WO2022075248A1 - Outdoor air conditioning apparatus - Google Patents

Outdoor air conditioning apparatus Download PDF

Info

Publication number
WO2022075248A1
WO2022075248A1 PCT/JP2021/036586 JP2021036586W WO2022075248A1 WO 2022075248 A1 WO2022075248 A1 WO 2022075248A1 JP 2021036586 W JP2021036586 W JP 2021036586W WO 2022075248 A1 WO2022075248 A1 WO 2022075248A1
Authority
WO
WIPO (PCT)
Prior art keywords
compressor
heat exchanger
air conditioner
outdoor air
control
Prior art date
Application number
PCT/JP2021/036586
Other languages
French (fr)
Japanese (ja)
Inventor
伸哉 村井
高幹 山本
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Publication of WO2022075248A1 publication Critical patent/WO2022075248A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/02Self-contained room units for air-conditioning, i.e. with all apparatus for treatment installed in a common casing
    • F24F1/032Self-contained room units for air-conditioning, i.e. with all apparatus for treatment installed in a common casing characterised by heat exchangers
    • F24F1/0323Self-contained room units for air-conditioning, i.e. with all apparatus for treatment installed in a common casing characterised by heat exchangers by the mounting or arrangement of the heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/86Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling compressors within refrigeration or heat pump circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle

Definitions

  • An air conditioner in which a compressor, a heat exchanger on the user side, and a heat exchanger on the heat source side are housed in one housing is known.
  • Patent Document 1 Japanese Unexamined Patent Publication No. 2020-003182 describes outdoor air in which a compressor, a heat source side heat exchanger, a first fan, a user side heat exchanger, and a second fan are housed in a casing. The harmonizer is disclosed.
  • the outdoor air conditioner disclosed in Patent Document 1 has a problem that the amount of compressor oil in the compressor falls below the required amount after the start of the refrigeration cycle operation due to being placed in a low temperature environment for a long period of time such as at night. Specifically, a phenomenon called forming occurs in which the refrigerant condensed due to the temperature drop and dissolved in the compressor oil in the compressor is vaporized by the temperature rise caused by the drive of the compressor to foam the compressor oil. As a result, the compressor oil foamed together with the refrigerant is discharged from the compressor, and the amount of the compressor oil in the compressor is reduced, so that the amount of the compressor oil may be less than the required amount.
  • the present disclosure proposes an air conditioner capable of suppressing the amount of compressor oil from falling below the required amount in a compressor due to outdoor use.
  • the outdoor air conditioner of the first aspect is an air conditioner used outdoors, and includes a refrigerant circuit and a control unit.
  • the refrigerant circuit has a compressor, a heat source side heat exchanger, and a user side heat exchanger, and the refrigerating cycle is performed by circulating the refrigerant through the compressor, the heat source side heat exchanger, and the user side heat exchanger. Let me do it.
  • the control unit activates the compressor and executes a refrigerating cycle operation in which the refrigerant circuit is allowed to perform the refrigerating cycle.
  • the control unit executes the first control and starts the refrigeration cycle operation after the first control is completed.
  • the first control starts the compressor for a predetermined first period and then stops the compressor for a predetermined second period longer than the first period.
  • the compressor is started for the first period and the temperature inside the compressor rises, so that the refrigerant dissolved in the compressor oil is vaporized and separated from the compressor oil. Is discharged from. Further, by stopping the compressor for the second period, the difference between the refrigerant pressure in the heat source side heat exchanger and the refrigerant pressure in the user side heat exchanger becomes small, and the refrigerant diffuses from the high pressure side to the low pressure side. Be promoted. As a result, even if the refrigeration cycle operation is started after the first control, the amount of the compressor oil is suppressed from falling below the required amount due to the discharge of the compressor oil together with the refrigerant.
  • the outdoor air conditioner of the second viewpoint is the outdoor air conditioner of the first viewpoint, and the first period is 1 second or more and 20 seconds or less.
  • the outdoor air conditioner of the third viewpoint is the outdoor air conditioner of the first viewpoint or the second viewpoint, and the second period is 1 minute or more and 20 minutes or less.
  • the outdoor air conditioner according to the fourth aspect is the outdoor air conditioner according to any one of the first aspect to the third aspect, and the refrigerant circuit is a switching mechanism for switching between the first state and the second state.
  • the refrigerant circuit is a switching mechanism for switching between the first state and the second state.
  • the control unit sets the switching mechanism in the first state while the compressor is running, and sets the switching mechanism in the second state in the refrigeration cycle operation.
  • the control unit sets the switching mechanism in the second state while the compressor is running, and sets the switching mechanism in the first state in the refrigeration cycle operation.
  • the refrigerant separated in the compressor in the first control is discharged toward the heat exchanger on the low pressure side in the subsequent refrigeration cycle operation. Therefore, even if the refrigerant discharged from the compressor contains compressor oil, the compressor oil contained in the refrigerant can be quickly returned to the compressor after the start of the refrigeration cycle operation, so that the amount of compressor oil increases. It is possible to effectively suppress the amount from falling below the required amount.
  • the outdoor air conditioner of the fifth aspect is the outdoor air conditioner of the fourth aspect, and the control unit sets the switching mechanism in the first state in the first control and the switching mechanism in the second state in the refrigeration cycle operation. And. Alternatively, the control unit sets the switching mechanism in the second state in the first control and the switching mechanism in the first state in the refrigeration cycle operation.
  • the outdoor air conditioner of the sixth viewpoint is any of the outdoor air conditioners of the first to fifth viewpoints, and the compressor has a constant refrigerant discharge capacity per unit time.
  • a non-inverter compressor with a constant refrigerant discharge capacity per unit time can be manufactured at low cost, but the discharge capacity cannot be finely controlled. Therefore, in an outdoor air conditioner having a non-inverter compressor, the compressor reaches the maximum rotation speed at the time of starting, intense forming occurs in the compressor, and the amount of compressor oil tends to be less than the required amount. According to the outdoor air conditioner of the sixth aspect, even when a compressor (non-inverter compressor) having a constant refrigerant discharge capacity per unit time is used as the compressor, the amount of compressor oil is required. It is possible to suppress the amount from falling below the amount.
  • the outdoor air conditioner of the 7th viewpoint is any of the outdoor air conditioners of the 1st to 6th viewpoints, and the heat source side heat exchanger is arranged above the user side heat exchanger.
  • the outdoor air conditioner according to the eighth aspect is the outdoor air conditioner according to any one of the first to seventh aspects, and the heat source side heat exchanger and the user side heat exchanger are above the compressor. Have been placed.
  • the heat source side heat exchanger and the refrigerant condensed in the user side heat exchanger are used. It is easy for a large amount to flow into the inside of the compressor.
  • the heat exchanger on the user side and the heat exchanger on the heat source side are housed in one casing, compared with the separate type air conditioner in which these are housed in another casing. This tendency is remarkable because the suction pipe provided between the heat exchanger on the user side and the compressor and the second gas connecting pipe tend to be shortened.
  • the amount of compressor oil in the compressor is less than the required amount even when the heat source side heat exchanger and the user side heat exchanger are arranged above the compressor. This can be suppressed by simple control. Therefore, there is a high degree of freedom in design regarding the arrangement of the heat source side heat exchanger, the user side heat exchanger, and the compressor.
  • the outdoor air conditioner according to the ninth aspect is the outdoor air conditioner according to any one of the first aspect to the eighth aspect, and further includes a crankcase heater that heats the compressor oil of the compressor by generating heat.
  • the control unit executes the first control after starting the second control for heating the crankcase heater.
  • the heat generated by the crankcase heater heats the refrigerant dissolved in the compressor oil, so that the amount of the refrigerant dissolved in the compressor oil can be further reduced.
  • the outdoor air conditioner of the tenth viewpoint is the outdoor air conditioner of the ninth viewpoint, and the control unit continues the second control until the refrigeration cycle operation is started.
  • the 11th viewpoint outdoor air conditioner is the 9th or 10th viewpoint outdoor air conditioner, further including a timer and an indicator.
  • the timer measures the elapsed time since the crankcase heater started to generate heat.
  • the instruction unit transmits an execution instruction instructing the control unit to execute the refrigeration cycle operation.
  • the control unit starts the second control when the power is turned on, and when it receives an execution instruction from the instruction unit, it compares the elapsed time with the predetermined third time. If the elapsed time is equal to or longer than the predetermined third period, the control unit starts the refrigeration cycle operation without executing the first control. Further, if the elapsed time is less than the third period, the control unit executes the first control and starts the refrigeration cycle operation after the first control is completed.
  • the time from receiving the execution instruction from the instruction unit to starting the refrigeration cycle operation can be shortened, and the convenience is improved.
  • FIG. 1 is an external perspective view of the outdoor air conditioner 100.
  • FIG. 2 is a diagram schematically showing a refrigerant circuit 20 of the outdoor air conditioner 100.
  • the outdoor air conditioner 100 is an air conditioner that is installed outdoors and performs air conditioning outdoors.
  • the outdoor means a space where at least a part is exposed to the outside air.
  • Outdoors include places without roofs or walls, such as parks, open-air stadiums, and the like.
  • the outdoors are not limited to roofs and places without walls, such as open-air spaces with roofs, open terraces, places like Azumaya, and courtyards without roofs surrounded by walls. Includes spaces that are at least partly open to the outside, such as places that are open to the public.
  • the outdoor air conditioner 100 performs outdoor cooling, dehumidification, heating, and the like by utilizing a steam compression refrigeration cycle (hereinafter, simply referred to as a refrigeration cycle) performed in the refrigerant circuit 20.
  • the refrigerant used in the outdoor air conditioner 100 is not limited, but is, for example, R32 alone or a mixed refrigerant containing R32.
  • Specific examples of the mixed refrigerant containing R32 include R452B, R410A, R454B, and an HFO mixed refrigerant.
  • R452B is a mixed refrigerant containing 67.0 wt% of R32, 7.0 wt% of R125, and 26.0 wt% of R1234yf.
  • R410A is a mixed refrigerant containing 50 wt% of R32 and 50 wt% of R125.
  • R454B is a mixed refrigerant containing 72.5 wt% of R32 and 27.5 wt% of R1234yf.
  • the HFO mixed refrigerant contains 45.0 wt% of HFO-1123 and 55.0 wt% of R32, and also contains 40.0 wt% of HFO-1123 and 60.0 wt% of R32.
  • the refrigerant used in the outdoor air conditioner 100 may be a natural refrigerant such as CO 2 .
  • the outdoor air conditioner 100 is a device capable of performing a cooling / dehumidifying operation and a heating operation, which are refrigeration cycle operations. Although the details will be described later, the outdoor air conditioner 100 is the first operation for suppressing the amount of compressor oil in the compressor 10 (described later) due to outdoor use from falling below the required amount before executing the refrigeration cycle operation. Perform pre-control.
  • the outdoor air conditioner 100 is not limited to a device capable of performing cooling / dehumidifying operation and heating operation.
  • the outdoor air conditioner 100 may be a dedicated cooling machine capable of performing only cooling / dehumidifying operation.
  • the outdoor air conditioner 100 may be a dedicated heating machine capable of performing only heating operation. When the outdoor air conditioner 100 is a dedicated cooling machine, the outdoor air conditioner 100 does not have to have the switching mechanism 12 described later. Further, even when the outdoor air conditioner 100 is a dedicated heating machine, the outdoor air conditioner 100 does not have to have the switching mechanism 12.
  • the outdoor air conditioner 100 is a refrigerant in which devices such as a compressor 10, a switching mechanism 12, a user-side heat exchanger 30, an expansion mechanism 16, and a heat source-side heat exchanger 40 are connected by a pipe. It has a circuit 20.
  • the outdoor air conditioner 100 accommodates the entire refrigerant circuit 20 in the casing 90.
  • the outdoor air conditioner 100 includes a user-side fan 50 that generates an air flow so that air passes through the user-side heat exchanger 30, and a heat source that generates an air flow so that air passes through the heat source-side heat exchanger 40. It has a side fan 60 and.
  • the user-side fan 50 and the heat source-side fan 60 are housed in the casing 90.
  • the operation of the outdoor air conditioner 100 is controlled by the control device 70 based on the execution instruction from the instruction unit 80.
  • the refrigerant circuit 20 includes a compressor 10, a switching mechanism 12, a heat source side heat exchanger 40, a utilization side heat exchanger 30, and an expansion mechanism 16.
  • FIG. 3 is a perspective view showing the internal configuration of the casing 90 of the outdoor air conditioner 100.
  • FIG. 3 depicts the outdoor air conditioner 100 in a state where the decorative plate 91 of the casing 90 and some of the columns (supports 92b) are removed, and depicts the arrangement of the devices inside the casing 90.
  • FIG. 4 is a schematic side view showing the internal configuration of the casing 90 of the outdoor air conditioner 100.
  • FIG. 4 shows a cross section of a part of the configurations (utility side heat exchanger 30, heat source side heat exchanger 40, utilization side fan 50, etc.).
  • the casing 90 houses the compressor 10, the user-side heat exchanger 30, the heat source-side heat exchanger 40, the user-side fan 50, and the heat source-side fan 60.
  • the casing 90 has a substantially rectangular parallelepiped shape having a substantially square shape in a plan view.
  • the shape of the casing 90 is not limited to a substantially rectangular parallelepiped shape having a substantially square shape in a plan view, and may have a rectangular parallelepiped shape having a rectangular shape in a plan view.
  • the casing 90 may have a polygonal prism shape having a polygonal shape in a plan view, and may have a cylindrical shape having a circular shape in a plan view or an elliptical pillar shape having an elliptical view.
  • the shape of the casing 90 may be appropriately determined.
  • casters 95 are attached to the lower surface of the casing 90, and the outdoor air conditioner 100 is configured to be movable.
  • the column, the top plate, and the bottom plate casing 90 have four columns 92a to 92d, a top plate 94, and a bottom plate 96.
  • the four columns 92a to 92d are arranged so as to extend in the vertical direction at the four corners of the casing 90 having a substantially square shape in a plan view.
  • the top plate 94 and the bottom plate 96 are fixed to the four columns 92a to 92d.
  • the top plate 94 is formed with an exhaust port 84 at the center thereof for discharging the air that has passed through the heat source side heat exchanger 40 to the outside of the casing 90. That is, the top plate 94 is formed with an exhaust port 84 at the center thereof for discharging the air that has exchanged heat with the refrigerant flowing through the heat source side heat exchanger 40 to the outside of the casing 90.
  • a mesh-shaped fan guard (not shown) is arranged above the exhaust port 84.
  • On the bottom plate 96 a compressor 10, an electrical component box 2 containing various electrical components of the outdoor air conditioner 100, and the like are installed.
  • Drain Pans 36, 46 are arranged inside the casing 90 to partition the inside of the casing 90.
  • the drain pan 46 is arranged below the heat source side heat exchanger 40 and adjacent to the heat source side heat exchanger 40.
  • the fact that the drain pan 46 is arranged adjacent to the lower part of the heat source side heat exchanger 40 means that the member is arranged between at least a part of the lower end of the heat source side heat exchanger 40 and the drain pan 46. It means that it has not been done.
  • the drain pan 46 is fixed to the columns 92a to 92d.
  • the drain pan 46 is a member having a bottom portion 46a and a side wall 46b extending upward from the peripheral edge of the bottom portion 46a.
  • the drain pan 46 receives dew condensation water, rainwater, and the like generated by the heat source side heat exchanger 40.
  • the drain pan 46 is not limited to a material, but is, for example, a metal member.
  • the drain pan 46 partitions the heat source area A1 arranged above the drain pan 46 and the use area A2 arranged below the drain pan 46. Due to the drain pan 46, the air immediately after passing through the heat source side heat exchanger 40 may directly flow into the utilization area A2, or the air immediately after passing through the utilization side heat exchanger 30 may directly flow into the heat source area A1. It is suppressed. That is, the drain pan 46 suppresses the direct inflow of the air in the heat source area A1 into the utilization area A2 and the direct inflow of the air in the utilization area A2 into the heat source area A1.
  • the drain pan 46 also functions as a member for heat insulation between the air flow path FP that has passed through the utilization side heat exchanger 30 and the heat source side heat exchanger 40.
  • the drain pan 46 also functions as a member for heat insulation between the air flow path FP that has passed through the utilization side heat exchanger 30 and the air flow path that has passed through the heat source side heat exchanger 40.
  • a support member 47 that supports the user-side fan 50 is arranged below the drain pan 46.
  • the drain pan 36 is arranged below the user-side heat exchanger 30 and adjacent to the user-side heat exchanger 30.
  • the fact that the drain pan 36 is arranged adjacent to the lower side of the user side heat exchanger 30 means that the member is arranged between at least a part of the lower end of the user side heat exchanger 30 and the drain pan 36. It means that it has not been done.
  • the drain pan 36 is fixed to the columns 92a to 92d.
  • the drain pan 36 is a member having a bottom portion 36a and a side wall 36b extending upward from the peripheral edge of the bottom portion 36a.
  • the drain pan 36 receives dew condensation water, rainwater, and the like generated by the heat exchanger 30 on the user side.
  • the drain pan 36 is not limited to a material, but is, for example, a metal member.
  • the drain pan 36 partitions the use area A2 arranged above the drain pan 36 and the machine room area A3 arranged below the drain pan 36.
  • a heat source side heat exchanger 40 and a heat source side fan 60 are mainly arranged.
  • a heat source side heat exchanger 40 is arranged above the drain pan 46 and adjacent to the drain pan 46.
  • the heat source side heat exchanger 40 is arranged adjacent to the bottom portion 46a of the drain pan 46.
  • a heat source side fan 60 is arranged above the heat source side heat exchanger 40.
  • the user side heat exchanger 30 and the user side fan 50 are mainly arranged in the use area A2.
  • the used area A2 is further divided into a blowout area A21 arranged above the intermediate plate 98 and a heat exchanger area A22 arranged below the intermediate plate 98 by the intermediate plate 98 fixed to the columns 92a to 92d. It is partitioned.
  • the user side fan 50 is mainly arranged in the blowout area A21.
  • a flow path FP for air that has passed through the heat exchanger 30 on the utilization side is formed.
  • the outlet 82 is included.
  • the outlet 82 is formed between adjacent columns on the side surface of the casing 90 surrounding the outlet area A21.
  • the outlet 82 includes a plurality of outlets 82a to 82d (four in this embodiment).
  • the outlet 82a is formed between the support column 92a and the support column 92b (on the right side surface).
  • An outlet 82b is formed between the support column 92b and the support column 92c (front surface).
  • An outlet 82c is formed between the support column 92c and the support column 92d (left side surface).
  • An outlet 82d is formed between the support column 92d and the support column 92a (rear surface).
  • the air that has exchanged heat with the refrigerant in the user-side heat exchanger 30 passes through the flow path FP and is blown out of the casing 90 from the outlets 82a to 82d of the flow path FP.
  • the outlets 82a to 82d are formed on the four side surfaces of the casing 90, the air that has passed through the flow path FP is blown out from the casing 90 in a plurality of directions (in all directions).
  • the outlets 82a to 82d are arranged between the heat source side heat exchanger 40 and the user side heat exchanger 30.
  • the outlets 82a to 82d are located below the heat source side heat exchanger 40 and above the utilization side heat exchanger 30.
  • the user-side heat exchanger 30 is arranged above the drain pan 36 and adjacent to the drain pan 36.
  • the user-side heat exchanger 30 is arranged adjacent to the bottom portion 36a of the drain pan 36.
  • a compressor 10 and an electrical component box 2 containing various electrical components of the outdoor air conditioner 100 are mainly arranged.
  • a decorative board 91 is attached to the side surface of the casing 90 so as to close between adjacent columns. Specifically, on the side surface of the casing 90, between the support column 92a and the support column 92b, between the support column 92b and the support column 92c, between the support column 92c and the support column 92d, between the support column 92d, and the support column. A decorative plate 91 is attached so as to close the space between the 92a and the 92a.
  • the veneer 91 has a first veneer 91a, a second veneer 91b, and a third veneer 91c.
  • the first decorative plate 91a is attached to the casing 90 so as to close between adjacent columns on the outside of the heat source area A1.
  • the second decorative plate 91b is attached to the casing 90 so as to close between the lower side of the blowout area A21, the heat exchanger area A22, and the adjacent columns outside the machine room area A3.
  • the third decorative plate 91c is attached to the casing 90 so as to close the space between the adjacent columns on the outer side of the upper side of the blowout area A21.
  • the outlets 82a to 82d are closed above the second decorative plate 91b and by the third decorative plate 91c.
  • a plurality of through holes are formed in the decorative plate 91 in a mesh shape, and air can flow through the through holes.
  • the air taken into the casing 90 from the outside by the heat source side fan 60 and the user side fan 50 is a through hole formed in the first decorative plate 91a and the second decorative plate 91b (not shown). ) And flows into the inside from the outside of the casing 90.
  • the air blown from the outlets 82a to 82d by the user-side fan 50 to the outside of the casing 90 passes through the lower side of the second decorative plate 91b and the through holes formed in the third decorative plate 91c, and is inside the casing 90. Blow out from.
  • the piping space PS is separated from the space through which the airflow generated by the heat source side fan 60 and the user side fan 50 passes by the partition plates 99a, 99b, 99c extending in the vertical direction. As a result, the inflow of air from the heat source area A1 and the utilization area A2 into the piping space PS is suppressed.
  • the outdoor air conditioner 100 is connected to equipment such as the compressor 10, the switching mechanism 12, the user side heat exchanger 30, the expansion mechanism 16, and the heat source side heat exchanger 40. It has a refrigerant circuit 20 connected by.
  • the outdoor air conditioner 100 mainly includes a suction pipe 20a, a discharge pipe 20b, a first gas connecting pipe 20c, a liquid connecting pipe 20d, and a second gas as pipes for connecting the equipment constituting the refrigerant circuit 20. Including the connecting pipe 20e.
  • the suction pipe 20a connects the switching mechanism 12 and the pipe connection portion (not shown) on the suction side of the compressor 10.
  • the suction tube 20a has, for example, an inner diameter of 12.7 mm and a length of 803 mm.
  • the discharge pipe 20b connects the pipe connection portion (not shown) on the discharge side of the compressor 10 and the switching mechanism 12.
  • the discharge pipe 20b has, for example, an inner diameter of 7.9 mm and a length of 1265 mm.
  • the first gas connecting pipe 20c connects the switching mechanism 12 and the gas side refrigerant inlet / outlet of the heat source side heat exchanger 40.
  • the first gas connecting pipe 20c has, for example, an inner diameter of 12.7 mm and a length of 1440 mm.
  • the liquid communication pipe 20d connects the liquid side refrigerant inlet / outlet of the heat source side heat exchanger 40 and the liquid side refrigerant inlet / outlet of the user side heat exchanger 30.
  • An expansion mechanism 16 is arranged in the liquid communication pipe 20d.
  • the second gas connecting pipe 20e connects the gas side refrigerant inlet / outlet of the user side heat exchanger 30 and the switching mechanism 12.
  • the second gas connecting pipe 20e has, for example, an inner diameter of 12.7 mm and a length of 1024 mm.
  • the compressor 10 is a device that compresses the refrigerant.
  • the compressor 10 compresses the low pressure refrigerant in the refrigeration cycle and pressurizes it to the high pressure in the refrigeration cycle.
  • the type of the compressor 10 is not limited, but is, for example, a rotary type or scroll type positive displacement compressor.
  • the compression mechanism (not shown) of the compressor 10 is driven by the motor 11.
  • the compressor 10 is a non-inverter compressor (non-inverter compressor) in which the motor 11 is rotationally driven at a constant speed and the refrigerant is discharged at a constant capacity.
  • the present invention is not limited to this, and the compressor may be a compressor having a variable capacity (inverter compressor).
  • the compressor 10 is filled with a predetermined amount of compressor oil.
  • An accumulator may be provided on the suction side (suction pipe 20a) of the compressor 10 in order to suppress the inflow of the liquid refrigerant into the compressor 10.
  • the switching mechanism 12 switches the flow direction of the refrigerant discharged from the compressor 10 to change the operating state of the outdoor air conditioner 100 into a first operating state and a second operating state. It is a mechanism to switch between.
  • the user-side heat exchanger 30 In the first operating state, the user-side heat exchanger 30 is made to function as an evaporator, and the heat source-side heat exchanger 40 is made to function as a condenser (radiator).
  • the user-side heat exchanger 30 is made to function as a condenser (radiator)
  • the heat source-side heat exchanger 40 is made to function as an evaporator.
  • the switching mechanism 12 switches the operating state of the outdoor air conditioner 100 to the first operating state during the cooling / dehumidifying operation. Specifically, during the cooling / dehumidifying operation, the switching mechanism 12 communicates the suction pipe 20a with the second gas connecting pipe 20e and the discharge pipe 20b with the first gas connecting pipe 20c (switching mechanism 12 in FIG. 2). See the solid line inside). That is, the switching mechanism 12 communicates the suction side of the compressor 10 with the gas side end of the user side heat exchanger 30 through the suction pipe 20a and the second gas connecting pipe 20e during the cooling / dehumidifying operation, and compresses the compressor 10.
  • the discharge side of the machine 10 is communicated with the gas side end of the heat source side heat exchanger 40 through the discharge pipe 20b and the first gas connecting pipe 20c. Therefore, when the operating state of the outdoor air conditioner 100 is the first operating state, the refrigerant circulates in the refrigerant circuit 20 in the order of the compressor 10, the heat source side heat exchanger 40, and the user side heat exchanger 30.
  • the state of the switching mechanism 12 during the cooling / dehumidifying operation is referred to as a first state.
  • the switching mechanism 12 switches the operating state of the outdoor air conditioner 100 to the second operating state during the heating operation. Specifically, during the heating operation, the switching mechanism 12 communicates the suction pipe 20a with the first gas connecting pipe 20c and the discharge pipe 20b with the second gas connecting pipe 20e (in the switching mechanism 12 of FIG. 2). See dashed line). That is, the switching mechanism 12 communicates the suction side of the compressor 10 with the gas side end of the heat source side heat exchanger 40 through the suction pipe 20a and the first gas connecting pipe 20c during the heating operation, and the compressor 10 Is communicated with the gas side end of the user side heat exchanger 30 through the discharge pipe 20b and the second gas connecting pipe 20e.
  • the refrigerant circulates in the refrigerant circuit 20 in the order of the compressor 10, the user side heat exchanger 30, and the heat source side heat exchanger 40. ..
  • the state of the switching mechanism 12 during the heating operation is referred to as a second state.
  • the switching mechanism 12 is a four-way switching valve.
  • the switching mechanism 12 is not limited to the four-way switching valve, and may be configured so as to be able to realize the switching of the flow direction of the refrigerant as described above by combining a plurality of solenoid valves and a refrigerant pipe. ..
  • the heat source side heat exchanger 40 is a heat exchanger that exchanges heat between a refrigerant and outdoor air.
  • the heat source side heat exchanger 40 functions as a condenser.
  • the heat source side heat exchanger 40 functions as an evaporator.
  • the heat source side heat exchanger 40 is arranged above the user side heat exchanger 30. Further, the heat source side heat exchanger 40 is arranged above the compressor 10.
  • the liquid connecting pipe 20d is connected to the liquid side end, and the first gas connecting pipe 20c is connected to the gas side end.
  • the heat source side heat exchanger 40 is a fin-and-tube heat exchanger mainly having a refrigerant heat transfer tube 43 in which a refrigerant flows inside and a large number of heat transfer fins (not shown). As shown in FIGS. 3 and 4, the heat source side heat exchanger 40 is arranged above the drain pan 46 and adjacent to the drain pan 46. The lower end of the heat source side heat exchanger 40 is preferably arranged below the upper end of the side wall 46b of the drain pan 46.
  • the water flowing into the drain pan 46 is formed, for example, inside at least one of the columns 92a to 92d, or is arranged adjacent to at least one of the columns 92a to 92d through a drainage path (not shown). , Discharged from the bottom of the outdoor air conditioner 100.
  • the heat source side heat exchanger 40 has a heat exchange unit 41a and a heat exchange unit 41b.
  • the refrigerant heat transfer tubes 43 are arranged in a direction intersecting the direction of the airflow Fb from the outside of the casing 90 toward the inside of the casing 90, which is generated by the heat source side fan 60.
  • the refrigerant heat transfer tubes 43 are arranged in the vertical direction in each of the heat exchange portions 41a and 41b.
  • the heat exchange unit 41a and the heat exchange unit 41b are arranged side by side in two rows in the direction of the air flow Fb generated by the heat source side fan 60.
  • the refrigerant heat transfer tubes 43 arranged in the vertical direction are arranged in two rows in the direction of the air flow Fb generated by the heat source side fan 60.
  • the heat exchange unit 41a is arranged on the downstream side in the direction of the air flow Fb generated by the heat source side fan 60, and the heat exchange unit 41b is arranged on the upstream side in the direction of the air flow Fb generated by the heat source side fan 60.
  • FIG. 5 is a schematic plan view of the heat source side heat exchanger 40 of the outdoor air conditioner 100.
  • the heat source side heat exchanger 40 is arranged so as to form a quadrilateral shape in a plan view.
  • the refrigerant heat transfer tube 43 forms a plurality of heat exchange surfaces HSb1 to HSb4 through which the airflow Fb generated by the heat source side fan 60 passes.
  • the heat exchange surfaces HSb1 to HSb4 are arranged adjacent to the decorative plate 91 of the casing 90. It is preferable that no other member is arranged between the heat exchange surfaces HSb1 to HSb4 of the heat source side heat exchanger 40 and the decorative plate 91.
  • the heat exchange surface HSb1 is arranged on the rear side of the outdoor air conditioner 100 and spreads in the vertical direction and the horizontal direction.
  • the heat exchange surface HSb2 is arranged on the right side of the outdoor air conditioner 100 and spreads in the vertical direction and the front-back direction.
  • the heat exchange surface HSb3 is arranged on the front side of the outdoor air conditioner 100 and spreads in the vertical direction and the horizontal direction.
  • the heat exchange surface HSb4 is arranged on the left side of the outdoor air conditioner 100 and spreads in the vertical direction and the front-back direction.
  • the air taken in from the outside of the casing 90 through the through hole (not shown) of the first decorative plate 91a by the air flow Fb generated by the heat source side fan 60 is on the heat source side. It passes through the heat exchange surfaces HSb1 to HSb4 of the heat exchanger 40. The air that has passed through the heat exchange surfaces HSb1 to HSb4 exchanges heat with the refrigerant flowing inside the refrigerant heat transfer tube 43 of the heat source side heat exchanger 40.
  • the air that has exchanged heat with the refrigerant in the heat source side heat exchanger 40 is formed on the upper part of the casing 90 by passing through the bell mouth 64 arranged in the upper part in the casing 90 by the air flow Fb generated by the heat source side fan 60. It is exhausted upward from the exhaust port 84.
  • the user-side heat exchanger 30 is a heat exchanger that exchanges heat between the refrigerant and the outdoor air.
  • the user-side heat exchanger 30 functions as an evaporator.
  • the user-side heat exchanger 30 functions as a condenser.
  • the user-side heat exchanger 30 is arranged above the compressor 10.
  • the liquid connecting pipe 20d is connected to the liquid side end, and the second gas connecting pipe 20e is connected to the gas side end.
  • the user-side heat exchanger 30 is a fin-and-tube heat exchanger having a refrigerant heat transfer tube 33 through which a refrigerant flows, and a large number of heat transfer fins (not shown). As shown in FIGS. 3 and 4, the user-side heat exchanger 30 is arranged above the drain pan 36 and adjacent to the drain pan 36. It is preferable that the lower end of the user-side heat exchanger 30 is arranged below the upper end of the side wall 36b of the drain pan 36.
  • dew condensation water or the like generated in the user-side heat exchanger 30 flows into the drain pan 36.
  • the water flowing into the drain pan 36 is formed, for example, inside at least one of the columns 92a to 92d, or is arranged adjacent to at least one of the columns 92a to 92d through a drainage path (not shown). , Discharged from the bottom of the outdoor air conditioner 100.
  • the user-side heat exchanger 30 has a heat exchange unit 31a and a heat exchange unit 31b (see FIG. 4).
  • the refrigerant heat transfer tubes 33 are arranged in a direction intersecting the direction of the airflow Fa from the outside of the casing 90 toward the inside of the casing 90, which is generated by the user-side fan 50.
  • the refrigerant heat transfer tubes 33 are arranged in the vertical direction in each of the heat exchange portions 31a and 31b.
  • the heat exchange unit 31a and the heat exchange unit 31b are arranged side by side in two rows in the direction of the air flow Fa generated by the user side fan 50.
  • the refrigerant heat transfer tubes 33 arranged in the vertical direction are arranged in two rows in the direction of the air flow Fa generated by the user-side fan 50.
  • the heat exchange unit 31a is arranged on the downstream side in the direction of the airflow Fa generated by the user-side fan 50, and the heat exchange unit 31b is arranged on the upstream side in the direction of the airflow Fa generated by the user-side fan 50.
  • FIG. 6 is a schematic plan view of the heat exchanger 30 on the user side of the outdoor air conditioner 100.
  • the utilization side heat exchanger 30 is arranged so as to form a quadrilateral shape in a plan view.
  • the refrigerant heat transfer tube 33 forms a plurality of heat exchange surfaces HSa1 to HSa4 through which the airflow Fa generated by the user-side fan 50 passes.
  • the heat exchange surfaces HSa1 to HSa4 of the user-side heat exchanger 30 are arranged adjacent to the decorative plate 91 of the casing 90.
  • the heat exchange surface HSa1 is arranged on the rear side of the outdoor air conditioner 100 and spreads in the vertical direction and the horizontal direction.
  • the heat exchange surface HSa2 is arranged on the right side of the outdoor air conditioner 100 and spreads in the vertical direction and the front-back direction.
  • the heat exchange surface HSa3 is arranged on the front side of the outdoor air conditioner 100 and spreads in the vertical direction and the horizontal direction.
  • the heat exchange surface HSa4 is arranged on the left side of the outdoor air conditioner 100 and spreads in the vertical direction and the front-back direction.
  • the air taken in from the outside of the casing 90 through the through hole (not shown) on the lower side of the second decorative plate 91b by the airflow Fa generated by the user-side fan 50 is taken in.
  • the air that has passed through the heat exchange surfaces HSa1 to HSa4 exchanges heat with the refrigerant flowing inside the refrigerant heat transfer tube 33 of the user side heat exchanger 30.
  • the air that has exchanged heat with the refrigerant in the user-side heat exchanger 30 passes through the bell mouth 54 and the user-side fan 50 arranged above the intermediate plate 98 by the airflow Fa generated by the user-side fan 50.
  • the air that has passed through the user-side fan 50 flows through the air flow path FP that has passed through the user-side heat exchanger 30 formed in the blowout area A21.
  • the air that has passed through the heat exchanger 30 on the utilization side is discharged from the outlets 82a to 82d that form a part of the flow path FP to the through hole (not shown) on the lower side of the second decorative plate 91b and the third decorative plate. It is blown out of the casing 90 through a through hole (not shown) of the plate 91c.
  • outlets 82a to 82d are provided on the four side surfaces (front surface, rear surface, right surface, and left surface) of the casing 90 having a substantially rectangular parallelepiped shape, the air passing through the user-side heat exchanger 30 is collected. Blow out from the casing 90 in multiple directions (in all directions).
  • the expansion mechanism 16 is a mechanism for lowering the pressure of the high-pressure refrigerant in the refrigeration cycle by the throttle expansion action.
  • the expansion mechanism 16 is an electronic expansion valve.
  • the expansion mechanism 16 is not limited to the electronic expansion valve whose opening degree can be adjusted, and may be a mechanical expansion valve used together with the heat-sensitive cylinder. Further, from the viewpoint of reducing the device cost and the like, the expansion mechanism 16 may be a capillary tube whose degree of decompression and flow rate cannot be adjusted.
  • the heat source side fan 60 is a mechanism for generating an air flow Fb so that air passes through the heat source side heat exchanger 40.
  • the heat source side fan 60 is driven by the motor 62.
  • the motor 62 When the motor 62 is operated and the heat source side fan 60 generates the air flow Fb, air is taken into the casing 90 from the side surface of the casing 90 through the through hole of the first decorative plate 91a.
  • the heat source side fan 60 when the heat source side fan 60 generates the air flow Fb, air is taken into the casing 90 from above the outlets 82a to 82d through the through hole of the first decorative plate 91a.
  • the air taken into the casing 90 passes through the heat source side heat exchanger 40, then passes through the heat source side fan 60 and the bell mouth 64, and flows out from the exhaust port 84 at the upper part of the casing 90.
  • the heat source side fan 60 is a propeller fan in this embodiment.
  • the type of the heat source side fan 60 is not limited to the propeller fan. If it is possible to generate the above-mentioned air flow, the type of the heat source side fan 60 may be appropriately determined.
  • the heat source side fan 60 may be a turbo fan or a sirocco fan.
  • the heat source side fan 60 is arranged on the downstream side of the heat source side heat exchanger 40 in the direction of the air flow Fb generated by the heat source side fan 60, but the present invention is not limited to this.
  • the heat source side fan 60 may be arranged on the upstream side of the heat source side heat exchanger 40 in the direction of the air flow Fb generated by the heat source side fan 60.
  • the heat source side fan 60 is arranged in the upper part of the casing 90 (above the heat source side heat exchanger 40), but the arrangement of the heat source side fan 60 depends on the type of the heat source side fan 60 and the like. It may be decided as appropriate.
  • the user-side fan 50 is a mechanism for generating an air flow Fa so that air passes through the user-side heat exchanger 30.
  • the user-side fan 50 is driven by the motor 52.
  • the motor 52 When the motor 52 is operated and the user-side fan 50 generates an air flow Fa, air is taken into the casing 90 from the side surface of the casing 90 through the through hole of the second decorative plate 91b.
  • the user-side fan 50 when the user-side fan 50 generates the airflow Fa, air is taken into the casing 90 from below the outlets 82a to 82d through the through hole of the second decorative plate 91b.
  • the air taken into the casing 90 passes through the heat exchanger 30 on the user side, then passes through the bell mouth 54 and the fan 50 on the user side, and the air outlets 82a to be provided on the side surface of the casing 90. Pass through 82d.
  • the air that has passed through the outlets 82a to 82d passes through the through hole of the third decorative plate 91c and is blown out to the outside of the casing 90.
  • the user side fan 50 is a turbo fan in this embodiment.
  • the type of the user fan 50 is not limited to the turbo fan. If it is possible to generate the above-mentioned airflow, the type of the user-side fan 50 may be appropriately determined.
  • the user fan 50 may be a propeller fan or a sirocco fan.
  • the user-side fan 50 is arranged on the downstream side of the user-side heat exchanger 30 in the direction of the airflow Fa generated by the user-side fan 50, but the present invention is not limited to this.
  • the user-side fan 50 may be arranged on the upstream side of the heat source-side heat exchanger 40 in the direction of the air flow Fa generated by the user-side fan 50.
  • the user-side fan 50 is arranged in the blowout area A21 above the user-side heat exchanger 30, but the user-side fan 50 is appropriately arranged according to the type of the user-side fan 50 and the like. It should be decided.
  • the instruction unit 80 transmits an execution instruction instructing the control device 70 to execute the refrigeration cycle operation.
  • the instruction unit 80 receives an execution instruction for either cooling / dehumidifying operation or heating operation, a target temperature, or the like from the user, and transmits these as control signals to the control device 70.
  • the indicator 80 is typically an operation switch (not shown) provided on the casing 90.
  • Control device 70 controls the operation of each part constituting the outdoor air conditioner 100.
  • the control device 70 executes a refrigerating cycle operation in which the refrigerant circuit 20 performs a refrigerating cycle by controlling the operation of each part constituting the outdoor air conditioner 100.
  • the cooling / dehumidifying operation and the heating operation are examples of the refrigerating cycle operation.
  • the control device 70 includes a microcomputer having parts such as a CPU and a memory.
  • the control device 70 is electrically connected to various parts of the outdoor air conditioner 100 including the compressor 10, the switching mechanism 12, the expansion mechanism 16, the user side fan 50, the heat source side fan 60, and the indicator 80. (See the dashed line in FIG. 2).
  • control device 70 is also electrically connected to a temperature sensor (not shown) provided in each part of the outdoor air conditioner 100.
  • the temperature sensor includes, for example, a temperature sensor for measuring the temperature of the refrigerant in each part of the refrigerant circuit 20, a temperature sensor for measuring the outside air temperature, and the like.
  • Each part of the refrigerant circuit 20 of the outdoor air conditioner 100 may be provided with a pressure sensor for measuring the pressure of the refrigerant.
  • the pressure sensor includes, for example, a suction pressure sensor provided in the suction pipe 20a and a discharge pressure sensor provided in the discharge pipe 20b.
  • the control device 70 controls the operation of the outdoor air conditioner 100 by executing a program stored in the memory by the CPU in the microcomputer.
  • the control device 70 is an example of a control unit.
  • the control device 70 of the present embodiment is only an example of a control device that controls the operation of the outdoor air conditioner 100.
  • the control device may realize the same function as the function exhibited by the control device 70 of the present embodiment by hardware such as a logic circuit, or may be realized by a combination of hardware and software.
  • the control device 70 Upon receiving the cooling / dehumidifying operation execution instruction from the cooling / dehumidifying operation instruction unit 80, the control device 70 executes the first pre-operation control. Although the details will be described later, in the first pre-operation control, the control device 70 controls the switching mechanism 12 so that the operating state of the outdoor air conditioner 100 becomes the first operating state, and sets the first state (FIG. 2). Refer to the solid line in the switching mechanism 12 of. When the first pre-operation control is completed, the control device 70 starts the operation of the compressor 10, the heat source side fan 60, and the user side fan 50, and starts the operation of the compressor 10, the expansion mechanism 16, the heat source side fan 60, and The operation of the user-side fan 50 is appropriately controlled.
  • the low-pressure gas refrigerant in the refrigeration cycle in the refrigerant circuit 20 is sucked into the compressor 10 and compressed, and becomes a high-pressure gas refrigerant in the refrigeration cycle.
  • the gas refrigerant compressed by the compressor 10 is sent to the heat source side heat exchanger 40 through the switching mechanism 12.
  • the high-pressure gas refrigerant in the refrigeration cycle sent to the heat source side heat exchanger 40 is cooled by exchanging heat with the outdoor air supplied by the heat source side fan 60 in the heat source side heat exchanger 40 that functions as a condenser. Condenses and becomes a high-pressure liquid refrigerant.
  • the air heated by the heat source side heat exchanger 40 that functions as a condenser is discharged to the outside of the casing 90 from the exhaust port 84 at the upper part of the casing 90.
  • the liquid refrigerant condensed in the heat source side heat exchanger 40 is decompressed by the expansion mechanism 16 to expand, and is sent to the user side heat exchanger 30.
  • the low-pressure gas-liquid two-phase state refrigerant sent to the user-side heat exchanger 30 exchanges heat with the outdoor air supplied by the user-side fan 50 in the user-side heat exchanger 30 that functions as an evaporator. It evaporates and becomes a low-pressure gas refrigerant.
  • the low-pressure gas refrigerant is sent to the compressor 10 through the second gas connecting pipe 20e and the suction pipe 20a, and is sucked into the compressor 10 again.
  • the air cooled by the utilization side heat exchanger 30 that functions as an evaporator is blown out to all sides of the casing 90 through the outlets 82a to 82d on the side surface of the casing 90.
  • the control device 70 Upon receiving the heating operation execution instruction from the heating operation instruction unit 80, the control device 70 executes the first pre-operation control. Although the details will be described later, in the first pre-operation control, the control device 70 controls the switching mechanism 12 so that the operating state of the outdoor air conditioner 100 becomes the second operating state (FIG. 2). See the broken line in the switching mechanism 12 of.
  • the control device 70 starts the operation of the compressor 10, the heat source side fan 60, and the user side fan 50, and starts the operation of the compressor 10, the expansion mechanism 16, the heat source side fan 60, and The operation of the user-side fan 50 is appropriately controlled.
  • the gas refrigerant in the low-pressure refrigeration cycle in the refrigerant circuit 20 is sucked into the compressor 10 and compressed, and becomes a high-pressure gas refrigerant in the refrigeration cycle.
  • the gas refrigerant compressed by the compressor 10 is sent to the user side heat exchanger 30 through the switching mechanism 12.
  • the high-pressure gas refrigerant in the refrigeration cycle sent to the user-side heat exchanger 30 is cooled by exchanging heat with the outdoor air supplied by the user-side fan 50 in the user-side heat exchanger 30 that functions as a condenser. Condenses and becomes a high-pressure liquid refrigerant.
  • the air heated by the utilization side heat exchanger 30 that functions as a condenser is blown out to all sides of the casing 90 through the outlets 82a to 82d on the side surface of the casing 90.
  • the liquid refrigerant condensed in the user-side heat exchanger 30 is decompressed by the expansion mechanism 16 to expand, and is sent to the heat source-side heat exchanger 40.
  • the low-pressure gas-liquid two-phase state refrigerant sent to the heat source side heat exchanger 40 exchanges heat with the outdoor air supplied by the heat source side fan 60 in the heat source side heat exchanger 40 that functions as an evaporator. It evaporates and becomes a low-pressure gas refrigerant.
  • the low-pressure gas refrigerant is sent to the compressor 10 through the first gas connecting pipe 20c and the suction pipe 20a, and is sucked into the compressor 10 again.
  • the air cooled by the heat source side heat exchanger 40 that functions as an evaporator is discharged to the outside of the casing 90 from the exhaust port 84 at the upper part of the casing 90.
  • cooling / dehumidifying operation and heating are performed in order to prevent the amount of compressor oil in the compressor 10 from falling below the required amount due to outdoor use. This is the control executed by the control device 70 before the operation is started.
  • the first pre-operation control is an example of the first control.
  • the control device 70 starts the compressor 10 for a predetermined first period, and then stops the compressor 10 for a predetermined second period longer than the first period.
  • the first period is, for example, 1 second or more and 20 seconds or less.
  • the second period is, for example, 1 minute or more and 20 minutes or less.
  • FIG. 7 is a flowchart showing a control flow of the first pre-operation control executed by the control device 70.
  • the control device 70 receives the execution instruction of the refrigeration cycle operation from the instruction unit 80, the control device 70 starts the first pre-operation control.
  • step S110 the control device 70 activates the compressor 10 and proceeds to step S120.
  • step S120 the control device 70 determines whether or not the first period has elapsed from the start of the compressor 10. The control device 70 repeats step S120 until the first period elapses from the start of the compressor 10 (No), and proceeds to step S130 when the first period elapses from the start of the compressor 10 (Yes).
  • step S130 the control device 70 stops the compressor 10 and proceeds to step S140.
  • step S140 the control device 70 determines whether or not the second period has elapsed since the compressor 10 was stopped.
  • the control device 70 repeats step S140 from the stop of the compressor 10 until the second period elapses (No), and ends the first pre-operation control when the second period elapses from the stop of the compressor 10 (Yes).
  • control device 70 starts the refrigeration cycle operation based on the execution instruction of the refrigeration cycle operation from the instruction unit 80.
  • the outdoor air conditioner 100 of the present embodiment is an air conditioner used outdoors and includes a refrigerant circuit 20 and a control device 70.
  • the refrigerant circuit 20 includes a compressor 10, a heat source side heat exchanger 40, and a user side heat exchanger 30.
  • the refrigerant circuit 20 causes the refrigeration cycle to be performed by circulating the refrigerant through the compressor 10, the heat source side heat exchanger 40, and the user side heat exchanger 30.
  • the control device 70 activates the compressor 10 to execute a refrigerating cycle operation in which the refrigerant circuit 20 performs a refrigerating cycle.
  • the control device 70 executes the first pre-operation control (first control) in which the compressor 10 is started for a predetermined first period and then the compressor 10 is stopped for a predetermined second period longer than the first period. , The refrigeration cycle operation is started after the first pre-operation control is completed.
  • the compressor 10 in the first pre-operation control, the compressor 10 is started for the first period and the temperature inside the compressor 10 rises, so that the refrigerant dissolved in the compressor oil is vaporized from the compressor oil. It is separated and discharged from the compressor 10.
  • the first period By setting the first period to a short period of time, the amount of compressor oil discharged from the compressor 10 is limited even if the compressor oil foams due to the refrigerant vaporized inside the compressor 10 at this time. It is a target.
  • the refrigerant discharged from the compressor 10 is sent to the heat source side heat exchanger 40 and the user side heat exchanger 30, but when the compressor 10 is stopped for the second period, the heat source side heat exchanger 40 is used.
  • the difference between the pressure of the refrigerant and the pressure of the refrigerant in the heat exchanger 30 on the user side becomes small.
  • the diffusion of the refrigerant dissolved in the compressor oil into the refrigerant circuit 20 is promoted, and the amount of the refrigerant in the compressor 10 is reduced.
  • the amount of the compressor oil is suppressed from falling below the required amount due to the discharge of the compressor oil together with the refrigerant.
  • the outdoor air conditioner 100 when the outdoor air conditioner 100 is placed in a place having a relatively low temperature such as outdoors for a long time, the refrigerant in the refrigerant circuit 20 is condensed, and the refrigerant having a high degree of wetness is unevenly present in the refrigerant circuit 20. I have something to do.
  • the highly moist refrigerant returns to the compressor 10 at once, so that the temperature of the compressor 10 drops, and the compressor oil is easily discharged from the compressor 10 together with the refrigerant.
  • the refrigerant moves from the high pressure side to the low pressure side, so that the refrigerant can be dispersed and exist in the refrigerant circuit 20.
  • the highly moist refrigerant is suppressed from returning to the compressor 10 at once, and the amount of compressor oil is suppressed from falling below the required amount.
  • the first period is 1 second or more and 20 seconds or less.
  • the amount of compressor oil discharged from the compressor 10 can be suppressed even if forming occurs.
  • the second period is 1 minute or more and 20 minutes or less.
  • the second period By setting the second period to the above period, the diffusion of the refrigerant dissolved in the compressor oil into the refrigerant circuit 20 is promoted, and the amount of the refrigerant in the compressor 10 can be reduced.
  • the compressor 10 of the outdoor air conditioner 100 is a compressor (non-inverter compressor) having a constant refrigerant discharge capacity per unit time.
  • a non-inverter compressor with a constant refrigerant discharge capacity per unit time can be manufactured at low cost, but the discharge capacity cannot be finely controlled. Therefore, in an outdoor air conditioner having a non-inverter compressor, the compressor reaches the maximum rotation speed at the time of starting, intense forming occurs in the compressor, and the amount of compressor oil tends to be less than the required amount. According to the outdoor air conditioner 100, even when a non-inverter compressor is used for the compressor 10, the amount of compressor oil is required in the compressor 10 by simple control of starting and stopping the compressor 10. It is possible to suppress the amount from falling below the amount. Therefore, the manufacturing cost can be kept low.
  • the heat source side heat exchanger 40 and the user side heat exchanger 30 are included in the outdoor air conditioner 100 in which the heat source side heat exchanger 40 and the user side heat exchanger 30 are arranged above the compressor 10.
  • a large amount of the refrigerant condensed in (1) tends to flow into the compressor 10.
  • these are placed in different casings. This tendency is due to the fact that the suction pipe 20a and the second gas connecting pipe 20e provided between the user side heat exchanger 30 and the compressor 10 tend to be shorter than the housed separate type air conditioner. Is remarkable.
  • the amount of compressor oil for outdoor use of the heat source side heat exchanger 40 and the user side heat exchanger 30 is less than the required amount as compared with the outdoor air conditioner arranged below the compressor 10. Cheap.
  • the amount of compressor oil in the compressor 10 is less than the required amount. Can be suppressed by simple control. Therefore, there is a high degree of freedom in design regarding the arrangement of the heat source side heat exchanger 40, the user side heat exchanger 30, and the compressor 10.
  • the control device 70 may switch the switching mechanism 12 to a predetermined state based on the execution instruction of the refrigeration cycle operation from the instruction unit 80 during the first pre-operation control.
  • FIG. 8 is a flowchart showing a control flow of the first pre-operation control executed by the control device 70 in the outdoor air conditioner 100 according to the modified example 1A.
  • the control device 70 switches the switching mechanism 12 based on the execution instruction of the refrigeration cycle operation from the instruction unit 80 in the step S105 before the step S110.
  • the control device 70 switches the switching mechanism 12 to the second state. .. Further, when the execution instruction is the execution instruction of the heating operation (when the switching mechanism 12 is set to the second state in the refrigeration cycle operation), the control device 70 switches the switching mechanism 12 to the first state.
  • control device 70 executes step S140 from step S110 described above to end the first pre-operation control.
  • the control device 70 starts the refrigeration cycle operation based on the execution instruction of the refrigeration cycle operation from the instruction unit 80.
  • the switching mechanism 12 switched in step S105 is switched again by the control device 70 so as to be in a state based on the execution instruction of the refrigeration cycle operation from the instruction unit 80.
  • the refrigerant separated in the compressor 10 in the first pre-operation control is directed toward the heat exchanger on the low pressure side in the subsequent refrigeration cycle operation. It is discharged. Therefore, even if the refrigerant discharged from the compressor 10 contains the compressor oil, the compressor oil contained in the refrigerant can be quickly returned to the compressor after the start of the refrigeration cycle operation, so that the amount of the compressor oil can be reduced. Can be effectively suppressed from falling below the required amount.
  • the outdoor air conditioner 100 since the heat source side heat exchanger 40 is arranged above the user side heat exchanger 30, the heat source side heat exchanger 40 condenses while the outdoor air conditioner 100 is stopped. A part of the refrigerant also collects in the heat exchanger 30 on the user side. Even if a part of the condensed refrigerant is accumulated in the heat exchanger 30 on the user side, the outdoor air conditioner 100 compresses the refrigerant in the first pre-operation control by executing the cooling / dehumidifying operation. By discharging the refrigerant separated in the machine 10 to the user side heat exchanger 30, the refrigerant accumulated in the user side heat exchanger 30 can be evaporated and sent to the heat source side heat exchanger 40.
  • control device 70 may switch the switching mechanism 12 after the compressor 10 is stopped and before the first pre-operation control is completed.
  • FIG. 9 is a flowchart showing a control flow of the first pre-operation control executed by the control device 70 in the outdoor air conditioner 100 according to the modified example 1B.
  • the control device 70 switches the switching mechanism 12 in step S135 after step S130.
  • the control device 70 sets the switching mechanism 12 in the first state while the compressor 10 is running, and sets the switching mechanism 12 in the second state in the refrigeration cycle operation.
  • the control device 70 sets the switching mechanism 12 in two states while the compressor 10 is running, and sets the switching mechanism 12 in the first state in the refrigeration cycle operation.
  • control device 70 may make the opening degree of the expansion mechanism 16 larger than the opening degree during the refrigerating cycle operation.
  • the difference between the pressure in the heat source side heat exchanger 40 and the pressure in the user side heat exchanger 30 tends to be small, so that the diffusion of the refrigerant into the refrigerant circuit 20 is promoted and the compressor 10 is compressed. It is effectively suppressed that the amount of machine oil falls below the required amount.
  • FIG. 10 is a diagram schematically showing a refrigerant circuit 20 of an outdoor air conditioner 101.
  • the difference between the outdoor air conditioner 101 and the outdoor air conditioner 100 is that the outdoor air conditioner 101 further includes a crankcase heater 13 and also includes a control device 71 instead of the control device 70.
  • crankcase Heater heats the compressor oil stored in the compressor 10.
  • the crankcase heater 13 is attached to the bottom wall surface of the compressor 10.
  • the crankcase heater 13 is controlled by the control device 71 and generates heat when energized.
  • Control device The control device 71 controls the operation of each part constituting the outdoor air conditioner 101.
  • the difference between the control device 71 and the control device 70 is that the control device 71 is electrically connected to the crankcase heater 13, and the control device 71 executes the second pre-operation control including the preheating control. It is a point to do.
  • the preheating control is a control in which the control device 71 heats the crankcase heater 13.
  • Preheating control is an example of the second control.
  • the control device 71 executes the second pre-operation control when it receives an execution instruction for cooling / dehumidifying operation or heating operation from the instruction unit 80.
  • the difference between the second pre-operation control executed by the control device 71 and the first pre-operation control executed by the control device 70 is that in the second pre-operation control, the first preheating control is started after the control device 71 starts the preheating control. This is the point of executing pre-operation control.
  • Preheating control continues until the refrigeration cycle operation is started. In other words, the preheating control is continued until the second pre-operation control is completed.
  • FIG. 11 is a flowchart showing a control flow of the second pre-operation control executed by the control device 71.
  • step S21 the control device 71 starts preheating control, heats the crankcase heater 13, and proceeds to step S22.
  • step S22 the control device 71 executes the first pre-operation control steps S11 to S16 shown in FIG. 7. The description of the first pre-operation control will be omitted.
  • the control device 71 proceeds to step S23 when step S22 is completed.
  • step S23 the control device 71 ends the preheating control, stops the heat generation of the crankcase heater 13, and ends the second pre-operation control.
  • control device 71 starts the refrigeration cycle operation based on the execution instruction of the refrigeration cycle operation from the instruction unit 80.
  • the outdoor air conditioner 101 of the present embodiment further includes a crankcase heater 13 that heats the compressor oil of the compressor 10 by generating heat.
  • the control device 71 executes the first pre-operation control after starting the preheating control (second control) for heating the crankcase heater 13.
  • the heat generated by the crankcase heater 13 heats the refrigerant dissolved in the compressor oil, so that the amount of the refrigerant dissolved in the compressor oil can be further reduced. Therefore, according to the outdoor air conditioner 101, it is possible to more effectively prevent the amount of compressor oil from falling below the required amount.
  • Modification example (4-1) Modification example 2A
  • the control device 71 may execute the preheating control after the power is turned on to the outdoor air conditioner 101 without waiting for the execution instruction of the refrigeration cycle operation from the instruction unit 80. In this case, if the control device 71 is heated to a period during which it is possible to prevent the compressor oil from falling below the required amount when the execution instruction is received, it is not necessary to execute the first pre-operation control.
  • the third pre-operation control executed by the control device 71 of the outdoor air conditioner 101 according to the modified example 2A will be described.
  • the control device 71 starts preheating control when the power is turned on to the outdoor air conditioner 101.
  • the control device 71 receives the execution instruction from the instruction unit 80, the control device 71 compares the elapsed time from the start of heat generation of the crankcase heater 13 with the predetermined third period. Then, if the elapsed time from the start of heat generation of the crankcase heater 13 is the third period or more, the control device 71 starts the refrigeration cycle operation without executing the first pre-operation control. Further, if the elapsed time from the start of heat generation of the crankcase heater 13 is less than the third period, the control device 71 executes the first pre-operation control, and after the first pre-operation control is completed, the refrigeration cycle Start operation.
  • the outdoor air conditioner 101 according to the modification 2A further includes a timer (not shown).
  • the timer measures the elapsed time since the crankcase heater 13 starts to generate heat.
  • FIG. 12 is a flowchart showing a control flow of the third pre-operation control executed by the control device 71.
  • the control device 71 starts control when the power is turned on to the outdoor air conditioner 102.
  • step S31 the control device 71 starts preheating control, heats the crankcase heater 13, and proceeds to step S32. At this time, the timer starts measuring the elapsed time.
  • step S32 the control device 71 determines whether or not the refrigerating cycle operation execution instruction has been received from the instruction unit 80. The control device 71 repeats step S32 until the execution instruction is received (No), and when the execution instruction is received (Yes), the control device 71 proceeds to step S33.
  • step S33 the control device 71 acquires the elapsed time from the start of heat generation of the crankcase heater 13 from the timer, and proceeds to step S34.
  • step S34 the control device 71 determines whether or not the acquired elapsed time is equal to or longer than the predetermined third period. If the elapsed time is the third period or more (Yes), the control device 71 ends the third pre-operation control, and if the elapsed time is less than the third period, proceeds to step S35 (No).
  • step S35 the control device 71 executes steps S11 to S16 of the first pre-operation control.
  • the control device 71 ends the third pre-operation control when the steps S11 to S16 of the first pre-operation control are completed.
  • control device 71 starts the refrigeration cycle operation based on the execution instruction of the refrigeration cycle operation from the instruction unit 80.
  • the third period is a period in which it is possible to separate the refrigerant dissolved in the compressor oil only by the heat generated by the crankcase heater 13 and prevent the amount of the compressor oil from falling below the required amount.
  • the third period is, for example, 90 minutes.
  • the first pre-operation control when the control device 71 is heated to a period during which the crankcase heater 13 can prevent the compressor oil from falling below the required amount by the time the control device 71 receives the execution instruction, the first pre-operation control is performed. Start refrigeration cycle operation without execution. If the compressor oil is not sufficiently heated by the crankcase heater 13 by the time the control device 71 receives the execution instruction, the refrigeration cycle operation is started after the first pre-operation control is executed.
  • FIG. 13 is a graph showing the movement of the compressor and the oil level behavior of the compressor oil in the embodiment.
  • the first pre-operation control was performed before the start of the cooling operation.
  • the first period was 5 seconds and the second period was 3 minutes.
  • the oil level behavior was observed with a sight glass provided in the compressor.
  • FIG. 13 the timing at which the control device 70 starts the first pre-operation control is shown as 0 minute.
  • the oil pickup is a pipe for sucking oil from the compressor, one end of which is connected to the fuel filler port and the other end of which is arranged in the oil reservoir space in the compressor.

Abstract

The present invention presents an air conditioning apparatus with which it is possible to prevent the compressor oil quantity from falling below a required quantity in a compressor (10) in association with outdoor use. This outdoor air conditioning apparatus (100) is used outdoors, the apparatus (100) comprising a refrigerant circuit (20) and a control device (70). The refrigerant circuit (20) has a compressor (10), a heat-source-side heat exchanger (40), and a use-side heat exchanger (30). In the refrigerant circuit (20), a refrigerant circulates through the compressor (10), the heat-source-side heat exchanger (40), and the use-side heat exchanger (30), whereby a refrigeration cycle is carried out. The control device (70) activates the compressor (10) and executes a refrigeration cycle operation for causing the refrigerant circuit (20) to carry out the refrigeration cycle. The control device (70): executes a first pre-operation control (first control) in which, after the compressor (10) is activated for a prescribed first period, the compressor (10) is stopped for a prescribed second period that is longer than the first period; and initiates the refrigeration cycle operation after the first pre-operation control has ended.

Description

屋外空気調和装置Outdoor air conditioner
 屋外空気調和装置に関する。 Regarding outdoor air conditioners.
 圧縮機、利用側熱交換器、および、熱源側熱交換器が1つの筐体に収容された、空気調和装置が知られている。 An air conditioner in which a compressor, a heat exchanger on the user side, and a heat exchanger on the heat source side are housed in one housing is known.
 特許文献1(特開2020-003182号公報)は、圧縮機と、熱源側熱交換器と、第1ファンと、利用側熱交換器と、第2ファンと、がケーシングに収容された屋外空気調和装置を開示している。 Patent Document 1 (Japanese Unexamined Patent Publication No. 2020-003182) describes outdoor air in which a compressor, a heat source side heat exchanger, a first fan, a user side heat exchanger, and a second fan are housed in a casing. The harmonizer is disclosed.
 特許文献1に開示される屋外空気調和装置では、夜間等に、長期間にわたって低温環境に置かれることにより、冷凍サイクル運転の開始後に圧縮機内の圧縮機油量が必要量を下回るという問題がある。具体的には、温度低下により凝縮して圧縮機内の圧縮機油に溶け込んだ冷媒が圧縮機の駆動による温度上昇によって気化して圧縮機油を泡立だせるフォーミングと呼ばれる現象が発生する。これにより、冷媒とともに泡状になった圧縮機油が圧縮機から吐出されて、圧縮機内の圧縮機油量が減るため、圧縮機油量が必要量を下回る恐れがある。 The outdoor air conditioner disclosed in Patent Document 1 has a problem that the amount of compressor oil in the compressor falls below the required amount after the start of the refrigeration cycle operation due to being placed in a low temperature environment for a long period of time such as at night. Specifically, a phenomenon called forming occurs in which the refrigerant condensed due to the temperature drop and dissolved in the compressor oil in the compressor is vaporized by the temperature rise caused by the drive of the compressor to foam the compressor oil. As a result, the compressor oil foamed together with the refrigerant is discharged from the compressor, and the amount of the compressor oil in the compressor is reduced, so that the amount of the compressor oil may be less than the required amount.
 本開示は、屋外使用にともない圧縮機において圧縮機油量が必要量を下回ることを抑制できる空気調和装置を提案する。 The present disclosure proposes an air conditioner capable of suppressing the amount of compressor oil from falling below the required amount in a compressor due to outdoor use.
 第1観点の屋外空気調和装置は、屋外で使用される空気調和装置であり、冷媒回路と、制御部と、を備える。冷媒回路は、圧縮機、熱源側熱交換器、および、利用側熱交換器を有し、圧縮機、熱源側熱交換器、および、利用側熱交換器を冷媒が循環することにより冷凍サイクルを行わせる。制御部は、圧縮機を起動して、冷媒回路に冷凍サイクルを行わせる冷凍サイクル運転を実行する。制御部は、第1制御を実行し、第1制御が終了した後に冷凍サイクル運転を開始する。第1制御は、所定の第1期間にわたり圧縮機を起動した後、第1期間よりも長い所定の第2期間にわたり圧縮機を停止する。 The outdoor air conditioner of the first aspect is an air conditioner used outdoors, and includes a refrigerant circuit and a control unit. The refrigerant circuit has a compressor, a heat source side heat exchanger, and a user side heat exchanger, and the refrigerating cycle is performed by circulating the refrigerant through the compressor, the heat source side heat exchanger, and the user side heat exchanger. Let me do it. The control unit activates the compressor and executes a refrigerating cycle operation in which the refrigerant circuit is allowed to perform the refrigerating cycle. The control unit executes the first control and starts the refrigeration cycle operation after the first control is completed. The first control starts the compressor for a predetermined first period and then stops the compressor for a predetermined second period longer than the first period.
 第1観点の屋外空気調和装置によれば、第1期間にわたり圧縮機が起動し圧縮機の内部の温度が上昇することにより、圧縮機油に溶け込んだ冷媒が気化して圧縮機油から分離し圧縮機から吐出される。また、第2期間にわたり圧縮機を停止することにより、熱源側熱交換器における冷媒圧力と、利用側熱交換器における冷媒圧力と、の差が小さくなり、高圧側から低圧側へ冷媒の拡散が促進される。この結果、第1制御後に、冷凍サイクル運転が開始されても、冷媒とともに圧縮機油が吐出されることで圧縮機油量が必要量を下回ることが抑制される。 According to the outdoor air conditioner of the first aspect, the compressor is started for the first period and the temperature inside the compressor rises, so that the refrigerant dissolved in the compressor oil is vaporized and separated from the compressor oil. Is discharged from. Further, by stopping the compressor for the second period, the difference between the refrigerant pressure in the heat source side heat exchanger and the refrigerant pressure in the user side heat exchanger becomes small, and the refrigerant diffuses from the high pressure side to the low pressure side. Be promoted. As a result, even if the refrigeration cycle operation is started after the first control, the amount of the compressor oil is suppressed from falling below the required amount due to the discharge of the compressor oil together with the refrigerant.
 第2観点の屋外空気調和装置は、第1観点の屋外空気調和装置であって、第1期間は、1秒以上20秒以下である。 The outdoor air conditioner of the second viewpoint is the outdoor air conditioner of the first viewpoint, and the first period is 1 second or more and 20 seconds or less.
 第3観点の屋外空気調和装置は、第1観点または第2観点の屋外空気調和装置であって、第2期間は、1分以上20分以下である。 The outdoor air conditioner of the third viewpoint is the outdoor air conditioner of the first viewpoint or the second viewpoint, and the second period is 1 minute or more and 20 minutes or less.
 第4観点の屋外空気調和装置は、第1観点から第3観点のいずれかの屋外空気調和装置であって、冷媒回路は、第1状態と、第2状態と、の間で切り換わる切換機構を有する。第1状態は、冷媒を、圧縮機、熱源側熱交換器、利用側熱交換器の順で循環させる。第2状態は、冷媒を、圧縮機、利用側熱交換器、熱源側熱交換器の順で循環させる。制御部は、第1制御において、圧縮機を起動している間は切換機構を第1状態とし、冷凍サイクル運転において、切換機構を第2状態とする。あるいは、制御部は、第1制御において、圧縮機を起動している間は切換機構を第2状態とし、冷凍サイクル運転において、切換機構を第1状態とする。 The outdoor air conditioner according to the fourth aspect is the outdoor air conditioner according to any one of the first aspect to the third aspect, and the refrigerant circuit is a switching mechanism for switching between the first state and the second state. Has. In the first state, the refrigerant is circulated in the order of the compressor, the heat source side heat exchanger, and the user side heat exchanger. In the second state, the refrigerant is circulated in the order of the compressor, the heat exchanger on the user side, and the heat exchanger on the heat source side. In the first control, the control unit sets the switching mechanism in the first state while the compressor is running, and sets the switching mechanism in the second state in the refrigeration cycle operation. Alternatively, in the first control, the control unit sets the switching mechanism in the second state while the compressor is running, and sets the switching mechanism in the first state in the refrigeration cycle operation.
 第4観点の屋外空気調和装置によれば、第1制御において圧縮機内で分離した冷媒は、その後に実行される冷凍サイクル運転で低圧側となる熱交換器へ向かって吐出される。このため、圧縮機から吐出された冷媒に圧縮機油が含まれていても、冷凍サイクル運転の開始後、冷媒に含まれた圧縮機油はすみやかに圧縮機へ戻ることができるため、圧縮機油量が必要量を下回ることを効果的に抑制できる。 According to the outdoor air conditioner of the fourth aspect, the refrigerant separated in the compressor in the first control is discharged toward the heat exchanger on the low pressure side in the subsequent refrigeration cycle operation. Therefore, even if the refrigerant discharged from the compressor contains compressor oil, the compressor oil contained in the refrigerant can be quickly returned to the compressor after the start of the refrigeration cycle operation, so that the amount of compressor oil increases. It is possible to effectively suppress the amount from falling below the required amount.
 第5観点の屋外空気調和装置は、第4観点の屋外空気調和装置であって、制御部は、第1制御において、切換機構を第1状態とし、冷凍サイクル運転において、切換機構を第2状態とする。あるいは、制御部は、第1制御において、切換機構を第2状態とし、冷凍サイクル運転において、切換機構を第1状態とする。 The outdoor air conditioner of the fifth aspect is the outdoor air conditioner of the fourth aspect, and the control unit sets the switching mechanism in the first state in the first control and the switching mechanism in the second state in the refrigeration cycle operation. And. Alternatively, the control unit sets the switching mechanism in the second state in the first control and the switching mechanism in the first state in the refrigeration cycle operation.
 第6観点の屋外空気調和装置は、第1観点から第5観点のいずれかの屋外空気調和装置であって、圧縮機は、単位時間あたりの冷媒の吐出容量が一定である。 The outdoor air conditioner of the sixth viewpoint is any of the outdoor air conditioners of the first to fifth viewpoints, and the compressor has a constant refrigerant discharge capacity per unit time.
 単位時間あたりの冷媒の吐出容量が一定である非インバータ圧縮機は、低コストでの製造が可能である反面、吐出容量の細かい制御ができない。このため、非インバータ圧縮機を有する屋外空気調和装置では、圧縮機は起動とともに最大回転数となり、圧縮機内で激しいフォーミングが発生し、圧縮機油量が必要量を下回り易い。第6観点の屋外空気調和装置によれば、圧縮機に、単位時間あたりの冷媒の吐出容量が一定である圧縮機(非インバータ圧縮機)を用いた場合であっても、圧縮機油量が必要量を下回ることを抑制できる。 A non-inverter compressor with a constant refrigerant discharge capacity per unit time can be manufactured at low cost, but the discharge capacity cannot be finely controlled. Therefore, in an outdoor air conditioner having a non-inverter compressor, the compressor reaches the maximum rotation speed at the time of starting, intense forming occurs in the compressor, and the amount of compressor oil tends to be less than the required amount. According to the outdoor air conditioner of the sixth aspect, even when a compressor (non-inverter compressor) having a constant refrigerant discharge capacity per unit time is used as the compressor, the amount of compressor oil is required. It is possible to suppress the amount from falling below the amount.
 第7観点の屋外空気調和装置は、第1観点から第6観点のいずれかの屋外空気調和装置であって、熱源側熱交換器は、利用側熱交換器よりも上方に配置されている。 The outdoor air conditioner of the 7th viewpoint is any of the outdoor air conditioners of the 1st to 6th viewpoints, and the heat source side heat exchanger is arranged above the user side heat exchanger.
 第8観点の屋外空気調和装置は、第1観点から第7観点のいずれかの屋外空気調和装置であって、熱源側熱交換器、および、利用側熱交換器は、圧縮機よりも上方に配置されている。 The outdoor air conditioner according to the eighth aspect is the outdoor air conditioner according to any one of the first to seventh aspects, and the heat source side heat exchanger and the user side heat exchanger are above the compressor. Have been placed.
 熱源側熱交換器、および、利用側熱交換器が、圧縮機よりも上方に配置された屋外空気調和装置では、熱源側熱交換器、および、利用側熱交換器内で凝縮した冷媒が、大量に圧縮機の内部へ流れ込みやすい。とくに、利用側熱交換器と、熱源側熱交換器と、が1つのケーシングに収容された一体型の空気調和装置の場合、これらが別のケーシングに収容されたセパレート型の空気調和装置と比べて利用側熱交換器と、圧縮機と、の間に設けられる吸入管、および、第2ガス連絡配管が短くなり易いため、この傾向が顕著である。第8観点の屋外空気調和装置によれば、熱源側熱交換器、および、利用側熱交換器を圧縮機よりも上方に配置した場合であっても圧縮機において圧縮機油量が必要量を下回ることを簡単な制御により抑制できる。このため、熱源側熱交換器、利用側熱交換器、および、圧縮機の配置に関する設計自由度が高い。 In an outdoor air conditioner in which the heat source side heat exchanger and the user side heat exchanger are arranged above the compressor, the heat source side heat exchanger and the refrigerant condensed in the user side heat exchanger are used. It is easy for a large amount to flow into the inside of the compressor. In particular, in the case of an integrated air conditioner in which the heat exchanger on the user side and the heat exchanger on the heat source side are housed in one casing, compared with the separate type air conditioner in which these are housed in another casing. This tendency is remarkable because the suction pipe provided between the heat exchanger on the user side and the compressor and the second gas connecting pipe tend to be shortened. According to the outdoor air conditioner of the eighth aspect, the amount of compressor oil in the compressor is less than the required amount even when the heat source side heat exchanger and the user side heat exchanger are arranged above the compressor. This can be suppressed by simple control. Therefore, there is a high degree of freedom in design regarding the arrangement of the heat source side heat exchanger, the user side heat exchanger, and the compressor.
 第9観点の屋外空気調和装置は、第1観点から第8観点のいずれかの屋外空気調和装置であって、発熱することで圧縮機の圧縮機油を温めるクランクケースヒータをさらに備える。制御部は、クランクケースヒータを発熱させる第2制御を開始した後に第1制御を実行する。 The outdoor air conditioner according to the ninth aspect is the outdoor air conditioner according to any one of the first aspect to the eighth aspect, and further includes a crankcase heater that heats the compressor oil of the compressor by generating heat. The control unit executes the first control after starting the second control for heating the crankcase heater.
 第9観点の屋外空気調和装置によれば、クランクケースヒータの発熱により、圧縮機油に溶け込んだ冷媒が加熱されるため、圧縮機油に溶け込んでいる冷媒の量をより少なくすることができる。 According to the outdoor air conditioner of the ninth aspect, the heat generated by the crankcase heater heats the refrigerant dissolved in the compressor oil, so that the amount of the refrigerant dissolved in the compressor oil can be further reduced.
 第10観点の屋外空気調和装置は、第9観点の屋外空気調和装置であって、制御部は、冷凍サイクル運転を開始するまで第2制御を継続する。 The outdoor air conditioner of the tenth viewpoint is the outdoor air conditioner of the ninth viewpoint, and the control unit continues the second control until the refrigeration cycle operation is started.
 第11観点の屋外空気調和装置は、第9観点または第10観点の屋外空気調和装置であって、タイマーと、指示部と、をさらに備える。タイマーは、クランクケースヒータが発熱を開始してからの経過時間を測る。指示部は、制御部に冷凍サイクル運転の実行を指示する実行指示を送信する。制御部は、電源が投入されると第2制御を開始し、指示部から実行指示を受信すると、経過時間と、所定の第3時間と、を比較する。制御部は、経過時間が所定の第3期間以上であれば、第1制御を実行することなく冷凍サイクル運転を開始する。また、制御部は、経過時間が第3期間未満であれば、第1制御を実行し、第1制御が終了した後に冷凍サイクル運転を開始する。 The 11th viewpoint outdoor air conditioner is the 9th or 10th viewpoint outdoor air conditioner, further including a timer and an indicator. The timer measures the elapsed time since the crankcase heater started to generate heat. The instruction unit transmits an execution instruction instructing the control unit to execute the refrigeration cycle operation. The control unit starts the second control when the power is turned on, and when it receives an execution instruction from the instruction unit, it compares the elapsed time with the predetermined third time. If the elapsed time is equal to or longer than the predetermined third period, the control unit starts the refrigeration cycle operation without executing the first control. Further, if the elapsed time is less than the third period, the control unit executes the first control and starts the refrigeration cycle operation after the first control is completed.
 第11観点の屋外空気調和装置によれば、指示部からの実行指示を受信してから冷凍サイクル運転を開始するまでの時間を短縮でき、利便性が向上する。 According to the 11th viewpoint outdoor air conditioner, the time from receiving the execution instruction from the instruction unit to starting the refrigeration cycle operation can be shortened, and the convenience is improved.
第1実施形態の屋外空気調和装置100の外観斜視図である。It is an external perspective view of the outdoor air conditioner 100 of 1st Embodiment. 屋外空気調和装置100の冷媒回路20を概略的に示す図である。It is a figure which shows schematically the refrigerant circuit 20 of the outdoor air conditioner 100. 屋外空気調和装置100のケーシング90の内部の構成を示す斜視図である。It is a perspective view which shows the internal structure of the casing 90 of the outdoor air conditioner 100. 屋外空気調和装置100のケーシング90の内部の構成を示す概略側面図である。It is a schematic side view which shows the internal structure of the casing 90 of the outdoor air conditioner 100. 屋外空気調和装置100の熱源側熱交換器40の概略平面図である。It is a schematic plan view of the heat exchanger 40 on the heat source side of the outdoor air conditioner 100. 屋外空気調和装置100の利用側熱交換器30の概略平面図である。It is a schematic plan view of the heat exchanger 30 on the user side of the outdoor air conditioner 100. 屋外空気調和装置100の制御装置70が実行する第1運転前制御の制御フローを示すフローチャートである。It is a flowchart which shows the control flow of the 1st pre-operation control executed by the control device 70 of the outdoor air conditioner 100. 変形例1Aに係る第1運転前制御の制御フローを示すフローチャートである。It is a flowchart which shows the control flow of the 1st pre-operation control which concerns on modification 1A. 変形例2Aに係る第1運転前制御の制御フローを示すフローチャートである。It is a flowchart which shows the control flow of the 1st pre-operation control which concerns on modification 2A. 屋外空気調和装置101の冷媒回路20を概略的に示す図である。It is a figure which shows schematically the refrigerant circuit 20 of the outdoor air conditioner 101. 屋外空気調和装置101の制御装置71が実行する第2運転前制御の制御フローを示すフローチャートである。It is a flowchart which shows the control flow of the 2nd pre-operation control executed by the control device 71 of the outdoor air conditioner 101. 屋外空気調和装置101の制御装置71が実行する第3運転前制御の制御フローを示すフローチャートである。It is a flowchart which shows the control flow of the 3rd pre-operation control executed by the control device 71 of the outdoor air conditioner 101. 実施例における圧縮機の動き、および、圧縮機油の油面挙動を示すグラフである。It is a graph which shows the movement of a compressor in an Example, and the oil level behavior of a compressor oil.
 <第1実施形態>
 第1実施形態に係る屋外空気調和装置100について、図面を参照しながら、以下に説明する。
<First Embodiment>
The outdoor air conditioner 100 according to the first embodiment will be described below with reference to the drawings.
 以下では、位置や方向を説明するために「上」「下」「前(正面)」「後(背面)」「左」「右」等の表現を用いる場合がある。これらの表現は、特記無き場合、図面に示した「上」「下」「前」「後」「左」「右」の矢印の向きに従う。 In the following, expressions such as "top", "bottom", "front (front)", "rear (back)", "left", and "right" may be used to explain the position and direction. Unless otherwise specified, these expressions follow the directions of the "up", "down", "front", "rear", "left", and "right" arrows shown in the drawings.
 (1)全体概要
 図1は、屋外空気調和装置100の外観斜視図である。図2は、屋外空気調和装置100の冷媒回路20を概略的に示す図である。
(1) Overall Overview FIG. 1 is an external perspective view of the outdoor air conditioner 100. FIG. 2 is a diagram schematically showing a refrigerant circuit 20 of the outdoor air conditioner 100.
 屋外空気調和装置100は、屋外に設置され、屋外で空気調和を行う空気調和装置である。ここで、屋外とは、少なくとも一部が外気にさらされる空間を意味する。屋外には、例えば、公園、野外の競技場など、屋根や壁の無い場所を含む。ただし、屋外は、屋根、および、壁の無い場所に限定されるものではなく、屋根のある戸外空間やオープンテラス、東屋のような場所や、周囲を壁に囲まれた屋根の無い中庭のような場所等、少なくとも一部が屋外に開放している空間も含む。 The outdoor air conditioner 100 is an air conditioner that is installed outdoors and performs air conditioning outdoors. Here, the outdoor means a space where at least a part is exposed to the outside air. Outdoors include places without roofs or walls, such as parks, open-air stadiums, and the like. However, the outdoors are not limited to roofs and places without walls, such as open-air spaces with roofs, open terraces, places like Azumaya, and courtyards without roofs surrounded by walls. Includes spaces that are at least partly open to the outside, such as places that are open to the public.
 屋外空気調和装置100は、冷媒回路20で行われる蒸気圧縮冷凍サイクル(以下、単に冷凍サイクルという)を利用して屋外の冷房、除湿、暖房等を行う。屋外空気調和装置100において用いられる冷媒は、限定するものではないが、例えば、R32単体、又はR32を含む混合冷媒である。R32を含む混合冷媒の具体例には、R452B、R410A、R454B、および、HFO混合冷媒を含む。なお、R452Bは、R32を67.0wt%、R125を7.0wt%、R1234yfを26.0wt%含む混合冷媒である。R410Aは、R32を50wt%、R125を50wt%含む混合冷媒である。R454Bは、R32を72.5wt%、R1234yfを27.5wt%含む混合冷媒である。HFO混合冷媒には、HFO-1123を45.0wt%、R32を55.0wt%含むものの他、HFO-1123を40.0wt%、R32を60.0wt%含むものも含む。また、屋外空気調和装置100において用いられる冷媒は、CO等の自然冷媒であってもよい。 The outdoor air conditioner 100 performs outdoor cooling, dehumidification, heating, and the like by utilizing a steam compression refrigeration cycle (hereinafter, simply referred to as a refrigeration cycle) performed in the refrigerant circuit 20. The refrigerant used in the outdoor air conditioner 100 is not limited, but is, for example, R32 alone or a mixed refrigerant containing R32. Specific examples of the mixed refrigerant containing R32 include R452B, R410A, R454B, and an HFO mixed refrigerant. R452B is a mixed refrigerant containing 67.0 wt% of R32, 7.0 wt% of R125, and 26.0 wt% of R1234yf. R410A is a mixed refrigerant containing 50 wt% of R32 and 50 wt% of R125. R454B is a mixed refrigerant containing 72.5 wt% of R32 and 27.5 wt% of R1234yf. The HFO mixed refrigerant contains 45.0 wt% of HFO-1123 and 55.0 wt% of R32, and also contains 40.0 wt% of HFO-1123 and 60.0 wt% of R32. Further, the refrigerant used in the outdoor air conditioner 100 may be a natural refrigerant such as CO 2 .
 本実施形態では、屋外空気調和装置100は、冷凍サイクル運転である冷房/除湿運転、および、暖房運転を実行することが可能な装置である。詳細は後述するが、屋外空気調和装置100は、冷凍サイクル運転を実行する前に、屋外使用にともなう圧縮機10(後述)における圧縮機油量が必要量を下回ることを抑制するための第1運転前制御を実行する。ただし、屋外空気調和装置100は、冷房/除湿運転、および、暖房運転を行うことが可能な装置に限定されるものではない。例えば、屋外空気調和装置100は、冷房/除湿運転のみを行うことが可能な冷房専用機であってもよい。また、例えば、屋外空気調和装置100は、暖房運転のみを行うことが可能な暖房専用機であってもよい。なお、屋外空気調和装置100が冷房専用機である場合、屋外空気調和装置100は、後述する切換機構12を有していなくてもよい。また、屋外空気調和装置100が暖房専用機である場合にも、屋外空気調和装置100は切換機構12を有していなくてもよい。 In the present embodiment, the outdoor air conditioner 100 is a device capable of performing a cooling / dehumidifying operation and a heating operation, which are refrigeration cycle operations. Although the details will be described later, the outdoor air conditioner 100 is the first operation for suppressing the amount of compressor oil in the compressor 10 (described later) due to outdoor use from falling below the required amount before executing the refrigeration cycle operation. Perform pre-control. However, the outdoor air conditioner 100 is not limited to a device capable of performing cooling / dehumidifying operation and heating operation. For example, the outdoor air conditioner 100 may be a dedicated cooling machine capable of performing only cooling / dehumidifying operation. Further, for example, the outdoor air conditioner 100 may be a dedicated heating machine capable of performing only heating operation. When the outdoor air conditioner 100 is a dedicated cooling machine, the outdoor air conditioner 100 does not have to have the switching mechanism 12 described later. Further, even when the outdoor air conditioner 100 is a dedicated heating machine, the outdoor air conditioner 100 does not have to have the switching mechanism 12.
 屋外空気調和装置100は、図2に示すように、圧縮機10、切換機構12、利用側熱交換器30、膨張機構16、および、熱源側熱交換器40等の機器を配管で接続した冷媒回路20を有する。屋外空気調和装置100は、ケーシング90内に、冷媒回路20の全体を収容している。また、屋外空気調和装置100は、利用側熱交換器30を空気が通過するように気流を生成する利用側ファン50と、熱源側熱交換器40を空気が通過するように気流を生成する熱源側ファン60と、を有する。利用側ファン50、および、熱源側ファン60は、ケーシング90内に収容されている。屋外空気調和装置100の動作は、指示部80からの実行指示に基づいて制御装置70により制御される。 As shown in FIG. 2, the outdoor air conditioner 100 is a refrigerant in which devices such as a compressor 10, a switching mechanism 12, a user-side heat exchanger 30, an expansion mechanism 16, and a heat source-side heat exchanger 40 are connected by a pipe. It has a circuit 20. The outdoor air conditioner 100 accommodates the entire refrigerant circuit 20 in the casing 90. Further, the outdoor air conditioner 100 includes a user-side fan 50 that generates an air flow so that air passes through the user-side heat exchanger 30, and a heat source that generates an air flow so that air passes through the heat source-side heat exchanger 40. It has a side fan 60 and. The user-side fan 50 and the heat source-side fan 60 are housed in the casing 90. The operation of the outdoor air conditioner 100 is controlled by the control device 70 based on the execution instruction from the instruction unit 80.
 (2)詳細説明
 ケーシング90と、冷媒回路20と、利用側ファン50と、熱源側ファン60と、制御装置70と、指示部80と、について以下に説明する。冷媒回路20には、圧縮機10、切換機構12、熱源側熱交換器40、利用側熱交換器30、および、膨張機構16が含まれる。
(2) Detailed Description The casing 90, the refrigerant circuit 20, the user-side fan 50, the heat source-side fan 60, the control device 70, and the indicator 80 will be described below. The refrigerant circuit 20 includes a compressor 10, a switching mechanism 12, a heat source side heat exchanger 40, a utilization side heat exchanger 30, and an expansion mechanism 16.
 (2-1)ケーシング
 屋外空気調和装置100のケーシング90、および、ケーシング90内の機器の配置について、図を参照しながら以下に説明する。
(2-1) Casing The casing 90 of the outdoor air conditioner 100 and the arrangement of the equipment in the casing 90 will be described below with reference to the drawings.
 図3は、屋外空気調和装置100のケーシング90の内部の構成を示す斜視図である。図3は、ケーシング90の化粧板91や一部の支柱(支柱92b)等が取り除かれた状態の屋外空気調和装置100を描画しており、ケーシング90の内部の機器の配置を描画している。図4は、屋外空気調和装置100のケーシング90の内部の構成を示す概略側面図である。図4では、一部の構成(利用側熱交換器30,熱源側熱交換器40,利用側ファン50等)については断面を示している。 FIG. 3 is a perspective view showing the internal configuration of the casing 90 of the outdoor air conditioner 100. FIG. 3 depicts the outdoor air conditioner 100 in a state where the decorative plate 91 of the casing 90 and some of the columns (supports 92b) are removed, and depicts the arrangement of the devices inside the casing 90. .. FIG. 4 is a schematic side view showing the internal configuration of the casing 90 of the outdoor air conditioner 100. FIG. 4 shows a cross section of a part of the configurations (utility side heat exchanger 30, heat source side heat exchanger 40, utilization side fan 50, etc.).
 本実施形態の屋外空気調和装置100では、ケーシング90には、圧縮機10、利用側熱交換器30、熱源側熱交換器40、利用側ファン50、および、熱源側ファン60が収容される。本実施形態では、ケーシング90は、平面視が略正方形状の略直方体形状を有している。ただし、ケーシング90の形状は、平面視が略正方形状の略直方体形状に限定されるものではなく、平面視が長方形形状の直方体形状を有していてもよい。また、ケーシング90は、平面視が多角形形状の多角柱形状を有していてもよく、平面視が円形状の円柱形状や、楕円形状の楕円柱形状を有していてもよい。ケーシング90の形状は、適宜決定されればよい。 In the outdoor air conditioner 100 of the present embodiment, the casing 90 houses the compressor 10, the user-side heat exchanger 30, the heat source-side heat exchanger 40, the user-side fan 50, and the heat source-side fan 60. In the present embodiment, the casing 90 has a substantially rectangular parallelepiped shape having a substantially square shape in a plan view. However, the shape of the casing 90 is not limited to a substantially rectangular parallelepiped shape having a substantially square shape in a plan view, and may have a rectangular parallelepiped shape having a rectangular shape in a plan view. Further, the casing 90 may have a polygonal prism shape having a polygonal shape in a plan view, and may have a cylindrical shape having a circular shape in a plan view or an elliptical pillar shape having an elliptical view. The shape of the casing 90 may be appropriately determined.
 好ましくは、ケーシング90の下面にはキャスター95が取り付けられ、屋外空気調和装置100は移動可能に構成される。 Preferably, casters 95 are attached to the lower surface of the casing 90, and the outdoor air conditioner 100 is configured to be movable.
 (2-1-1)支柱、天板、および、底板
 ケーシング90は、4本の支柱92a~92dと、天板94と、底板96とを有している。
(2-1-1) The column, the top plate, and the bottom plate casing 90 have four columns 92a to 92d, a top plate 94, and a bottom plate 96.
 4本の支柱92a~92dは、平面視において略正方形形状のケーシング90の四隅に、鉛直方向に延びるように配置されている。天板94、および、底板96は、4本の支柱92a~92dに固定されている。天板94には、その中央部に熱源側熱交換器40を通過した空気をケーシング90外に排出するための排気口84が形成されている。つまり、天板94には、その中央部に熱源側熱交換器40を流れる冷媒と熱交換をした空気をケーシング90外に排出するための排気口84が形成されている。排気口84の上方には、メッシュ状のファンガード(図示省略)が配置されている。底板96上には、圧縮機10や、屋外空気調和装置100の各種電装品を収容している電装品ボックス2等が設置されている。 The four columns 92a to 92d are arranged so as to extend in the vertical direction at the four corners of the casing 90 having a substantially square shape in a plan view. The top plate 94 and the bottom plate 96 are fixed to the four columns 92a to 92d. The top plate 94 is formed with an exhaust port 84 at the center thereof for discharging the air that has passed through the heat source side heat exchanger 40 to the outside of the casing 90. That is, the top plate 94 is formed with an exhaust port 84 at the center thereof for discharging the air that has exchanged heat with the refrigerant flowing through the heat source side heat exchanger 40 to the outside of the casing 90. A mesh-shaped fan guard (not shown) is arranged above the exhaust port 84. On the bottom plate 96, a compressor 10, an electrical component box 2 containing various electrical components of the outdoor air conditioner 100, and the like are installed.
 (2-1-2)ドレンパン
 ケーシング90の内部には、ケーシング90の内部を仕切るドレンパン36,46が配置されている。
(2-1-2) Drain Pans 36, 46 are arranged inside the casing 90 to partition the inside of the casing 90.
 ドレンパン46は、熱源側熱交換器40の下方に、熱源側熱交換器40に隣接して配置される。なお、ここで、ドレンパン46が熱源側熱交換器40の下方に隣接して配置されるとは、熱源側熱交換器40の下端の少なくとも一部と、ドレンパン46と、の間に部材が配置されていないことを意味する。 The drain pan 46 is arranged below the heat source side heat exchanger 40 and adjacent to the heat source side heat exchanger 40. Here, the fact that the drain pan 46 is arranged adjacent to the lower part of the heat source side heat exchanger 40 means that the member is arranged between at least a part of the lower end of the heat source side heat exchanger 40 and the drain pan 46. It means that it has not been done.
 ドレンパン46は、支柱92a~92dに固定される。ドレンパン46は、底部46aと、底部46aの周縁から上方に延びる側壁46bと、を有する部材である。ドレンパン46は、熱源側熱交換器40で発生する結露水や雨水等を受ける。ドレンパン46は、材質を限定するものではないが、例えば金属製の部材である。 The drain pan 46 is fixed to the columns 92a to 92d. The drain pan 46 is a member having a bottom portion 46a and a side wall 46b extending upward from the peripheral edge of the bottom portion 46a. The drain pan 46 receives dew condensation water, rainwater, and the like generated by the heat source side heat exchanger 40. The drain pan 46 is not limited to a material, but is, for example, a metal member.
 ドレンパン46は、ドレンパン46の上方に配置される熱源エリアA1と、ドレンパン46の下方に配置される利用エリアA2とを仕切っている。ドレンパン46により、熱源側熱交換器40を通過した直後の空気が利用エリアA2に直接流入したり、利用側熱交換器30を通過した直後の空気が熱源エリアA1に直接流入したりすることが抑制される。つまり、ドレンパン46により、熱源エリアA1の空気が利用エリアA2に直接流入したり、利用エリアA2の空気が熱源エリアA1に直接流入したりすることが抑制される。また、ドレンパン46は、利用側熱交換器30を通過した空気の流路FPと、熱源側熱交換器40との断熱のための部材としても機能する。また、ドレンパン46は、利用側熱交換器30を通過した空気の流路FPと、熱源側熱交換器40を通過した空気の流路との断熱のための部材としても機能する。ドレンパン46の下方には、利用側ファン50を支持する支持部材47が配置される。 The drain pan 46 partitions the heat source area A1 arranged above the drain pan 46 and the use area A2 arranged below the drain pan 46. Due to the drain pan 46, the air immediately after passing through the heat source side heat exchanger 40 may directly flow into the utilization area A2, or the air immediately after passing through the utilization side heat exchanger 30 may directly flow into the heat source area A1. It is suppressed. That is, the drain pan 46 suppresses the direct inflow of the air in the heat source area A1 into the utilization area A2 and the direct inflow of the air in the utilization area A2 into the heat source area A1. The drain pan 46 also functions as a member for heat insulation between the air flow path FP that has passed through the utilization side heat exchanger 30 and the heat source side heat exchanger 40. The drain pan 46 also functions as a member for heat insulation between the air flow path FP that has passed through the utilization side heat exchanger 30 and the air flow path that has passed through the heat source side heat exchanger 40. A support member 47 that supports the user-side fan 50 is arranged below the drain pan 46.
 ドレンパン36は、利用側熱交換器30の下方に、利用側熱交換器30に隣接して配置される。なお、ここで、ドレンパン36が利用側熱交換器30の下方に隣接して配置されるとは、利用側熱交換器30の下端の少なくとも一部と、ドレンパン36と、の間に部材が配置されていないことを意味する。 The drain pan 36 is arranged below the user-side heat exchanger 30 and adjacent to the user-side heat exchanger 30. Here, the fact that the drain pan 36 is arranged adjacent to the lower side of the user side heat exchanger 30 means that the member is arranged between at least a part of the lower end of the user side heat exchanger 30 and the drain pan 36. It means that it has not been done.
 ドレンパン36は、支柱92a~92dに固定される。ドレンパン36は、底部36aと、底部36aの周縁から上方に延びる側壁36bと、を有する部材である。ドレンパン36は、利用側熱交換器30で発生する結露水や雨水等を受ける。ドレンパン36は、材質を限定するものではないが、例えば金属製の部材である。 The drain pan 36 is fixed to the columns 92a to 92d. The drain pan 36 is a member having a bottom portion 36a and a side wall 36b extending upward from the peripheral edge of the bottom portion 36a. The drain pan 36 receives dew condensation water, rainwater, and the like generated by the heat exchanger 30 on the user side. The drain pan 36 is not limited to a material, but is, for example, a metal member.
 ドレンパン36は、ドレンパン36の上方に配置される利用エリアA2と、ドレンパン36の下方に配置される機械室エリアA3とを仕切っている。 The drain pan 36 partitions the use area A2 arranged above the drain pan 36 and the machine room area A3 arranged below the drain pan 36.
 (2-1-3)熱源エリア、利用エリア、および、機械室エリア
 熱源エリアA1には、主に熱源側熱交換器40、および、熱源側ファン60が配置されている。熱源エリアA1には、ドレンパン46の上方、かつ、ドレンパン46に隣接して熱源側熱交換器40が配置されている。熱源側熱交換器40は、ドレンパン46の底部46aに隣接して配置されている。また、熱源エリアA1には、熱源側熱交換器40の上方に熱源側ファン60が配置されている。
(2-1-3) Heat source area, utilization area, and machine room area In the heat source area A1, a heat source side heat exchanger 40 and a heat source side fan 60 are mainly arranged. In the heat source area A1, a heat source side heat exchanger 40 is arranged above the drain pan 46 and adjacent to the drain pan 46. The heat source side heat exchanger 40 is arranged adjacent to the bottom portion 46a of the drain pan 46. Further, in the heat source area A1, a heat source side fan 60 is arranged above the heat source side heat exchanger 40.
 利用エリアA2には、主に利用側熱交換器30、および、利用側ファン50が配置されている。利用エリアA2は、支柱92a~92dに固定された中間板98により、中間板98の上方に配置される吹出エリアA21と、中間板98の下方に配置される熱交換器エリアA22と、に更に区画されている。 The user side heat exchanger 30 and the user side fan 50 are mainly arranged in the use area A2. The used area A2 is further divided into a blowout area A21 arranged above the intermediate plate 98 and a heat exchanger area A22 arranged below the intermediate plate 98 by the intermediate plate 98 fixed to the columns 92a to 92d. It is partitioned.
 吹出エリアA21には、主に利用側ファン50が配置されている。吹出エリアA21には、利用側熱交換器30を通過した空気の流路FPが形成される。 The user side fan 50 is mainly arranged in the blowout area A21. In the blowout area A21, a flow path FP for air that has passed through the heat exchanger 30 on the utilization side is formed.
 利用側熱交換器30を通過した空気の流路FP(以後、単に流路FPと記載する場合がある)には、利用側熱交換器30を通過した空気がケーシング90外へと吹き出す吹出口82が含まれる。吹出口82は、吹出エリアA21を囲むケーシング90の側面の、隣接する支柱間に形成されている。吹出口82は、複数の(本実施形態では4つの)吹出口82a~82dを含む。具体的には、支柱92aと、支柱92bと、の間(右側面)に吹出口82aが形成される。支柱92bと、支柱92cと、の間(前面)に吹出口82bが形成される。支柱92cと、支柱92dと、の間(左側面)に吹出口82cが形成される。支柱92dと、支柱92aと、の間(後面)に吹出口82dが形成される。 In the flow path FP of the air that has passed through the user side heat exchanger 30 (hereinafter, may be simply referred to as the flow path FP), an outlet through which the air that has passed through the user side heat exchanger 30 is blown out to the outside of the casing 90. 82 is included. The outlet 82 is formed between adjacent columns on the side surface of the casing 90 surrounding the outlet area A21. The outlet 82 includes a plurality of outlets 82a to 82d (four in this embodiment). Specifically, the outlet 82a is formed between the support column 92a and the support column 92b (on the right side surface). An outlet 82b is formed between the support column 92b and the support column 92c (front surface). An outlet 82c is formed between the support column 92c and the support column 92d (left side surface). An outlet 82d is formed between the support column 92d and the support column 92a (rear surface).
 利用側熱交換器30において冷媒と熱交換した空気は、流路FPを通過して、流路FPの吹出口82a~82dからケーシング90の外へと吹き出す。ここでは、ケーシング90の4つの側面に吹出口82a~82dが形成されていることから、流路FPを通過した空気は、ケーシング90から複数方向に(四方に)吹き出す。 The air that has exchanged heat with the refrigerant in the user-side heat exchanger 30 passes through the flow path FP and is blown out of the casing 90 from the outlets 82a to 82d of the flow path FP. Here, since the outlets 82a to 82d are formed on the four side surfaces of the casing 90, the air that has passed through the flow path FP is blown out from the casing 90 in a plurality of directions (in all directions).
 吹出口82a~82dは、熱源側熱交換器40と、利用側熱交換器30と、の間に配置される。吹出口82a~82dは、熱源側熱交換器40の下方であって、利用側熱交換器30の上方に配置される。 The outlets 82a to 82d are arranged between the heat source side heat exchanger 40 and the user side heat exchanger 30. The outlets 82a to 82d are located below the heat source side heat exchanger 40 and above the utilization side heat exchanger 30.
 熱交換器エリアA22には、ドレンパン36の上方、かつ、ドレンパン36に隣接して利用側熱交換器30が配置されている。利用側熱交換器30は、ドレンパン36の底部36aに隣接して配置されている。 In the heat exchanger area A22, the user-side heat exchanger 30 is arranged above the drain pan 36 and adjacent to the drain pan 36. The user-side heat exchanger 30 is arranged adjacent to the bottom portion 36a of the drain pan 36.
 機械室エリアA3には、主に圧縮機10や、屋外空気調和装置100の各種電装品を収容している電装品ボックス2等が配置されている。 In the machine room area A3, a compressor 10 and an electrical component box 2 containing various electrical components of the outdoor air conditioner 100 are mainly arranged.
 (2-1-4)化粧板
 ケーシング90の側面には、隣接する支柱の間を塞ぐように、化粧板91が取り付けられている。具体的には、ケーシング90の側面には、支柱92aと、支柱92bと、の間、支柱92bと、支柱92cと、の間、支柱92cと、支柱92dと、の間、支柱92dと、支柱92aと、の間、をそれぞれ塞ぐように化粧板91が取り付けられている。
(2-1-4) Decorative board A decorative board 91 is attached to the side surface of the casing 90 so as to close between adjacent columns. Specifically, on the side surface of the casing 90, between the support column 92a and the support column 92b, between the support column 92b and the support column 92c, between the support column 92c and the support column 92d, between the support column 92d, and the support column. A decorative plate 91 is attached so as to close the space between the 92a and the 92a.
 化粧板91は、第1化粧板91aと、第2化粧板91bと、第3化粧板91cと、を有する。 The veneer 91 has a first veneer 91a, a second veneer 91b, and a third veneer 91c.
 第1化粧板91aは、熱源エリアA1の外方において隣接する支柱の間を塞ぐようにケーシング90に取り付けられる。第2化粧板91bは、吹出エリアA21の下側、熱交換器エリアA22、および、機械室エリアA3の外方において隣接する支柱の間を塞ぐようにケーシング90に取り付けられる。第3化粧板91cは、吹出エリアA21の上側の外方において隣接する支柱の間を塞ぐようにケーシング90に取り付けられる。吹出口82a~82dは、第2化粧板91bの上方、および、第3化粧板91cにより塞がれている。 The first decorative plate 91a is attached to the casing 90 so as to close between adjacent columns on the outside of the heat source area A1. The second decorative plate 91b is attached to the casing 90 so as to close between the lower side of the blowout area A21, the heat exchanger area A22, and the adjacent columns outside the machine room area A3. The third decorative plate 91c is attached to the casing 90 so as to close the space between the adjacent columns on the outer side of the upper side of the blowout area A21. The outlets 82a to 82d are closed above the second decorative plate 91b and by the third decorative plate 91c.
 化粧板91には、メッシュ状に複数の貫通孔が形成されており、貫通孔を通じて空気が流通可能になっている。後述するように熱源側ファン60、および、利用側ファン50により外部からケーシング90の内部に取り込まれる空気は、第1化粧板91a、および、第2化粧板91bに形成された貫通孔(図示省略)を通過してケーシング90の外部から内部に流入する。利用側ファン50により吹出口82a~82dからケーシング90の外部へ吹き出す空気は、第2化粧板91bの下側、および、第3化粧板91cに形成された貫通孔を通過してケーシング90の内部から外部へ吹き出す。 A plurality of through holes are formed in the decorative plate 91 in a mesh shape, and air can flow through the through holes. As will be described later, the air taken into the casing 90 from the outside by the heat source side fan 60 and the user side fan 50 is a through hole formed in the first decorative plate 91a and the second decorative plate 91b (not shown). ) And flows into the inside from the outside of the casing 90. The air blown from the outlets 82a to 82d by the user-side fan 50 to the outside of the casing 90 passes through the lower side of the second decorative plate 91b and the through holes formed in the third decorative plate 91c, and is inside the casing 90. Blow out from.
 (2-1-5)配管スペース
 屋外空気調和装置100には、4本の支柱92a~92dの少なくとも1つ(本実施形態では支柱92b)に隣接して、機械室エリアA3から熱源側熱交換器40の高さ位置まで上方に延びる配管スペースPSが形成されることが好ましい。配管スペースPSには、後述する連絡配管20c,20d,20e等が配置される。配管スペースPSを形成するため、概ね正方形状のドレンパン46の1つの角部が切り欠かれている。本実施形態では、配管スペースPSを形成するため、ドレンパン46の、支柱92bに隣接して配置される角部が切り欠かれている。ドレンパン36についても同様である。配管スペースPSは、上下方向に延びる仕切板99a,99b,99cにより、熱源側ファン60、および、利用側ファン50が生成する気流が通過する空間と仕切られることが好ましい。これにより、熱源エリアA1、および、利用エリアA2から配管スペースPSへの空気の流入が抑制される。
(2-1-5) Piping space In the outdoor air conditioner 100, heat exchange from the machine room area A3 to the heat source side adjacent to at least one of four columns 92a to 92d (supports 92b in this embodiment). It is preferable that a piping space PS extending upward to the height position of the vessel 40 is formed. In the piping space PS, connecting pipes 20c, 20d, 20e and the like, which will be described later, are arranged. In order to form the piping space PS, one corner of the drain pan 46 having a substantially square shape is cut out. In the present embodiment, in order to form the piping space PS, the corner portion of the drain pan 46 arranged adjacent to the support column 92b is cut out. The same applies to the drain pan 36. It is preferable that the piping space PS is separated from the space through which the airflow generated by the heat source side fan 60 and the user side fan 50 passes by the partition plates 99a, 99b, 99c extending in the vertical direction. As a result, the inflow of air from the heat source area A1 and the utilization area A2 into the piping space PS is suppressed.
 (2-2)冷媒回路
 屋外空気調和装置100は、上述したように圧縮機10、切換機構12、利用側熱交換器30、膨張機構16、および、熱源側熱交換器40等の機器が配管で接続した冷媒回路20を有する。
(2-2) Refrigerant circuit As described above, the outdoor air conditioner 100 is connected to equipment such as the compressor 10, the switching mechanism 12, the user side heat exchanger 30, the expansion mechanism 16, and the heat source side heat exchanger 40. It has a refrigerant circuit 20 connected by.
 ここでは、冷媒回路20における機器の接続について説明する。屋外空気調和装置100は、冷媒回路20を構成する機器を接続する配管として、主に、吸入管20aと、吐出管20bと、第1ガス連絡配管20cと、液連絡配管20dと、第2ガス連絡配管20eと、を含む。 Here, the connection of equipment in the refrigerant circuit 20 will be described. The outdoor air conditioner 100 mainly includes a suction pipe 20a, a discharge pipe 20b, a first gas connecting pipe 20c, a liquid connecting pipe 20d, and a second gas as pipes for connecting the equipment constituting the refrigerant circuit 20. Including the connecting pipe 20e.
 吸入管20aは、切換機構12と、圧縮機10の吸入側の配管接続部(図示省略)と、を接続する。吸入管20aは、例えば、内径が12.7mmであり、長さが803mmである。 The suction pipe 20a connects the switching mechanism 12 and the pipe connection portion (not shown) on the suction side of the compressor 10. The suction tube 20a has, for example, an inner diameter of 12.7 mm and a length of 803 mm.
 吐出管20bは、圧縮機10の吐出側の配管接続部(図示省略)と、切換機構12と、を接続する。吐出管20bは、例えば、内径が7.9mmであり、長さが1265mmである。 The discharge pipe 20b connects the pipe connection portion (not shown) on the discharge side of the compressor 10 and the switching mechanism 12. The discharge pipe 20b has, for example, an inner diameter of 7.9 mm and a length of 1265 mm.
 第1ガス連絡配管20cは、切換機構12と、熱源側熱交換器40のガス側冷媒出入口と、を接続する。第1ガス連絡配管20cは、例えば、内径が12.7mmであり、長さが1440mmである。 The first gas connecting pipe 20c connects the switching mechanism 12 and the gas side refrigerant inlet / outlet of the heat source side heat exchanger 40. The first gas connecting pipe 20c has, for example, an inner diameter of 12.7 mm and a length of 1440 mm.
 液連絡配管20dは、熱源側熱交換器40の液側冷媒出入口と、利用側熱交換器30の液側冷媒出入口と、を接続する。液連絡配管20dには、膨張機構16が配置される。 The liquid communication pipe 20d connects the liquid side refrigerant inlet / outlet of the heat source side heat exchanger 40 and the liquid side refrigerant inlet / outlet of the user side heat exchanger 30. An expansion mechanism 16 is arranged in the liquid communication pipe 20d.
 第2ガス連絡配管20eは、利用側熱交換器30のガス側冷媒出入口と、切換機構12と、を接続する。第2ガス連絡配管20eは、例えば、内径が12.7mmであり、長さが1024mmである。 The second gas connecting pipe 20e connects the gas side refrigerant inlet / outlet of the user side heat exchanger 30 and the switching mechanism 12. The second gas connecting pipe 20e has, for example, an inner diameter of 12.7 mm and a length of 1024 mm.
 (2-3)圧縮機
 圧縮機10は、冷媒を圧縮する機器である。圧縮機10は、冷凍サイクルにおける低圧の冷媒を圧縮して、冷凍サイクルにおける高圧にまで加圧する。
(2-3) Compressor The compressor 10 is a device that compresses the refrigerant. The compressor 10 compresses the low pressure refrigerant in the refrigeration cycle and pressurizes it to the high pressure in the refrigeration cycle.
 圧縮機10は、タイプを限定するものでは無いが、例えば、ロータリ式やスクロール式等の容積圧縮機である。圧縮機10の圧縮機構(図示省略)は、モータ11によって駆動される。圧縮機10は、モータ11が一定速度で回転駆動し、冷媒が一定の容量で吐出される非インバータ圧縮機(ノンインバータ圧縮機)である。ただし、これに限定されるものではなく、圧縮機は、容量可変の圧縮機(インバータ圧縮機)であってもよい。圧縮機10には、圧縮機油が所定量充填されている。 The type of the compressor 10 is not limited, but is, for example, a rotary type or scroll type positive displacement compressor. The compression mechanism (not shown) of the compressor 10 is driven by the motor 11. The compressor 10 is a non-inverter compressor (non-inverter compressor) in which the motor 11 is rotationally driven at a constant speed and the refrigerant is discharged at a constant capacity. However, the present invention is not limited to this, and the compressor may be a compressor having a variable capacity (inverter compressor). The compressor 10 is filled with a predetermined amount of compressor oil.
 なお、圧縮機10の吸入側(吸入管20a)には、液冷媒の圧縮機10への流入を抑制するためアキュムレータが設けられてもよい。 An accumulator may be provided on the suction side (suction pipe 20a) of the compressor 10 in order to suppress the inflow of the liquid refrigerant into the compressor 10.
 (2-4)切換機構
 切換機構12は、圧縮機10から吐出される冷媒の流れ方向を切換えて、屋外空気調和装置100の運転状態を、第1運転状態と、第2運転状態と、の間で切換える機構である。第1運転状態では、利用側熱交換器30が蒸発器として機能させられ、熱源側熱交換器40が凝縮器(放熱器)として機能させられる。第2運転状態では、利用側熱交換器30が凝縮器(放熱器)として機能させられ、熱源側熱交換器40が蒸発器として機能させられる。
(2-4) Switching Mechanism The switching mechanism 12 switches the flow direction of the refrigerant discharged from the compressor 10 to change the operating state of the outdoor air conditioner 100 into a first operating state and a second operating state. It is a mechanism to switch between. In the first operating state, the user-side heat exchanger 30 is made to function as an evaporator, and the heat source-side heat exchanger 40 is made to function as a condenser (radiator). In the second operating state, the user-side heat exchanger 30 is made to function as a condenser (radiator), and the heat source-side heat exchanger 40 is made to function as an evaporator.
 切換機構12は、冷房/除湿運転時には、屋外空気調和装置100の運転状態を第1運転状態に切換える。具体的には、冷房/除湿運転時には、切換機構12は、吸入管20aを第2ガス連絡配管20eと連通させ、吐出管20bを第1ガス連絡配管20cと連通させる(図2の切換機構12中の実線参照)。つまり、切換機構12は、冷房/除湿運転時に、圧縮機10の吸入側を吸入管20a、および、第2ガス連絡配管20eを通じて利用側熱交換器30のガス側端に連通させ、かつ、圧縮機10の吐出側を吐出管20b、および、第1ガス連絡配管20cを通じて熱源側熱交換器40のガス側端に連通させる。したがって、屋外空気調和装置100の運転状態が第1運転状態にあるとき、冷媒は、冷媒回路20を、圧縮機10、熱源側熱交換器40、利用側熱交換器30の順で循環する。以下では、冷房/除湿運転時の、切換機構12の状態を第1状態と呼ぶ。 The switching mechanism 12 switches the operating state of the outdoor air conditioner 100 to the first operating state during the cooling / dehumidifying operation. Specifically, during the cooling / dehumidifying operation, the switching mechanism 12 communicates the suction pipe 20a with the second gas connecting pipe 20e and the discharge pipe 20b with the first gas connecting pipe 20c (switching mechanism 12 in FIG. 2). See the solid line inside). That is, the switching mechanism 12 communicates the suction side of the compressor 10 with the gas side end of the user side heat exchanger 30 through the suction pipe 20a and the second gas connecting pipe 20e during the cooling / dehumidifying operation, and compresses the compressor 10. The discharge side of the machine 10 is communicated with the gas side end of the heat source side heat exchanger 40 through the discharge pipe 20b and the first gas connecting pipe 20c. Therefore, when the operating state of the outdoor air conditioner 100 is the first operating state, the refrigerant circulates in the refrigerant circuit 20 in the order of the compressor 10, the heat source side heat exchanger 40, and the user side heat exchanger 30. Hereinafter, the state of the switching mechanism 12 during the cooling / dehumidifying operation is referred to as a first state.
 切換機構12は、暖房運転時には、屋外空気調和装置100の運転状態を第2運転状態に切換える。具体的には、暖房運転時には、切換機構12は、吸入管20aを第1ガス連絡配管20cと連通させ、吐出管20bを第2ガス連絡配管20eと連通させる(図2の切換機構12中の破線参照)。つまり、切換機構12は、暖房運転時に、圧縮機10の吸入側を吸入管20a、および、第1ガス連絡配管20cを通じて熱源側熱交換器40のガス側端に連通させ、かつ、圧縮機10の吐出側を吐出管20b、および、第2ガス連絡配管20eを通じて利用側熱交換器30のガス側端に連通させる。したがって、屋外空気調和装置100の運転状態が第2運転状態にあるとき、冷媒は、冷媒回路20を、圧縮機10、利用側熱交換器30、熱源側熱交換器40、の順で循環する。以下では、暖房運転時の、切換機構12の状態を第2状態と呼ぶ。 The switching mechanism 12 switches the operating state of the outdoor air conditioner 100 to the second operating state during the heating operation. Specifically, during the heating operation, the switching mechanism 12 communicates the suction pipe 20a with the first gas connecting pipe 20c and the discharge pipe 20b with the second gas connecting pipe 20e (in the switching mechanism 12 of FIG. 2). See dashed line). That is, the switching mechanism 12 communicates the suction side of the compressor 10 with the gas side end of the heat source side heat exchanger 40 through the suction pipe 20a and the first gas connecting pipe 20c during the heating operation, and the compressor 10 Is communicated with the gas side end of the user side heat exchanger 30 through the discharge pipe 20b and the second gas connecting pipe 20e. Therefore, when the operating state of the outdoor air conditioner 100 is in the second operating state, the refrigerant circulates in the refrigerant circuit 20 in the order of the compressor 10, the user side heat exchanger 30, and the heat source side heat exchanger 40. .. Hereinafter, the state of the switching mechanism 12 during the heating operation is referred to as a second state.
 本実施形態では、切換機構12は、四路切換弁である。しかし、切換機構12は、四路切換弁に限られるものではなく、複数の電磁弁、および、冷媒管を組み合わせ、上記のような冷媒の流れ方向の切換えを実現できるように構成されてもよい。 In the present embodiment, the switching mechanism 12 is a four-way switching valve. However, the switching mechanism 12 is not limited to the four-way switching valve, and may be configured so as to be able to realize the switching of the flow direction of the refrigerant as described above by combining a plurality of solenoid valves and a refrigerant pipe. ..
 (2-5)熱源側熱交換器
 熱源側熱交換器40は、冷媒と、屋外空気と、の間で熱交換を行う熱交換器である。屋外空気調和装置100の運転状態が第1運転状態にある時には、熱源側熱交換器40は凝縮器として機能する。屋外空気調和装置100の運転状態が第2運転状態にある時には、熱源側熱交換器40は蒸発器として機能する。本実施形態では、熱源側熱交換器40は、利用側熱交換器30よりも上方に配置されている。また、熱源側熱交換器40は、圧縮機10よりも上方に配置されている。
(2-5) Heat Source Side Heat Exchanger The heat source side heat exchanger 40 is a heat exchanger that exchanges heat between a refrigerant and outdoor air. When the operating state of the outdoor air conditioner 100 is in the first operating state, the heat source side heat exchanger 40 functions as a condenser. When the operating state of the outdoor air conditioner 100 is in the second operating state, the heat source side heat exchanger 40 functions as an evaporator. In the present embodiment, the heat source side heat exchanger 40 is arranged above the user side heat exchanger 30. Further, the heat source side heat exchanger 40 is arranged above the compressor 10.
 熱源側熱交換器40では、その液側端に液連絡配管20dが接続されており、そのガス側端に第1ガス連絡配管20cが接続されている。 In the heat source side heat exchanger 40, the liquid connecting pipe 20d is connected to the liquid side end, and the first gas connecting pipe 20c is connected to the gas side end.
 熱源側熱交換器40は、内部を冷媒が流れる冷媒伝熱管43と、多数の伝熱フィン(図示省略)と、を主に有するフィン・アンド・チューブ型熱交換器である。熱源側熱交換器40は、図3、図4に示すように、ドレンパン46の上方に、ドレンパン46と隣接して配置される。熱源側熱交換器40の下端は、ドレンパン46の側壁46bの上端より下方に配置されることが好ましい。 The heat source side heat exchanger 40 is a fin-and-tube heat exchanger mainly having a refrigerant heat transfer tube 43 in which a refrigerant flows inside and a large number of heat transfer fins (not shown). As shown in FIGS. 3 and 4, the heat source side heat exchanger 40 is arranged above the drain pan 46 and adjacent to the drain pan 46. The lower end of the heat source side heat exchanger 40 is preferably arranged below the upper end of the side wall 46b of the drain pan 46.
 熱源側熱交換器40が蒸発器として機能する時に、熱源側熱交換器40で生じる結露水や、熱源側熱交換器40に付着した霜を後述するデフロスト運転時に溶かした時に生じる水や、排気口84等から流入する雨水等は、ドレンパン46に流入する。ドレンパン46に流入した水は、例えば支柱92a~92dの少なくとも1つの内部に形成される、又は、支柱92a~92dの少なくとも1つに隣接して配置される、排水経路(図示省略)を介して、屋外空気調和装置100の下部から排出される。 Condensation water generated in the heat source side heat exchanger 40 when the heat source side heat exchanger 40 functions as an evaporator, water generated when the frost adhering to the heat source side heat exchanger 40 is melted during the defrost operation described later, and exhaust Rainwater or the like flowing in from the mouth 84 or the like flows into the drain pan 46. The water flowing into the drain pan 46 is formed, for example, inside at least one of the columns 92a to 92d, or is arranged adjacent to at least one of the columns 92a to 92d through a drainage path (not shown). , Discharged from the bottom of the outdoor air conditioner 100.
 図4に示すように、熱源側熱交換器40は、熱交換部41a、および、熱交換部41bを有する。熱交換部41a,41bのそれぞれでは、熱源側ファン60の生成する、ケーシング90の外側からケーシング90の内部に向かう気流Fbの方向に交差する方向に冷媒伝熱管43が並べられている。本実施形態では、熱交換部41a,41bのそれぞれにおいて、上下方向に冷媒伝熱管43が並べられている。そして、熱源側熱交換器40では、熱交換部41a、および、熱交換部41bが、熱源側ファン60の生成する気流Fbの方向に2列に並べて配置される。言い換えれば、熱源側熱交換器40の熱源側熱交換器40では、上下方向に並べられた冷媒伝熱管43が、熱源側ファン60の生成する気流Fbの方向に2列に並べて配置される。熱交換部41aは、熱源側ファン60の生成する気流Fbの方向の下流側に配置され、熱交換部41bは、熱源側ファン60の生成する気流Fbの方向の上流側に配置される。 As shown in FIG. 4, the heat source side heat exchanger 40 has a heat exchange unit 41a and a heat exchange unit 41b. In each of the heat exchange portions 41a and 41b, the refrigerant heat transfer tubes 43 are arranged in a direction intersecting the direction of the airflow Fb from the outside of the casing 90 toward the inside of the casing 90, which is generated by the heat source side fan 60. In the present embodiment, the refrigerant heat transfer tubes 43 are arranged in the vertical direction in each of the heat exchange portions 41a and 41b. In the heat source side heat exchanger 40, the heat exchange unit 41a and the heat exchange unit 41b are arranged side by side in two rows in the direction of the air flow Fb generated by the heat source side fan 60. In other words, in the heat source side heat exchanger 40 of the heat source side heat exchanger 40, the refrigerant heat transfer tubes 43 arranged in the vertical direction are arranged in two rows in the direction of the air flow Fb generated by the heat source side fan 60. The heat exchange unit 41a is arranged on the downstream side in the direction of the air flow Fb generated by the heat source side fan 60, and the heat exchange unit 41b is arranged on the upstream side in the direction of the air flow Fb generated by the heat source side fan 60.
 図5は、屋外空気調和装置100の熱源側熱交換器40の概略平面図である。図5に示すように、熱源側熱交換器40は、平面視において、四辺形形状を形成するように配置される。この結果、熱源側熱交換器40において、冷媒伝熱管43により、熱源側ファン60の生成する気流Fbが通過する複数の熱交換面HSb1~HSb4が形成される。熱交換面HSb1~HSb4は、ケーシング90の化粧板91に隣接して配置される。熱源側熱交換器40の熱交換面HSb1~HSb4と化粧板91との間には他の部材は配置されないことが好ましい。熱交換面HSb1は、屋外空気調和装置100の後方側に配置され、上下方向、および、左右方向に広がる。熱交換面HSb2は、屋外空気調和装置100の右方側に配置され、上下方向、および、前後方向に広がる。熱交換面HSb3は、屋外空気調和装置100の前方側に配置され、上下方向、および、左右方向に広がる。熱交換面HSb4は、屋外空気調和装置100の左方側に配置され、上下方向、および、前後方向に広がる。 FIG. 5 is a schematic plan view of the heat source side heat exchanger 40 of the outdoor air conditioner 100. As shown in FIG. 5, the heat source side heat exchanger 40 is arranged so as to form a quadrilateral shape in a plan view. As a result, in the heat source side heat exchanger 40, the refrigerant heat transfer tube 43 forms a plurality of heat exchange surfaces HSb1 to HSb4 through which the airflow Fb generated by the heat source side fan 60 passes. The heat exchange surfaces HSb1 to HSb4 are arranged adjacent to the decorative plate 91 of the casing 90. It is preferable that no other member is arranged between the heat exchange surfaces HSb1 to HSb4 of the heat source side heat exchanger 40 and the decorative plate 91. The heat exchange surface HSb1 is arranged on the rear side of the outdoor air conditioner 100 and spreads in the vertical direction and the horizontal direction. The heat exchange surface HSb2 is arranged on the right side of the outdoor air conditioner 100 and spreads in the vertical direction and the front-back direction. The heat exchange surface HSb3 is arranged on the front side of the outdoor air conditioner 100 and spreads in the vertical direction and the horizontal direction. The heat exchange surface HSb4 is arranged on the left side of the outdoor air conditioner 100 and spreads in the vertical direction and the front-back direction.
 熱源側ファン60が運転されると、熱源側ファン60の生成する気流Fbによりケーシング90の外部から、第1化粧板91aの貫通孔(図示省略)を通過して取り込まれた空気は、熱源側熱交換器40の熱交換面HSb1~HSb4を通過する。熱交換面HSb1~HSb4を通過した空気は、熱源側熱交換器40の冷媒伝熱管43の内部を流れる冷媒と熱交換する。熱源側熱交換器40において冷媒と熱交換した空気は、熱源側ファン60の生成する気流Fbにより、ケーシング90内の上部に配置されたベルマウス64を通過して、ケーシング90の上部に形成された排気口84から上方に排気される。 When the heat source side fan 60 is operated, the air taken in from the outside of the casing 90 through the through hole (not shown) of the first decorative plate 91a by the air flow Fb generated by the heat source side fan 60 is on the heat source side. It passes through the heat exchange surfaces HSb1 to HSb4 of the heat exchanger 40. The air that has passed through the heat exchange surfaces HSb1 to HSb4 exchanges heat with the refrigerant flowing inside the refrigerant heat transfer tube 43 of the heat source side heat exchanger 40. The air that has exchanged heat with the refrigerant in the heat source side heat exchanger 40 is formed on the upper part of the casing 90 by passing through the bell mouth 64 arranged in the upper part in the casing 90 by the air flow Fb generated by the heat source side fan 60. It is exhausted upward from the exhaust port 84.
 (2-6)利用側熱交換器
 利用側熱交換器30は、冷媒と、屋外空気と、の間で熱交換を行う熱交換器である。屋外空気調和装置100の運転状態が第1運転状態にある時には、利用側熱交換器30は蒸発器として機能する。屋外空気調和装置100の運転状態が第2運転状態にある時には、利用側熱交換器30は凝縮器として機能する。本実施形態では、利用側熱交換器30は、圧縮機10よりも上方に配置されている。
(2-6) User-side heat exchanger The user-side heat exchanger 30 is a heat exchanger that exchanges heat between the refrigerant and the outdoor air. When the operating state of the outdoor air conditioner 100 is in the first operating state, the user-side heat exchanger 30 functions as an evaporator. When the operating state of the outdoor air conditioner 100 is in the second operating state, the user-side heat exchanger 30 functions as a condenser. In the present embodiment, the user-side heat exchanger 30 is arranged above the compressor 10.
 利用側熱交換器30では、その液側端に液連絡配管20dが接続されており、そのガス側端に第2ガス連絡配管20eが接続されている。 In the user-side heat exchanger 30, the liquid connecting pipe 20d is connected to the liquid side end, and the second gas connecting pipe 20e is connected to the gas side end.
 利用側熱交換器30は、内部を冷媒が流れる冷媒伝熱管33と、多数の伝熱フィン(図示省略)と、を有するフィン・アンド・チューブ型熱交換器である。利用側熱交換器30は、図3、図4に示すように、ドレンパン36の上方に、ドレンパン36と隣接して配置される。利用側熱交換器30の下端は、ドレンパン36の側壁36bの上端より下方に配置されることが好ましい。 The user-side heat exchanger 30 is a fin-and-tube heat exchanger having a refrigerant heat transfer tube 33 through which a refrigerant flows, and a large number of heat transfer fins (not shown). As shown in FIGS. 3 and 4, the user-side heat exchanger 30 is arranged above the drain pan 36 and adjacent to the drain pan 36. It is preferable that the lower end of the user-side heat exchanger 30 is arranged below the upper end of the side wall 36b of the drain pan 36.
 利用側熱交換器30が蒸発器として機能する時に、利用側熱交換器30で生じる結露水等は、ドレンパン36に流入する。ドレンパン36に流入した水は、例えば支柱92a~92dの少なくとも1つの内部に形成される、又は、支柱92a~92dの少なくとも1つに隣接して配置される、排水経路(図示省略)を介して、屋外空気調和装置100の下部から排出される。 When the user-side heat exchanger 30 functions as an evaporator, dew condensation water or the like generated in the user-side heat exchanger 30 flows into the drain pan 36. The water flowing into the drain pan 36 is formed, for example, inside at least one of the columns 92a to 92d, or is arranged adjacent to at least one of the columns 92a to 92d through a drainage path (not shown). , Discharged from the bottom of the outdoor air conditioner 100.
 図4に示すように、利用側熱交換器30は、熱交換部31a、および、熱交換部31bを有する(図4参照)。熱交換部31a,31bのそれぞれでは、利用側ファン50の生成する、ケーシング90の外側からケーシング90の内部に向かう気流Faの方向に交差する方向に冷媒伝熱管33が並べられている。本実施形態では、熱交換部31a,31bのそれぞれにおいて、上下方向に冷媒伝熱管33が並べられている。そして、利用側熱交換器30では、熱交換部31a、および、熱交換部31bが、利用側ファン50の生成する気流Faの方向に2列に並べて配置される。言い換えれば、利用側熱交換器30の利用側熱交換器30では、上下方向に並べられた冷媒伝熱管33が、利用側ファン50の生成する気流Faの方向に2列に並べて配置される。熱交換部31aは、利用側ファン50の生成する気流Faの方向の下流側に配置され、熱交換部31bは、利用側ファン50の生成する気流Faの方向の上流側に配置される。 As shown in FIG. 4, the user-side heat exchanger 30 has a heat exchange unit 31a and a heat exchange unit 31b (see FIG. 4). In each of the heat exchange portions 31a and 31b, the refrigerant heat transfer tubes 33 are arranged in a direction intersecting the direction of the airflow Fa from the outside of the casing 90 toward the inside of the casing 90, which is generated by the user-side fan 50. In the present embodiment, the refrigerant heat transfer tubes 33 are arranged in the vertical direction in each of the heat exchange portions 31a and 31b. In the user side heat exchanger 30, the heat exchange unit 31a and the heat exchange unit 31b are arranged side by side in two rows in the direction of the air flow Fa generated by the user side fan 50. In other words, in the user-side heat exchanger 30 of the user-side heat exchanger 30, the refrigerant heat transfer tubes 33 arranged in the vertical direction are arranged in two rows in the direction of the air flow Fa generated by the user-side fan 50. The heat exchange unit 31a is arranged on the downstream side in the direction of the airflow Fa generated by the user-side fan 50, and the heat exchange unit 31b is arranged on the upstream side in the direction of the airflow Fa generated by the user-side fan 50.
 図6は、屋外空気調和装置100の利用側熱交換器30の概略平面図である。図6に示すように、利用側熱交換器30は、平面視において、四辺形形状を形成するように配置される。この結果、利用側熱交換器30において、冷媒伝熱管33により、利用側ファン50の生成する気流Faが通過する複数の熱交換面HSa1~HSa4が形成される。利用側熱交換器30の熱交換面HSa1~HSa4は、ケーシング90の化粧板91に隣接して配置される。利用側熱交換器30の熱交換面HSa1~HSa4と化粧板91との間には他の部材は配置されないことが好ましい。熱交換面HSa1は、屋外空気調和装置100の後方側に配置され、上下方向、および、左右方向に広がる。熱交換面HSa2は、屋外空気調和装置100の右方側に配置され、上下方向、および、前後方向に広がる。熱交換面HSa3は、屋外空気調和装置100の前方側に配置され、上下方向、および、左右方向に広がる。熱交換面HSa4は、屋外空気調和装置100の左方側に配置され、上下方向、および、前後方向に広がる。 FIG. 6 is a schematic plan view of the heat exchanger 30 on the user side of the outdoor air conditioner 100. As shown in FIG. 6, the utilization side heat exchanger 30 is arranged so as to form a quadrilateral shape in a plan view. As a result, in the user-side heat exchanger 30, the refrigerant heat transfer tube 33 forms a plurality of heat exchange surfaces HSa1 to HSa4 through which the airflow Fa generated by the user-side fan 50 passes. The heat exchange surfaces HSa1 to HSa4 of the user-side heat exchanger 30 are arranged adjacent to the decorative plate 91 of the casing 90. It is preferable that no other member is arranged between the heat exchange surfaces HSa1 to HSa4 of the user-side heat exchanger 30 and the decorative plate 91. The heat exchange surface HSa1 is arranged on the rear side of the outdoor air conditioner 100 and spreads in the vertical direction and the horizontal direction. The heat exchange surface HSa2 is arranged on the right side of the outdoor air conditioner 100 and spreads in the vertical direction and the front-back direction. The heat exchange surface HSa3 is arranged on the front side of the outdoor air conditioner 100 and spreads in the vertical direction and the horizontal direction. The heat exchange surface HSa4 is arranged on the left side of the outdoor air conditioner 100 and spreads in the vertical direction and the front-back direction.
 利用側ファン50が運転されると、利用側ファン50の生成する気流Faによりケーシング90の外部から、第2化粧板91bの下側の貫通孔(図示省略)を通過して取り込まれた空気は、利用側熱交換器30の熱交換面HSa1~HSa4を通過する。熱交換面HSa1~HSa4を通過した空気は、利用側熱交換器30の冷媒伝熱管33の内部を流れる冷媒と熱交換する。利用側熱交換器30において冷媒と熱交換した空気は、利用側ファン50の生成する気流Faにより、中間板98の上方に配置されたベルマウス54、利用側ファン50を通過する。利用側ファン50を通過した空気は、吹出エリアA21内に形成される利用側熱交換器30を通過した空気の流路FPを流れる。そして利用側熱交換器30を通過した空気は、流路FPの一部を構成する吹出口82a~82dから、第2化粧板91bの下側の貫通孔(図示省略)、および、第3化粧板91cの貫通孔(図示省略)を通過してケーシング90外へと吹き出す。本実施形態では、吹出口82a~82dが略直方体形状のケーシング90の4つの側面(前面、後面、右面、左面)に設けられていることから、利用側熱交換器30を通過した空気は、ケーシング90から複数方向に(四方に)吹き出す。 When the user-side fan 50 is operated, the air taken in from the outside of the casing 90 through the through hole (not shown) on the lower side of the second decorative plate 91b by the airflow Fa generated by the user-side fan 50 is taken in. , Passes through the heat exchange surfaces HSa1 to HSa4 of the user side heat exchanger 30. The air that has passed through the heat exchange surfaces HSa1 to HSa4 exchanges heat with the refrigerant flowing inside the refrigerant heat transfer tube 33 of the user side heat exchanger 30. The air that has exchanged heat with the refrigerant in the user-side heat exchanger 30 passes through the bell mouth 54 and the user-side fan 50 arranged above the intermediate plate 98 by the airflow Fa generated by the user-side fan 50. The air that has passed through the user-side fan 50 flows through the air flow path FP that has passed through the user-side heat exchanger 30 formed in the blowout area A21. The air that has passed through the heat exchanger 30 on the utilization side is discharged from the outlets 82a to 82d that form a part of the flow path FP to the through hole (not shown) on the lower side of the second decorative plate 91b and the third decorative plate. It is blown out of the casing 90 through a through hole (not shown) of the plate 91c. In the present embodiment, since the outlets 82a to 82d are provided on the four side surfaces (front surface, rear surface, right surface, and left surface) of the casing 90 having a substantially rectangular parallelepiped shape, the air passing through the user-side heat exchanger 30 is collected. Blow out from the casing 90 in multiple directions (in all directions).
 (2-7)膨張機構
 膨張機構16は、絞り膨張作用により、冷凍サイクルにおける高圧の冷媒の圧力を下げる機構である。本実施形態では、膨張機構16は電子膨張弁である。ただし、膨張機構16は、開度調節が可能な電子膨張弁に限定されるものではなく、感熱筒と共に用いられる機械式膨張弁であってもよい。また、装置コストの低減等の観点からは、膨張機構16は減圧の程度や流量を調整できないキャピラリチューブであってもよい。
(2-7) Expansion mechanism The expansion mechanism 16 is a mechanism for lowering the pressure of the high-pressure refrigerant in the refrigeration cycle by the throttle expansion action. In this embodiment, the expansion mechanism 16 is an electronic expansion valve. However, the expansion mechanism 16 is not limited to the electronic expansion valve whose opening degree can be adjusted, and may be a mechanical expansion valve used together with the heat-sensitive cylinder. Further, from the viewpoint of reducing the device cost and the like, the expansion mechanism 16 may be a capillary tube whose degree of decompression and flow rate cannot be adjusted.
 (2-8)熱源側ファン
 熱源側ファン60は、熱源側熱交換器40を空気が通過するように気流Fbを生成する機構である。熱源側ファン60は、モータ62により駆動される。モータ62が運転され熱源側ファン60が気流Fbを生成すると、ケーシング90の側面から第1化粧板91aの貫通孔を通過してケーシング90の内部に空気が取り込まれる。本実施形態では、熱源側ファン60が気流Fbを生成すると、吹出口82a~82dより上方から、第1化粧板91aの貫通孔を通過してケーシング90の内部に空気が取り込まれる。ケーシング90の内部に取り込まれた空気は、熱源側熱交換器40を通過し、その後、熱源側ファン60、および、ベルマウス64を通過して、ケーシング90の上部の排気口84から流出する。
(2-8) Heat source side fan The heat source side fan 60 is a mechanism for generating an air flow Fb so that air passes through the heat source side heat exchanger 40. The heat source side fan 60 is driven by the motor 62. When the motor 62 is operated and the heat source side fan 60 generates the air flow Fb, air is taken into the casing 90 from the side surface of the casing 90 through the through hole of the first decorative plate 91a. In the present embodiment, when the heat source side fan 60 generates the air flow Fb, air is taken into the casing 90 from above the outlets 82a to 82d through the through hole of the first decorative plate 91a. The air taken into the casing 90 passes through the heat source side heat exchanger 40, then passes through the heat source side fan 60 and the bell mouth 64, and flows out from the exhaust port 84 at the upper part of the casing 90.
 熱源側ファン60は、本実施形態ではプロペラファンである。ただし、熱源側ファン60の種類はプロペラファンに限定されるものではない。上述したような気流を生成可能であれば、熱源側ファン60のタイプは適宜決定されればよい。例えば、熱源側ファン60は、ターボファンやシロッコファンであってもよい。 The heat source side fan 60 is a propeller fan in this embodiment. However, the type of the heat source side fan 60 is not limited to the propeller fan. If it is possible to generate the above-mentioned air flow, the type of the heat source side fan 60 may be appropriately determined. For example, the heat source side fan 60 may be a turbo fan or a sirocco fan.
 また、本実施形態では、熱源側ファン60は、熱源側ファン60が生成する気流Fbの方向において、熱源側熱交換器40より下流側に配置されるが、これに限定されるものではない。空気の流路等の設計に応じて、熱源側ファン60は、熱源側ファン60が生成する気流Fbの方向において、熱源側熱交換器40より上流側に配置されてもよい。 Further, in the present embodiment, the heat source side fan 60 is arranged on the downstream side of the heat source side heat exchanger 40 in the direction of the air flow Fb generated by the heat source side fan 60, but the present invention is not limited to this. Depending on the design of the air flow path and the like, the heat source side fan 60 may be arranged on the upstream side of the heat source side heat exchanger 40 in the direction of the air flow Fb generated by the heat source side fan 60.
 また、本実施形態では、熱源側ファン60は、ケーシング90の上部(熱源側熱交換器40の上方)に配置されるが、熱源側ファン60の配置は、熱源側ファン60のタイプ等に応じて適宜決定されればよい。 Further, in the present embodiment, the heat source side fan 60 is arranged in the upper part of the casing 90 (above the heat source side heat exchanger 40), but the arrangement of the heat source side fan 60 depends on the type of the heat source side fan 60 and the like. It may be decided as appropriate.
 (2-9)利用側ファン
 利用側ファン50は、利用側熱交換器30を空気が通過するように気流Faを生成する機構である。利用側ファン50は、モータ52により駆動される。モータ52が運転され利用側ファン50が気流Faを生成すると、ケーシング90の側面から第2化粧板91bの貫通孔を通過してケーシング90の内部に空気が取り込まれる。本実施形態では、利用側ファン50が気流Faを生成すると、吹出口82a~82dより下方から、第2化粧板91bの貫通孔を通過してケーシング90の内部に空気が取り込まれる。ケーシング90の内部に取り込まれた空気は、利用側熱交換器30を通過し、その後、ベルマウス54、および、利用側ファン50を通過して、ケーシング90の側面に設けられた吹出口82a~82dを通る。吹出口82a~82dを通った空気は、第3化粧板91cの貫通孔を通過してケーシング90の外部に吹き出される。
(2-9) User-side fan The user-side fan 50 is a mechanism for generating an air flow Fa so that air passes through the user-side heat exchanger 30. The user-side fan 50 is driven by the motor 52. When the motor 52 is operated and the user-side fan 50 generates an air flow Fa, air is taken into the casing 90 from the side surface of the casing 90 through the through hole of the second decorative plate 91b. In the present embodiment, when the user-side fan 50 generates the airflow Fa, air is taken into the casing 90 from below the outlets 82a to 82d through the through hole of the second decorative plate 91b. The air taken into the casing 90 passes through the heat exchanger 30 on the user side, then passes through the bell mouth 54 and the fan 50 on the user side, and the air outlets 82a to be provided on the side surface of the casing 90. Pass through 82d. The air that has passed through the outlets 82a to 82d passes through the through hole of the third decorative plate 91c and is blown out to the outside of the casing 90.
 利用側ファン50は、本実施形態ではターボファンである。ただし、利用側ファン50の種類はターボファンに限定されるものではない。上述したような気流を生成可能であれば、利用側ファン50のタイプは適宜決定されればよい。例えば、利用側ファン50は、プロペラファンやシロッコファンであってもよい。 The user side fan 50 is a turbo fan in this embodiment. However, the type of the user fan 50 is not limited to the turbo fan. If it is possible to generate the above-mentioned airflow, the type of the user-side fan 50 may be appropriately determined. For example, the user fan 50 may be a propeller fan or a sirocco fan.
 また、本実施形態では、利用側ファン50は、利用側ファン50が生成する気流Faの方向において、利用側熱交換器30より下流側に配置されるが、これに限定されるものではない。空気の流路等の設計に応じて、利用側ファン50は、利用側ファン50が生成する気流Faの方向において、熱源側熱交換器40より上流側に配置されてもよい。 Further, in the present embodiment, the user-side fan 50 is arranged on the downstream side of the user-side heat exchanger 30 in the direction of the airflow Fa generated by the user-side fan 50, but the present invention is not limited to this. Depending on the design of the air flow path and the like, the user-side fan 50 may be arranged on the upstream side of the heat source-side heat exchanger 40 in the direction of the air flow Fa generated by the user-side fan 50.
 また、本実施形態では、利用側ファン50は、利用側熱交換器30より上方の吹出エリアA21に配置されるが、利用側ファン50の配置は、利用側ファン50のタイプ等に応じて適宜決定されればよい。 Further, in the present embodiment, the user-side fan 50 is arranged in the blowout area A21 above the user-side heat exchanger 30, but the user-side fan 50 is appropriately arranged according to the type of the user-side fan 50 and the like. It should be decided.
 (2-10)指示部
 指示部80は、制御装置70に冷凍サイクル運転の実行を指示する実行指示を送信する。指示部80は、ユーザーから冷房/除湿運転、および、暖房運転いずれかの実行指示、目標温度等を受け付け、これらを制御信号として制御装置70に送信する。指示部80は、典型的には、ケーシング90に設けられる操作スイッチ(図示省略)である。
(2-10) Instruction unit The instruction unit 80 transmits an execution instruction instructing the control device 70 to execute the refrigeration cycle operation. The instruction unit 80 receives an execution instruction for either cooling / dehumidifying operation or heating operation, a target temperature, or the like from the user, and transmits these as control signals to the control device 70. The indicator 80 is typically an operation switch (not shown) provided on the casing 90.
 (2-11)制御装置
 制御装置70は、屋外空気調和装置100を構成する各部の動作を制御する。制御装置70は、屋外空気調和装置100を構成する各部の動作を制御することで、冷媒回路20に冷凍サイクルを行わせる冷凍サイクル運転を実行する。冷房/除湿運転、および、暖房運転は、冷凍サイクル運転の一例である。制御装置70は、CPUやメモリ等の部品を有するマイクロコンピュータを含む。制御装置70は、圧縮機10、切換機構12、膨張機構16、利用側ファン50、熱源側ファン60、および、指示部80を含む屋外空気調和装置100の各種部品と電気的に接続されている(図2の破線参照)。また、制御装置70は、屋外空気調和装置100の各部に設けられた図示しない温度センサとも電気的に接続されている。温度センサには、例えば、冷媒回路20の各部の冷媒の温度を計測する温度センサや、外気温度を計測する温度センサ等を含む。屋外空気調和装置100の冷媒回路20の各部に、冷媒の圧力を測定するための圧力センサが設けられてもよい。屋外空気調和装置100に圧力センサが設けられる場合、圧力センサには、例えば、吸入管20aに設けられる吸入圧センサや、吐出管20bに設けられる吐出圧センサを含む。制御装置70は、マイクロコンピュータにおいて、CPUがメモリに記憶されたプログラムを実行することで、屋外空気調和装置100の動作を制御する。制御装置70は、制御部の一例である。
(2-11) Control device The control device 70 controls the operation of each part constituting the outdoor air conditioner 100. The control device 70 executes a refrigerating cycle operation in which the refrigerant circuit 20 performs a refrigerating cycle by controlling the operation of each part constituting the outdoor air conditioner 100. The cooling / dehumidifying operation and the heating operation are examples of the refrigerating cycle operation. The control device 70 includes a microcomputer having parts such as a CPU and a memory. The control device 70 is electrically connected to various parts of the outdoor air conditioner 100 including the compressor 10, the switching mechanism 12, the expansion mechanism 16, the user side fan 50, the heat source side fan 60, and the indicator 80. (See the dashed line in FIG. 2). Further, the control device 70 is also electrically connected to a temperature sensor (not shown) provided in each part of the outdoor air conditioner 100. The temperature sensor includes, for example, a temperature sensor for measuring the temperature of the refrigerant in each part of the refrigerant circuit 20, a temperature sensor for measuring the outside air temperature, and the like. Each part of the refrigerant circuit 20 of the outdoor air conditioner 100 may be provided with a pressure sensor for measuring the pressure of the refrigerant. When the outdoor air conditioner 100 is provided with a pressure sensor, the pressure sensor includes, for example, a suction pressure sensor provided in the suction pipe 20a and a discharge pressure sensor provided in the discharge pipe 20b. The control device 70 controls the operation of the outdoor air conditioner 100 by executing a program stored in the memory by the CPU in the microcomputer. The control device 70 is an example of a control unit.
 なお、本実施形態の制御装置70は、屋外空気調和装置100の動作を制御する制御装置の一例にすぎない。制御装置は、本実施形態の制御装置70が発揮する機能と同様の機能を、論理回路等のハードウェアにより実現してもよいし、ハードウェアとソフトウェアとの組合せにより実現してもよい。 The control device 70 of the present embodiment is only an example of a control device that controls the operation of the outdoor air conditioner 100. The control device may realize the same function as the function exhibited by the control device 70 of the present embodiment by hardware such as a logic circuit, or may be realized by a combination of hardware and software.
 次に、屋外空気調和装置100の冷房/除湿運転時、暖房運転時、第1運転前制御時における動作について説明する。 Next, the operations of the outdoor air conditioner 100 during the cooling / dehumidifying operation, the heating operation, and the first pre-operation control will be described.
 (2-11-1)冷房/除湿運転
 指示部80から冷房/除湿運転の実行指示を受信すると、制御装置70は、第1運転前制御を実行する。詳細は後述するが、第1運転前制御において、制御装置70は、屋外空気調和装置100の運転状態が第1運転状態になるように切換機構12を制御して第1状態とする(図2の切換機構12中の実線参照)。第1運転前制御が終了すると、制御装置70は、圧縮機10、熱源側ファン60、および、利用側ファン50の運転を開始し、圧縮機10、膨張機構16、熱源側ファン60、および、利用側ファン50の動作を適宜制御する。
(2-11-1) Upon receiving the cooling / dehumidifying operation execution instruction from the cooling / dehumidifying operation instruction unit 80, the control device 70 executes the first pre-operation control. Although the details will be described later, in the first pre-operation control, the control device 70 controls the switching mechanism 12 so that the operating state of the outdoor air conditioner 100 becomes the first operating state, and sets the first state (FIG. 2). Refer to the solid line in the switching mechanism 12 of. When the first pre-operation control is completed, the control device 70 starts the operation of the compressor 10, the heat source side fan 60, and the user side fan 50, and starts the operation of the compressor 10, the expansion mechanism 16, the heat source side fan 60, and The operation of the user-side fan 50 is appropriately controlled.
 このように屋外空気調和装置100の動作が制御される結果、冷媒回路20内の冷凍サイクルにおける低圧のガス冷媒は、圧縮機10に吸入されて圧縮され、冷凍サイクルにおける高圧のガス冷媒となる。圧縮機10で圧縮されたガス冷媒は、切換機構12を通じて熱源側熱交換器40に送られる。熱源側熱交換器40に送られた冷凍サイクルにおける高圧のガス冷媒は、凝縮器として機能する熱源側熱交換器40において、熱源側ファン60によって供給される屋外空気と熱交換を行って冷却されて凝縮し、高圧の液冷媒となる。一方、凝縮器として機能する熱源側熱交換器40で加熱された空気は、ケーシング90の上部の排気口84からケーシング90外へと排出される。熱源側熱交換器40で凝縮した液冷媒は、膨張機構16で減圧されて膨張し、利用側熱交換器30に送られる。利用側熱交換器30に送られた低圧の気液二相状態の冷媒は、蒸発器として機能する利用側熱交換器30において、利用側ファン50によって供給される屋外空気と熱交換を行って蒸発し、低圧のガス冷媒となる。低圧のガス冷媒は、第2ガス連絡配管20e、および、吸入管20aを通じて圧縮機10に送られ、圧縮機10に再び吸入される。一方、蒸発器として機能する利用側熱交換器30で冷却された空気は、ケーシング90の側面の吹出口82a~82dを通ってケーシング90の四方へと吹き出す。 As a result of controlling the operation of the outdoor air conditioner 100 in this way, the low-pressure gas refrigerant in the refrigeration cycle in the refrigerant circuit 20 is sucked into the compressor 10 and compressed, and becomes a high-pressure gas refrigerant in the refrigeration cycle. The gas refrigerant compressed by the compressor 10 is sent to the heat source side heat exchanger 40 through the switching mechanism 12. The high-pressure gas refrigerant in the refrigeration cycle sent to the heat source side heat exchanger 40 is cooled by exchanging heat with the outdoor air supplied by the heat source side fan 60 in the heat source side heat exchanger 40 that functions as a condenser. Condenses and becomes a high-pressure liquid refrigerant. On the other hand, the air heated by the heat source side heat exchanger 40 that functions as a condenser is discharged to the outside of the casing 90 from the exhaust port 84 at the upper part of the casing 90. The liquid refrigerant condensed in the heat source side heat exchanger 40 is decompressed by the expansion mechanism 16 to expand, and is sent to the user side heat exchanger 30. The low-pressure gas-liquid two-phase state refrigerant sent to the user-side heat exchanger 30 exchanges heat with the outdoor air supplied by the user-side fan 50 in the user-side heat exchanger 30 that functions as an evaporator. It evaporates and becomes a low-pressure gas refrigerant. The low-pressure gas refrigerant is sent to the compressor 10 through the second gas connecting pipe 20e and the suction pipe 20a, and is sucked into the compressor 10 again. On the other hand, the air cooled by the utilization side heat exchanger 30 that functions as an evaporator is blown out to all sides of the casing 90 through the outlets 82a to 82d on the side surface of the casing 90.
 (2-11-2)暖房運転
 指示部80から暖房運転の実行指示を受信すると、制御装置70は、第1運転前制御を実行する。詳細は後述するが、第1運転前制御において、制御装置70は、屋外空気調和装置100の運転状態が第2運転状態になるように切換機構12を制御して第2状態とする(図2の切換機構12中の破線参照)。第1運転前制御が終了すると、制御装置70は、圧縮機10、熱源側ファン60、および、利用側ファン50の運転を開始し、圧縮機10、膨張機構16、熱源側ファン60、および、利用側ファン50の動作を適宜制御する。
(2-11-2) Upon receiving the heating operation execution instruction from the heating operation instruction unit 80, the control device 70 executes the first pre-operation control. Although the details will be described later, in the first pre-operation control, the control device 70 controls the switching mechanism 12 so that the operating state of the outdoor air conditioner 100 becomes the second operating state (FIG. 2). See the broken line in the switching mechanism 12 of. When the first pre-operation control is completed, the control device 70 starts the operation of the compressor 10, the heat source side fan 60, and the user side fan 50, and starts the operation of the compressor 10, the expansion mechanism 16, the heat source side fan 60, and The operation of the user-side fan 50 is appropriately controlled.
 このように屋外空気調和装置100の動作が制御される結果、冷媒回路20内の低圧の冷凍サイクルにおけるガス冷媒は、圧縮機10に吸入されて圧縮され、冷凍サイクルにおける高圧のガス冷媒となる。圧縮機10で圧縮されたガス冷媒は、切換機構12を通じて利用側熱交換器30に送られる。利用側熱交換器30に送られた冷凍サイクルにおける高圧のガス冷媒は、凝縮器として機能する利用側熱交換器30において、利用側ファン50によって供給される屋外空気と熱交換を行って冷却されて凝縮し、高圧の液冷媒となる。一方、凝縮器として機能する利用側熱交換器30で加熱された空気は、ケーシング90の側面の吹出口82a~82dを通ってケーシング90の四方へと吹き出す。利用側熱交換器30で凝縮した液冷媒は、膨張機構16で減圧されて膨張し、熱源側熱交換器40に送られる。熱源側熱交換器40に送られた低圧の気液二相状態の冷媒は、蒸発器として機能する熱源側熱交換器40において、熱源側ファン60によって供給される屋外空気と熱交換を行って蒸発し、低圧のガス冷媒となる。低圧のガス冷媒は、第1ガス連絡配管20c、および、吸入管20aを通じて圧縮機10に送られ、圧縮機10に再び吸入される。一方、蒸発器として機能する熱源側熱交換器40で冷却された空気は、ケーシング90の上部の排気口84からケーシング90外へと排出される。 As a result of controlling the operation of the outdoor air conditioner 100 in this way, the gas refrigerant in the low-pressure refrigeration cycle in the refrigerant circuit 20 is sucked into the compressor 10 and compressed, and becomes a high-pressure gas refrigerant in the refrigeration cycle. The gas refrigerant compressed by the compressor 10 is sent to the user side heat exchanger 30 through the switching mechanism 12. The high-pressure gas refrigerant in the refrigeration cycle sent to the user-side heat exchanger 30 is cooled by exchanging heat with the outdoor air supplied by the user-side fan 50 in the user-side heat exchanger 30 that functions as a condenser. Condenses and becomes a high-pressure liquid refrigerant. On the other hand, the air heated by the utilization side heat exchanger 30 that functions as a condenser is blown out to all sides of the casing 90 through the outlets 82a to 82d on the side surface of the casing 90. The liquid refrigerant condensed in the user-side heat exchanger 30 is decompressed by the expansion mechanism 16 to expand, and is sent to the heat source-side heat exchanger 40. The low-pressure gas-liquid two-phase state refrigerant sent to the heat source side heat exchanger 40 exchanges heat with the outdoor air supplied by the heat source side fan 60 in the heat source side heat exchanger 40 that functions as an evaporator. It evaporates and becomes a low-pressure gas refrigerant. The low-pressure gas refrigerant is sent to the compressor 10 through the first gas connecting pipe 20c and the suction pipe 20a, and is sucked into the compressor 10 again. On the other hand, the air cooled by the heat source side heat exchanger 40 that functions as an evaporator is discharged to the outside of the casing 90 from the exhaust port 84 at the upper part of the casing 90.
 (2-11-3)第1運転前制御
 第1運転前制御は、屋外使用にともない圧縮機10における圧縮機油量が必要量を下回ることを抑制するために、冷房/除湿運転、および、暖房運転を開始する前に、制御装置70が実行する制御である。第1運転前制御は、第1制御の一例である。
(2-11-3) First pre-operation control In the first pre-operation control, cooling / dehumidifying operation and heating are performed in order to prevent the amount of compressor oil in the compressor 10 from falling below the required amount due to outdoor use. This is the control executed by the control device 70 before the operation is started. The first pre-operation control is an example of the first control.
 制御装置70は、第1運転前制御において、所定の第1期間にわたり圧縮機10を起動した後、第1期間よりも長い所定の第2期間にわたり圧縮機10を停止する。第1期間は、例えば、1秒以上20秒以下である。第2期間は、例えば、1分以上20分以下である。 In the first pre-operation control, the control device 70 starts the compressor 10 for a predetermined first period, and then stops the compressor 10 for a predetermined second period longer than the first period. The first period is, for example, 1 second or more and 20 seconds or less. The second period is, for example, 1 minute or more and 20 minutes or less.
 第1運転前制御の制御フローについて説明する。図7は、制御装置70が実行する第1運転前制御の制御フローを示すフローチャートである。制御装置70は、指示部80から冷凍サイクル運転の実行指示を受信すると第1運転前制御を開始する。 The control flow of the first pre-operation control will be explained. FIG. 7 is a flowchart showing a control flow of the first pre-operation control executed by the control device 70. When the control device 70 receives the execution instruction of the refrigeration cycle operation from the instruction unit 80, the control device 70 starts the first pre-operation control.
 ステップS110において、制御装置70は、圧縮機10を起動して、ステップS120へ進む。 In step S110, the control device 70 activates the compressor 10 and proceeds to step S120.
 ステップS120において、制御装置70は、圧縮機10の起動から第1期間が経過したか否かを判断する。制御装置70は、圧縮機10の起動から第1期間が経過するまでステップS120を繰り返し(No)、圧縮機10の起動から第1期間が経過すると(Yes)ステップS130に進む。 In step S120, the control device 70 determines whether or not the first period has elapsed from the start of the compressor 10. The control device 70 repeats step S120 until the first period elapses from the start of the compressor 10 (No), and proceeds to step S130 when the first period elapses from the start of the compressor 10 (Yes).
 ステップS130において、制御装置70は、圧縮機10を停止して、ステップS140へ進む。 In step S130, the control device 70 stops the compressor 10 and proceeds to step S140.
 ステップS140において、制御装置70は、圧縮機10の停止から第2期間が経過したか否かを判断する。制御装置70は、圧縮機10の停止から第2期間が経過するまでステップS140を繰り返し(No)、圧縮機10の停止から第2期間が経過すると(Yes)第1運転前制御を終了する。 In step S140, the control device 70 determines whether or not the second period has elapsed since the compressor 10 was stopped. The control device 70 repeats step S140 from the stop of the compressor 10 until the second period elapses (No), and ends the first pre-operation control when the second period elapses from the stop of the compressor 10 (Yes).
 第1運転前制御が終了すると、制御装置70は、指示部80からの冷凍サイクル運転の実行指示に基づいた冷凍サイクル運転を開始する。 When the first pre-operation control is completed, the control device 70 starts the refrigeration cycle operation based on the execution instruction of the refrigeration cycle operation from the instruction unit 80.
 (3)特徴
 (3-1)
 本実施形態の屋外空気調和装置100は、屋外で使用される空気調和装置であって、冷媒回路20と、制御装置70と、を備える。冷媒回路20は、圧縮機10、熱源側熱交換器40、および、利用側熱交換器30を有する。冷媒回路20は、圧縮機10、熱源側熱交換器40、および、利用側熱交換器30を冷媒が循環することにより冷凍サイクルを行わせる。制御装置70は、圧縮機10を起動して、冷媒回路20に冷凍サイクルを行わせる冷凍サイクル運転を実行する。制御装置70は、所定の第1期間にわたり圧縮機10を起動した後、第1期間よりも長い所定の第2期間にわたり圧縮機10を停止する第1運転前制御(第1制御)を実行し、第1運転前制御が終了した後に冷凍サイクル運転を開始する。
(3) Features (3-1)
The outdoor air conditioner 100 of the present embodiment is an air conditioner used outdoors and includes a refrigerant circuit 20 and a control device 70. The refrigerant circuit 20 includes a compressor 10, a heat source side heat exchanger 40, and a user side heat exchanger 30. The refrigerant circuit 20 causes the refrigeration cycle to be performed by circulating the refrigerant through the compressor 10, the heat source side heat exchanger 40, and the user side heat exchanger 30. The control device 70 activates the compressor 10 to execute a refrigerating cycle operation in which the refrigerant circuit 20 performs a refrigerating cycle. The control device 70 executes the first pre-operation control (first control) in which the compressor 10 is started for a predetermined first period and then the compressor 10 is stopped for a predetermined second period longer than the first period. , The refrigeration cycle operation is started after the first pre-operation control is completed.
 屋外空気調和装置100では、第1運転前制御において、第1期間にわたり圧縮機10が起動し圧縮機10の内部の温度が上昇することにより、圧縮機油に溶け込んだ冷媒が気化して圧縮機油から分離し圧縮機10から吐出される。第1期間を短期間に設定することにより、この際に、圧縮機10の内部で気化した冷媒により圧縮機油が泡立つフォーミングが発生しても、圧縮機10から吐出される圧縮機油の量は限定的である。 In the outdoor air conditioner 100, in the first pre-operation control, the compressor 10 is started for the first period and the temperature inside the compressor 10 rises, so that the refrigerant dissolved in the compressor oil is vaporized from the compressor oil. It is separated and discharged from the compressor 10. By setting the first period to a short period of time, the amount of compressor oil discharged from the compressor 10 is limited even if the compressor oil foams due to the refrigerant vaporized inside the compressor 10 at this time. It is a target.
 圧縮機10から吐出された冷媒は、熱源側熱交換器40、および、利用側熱交換器30へ送られるが、第2期間にわたり圧縮機10が停止することにより、熱源側熱交換器40における冷媒の圧力と、利用側熱交換器30における冷媒の圧力と、の差が小さくなる。これにより、圧縮機油に溶け込んだ冷媒の冷媒回路20内への拡散が促進され、圧縮機10内の冷媒の量が減少する。この結果、第1運転前制御後に、冷凍サイクル運転が開始されても、冷媒とともに圧縮機油が吐出されることで圧縮機油量が必要量を下回ることが抑制される。 The refrigerant discharged from the compressor 10 is sent to the heat source side heat exchanger 40 and the user side heat exchanger 30, but when the compressor 10 is stopped for the second period, the heat source side heat exchanger 40 is used. The difference between the pressure of the refrigerant and the pressure of the refrigerant in the heat exchanger 30 on the user side becomes small. As a result, the diffusion of the refrigerant dissolved in the compressor oil into the refrigerant circuit 20 is promoted, and the amount of the refrigerant in the compressor 10 is reduced. As a result, even if the refrigeration cycle operation is started after the first pre-operation control, the amount of the compressor oil is suppressed from falling below the required amount due to the discharge of the compressor oil together with the refrigerant.
 また、屋外等の比較的温度の低い場所に長い時間にわたって屋外空気調和装置100が置かれることにより、冷媒回路20内の冷媒が凝縮し、冷媒回路20内において湿り度の高い冷媒が偏って存在することがある。その状態で、冷凍サイクル運転を開始すると、湿り度の高い冷媒が圧縮機10へ一気に返るために、圧縮機10の温度が低下し、圧縮機油が冷媒とともに圧縮機10から吐出され易くなる。しかしながら、屋外空気調和装置100では、圧縮機10を第2期間にわたり停止させることで、高圧側から低圧側へ冷媒が移動するため、冷媒回路20内において冷媒を分散して存在させることができる。この結果、冷凍サイクル運転を開始しても、湿り度の高い冷媒が圧縮機10へ一気に返ってくることが抑制され、圧縮機油量が必要量を下回ることが抑制される。 Further, when the outdoor air conditioner 100 is placed in a place having a relatively low temperature such as outdoors for a long time, the refrigerant in the refrigerant circuit 20 is condensed, and the refrigerant having a high degree of wetness is unevenly present in the refrigerant circuit 20. I have something to do. When the refrigeration cycle operation is started in that state, the highly moist refrigerant returns to the compressor 10 at once, so that the temperature of the compressor 10 drops, and the compressor oil is easily discharged from the compressor 10 together with the refrigerant. However, in the outdoor air conditioner 100, by stopping the compressor 10 for the second period, the refrigerant moves from the high pressure side to the low pressure side, so that the refrigerant can be dispersed and exist in the refrigerant circuit 20. As a result, even if the refrigeration cycle operation is started, the highly moist refrigerant is suppressed from returning to the compressor 10 at once, and the amount of compressor oil is suppressed from falling below the required amount.
 このように、屋外空気調和装置100によれば、圧縮機10の起動、および、停止という簡単な制御により、圧縮機油量が必要量を下回ることを抑制できる。 As described above, according to the outdoor air conditioner 100, it is possible to prevent the amount of compressor oil from falling below the required amount by a simple control of starting and stopping the compressor 10.
 (3-2)
 第1期間は、1秒以上20秒以下である。
(3-2)
The first period is 1 second or more and 20 seconds or less.
 第1期間を上記の期間に設定することにより、フォーミングが発生しても圧縮機10から吐出される圧縮機油の量を抑制できる。 By setting the first period to the above period, the amount of compressor oil discharged from the compressor 10 can be suppressed even if forming occurs.
 (3-3)
 第2期間は、1分以上20分以下である。
(3-3)
The second period is 1 minute or more and 20 minutes or less.
 第2期間を上記の期間に設定することにより、圧縮機油に溶け込んだ冷媒の冷媒回路20内への拡散が促進され、圧縮機10内の冷媒の量を減少させることができる。 By setting the second period to the above period, the diffusion of the refrigerant dissolved in the compressor oil into the refrigerant circuit 20 is promoted, and the amount of the refrigerant in the compressor 10 can be reduced.
 (3-4)
 屋外空気調和装置100の圧縮機10は、単位時間あたりの冷媒の吐出容量が一定の圧縮機(非インバータ圧縮機)である。
(3-4)
The compressor 10 of the outdoor air conditioner 100 is a compressor (non-inverter compressor) having a constant refrigerant discharge capacity per unit time.
 単位時間あたりの冷媒の吐出容量が一定である非インバータ圧縮機は、低コストでの製造が可能である反面、吐出容量の細かい制御ができない。このため、非インバータ圧縮機を有する屋外空気調和装置では、圧縮機は起動とともに最大回転数となり、圧縮機内で激しいフォーミングが発生し、圧縮機油量が必要量を下回り易い。屋外空気調和装置100によれば、圧縮機10に非インバータ圧縮機を用いた場合であっても、圧縮機10の起動、および、停止という簡単な制御により、圧縮機10において圧縮機油量が必要量を下回ることを抑制できる。このため、製造コストを低く抑えることができる。 A non-inverter compressor with a constant refrigerant discharge capacity per unit time can be manufactured at low cost, but the discharge capacity cannot be finely controlled. Therefore, in an outdoor air conditioner having a non-inverter compressor, the compressor reaches the maximum rotation speed at the time of starting, intense forming occurs in the compressor, and the amount of compressor oil tends to be less than the required amount. According to the outdoor air conditioner 100, even when a non-inverter compressor is used for the compressor 10, the amount of compressor oil is required in the compressor 10 by simple control of starting and stopping the compressor 10. It is possible to suppress the amount from falling below the amount. Therefore, the manufacturing cost can be kept low.
 (3-5)
 屋外空気調和装置100の熱源側熱交換器40、および、利用側熱交換器30は、圧縮機10よりも上方に配置されている。
(3-5)
The heat source side heat exchanger 40 and the user side heat exchanger 30 of the outdoor air conditioner 100 are arranged above the compressor 10.
 熱源側熱交換器40、および、利用側熱交換器30が、圧縮機10よりも上方に配置された屋外空気調和装置100では、熱源側熱交換器40、および、利用側熱交換器30内で凝縮した冷媒が、大量に圧縮機10の内部へ流れ込みやすい。とくに、屋外空気調和装置100のように利用側熱交換器30と、熱源側熱交換器40と、が1つのケーシング90に収容された一体型の空気調和装置の場合、これらが別のケーシングに収容されたセパレート型の空気調和装置と比べて利用側熱交換器30と、圧縮機10と、の間に設けられる吸入管20a、および、第2ガス連絡配管20eが短くなり易いため、この傾向が顕著である。 In the outdoor air conditioner 100 in which the heat source side heat exchanger 40 and the user side heat exchanger 30 are arranged above the compressor 10, the heat source side heat exchanger 40 and the user side heat exchanger 30 are included. A large amount of the refrigerant condensed in (1) tends to flow into the compressor 10. In particular, in the case of an integrated air conditioner in which the user-side heat exchanger 30 and the heat source-side heat exchanger 40 are housed in one casing 90, such as the outdoor air conditioner 100, these are placed in different casings. This tendency is due to the fact that the suction pipe 20a and the second gas connecting pipe 20e provided between the user side heat exchanger 30 and the compressor 10 tend to be shorter than the housed separate type air conditioner. Is remarkable.
 このため、熱源側熱交換器40、および、利用側熱交換器30が、圧縮機10よりも下方に配置された屋外空気調和装置と比べて、屋外使用にともなう圧縮機油量が必要量を下回りやすい。 Therefore, the amount of compressor oil for outdoor use of the heat source side heat exchanger 40 and the user side heat exchanger 30 is less than the required amount as compared with the outdoor air conditioner arranged below the compressor 10. Cheap.
 屋外空気調和装置100では、熱源側熱交換器40、および、利用側熱交換器30を圧縮機10よりも上方に配置した場合であっても圧縮機10において圧縮機油量が必要量を下回ることを簡単な制御により抑制できる。このため、熱源側熱交換器40、利用側熱交換器30、および、圧縮機10の配置に関する設計自由度が高い。 In the outdoor air conditioner 100, even when the heat source side heat exchanger 40 and the user side heat exchanger 30 are arranged above the compressor 10, the amount of compressor oil in the compressor 10 is less than the required amount. Can be suppressed by simple control. Therefore, there is a high degree of freedom in design regarding the arrangement of the heat source side heat exchanger 40, the user side heat exchanger 30, and the compressor 10.
 (4)変形例
 以下に、上記実施形態の変形例を示す。なお、ここに示す各変形例の一部の構成、または、全部の構成は、矛盾のない範囲で、他の変形例と組合せて適用されてもよい。
(4) Modification example The following is a modification of the above embodiment. It should be noted that the partial configuration or the entire configuration of each modification shown here may be applied in combination with other modifications to the extent that there is no contradiction.
 (4-1)変形例1A
 制御装置70は、第1運転前制御の間、指示部80からの冷凍サイクル運転の実行指示に基づき切換機構12を所定の状態へ切換えてもよい。
(4-1) Modification 1A
The control device 70 may switch the switching mechanism 12 to a predetermined state based on the execution instruction of the refrigeration cycle operation from the instruction unit 80 during the first pre-operation control.
 図8は、変形例1Aに係る屋外空気調和装置100において、制御装置70が実行する第1運転前制御の制御フローを示すフローチャートである。図8に示した制御フローでは、制御装置70は、ステップS110の前のステップS105において、指示部80からの冷凍サイクル運転の実行指示に基づき切換機構12を切換える。 FIG. 8 is a flowchart showing a control flow of the first pre-operation control executed by the control device 70 in the outdoor air conditioner 100 according to the modified example 1A. In the control flow shown in FIG. 8, the control device 70 switches the switching mechanism 12 based on the execution instruction of the refrigeration cycle operation from the instruction unit 80 in the step S105 before the step S110.
 具体的には、実行指示が冷房/除湿運転の実行指示である場合(冷凍サイクル運転において切換機構12が第1状態とされる場合)、制御装置70は、切換機構12を第2状態へ切換える。また、実行指示が暖房運転の実行指示である場合(冷凍サイクル運転において切換機構12が第2状態とされる場合)、制御装置70は、切換機構12を第1状態へ切換える。 Specifically, when the execution instruction is the execution instruction of the cooling / dehumidifying operation (when the switching mechanism 12 is set to the first state in the refrigeration cycle operation), the control device 70 switches the switching mechanism 12 to the second state. .. Further, when the execution instruction is the execution instruction of the heating operation (when the switching mechanism 12 is set to the second state in the refrigeration cycle operation), the control device 70 switches the switching mechanism 12 to the first state.
 その後、制御装置70は、上述したステップS110からステップS140を実行して第1運転前制御を終了する。 After that, the control device 70 executes step S140 from step S110 described above to end the first pre-operation control.
 第1運転前制御が終了すると、制御装置70は、指示部80からの冷凍サイクル運転の実行指示に基づいた冷凍サイクル運転を開始する。冷凍サイクル運転の開始にあたり、ステップS105において切換えられている切換機構12は、指示部80からの冷凍サイクル運転の実行指示に基づいた状態となるように、制御装置70によって再度切換えられる。 When the first pre-operation control is completed, the control device 70 starts the refrigeration cycle operation based on the execution instruction of the refrigeration cycle operation from the instruction unit 80. At the start of the refrigeration cycle operation, the switching mechanism 12 switched in step S105 is switched again by the control device 70 so as to be in a state based on the execution instruction of the refrigeration cycle operation from the instruction unit 80.
 これにより、変形例1Aに係る屋外空気調和装置100では、第1運転前制御において圧縮機10内で分離した冷媒は、その後に実行される冷凍サイクル運転で低圧側となる熱交換器へ向かって吐出される。このため、圧縮機10から吐出された冷媒に圧縮機油が含まれていても、冷凍サイクル運転の開始後、冷媒に含まれた圧縮機油はすみやかに圧縮機へ戻ることができるため、圧縮機油量が必要量を下回ることを効果的に抑制できる。 As a result, in the outdoor air conditioner 100 according to the modified example 1A, the refrigerant separated in the compressor 10 in the first pre-operation control is directed toward the heat exchanger on the low pressure side in the subsequent refrigeration cycle operation. It is discharged. Therefore, even if the refrigerant discharged from the compressor 10 contains the compressor oil, the compressor oil contained in the refrigerant can be quickly returned to the compressor after the start of the refrigeration cycle operation, so that the amount of the compressor oil can be reduced. Can be effectively suppressed from falling below the required amount.
 また、屋外空気調和装置100では、熱源側熱交換器40が利用側熱交換器30よりも上方に配置されているため、屋外空気調和装置100の停止中に熱源側熱交換器40で凝縮した冷媒の一部が利用側熱交換器30にも溜まる。このように凝縮した冷媒の一部が利用側熱交換器30にも溜まった状態であっても、屋外空気調和装置100では、冷房/除湿運転を実行することにより、第1運転前制御において圧縮機10内で分離した冷媒を利用側熱交換器30に吐出することで、利用側熱交換器30内に溜まった冷媒を蒸発させ、熱源側熱交換器40に向かって送ることができる。 Further, in the outdoor air conditioner 100, since the heat source side heat exchanger 40 is arranged above the user side heat exchanger 30, the heat source side heat exchanger 40 condenses while the outdoor air conditioner 100 is stopped. A part of the refrigerant also collects in the heat exchanger 30 on the user side. Even if a part of the condensed refrigerant is accumulated in the heat exchanger 30 on the user side, the outdoor air conditioner 100 compresses the refrigerant in the first pre-operation control by executing the cooling / dehumidifying operation. By discharging the refrigerant separated in the machine 10 to the user side heat exchanger 30, the refrigerant accumulated in the user side heat exchanger 30 can be evaporated and sent to the heat source side heat exchanger 40.
 (4-2)変形例1B
 制御装置70は、図8に示した制御フローにおいて、圧縮機10を停止させた後、第1運転前制御が終わる前までに切換機構12を切換えてもよい。
(4-2) Modification 1B
In the control flow shown in FIG. 8, the control device 70 may switch the switching mechanism 12 after the compressor 10 is stopped and before the first pre-operation control is completed.
 図9は、変形例1Bに係る屋外空気調和装置100において、制御装置70が実行する第1運転前制御の制御フローを示すフローチャートである。図9に示した制御フローでは、制御装置70は、ステップS130の後のステップS135において切換機構12を切換える。 FIG. 9 is a flowchart showing a control flow of the first pre-operation control executed by the control device 70 in the outdoor air conditioner 100 according to the modified example 1B. In the control flow shown in FIG. 9, the control device 70 switches the switching mechanism 12 in step S135 after step S130.
 言い換えると、制御装置70は、第1運転前制御において、圧縮機10を起動している間は切換機構12を第1状態とし、冷凍サイクル運転において、切換機構12を第2状態とする。あるいは、制御装置70は、第1制御において、圧縮機10を起動している間は切換機構12を2状態とし、冷凍サイクル運転において、切換機構12を第1状態とする。 In other words, in the first pre-operation control, the control device 70 sets the switching mechanism 12 in the first state while the compressor 10 is running, and sets the switching mechanism 12 in the second state in the refrigeration cycle operation. Alternatively, in the first control, the control device 70 sets the switching mechanism 12 in two states while the compressor 10 is running, and sets the switching mechanism 12 in the first state in the refrigeration cycle operation.
 (4-3)変形例1C
 制御装置70は、第2期間において、膨張機構16の開度を冷凍サイクル運転時における開度よりも大きくしてもよい。
(4-3) Modification 1C
In the second period, the control device 70 may make the opening degree of the expansion mechanism 16 larger than the opening degree during the refrigerating cycle operation.
 これにより、熱源側熱交換器40における圧力と、利用側熱交換器30における圧力と、の差が小さくなり易くなるため、冷媒の冷媒回路20内への拡散が促進され、圧縮機10において圧縮機油量が必要量を下回ることが効果的に抑制される。 As a result, the difference between the pressure in the heat source side heat exchanger 40 and the pressure in the user side heat exchanger 30 tends to be small, so that the diffusion of the refrigerant into the refrigerant circuit 20 is promoted and the compressor 10 is compressed. It is effectively suppressed that the amount of machine oil falls below the required amount.
 <第2実施形態>
 第2実施形態に係る屋外空気調和装置101について、屋外空気調和装置100との相違を中心に、図面を参照しながら、以下に説明する。
<Second Embodiment>
The outdoor air conditioner 101 according to the second embodiment will be described below with reference to the drawings, focusing on the differences from the outdoor air conditioner 100.
 (1)全体概要
 図10は、屋外空気調和装置101の冷媒回路20を概略的に示す図である。屋外空気調和装置101と、屋外空気調和装置100と、の相違点は、屋外空気調和装置101がクランクケースヒータ13をさらに備えるとともに、制御装置70に代えて制御装置71を備える点である。
(1) Overall Overview FIG. 10 is a diagram schematically showing a refrigerant circuit 20 of an outdoor air conditioner 101. The difference between the outdoor air conditioner 101 and the outdoor air conditioner 100 is that the outdoor air conditioner 101 further includes a crankcase heater 13 and also includes a control device 71 instead of the control device 70.
 (2)詳細説明
 (2-1)クランクケースヒータ
 クランクケースヒータ13は、圧縮機10に貯留された圧縮機油を温める。本実施形態においてクランクケースヒータ13は、圧縮機10の底部壁面に取り付けられる。クランクケースヒータ13は、制御装置71により制御され、通電により発熱する。
(2) Detailed Description (2-1) Crankcase Heater The crankcase heater 13 heats the compressor oil stored in the compressor 10. In the present embodiment, the crankcase heater 13 is attached to the bottom wall surface of the compressor 10. The crankcase heater 13 is controlled by the control device 71 and generates heat when energized.
 (2-2)制御装置
 制御装置71は、屋外空気調和装置101を構成する各部の動作を制御する。制御装置71と、制御装置70と、相違点は、制御装置71が、クランクケースヒータ13に電気的に接続されている点、および、制御装置71が予熱制御を含む第2運転前制御を実行する点である。予熱制御は、制御装置71がクランクケースヒータ13を発熱させる制御である。予熱制御は、第2制御の一例である。
(2-2) Control device The control device 71 controls the operation of each part constituting the outdoor air conditioner 101. The difference between the control device 71 and the control device 70 is that the control device 71 is electrically connected to the crankcase heater 13, and the control device 71 executes the second pre-operation control including the preheating control. It is a point to do. The preheating control is a control in which the control device 71 heats the crankcase heater 13. Preheating control is an example of the second control.
 次に、屋外空気調和装置101の第2運転前制御時における動作について説明する。 Next, the operation of the outdoor air conditioner 101 during the second pre-operation control will be described.
 (2-2-1)第2運転前制御
 制御装置71は、指示部80から冷房/除湿運転、または、暖房運転の実行指示を受信すると、第2運転前制御を実行する。制御装置71が実行する第2運転前制御と、制御装置70が実行する第1運転前制御と、の相違点は、第2運転前制御において制御装置71が、予熱制御を開始した後に第1運転前制御を実行する点である。予熱制御は、冷凍サイクル運転を開始するまで継続される。言い換えると、予熱制御は、第2運転前制御が終了するまで継続される。
(2-2-1) Second Pre-Operation Control The control device 71 executes the second pre-operation control when it receives an execution instruction for cooling / dehumidifying operation or heating operation from the instruction unit 80. The difference between the second pre-operation control executed by the control device 71 and the first pre-operation control executed by the control device 70 is that in the second pre-operation control, the first preheating control is started after the control device 71 starts the preheating control. This is the point of executing pre-operation control. Preheating control continues until the refrigeration cycle operation is started. In other words, the preheating control is continued until the second pre-operation control is completed.
 制御装置71が実行する第2運転前制御の制御フローについて説明する。図11は、制御装置71が実行する第2運転前制御の制御フローを示すフローチャートである。制御装置71は、指示部80から冷凍サイクル運転の実行指示を受信すると第2運転前制御を開始する。 The control flow of the second pre-operation control executed by the control device 71 will be described. FIG. 11 is a flowchart showing a control flow of the second pre-operation control executed by the control device 71. When the control device 71 receives the execution instruction of the refrigeration cycle operation from the instruction unit 80, the control device 71 starts the second pre-operation control.
 ステップS21において、制御装置71は、予熱制御を開始し、クランクケースヒータ13を発熱させて、ステップS22に進む。 In step S21, the control device 71 starts preheating control, heats the crankcase heater 13, and proceeds to step S22.
 ステップS22において、制御装置71は、図7に示した第1運転前制御のステップS11~ステップS16を実行する。第1運転前制御についての説明は、省略する。制御装置71は、ステップS22が終了するとステップS23に進む。 In step S22, the control device 71 executes the first pre-operation control steps S11 to S16 shown in FIG. 7. The description of the first pre-operation control will be omitted. The control device 71 proceeds to step S23 when step S22 is completed.
 ステップS23において、制御装置71は、予熱制御を終了し、クランクケースヒータ13の発熱を停止させ、第2運転前制御を終了する。 In step S23, the control device 71 ends the preheating control, stops the heat generation of the crankcase heater 13, and ends the second pre-operation control.
 第2運転前制御が終了すると、制御装置71は、指示部80からの冷凍サイクル運転の実行指示に基づいた冷凍サイクル運転を開始する。 When the second pre-operation control is completed, the control device 71 starts the refrigeration cycle operation based on the execution instruction of the refrigeration cycle operation from the instruction unit 80.
 (3)特徴
 (3-1)
 本実施形態の屋外空気調和装置101は、発熱することで圧縮機10の圧縮機油を温めるクランクケースヒータ13をさらに備える。制御装置71は、クランクケースヒータ13を発熱させる予熱制御(第2制御)を開始した後に第1運転前制御を実行する。
(3) Features (3-1)
The outdoor air conditioner 101 of the present embodiment further includes a crankcase heater 13 that heats the compressor oil of the compressor 10 by generating heat. The control device 71 executes the first pre-operation control after starting the preheating control (second control) for heating the crankcase heater 13.
 屋外空気調和装置101では、クランクケースヒータ13の発熱により、圧縮機油に溶け込んだ冷媒が加熱されるため、圧縮機油に溶け込んでいる冷媒の量をより少なくすることができる。このため、屋外空気調和装置101によれば、より効果的に圧縮機油量が必要量を下回ることを抑制できる。 In the outdoor air conditioner 101, the heat generated by the crankcase heater 13 heats the refrigerant dissolved in the compressor oil, so that the amount of the refrigerant dissolved in the compressor oil can be further reduced. Therefore, according to the outdoor air conditioner 101, it is possible to more effectively prevent the amount of compressor oil from falling below the required amount.
 (4)変形例
 (4-1)変形例2A
 制御装置71は、指示部80から冷凍サイクル運転の実行指示を待つことなく、屋外空気調和装置101に電源が投入された後に予熱制御を実行してもよい。この場合、制御装置71が実行指示を受信した時点で圧縮機油が必要量を下回ることを抑制できる期間まで加熱されていれば、第1運転前制御を実行しなくてもよい。以下では、変形例2Aに係る屋外空気調和装置101の制御装置71が実行する第3運転前制御について説明する。
(4) Modification example (4-1) Modification example 2A
The control device 71 may execute the preheating control after the power is turned on to the outdoor air conditioner 101 without waiting for the execution instruction of the refrigeration cycle operation from the instruction unit 80. In this case, if the control device 71 is heated to a period during which it is possible to prevent the compressor oil from falling below the required amount when the execution instruction is received, it is not necessary to execute the first pre-operation control. Hereinafter, the third pre-operation control executed by the control device 71 of the outdoor air conditioner 101 according to the modified example 2A will be described.
 (4-1-1)第3運転前制御
 変形例2Aに係る屋外空気調和装置101では、制御装置71は、屋外空気調和装置101に電源が投入されると予熱制御を開始する。制御装置71は、指示部80から実行指示を受信すると、クランクケースヒータ13が発熱を開始してからの経過時間と所定の第3期間とを比較する。そして、制御装置71は、クランクケースヒータ13が発熱を開始してからの経過時間が第3期間以上であれば、第1運転前制御を実行することなく冷凍サイクル運転を開始する。また、制御装置71は、クランクケースヒータ13が発熱を開始してからの経過時間が第3期間未満であれば、第1運転前制御を実行し、第1運転前制御が終了した後に冷凍サイクル運転を開始する。
(4-1-1) Third Pre-Operation Control In the outdoor air conditioner 101 according to the modified example 2A, the control device 71 starts preheating control when the power is turned on to the outdoor air conditioner 101. When the control device 71 receives the execution instruction from the instruction unit 80, the control device 71 compares the elapsed time from the start of heat generation of the crankcase heater 13 with the predetermined third period. Then, if the elapsed time from the start of heat generation of the crankcase heater 13 is the third period or more, the control device 71 starts the refrigeration cycle operation without executing the first pre-operation control. Further, if the elapsed time from the start of heat generation of the crankcase heater 13 is less than the third period, the control device 71 executes the first pre-operation control, and after the first pre-operation control is completed, the refrigeration cycle Start operation.
 変形例2Aに係る屋外空気調和装置101は、タイマー(図示省略)をさらに備える。タイマーは、クランクケースヒータ13が発熱を開始してからの経過時間を測る。 The outdoor air conditioner 101 according to the modification 2A further includes a timer (not shown). The timer measures the elapsed time since the crankcase heater 13 starts to generate heat.
 変形例2Aに係る屋外空気調和装置101の制御装置71が実行する第3運転前制御の制御フローについて説明する。図12は、制御装置71が実行する第3運転前制御の制御フローを示すフローチャートである。 The control flow of the third pre-operation control executed by the control device 71 of the outdoor air conditioner 101 according to the modification 2A will be described. FIG. 12 is a flowchart showing a control flow of the third pre-operation control executed by the control device 71.
 制御装置71は、屋外空気調和装置102へ電源が投入されると制御を開始する。 The control device 71 starts control when the power is turned on to the outdoor air conditioner 102.
 ステップS31において、制御装置71は、予熱制御を開始し、クランクケースヒータ13を発熱させて、ステップS32に進む。このとき、タイマーは、経過時間の測定を開始する。 In step S31, the control device 71 starts preheating control, heats the crankcase heater 13, and proceeds to step S32. At this time, the timer starts measuring the elapsed time.
 ステップS32において、制御装置71は、指示部80から冷凍サイクル運転の実行指示を受信したかどうかを判断する。制御装置71は、実行指示を受信するまでステップS32を繰り返し(No)、実行指示を受信すると(Yes)ステップS33に進む。 In step S32, the control device 71 determines whether or not the refrigerating cycle operation execution instruction has been received from the instruction unit 80. The control device 71 repeats step S32 until the execution instruction is received (No), and when the execution instruction is received (Yes), the control device 71 proceeds to step S33.
 ステップS33において、制御装置71は、クランクケースヒータ13が発熱を開始してからの経過時間をタイマーから取得して、ステップS34に進む。 In step S33, the control device 71 acquires the elapsed time from the start of heat generation of the crankcase heater 13 from the timer, and proceeds to step S34.
 ステップS34において、制御装置71は、取得した経過時間が所定の第3期間以上であるか否かを判断する。制御装置71は、経過時間が第3期間以上であれば(Yes)、第3運転前制御を終了し、経過時間が第3期間未満であれば、ステップS35に進む(No)。 In step S34, the control device 71 determines whether or not the acquired elapsed time is equal to or longer than the predetermined third period. If the elapsed time is the third period or more (Yes), the control device 71 ends the third pre-operation control, and if the elapsed time is less than the third period, proceeds to step S35 (No).
 ステップS35において、制御装置71は、第1運転前制御のステップS11~ステップS16を実行する。制御装置71は、第1運転前制御のステップS11~ステップS16が終了すると、第3運転前制御を終了する。 In step S35, the control device 71 executes steps S11 to S16 of the first pre-operation control. The control device 71 ends the third pre-operation control when the steps S11 to S16 of the first pre-operation control are completed.
 第3運転前制御が終了すると、制御装置71は、指示部80からの冷凍サイクル運転の実行指示に基づいた冷凍サイクル運転を開始する。 When the third pre-operation control is completed, the control device 71 starts the refrigeration cycle operation based on the execution instruction of the refrigeration cycle operation from the instruction unit 80.
 第3期間は、クランクケースヒータ13の発熱だけで、圧縮機油に溶け込んだ冷媒を分離して、圧縮機油量が必要量を下回ることを抑制できる期間である。第3期間は、例えば、90分である。 The third period is a period in which it is possible to separate the refrigerant dissolved in the compressor oil only by the heat generated by the crankcase heater 13 and prevent the amount of the compressor oil from falling below the required amount. The third period is, for example, 90 minutes.
 第3運転前制御では、制御装置71が実行指示を受信するまでにクランクケースヒータ13により圧縮機油が必要量を下回ることを抑制できる期間まで加熱されている場合には、第1運転前制御を実行することなく冷凍サイクル運転を開始する。そして、制御装置71が実行指示を受信するまでにクランクケースヒータ13により圧縮機油が十分に加熱されていない場合には、第1運転前制御を実行した後に冷凍サイクル運転を開始する。 In the third pre-operation control, when the control device 71 is heated to a period during which the crankcase heater 13 can prevent the compressor oil from falling below the required amount by the time the control device 71 receives the execution instruction, the first pre-operation control is performed. Start refrigeration cycle operation without execution. If the compressor oil is not sufficiently heated by the crankcase heater 13 by the time the control device 71 receives the execution instruction, the refrigeration cycle operation is started after the first pre-operation control is executed.
 このため、指示部80からの実行指示を受信してから冷凍サイクル運転を開始するまでの時間を短縮でき、利便性が向上する。 Therefore, the time from receiving the execution instruction from the instruction unit 80 to starting the refrigeration cycle operation can be shortened, and the convenience is improved.
 上述した屋外空気調和装置100を用いて第1運転前制御の評価を行った。図13は、実施例における圧縮機の動き、および、圧縮機油の油面挙動を示すグラフである。 The first pre-operation control was evaluated using the above-mentioned outdoor air conditioner 100. FIG. 13 is a graph showing the movement of the compressor and the oil level behavior of the compressor oil in the embodiment.
 実施例では、冷房運転の開始前に、第1運転前制御を行った。第1期間は5秒とし、第2期間は3分とした。油面挙動の観測は、圧縮機に設けたサイトグラスにて行った。図13では、制御装置70が第1運転前制御を開始したタイミングを0分として示している。 In the embodiment, the first pre-operation control was performed before the start of the cooling operation. The first period was 5 seconds and the second period was 3 minutes. The oil level behavior was observed with a sight glass provided in the compressor. In FIG. 13, the timing at which the control device 70 starts the first pre-operation control is shown as 0 minute.
 図13に示すように、圧縮機内の油面は、冷房運転が始まると一旦低下するものの、グラフに点線で示した油ピックアップ下端の高さを下回ることがなかった。また、冷房運転の開始から2分程度で底を打った油面は、その後、すぐに上昇した。なお、油ピックアップとは、圧縮機内において、一端が給油口に接続され、他端が油溜空間に配置された圧縮機油吸入のための配管である。 As shown in FIG. 13, although the oil level in the compressor once dropped once the cooling operation started, it did not fall below the height of the lower end of the oil pickup shown by the dotted line in the graph. In addition, the oil level that hit the bottom about 2 minutes after the start of the cooling operation rose immediately after that. The oil pickup is a pipe for sucking oil from the compressor, one end of which is connected to the fuel filler port and the other end of which is arranged in the oil reservoir space in the compressor.
 以上の結果から、第1運転前制御を実行することにより、圧縮機油量が必要量を下回ることを抑制できることが確認された。 From the above results, it was confirmed that the amount of compressor oil could be suppressed from falling below the required amount by executing the first pre-operation control.
 以上、本開示の実施形態を説明したが、請求の範囲に記載された本開示の趣旨、および、範囲から逸脱することなく、形態や詳細の多様な変更が可能なことが理解されるであろう。 Although the embodiments of the present disclosure have been described above, it is understood that the purpose of the present disclosure described in the claims and various changes in the form and details are possible without departing from the scope. Let's do it.
10                  圧縮機
12                  切換機構
13                  クランクケースヒータ
20                  冷媒回路
30                  利用側熱交換器
36                  ドレンパン
40                  熱源側熱交換器
46                  ドレンパン
50                  利用側ファン(第1ファン)
60                  熱源側ファン(第2ファン)
70、71               制御装置
80                  指示部
82(82a,82b,82c,82d) 吹出口
90                  ケーシング
100、101                 屋外空気調和装置
FP                  流路
10 Compressor 12 Switching mechanism 13 Crankcase heater 20 Refrigerant circuit 30 User side heat exchanger 36 Drain pan 40 Heat source side heat exchanger 46 Drain pan 50 User side fan (first fan)
60 Heat source side fan (second fan)
70, 71 Control device 80 Indicator 82 (82a, 82b, 82c, 82d) Outlet 90 Casing 100, 101 Outdoor air conditioner FP flow path
特願2020-003182号公報Japanese Patent Application No. 2020-003182

Claims (11)

  1.  屋外で使用される空気調和装置(100)であって、
     圧縮機(10)、熱源側熱交換器(40)、および、利用側熱交換器(30)を有し、前記圧縮機、前記熱源側熱交換器、および、前記利用側熱交換器を冷媒が循環することにより冷凍サイクルを行わせる冷媒回路(20)と、
     前記圧縮機を起動して、前記冷媒回路に前記冷凍サイクルを行わせる冷凍サイクル運転を実行する制御部(70)と、
    を備え、
     前記制御部は、
      所定の第1期間にわたり前記圧縮機を起動した後、前記第1期間よりも長い所定の第2期間にわたり前記圧縮機を停止する第1制御を実行し、
      前記第1制御が終了した後に前記冷凍サイクル運転を開始する、
    屋外空気調和装置。
    An air conditioner (100) used outdoors,
    It has a compressor (10), a heat source side heat exchanger (40), and a user side heat exchanger (30), and uses the compressor, the heat source side heat exchanger, and the user side heat exchanger as a refrigerant. Refrigerant circuit (20) that causes the refrigeration cycle to be performed by circulating
    A control unit (70) that activates the compressor and executes a refrigerating cycle operation for causing the refrigerant circuit to perform the refrigerating cycle.
    Equipped with
    The control unit
    After starting the compressor for a predetermined first period, the first control for stopping the compressor for a predetermined second period longer than the first period is executed.
    After the first control is completed, the refrigeration cycle operation is started.
    Outdoor air conditioner.
  2.  前記第1期間は、
      1秒以上20秒以下である、
    請求項1に記載の屋外空気調和装置。
    The first period is
    1 second or more and 20 seconds or less,
    The outdoor air conditioner according to claim 1.
  3.  前記第2期間は、
      1分以上20分以下である、
    請求項1または2に記載の屋外空気調和装置。
    The second period is
    1 minute or more and 20 minutes or less,
    The outdoor air conditioner according to claim 1 or 2.
  4.  前記冷媒回路は、
      前記冷媒を、前記圧縮機、前記熱源側熱交換器、前記利用側熱交換器の順で循環させる第1状態と、前記冷媒を、前記圧縮機、前記利用側熱交換器、前記熱源側熱交換器の順で循環させる第2状態と、の間で切り換わる切換機構(12)を有し、
     前記制御部は、
      前記第1制御において、前記圧縮機を起動している間は前記切換機構を前記第1状態とし、前記冷凍サイクル運転において、前記切換機構を前記第2状態とする、あるいは、
      前記第1制御において、前記圧縮機を起動している間は前記切換機構を前記第2状態とし、前記冷凍サイクル運転において、前記切換機構を前記第1状態とする、
    請求項1から3のいずれかに記載の屋外空気調和装置。
    The refrigerant circuit is
    The first state in which the refrigerant is circulated in the order of the compressor, the heat source side heat exchanger, and the user side heat exchanger, and the refrigerant is transferred to the compressor, the user side heat exchanger, and the heat source side heat. It has a switching mechanism (12) that switches between the second state that circulates in the order of the exchanger and the second state.
    The control unit
    In the first control, the switching mechanism is set to the first state while the compressor is being activated, and in the refrigeration cycle operation, the switching mechanism is set to the second state, or
    In the first control, the switching mechanism is set to the second state while the compressor is being activated, and in the refrigeration cycle operation, the switching mechanism is set to the first state.
    The outdoor air conditioner according to any one of claims 1 to 3.
  5.  前記制御部は、
      前記第1制御において、前記切換機構を前記第1状態とし、前記冷凍サイクル運転において、前記切換機構を前記第2状態とする、あるいは、
      前記第1制御において、前記切換機構を前記第2状態とし、前記冷凍サイクル運転において、前記切換機構を前記第1状態とする、
    請求項4に記載の屋外空気調和装置。
    The control unit
    In the first control, the switching mechanism is set to the first state, and in the refrigerating cycle operation, the switching mechanism is set to the second state, or
    In the first control, the switching mechanism is set to the second state, and in the refrigerating cycle operation, the switching mechanism is set to the first state.
    The outdoor air conditioner according to claim 4.
  6.  前記圧縮機は、
      単位時間あたりの前記冷媒の吐出容量が一定である、
    請求項1から5のいずれかに記載の屋外空気調和装置。
    The compressor
    The discharge capacity of the refrigerant per unit time is constant.
    The outdoor air conditioner according to any one of claims 1 to 5.
  7.  前記熱源側熱交換器は、
      前記利用側熱交換器よりも上方に配置されている、
    請求項1から6のいずれかに記載の屋外空気調和装置。
    The heat source side heat exchanger is
    Located above the user heat exchanger,
    The outdoor air conditioner according to any one of claims 1 to 6.
  8.  前記熱源側熱交換器、および、前記利用側熱交換器は、
      前記圧縮機よりも上方に配置されている、
    請求項1から7のいずれかに記載の屋外空気調和装置。
    The heat source side heat exchanger and the user side heat exchanger are
    Located above the compressor,
    The outdoor air conditioner according to any one of claims 1 to 7.
  9.  発熱することで前記圧縮機の圧縮機油を温めるクランクケースヒータ(13)をさらに備え、
     前記制御部は、
      前記クランクケースヒータを発熱させる第2制御を開始した後に前記第1制御を実行する、
    請求項1から8のいずれかに記載の屋外空気調和装置。
    A crankcase heater (13) that heats the compressor oil of the compressor by generating heat is further provided.
    The control unit
    The first control is executed after the second control for heating the crankcase heater is started.
    The outdoor air conditioner according to any one of claims 1 to 8.
  10.  前記制御部は、
      前記冷凍サイクル運転を開始するまで前記第2制御を継続する、
    請求項9に記載の屋外空気調和装置。
    The control unit
    The second control is continued until the refrigeration cycle operation is started.
    The outdoor air conditioner according to claim 9.
  11.  前記クランクケースヒータが発熱を開始してからの経過時間を測るタイマーと、
     前記制御部に前記冷凍サイクル運転の実行を指示する実行指示を送信する指示部(80)と、
    をさらに備え、
     前記制御部は、
      電源が投入されると前記第2制御を開始し、
      前記指示部から前記実行指示を受信すると、
      前記経過時間が所定の第3期間以上であれば、前記第1制御を実行することなく前記冷凍サイクル運転を開始し、
      前記経過時間が前記第3期間未満であれば、前記第1制御を実行し、前記第1制御が終了した後に前記冷凍サイクル運転を開始する、
    請求項9または10に記載の屋外空気調和装置。
    A timer that measures the elapsed time since the crankcase heater started to generate heat,
    An instruction unit (80) for transmitting an execution instruction instructing the control unit to execute the refrigeration cycle operation, and an instruction unit (80).
    Further prepare
    The control unit
    When the power is turned on, the second control is started.
    When the execution instruction is received from the instruction unit,
    If the elapsed time is equal to or longer than the predetermined third period, the refrigeration cycle operation is started without executing the first control.
    If the elapsed time is less than the third period, the first control is executed, and the refrigeration cycle operation is started after the first control is completed.
    The outdoor air conditioner according to claim 9 or 10.
PCT/JP2021/036586 2020-10-08 2021-10-04 Outdoor air conditioning apparatus WO2022075248A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020170498A JP2022062471A (en) 2020-10-08 2020-10-08 Outdoor air conditioning system
JP2020-170498 2020-10-08

Publications (1)

Publication Number Publication Date
WO2022075248A1 true WO2022075248A1 (en) 2022-04-14

Family

ID=81126021

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/036586 WO2022075248A1 (en) 2020-10-08 2021-10-04 Outdoor air conditioning apparatus

Country Status (2)

Country Link
JP (1) JP2022062471A (en)
WO (1) WO2022075248A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000292017A (en) * 1999-04-08 2000-10-20 Mitsubishi Electric Corp Heat pump type refrigerating machine
US20060179855A1 (en) * 2005-02-16 2006-08-17 Carrier Corporation Prevention of flooded starts in heat pumps
WO2007052493A1 (en) * 2005-10-31 2007-05-10 Daikin Industries, Ltd. Refrigerator compressor operating method and refrigerator
US20140308138A1 (en) * 2013-04-12 2014-10-16 Emerson Climate Technologies, Inc. Compressor with flooded start control
JP2020003158A (en) * 2018-06-29 2020-01-09 ダイキン工業株式会社 Outdoor air conditioner

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000292017A (en) * 1999-04-08 2000-10-20 Mitsubishi Electric Corp Heat pump type refrigerating machine
US20060179855A1 (en) * 2005-02-16 2006-08-17 Carrier Corporation Prevention of flooded starts in heat pumps
WO2007052493A1 (en) * 2005-10-31 2007-05-10 Daikin Industries, Ltd. Refrigerator compressor operating method and refrigerator
US20140308138A1 (en) * 2013-04-12 2014-10-16 Emerson Climate Technologies, Inc. Compressor with flooded start control
JP2020003158A (en) * 2018-06-29 2020-01-09 ダイキン工業株式会社 Outdoor air conditioner

Also Published As

Publication number Publication date
JP2022062471A (en) 2022-04-20

Similar Documents

Publication Publication Date Title
JP6671484B2 (en) Heat pump equipment
JP2009115359A (en) Air-conditioning control device, air conditioning device, and air-conditioning control method
JP2004353887A (en) Moisture conditioning device
AU2008320211B2 (en) Humidity control apparatus
JP2005291570A (en) Air conditioner and its control method
KR20150134676A (en) Heat pump
JP2013036716A (en) Outdoor unit and refrigerating cycle apparatus including the same
CN111684217A (en) Air conditioner
TW200406565A (en) Air-conditioning device
JP5332467B2 (en) Humidity control system
WO2022075248A1 (en) Outdoor air conditioning apparatus
WO2020189586A1 (en) Refrigeration cycle device
JP2012193952A (en) Air-conditioning control device, air-conditioning device, and air-conditioning control method
JP6828720B2 (en) Outdoor air conditioner
WO2005008140A1 (en) Moisture conditioner
JP2010145024A (en) Air conditioning system
JP4179051B2 (en) Humidity control device
JP2005003290A (en) Air conditioner
JP3668764B2 (en) Humidity control device
CN100455923C (en) Method of controlling operation for removing dampness in air conditioner
JPS6338621B2 (en)
JP2022064723A (en) Air conditioner and method for detaching fan
JP7393671B2 (en) Refrigeration cycle equipment
JP7448848B2 (en) air conditioner
JP7262431B2 (en) Heat capacity estimation system, refrigerant cycle device, and heat capacity estimation method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21877547

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21877547

Country of ref document: EP

Kind code of ref document: A1