the output shaft 24 in the axial direction via the bracket 8 and a rotation sensor 7A arranged to face the sensor magnet 7B via a gap in the axial direction. It is composed.
  • the rotation sensor 7 is held on a sensor substrate 9 arranged on the outer side in the axial direction (one side in the axial direction) of the electric motor 2 along a direction (diametrical direction) orthogonal to the axial direction.
  • the rotation sensor 7A for example, a magnetic sensor such as an MR element or a Hall element is adopted
  • the sensor magnet 7B for example, a neodymium bond magnet is adopted.
  • the rotation sensor 7A is electrically connected to the control circuit 30 formed on the main board 3, and the value detected by the rotation sensor 7A is input to the control circuit 30. As a result, the value detected by the rotation sensor 7A is utilized for the operation control of the electric motor 2.
  • the detection unit 7 is not always provided and may be omitted in some cases. That is, the motor unit 1 (electric pump P) may be used in a sensorless state without the rotation sensor 7A (detection unit 7).
  • the pump unit 10 is arranged side by side with the electric motor 2 in the axial direction. As shown in FIGS. 1 and 3, the pump unit 10 is arranged on the radial outer side of the inner rotor 11 and the inner rotor 11 that rotates integrally with the output shaft 24 of the electric motor 2, and is driven by the rotation of the inner rotor 11. It is provided with a rotating outer rotor 12.
  • the outer rotor 12 is located at an eccentric position with respect to the inner rotor 11, and a part of the tooth portions formed on the inner peripheral surface of the outer rotor 12 meshes with a part of the tooth portions formed on the outer peripheral surface of the inner rotor 11.
  • the pump unit 10 having the above configuration is a trochoid pump.
  • the suction side oil flow path 13 and the discharge side oil flow path 14 are provided separately from each other in the housing 4.
  • the suction side oil flow path 13 is a suction side that communicates the suction side space 13a provided inside the housing 4, the suction hole 13b opened on the outer surface of the housing 4, and the suction side space 13a with the external space of the housing 4. It has a continuous passage 13c.
  • the discharge side oil flow path 14 is a discharge side communication provided inside the housing 4, a discharge hole 14b opened on the outer surface of the housing 4, and a discharge side communication between the discharge side space 14a and the external space. It has a passage 14c.
  • Both the suction side space 13a and the discharge side space 14a form an arc extending in the circumferential direction of the output shaft 24 of the electric motor 2, and are provided at positions facing each other by 180 ° in the circumferential direction. Further, both the suction hole 13b and the discharge hole 14b are open to the mounting surface of the outer surface of the housing 4 with respect to the mounting target (see FIG. 2). This eliminates the need to route the oil pipe around the electric pump P, so that the peripheral structure of the electric pump P can be simplified.
  • the main substrate 3 is arranged along the axial direction (arranged in parallel with the axial direction).
  • the mounting surface 31 of the main board 3 extends along the tangential direction of the circle centered on the axis O of the output shaft 24.
  • a plurality of electronic components 32 are mounted on the mounting surface 31 of the main board 3.
  • a capacitor 32a such as an electrolytic capacitor, an inductor 32b, a semiconductor element (switching element) 32c such as a MOSFET, an integrated circuit 32d such as a driver IC, a resistor 32e, and the like are adopted.
  • a control circuit 30 that controls the operation of the electric motor 2 is formed by electrically connecting these electronic components 32.
  • the main substrate 3 is accommodated in the substrate accommodating portion 43 with the mounting surface 31 facing the inner bottom surface of the substrate accommodating portion 43 of the housing 4 (see FIG. 1).
  • a first terminal fitting hole 33 opened on both the front and back surfaces (mounting surface 31 and the surface on the opposite side thereof) of the main board 3 is formed at one end of the main board 3 in the axial direction, and the shaft of the main board 3 is formed.
  • a second terminal fitting hole 34 opened on both the front and back surfaces of the main substrate 3 is formed at the end on the other side in the direction.
  • a third terminal fitting hole 35 opened on both the front and back surfaces of the main board 3 is also formed at one end of the main board 3 on one side in the axial direction.
  • the control circuit 30 constitutes a part of the power supply circuit that supplies electric power to the electric motor 2 (coil 22).
  • the power supply circuit C of the present embodiment includes a control circuit 30, a bus bar 51 having a predetermined shape made of a conductor, and a power supply connector 6. Therefore, the electric motor 2 is driven by the electric power supplied to the coil 22 via the power connector 6, the control circuit 30, and the bus bar 51.
  • the coil 22 is provided with a U-phase coil, a V-phase coil, and a W-phase coil corresponding to the U-phase, V-phase, and W-phase, and the coil of each phase is provided via the bus bar 51. It is connected to the control circuit 30. Therefore, as the bus bar 51, at least three U-phase bus bars, V-phase bus bars, and W-phase bus bars are provided.
  • the bus bar unit 5 is arranged on one side in the axial direction of the electric motor 2 and the main board 3.
  • the bus bar unit 5 functions as a holding member that holds the bus bars (plurality of bus bars) 51 in a non-contact state with each other.
  • the portion of the bus bar unit 5 that holds the bus bar 51 is formed of an insulating material such as resin.
  • bus bar 51 One end of the bus bar 51 is connected to the coil 22 of the electric motor 2, and the other end of the bus bar 51 is formed with a pin-shaped terminal 52 extending in the thickness direction of the main board 3.
  • the terminal 52 is fitted into the first terminal fitting hole 33 of the main board 3 from the mounting surface 31 side of the main board 3. As a result, the electric motor 2 and the control circuit 30 are electrically connected via the bus bar 51.
  • a sensor conductor (sensor signal line) 53 for electrically connecting the rotation sensor 7A and the control circuit 30 is provided.
  • a pin-shaped first terminal 53a extending in the axial direction is provided at one end of the sensor conductor 53, and the first terminal 53a is fitted into a terminal fitting hole 9a opened on both the front and back surfaces of the sensor substrate 9. .
  • a pin-shaped second terminal 53b extending in the thickness direction of the main board 3 is provided, and the second terminal 53b is the main board from the mounting surface 31 side of the main board 3. It is fitted into the third terminal fitting hole 35 of 3.
  • the rotation sensor 7A and the control circuit 30 are electrically connected, and the value detected by the rotation sensor 7A is input to the control circuit 30.
  • the sensor conductor 53 is held in the bus bar unit 5.
  • the power connector 6 is arranged on the other side in the axial direction of the main board 3, and is bolted to the housing 4 (the board accommodating portion 43) from the outside in the axial direction of the housing 4. ..
  • An opening 43a for communicating the substrate accommodating portion 43 and the outside is formed at the other end of the housing 4 in the axial direction, and the conductor 6a held by the power connector 6 accommodates the substrate via the opening 43a.
  • a pin-shaped terminal 6b extending in the thickness direction of the main board 3 is formed at the tip of the conductor 6a, and this terminal 6b is fitted to the second terminal of the main board 3 from the mounting surface 31 side of the main board 3. It is fitted into the hole 34 (see FIG. 5). As a result, the control circuit 30 and the power connector 6 are electrically connected.
  • the motor unit 1 of the present embodiment described above since the main board 3 on which the control circuit 30 is formed is arranged along the axial direction, the board corresponding to the main board 3 is orthogonal to the axial direction. Compared with the conventional motor unit arranged along the direction, the motor unit 1 can be made compact in the axial direction by at least the thickness of the main substrate 3.
  • the terminal 52 of the bus bar 51 arranged on one side of the main board 3 (and the electric motor 2) in the axial direction is fitted into the first terminal fitting hole 33 of the main board 3, and the other side in the axial direction of the main board 3 is fitted.
  • the terminal 6b of the power connector 6 arranged on the side is fitted into the second terminal fitting hole 34 of the main board 3, the terminal 52 of the bus bar 51 and the terminal 6b of the power connector 6 are electrically connected via the control circuit 30.
  • the main board 3 is positioned in the axial direction with respect to the housing 4 (the main board 3 is housed in the board accommodating portion 43 of the housing 4). As a result, it is possible to reduce the labor required for wiring work between electrical parts and reduce the assembly cost of the motor unit 1.
  • the bus bar 51 and the power connector 6 are provided.
  • the connection work between the main board 3 and the main board 3 needs to be performed in a state where one end of the bus bar 51 is connected to the electric motor 2 (the electric motor 2 housed in the motor accommodating portion 41 of the housing 4).
  • the electric motor 2, the housing 4, and the bus bar 51 (bus bar unit 50) arranged side by side in the axial direction each have an axial dimensional tolerance
  • the axial dimensional tolerance of each of these parts is a tolerance.
  • the bus bar 51 (terminal 52) may be displaced in the axial direction with respect to the main board 3 (first terminal fitting hole 33) due to the so-called cumulative tolerance.
  • the terminal 52 of the bus bar 51 cannot be fitted into the first terminal fitting hole 33 of the main board 3, that is, the motor unit 1 cannot be assembled.
  • the motor unit 1 of the present embodiment has a structure capable of absorbing the axial misalignment of the bus bar 51 with respect to the main board 3 that may occur when the motor unit 1 is assembled. As a result, even if the above-mentioned axial misalignment occurs during assembly of the motor unit 1, the above-mentioned misalignment can be made substantially zero, so that the motor unit 1 can be properly assembled. Is possible.
  • FIG. 7 is a perspective view of the assembly of the stator 21, the main board 3, the bus bar unit 5, and the sensor board 29 of the electric motor 2 among the motor units 1 shown in FIG. 1 when viewed from the sensor board 29 side.
  • the illustration of various electronic components 32 mounted on the mounting surface 31 of the main board 3 is omitted.
  • the bus bar 51 (each of the U-phase bus bar, the V-phase bus bar, and the W-phase bus bar) has a first bus bar 51A having one end connected to the coil 22 of the electric motor 2 and one end fitted with the first terminal of the main board 3. It is divided into a second bus bar 51B having a pin-shaped terminal 52 fitted in the hole 33.
  • the other end of the first bus bar 51A is provided with a first axial terminal 56 extending in the axial direction
  • the other end of the second bus bar 51B is provided with a second axial terminal 57 extending in the axial direction.
  • Both the first axial direction terminal 56 and the second axial direction terminal 57 are formed in a flat plate shape, and are coupled to the mating side in a state of being overlapped and arranged in the thickness direction of the main substrate 3.
  • the means for connecting the terminals 56 and 57 is not particularly limited as long as the first bus bar 51A and the second bus bar 51B can be electrically connected, and for example, welding, caulking, bolting, or the like can be adopted. ..
  • both axial terminals 56 and 57 are connected by spot welding, which is a type of welding.
  • the bus bar unit 5 is composed of a first bus bar unit 5A holding the first bus bar 51A, a second bus bar 51B, and a second bus bar unit 5B holding the sensor conductor 53.
  • the second bus bar unit 5B has two projecting portions 58 for positioning the second bus bar unit 5B with respect to the housing 4, and two positioning pins 59 for positioning the protruding portion 58 with respect to the main board 3. It is provided one by one.
  • the housing 4 (the board accommodating portion 43) is provided with a hole 4a into which the protruding portion 58 is fitted, and the main board 3 has a pin insertion hole 36 into which the positioning pin 59 is inserted. It is provided (see also FIG. 5).
  • the motor unit 1 having the above configuration is assembled by following the following procedure.
  • the electric motor 2 is accommodated in the motor accommodating portion 41 of the housing 4, and one end of the first bus bar 51A held by the first bus bar unit 5A is connected to the electric motor 2 (coil 22). Further, the power connector 6 is fixed (bolted) to the housing 4.
  • the second bus bar unit 5B is introduced into the substrate accommodating portion 43 of the housing 4, and the second bus bar unit 5B is mounted on the housing 4.
  • the second bus bar unit 5B is positioned with respect to the housing 4 by fitting the protruding portion 58 provided in the second bus bar unit 5B into the hole portion 4a provided in the housing 4. Even if the second bus bar unit 5B is bolted to the housing 4 in order to prevent the second bus bar unit 5B from moving relative to the housing 4 after the protruding portion 58 is fitted into the hole 4a. Good (see Figure 9).
  • the first axial terminal 56 provided on the first bus bar 51A and the second axial terminal 57 provided on the second bus bar 51B become the main board. They are overlapped in the thickness direction of 3 (see FIG. 7).
  • the two opposing surfaces of the biaxially oriented terminals 56 and 57 may be in contact with each other or may be opposed to each other via a slight gap.
  • the main board 3 on which the control circuit 30 is formed is introduced into the board accommodating portion 43 of the housing 4.
  • This introduction work is performed by inserting the positioning pin 59 provided in the second bus bar unit 5B into the pin insertion hole 36 of the main board 3.
  • the terminals 52 and 53b provided in the second bus bar unit 5B are fitted into the first terminal fitting hole 33 and the third terminal fitting hole 35 of the main board 3, respectively, and the power connector 6 (FIG. FIG. In No. 9, the terminal 6b (not shown) is fitted into the second terminal fitting hole 34 (see FIG. 1).
  • the terminal 52 provided on the second bus bar unit 5B (second bus bar 51B) and the terminal 6b of the power connector 6 are electrically connected via the control circuit 30.
  • the terminals 56 and 57 in both axial directions are connected by welding (spot welding), and the first bus bar 51A and the second bus bar 51B are connected.
  • spot welding spot welding
  • the assembly of the electric motor 2, the main board 3, the bus bar unit 5, and the power connector 6 to the housing 4 is completed, and at the same time, the coil 22 and the power connector 6 of the electric motor 2 are replaced with the bus bar 51 (the first bus bar 51A).
  • a feeding circuit C (see FIG. 6) electrically connected via a second bus bar 51B coupling) and a control circuit 30 is formed.
  • the bus bar 51 is provided with a first bus bar 51A having one end connected to the electric motor 2 and a terminal 52 connected to the control circuit 30 at one end, and is coupled to the first bus bar 51A at the other end. Since it is divided into a second bus bar 51B provided with a terminal, it is necessary to manage the axial relative positions of the first bus bar 51A and the second bus bar 51B coupled to each other when assembling the motor unit 1. Become. In this regard, since the first bus bar 51A and the second bus bar 51B are connected by connecting the first axial direction terminal 56 and the second axial direction terminal 57 arranged so as to overlap each other in the thickness direction of the main board 3, the first bus bar 51A and the second bus bar 51B are connected.
  • the terminals 52 of the bus bar 51 and the terminals 6b of the power connector 6 are electrically connected via the control circuit 30.
  • the connection status is secured.
  • the motor unit 1 can be appropriately assembled (the power supply circuit C is appropriately formed).
  • FIG. 10 is a perspective view showing an assembly of a stator 21 of an electric motor 2 and a bus bar unit 5 among the motor units 1 according to another embodiment of the present invention
  • FIG. 11 is a partial vertical cross section of the motor unit 1.
  • the bus bar 51 (each of the U-phase bus bar, the V-phase bus bar, and the W-phase bus bar) held in the bus bar unit 5 is the same as that of the embodiment described with reference to FIGS. 7-9. It is not divided and consists of one part. That is, one end of each bus bar 51 is connected to the coil 22 of the electric motor 2, and the other end extends in the thickness direction of the main board 3 and is fitted into the first terminal fitting hole 33 of the main board 3.
  • Has 52 is not divided and consists of one part. That is, one end of each bus bar 51 is connected to the coil 22 of the electric motor 2, and the other end extends in the thickness direction of the main board 3 and is fitted into the first terminal fitting hole 33 of the main board 3.
  • the motor unit 1 of the present embodiment is characterized in that the bus bar 51 is provided with elastically deformable three-dimensional shaped portions 60 on both sides in the axial direction.
  • the three-dimensional shape portion 60 of the present embodiment is formed by bending a part of the bus bar 51 (a portion located on the radial outer side of the electric motor 2) into an L shape, and is arranged near the terminal 52. It goes without saying that the form of the three-dimensional shape portion 60 shown in the figure is merely an example and can be changed as appropriate.
  • the bus bar unit 5 also holds a sensor conductor 53 that electrically connects the rotation sensor 7A (see FIG. 1) and the control circuit 30.
  • the bus bar unit 5 of the present embodiment corresponds to the structure in which the first bus bar unit 5A and the second bus bar unit 5B described above are integrated.
  • the motor unit 1 of this embodiment is assembled as follows. (1) First, the electric motor 2 is accommodated in the motor accommodating portion 41 of the housing 4, and one end of the bus bar 51 held by the bus bar unit 5 is connected to the coil 22 of the electric motor 2. Further, the power connector 6 is fixed (bolted) to the housing 4. (2) Next, the main board 3 is introduced into the board accommodating portion 43 of the housing 4, and the terminal 52 of the bus bar 51 and the terminal 6b of the power connector 6 are fitted into the first terminal fitting hole 33 and the second terminal of the main board 3. It is fitted into each of the holes 34. As a result, an assembly in which the electric motor 2, the bus bar unit 5, the main board 3 and the power connector 6 are assembled to the housing 4 is obtained.
  • the second terminal 53b of the sensor conductor 53 is fitted into the third terminal fitting hole 35 of the main board 3. Fit. (3) Finally, the first terminal 53a of the sensor conductor 53 is fitted into the hole portion 9a of the sensor substrate 9, and the control circuit 30 and the rotation sensor 7A are electrically connected.
  • the bus bar 51 (terminal 52) is fitted into the main board 3 (first terminal) for the same reason as described above.
  • the motor unit 1 cannot be assembled due to the positional deviation in the axial direction with respect to the joint hole 33).
  • the bus bar 51 is provided with elastically deformable three-dimensional shaped portions 60 on both sides in the axial direction, even if the bus bar 51 is displaced in the axial direction with respect to the main substrate 3, the bus bar 51 is provided.
  • the terminal 52 of the bus bar 51 can be fitted into the terminal fitting hole 33 of the main board 3. Therefore, the motor unit 1 can be reliably assembled.
  • the above-mentioned characteristic configuration adopted in the present embodiment enables the motor unit 1 to be reliably assembled in the same manner as the characteristic configuration of the present invention mainly described with reference to FIGS. 7 to 9.
  • the characteristic configuration adopted in the present embodiment is effective in reducing the cost of the motor unit 1 because the number of parts and the labor required for assembly can be reduced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Motor Or Generator Frames (AREA)
  • Rotary Pumps (AREA)

Abstract

電動モータ2、およびその制御回路30が形成されたメイン基板3を収容したハウジング4を備え、電動モータ2への給電回路Cが、バスバー51と電源コネクタ6とを制御回路30を介して接続することで形成されるモータユニット1である。メイン基板3は軸方向に沿って配置され、その軸方向一方側および他方側にそれぞれ配置されるバスバー51および電源コネクタ6の端子52,6bがメイン基板3に嵌合されることにより、バスバー51と電源コネクタ6が制御回路30を介して電気的に接続されると共にメイン基板3がハウジング4に対して軸方向に位置決めされる。また、このモータユニット1は、メイン基板3に対するバスバー51の軸方向の位置ズレを吸収可能な構造を有する。

Description

モータユニットおよびこれを備える電動ポンプ
 本発明は、モータユニットおよびこれを備える電動ポンプに関する。
 近年、自動車をはじめとする車両においては、その各部へのオイルの供給を、電動ポンプを用いて行う場合がある。例えば、アイドリングストップ機構(停車中にエンジンを自動停止する機構)を備えた車両においては、トランスミッションケースに電動ポンプを装着し、この電動ポンプで停車中のトランスミッション内部で必要とされる油圧を発生させるようにしている。この種の電動ポンプとしては、例えば下記の特許文献1に開示されたものが公知である。
 特許文献1に開示された電動ポンプは、モータ部(モータユニット)と、モータユニットの出力を受けて駆動されるポンプ部(ポンプユニット)とを備える。モータユニットは、電動モータ(例えば三相ブラシレスモータ)と、電動モータの作動を制御する制御回路が形成された基板と、電動モータおよび基板を収容したハウジングとを備え、電動モータ(のコイル)に電力を供給する給電回路は、コイルに接続されたバスバーと外部電源に接続される電源コネクタとを制御回路を介して接続することで形成される。基板は、電動モータの軸方向外側に、電動モータの回転軸の軸方向と直交する方向に沿って配置される。
特開2015-105601号公報
 特許文献1の電動ポンプ(を構成するモータユニット)では、制御回路が形成された基板がモータ回転軸の軸方向と直交する方向に沿って配置される関係上、電動ポンプが少なくとも上記基板の厚み分軸方向に大型化する。電動ポンプが軸方向に大型化すると、電動ポンプの設置スペースに十分な軸方向寸法を確保することが難しい用途においては、電動ポンプの取り付けが困難となる。
 そこで、本発明者らは、電動ポンプを軸方向にコンパクト化すべく、制御回路が形成された基板を電動モータの回転軸の軸方向に沿って配置(基板を回転軸の軸方向と平行に配置)してなるモータユニットを検討した。
 上記のモータユニットにおいて、基板に形成した制御回路を介して電動モータを電源に接続する場合には、特許文献1と同様に、制御回路と電動モータを電気的に接続するバスバーや、制御回路と電源を電気的に接続する電源コネクタなどの電気部品がさらに必要になる。この場合、モータユニットの製造コスト低減を図る上で、バスバーおよび電源コネクタと上記基板との電気的な接続作業や、ハウジングに対する基板の組み付け作業をできるだけ効率良く実行可能であることが望まれる。
 上記の実情に鑑み、本発明は、軸方向にコンパクトで、組立性に優れたモータユニットを提供することを目的とする。
 上記の目的を達成するために創案された本発明は、電動モータと、電動モータを制御する制御回路が形成された基板と、電動モータおよび基板を収容したハウジングとを備え、電動モータに電力を供給する給電回路が、電動モータに接続されたバスバーと電源に接続される電源コネクタとを制御回路を介して接続することで形成されるモータユニットに関するものであり、このモータユニットは、以下の特徴的構成を有する。
・基板は、電動モータの回転軸の軸方向に沿って配置されると共に、その表裏両面に開口した第1端子嵌合孔および第2端子嵌合孔を有する。
・基板の軸方向一方側に配置されるバスバーの端子を第1端子嵌合孔に嵌合すると共に、基板の軸方向他方側に配置される電源コネクタの端子を第2端子嵌合孔に嵌合することにより、バスバーと電源コネクタが制御回路を介して電気的に接続されると共に基板がハウジングに対して軸方向に位置決めされる。
 上記のように、基板が電動モータの回転軸の軸方向に沿って配置されていれば、基板が電動モータの回転軸の軸方向に直交する方向に配置される特許文献1のモータユニット(電動ポンプ)に比べ、少なくとも基板の厚さ分モータユニットを軸方向にコンパクト化することができる。
 また、基板に設けた第1端子嵌合孔に基板の軸方向一方側に配置されるバスバーの端子を嵌合すると共に、基板に設けた第2端子嵌合孔に基板の軸方向他方側に配置される電源コネクタの端子を嵌合することにより、バスバーと電源コネクタが制御回路を介して電気的に接続されると共にハウジングに対する基板の軸方向の位置決めがなされる。そのため、モータユニットの組立性を高めることができる。
 ところで、上記構成を有するモータユニットの組立時には、基板(の端子嵌合孔)に対するバスバー(の端子)および電源コネクタ(の端子)の軸方向相対位置が正確に管理されている必要がある。しかしながら、ハウジングへの基板の組み付け時には、何らかの要因(例えば、複数の部品が軸方向に並べて配置されることによる軸方向の累積公差)により、バスバー(の端子)が基板(の端子嵌合孔)に対して軸方向に位置ズレする場合がある。この場合には、モータユニットを組み立てることができなくなる。
 係る問題に対し、本発明に係るモータユニットは、モータユニットの組立時に生じ得る基板に対するバスバーの軸方向の位置ズレを吸収可能な構造を有する。そのため、上記のような軸方向の位置ズレが生じた場合でも、モータユニットを適切に組み立てることが可能となる。
 上記軸方向の位置ズレは、例えば、バスバーを、一端が電動モータと電気的に接続される第1バスバーと、一端に基板の第1端子嵌合孔に嵌合される端子が設けられた第2バスバーとに分割し、第1バスバーの他端に、軸方向に延びた第1軸方向端子を設けると共に、第2バスバーの他端に、軸方向に延び、基板の厚さ方向に重ねて配置された状態で上記第1軸方向端子と結合される第2軸方向端子を設けることにより吸収することができる。
 また、上記軸方向の位置ズレは、バスバーに、軸方向に弾性変形可能な立体形状部を設けることによって吸収することもできる。
 本発明に係るモータユニットには、電動モータの回転軸の回転角を検出する回転センサを保持し、電動モータの軸方向一方側に上記回転軸の軸方向と直交する方向に沿って配置されたセンサ基板をさらに設けることができる。このようなセンサ基板を設けた場合において、センサ基板の表裏両面に開口した孔部に対してセンサ用導体の一端に設けた端子を嵌合すると共に、上記基板(制御回路が形成される基板)の表裏両面に開口した第3孔部に対してセンサ用導体の他端に設けた端子を嵌合することにより、制御回路と回転センサとを電気的に接続するようにすれば、回転センサと制御回路の電気的な接続状態を容易に実現することができる。
 以上で説明した本発明に係るモータユニットと、このモータユニットの駆動力を受けて油圧を発生させるポンプユニットとを備えた電動オイルポンプは、本発明に係るモータユニットが上記のような特徴を有していることにより、軸方向にコンパクトで、かつ組立性が良好であるという特徴を有する。
 以上のことから、本発明によれば、軸方向にコンパクトで、組立性が良好なモータユニットを提供することが可能となる。
本発明の一実施形態に係るモータユニットの縦断面図である。 図1に示すモータユニットを含む電動ポンプの斜視図である。 図1のA-A線矢視断面図である。 図1のB-B線矢視断面図である。 基板(メイン基板)の実装面の平面図である。 給電回路の構成を模式的に示すブロック図である。 図1に示すモータユニットを構成する電動モータのステータ、バスバーユニット、メイン基板およびセンサ基板のアセンブリの斜視図である。 バスバーユニットを構成する第2バスバーユニット、およびこれが装着されるハウジング(の一部)を示す斜視図である。 ハウジングに対する基板(メイン基板)の組み付け作業の様子を示す概略斜視図である。 本発明の他の実施形態に係るモータユニットを構成する電動モータのステータとバスバーユニットのアセンブリの斜視図である。 図10に示すアセンブリの部分縦断面図である。
 以下、本発明の実施の形態を図面に基づいて説明する。
 図1に、本発明の一実施形態に係るモータユニット1の縦断面図を示す。このモータユニット1は、例えば、自動車等の車両に搭載され、エンジンの停止中にトランスミッションに油圧を発生させる電動ポンプ(電動オイルポンプ)の一部を構成するものである。つまり、このモータユニット1と、このモータユニット1の出力を受けて駆動されるポンプユニット10(図1中に二点鎖線で示す)とを組み合わせることで図2に示すような電動ポンプPが構成される。
 図1に示すモータユニット1は、電動モータ2と、電動モータ2の作動を制御する制御回路30が形成された基板3(以下、「メイン基板3」と言う)と、電動モータ2およびメイン基板3を収容したハウジング4と、導体としてのバスバー51を保持したバスバーユニット5と、図示外の電源に電気的に接続される電源コネクタ6とを備える。なお、方向性を示すために以下の説明で使用する「軸方向」、「径方向」および「周方向」とは、それぞれ、電動モータ2の回転軸の軸心Oと平行な方向(出力軸24の軸方向)、軸心Oを中心とする円の径方向(出力軸24の径方向)、および軸心Oを中心とする円の周方向(出力軸24の周方向)である。また、図1の紙面左側を軸方向一方側と言い、図1の紙面右側を軸方向他方側と言う。
 ハウジング4は、電動モータ2を収容したモータ収容部41と、ポンプユニット10を収容するポンプ収容部42と、メイン基板3を収容した基板収容部43とを一体に有する。このハウジング4は、導電性を有し、かつ熱伝導性が良好な金属材料(例えばアルミニウム合金)で形成される。完成品としての電動ポンプPにおいては、図2に示すように、モータ収容部41、ポンプ収容部42および基板収容部43の開口部が、それぞれ、ハウジング4に対してボルト止めされた第1カバー44、第2カバー45および第3カバー46で閉塞される。
 ハウジング4は、電動ポンプPを取り付け対象(ここではトランスミッションケース)に取り付けるための取付フランジ47,48を一体に有する。これら取付フランジ47,48にはボルト孔49が2つずつ形成されており、ボルト孔49に挿入したボルト部材(図示省略)を取り付け対象にねじ込むことにより電動ポンプPが取り付け対象に取り付けられる。
 図1および図4に示すように、電動モータ2は、円筒状のステータ21と、ステータ21の径方向内側に隙間を介して配置されたロータ23とを備えたラジアルギャップ型の三相ブラシレスモータである。そのため、ステータ21は、U相、V相およびW相に対応したコイル(U相コイル、V相コイルおよびW相コイル)22を有する。
 ロータ23は、電動モータ2の回転軸としての出力軸24を有し、この出力軸24はステータ21の軸方向両側に突出している。出力軸24のうち、ステータ21の軸方向一方側および軸方向他方側に突出した部分には、軸受(例えば、深溝玉軸受等の転がり軸受)25がそれぞれ装着され、これら2つの軸受25を介して出力軸24がハウジング4に対して回転自在に支持される。なお、図1においては、2つの軸受のうち軸方向他方側に配置された軸受25のみを示している。
 出力軸24の軸方向他方側の端部には、ポンプユニット10のインナロータ11が装着される。このインナロータ11と上記軸受25との間にシール26が配置されている。シール26としては、例えば、出力軸24の外周面に接触したシールリップを備える接触タイプが採用される。このようなシール26が配置されていることにより、ポンプユニット10から電動モータ2側へのオイルの移動が阻止される。
 本実施形態のモータユニット1には、電動モータ2のロータ23の回転角を検出するための検出部7が設けられる。検出部7は、ブラケット8を介して出力軸24の軸方向一方側の端部に取り付けられたセンサマグネット7Bと、軸方向の隙間を介してセンサマグネット7Bと対向配置された回転センサ7Aとで構成される。回転センサ7は、電動モータ2の軸方向外側(軸方向一方側)に、軸方向に対して直交する方向(径方向)に沿って配置されたセンサ基板9に保持される。回転センサ7Aとしては、例えばMR素子やホール素子等の磁気センサが採用され、センサマグネット7Bとしては、例えばネオジムボンド磁石が採用される。
 回転センサ7Aは、メイン基板3に形成される制御回路30と電気的に接続され、回転センサ7Aによる検出値は制御回路30に入力される。これにより、回転センサ7Aによる検出値が電動モータ2の作動制御に活用される。なお、この検出部7は必ずしも設けられるわけではなく、省略される場合もある。すなわち、モータユニット1(電動ポンプP)は、回転センサ7A(検出部7)を具備しないセンサレスの状態で使用される場合もある。
 ポンプユニット10は、電動モータ2と軸方向に並べて配置される。図1および図3に示すように、ポンプユニット10は、電動モータ2の出力軸24と一体的に回転するインナロータ11と、インナロータ11の径方向外側に配置され、インナロータ11の回転に伴って従動回転するアウタロータ12とを備える。アウタロータ12は、インナロータ11に対して偏心した位置にあり、アウタロータ12の内周面に形成された一部の歯部がインナロータ11の外周面に形成された一部の歯部と噛み合っている。なお、インナロータ11の歯数をn(但し、nは2以上の正の整数)とすると、アウタロータ12の歯数は(n+1)である。以上の構成を有するポンプユニット10は、トロコイドポンプである。
 図3に示すように、ハウジング4には、吸入側オイル流路13と吐出側オイル流路14とが互いに分離して設けられる。吸入側オイル流路13は、ハウジング4の内部に設けられた吸入側空間13aと、ハウジング4の外表面に開口した吸入孔13bと、吸入側空間13aとハウジング4の外部空間を連通させる吸入側連通路13cとを有する。また、吐出側オイル流路14は、ハウジング4の内部に設けられた吐出側空間14aと、ハウジング4の外表面に開口した吐出孔14bと、吐出側空間14aと外部空間を連通させる吐出側連通路14cとを有する。
 吸入側空間13aおよび吐出側空間14aは、何れも、電動モータ2の出力軸24の周方向に延びる円弧状をなし、周方向で180°対向する位置に設けられる。また、吸入孔13bおよび吐出孔14bは、何れも、ハウジング4の外表面のうち取り付け対象に対する取り付け面に開口している(図2参照)。これにより、電動ポンプPの周囲にオイル用配管を引き回す必要がなくなるので、電動ポンプPの周辺構造を簡略化できる。
 図1(および図7)に示すように、メイン基板3は軸方向に沿って配置(軸方向と平行に配置)されている。メイン基板3の実装面31は出力軸24の軸心Oを中心とする円の接線方向に沿って延びている。
 図5に示すように、メイン基板3の実装面31には、複数の電子部品32が実装されている。電子部品32としては、例えば、電解コンデンサ等のコンデンサ32a、インダクタ32b、MOSFET等の半導体素子(スイッチング素子)32c、ドライバIC等の集積回路32d、および抵抗器32eなどが採用される。そして、これらの電子部品32を電気的に接続することにより電動モータ2の作動を制御する制御回路30が形成されている。メイン基板3は、実装面31をハウジング4の基板収容部43の内底面に対向させた状態で基板収容部43に収容される(図1参照)。
 メイン基板3の軸方向一方側の端部には、メイン基板3の表裏両面(実装面31およびその反対側の面)に開口した第1端子嵌合孔33が形成され、メイン基板3の軸方向他方側の端部には、メイン基板3の表裏両面に開口した第2端子嵌合孔34が形成されている。また、メイン基板3の軸方向一方側の端部には、メイン基板3の表裏両面に開口した第3端子嵌合孔35も形成されている。これらの端子嵌合孔33~35は制御回路30と導通可能に形成されている。
 制御回路30は、電動モータ2(のコイル22)に電力を供給する給電回路の一部を構成する。図6に模式的に示すように、本実施形態の給電回路Cは、制御回路30と、導体からなる所定形状のバスバー51と、電源コネクタ6とで構成される。従って、電動モータ2は、電源コネクタ6、制御回路30およびバスバー51を介してコイル22に供給される電力により駆動される。なお、上記のとおり、コイル22としては、U相、V相およびW相に対応するU相コイル、V相コイルおよびW相コイルが設けられており、各相のコイルは、バスバー51を介して制御回路30に接続される。そのため、バスバー51としては、U相用バスバー、V相用バスバーおよびW相用バスバーの少なくとも3本が設けられる。
 バスバーユニット5は、電動モータ2およびメイン基板3の軸方向一方側に配置される。このバスバーユニット5は、バスバー(複数のバスバー)51を互いに非接触の状態で保持した保持部材として機能する。バスバーユニット5のうち、バスバー51を保持している部分は、樹脂等の絶縁材料で形成される。
 バスバー51の一端は電動モータ2のコイル22に接続され、バスバー51の他端にはメイン基板3の厚さ方向に延びるピン状の端子52が形成されている。この端子52はメイン基板3の実装面31側からメイン基板3の第1端子嵌合孔33に嵌合されている。これにより、電動モータ2と制御回路30がバスバー51を介して電気的に接続される。
 ロータ23の回転角を検出する検出部7が設けられる本実施形態においては、回転センサ7Aと制御回路30を電気的に接続するためのセンサ用導体(センサ信号線)53が設けられる。センサ用導体53の一端には、軸方向に延びたピン状の第1端子53aが設けられ、この第1端子53aはセンサ基板9の表裏両面に開口した端子嵌合孔9aに嵌合される。また、センサ用導体53の他端には、メイン基板3の厚さ方向に延びたピン状の第2端子53bが設けられ、この第2端子53bはメイン基板3の実装面31側からメイン基板3の第3端子嵌合孔35に嵌合される。これにより、回転センサ7Aと制御回路30が電気的に接続され、回転センサ7Aによる検出値が制御回路30に入力される。このセンサ用導体53はバスバーユニット5に保持されている。
 図1および図2に示すように、電源コネクタ6は、メイン基板3の軸方向他方側に配置され、ハウジング4(の基板収容部43)に対してハウジング4の軸方向外側からボルト止めされる。ハウジング4の軸方向他方側の端部には基板収容部43と外部を連通させる開口部43aが形成されており、電源コネクタ6に保持された導体6aは、上記開口部43aを介して基板収容部43に導入される。導体6aの先端部には、メイン基板3の厚さ方向に延びるピン状の端子6bが形成されており、この端子6bはメイン基板3の実装面31側からメイン基板3の第2端子嵌合孔34(図5参照)に嵌合される。これにより、制御回路30と電源コネクタ6が電気的に接続される。
 以上で説明した本実施形態のモータユニット1では、制御回路30が形成されたメイン基板3を軸方向に沿って配置しているので、メイン基板3に対応する基板が軸方向に対して直交する方向に沿って配置される従来のモータユニットに比べ、少なくともメイン基板3の厚さ分モータユニット1を軸方向にコンパクト化することができる。
 また、メイン基板3(および電動モータ2)の軸方向一方側に配置されたバスバー51の端子52をメイン基板3の第1端子嵌合孔33に嵌合すると共に、メイン基板3の軸方向他方側に配置された電源コネクタ6の端子6bをメイン基板3の第2端子嵌合孔34に嵌合することにより、バスバー51の端子52と電源コネクタ6の端子6bが制御回路30を介して電気的に接続されるのと同時に、ハウジング4に対するメイン基板3の軸方向の位置決めがなされる(メイン基板3がハウジング4の基板収容部43に収容される)。これにより、電気部品同士の結線作業等に要する手間を軽減し、モータユニット1の組み立てコストを低減することができる。
 ところで、上記構成のモータユニット1を組み立てる際には、バスバー51(バスバーユニット50)および電源コネクタ6に対するメイン基板3の軸方向相対位置が正確に管理されている必要がある。また、電動モータ2を収容するモータ収容部41とメイン基板3を収容する基板収容部43が一体に設けられたハウジング4を用いる本実施形態のモータユニット1の構成上、バスバー51および電源コネクタ6とメイン基板3の接続作業は、バスバー51の一端を電動モータ2(ハウジング4のモータ収容部41に収容された電動モータ2)と接続した状態で行う必要がある。
 しかしながら、軸方向に並べて配置される電動モータ2、ハウジング4およびバスバー51(バスバーユニット50)のそれぞれには軸方向の寸法公差が設けられている関係上、これらの部品の軸方向寸法がそれぞれ公差範囲内に収まっていても、いわゆる累積公差のために、バスバー51(の端子52)がメイン基板3(の第1端子嵌合孔33)に対して軸方向に位置ズレする場合がある。この場合、バスバー51の端子52をメイン基板3の第1端子嵌合孔33に嵌合すること、つまりモータユニット1を組み立てることができなくなる。
 そこで、本実施形態のモータユニット1は、モータユニット1の組立時に生じ得る、メイン基板3に対するバスバー51の軸方向の位置ズレを吸収可能な構造を有する。これにより、モータユニット1の組立時に上記のような軸方向の位置ズレが生じた場合でも、上記の位置ズレを実質的にゼロにすることが可能となるので、モータユニット1を適切に組み立てることが可能となる。
 以下、上記位置ズレを吸収可能な構造の具体的な一例について図面を参照しながら詳細に説明する。
 図7は、図1に示すモータユニット1のうち、電動モータ2のステータ21、メイン基板3、バスバーユニット5およびセンサ基板29のアセンブリをセンサ基板29側から見たときの斜視図である。同図においては、メイン基板3の実装面31に装着される各種電子部品32の図示を省略している。
 バスバー51(U相用バスバー、V相用バスバーおよびW相用バスバーのそれぞれ)は、一端が電動モータ2のコイル22と接続された第1バスバー51Aと、一端にメイン基板3の第1端子嵌合孔33に嵌合されたピン状の端子52を有する第2バスバー51Bとに分割されている。第1バスバー51Aの他端には、軸方向に延びる第1軸方向端子56が設けられ、第2バスバー51Bの他端には、軸方向に延びる第2軸方向端子57が設けられている。第1軸方向端子56と第2軸方向端子57は、何れも平板状に形成され、メイン基板3の厚さ方向に重ねて配置された状態で相手側と結合されている。両端子56,57の結合手段は、第1バスバー51Aと第2バスバー51Bを電気的に接続し得るものであれば特に制限はなく、例えば、溶接、かしめ、ボルト止めなどを採用することができる。ここでは、溶接の一種であるスポット溶接によって両軸方向端子56,57を結合している。
 バスバーユニット5は、第1バスバー51Aを保持した第1バスバーユニット5Aと、第2バスバー51B、さらにはセンサ用導体53を保持した第2バスバーユニット5Bとで構成される。図8にも示すように、第2バスバーユニット5Bには、これをハウジング4に対して位置決めするための突状部58と、これをメイン基板3に対して位置決めするための位置決めピン59が2つずつ設けられている。これに対応して、ハウジング4(の基板収容部43)には突状部58が嵌合される孔部4aが設けられ、メイン基板3には位置決めピン59が挿入されるピン挿入孔36が設けられている(図5も併せて参照)。
 以上の構成を具備するモータユニット1は以下のような手順を踏んで組み立てられる。
 まず、ハウジング4のモータ収容部41に電動モータ2を収容すると共に、電動モータ2(のコイル22)に第1バスバーユニット5Aに保持された第1バスバー51Aの一端を接続する。また、ハウジング4に対して電源コネクタ6を固定(ボルト止め)する。
 次いで、図8に示すように、第2バスバーユニット5Bをハウジング4の基板収容部43に導入し、第2バスバーユニット5Bをハウジング4に装着する。このとき、第2バスバーユニット5Bに設けた突状部58をハウジング4に設けた孔部4aに嵌合することにより、第2バスバーユニット5Bをハウジング4に対して位置決めする。孔部4aに突状部58を嵌合した後、第2バスバーユニット5Bがハウジング4に対して相対移動するのを防止するため、第2バスバーユニット5Bをハウジング4に対してボルト止めしても良い(図9参照)。
 以上のようにして、第2バスバーユニット5Bがハウジング4に装着されると、第1バスバー51Aに設けた第1軸方向端子56と第2バスバー51Bに設けた第2軸方向端子57がメイン基板3の厚さ方向で重ね合わされる(図7参照)。なお、両軸方向端子56,57の対向二面は、互いに接触する場合もあるし、僅かな隙間を介して対向する場合もある。
 次いで、図9に示すように、制御回路30が形成されたメイン基板3をハウジング4の基板収容部43に導入する。この導入作業は、第2バスバーユニット5Bに設けた位置決めピン59をメイン基板3のピン挿入孔36に挿入するようにして行う。これに伴い、第2バスバーユニット5Bに設けられた端子52、53bがメイン基板3の第1端子嵌合孔33および第3端子嵌合孔35にそれぞれ嵌合され、また、電源コネクタ6(図9においては図示省略)の端子6bが第2端子嵌合孔34に嵌合される(図1参照)。これにより、第2バスバーユニット5B(第2バスバー51B)に設けられた端子52と電源コネクタ6の端子6bが制御回路30を介して電気的に接続される。
 最後に、両軸方向端子56,57を溶接(スポット溶接)により結合し、第1バスバー51Aと第2バスバー51Bを接続する。これにより、ハウジング4に対する電動モータ2、メイン基板3、バスバーユニット5および電源コネクタ6の組み付けが完了するのと同時に、電動モータ2のコイル22と電源コネクタ6が、バスバー51(第1バスバー51Aと第2バスバー51Bの結合体)および制御回路30を介して電気的に接続された給電回路C(図6参照)が形成される。
 上記構成によれば、バスバー51が、一端が電動モータ2に接続された第1バスバー51Aと、一端に制御回路30に接続された端子52が設けられ、他端に第1バスバー51Aと結合される端子が設けられた第2バスバー51Bとに分割されているので、モータユニット1の組立時には、互いに結合される第1バスバー51Aと第2バスバー51Bの軸方向相対位置を管理することが必要になる。これに関し、第1バスバー51Aと第2バスバー51Bは、メイン基板3の厚さ方向に重ねて配置される第1軸方向端子56と第2軸方向端子57を結合することで接続されるので、第1バスバー51Aが第2バスバー52Bに対して軸方向に位置ズレしていても、両軸方向端子56,57の重合構造で上記軸方向の位置ズレを吸収することができる。そのため、電動モータ2と制御回路30を、バスバー51を介して適切に接続することができる。
 また、上記のように、バスバー51を介して電動モータ2と制御回路30を接続するのに先立って、制御回路30を介してのバスバー51の端子52と電源コネクタ6の端子6bの電気的な接続状態は確保されている。以上のことから、モータユニット1を適切に組み立てる(給電回路Cを適切に形成する)ことができる。
 以下、上記位置ズレを吸収可能な構造の具体的な他例について図面を参照しながら詳細に説明する。
 図10は、本発明の他の実施形態に係るモータユニット1のうち、電動モータ2のステータ21とバスバーユニット5のアセンブリを示す斜視図であり、図11は、同モータユニット1の部分縦断面図である。この実施形態において、バスバーユニット5に保持されたバスバー51(U相用バスバー、V相用バスバーおよびW相用バスバーのそれぞれ)は、図7-9を参照して説明した実施形態のように二分割されておらず、一部品で構成される。すなわち、各バスバー51は、一端が電動モータ2のコイル22に接続され、他端に、メイン基板3の厚さ方向に延び、メイン基板3の第1端子嵌合孔33に嵌合される端子52を有する。
 本実施形態のモータユニット1は、バスバー51に、軸方向両側に弾性変形可能な立体形状部60を設けた点に特徴がある。本実施形態の立体形状部60は、バスバー51の一部(電動モータ2の径方向外側に位置する部分)をL字状に折り曲げることで形成され、端子52の近傍位置に配置されている。なお、図示している立体形状部60の形態はあくまでも一例であり、適宜変更可能であることは言うまでもない。
 図10に示すように、バスバーユニット5は、回転センサ7A(図1参照)と制御回路30を電気的に接続するセンサ用導体53も併せて保持している。要するに、本実施形態のバスバーユニット5は、前述した第1バスバーユニット5Aと第2バスバーユニット5Bとを一体化した構造に相当する。
 本実施形態のモータユニット1は、以下のようにして組み立てられる。
(1)まず、ハウジング4のモータ収容部41に電動モータ2を収容し、バスバーユニット5に保持されたバスバー51の一端を電動モータ2のコイル22に接続する。また、ハウジング4に対して電源コネクタ6を固定(ボルト止め)する。
(2)次いで、メイン基板3をハウジング4の基板収容部43に導入し、バスバー51の端子52および電源コネクタ6の端子6bを、メイン基板3の第1端子嵌合孔33および第2端子嵌合孔34にそれぞれ嵌合させる。これにより、ハウジング4に対して電動モータ2、バスバーユニット5、メイン基板3および電源コネクタ6が組み付けられたアセンブリを得る。バスバー51の端子52をメイン基板3の第1端子嵌合孔33に嵌合する際には、これと同時にセンサ用導体53の第2端子53bをメイン基板3の第3端子嵌合孔35に嵌合する。
(3)最後に、センサ基板9の孔部9aにセンサ用導体53の第1端子53aを嵌合し、制御回路30と回転センサ7Aを電気的に接続する。
 上記の手順でモータユニット1を組み立てるにあたり、メイン基板3をハウジング4の基板収容部43に導入したときには、上記同様の理由により、バスバー51(の端子52)がメイン基板3(の第1端子嵌合孔33)に対して軸方向に位置ズレし、モータユニット1を組み立てることができなくなるおそれがある。この点、本実施形態では、バスバー51に軸方向両側に弾性変形可能な立体形状部60を設けているので、バスバー51がメイン基板3に対して軸方向に位置ズレしても、バスバー51を変形(弾性変形)させることによってバスバー51の端子52をメイン基板3の端子嵌合孔33に嵌合することができる。そのため、モータユニット1を確実に組み立てることが可能となる。
 本実施形態で採用している上記の特徴的構成は、主に図7~図9を参照して説明した本発明の特徴的構成と同様に、モータユニット1を確実に組み立てることを可能とするものであるが、本実施形態で採用している特徴的構成は、部品点数や組立に要する手間が少なくて済むので、モータユニット1のコスト低減を図る上で有効である。
 本発明は以上で説明した実施形態に何ら限定されるものではなく、本発明の要旨を逸脱しない範囲内において、さらに種々なる形態で実施し得ることは言うまでもない。本発明の範囲は、請求の範囲によって示され、さらに請求の範囲に記載の均等の意味、および範囲内のすべての変更を含む。
 1    モータユニット
 2    電動モータ
 3    基板(メイン基板)
 4    ハウジング
 5    バスバーユニット
 5A   第1バスバーユニット
 5B   第2バスバーユニット
 6    電源コネクタ
 6b   端子
 7A   回転センサ
 10   ポンプユニット
 21   ステータ
 22   コイル
 24   出力軸(回転軸)
 30   制御回路
 51   バスバー
 51A  第1バスバー
 51B  第2バスバー
 52   端子
 53   センサ用導体
 60   立体形状部
 C    給電回路
 O    軸心
 P    電動ポンプ

Claims (5)

  1.  電動モータと、該電動モータを制御する制御回路が形成された基板と、前記電動モータおよび前記基板を収容したハウジングとを備え、前記電動モータに電力を供給する給電回路が、前記電動モータに接続されたバスバーと電源に接続される電源コネクタとを前記制御回路を介して接続することで形成されるモータユニットであって、
     前記基板は、前記電動モータの回転軸の軸方向に沿って配置されると共に、その表裏両面に開口した第1端子嵌合孔および第2端子嵌合孔を有し、
     前記基板の軸方向一方側に配置される前記バスバーの端子を前記第1端子嵌合孔に嵌合すると共に、前記基板の軸方向他方側に配置される前記電源コネクタの端子を前記第2端子嵌合孔に嵌合することにより、前記バスバーと前記電源コネクタとが前記制御回路を介して電気的に接続されると共に前記基板が前記ハウジングに対して軸方向に位置決めされ、
     前記モータユニットの組立時に生じ得る前記基板に対する前記バスバーの軸方向の位置ズレを吸収可能な構造を有することを特徴とするモータユニット。
  2.  前記バスバーを、一端が前記電動モータと電気的に接続される第1バスバーと、一端に前記第1端子嵌合孔に嵌合される前記端子が設けられた第2バスバーとに分割し、
     前記第1バスバーの他端に、軸方向に延びた第1軸方向端子を設けると共に、前記第2バスバーの他端に、軸方向に延び、前記基板の厚さ方向に重ねて配置された状態で前記第1軸方向端子と結合される第2軸方向端子を設けることにより、前記軸方向の位置ズレを吸収可能とした請求項1に記載のモータユニット。
  3.  前記軸方向の位置ズレが、前記バスバーに設けた軸方向両側に弾性変形可能な立体形状部で吸収される請求項1に記載のモータユニット。
  4.  前記回転軸の回転角を検出する回転センサを保持し、前記電動モータの軸方向一方側に前記回転軸の軸方向と直交する方向に沿って配置されたセンサ基板をさらに備え、
     前記センサ基板の表裏両面に開口した孔部に対してセンサ用導体の一端に設けた端子を嵌合すると共に、前記基板の表裏両面に開口した第3孔部に対して前記センサ用導体の他端に設けた端子を嵌合させることにより、前記制御回路と前記回転センサが電気的に接続される請求項1~3の何れか一項に記載のモータユニット。
  5.  請求項1~4の何れか一項に記載のモータユニットと、
     前記モータユニットの出力を受けて駆動されるポンプユニットと、を備える電動ポンプ。
PCT/JP2021/036817 2020-10-06 2021-10-05 モータユニットおよびこれを備える電動ポンプ WO2022075317A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-169135 2020-10-06
JP2020169135A JP2022061246A (ja) 2020-10-06 2020-10-06 モータユニットおよびこれを備える電動ポンプ

Publications (1)

Publication Number Publication Date
WO2022075317A1 true WO2022075317A1 (ja) 2022-04-14

Family

ID=81126935

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/036817 WO2022075317A1 (ja) 2020-10-06 2021-10-05 モータユニットおよびこれを備える電動ポンプ

Country Status (2)

Country Link
JP (1) JP2022061246A (ja)
WO (1) WO2022075317A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016100972A (ja) * 2014-11-20 2016-05-30 日本電産株式会社 モータ
JP2017139858A (ja) * 2016-02-02 2017-08-10 日本精工株式会社 電動モータとその制御装置に収納される基板との接続構造
JP2019112979A (ja) * 2017-12-21 2019-07-11 日本電産トーソク株式会社 電動オイルポンプ

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016100972A (ja) * 2014-11-20 2016-05-30 日本電産株式会社 モータ
JP2017139858A (ja) * 2016-02-02 2017-08-10 日本精工株式会社 電動モータとその制御装置に収納される基板との接続構造
JP2019112979A (ja) * 2017-12-21 2019-07-11 日本電産トーソク株式会社 電動オイルポンプ

Also Published As

Publication number Publication date
JP2022061246A (ja) 2022-04-18

Similar Documents

Publication Publication Date Title
US10128720B2 (en) Electric motor and electric pump
US10749415B2 (en) Motor device
JP2013247761A (ja) 電動オイルポンプ装置
US11530700B2 (en) Electric oil pump
US11333050B2 (en) Electric oil pump
US20200313505A1 (en) Electric oil pump
US20200153368A1 (en) Electric oil pump
US20200049249A1 (en) Mounting structure of electric pump
US20200309118A1 (en) Electric pump device and mounting structure of electric pump
CN111934511A (zh) 旋转电机
JP5523044B2 (ja) 駆動制御装置、およびモータユニット
US20200232477A1 (en) Electric oil pump
WO2022075317A1 (ja) モータユニットおよびこれを備える電動ポンプ
JP5249129B2 (ja) モータ駆動装置
JP2013247698A (ja) 電動モータ
WO2022145195A1 (ja) 電子制御装置
JP2006274921A (ja) 電動ポンプユニット
CN116529487A (zh) 电动油泵
CN212479569U (zh) 电动油泵
WO2023199463A1 (ja) 駆動装置
US20210408866A1 (en) Electric driving device
JP6019733B2 (ja) 電動オイルポンプ装置
EP4230869A1 (en) Electric oil pump
WO2024038500A1 (ja) 電動駆動装置
WO2022209600A1 (ja) 車両駆動装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21877616

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21877616

Country of ref document: EP

Kind code of ref document: A1