WO2022075220A1 - Design assistance system and design assistance method - Google Patents

Design assistance system and design assistance method Download PDF

Info

Publication number
WO2022075220A1
WO2022075220A1 PCT/JP2021/036450 JP2021036450W WO2022075220A1 WO 2022075220 A1 WO2022075220 A1 WO 2022075220A1 JP 2021036450 W JP2021036450 W JP 2021036450W WO 2022075220 A1 WO2022075220 A1 WO 2022075220A1
Authority
WO
WIPO (PCT)
Prior art keywords
parameter
check
evaluation
function
cad model
Prior art date
Application number
PCT/JP2021/036450
Other languages
French (fr)
Japanese (ja)
Inventor
絵里香 片山
誠 小野寺
勇気 板林
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Publication of WO2022075220A1 publication Critical patent/WO2022075220A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation

Definitions

  • the present invention relates to a design support system and its method.
  • CAD Computer-Aided Design
  • the guidelines for CAD design include, for example, rules from the viewpoint of ease of processing such as drilling and bending, ease of assembly such as welding and screw fastening, and ease of inspection and access to jigs. It contains many compliance items such as rules from the viewpoint of product maintenance such as ease of use.
  • Patent Document 1 discloses a system that executes a program including a combination of a plurality of functions according to a rule and notifies the designer when the CAD model does not satisfy the threshold value.
  • an object of the present invention is to provide a product design support system and a method thereof that can correctly check whether the CAD model is configured in conformity with the guideline.
  • One of the representative design support systems of the present invention is a product design support system that causes a computer to check that the CAD model of the product conforms to the guideline based on a judgment rule.
  • the computer is a controller. And a memory, the controller sets a function for recognizing the form of the CAD model by executing the program stored in the memory, and a geometric recognition function definition unit that generates a judgment rule, and CAD.
  • a parameter adjustment unit that adjusts parameters based on the model check results and sets them in the function, and a rule check that checks the CAD model based on the function and identifies design violations with the adjusted parameters set.
  • a unit and an output unit for outputting the check result to the notification device are formed.
  • a design support system that streamlines checks is provided by constructing and evolving new judgment rules that can be applied to various forms of CAD models that are different from the conventional ones, such as including newly adopted parts. Can be provided.
  • FIG. 1 is a functional block diagram for explaining a check function of the design support system according to the first embodiment of the present invention.
  • the judgment rule is a rule that can be checked on a computer, and is a rule that can detect a design error from a CAD model being processed by a three-dimensional CAD system.
  • the design support system 10 has a design guideline 1, a judgment rule definition unit 2, a CAD model (CAD data) 3, and a geometry recognition function database (hereinafter, “geometry recognition function DB”) as its check functions.
  • Geometric recognition function module definition unit (hereinafter referred to as “geometric recognition function definition unit") 5, parameter evaluation DB 6, parameter adjustment unit 7, rule check unit 8, check result display unit 9, and shape feature quantity extraction unit. It is configured with 16.
  • These functions are a function formed by the computer constituting the design support system 10 executing a program, and a DB formed in a storage unit (memory) included in the computer.
  • the basic drawing function in the design support system 10 is not shown in FIG. 1, and the description thereof will be omitted.
  • Design guideline 1 includes design rules such as specifications of manufacturing equipment and tools, ease of assembly, processing limits, laws and regulations, and standards such as JIS. For example, in addition to defining the positions of the ends of mechanical parts and bending to holes, the design guideline 1 includes accessibility of manufacturing tools and the like.
  • the judgment rule definition unit 2 is provided with an interface for defining a judgment rule to be verified on the CAD model 3.
  • the user refers to or incorporates the rules in the design guideline 1, and determines from the user interface for defining the design elements and the rules in the design guideline 1 based on the user input accumulated in the past.
  • the CAD model 3 is checked by the design support system 10 by applying a determination rule.
  • a group of procedural functions for recognizing the geometric shape included in the CAD model 3 is collected, and a group of newly generated functions is also recorded.
  • Common functions can be called individually on a computer and are basic elements for recognizing geometric shapes, including the function of measuring distance. A specific example of the common function will be described later. Further, the hardware of the computer constituting the design support system 10 will be described later with reference to FIG.
  • Design guideline 1 has a large number of rules to check.
  • This design guideline 1 is defined in the determination rule definition unit 2. Further, by extracting and combining the common function of the geometric recognition function DB4 with respect to the design guideline 1 to be checked defined in the judgment rule definition section 2, the geometric recognition function module definition section (hereinafter, "geometric recognition function definition section"). A judgment rule that can be checked in 5 is generated.
  • the geometric recognition function definition unit 5 is a function of setting a function for recognizing the form of a CAD model by executing a program by a computer constituting the design support system 10 and constructing a judgment rule for automatic check. ..
  • the parameter evaluation DB 6 stores information indicating the correlation between the common function input to the geometric recognition function definition unit 5 and the parameters suitable for the common function, and the evaluation result obtained by the check.
  • the parameter to be set is, for example, a quantitative value represented by a search range and a reference dimension, but is not limited to this.
  • the evaluation result of the check includes, for example, the set value of the parameter for determining the geometric shape specified in the above-mentioned common function, the check time T described later using FIG. 6, and the accuracy of specifying the violation site. be. Further, information showing the correlation between the check evaluation result represented by the large amount of noise N, the check time T, and the set value of the parameter is stored in the parameter evaluation DB 6.
  • the rule check unit 8 inputs a common function and suitable parameters thereof, and checks the CAD model 3 to be checked.
  • the common function used here is a component of the geometric recognition function defined in the geometric recognition function definition unit 5.
  • the parameters suitable for the common function the optimum parameters acquired by the parameter adjustment unit 7 by searching the parameter evaluation DB 6 are used so as to enhance the evaluation of the check result. Further, from the check result of the rule check unit 8, evaluation results represented by the correct answer rate R and the check time T can be obtained.
  • the check result display unit 9 highlights the identified violation location and informs the designer. Further, the check result display unit 9 feeds back the obtained evaluation result to the next check by updating the information with respect to the geometric recognition function DB4 and the parameter evaluation DB6. That is, the design support system 10 continues to evolve appropriately so that the determination rule is updated based on the evaluation of the check result and the scope of application can be expanded.
  • the feature amount is extracted from the CAD model 3 by the shape feature amount extraction unit 16 and the parameter adjustment unit 7 is used. It can also be an input.
  • the shape feature amount referred to here includes, for example, the minimum (maximum) plate thickness included in the CAD model 3, the distribution of the dimensions of parts, and feature information, but is not limited thereto.
  • FIG. 2 is a flowchart showing the procedure of the check operation in the design support system 10 of FIG.
  • Steps S1 to S8 shown in FIG. 2 are examples of design support methods, and are designed by a computer equipped with a controller 22 (FIG. 3) and a memory (storage unit) by applying determination rules to CAD models 3 and 30. It is an operation procedure to extract the above violation part.
  • steps S1 to S8 are procedures for a check operation mainly executed by the controller 22 of the computer constituting the design support system 10.
  • the main body of operation without a subject is the controller 22 of the computer, and more specifically, each functional unit formed therein.
  • the controller 22 reads the CAD model 3 to be checked into the storage unit.
  • the judgment rule definition step S2 the judgment rule to be checked is defined based on the design guideline 1. That is, it is defined as a judgment rule whether or not it is a violation for each design element.
  • the controller 22 stores the common function used for verification for each defined design element in the geometric recognition function DB (storage unit) 4.
  • the judgment rule definition unit 2 of the controller 22 queries the geometric recognition function DB4, and is optimal for identifying the violation part of the CAD model 3 from the judgment rules defined in the judgment rule definition step S2. Search and define common functions. As described above, in step S4, the optimum common function defined in step S2 and stored in step S3 is searched from the geometric recognition function DB4, and the acquired optimum common function is combined, based on the determination rule. Build a geometric recognition function for automatic checking.
  • a geometric feature search function such as searching for a hole or an end
  • a shape feature amount calculation function such as measuring the distance between faces
  • a shape generation function such as face creation or point creation
  • the controller 22 stores the correlation between the parameter input to the common function and the evaluation result of evaluating the check result including at least the correct answer rate R or the calculation time T in the parameter evaluation DB 6. ..
  • the parameter evaluation DB 6 stores, for example, the correlation between the numerical value of the parameter corresponding to the input of the common function defined by the function and the evaluation result such as the correct answer rate R and the check time T of the check result. There is.
  • the parameter adjustment unit 7 inquires about the parameter evaluation DB 6 stored in the parameter evaluation DB 6, and inputs and adjusts the common function searched based on the evaluation result and suitable parameters thereof. That is, in step S6, the parameter adjusting unit 7 adjusts the parameters input to the common function to appropriate values.
  • the parameter processed in step S6 may be of one type, but usually there are a plurality of types.
  • step S7 the determination rule generated by inputting the parameters adjusted by the parameter adjustment unit 7 in step S6 into the common function defined by the geometric function definition unit 5 in step S4 is applied to the CAD models 3 and 30. , Evaluate the check result.
  • the CAD is based on the determination rule constructed by inputting the function stored in the geometric recognition function DB4 in step S3 and the parameter value stored in the parameter evaluation DB 6 in step S5 into the parameter adjustment unit 7.
  • step S7 the result of the check is evaluated.
  • the evaluation index of the check evaluation the above-mentioned correct answer rate R and the calculation time T can be mentioned, but the present invention is not limited to these.
  • step S7 If the evaluation result in step S7 does not satisfy the desired correct answer rate R or calculation time T (No), the parameter values are adjusted again in step S6.
  • the process proceeds to the check result display step S8, the check result is displayed, and the check ends.
  • FIG. 3 is a functional block diagram showing the relationship between the check functions in the design support system 10 of FIG. 1 and the hardware that realizes them.
  • the design support system 10 is composed of a controller 22 which is a computer including an input unit 20 and a display unit 21.
  • the input unit 20 and the display unit 21 provide the user with an operation environment using a GUI (graphical user interface).
  • GUI graphical user interface
  • a control unit 23, an input interface (hereinafter, input I / F) 24, a display control unit 25, a main storage device 26, and an auxiliary storage device 27 are connected to the controller 22 via a data bus 28.
  • the control unit 23 is the center of the controller 22 in the design support system 10, and controls all of the drawing function (not shown) and the check function.
  • the control unit 23 as a check function operates as if the geometric recognition function definition unit 5 causes the parameter adjustment unit 7 to generate a checkable rule, and the rule check unit 8 automatically checks the rule.
  • the division of functions between the control unit 23 and the geometric recognition function definition unit 5 is for convenience of explanation, and is not limited thereto.
  • the input I / F 24 takes in the CAD model and the determination rule input from the input unit 20.
  • the display control unit 25 controls the display unit 21.
  • the main storage device 26 stores a CAD model 3, a design guideline 1, a determination rule definition unit 2, a parameter adjustment unit 7, a rule check unit 8, and information and programs for functioning these.
  • the auxiliary storage device 27 stores information and programs of the geometric recognition function DB4 and the parameter evaluation DB6.
  • a part or all of the hardware of the controller 22 as a computer may be replaced with a DSP (Digital Signal Processor), FPGA (Field-Programmable Gate Array), GPU (Graphics Processing Unit), or the like. Further, a part or all of the hardware may be centrally or distributed in the cloud on the servers on the network, and may be shared by a plurality of users via the network.
  • DSP Digital Signal Processor
  • FPGA Field-Programmable Gate Array
  • GPU Graphics Processing Unit
  • FIG. 4 is a diagram that visualizes and exemplifies the CAD model 3 to be checked in the design support system 10 of FIG.
  • the CAD model 3 shown in FIG. 4 is obtained by extracting a part of a product fixed to another part by a bolt 33 via a fixing jig 32 for fixing the pipe 31.
  • the design support system 10 automatically checks whether the bolt insertion holes have appropriate dimensions for the bolts 33.
  • FIG. 5 is a flowchart showing the operation procedure of the parameter adjusting unit 7 and the rule checking unit 8 in the design support system 10 of FIG. More specifically, FIG. 5 shows an operation procedure in which the design support system 10 automatically checks the bolt holes in the CAD model 3 shown in FIG.
  • the geometric recognition function definition unit 5 is uniquely determined, and the operation flow of the parameter adjustment unit 7 and the rule check unit 8 is shown together.
  • the modules constituting the geometric recognition function definition unit 5 can be changed as appropriate. However, it is not limited to this.
  • step S11 when the check is started, the initial values of the parameters are set in step S11. Then, in step S12, the bolt is recognized on the CAD model 3.
  • the bolt may be specified from the shape, but it is preferable that the shape feature amount extraction unit 16 recognizes the bolt by utilizing the part name and the attribute information.
  • step S13 the central axis of the bolt is generated.
  • step S14 the hole included in the CAD model 3 is searched, and in step S15, the hole in the vicinity of the bolt is specified.
  • step S16 the hole diameter of the hole obtained in step S15 is measured, and the hole diameter is determined in step S17.
  • the check ends. If there is a violation (Yes), it is evaluated whether or not the result detected as a violation in step S18 is a correct answer, and the process proceeds to the correct answer rate evaluation step S19.
  • step S19 when the evaluation result represented by the correct answer rate R or the check time T of the detection result satisfies the predetermined performance (Yes), the check ends.
  • step S19 if the evaluation result in step S19 does not satisfy the predetermined performance (No), the process returns to the parameter setting step S11.
  • step S11 the parameter evaluation DB 6 (FIGS. 1 and 3) is queried and the parameters are reset. This is repeated, and when the correct answer rate R and the check time T satisfy the target performance for the check (Yes), the check is completed and the violation portion is highlighted (not shown).
  • FIG. 6 is an example of evaluation data stored in the parameter evaluation DB 6 referred to during the check operation in the design support system 10 of FIG.
  • FIG. 6 is a graph showing the evaluation results obtained by executing the hole search function, that is, the hole recognition step S14 of FIG. 5 for the CAD model 3 of FIG. Further, FIG. 6 also shows the hole detection result 43.
  • the horizontal axis of FIG. 6 indicates the ratio of the hole search reference hole diameter / maximum bolt diameter from 0 to 10.
  • the left vertical axis of FIG. 6 is the bolt hole correct answer rate R (%), and indicates how much the correct answer rate R (%) was detected for the bolt insertion hole from the check result.
  • the right vertical axis of FIG. 6 is the dimensionless calculation time T, which indicates the time required for the check.
  • the characteristic 41 in FIG. 6 represents the relationship between the reference hole diameter and the bolt hole accuracy rate R in the hole search function.
  • the characteristic 42 of FIG. 6 represents the relationship between the reference hole diameter and the bolt hole correct answer rate R time T
  • the ratio shown on the horizontal axis of FIG. 6 is the ratio of the hole search reference hole diameter and the maximum bolt diameter, which are input parameters set in the hole recognition step S14, and if the ratio is double the maximum bolt diameter M10, the hole search is performed.
  • the reference hole is 20 mm, and if the ratio is 10 times, the hole search reference hole is 100 mm.
  • the technical significance of the "hole search reference hole diameter / maximum bolt diameter" shown on the horizontal axis of FIG. 6 is that the "hole through which the bolt penetrates is in the range of ⁇ mm to ⁇ mm larger than the bolt diameter" described later in the [Supplement] column. Based on design guidelines such as ". As a judgment rule based on the design guideline to be checked, whether or not it is a violation is defined for each design element.
  • One of the parameters to be input to the common function constituting this determination rule is shown on the horizontal axis of FIG.
  • FIG. 6 shows that the evaluation of the check result by the judgment rule generated by the common function changes depending on the parameter input to the common function. That is, FIG. 6 shows the correlation between the arbitrarily input parameters and the evaluation of the check results.
  • the correlation of the evaluation results is stored in the parameter evaluation DB 6 as a parameter evaluation and is used as a reference from the parameter adjustment unit 7.
  • the parameter adjustment unit 7 adjusts the parameters so that a high evaluation can be obtained based on the evaluation of the referenced check result.
  • the higher the bolt hole accuracy rate R the smaller the dimensionless calculation time T, the check omission F, and the noise N, the higher the evaluation.
  • the bolt hole correct answer rate R shown on the left vertical axis of FIG. 6 means that there is a lot of noise N when the number of detected holes is larger than the number of correct answers, and the value obtained by dividing the number of correct answers by the number of detected holes (matching). Rate) is the correct answer rate R.
  • Rate the correct answer rate
  • the number of detected holes is less than the number of correct answers, it means that leakage F has occurred, and the value (reproducibility) obtained by dividing the number of detected holes by the number of correct answers is the correct answer rate R.
  • evaluation indexes such as a recall rate representing leakage F and a matching rate representing a large amount of noise N may be applied separately, and the evaluation index of the check result is not limited to this.
  • the hole search function shown in the hole recognition step S14 and the bolt neighborhood hole search step S15 if the reference hole diameter is increased, the range of holes to be acquired also increases and the calculation time T becomes longer. In addition, pipes with a large hole diameter and the like are also acquired, and noise N, which is not a bolt hole, increases. On the other hand, if the reference hole diameter is reduced, the calculation time T is shortened, but a leakage F of the bolt hole occurs, which causes a check omission F.
  • FIG. 7 is a diagram illustrating and exemplifying the CAD model (CAD data) 30 to be checked in the design support system 20 according to the second embodiment of the present invention. That is, FIG. 7 shows a part of the CAD model 30 targeted in Example 2. Here, the bolt 33 penetrates the bolt-penetrating part 14 having a bend, and there is a design guideline 1 that "checks whether or not a space for inserting a tool for fastening the bolt is secured".
  • FIG. 8 is a functional block diagram for explaining the check function of the design support system 20 according to the second embodiment of the present invention.
  • the design guideline 1 As shown in FIG. 8, among the check functions of the design support system 20, the design guideline 1, the judgment rule definition unit 2, the geometric recognition function DB 4, the geometric recognition function definition unit 5, the parameter evaluation DB 6, the parameter adjustment unit 7, and the rule check.
  • the unit 8 and the check result display unit 9 are common to the design support system 10 according to the first embodiment shown in FIG.
  • the CAD model (CAD data) 30 to be checked is the one described above using FIG. 7.
  • the correct answer data for the presence or absence of violation created from the CAD model 30 based on the past manufacturing data described above, that is, the correct answer data 17 to be checked is input to the parameter adjustment unit 7.
  • the parameter adjustment unit 7 adjusts the parameters quickly and accurately using the correct answer data 17 to be checked.
  • FIG. 9 is a flowchart showing the operation procedure of the parameter adjusting unit 7 and the rule checking unit 8 in the design support system 20 of FIG.
  • FIG. 9 shows an operation procedure for checking for harmful interference with the bolt fastening tool insertion space. That is, the parameter setting in step S11 and the bolt recognition in step S12 in the second embodiment shown in FIG. 9 are the same as those in the first embodiment shown in FIG. Next, in step S21 of FIG. 9, a cylinder for evaluation is created above the hexagonal head with a bolt.
  • the shape of the tool is simulated by a cylinder, but the shape is not limited to this shape, and a rectangular parallelepiped, a cone, or a semicircle may be used.
  • step S22 a part near the bolt is searched.
  • step S23 it is checked whether or not there is interference between the parts near the bolt and the evaluation cylindrical surface.
  • step S24 it is determined whether or not there is interference (Yes)
  • the process proceeds to step S25, and if it is determined that there is no interference (No), the check ends.
  • step S25 whether the check result is correct as a violation point or not is evaluated by collating the correct answer data.
  • step S26 if there is a discrepancy between the check result and the correct answer data (No), the process proceeds to step S27.
  • step S27 the parameter adjusting unit 7 inquires about the parameter evaluation DB 6 and adjusts the parameters, and then returns to step S11 to reset the parameters. When this series of flow is repeated and the discrepancy between the check result and the correct answer data becomes the minimum, it is regarded as OK in step S26 (Yes), and the value of the parameter is determined. As a result, the value of the determined parameter is input to the common function, the determination rule composed of the common function is applied, and the check for the CAD model 30 is completed.
  • FIG. 10 is a diagram illustrating and exemplifying the correct answer data of the check result for the CAD model 30 of FIG. 7 in the design support system 20 of FIG.
  • FIG. 10 shows a constraint condition (bad sample) 12 in which a tool cannot be inserted, and an evaluation cylinder 13 displaying a condition for obtaining a good judgment (good sample).
  • the design state related to the bolt to which the bolt tool has not been inserted is set as the constraint condition 12 in the check target correct answer data 17 (FIG. 8).
  • the dimensions of the evaluation cylinder surface 11 can be determined by the parameter adjustment unit 7 so that the constraint condition 12 and the evaluation cylinder 13 that cannot be inserted by the tool can be detected.
  • the larger the number of correct answer data the higher the accuracy of parameter estimation, and usually several hundreds are required, but the present invention is not limited to this. From the above, the design support system 20 can automatically check the rules of the unquantified design guideline 1 in the parameter adjustment unit 7 by utilizing the past actual data.
  • design guidelines related to ease of assembly there are ease of processing such as drilling and bending, and ease of assembly such as welding and screw fastening, which are problems in product manufacturing.
  • ease of inspection which is a problem during product maintenance
  • design guidelines that specify the ease of procurement of jigs used for them and the ease of compatibility with jigs are also exemplified.
  • the hole through which the bolt penetrates shall be in the range of ⁇ mm to ⁇ mm larger than the bolt diameter.
  • design guideline such as "the hole through which the bolt is penetrated should be in the range of ⁇ mm to ⁇ mm larger than the bolt diameter”
  • functions such as bolt and hole search and hole diameter measurement can be combined.
  • the size and structure differ depending on the product type, so it is necessary to change the search range and shape dimensions according to the product type. For example, in the case of the function of searching for a hole, if the dimension of the reference hole diameter is set, a hole smaller than the reference hole diameter is searched.
  • the reference hole diameter is set smaller than the bolt diameter included in the CAD model, the bolt insertion hole leaks from the check target and does not play a role of finding a design error from the CAD model.
  • the design support systems (this system) 10 and 20 can be summarized as follows. [1] In the systems 10 and 20, the computer equipped with the controller 22 and the menu executes the program stored in the memory (storage unit), so that the CAD models 3 and 30 of the product conform to the guideline. It is a product design support system that lets a computer check based on the judgment rule.
  • the controller 22 forms a geometric recognition function definition unit 5, a parameter adjustment unit 7, a rule check unit 8, and an output unit.
  • the geometric recognition function definition unit 5 sets a function for recognizing the form of the CAD model and generates a judgment rule.
  • the parameter adjustment unit 7 adjusts the parameters based on the check result of the CAD model and sets them in the function. That is, the parameter adjustment unit 7 is generated by inputting an arbitrary parameter into the common function so that a new design violation part can be extracted by a CAD model having various forms different from the conventional one, including newly adopted parts.
  • the determination rule is applied to the CAD models 3 and 30, and adjustments are made so as to improve the accuracy of the check result based on the evaluation of the check result of the rule check.
  • the rule check unit 8 inputs the parameters adjusted by the parameter adjustment unit 7 into the common function so as to correspond to various forms of CAD models different from the conventional ones including newly adopted parts, and the determination rule is determined.
  • the output unit causes the check result display unit 9 to display the check result checked by the rule check unit 8.
  • the controller 22 further includes a determination rule definition unit 2, a geometric recognition function DB 4, and a parameter evaluation DB 6.
  • the determination rule definition unit 2 defines as a determination rule whether or not it is a violation for each design element based on the design guideline 1 to be checked.
  • the geometric recognition function DB4 stores a common function that constitutes a determination rule for each design element based on the design guideline 1.
  • the geometric recognition function definition unit 5 can identify the violation points of the CAD models 3 and 30 by the combination of the common functions obtained by querying the geometric recognition function DB 4 for the determination rule. Define a common function that composes the judgment rule in.
  • the parameter evaluation DB 6 stores the correlation of the parameters with respect to the evaluation of the check result by the judgment rule generated by the common function in which an arbitrary parameter is input. That is, the parameter evaluation DB 6 stores the correlation of the parameters with respect to the check result by the judgment rule generated by inputting arbitrary parameters into the common function in the CAD model of various forms different from the conventional ones including newly adopted parts. do. That is, the parameter evaluation DB 6 stores the correlation between the parameter input to the common function and the evaluation result of evaluating the check result including at least the correct answer rate R or the calculation time T according to the parameter.
  • the systems 10 and 20 solve the following first and second problems by newly constructing and evolving judgment rules. 1) As the first problem, it is desirable to shorten the time required for trial and error in determining the parameters constituting the judgment rule. 2) As the second problem, in order to construct and evolve the judgment rule for automatic check, it is necessary to estimate the parameter and the threshold value for quantifying the judgment rule and adjust them with higher accuracy.
  • the systems 10 and 20 include a determination rule definition unit 2, a geometric recognition function DB 4, a geometric recognition function definition unit 5, a parameter evaluation DB 6, and a parameter adjustment unit 7. , A rule check unit 8 and a check result display unit 9 are further provided.
  • the judgment rule definition unit 2 defines as a judgment rule whether or not it is a violation for each design element.
  • the geometric recognition function DB4 stores common functions constituting the determination rule.
  • the geometric recognition function definition unit 5 defines the geometric recognition function DB 4 so that the violation portion of the CAD model 3 can be identified by the combination of the common functions obtained by inquiring the determination rule.
  • the parameter evaluation DB 6 stores the correlation between the parameter input to the common function and the evaluation result of evaluating the check result including at least the correct answer rate R or the calculation time T according to the parameter.
  • the parameter adjustment unit 7 inquires of the parameter evaluation DB unit (storage unit) 6 and inputs and adjusts the common function searched based on the evaluation result and the parameters suitable for the common function.
  • the systems 10 and 20 can solve the first problem that it takes time for trial and error to determine the parameters constituting the determination rule. Further, in order to construct and evolve the judgment rule for automatic check in the systems 10 and 20, it is necessary to estimate the parameter and the threshold value for quantifying the judgment rule and adjust them with higher accuracy. Can also solve the problem of.
  • the rule check unit 8 performs a rule check according to the determination rule generated by inputting the parameters adjusted by the parameter adjustment unit 7 into the function defined by the geometric recognition function definition unit 5.
  • the check result display unit 9 causes the display unit 21 to display the check result checked by the rule check unit 8.
  • the parameter that is the input of the geometric recognition function can be optimized in the parameter adjusting unit 7 for the dimensions and the threshold values that are different for each product.
  • the systems 10 and 20 have the effect of reducing noise N and check omission F from the check results for different dimensions and thresholds for each product, and shortening the calculation time T.
  • the system 10 may further include a shape feature amount extraction unit 16.
  • the shape feature amount extraction unit 16 can input the shape feature amount included in the CAD model 3 into the parameter adjustment unit 7 to further optimize the parameters. As a result, the system 10 can further enhance the effect of the above [2].
  • the shape feature amount extraction unit 16 extracts the dimensional information and the information representing the distribution of the parts included in the CAD model 3 as the shape feature amount, and the extracted shape feature amount. Is preferably input to the parameter adjustment unit 7.
  • the present system 10 can be optimized for parameters according to various forms of CAD models different from the conventional ones, such as including newly adopted parts. As a result, the present system 10 can further enhance the effect of the above [3].
  • the present system 10 of the above [3] it is preferable to extract and clearly indicate the feature information included in the CAD model 3 as the shape feature amount.
  • the parameters can be more precisely optimized by using the feature information extracted from the CAD model 3, so that the effect of the above [3] can be further enhanced.
  • the attribute information of the part is also specified in the shape feature amount.
  • the present system 10 can more quickly optimize the parameters by using the attribute information extracted from the CAD model 3, so that the effect of the above [3] can be further enhanced.
  • the parameter evaluation DB 6 has a correct answer rate R which is a ratio of noise N or check omission F included in the check result as shown in FIG. , Information showing the correlation with the parameter value is stored.
  • the parameter adjustment unit 7 can search the parameter evaluation DB 6 and search for and acquire the optimum parameter with a high evaluation shown in FIG. As a result, the systems 10 and 20 can further enhance the effect of the above [2].
  • the parameter evaluation DB 6 includes the evaluation result of the check time T required for the rule check and the parameter value as shown in FIG. Information indicating the correlation between and is stored. That is, according to an empirical rule or the like, the parameter values that can shorten the calculation time T and be advantageous are stored in advance in the parameter evaluation DB 6. According to the systems 10 and 20 as described above, the parameter adjusting unit 7 reads out the optimum value of the parameter from the parameter evaluation DB 6 and applies it, so that among the effects of the above [2], the check time T, that is, the calculation time T. Can be further shortened and the determination of the parameters constituting the judgment rule can be expedited.
  • controller 23 ... control unit, 24 ... input interface, 25 ... display control unit, 26 ... main storage device, 27 ... auxiliary storage device, 28 ... data bus, 31 ... piping, 32 ... fixing jig, 33 ... Bolt, 41 ... Characteristics showing the relationship between the reference hole diameter and the bolt hole correct answer rate R in the hole search function, 42 ... Characteristics showing the relationship between the reference hole diameter and the bolt hole correct answer rate R time T in the hole search function, 43 ... Hole search result in the CAD model to be checked, Dmax ... maximum bolt diameter, R ... bolt hole correct answer rate, T ... check time (non-dimensional calculation time)

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Evolutionary Computation (AREA)
  • Computer Hardware Design (AREA)
  • General Engineering & Computer Science (AREA)
  • Pure & Applied Mathematics (AREA)
  • Mathematical Optimization (AREA)
  • Mathematical Analysis (AREA)
  • Computational Mathematics (AREA)
  • General Factory Administration (AREA)

Abstract

Provided is a product design assistance system for causing a computer to check the conformity of a CAD model of a product to guidelines on the basis of a determination rule. The computer includes a controller and a memory. The controller, through execution of a program stored in the memory, forms: a geometry recognition function defining unit that sets a function for recognizing the form of the CAD model and generates the determination rule; a parameter adjustment unit that adjusts a parameter on the basis of the check result for the CAD model and sets the adjusted parameter in the function; a rule checking unit that checks the CAD model on the basis of the function in which the adjusted parameter is set, to identify a design violation; and an output unit that outputs the check result to a notification device.

Description

設計支援システム及びその方法Design support system and its method
 本発明は、設計支援システム及びその方法に関する。 The present invention relates to a design support system and its method.
 近年、CAD(Computer-Aided Design)を用いた製品設計が多用されている。CAD設計のためのガイドラインには、例えば、穴あけや曲げなどの加工のしやすさ、溶接やネジ締結などの組立のしやすさといった観点からのルール、そして、点検のしやすさや治具のアクセスのしやすさといった製品保守の観点からのルール等多くの順守事項が含まれている。 In recent years, product design using CAD (Computer-Aided Design) has been widely used. The guidelines for CAD design include, for example, rules from the viewpoint of ease of processing such as drilling and bending, ease of assembly such as welding and screw fastening, and ease of inspection and access to jigs. It contains many compliance items such as rules from the viewpoint of product maintenance such as ease of use.
 そこで、CADを搭載したコンピュータが、これらルールの一部又は全部をチェックして、ガイドラインに照らして、設計ミスがCADモデルに存在するか否かを自動で判定することが提案されている。例えば、特許文献1は、ルールに即した複数の関数の組み合わせを含むプログラムを実行して、CADモデルが閾値を満たさない場合は、それを設計者に通知するシステムを開示している。 Therefore, it has been proposed that a computer equipped with CAD checks some or all of these rules and automatically determines whether or not a design error exists in the CAD model in light of the guidelines. For example, Patent Document 1 discloses a system that executes a program including a combination of a plurality of functions according to a rule and notifies the designer when the CAD model does not satisfy the threshold value.
特開2008-234011号公報Japanese Unexamined Patent Publication No. 2008-234011
 しかしながら、コンピュータが、ルールに基づいてCADモデルをチェックできるようにするためには、関数に、パラメータや閾値を適切に設定する必要があるものの、特許文献1に係るシステムは、これについて、開示も示唆もしていない。そこで、本願発明は、CADモデルがガイドラインに適合して構成されたものであるかを正しくチェックできる、製品設計支援システムとその方法とを提供することを目的とする。 However, in order for the computer to be able to check the CAD model based on the rules, it is necessary to appropriately set parameters and threshold values in the function, but the system according to Patent Document 1 also discloses this. I haven't suggested it either. Therefore, an object of the present invention is to provide a product design support system and a method thereof that can correctly check whether the CAD model is configured in conformity with the guideline.
 本発明の代表的な設計支援システムの一つは、製品のCADモデルがガイドラインに適合することを、判定ルールに基づいて、コンピュータにチェックさせる、製品の設計支援システムであって、コンピュータは、コントローラと、メモリと、を備え、コントローラは、メモリに記憶されたプログラムを実行することにより、CADモデルの形態を認識するための関数を設定するとともに判定ルールを生成する幾何認識関数定義部と、CADモデルのチェック結果に基づいてパラメータを調整して関数に設定するパラメータ調整部と、調整後のパラメータが設定された、関数に基づいてCADモデルをチェックして設計上の違反箇所を特定するルールチェック部と、チェック結果を報知装置に出力させる出力部と、を形成する。 One of the representative design support systems of the present invention is a product design support system that causes a computer to check that the CAD model of the product conforms to the guideline based on a judgment rule. The computer is a controller. And a memory, the controller sets a function for recognizing the form of the CAD model by executing the program stored in the memory, and a geometric recognition function definition unit that generates a judgment rule, and CAD. A parameter adjustment unit that adjusts parameters based on the model check results and sets them in the function, and a rule check that checks the CAD model based on the function and identifies design violations with the adjusted parameters set. A unit and an output unit for outputting the check result to the notification device are formed.
 本発明によれば、新規採用部品を含む等で従来とは異なる多様な形態のCADモデルにも適応できる新たな判定ルールを構築して進化させることにより、チェックを効率化させた設計支援システムを提供できる。 According to the present invention, a design support system that streamlines checks is provided by constructing and evolving new judgment rules that can be applied to various forms of CAD models that are different from the conventional ones, such as including newly adopted parts. Can be provided.
本発明の実施例1に係る設計支援システムのチェック機能を説明するための機能ブロック図である。It is a functional block diagram for demonstrating the check function of the design support system which concerns on Example 1 of this invention. 図1の設計支援システムにおけるチェック動作の手順を示すフローチャートである。It is a flowchart which shows the procedure of the check operation in the design support system of FIG. 図1の設計支援システムにおけるチェック機能とそれらを実現するハードウェアとの関係を示す機能ブロック図である。It is a functional block diagram which shows the relationship between the check function in the design support system of FIG. 1 and the hardware which realizes them. 図1の設計支援システムにおけるチェック対象のCADモデルを可視化して例示する図である。It is a figure which visualizes and exemplifies the CAD model to be checked in the design support system of FIG. 図1の設計支援システムにおけるパラメータ調整部及びルールチェック部の動作手順を表すフローチャートである。It is a flowchart which shows the operation procedure of the parameter adjustment part and the rule check part in the design support system of FIG. 図1の設計支援システムにおいて、チェック動作時に参照するパラメータ評価DBに格納された評価データの一例である。This is an example of evaluation data stored in the parameter evaluation DB referred to during the check operation in the design support system of FIG. 1. 本発明の実施例2に係る設計支援システムにおけるチェック対象のCADモデルを可視化して例示する図である。It is a figure which visualizes and exemplifies the CAD model to be checked in the design support system which concerns on Example 2 of this invention. 本発明の実施例2に係る設計支援システムのチェック機能を説明するための機能ブロック図である。It is a functional block diagram for demonstrating the check function of the design support system which concerns on Example 2 of this invention. 図8の設計支援システムにおけるパラメータ調整部及びルールチェック部の動作手順を示すフローチャートである。It is a flowchart which shows the operation procedure of the parameter adjustment part and the rule check part in the design support system of FIG. 図8の設計支援システムにおいて、図7のCADモデルに対するチェック結果の正解データを可視化して例示する図である。It is a figure which visualizes and exemplifies the correct answer data of the check result with respect to the CAD model of FIG. 7 in the design support system of FIG.
 以下、図面を用いて本発明の実施例に係る設計支援システムについて説明する。実施例1は、判定ルールが定量化されている場合について、図1~図7を用いて説明する。実施例2は、定量化されていない判定ルールを定量化させる場合について、図8~図10を用いて説明する。 Hereinafter, the design support system according to the embodiment of the present invention will be described with reference to the drawings. In the first embodiment, the case where the determination rule is quantified will be described with reference to FIGS. 1 to 7. In the second embodiment, the case where the unquantified determination rule is quantified will be described with reference to FIGS. 8 to 10.
 実施例1では、定量化された判定ルールに対して、各機能における入力パラメータを推定する方法について説明する。図1は、本発明の実施例1に係る設計支援システムのチェック機能を説明するための機能ブロック図である。なお、判定ルールとは、コンピュータ上でチェックできるルールであり、三次元CADシステムで処理中のCADモデルから設計ミスを発見することが可能なルールをいう。 In the first embodiment, a method of estimating the input parameters in each function for the quantified judgment rule will be described. FIG. 1 is a functional block diagram for explaining a check function of the design support system according to the first embodiment of the present invention. The judgment rule is a rule that can be checked on a computer, and is a rule that can detect a design error from a CAD model being processed by a three-dimensional CAD system.
 図1に示すように、設計支援システム10は、そのチェック機能として、設計ガイドライン1、判定ルール定義部2、CADモデル(CADデータ)3、幾何形状認識関数データベース(以下、「幾何認識関数DB」という)4、幾何認識関数モジュール定義部(以下、「幾何認識関数定義部」という)5、パラメータ評価DB6、パラメータ調整部7、ルールチェック部8、チェック結果表示部9、及び形状特徴量抽出部16を備えて構成される。 As shown in FIG. 1, the design support system 10 has a design guideline 1, a judgment rule definition unit 2, a CAD model (CAD data) 3, and a geometry recognition function database (hereinafter, "geometry recognition function DB") as its check functions. 4. Geometric recognition function module definition unit (hereinafter referred to as "geometric recognition function definition unit") 5, parameter evaluation DB 6, parameter adjustment unit 7, rule check unit 8, check result display unit 9, and shape feature quantity extraction unit. It is configured with 16.
 これらの機能は、設計支援システム10を構成するコンピュータがプログラムを実行することによって形成される機能と、そのコンピュータが備える記憶部(メモリ)に形成されたDBと、である。なお、設計支援システム10における基本的な作図機能については、図1に記載せず、その説明も省略する。 These functions are a function formed by the computer constituting the design support system 10 executing a program, and a DB formed in a storage unit (memory) included in the computer. The basic drawing function in the design support system 10 is not shown in FIG. 1, and the description thereof will be omitted.
 設計ガイドライン1には、製造装置や工具の仕様、組立容易性、加工限界、法令やJIS等の規格に代表されるような設計ルールが含まれる。例えば、機構部品の端部や曲げから穴までの位置規定のほか、製造工具のアクセス性等が設計ガイドライン1に含まれる。 Design guideline 1 includes design rules such as specifications of manufacturing equipment and tools, ease of assembly, processing limits, laws and regulations, and standards such as JIS. For example, in addition to defining the positions of the ends of mechanical parts and bending to holes, the design guideline 1 includes accessibility of manufacturing tools and the like.
 判定ルール定義部2には、CADモデル3上で検証する判定ルールを定義するためのインタフェースを提供する。このインタフェースには、ユーザが設計ガイドライン1内のルールを参照又は取り込む等して、設計要素を定義するためのユーザインタフェースと、過去に蓄積されたユーザ入力に基づいて設計ガイドライン1内のルールから判定ルールを定義するためのインタフェースが含まれる。なお、CADモデル3は、設計支援システム10により、判定ルールを適用してチェック対象とされる。 The judgment rule definition unit 2 is provided with an interface for defining a judgment rule to be verified on the CAD model 3. In this interface, the user refers to or incorporates the rules in the design guideline 1, and determines from the user interface for defining the design elements and the rules in the design guideline 1 based on the user input accumulated in the past. Contains an interface for defining rules. The CAD model 3 is checked by the design support system 10 by applying a determination rule.
 幾何認識関数DB4では、CADモデル3に含まれる幾何形状を認識するための手続き関数(以下、「共通関数」という)の群が収集されるほか、新たに生成された関数の群も記録されている。共通関数は、コンピュータ上で個別に呼び出し可能であり、距離を測定する機能をはじめとして、幾何形状を認識するために基本要素化されている。なお、共通関数の具体例については後述する。また、設計支援システム10を構成するコンピュータのハードウェアについては図3を用いて後述する。 In the geometric recognition function DB4, a group of procedural functions (hereinafter referred to as "common functions") for recognizing the geometric shape included in the CAD model 3 is collected, and a group of newly generated functions is also recorded. There is. Common functions can be called individually on a computer and are basic elements for recognizing geometric shapes, including the function of measuring distance. A specific example of the common function will be described later. Further, the hardware of the computer constituting the design support system 10 will be described later with reference to FIG.
 設計ガイドライン1は、チェックすべき多数のルールを備える。この設計ガイドライン1は、判定ルール定義部2において定義される。また、判定ルール定義部2において定義されたチェックすべき設計ガイドライン1に対し、幾何認識関数DB4の共通関数を抽出して組み合わせることで、幾何認識関数モジュール定義部(以下、「幾何認識関数定義部」という)5においてチェック可能な判定ルール生成される。幾何認識関数定義部5は、設計支援システム10を構成するコンピュータがプログラムを実行することによって、CADモデルの形態を認識するための関数を設定し、自動チェック用の判定ルールを構築する機能である。 Design guideline 1 has a large number of rules to check. This design guideline 1 is defined in the determination rule definition unit 2. Further, by extracting and combining the common function of the geometric recognition function DB4 with respect to the design guideline 1 to be checked defined in the judgment rule definition section 2, the geometric recognition function module definition section (hereinafter, "geometric recognition function definition section"). A judgment rule that can be checked in 5 is generated. The geometric recognition function definition unit 5 is a function of setting a function for recognizing the form of a CAD model by executing a program by a computer constituting the design support system 10 and constructing a judgment rule for automatic check. ..
 パラメータ評価DB6には、幾何認識関数定義部5に入力される共通関数及びそれに好適なパラメータと、チェックにより得られた評価結果と、の相関関係を示す情報が記憶されている。ここで、設定するパラメータとは、例えば、探索範囲や基準寸法に代表される定量的な値であるが、これに限ったものではない。 The parameter evaluation DB 6 stores information indicating the correlation between the common function input to the geometric recognition function definition unit 5 and the parameters suitable for the common function, and the evaluation result obtained by the check. Here, the parameter to be set is, for example, a quantitative value represented by a search range and a reference dimension, but is not limited to this.
 また、チェックの評価結果とは、例えば、前述した共通関数の中で特定される幾何形状を決定するためのパラメータの設定値と、図6を用いて後述するチェック時間Tや違反部位特定精度がある。さらに、ノイズNの多さやチェック時間T等に代表されるチェック評価結果と、パラメータの設定値と、の相関性を示す情報が、パラメータ評価DB6に格納される。 Further, the evaluation result of the check includes, for example, the set value of the parameter for determining the geometric shape specified in the above-mentioned common function, the check time T described later using FIG. 6, and the accuracy of specifying the violation site. be. Further, information showing the correlation between the check evaluation result represented by the large amount of noise N, the check time T, and the set value of the parameter is stored in the parameter evaluation DB 6.
 ルールチェック部8では、共通関数及びそれに好適なパラメータを入力し、チェック対象のCADモデル3をチェックする。ここで用いる共通関数は、幾何認識関数定義部5において定義された幾何認識関数の構成要素である。その共通関数に好適なパラメータは、チェック結果の評価を高めるように、パラメータ調整部7がパラメータ評価DB6を探索して取得した最適なパラメータが用いられる。また、ルールチェック部8のチェック結果から、正解率Rやチェック時間Tに代表される評価結果が得られる。 The rule check unit 8 inputs a common function and suitable parameters thereof, and checks the CAD model 3 to be checked. The common function used here is a component of the geometric recognition function defined in the geometric recognition function definition unit 5. As the parameters suitable for the common function, the optimum parameters acquired by the parameter adjustment unit 7 by searching the parameter evaluation DB 6 are used so as to enhance the evaluation of the check result. Further, from the check result of the rule check unit 8, evaluation results represented by the correct answer rate R and the check time T can be obtained.
 チェック結果表示部9では、特定した違反箇所をハイライトして設計者に知らせる。また、チェック結果表示部9は、得られた評価結果を幾何認識関数DB4及びパラメータ評価DB6に対して情報更新することによって、つぎのチェックにフィードバックされる。つまり、設計支援システム10は、チェック結果の評価に基づいて判定ルールが更新され、適用範囲を広げられるように適切に進化を継続する。 The check result display unit 9 highlights the identified violation location and informs the designer. Further, the check result display unit 9 feeds back the obtained evaluation result to the next check by updating the information with respect to the geometric recognition function DB4 and the parameter evaluation DB6. That is, the design support system 10 continues to evolve appropriately so that the determination rule is updated based on the evaluation of the check result and the scope of application can be expanded.
 入力したCADモデル3の寸法や形状に代表される形状特徴量がパラメータ設定値への相関が強い場合、CADモデル3から形状特徴量抽出部16で特徴量を抽出して、パラメータ調整部7の入力とすることもできる。ここでいう形状特徴量とは、例えばCADモデル3に含まれる最小(最大)板厚や、部品の寸法の分布、フィーチャー情報が挙げられるが、これに限ったものではない。 When the input shape feature amount represented by the dimension or shape of the CAD model 3 has a strong correlation with the parameter set value, the feature amount is extracted from the CAD model 3 by the shape feature amount extraction unit 16 and the parameter adjustment unit 7 is used. It can also be an input. The shape feature amount referred to here includes, for example, the minimum (maximum) plate thickness included in the CAD model 3, the distribution of the dimensions of parts, and feature information, but is not limited thereto.
 図2は、図1の設計支援システム10におけるチェック動作の手順を示すフローチャートである。図2に示すステップS1~ステップS8は、設計支援方法の一例であって、コントローラ22(図3)とメモリ(記憶部)を備えたコンピュータがCADモデル3,30に判定ルールを適用して設計上の違反箇所を抽出する動作手順である。これらステップS1~ステップS8は、設計支援システム10を構成するコンピュータのコントローラ22が主体となって実行するチェック動作の手順である。以降、主語の無い動作主体は、コンピュータのコントローラ22であり、より詳細には、そこに形成された各機能部である。 FIG. 2 is a flowchart showing the procedure of the check operation in the design support system 10 of FIG. Steps S1 to S8 shown in FIG. 2 are examples of design support methods, and are designed by a computer equipped with a controller 22 (FIG. 3) and a memory (storage unit) by applying determination rules to CAD models 3 and 30. It is an operation procedure to extract the above violation part. These steps S1 to S8 are procedures for a check operation mainly executed by the controller 22 of the computer constituting the design support system 10. Hereinafter, the main body of operation without a subject is the controller 22 of the computer, and more specifically, each functional unit formed therein.
 チェック開始に伴い、CADモデル(データ)読み込みステップS1では、コントローラ22がチェック対象のCADモデル3を記憶部に読み込む。判定ルール定義ステップS2では、設計ガイドライン1に基づきチェックすべき判定ルールを定義する。すなわち、設計要素毎に違反であるか否かを判定ルールとして定義する。共通関数記憶ステップS3では、定義された設計要素毎の検証に用いられる共通関数をコントローラ22が幾何認識関数DB(記憶部)4に記憶する。 With the start of the check, in the CAD model (data) reading step S1, the controller 22 reads the CAD model 3 to be checked into the storage unit. In the judgment rule definition step S2, the judgment rule to be checked is defined based on the design guideline 1. That is, it is defined as a judgment rule whether or not it is a violation for each design element. In the common function storage step S3, the controller 22 stores the common function used for verification for each defined design element in the geometric recognition function DB (storage unit) 4.
 関数定義ステップS4では、コントローラ22の判定ルール定義部2が幾何認識関数DB4に照会し、判定ルール定義ステップS2で定義された判定ルールの中から、CADモデル3の違反箇所を特定するために最適な共通関数を探索して定義する。このように、ステップS4では、ステップS2で定義され、ステップS3で記憶された最適な共通関数を幾何認識関数DB4から探索し、取得された最適な共通関数を組み合わせることで、判定ルールに基づいた自動チェック用の幾何認識関数を構築する。 In the function definition step S4, the judgment rule definition unit 2 of the controller 22 queries the geometric recognition function DB4, and is optimal for identifying the violation part of the CAD model 3 from the judgment rules defined in the judgment rule definition step S2. Search and define common functions. As described above, in step S4, the optimum common function defined in step S2 and stored in step S3 is searched from the geometric recognition function DB4, and the acquired optimum common function is combined, based on the determination rule. Build a geometric recognition function for automatic checking.
 ここで、共通関数の具体例として、穴や端部を探索する等の幾何特徴探索機能、面と面の距離を測定する等の形状特徴量演算機能、面作成や点作成等の形状生成機能、四則演算や最大値、最小値等を計算する数値演算機能、を備えるが、それに限ったものではない。 Here, as specific examples of the common function, a geometric feature search function such as searching for a hole or an end, a shape feature amount calculation function such as measuring the distance between faces, and a shape generation function such as face creation or point creation are performed. , It is equipped with a numerical calculation function that calculates four arithmetic operations and maximum and minimum values, but it is not limited to this.
 評価結果相関性記憶ステップS5では、共通関数に入力するパラメータと、少なくとも正解率R又は計算時間Tが含まれるチェック結果を評価した評価結果と、の相関性をコントローラ22がパラメータ評価DB6に記憶させる。ステップS5において、パラメータ評価DB6には、例えば関数で定義された共通関数の入力に該当するパラメータの数値と、チェック結果の正解率Rやチェック時間T等の評価結果との相関性が格納されている。 In the evaluation result correlation storage step S5, the controller 22 stores the correlation between the parameter input to the common function and the evaluation result of evaluating the check result including at least the correct answer rate R or the calculation time T in the parameter evaluation DB 6. .. In step S5, the parameter evaluation DB 6 stores, for example, the correlation between the numerical value of the parameter corresponding to the input of the common function defined by the function and the evaluation result such as the correct answer rate R and the check time T of the check result. There is.
 パラメータ調整ステップS6では、パラメータ調整部7が、パラメータ評価DB6に格納されているパラメータ評価DB6を照会し、評価結果に基づいて探索された共通関数及びそれに好適なパラメータを入力して調整する。すなわち、ステップS6では、パラメータ調整部7が、共通関数に入力するパラメータを適正値へと調整する。このステップS6で処理されるパラメータは、一種類の場合もあるが、通常は複数の種類が存在している。 In the parameter adjustment step S6, the parameter adjustment unit 7 inquires about the parameter evaluation DB 6 stored in the parameter evaluation DB 6, and inputs and adjusts the common function searched based on the evaluation result and suitable parameters thereof. That is, in step S6, the parameter adjusting unit 7 adjusts the parameters input to the common function to appropriate values. The parameter processed in step S6 may be of one type, but usually there are a plurality of types.
 チェック結果評価ステップS7では、ステップS6でパラメータ調整部7が調整したパラメータをステップS4で幾何関数定義部5が定義した共通関数に入力して生成された判定ルールをCADモデル3,30に適用し、そのチェック結果を評価する。このステップS7では、ステップS3で幾何認識関数DB4に記憶された関数、及びステップS5でパラメータ評価DB6に記憶されたパラメータの値をパラメータ調整部7に入力して構築された判定ルールに基づいてCADモデル3をチェックする。ステップS7では、チェックした結果の評価を行う。チェック評価の評価指標として前述した正解率Rや計算時間Tが挙げられるが、これに限ったものではない。 In the check result evaluation step S7, the determination rule generated by inputting the parameters adjusted by the parameter adjustment unit 7 in step S6 into the common function defined by the geometric function definition unit 5 in step S4 is applied to the CAD models 3 and 30. , Evaluate the check result. In this step S7, the CAD is based on the determination rule constructed by inputting the function stored in the geometric recognition function DB4 in step S3 and the parameter value stored in the parameter evaluation DB 6 in step S5 into the parameter adjustment unit 7. Check model 3. In step S7, the result of the check is evaluated. As the evaluation index of the check evaluation, the above-mentioned correct answer rate R and the calculation time T can be mentioned, but the present invention is not limited to these.
 ステップS7の評価結果が得たい正解率Rや計算時間Tを満たさない(No)場合、ステップS6において再度パラメータの値を調整する。それらを繰り返し、チェック結果の評価が正解率Rや計算時間Tを満たした(Yes)場合、チェック結果表示ステップS8へ進み、チェック結果を表示してチェック終了となる。以上のフローを通して、チェック結果から漏れFやノイズNが低減し、計算時間Tも短くなるチェック方法が確立する。 If the evaluation result in step S7 does not satisfy the desired correct answer rate R or calculation time T (No), the parameter values are adjusted again in step S6. When the evaluation of the check result satisfies the correct answer rate R and the calculation time T (Yes), the process proceeds to the check result display step S8, the check result is displayed, and the check ends. Through the above flow, a check method is established in which leakage F and noise N are reduced from the check result and the calculation time T is also shortened.
 図3は、図1の設計支援システム10におけるチェック機能とそれらを実現するハードウェアとの関係を示す機能ブロック図である。図3において、設計支援システム10は、入力部20、表示部21を備えたコンピュータであるコントローラ22により構成される。入力部20及び表示部21は、ユーザに対してGUI(グラフィカルユーザインタフェース)による操作環境を提供する。 FIG. 3 is a functional block diagram showing the relationship between the check functions in the design support system 10 of FIG. 1 and the hardware that realizes them. In FIG. 3, the design support system 10 is composed of a controller 22 which is a computer including an input unit 20 and a display unit 21. The input unit 20 and the display unit 21 provide the user with an operation environment using a GUI (graphical user interface).
 コントローラ22には、制御部23、入力インタフェース(以下、入力I/F)24、表示制御部25、主記憶装置26、及び補助記憶装置27が、データバス28を介して相互に接続される。制御部23は、設計支援システム10におけるコントローラ22の中枢であり、不図示の作図機能と、チェック機能と、の全てを制御する。特にチェック機能としての制御部23は、あたかも幾何認識関数定義部5がパラメータ調整部7にチェック可能なルールを生成させ、そのルールをルールチェック部8に自動的にチェックさせるように動作する。ただし、制御部23や幾何認識関数定義部5の機能分担については、説明の便宜上のことであり、これに限ったものではない。入力I/F24は、入力部20より入力されるCADモデルや判定ルールを取り込む。表示制御部25は、表示部21を制御する。 A control unit 23, an input interface (hereinafter, input I / F) 24, a display control unit 25, a main storage device 26, and an auxiliary storage device 27 are connected to the controller 22 via a data bus 28. The control unit 23 is the center of the controller 22 in the design support system 10, and controls all of the drawing function (not shown) and the check function. In particular, the control unit 23 as a check function operates as if the geometric recognition function definition unit 5 causes the parameter adjustment unit 7 to generate a checkable rule, and the rule check unit 8 automatically checks the rule. However, the division of functions between the control unit 23 and the geometric recognition function definition unit 5 is for convenience of explanation, and is not limited thereto. The input I / F 24 takes in the CAD model and the determination rule input from the input unit 20. The display control unit 25 controls the display unit 21.
 主記憶装置26には、CADモデル3、設計ガイドライン1、判定ルール定義部2、パラメータ調整部7、ルールチェック部8、及びこれらを機能させるための情報やプログラムが記憶されている。補助記憶装置27には、幾何認識関数DB4、パラメータ評価DB6の情報やプログラムが記憶されている。 The main storage device 26 stores a CAD model 3, a design guideline 1, a determination rule definition unit 2, a parameter adjustment unit 7, a rule check unit 8, and information and programs for functioning these. The auxiliary storage device 27 stores information and programs of the geometric recognition function DB4 and the parameter evaluation DB6.
 なお、コントローラ22のコンピュータとしてのハードウェアの一部又は全部については、DSP(Digital Signal Processor)、FPGA(Field-Programmable Gate Array)、GPU(Graphics Processing Unit)等で代替してもよい。又ハードウェアの一部又は全部をネットワーク上のサーバに集中又は分散してクラウド配置し、複数のユーザがネットワークを介して共有してもよい。 Note that a part or all of the hardware of the controller 22 as a computer may be replaced with a DSP (Digital Signal Processor), FPGA (Field-Programmable Gate Array), GPU (Graphics Processing Unit), or the like. Further, a part or all of the hardware may be centrally or distributed in the cloud on the servers on the network, and may be shared by a plurality of users via the network.
 図4は、図1の設計支援システム10におけるチェック対象のCADモデル3を可視化して例示する図である。図4に示すCADモデル3は、配管31を固定するための固定治具32を介してボルト33で別部品に固定されている製品の一部を抜き出したものである。この中のボルト33に対し、ボルト挿入穴が適切な寸法かを設計支援システム10が自動チェックする。 FIG. 4 is a diagram that visualizes and exemplifies the CAD model 3 to be checked in the design support system 10 of FIG. The CAD model 3 shown in FIG. 4 is obtained by extracting a part of a product fixed to another part by a bolt 33 via a fixing jig 32 for fixing the pipe 31. The design support system 10 automatically checks whether the bolt insertion holes have appropriate dimensions for the bolts 33.
 図5は、図1の設計支援システム10におけるパラメータ調整部7及びルールチェック部8の動作手順を表すフローチャートである。図5について、より具体的には、図4に示すCADモデル3におけるボルト穴に対し、設計支援システム10が自動チェックする動作手順を示している。本実施形態では、幾何認識関数定義部5を一意に決め、パラメータ調整部7、ルールチェック部8の動作フローをまとめて示しているが、幾何認識関数定義部5を構成するモジュールは適宜変更可能であり、これに限ったものではない。 FIG. 5 is a flowchart showing the operation procedure of the parameter adjusting unit 7 and the rule checking unit 8 in the design support system 10 of FIG. More specifically, FIG. 5 shows an operation procedure in which the design support system 10 automatically checks the bolt holes in the CAD model 3 shown in FIG. In the present embodiment, the geometric recognition function definition unit 5 is uniquely determined, and the operation flow of the parameter adjustment unit 7 and the rule check unit 8 is shown together. However, the modules constituting the geometric recognition function definition unit 5 can be changed as appropriate. However, it is not limited to this.
 まず、チェックを開始すると、ステップS11でパラメータの初期値を設定する。その後、ステップS12でCADモデル3上にボルトを認識する。ステップS12のボルト認識方法として、形状からボルトを特定してもよいが、形状特徴量抽出部16において部品名や属性情報を活用して認識することが好ましい。 First, when the check is started, the initial values of the parameters are set in step S11. Then, in step S12, the bolt is recognized on the CAD model 3. As the bolt recognition method in step S12, the bolt may be specified from the shape, but it is preferable that the shape feature amount extraction unit 16 recognizes the bolt by utilizing the part name and the attribute information.
 すなわち、CADモデル3上にどのサイズのボルトがいくつ含まれるか自動で抽出可能となるため、それらの情報を活用することが望ましい。ステップS13ではそのボルトの中心軸を生成する。ステップS14では、CADモデル3上に含まれる穴を探索し、ステップS15ではボルトの近傍の穴を特定する。 That is, since it is possible to automatically extract how many bolts of which size are included in the CAD model 3, it is desirable to utilize such information. In step S13, the central axis of the bolt is generated. In step S14, the hole included in the CAD model 3 is searched, and in step S15, the hole in the vicinity of the bolt is specified.
 ステップS16ではステップS15で得られた穴の穴径を測定し、ステップS17で穴径判定を行う。ここで、違反がない場合(No)、チェック終了となる。違反がある場合(Yes)、ステップS18で違反として検出した結果が正解かどうかを評価し、正解率評価ステップS19へ進む。ステップS19では、検出結果の正解率Rやチェック時間Tに代表される評価結果が所定の性能を満たしていた場合(Yes)、チェック終了となる。 In step S16, the hole diameter of the hole obtained in step S15 is measured, and the hole diameter is determined in step S17. Here, if there is no violation (No), the check ends. If there is a violation (Yes), it is evaluated whether or not the result detected as a violation in step S18 is a correct answer, and the process proceeds to the correct answer rate evaluation step S19. In step S19, when the evaluation result represented by the correct answer rate R or the check time T of the detection result satisfies the predetermined performance (Yes), the check ends.
 一方、ステップS19における評価結果が所定の性能を満たしていない場合(No)、パラメータ設定ステップS11へ戻る。ステップS11では、パラメータ評価DB6(図1、図3)を照会し、パラメータの再設定を行う。これを繰り返し、チェックに対し正解率Rやチェック時間Tが目標とする性能を満たした場合(Yes)、チェック終了となり、違反箇所をハイライトする(不図示)。 On the other hand, if the evaluation result in step S19 does not satisfy the predetermined performance (No), the process returns to the parameter setting step S11. In step S11, the parameter evaluation DB 6 (FIGS. 1 and 3) is queried and the parameters are reset. This is repeated, and when the correct answer rate R and the check time T satisfy the target performance for the check (Yes), the check is completed and the violation portion is highlighted (not shown).
 図6は、図1の設計支援システム10において、チェック動作時に参照するパラメータ評価DB6に格納された評価データの一例である。図6は、図4のCADモデル3を対象に、穴探索機能、すなわち、図5の穴認識ステップS14を実行したことによる評価結果を示したグラフである。また、図6には、穴検出結果43を併せて示す。図6の横軸は、穴探索基準穴径/最大ボルト径の比率を0~10まで示す。図6の左縦軸は、ボルト穴正解率R(%)であり、チェック結果からボルト挿入穴がどの程度の正解率R(%)で検出されたかを示す。図6の右縦軸は、無次元計算時間Tであり、チェックに要した時間を示す。図6の特性41は、穴探索機能における基準穴径とボルト穴正解率Rの関係を表す。図6の特性42は、穴探索機能における基準穴径とボルト穴正解率R時間Tとの関係を表す。 FIG. 6 is an example of evaluation data stored in the parameter evaluation DB 6 referred to during the check operation in the design support system 10 of FIG. FIG. 6 is a graph showing the evaluation results obtained by executing the hole search function, that is, the hole recognition step S14 of FIG. 5 for the CAD model 3 of FIG. Further, FIG. 6 also shows the hole detection result 43. The horizontal axis of FIG. 6 indicates the ratio of the hole search reference hole diameter / maximum bolt diameter from 0 to 10. The left vertical axis of FIG. 6 is the bolt hole correct answer rate R (%), and indicates how much the correct answer rate R (%) was detected for the bolt insertion hole from the check result. The right vertical axis of FIG. 6 is the dimensionless calculation time T, which indicates the time required for the check. The characteristic 41 in FIG. 6 represents the relationship between the reference hole diameter and the bolt hole accuracy rate R in the hole search function. The characteristic 42 of FIG. 6 represents the relationship between the reference hole diameter and the bolt hole correct answer rate R time T in the hole search function.
 図6について、より詳しく説明する。図6の横軸に示す比率は、穴認識ステップS14において設定する入力パラメータである穴探索基準穴径と最大ボルト径の比率であり、最大ボルト径M10に対して、比率2倍ならば穴探索基準穴20mmであり、比率10倍ならば穴探索基準穴100mmである。図6の横軸に示す「穴探索基準穴径/最大ボルト径」の技術的意義は、[補足]の欄に後述する「ボルトを貫通させる穴は、ボルト径より〇mmから△mm大きい範囲とする」ような設計ガイドラインに基づく。そのチェックすべき設計ガイドラインに基づく判定ル―ルとして、設計要素毎に違反であるか否かを定義されている。この判定ル―ルを構成する共通関数に入力するパラメータの一つが図6の横軸に示されている。 FIG. 6 will be described in more detail. The ratio shown on the horizontal axis of FIG. 6 is the ratio of the hole search reference hole diameter and the maximum bolt diameter, which are input parameters set in the hole recognition step S14, and if the ratio is double the maximum bolt diameter M10, the hole search is performed. The reference hole is 20 mm, and if the ratio is 10 times, the hole search reference hole is 100 mm. The technical significance of the "hole search reference hole diameter / maximum bolt diameter" shown on the horizontal axis of FIG. 6 is that the "hole through which the bolt penetrates is in the range of 〇 mm to Δ mm larger than the bolt diameter" described later in the [Supplement] column. Based on design guidelines such as ". As a judgment rule based on the design guideline to be checked, whether or not it is a violation is defined for each design element. One of the parameters to be input to the common function constituting this determination rule is shown on the horizontal axis of FIG.
 図6は、共通関数に入力するパラメータを任意に変えることに応じて、共通関数で生成された判定ルールによるチェック結果の評価が変動することを示している。すなわち、図6は、任意に入力したパラメータと、チェック結果の評価と、の相関性を示している。この評価結果の相関性は、パラメータ評価としてパラメータ評価DB6に記憶され、パラメータ調整部7からの参照に供される。パラメータ調整部7は、参照したチェック結果の評価に基づいて、高い評価が得られるパラメータに調整する。図6において、ボルト穴正解率Rが高く、無次元計算時間T、チェック漏れF、及びノイズNが少ないほど高い評価を得る。 FIG. 6 shows that the evaluation of the check result by the judgment rule generated by the common function changes depending on the parameter input to the common function. That is, FIG. 6 shows the correlation between the arbitrarily input parameters and the evaluation of the check results. The correlation of the evaluation results is stored in the parameter evaluation DB 6 as a parameter evaluation and is used as a reference from the parameter adjustment unit 7. The parameter adjustment unit 7 adjusts the parameters so that a high evaluation can be obtained based on the evaluation of the referenced check result. In FIG. 6, the higher the bolt hole accuracy rate R, the smaller the dimensionless calculation time T, the check omission F, and the noise N, the higher the evaluation.
 図6の左縦軸に示すボルト穴正解率Rとは、穴の検出数が正解数に対して大きい場合はノイズNが多いことを意味し、正解数を穴検出数で除した値(適合率)が正解率Rとなる。一方、穴検出数が正解数より少ない場合は、漏れFが生じていることを意味し、穴検出数を正解数で除した値(再現率)が正解率Rとなる。ここでは、漏れFを表す再現率、ノイズNの多さを表す適合率等の評価指標を分けて適用しても良く、チェック結果の評価指標はこれに限ったものではない。 The bolt hole correct answer rate R shown on the left vertical axis of FIG. 6 means that there is a lot of noise N when the number of detected holes is larger than the number of correct answers, and the value obtained by dividing the number of correct answers by the number of detected holes (matching). Rate) is the correct answer rate R. On the other hand, when the number of detected holes is less than the number of correct answers, it means that leakage F has occurred, and the value (reproducibility) obtained by dividing the number of detected holes by the number of correct answers is the correct answer rate R. Here, evaluation indexes such as a recall rate representing leakage F and a matching rate representing a large amount of noise N may be applied separately, and the evaluation index of the check result is not limited to this.
 穴認識ステップS14、及びボルト近傍穴探索ステップS15で示した穴探索機能において、基準穴径を大きくすると、取得する穴の範囲も増大し、計算時間Tが長くなる。また、穴径の大きな配管等も取得し、ボルト穴ではないノイズNが増大する。一方、基準穴径を小さくすると、計算時間Tは短くなるものの、ボルト穴の漏れFが生じ、チェック漏れFの原因となる。 In the hole search function shown in the hole recognition step S14 and the bolt neighborhood hole search step S15, if the reference hole diameter is increased, the range of holes to be acquired also increases and the calculation time T becomes longer. In addition, pipes with a large hole diameter and the like are also acquired, and noise N, which is not a bolt hole, increases. On the other hand, if the reference hole diameter is reduced, the calculation time T is shortened, but a leakage F of the bolt hole occurs, which causes a check omission F.
 上述の穴探索機能(S14,S15)において、チェック対象のCADモデル3に含まれる最大ボルト径Dmaxの2倍程度が今回の最適値となることが分かる。図6の例では、1つのパラメータに対する最適値の探索方法について示したが、パラメータは複数種あっても、また複数の共通関数に共通して入力される入力パラメータであってもよい。 In the above-mentioned hole search function (S14, S15), it can be seen that about twice the maximum bolt diameter Dmax included in the CAD model 3 to be checked is the optimum value this time. In the example of FIG. 6, the method of searching for the optimum value for one parameter is shown, but the parameter may be a plurality of types or an input parameter commonly input to a plurality of common functions.
 実施例2では、判定ルールが定量化されていない設計ルールに関して、過去の設計データより違反箇所が既知のデータを用いて、共通関数の入力パラメータや閾値を決定し判定ルールを構築する方法について説明する。 In the second embodiment, with respect to the design rule for which the judgment rule is not quantified, a method of determining the input parameter and the threshold value of the common function and constructing the judgment rule will be described using the data whose violation points are known from the past design data. do.
 図7は、本発明の実施例2に係る設計支援システム20におけるチェック対象のCADモデル(CADデータ)30を可視化して例示する図である。すなわち、図7は実施例2で対象とするCADモデル30の一部を示す。ここでは、曲げを有するボルト貫通部品14にボルト33が貫通しており、「ボルトを締結する工具が挿入するスペースが確保されているか否かについてチェックする」設計ガイドライン1が存在する。 FIG. 7 is a diagram illustrating and exemplifying the CAD model (CAD data) 30 to be checked in the design support system 20 according to the second embodiment of the present invention. That is, FIG. 7 shows a part of the CAD model 30 targeted in Example 2. Here, the bolt 33 penetrates the bolt-penetrating part 14 having a bend, and there is a design guideline 1 that "checks whether or not a space for inserting a tool for fastening the bolt is secured".
 この設計ガイドライン1の中からCADモデル30上でチェックできる判定ルールを構築する際、工具の形状及び動作範囲について、コンピュータが自動的かつ正確に再現して評価するのは困難である。そのため、設計支援システム20では、ボルト33の六角部分の上部に、締結工具の挿入スペースを模擬した形状を作成し、このスペースに他部品が干渉しないならば合格と評価する方法が採用され、一例として、その形状を円筒で模擬する。 When constructing a judgment rule that can be checked on the CAD model 30 from this design guideline 1, it is difficult for a computer to automatically and accurately reproduce and evaluate the shape and operating range of the tool. Therefore, in the design support system 20, a method is adopted in which a shape simulating the insertion space of the fastening tool is created on the upper part of the hexagonal portion of the bolt 33, and if other parts do not interfere with this space, it is evaluated as acceptable. As a result, the shape is simulated with a cylinder.
 ここで、評価用円筒の寸法を大きく設定すると、その評価用円筒に対して多数の干渉部品が検出されてしまい、ノイズNが増大する。一方、評価用円筒の寸法を小さく設定すると、その評価用円筒に対する他部品との干渉が特定できず、チェック漏れFが生じてしまう。そこで、設計支援システム20では、過去の製造データのボルトが締結できた位置、及び締結不可能であった位置を基に正解データを作成し、チェック結果とその正解データとを照合し、締結工具挿入スペース、すなわち、評価用円筒の寸法を調整する。 Here, if the size of the evaluation cylinder is set large, a large number of interference parts will be detected with respect to the evaluation cylinder, and the noise N will increase. On the other hand, if the size of the evaluation cylinder is set small, interference with other parts with respect to the evaluation cylinder cannot be specified, and a check omission F occurs. Therefore, in the design support system 20, correct answer data is created based on the positions where the bolts could be fastened and the positions where the bolts could not be fastened in the past manufacturing data, and the check result is collated with the correct answer data, and the fastening tool is used. Adjust the dimensions of the insertion space, ie the evaluation cylinder.
 図8は、本発明の実施例2に係る設計支援システム20のチェック機能を説明するための機能ブロック図である。図8に示すように、設計支援システム20のチェック機能のうち、設計ガイドライン1、判定ルール定義部2、幾何認識関数DB4、幾何認識関数定義部5、パラメータ評価DB6、パラメータ調整部7、ルールチェック部8、及びチェック結果表示部9は、図1に示した実施例1に係る設計支援システム10と共通である。 FIG. 8 is a functional block diagram for explaining the check function of the design support system 20 according to the second embodiment of the present invention. As shown in FIG. 8, among the check functions of the design support system 20, the design guideline 1, the judgment rule definition unit 2, the geometric recognition function DB 4, the geometric recognition function definition unit 5, the parameter evaluation DB 6, the parameter adjustment unit 7, and the rule check. The unit 8 and the check result display unit 9 are common to the design support system 10 according to the first embodiment shown in FIG.
 ここで、チェック対象となるCADモデル(CADデータ)30は、図7を用いて上述したものである。設計支援システム20では、CADモデル30から前述した過去の製造データを基に作成された違反の有無の正解データ、すなわちチェック対象正解データ17をパラメータ調整部7に入力する。ここで、パラメータ調整部7は、チェック対象正解データ17を用いてパラメータの調整を高速かつ正確に行う。 Here, the CAD model (CAD data) 30 to be checked is the one described above using FIG. 7. In the design support system 20, the correct answer data for the presence or absence of violation created from the CAD model 30 based on the past manufacturing data described above, that is, the correct answer data 17 to be checked is input to the parameter adjustment unit 7. Here, the parameter adjustment unit 7 adjusts the parameters quickly and accurately using the correct answer data 17 to be checked.
 図9は、図8の設計支援システム20におけるパラメータ調整部7及びルールチェック部8の動作手順を示すフローチャートである。図9は、ボルト締結工具挿入スペースに対する有害な干渉の有無についてチェックする動作手順を示している。すなわち、図9に示す実施例2におけるステップS11のパラメータ設定及びステップS12のボルト認識は、図5に示す実施例1と共通である。つぎに、図9のステップS21では、ボルトで六角形の頭部よりも上方に評価用円筒を作成する。ここで、工具の形状を円筒で模擬しているが、この形状に限ったものではなく、直方体や円錐や半円でも良い。 FIG. 9 is a flowchart showing the operation procedure of the parameter adjusting unit 7 and the rule checking unit 8 in the design support system 20 of FIG. FIG. 9 shows an operation procedure for checking for harmful interference with the bolt fastening tool insertion space. That is, the parameter setting in step S11 and the bolt recognition in step S12 in the second embodiment shown in FIG. 9 are the same as those in the first embodiment shown in FIG. Next, in step S21 of FIG. 9, a cylinder for evaluation is created above the hexagonal head with a bolt. Here, the shape of the tool is simulated by a cylinder, but the shape is not limited to this shape, and a rectangular parallelepiped, a cone, or a semicircle may be used.
 つぎに、ステップS22において、ボルト近傍の部品を探索する。つぎに、ステップS23では、ボルト近傍部品と評価用円筒面との干渉の有無をチェックする。つぎに、ステップS24で干渉があると判定された場合(Yes)はステップS25へ進み、干渉がないと判定された場合(No)は、チェックが終了する。ステップS25ではそのチェック結果が違反箇所として正しいか正解データを照合して評価を行う。 Next, in step S22, a part near the bolt is searched. Next, in step S23, it is checked whether or not there is interference between the parts near the bolt and the evaluation cylindrical surface. Next, if it is determined in step S24 that there is interference (Yes), the process proceeds to step S25, and if it is determined that there is no interference (No), the check ends. In step S25, whether the check result is correct as a violation point or not is evaluated by collating the correct answer data.
 つぎに、ステップS26では、チェック結果と正解データの乖離が生じている場合(No)、ステップS27へ進む。ステップS27では、パラメータ調整部7がパラメータ評価DB6を照会してパラメータの調整を行った後に、再びステップS11へ戻ってパラメータの再設定を行う。この一連の流れを繰り返し、チェック結果と正解データとの乖離が最小となった場合、ステップS26でOKとみなされて(Yes)、パラメータの値が決定する。その結果、決定されたパラメータの値を共通関数に入力し、その共通関数により構成される判定ルールを適用してCADモデル30に対するチェックが終了する。 Next, in step S26, if there is a discrepancy between the check result and the correct answer data (No), the process proceeds to step S27. In step S27, the parameter adjusting unit 7 inquires about the parameter evaluation DB 6 and adjusts the parameters, and then returns to step S11 to reset the parameters. When this series of flow is repeated and the discrepancy between the check result and the correct answer data becomes the minimum, it is regarded as OK in step S26 (Yes), and the value of the parameter is determined. As a result, the value of the determined parameter is input to the common function, the determination rule composed of the common function is applied, and the check for the CAD model 30 is completed.
 図10は、図8の設計支援システム20において、図7のCADモデル30に対するチェック結果の正解データを可視化して例示する図である。図10において、工具が挿入不可能な制約条件(悪い見本)12と、良好な判定を得る条件を表示した(良い見本)評価用円筒13と、を示す。ここでは、予めボルトの工具が入らなかったボルトに係る設計状態をチェック対象正解データ17(図8)の中で制約条件12として設定する。 FIG. 10 is a diagram illustrating and exemplifying the correct answer data of the check result for the CAD model 30 of FIG. 7 in the design support system 20 of FIG. FIG. 10 shows a constraint condition (bad sample) 12 in which a tool cannot be inserted, and an evaluation cylinder 13 displaying a condition for obtaining a good judgment (good sample). Here, the design state related to the bolt to which the bolt tool has not been inserted is set as the constraint condition 12 in the check target correct answer data 17 (FIG. 8).
 工具が挿入不可能な制約条件12及び評価用円筒13が検出できるように、評価用円筒面11の寸法をパラメータ調整部7において決定できるものとする。ここで、正解データの数は多ければ多いほどパラメータの推定精度は高くなり、通常では数百程度必要となるが、それに限ったものではない。以上より、設計支援システム20は、パラメータ調整部7において、定量化されていない設計ガイドライン1に関しても、過去の実績データを活用することによって、自動的にルールチェックすることが可能となる。 The dimensions of the evaluation cylinder surface 11 can be determined by the parameter adjustment unit 7 so that the constraint condition 12 and the evaluation cylinder 13 that cannot be inserted by the tool can be detected. Here, the larger the number of correct answer data, the higher the accuracy of parameter estimation, and usually several hundreds are required, but the present invention is not limited to this. From the above, the design support system 20 can automatically check the rules of the unquantified design guideline 1 in the parameter adjustment unit 7 by utilizing the past actual data.
[補足]
 CAD設計では、設計ガイドラインを遵守することが望まれる。例えば、組立容易性に係る設計ガイドラインとして、製品製造時に問題となる、穴あけや曲げ等の加工の容易さ、溶接やネジ締結等の組立の容易さがある。また、製品の保守時に問題となる、点検の容易さに加えて、それに用いる治具の調達容易性、及び治具との適合容易性、といった点について規定される設計ガイドラインも例示される。
[supplement]
In CAD design, it is desirable to comply with the design guidelines. For example, as design guidelines related to ease of assembly, there are ease of processing such as drilling and bending, and ease of assembly such as welding and screw fastening, which are problems in product manufacturing. In addition to the ease of inspection, which is a problem during product maintenance, design guidelines that specify the ease of procurement of jigs used for them and the ease of compatibility with jigs are also exemplified.
 例えば、図6の横軸に示した「穴探索基準穴径/最大ボルト径の比率」に関連し、「ボルトを貫通させる穴は、ボルト径より〇mmから△mm大きい範囲とする」ような設計ガイドラインが存在する。ここで、前述した「ボルトを貫通させる穴は、ボルト径より〇mmから△mm大きい範囲にする」ような設計ガイドラインを適用すれば、ボルトや穴の探索、穴径の計測等の機能を組み合わせてルールを構築する事で、自動チェックが可能となる。 For example, in relation to the "hole search reference hole diameter / maximum bolt diameter ratio" shown on the horizontal axis of FIG. 6, "the hole through which the bolt penetrates shall be in the range of 〇 mm to Δ mm larger than the bolt diameter". There are design guidelines. Here, if the design guideline such as "the hole through which the bolt is penetrated should be in the range of 〇 mm to △ mm larger than the bolt diameter" is applied, functions such as bolt and hole search and hole diameter measurement can be combined. By constructing a rule, automatic check becomes possible.
 しかし、同一のガイドラインでも製品種によって大きさや構造が異なるため、製品種に応じて探索する範囲や形状の寸法を変更する必要がある。例えば、穴を探索する機能の場合、基準穴径の寸法を設定すると、その基準穴径より小さい穴を探索する。ここで、基準穴径をCADモデルに含まれるボルト径より小さく設定すると、ボルト挿入穴がチェック対象から漏れが生じ、CADモデルから設計ミスを発見する役割を果たさない。 However, even with the same guideline, the size and structure differ depending on the product type, so it is necessary to change the search range and shape dimensions according to the product type. For example, in the case of the function of searching for a hole, if the dimension of the reference hole diameter is set, a hole smaller than the reference hole diameter is searched. Here, if the reference hole diameter is set smaller than the bolt diameter included in the CAD model, the bolt insertion hole leaks from the check target and does not play a role of finding a design error from the CAD model.
 一方、ボルト周りを探索する穴径の基準値を大きく設定すると、探索に要する計算時間が増加する上に、ボルト挿入穴以外の大きな穴を検出しノイズが発生する。ノイズとは、求める答えに該当しない出力をいう。このように、判定ルールを作成するための各機能において、範囲や寸法に代表される入力パラメータ値(単に「パラメータ」ともいう)を設定するまで頻回に及ぶ試行錯誤を余儀無くされるために時間を要していた。 On the other hand, if the reference value of the hole diameter to be searched around the bolt is set large, the calculation time required for the search will increase, and a large hole other than the bolt insertion hole will be detected and noise will be generated. Noise is an output that does not meet the desired answer. In this way, in each function for creating judgment rules, it takes time to set frequent trial and error until input parameter values (also simply referred to as "parameters") represented by ranges and dimensions are set. Was required.
 一方、設計ガイドラインの中には、「ボルトを締結する工具が挿入するスペースを確保すること」のように、定量化されていないルールも存在する。その場合、チェック処理の各機能における入力パラメータのみならず、判定に用いる閾値も併せて推定する必要がある。 On the other hand, there are some unquantified rules in the design guidelines, such as "securing a space for the tool to fasten the bolts". In that case, it is necessary to estimate not only the input parameters in each function of the check process but also the threshold value used for the determination.
 本発明の実施形態に係る設計支援システム(本システム)10,20は、つぎのように総括できる。
[1]本システム10,20は、コントローラ22とメネリを備えたコンピュータがメモリ(記憶部)に記憶されたプログラムを実行することにより、製品のCADモデル3,30がガイドラインに適合することを、判定ルールに基づいて、コンピュータにチェックさせる、製品の設計支援システムである。コントローラ22は、幾何認識関数定義部5と、パラメータ調整部7と、ルールチェック部8と、出力部と、を形成する。
The design support systems (this system) 10 and 20 according to the embodiment of the present invention can be summarized as follows.
[1] In the systems 10 and 20, the computer equipped with the controller 22 and the menu executes the program stored in the memory (storage unit), so that the CAD models 3 and 30 of the product conform to the guideline. It is a product design support system that lets a computer check based on the judgment rule. The controller 22 forms a geometric recognition function definition unit 5, a parameter adjustment unit 7, a rule check unit 8, and an output unit.
 幾何認識関数定義部5は、CADモデルの形態を認識するための関数を設定するとともに判定ルールを生成する。パラメータ調整部7は、CADモデルのチェック結果に基づいてパラメータを調整して関数に設定する。すなわち、パラメータ調整部7は、新規採用部品を含む等で従来とは異なる多様な形態のCADモデルによる新たな設計上の違反箇所を抽出できるような任意のパラメータを共通関数に入力して生成された前記判定ルールを前記CADモデル3,30に適用してルールチェックしたチェック結果の評価に基づいてチェック結果の精度を高めるように調整する。 The geometric recognition function definition unit 5 sets a function for recognizing the form of the CAD model and generates a judgment rule. The parameter adjustment unit 7 adjusts the parameters based on the check result of the CAD model and sets them in the function. That is, the parameter adjustment unit 7 is generated by inputting an arbitrary parameter into the common function so that a new design violation part can be extracted by a CAD model having various forms different from the conventional one, including newly adopted parts. The determination rule is applied to the CAD models 3 and 30, and adjustments are made so as to improve the accuracy of the check result based on the evaluation of the check result of the rule check.
 調整後のパラメータが設定された、関数に基づいてCADモデルをチェックして設計上の違反箇所を特定する。すなわち、ルールチェック部8は、新規採用部品を含む等で従来とは異なる多様な形態のCADモデルに対応できるようにパラメータ調整部7で調整されたパラメータを共通関数に入力して確定した判定ルールによって、ルールチェックを行う。出力部は、ルールチェック部8でルールチェックされたチェック結果をチェック結果表示部9に表示させる。このように構成された本システム10,20は、新規採用部品を含む等で従来とは異なる多様な形態のCADモデルにも適応できる新たな判定ルールを構築して進化させることができる。 Check the CAD model based on the function with the adjusted parameters set to identify the design violation. That is, the rule check unit 8 inputs the parameters adjusted by the parameter adjustment unit 7 into the common function so as to correspond to various forms of CAD models different from the conventional ones including newly adopted parts, and the determination rule is determined. Check the rules. The output unit causes the check result display unit 9 to display the check result checked by the rule check unit 8. The systems 10 and 20 configured in this way can be evolved by constructing new judgment rules that can be applied to various forms of CAD models different from the conventional ones, such as including newly adopted parts.
[2]本システム10,20において、コントローラ22は、さらに、判定ルール定義部2と、幾何認識関数DB4と、パラメータ評価DB6と、を備えることが好ましい。判定ルール定義部2は、チェックすべき設計ガイドライン1に基づいて設計要素毎に違反であるか否かを判定ルールとして定義する。幾何認識関数DB4は、設計ガイドライン1に基づいて設計要素毎に判定ルールを構成する共通関数が記憶される。 [2] In the systems 10 and 20, it is preferable that the controller 22 further includes a determination rule definition unit 2, a geometric recognition function DB 4, and a parameter evaluation DB 6. The determination rule definition unit 2 defines as a determination rule whether or not it is a violation for each design element based on the design guideline 1 to be checked. The geometric recognition function DB4 stores a common function that constitutes a determination rule for each design element based on the design guideline 1.
 また、幾何認識関数定義部5は、幾何認識関数定義部5は、幾何認識関数DB4に判定ルールを照会して取得された共通関数の組み合わせにより、CADモデル3,30の違反箇所を特定できるように判定ルールを構成する共通関数を定義する。 Further, the geometric recognition function definition unit 5 can identify the violation points of the CAD models 3 and 30 by the combination of the common functions obtained by querying the geometric recognition function DB 4 for the determination rule. Define a common function that composes the judgment rule in.
 また、パラメータ評価DB6は、任意のパラメータを入力した共通関数で生成された判定ルールによるチェック結果の評価に対する、パラメータの相関性を記憶する。すなわち、パラメータ評価DB6は、新規採用部品を含む等で従来とは異なる多様な形態のCADモデルに任意のパラメータを共通関数に入力して生成された判定ルールによるチェック結果に対するパラメータの相関性を記憶する。つまり、パラメータ評価DB6は、共通関数に入力したパラメータと、そのパラメータに応じて少なくとも正解率R又は計算時間Tが含まれるチェック結果を評価した評価結果と、の相関性を記憶する。 Further, the parameter evaluation DB 6 stores the correlation of the parameters with respect to the evaluation of the check result by the judgment rule generated by the common function in which an arbitrary parameter is input. That is, the parameter evaluation DB 6 stores the correlation of the parameters with respect to the check result by the judgment rule generated by inputting arbitrary parameters into the common function in the CAD model of various forms different from the conventional ones including newly adopted parts. do. That is, the parameter evaluation DB 6 stores the correlation between the parameter input to the common function and the evaluation result of evaluating the check result including at least the correct answer rate R or the calculation time T according to the parameter.
 本システム10,20は、判定ルールを新たに構築して進化させることにより、つぎの第1、第2の課題を解決する。
1)第1の課題として、判定ルールを構成するパラメータの決定に要する試行錯誤の時間を短縮することが望ましい。
2)第2の課題として、自動チェック用の判定ルールを構築して進化させるには、判定ルールを定量化するパラメータ、及び閾値を推定し、より高精度に調整する必要がある。
The systems 10 and 20 solve the following first and second problems by newly constructing and evolving judgment rules.
1) As the first problem, it is desirable to shorten the time required for trial and error in determining the parameters constituting the judgment rule.
2) As the second problem, in order to construct and evolve the judgment rule for automatic check, it is necessary to estimate the parameter and the threshold value for quantifying the judgment rule and adjust them with higher accuracy.
 第1、第2の課題を解決するため、本システム10,20は、判定ルール定義部2と、幾何認識関数DB4と、幾何認識関数定義部5と、パラメータ評価DB6と、パラメータ調整部7と、ルールチェック部8と、チェック結果表示部9と、をさらに備えた。 In order to solve the first and second problems, the systems 10 and 20 include a determination rule definition unit 2, a geometric recognition function DB 4, a geometric recognition function definition unit 5, a parameter evaluation DB 6, and a parameter adjustment unit 7. , A rule check unit 8 and a check result display unit 9 are further provided.
 判定ルール定義部2は、設計要素毎に違反であるか否かを判定ルールとして定義する。幾何認識関数DB4は、判定ルールを構成する共通関数が記憶される。幾何認識関数定義部5は、幾何認識関数DB4に判定ルールを照会して取得された共通関数の組み合わせにより、CADモデル3の違反箇所を特定できるように定義する。パラメータ評価DB6は、共通関数に入力したパラメータと、パラメータに応じて少なくとも正解率R又は計算時間Tが含まれるチェック結果を評価した評価結果と、の相関性を記憶する。 The judgment rule definition unit 2 defines as a judgment rule whether or not it is a violation for each design element. The geometric recognition function DB4 stores common functions constituting the determination rule. The geometric recognition function definition unit 5 defines the geometric recognition function DB 4 so that the violation portion of the CAD model 3 can be identified by the combination of the common functions obtained by inquiring the determination rule. The parameter evaluation DB 6 stores the correlation between the parameter input to the common function and the evaluation result of evaluating the check result including at least the correct answer rate R or the calculation time T according to the parameter.
 パラメータ調整部7は、パラメータ評価DB部(記憶部)6を照会し、評価結果に基づいて探索された共通関数及びそれに好適なパラメータを入力して調整する。これにより、本システム10,20は、判定ルールを構成するパラメータの決定に試行錯誤するための時間を要する、という第1の課題を解決できる。さらに、本システム10,20は、自動チェック用の判定ルールを構築して進化させるため、判定ルールを定量化するパラメータ、及び閾値を推定し、より高精度に調整する必要がある、という第2の課題も解決できる。 The parameter adjustment unit 7 inquires of the parameter evaluation DB unit (storage unit) 6 and inputs and adjusts the common function searched based on the evaluation result and the parameters suitable for the common function. As a result, the systems 10 and 20 can solve the first problem that it takes time for trial and error to determine the parameters constituting the determination rule. Further, in order to construct and evolve the judgment rule for automatic check in the systems 10 and 20, it is necessary to estimate the parameter and the threshold value for quantifying the judgment rule and adjust them with higher accuracy. Can also solve the problem of.
 ルールチェック部8は、幾何認識関数定義部5で定義された関数に、パラメータ調整部7で調整されたパラメータを入力して生成された判定ルールによって、ルールチェックを行う。チェック結果表示部9は、ルールチェック部8でチェックされたチェック結果を表示部21に表示させる。 The rule check unit 8 performs a rule check according to the determination rule generated by inputting the parameters adjusted by the parameter adjustment unit 7 into the function defined by the geometric recognition function definition unit 5. The check result display unit 9 causes the display unit 21 to display the check result checked by the rule check unit 8.
 本システム10,20によれば、製品毎に異なる寸法や閾値に対し、パラメータ調整部7において幾何認識関数の入力であるパラメータを適正化できる。その結果、本システム10,20は、製品毎に異なる寸法や閾値に対し、チェック結果からノイズN、及びチェック漏れFを低減し、計算時間Tを短縮できるという効果を奏する。 According to the systems 10 and 20, the parameter that is the input of the geometric recognition function can be optimized in the parameter adjusting unit 7 for the dimensions and the threshold values that are different for each product. As a result, the systems 10 and 20 have the effect of reducing noise N and check omission F from the check results for different dimensions and thresholds for each product, and shortening the calculation time T.
[3]本システム10は、形状特徴量抽出部16をさらに備えると良い。この形状特徴量抽出部16は、CADモデル3に含まれる形状特徴量をパラメータ調整部7に入力してパラメータをより適正化できる。これにより、本システム10は、上記[2]の効果を一層高められる。 [3] The system 10 may further include a shape feature amount extraction unit 16. The shape feature amount extraction unit 16 can input the shape feature amount included in the CAD model 3 into the parameter adjustment unit 7 to further optimize the parameters. As a result, the system 10 can further enhance the effect of the above [2].
[4]上記[3]の本システム10において、形状特徴量抽出部16は、CADモデル3に含まれる部品の寸法情報及び分布を表す情報を形状特徴量として抽出し、抽出された形状特徴量をパラメータ調整部7に入力することが好ましい。これにより、本システム10は、新規採用部品を含む等で従来とは異なる多様な形態のCADモデルに応じてパラメータに適正化できる。その結果、本システム10は、上記[3]の効果を一層高められる。 [4] In the present system 10 of the above [3], the shape feature amount extraction unit 16 extracts the dimensional information and the information representing the distribution of the parts included in the CAD model 3 as the shape feature amount, and the extracted shape feature amount. Is preferably input to the parameter adjustment unit 7. As a result, the present system 10 can be optimized for parameters according to various forms of CAD models different from the conventional ones, such as including newly adopted parts. As a result, the present system 10 can further enhance the effect of the above [3].
[5]上記[3]の本システム10において、形状特徴量として、CADモデル3に含まれるフィーチャー情報も抽出して明示することが好ましい。その結果、本システム10によれば、CADモデル3から抽出されたフィーチャー情報を用いてパラメータをより精密に適正化できるので、上記[3]の効果をさらに高められる。 [5] In the present system 10 of the above [3], it is preferable to extract and clearly indicate the feature information included in the CAD model 3 as the shape feature amount. As a result, according to the present system 10, the parameters can be more precisely optimized by using the feature information extracted from the CAD model 3, so that the effect of the above [3] can be further enhanced.
[6]上記[3]の本システム10において、形状特徴量には、部品の属性情報も明示されることが好ましい。その結果、本システム10は、CADモデル3から抽出された属性情報を用いてパラメータをより迅速に適正化できるので、上記[3]の効果をより一層高められる。 [6] In the present system 10 of the above [3], it is preferable that the attribute information of the part is also specified in the shape feature amount. As a result, the present system 10 can more quickly optimize the parameters by using the attribute information extracted from the CAD model 3, so that the effect of the above [3] can be further enhanced.
[7]図8に示す実施例2に係る本システム10,20において、パラメータ評価DB6には、図6に示すようなチェック結果に含まれるノイズN又はチェック漏れFの比率である正解率Rと、パラメータの値と、の相関関係を示す情報が格納されている。 [7] In the systems 10 and 20 according to the second embodiment shown in FIG. 8, the parameter evaluation DB 6 has a correct answer rate R which is a ratio of noise N or check omission F included in the check result as shown in FIG. , Information showing the correlation with the parameter value is stored.
 パラメータ調整部7は、パラメータ評価DB6を探索し、図6に示す高い評価を得られた最適なパラメータを探索して取得できる。その結果、本システム10,20は、上記[2]の効果を一層高められる。 The parameter adjustment unit 7 can search the parameter evaluation DB 6 and search for and acquire the optimum parameter with a high evaluation shown in FIG. As a result, the systems 10 and 20 can further enhance the effect of the above [2].
[8]上記[2]の本システム10,20において、パラメータ評価DB6には、図6に示すような、パラメータ評価DB6には、ルールチェックに要したチェック時間Tの評価結果と、パラメータの値と、の相関関係を示す情報が格納されている。つまり、経験則等により、計算時間Tを短縮して有利にできるようなパラメータの値が、予めパラメータ評価DB6に記憶されている。このような本システム10,20によれば、パラメータ調整部7は、パラメータ評価DB6からパラメータの最適値を読み出して適用することにより、上記[2]の効果のうち、チェック時間Tすなわち計算時間Tをさらに短縮し、判定ルールを構成するパラメータの決定を迅速化できる。 [8] In the systems 10 and 20 of the above [2], the parameter evaluation DB 6 includes the evaluation result of the check time T required for the rule check and the parameter value as shown in FIG. Information indicating the correlation between and is stored. That is, according to an empirical rule or the like, the parameter values that can shorten the calculation time T and be advantageous are stored in advance in the parameter evaluation DB 6. According to the systems 10 and 20 as described above, the parameter adjusting unit 7 reads out the optimum value of the parameter from the parameter evaluation DB 6 and applies it, so that among the effects of the above [2], the check time T, that is, the calculation time T. Can be further shortened and the determination of the parameters constituting the judgment rule can be expedited.
1…設計ガイドライン、2…判定ルール定義部、3,30…CADモデル(CADデータ)、4…幾何認識関数DB、5…幾何認識関数定義部、6…パラメータ評価DB、7…パラメータ調整部7、8…ルールチェック部、9…チェック結果表示部、10,20…設計支援システム、11…ボルト締結工具挿入スペース評価用円筒、12…正解データの違反しているボルト位置の例、13…正解データの違反していないボルト位置の例、14…ボルトが貫通している部品、16…形状特徴量抽出部、17…チェック対象(の違反箇所の)正解データ、20…入力部、21…表示部、22…コントローラ、23…制御部、24…入力インタフェース、25…表示制御部、26…主記憶装置、27…補助記憶装置、28…データバス、31…配管、32…固定治具、33…ボルト、41…穴探索機能における基準穴径とボルト穴正解率Rの関係を表す特性、42…穴探索機能における基準穴径とボルト穴正解率R時間Tとの関係を表す特性、43…チェック対象CADモデルにおける穴探索結果、Dmax…最大ボルト径、R…ボルト穴正解率、T…チェック時間(無次元計算時間) 1 ... Design guideline, 2 ... Judgment rule definition unit, 3, 30 ... CAD model (CAD data), 4 ... Geometric recognition function DB, 5 ... Geometric recognition function definition unit, 6 ... Parameter evaluation DB, 7 ... Parameter adjustment unit 7 , 8 ... Rule check unit, 9 ... Check result display unit, 10, 20 ... Design support system, 11 ... Bolt fastening tool insertion space evaluation cylinder, 12 ... Example of bolt position where correct answer data is violated, 13 ... Correct answer Example of bolt position that does not violate the data, 14 ... Parts through which the bolt penetrates, 16 ... Shape feature amount extraction unit, 17 ... Correct answer data (of the violation part) to be checked, 20 ... Input unit, 21 ... Display Unit, 22 ... controller, 23 ... control unit, 24 ... input interface, 25 ... display control unit, 26 ... main storage device, 27 ... auxiliary storage device, 28 ... data bus, 31 ... piping, 32 ... fixing jig, 33 ... Bolt, 41 ... Characteristics showing the relationship between the reference hole diameter and the bolt hole correct answer rate R in the hole search function, 42 ... Characteristics showing the relationship between the reference hole diameter and the bolt hole correct answer rate R time T in the hole search function, 43 ... Hole search result in the CAD model to be checked, Dmax ... maximum bolt diameter, R ... bolt hole correct answer rate, T ... check time (non-dimensional calculation time)

Claims (15)

  1.  製品のCADモデルがガイドラインに適合することを、判定ルールに基づいて、コンピュータにチェックさせる、前記製品の設計支援システムであって、
     前記コンピュータは、コントローラと、メモリと、を備え、
     前記コントローラは、前記メモリに記憶されたプログラムを実行することにより、
     前記CADモデルの形態を認識するための関数を設定するとともに前記判定ルールを生成する幾何認識関数定義部と、
     前記CADモデルのチェック結果に基づいてパラメータを調整して前記関数に設定するパラメータ調整部と、
     前記調整後のパラメータが設定された、前記関数に基づいて前記CADモデルをチェックして設計上の違反箇所を特定するルールチェック部と、
     前記チェック結果を報知装置に出力させる出力部と、
     を形成する、
     設計支援システム。
    It is a design support system for the product that causes a computer to check that the CAD model of the product conforms to the guidelines based on the judgment rule.
    The computer comprises a controller, a memory, and the like.
    The controller executes a program stored in the memory.
    A geometric recognition function definition unit that sets a function for recognizing the form of the CAD model and generates the judgment rule, and
    A parameter adjustment unit that adjusts parameters based on the check results of the CAD model and sets them in the function.
    A rule check unit that checks the CAD model based on the function in which the adjusted parameters are set and identifies a design violation point, and a rule check unit.
    An output unit that outputs the check result to the notification device,
    Form,
    Design support system.
  2.  前記コントローラは、
     設計要素毎に違反であるか否かを前記判定ルールとして定義する判定ルール定義部と、
     チェックすべき設計ガイドラインに基づいて前記設計要素毎に前記判定ルールを構成する共通関数が記憶される幾何認識関数DBと、
     任意のパラメータを入力した前記共通関数で生成された前記判定ルールによる前記チェック結果の評価に対する、前記パラメータの相関性を記憶するパラメータ評価DBと、
     をさらに備え、
     前記幾何認識関数定義部は、前記幾何認識関数に前記判定ルールを照会して取得された前記共通関数の組み合わせにより、前記CADモデルの前記違反箇所を特定できるように前記判定ルールを構成する前記共通関数を定義する定義し、
     前記パラメータ評価DBは、前記共通関数に入力した前記パラメータと、該パラメータに応じて少なくとも正解率又は計算時間が含まれる前記チェック結果を評価した評価結果と、の相関性を記憶する、
     前記パラメータ調整部は、前記違反箇所を特定するために前記パラメータ評価DBを探索して抽出された前記共通関数及び前記パラメータによる前記チェック結果の評価に基づいてチェック結果の精度を高めるように前記相関性に基づいて調整する、
     請求項1に記載の設計支援システム。
    The controller
    A judgment rule definition unit that defines whether or not it is a violation for each design element as the judgment rule,
    A geometric recognition function DB in which common functions constituting the judgment rule are stored for each design element based on the design guideline to be checked, and
    A parameter evaluation DB that stores the correlation of the parameters with respect to the evaluation of the check result by the determination rule generated by the common function in which an arbitrary parameter is input, and
    Further prepare
    The geometric recognition function definition unit configures the determination rule so that the violation point of the CAD model can be identified by the combination of the common functions obtained by inquiring the determination rule to the geometry recognition function. Define the function, define,
    The parameter evaluation DB stores the correlation between the parameter input to the common function and the evaluation result of evaluating the check result including at least the correct answer rate or the calculation time according to the parameter.
    The parameter adjusting unit searches for the parameter evaluation DB in order to identify the violation portion, and the correlation is improved so as to improve the accuracy of the check result based on the evaluation of the check result by the common function and the parameter. Adjust based on gender,
    The design support system according to claim 1.
  3.  前記CADモデルに含まれる形状特徴量を前記パラメータ調整部に入力して前記パラメータを適正化する形状特徴量抽出部をさらに備えた、
     請求項2に記載の設計支援システム。
    A shape feature amount extraction unit for inputting the shape feature amount included in the CAD model to the parameter adjustment unit to optimize the parameter is further provided.
    The design support system according to claim 2.
  4.  前記形状特徴量は、前記CADモデルに含まれる部品の寸法情報及び分布を表す情報である、
     請求項3に記載の設計支援システム。
    The shape feature amount is information representing dimensional information and distribution of parts included in the CAD model.
    The design support system according to claim 3.
  5.  前記形状特徴量は、前記CADモデルに含まれるフィーチャー情報も明示される、
     請求項3に記載の設計支援システム。
    The feature information included in the CAD model is also specified as the shape feature amount.
    The design support system according to claim 3.
  6.  前記形状特徴量は、部品の属性情報も明示される、
     請求項3に記載の設計支援システム。
    As for the shape feature amount, the attribute information of the part is also specified.
    The design support system according to claim 3.
  7.  前記パラメータ評価DBには、前記チェック結果に含まれるノイズ又はチェック漏れの比率である正解率と、前記パラメータの値と、の相関関係を示す情報が格納されている、
     請求項2に記載の設計支援システム。
    The parameter evaluation DB stores information indicating the correlation between the correct answer rate, which is the ratio of noise or check omission included in the check result, and the value of the parameter.
    The design support system according to claim 2.
  8.  前記パラメータ評価DBには、チェックに要したチェック時間の評価結果と、前記パラメータの値と、の相関関係を示す情報が格納されている、
     請求項2に記載の設計支援システム。
    The parameter evaluation DB stores information indicating the correlation between the evaluation result of the check time required for the check and the value of the parameter.
    The design support system according to claim 2.
  9.  コントローラとメモリを備えるコンピュータがCADモデルに判定ルールを適用して設計上の違反箇所を抽出する設計支援方法であって、
     前記コンピュータが前記メモリに記憶されたプログラムを実行することにより、
     前記コントローラは、
     前記判定ルールを構成する共通関数を定義し、
     前記共通関数に任意のパラメータを入力して生成された前記判定ルールを前記CADモデルに適用してルールチェックしたチェック結果の評価に基づいて前記パラメータを調整し、
     前記調整されたパラメータを前記共通関数に入力して確定した前記判定ルールによる前記チェック結果を表示させる、
     設計支援方法。
    It is a design support method in which a computer equipped with a controller and memory applies judgment rules to a CAD model to extract design violations.
    By executing the program stored in the memory by the computer.
    The controller
    Define the common functions that make up the judgment rule,
    The judgment rule generated by inputting an arbitrary parameter to the common function is applied to the CAD model, and the parameter is adjusted based on the evaluation of the check result of the rule check.
    The check result according to the determination rule confirmed by inputting the adjusted parameter into the common function is displayed.
    Design support method.
  10.  前記コントローラは、
     前記CADモデルを読み込むCADモデル読み込みステップと、
     チェックすべき設計ガイドラインに基づいて設計要素毎に違反であるか否かを前記判定ルールとして定義する判定ルール定義ステップと、
     前記定義された前記設計要素毎の検証に用いられる共通関数を前記メモリに記憶する共通関数記憶ステップと、
     前記メモリに照会し、前記判定ルール定義ステップで定義された前記判定ルールの中から、前記CADモデルの前記違反箇所を特定するために最適な前記共通関数を探索して定義する関数定義ステップと、
     前記共通関数に入力するパラメータと、少なくとも正解率又は計算時間が含まれるチェック結果を評価した評価結果と、の相関性を記憶する評価結果相関性記憶ステップと、
     前記違反箇所を特定するために前記メモリを探索し、抽出された前記共通関数及び前記パラメータによる前記チェック結果の精度を高めるように前記相関性に基づいて調整するパラメータ調整ステップと、
     該パラメータ調整ステップで調整された前記パラメータを前記関数定義ステップで定義された前記共通関数に入力して生成された前記判定ルールを前記CADモデルに適用したことによる前記チェック結果を評価するチェック結果評価ステップと、
     該チェック結果評価ステップで評価された前記チェック結果を表示させるチェック結果表示ステップと、
     を有する、
     請求項9に記載の設計支援方法。
    The controller
    The CAD model reading step for reading the CAD model and
    A judgment rule definition step that defines as the judgment rule whether or not it is a violation for each design element based on the design guideline to be checked, and
    A common function storage step for storing the common function used for verification for each of the defined design elements in the memory, and a common function storage step.
    A function definition step that queries the memory and searches for and defines the optimum common function for identifying the violation point of the CAD model from the judgment rules defined in the judgment rule definition step.
    An evaluation result correlation storage step that stores the correlation between the parameters input to the common function and the evaluation result that evaluates the check result including at least the correct answer rate or the calculation time.
    A parameter adjustment step that searches the memory to identify the violation location and adjusts based on the correlation so as to improve the accuracy of the check result by the extracted common function and the parameter.
    Check result evaluation for evaluating the check result by applying the determination rule generated by inputting the parameter adjusted in the parameter adjustment step into the common function defined in the function definition step to the CAD model. Steps and
    A check result display step for displaying the check result evaluated in the check result evaluation step, and a check result display step.
    Have,
    The design support method according to claim 9.
  11.  前記パラメータ調整ステップでは、前記CADモデルから形状特徴量を抽出して用いる、
     請求項10に記載の設計支援方法。
    In the parameter adjustment step, the shape feature amount is extracted from the CAD model and used.
    The design support method according to claim 10.
  12.  前記形状特徴量は、新規採用部品を含む等で従来とは異なる多様な形態のCADモデルの寸法情報及び分布を表す情報である、
     請求項11に記載の設計支援方法。
    The shape feature amount is information representing dimensional information and distribution of CAD models having various forms different from the conventional ones, such as including newly adopted parts.
    The design support method according to claim 11.
  13.  前記形状特徴量は、フィーチャー情報、又は部品の属性情報である、
     請求項11に記載の設計支援方法。
    The shape feature amount is feature information or component attribute information.
    The design support method according to claim 11.
  14.  前記パラメータ調整ステップでは、前記チェック結果に含まれるノイズ又はチェック漏れの比率である正解率と、前記共通関数に入力されたパラメータと、の相関関係を示す情報のうち最適な情報を前記メモリから読み出して用いる、
     請求項10に記載の設計支援方法。
    In the parameter adjustment step, the optimum information among the information showing the correlation between the correct answer rate, which is the ratio of noise or check omission included in the check result, and the parameter input to the common function is read from the memory. To use
    The design support method according to claim 10.
  15.  前記パラメータ調整ステップでは、チェック時間の評価結果と、前記共通関数に入力されたパラメータと、の相関関係を示す情報のうち評価結果が最適な情報を前記メモリから読み出して用いる、
     請求項10に記載の設計支援方法。
    In the parameter adjustment step, among the information indicating the correlation between the evaluation result of the check time and the parameter input to the common function, the information having the optimum evaluation result is read from the memory and used.
    The design support method according to claim 10.
PCT/JP2021/036450 2020-10-06 2021-10-01 Design assistance system and design assistance method WO2022075220A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020169134A JP7454480B2 (en) 2020-10-06 2020-10-06 Design support system and method
JP2020-169134 2020-10-06

Publications (1)

Publication Number Publication Date
WO2022075220A1 true WO2022075220A1 (en) 2022-04-14

Family

ID=81126852

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/036450 WO2022075220A1 (en) 2020-10-06 2021-10-01 Design assistance system and design assistance method

Country Status (2)

Country Link
JP (1) JP7454480B2 (en)
WO (1) WO2022075220A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005275596A (en) * 2004-03-23 2005-10-06 Calsonic Kansei Corp Cad model abnormal part detection method
JP2011253269A (en) * 2010-06-01 2011-12-15 Hitachi Ltd Three-dimensional model design support system by assembly analysis
JP2012053758A (en) * 2010-09-02 2012-03-15 Fujitsu Ltd Three-dimensional simulation program, method and device
JP2014102570A (en) * 2012-11-16 2014-06-05 Toyota Motor Corp Analytical model creating method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7267049B2 (en) 2019-03-19 2023-05-01 株式会社日立製作所 Design support device, design support program and design support method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005275596A (en) * 2004-03-23 2005-10-06 Calsonic Kansei Corp Cad model abnormal part detection method
JP2011253269A (en) * 2010-06-01 2011-12-15 Hitachi Ltd Three-dimensional model design support system by assembly analysis
JP2012053758A (en) * 2010-09-02 2012-03-15 Fujitsu Ltd Three-dimensional simulation program, method and device
JP2014102570A (en) * 2012-11-16 2014-06-05 Toyota Motor Corp Analytical model creating method

Also Published As

Publication number Publication date
JP7454480B2 (en) 2024-03-22
JP2022061245A (en) 2022-04-18

Similar Documents

Publication Publication Date Title
US10025696B2 (en) System and method for equivalence class analysis-based automated requirements-based test case generation
US7788070B2 (en) Product design optimization method and system
US7877239B2 (en) Symmetric random scatter process for probabilistic modeling system for product design
US20060229753A1 (en) Probabilistic modeling system for product design
CN111881605B (en) Automatic optimization design method for variable frequency air conditioner compressor pipeline
US20140379309A1 (en) Automatic Creation Of Fasteners For Simulating A Computer-Aided Design (CAD) Model
US20160196363A1 (en) Apparatus and method of generating 3d cad model of pipe support based on pipe thermal movement
WO2022075220A1 (en) Design assistance system and design assistance method
US20070180411A1 (en) Method and apparatus for comparing semiconductor-related technical systems characterized by statistical data
KR101989700B1 (en) 3d modeling apparatus and method for modeling fitting based on point-cloud data obtained by 3d scanning
KR101097414B1 (en) Pipe vibration estimation method
JP4899633B2 (en) Communication performance analysis program, communication performance analysis device, and communication performance analysis method
CN111651846B (en) Automatic optimization method for pipeline design of refrigeration equipment
US7543732B2 (en) Evaluation method and evaluation apparatus for spot welded portion
KR102172749B1 (en) System for visualizing member information of ship design and visualization method thereof
JP2020061126A (en) Gap detection for 3D models
WO2021070514A1 (en) Design assistance device, design assistance method, and design assistance program
KR101807585B1 (en) Apparatus and Method for designing automation using FEM
US20220121195A1 (en) Predictive Maintenance Tool Based on Digital Model
EP3754533A1 (en) Design assistance apparatus and design assistance method
JP2009301377A (en) Parameter identification device and parameter identification program
Sinha Efficient wall thickness analysis methods for optimal design of casting parts
WO2023145177A1 (en) Design assistance device, design assistance apparatus comprising design assistance device, and design assistance method
KR20180045637A (en) method for measuring surface pressure of structures
KR101836153B1 (en) Apparatus and method for generating plant model

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21877519

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21877519

Country of ref document: EP

Kind code of ref document: A1