WO2022075131A1 - Air conditioner and method for controlling air conditioner - Google Patents

Air conditioner and method for controlling air conditioner Download PDF

Info

Publication number
WO2022075131A1
WO2022075131A1 PCT/JP2021/035768 JP2021035768W WO2022075131A1 WO 2022075131 A1 WO2022075131 A1 WO 2022075131A1 JP 2021035768 W JP2021035768 W JP 2021035768W WO 2022075131 A1 WO2022075131 A1 WO 2022075131A1
Authority
WO
WIPO (PCT)
Prior art keywords
time
unit
air
air conditioner
time zone
Prior art date
Application number
PCT/JP2021/035768
Other languages
French (fr)
Japanese (ja)
Inventor
伸悟 中嶋
健輝 山崎
大介 近藤
貴司 中川
亮 加藤
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2022075131A1 publication Critical patent/WO2022075131A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • A61L9/14Disinfection, sterilisation or deodorisation of air using sprayed or atomised substances including air-liquid contact processes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/61Control or safety arrangements characterised by user interfaces or communication using timers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/64Electronic processing using pre-stored data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/65Electronic processing for selecting an operating mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2130/00Control inputs relating to environmental factors not covered by group F24F2110/00
    • F24F2130/20Sunlight
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • This disclosure relates to an air conditioner and a control method for the air conditioner.
  • the server device calculates the future indoor air quality predicted value based on the future outdoor air quality information acquired from an external information source, and further, the air cleaning operation time is calculated from the calculated indoor air quality predicted value.
  • an air conditioning system in which a controller that calculates and controls the air conditioner controls the operation of the air conditioner according to the air cleanup operation time calculated by the server device.
  • the air conditioner in the present disclosure includes an outdoor unit, an indoor unit provided with an air purifying device for purifying air, and a control device for controlling the outdoor unit and the indoor unit.
  • the control device has a time acquisition unit for acquiring a time or a time zone, a determination unit for determining whether or not the time or time zone acquired by the time acquisition unit is included in a preset operation time zone, and a determination unit. It is provided with an operation control unit for operating the air purifying device when it is determined that the time or time zone acquired by the time acquisition unit is included in the operation time zone.
  • the control method of the air conditioner in the present disclosure is a control method of an air conditioner including an outdoor unit, an indoor unit provided with an air purifying device for purifying air, and a control device for controlling the outdoor unit and the indoor unit.
  • the time acquisition step for acquiring the time or time zone
  • the determination step for determining whether or not the time or time zone acquired by the time acquisition step is included in the preset operation time zone, and the time by the determination step. It has an operation step for operating the air purifying device when it is determined that the time or time zone acquired by the acquisition step is included in the operation time zone.
  • FIG. 1 is a diagram showing a measurement result of PM2.5.
  • FIG. 2 is a diagram schematically showing the internal configuration of the indoor unit as seen from the right side of the air conditioner of the first embodiment.
  • FIG. 3 is a block diagram showing the configuration of the air conditioner according to the first embodiment.
  • FIG. 4 is a flowchart showing the operation of the control device of the air conditioner according to the first embodiment.
  • FIG. 5 is a block diagram showing the configuration of the air conditioner according to the second embodiment.
  • FIG. 6 is a flowchart showing the operation of the control device of the air conditioner according to the second embodiment.
  • the technique of purifying the indoor air by an air conditioner is the future that the server device acquired from an external information source as disclosed in Patent Document 1.
  • the server device calculates the future indoor air quality predicted value based on the outdoor air quality information, calculates the air cleaning operation time from the calculated indoor air quality predicted value, and controls the air conditioner.
  • the situation was that the operation of the air conditioner was controlled according to the air cleaning operation time. For this reason, it has been common in the industry for air conditioners to operate depending on information provided by an external device.
  • FIG. 1 is a diagram showing changes in PM2.5 concentration over a certain period of 4 days in Vietnam.
  • the inventors of the present disclosure set the time zone in which the concentration of PM2.5 is high as the operating time zone of the air conditioner, using the hint that there is regularity in the change in the concentration of PM2.5 in one day.
  • the air conditioner By operating the air conditioner during this operating time, I got the idea of reducing the concentration of fine particles in the room.
  • the inventors have discovered that it is necessary to acquire the time in order to realize this idea, and have come to construct the subject matter of the present disclosure in order to solve the problem.
  • FIG. 2 is a diagram schematically showing the internal configuration of the indoor unit 100 as seen from the right side in the left-right direction of the air conditioner 1A of the first embodiment.
  • FIG. 3 is a block diagram showing the configuration of the air conditioner 1A of the first embodiment.
  • the air conditioner 1A includes an outdoor unit 10 (not shown in FIG. 2) and an indoor unit 100.
  • the outdoor unit 10 and the indoor unit 100 are connected by a refrigerant pipe (not shown).
  • the outdoor unit 10 is arranged outdoors, and the indoor unit 100 is arranged in an indoor space to be cooled or heated.
  • the outdoor unit 10 includes a compressor 11, an outdoor fan 12, an outdoor heat exchanger 13, and the like.
  • the indoor unit 100 includes an indoor heat exchanger 104, an indoor fan 105, and the like.
  • a suction port 121 and an outlet 125 are formed in the housing 2 of the indoor unit 100.
  • the suction port 121 is formed on the upper surface of the housing 2, and the air outlet 125 is formed on the lower surface of the housing 2.
  • the rear surface of the housing 2 is attached to the wall surface. Further, inside the housing 2, an indoor fan 105 for sucking air Ar into the inside of the housing 2 from the suction port 121, and an indoor heat exchanger 104 for heat exchange with the air Ar sucked from the suction port 121. Is provided.
  • the indoor unit 100 is equipped with an ozone and ion generator 111, an electrostatic atomizer 113, and an air purifier 110 including an air purifier filter 115.
  • the ozone and ion generator 111 includes a discharge electrode and a counter electrode.
  • the ozone and ion generator 111 oxidizes oxygen molecules in the air by electric discharge to generate ozone, and also generates positive ions and negative ions by electric discharge, and releases them into the air as ion wind.
  • the ionic wind generated by applying a direct current potential between the discharge electrode and the counter electrode becomes an air flow blown from the discharge electrode toward the counter electrode. Therefore, the negative ion molecules can be discharged from the discharge electrode toward the counter electrode by the ion wind containing the negative ion molecules.
  • the electrostatic atomizer 113 is provided in, for example, the rear guider 4 that guides the flow of air sucked into the housing 2 by the suction port 121.
  • the electrostatic atomizer 113 includes a discharge unit and a power supply circuit.
  • the discharge unit discharges to the supplied water to generate a mist containing charged fine particle water.
  • the power supply circuit generates a high voltage applied to the discharge section. Illustration of the discharge part and the power supply circuit is omitted.
  • the electrostatic atomizer 113 generates mist containing charged fine particle water to suppress viruses, molds, substances causing allergies, bacteria and the like in the air, and deodorizes the air.
  • the charged fine particle water contains active ingredients such as radicals that exert sterilizing action and deodorizing action.
  • the air purifying device 110 includes a power source (not shown) such as a motor for advancing and retreating the air purifying filter 115.
  • the air purifying filter 115 advances and retreats between the air purifying position covering the suction port 121 of the indoor unit 100 and the standby position housed in the indoor unit 100 by the power source.
  • the air purifying filter 115 When the air purifying filter 115 is placed in the air purifying position, fine particles such as mold, bacteria, allergens, pollen, PM2.5, and dust in the indoor air toward the suction port 121 by the rotation of the indoor fan 105 are air purified. It is collected by the filter 115 and the indoor air is purified. Then, the purified indoor air returns to the room as an air flow Af through the suction port 121, the filter 123, the indoor heat exchanger 104, and the air outlet 125. As a result, the air quality of the indoor air is improved.
  • the air purifying filter 115 stands by at a standby position housed in the indoor unit 100.
  • the indoor air Ar flows into the indoor unit 100 as it is through the suction port 121. Further, the air purification can be performed even when the air conditioning is stopped, that is, when the compressor 11 is stopped, as long as the indoor fan 105 is rotating.
  • the outdoor unit 10 includes a compressor 11, an outdoor fan 12, an outdoor heat exchanger 13, a four-way valve 14, an expansion valve 15, and an outdoor sensor unit 16.
  • the indoor unit 100 includes an indoor heat exchanger 104, an indoor fan 105, upper and lower louvers 106, and left and right louvers 107.
  • the compressor 11, the outdoor heat exchanger 13, the four-way valve 14, and the expansion valve 15 provided in the outdoor unit 10 and the indoor heat exchanger 104 provided in the indoor unit 100 form a refrigeration cycle circuit.
  • the four-way valve 14 is controlled by the control device 130, and switches the flow direction of the refrigerant in the refrigeration cycle circuit between the cooling operation and the heating operation.
  • the expansion valve 15 decompresses the high-pressure refrigerant of the refrigerating cycle circuit radiated by the outdoor heat exchanger 13 to the low pressure of the refrigerating cycle circuit during the cooling operation or the dehumidifying operation. Further, the expansion valve 15 decompresses the high-pressure refrigerant of the refrigeration cycle circuit radiated by the indoor heat exchanger 104 to the low pressure of the refrigeration cycle circuit during the heating operation.
  • the indoor fan 105 is driven by a motor (not shown) to supply air in the interior space to the indoor heat exchanger 104.
  • the rotation speed of the indoor fan 105 is controlled by the control device 130. By controlling the rotation speed of the indoor fan 105, the amount of air supplied to the indoor heat exchanger 104 is adjusted.
  • the vertical louver 106 controls the vertical direction of the wind blown from the indoor unit 100.
  • the left and right louvers 107 control the direction of the wind blown from the indoor unit 100 in the left-right direction.
  • the air conditioning operation performed by the air conditioner 1A includes a cooling operation, a heating operation, and a dehumidifying operation.
  • the outdoor unit 10 includes an outdoor sensor unit 16 including an ultraviolet sensor 16A.
  • the indoor unit 100 includes an infrared signal receiving unit 101, a short-range wireless communication unit 102, a communication unit 103, an indoor sensor unit 108, an air purifying device 110, and a control device 130.
  • the ultraviolet sensor 16A is a sensor that detects the amount of ultraviolet rays outdoors.
  • the infrared signal receiving unit 101 receives an infrared signal output from the remote controller 5 when the remote controller 5 is operated by the user.
  • the infrared signal output by the remote controller 5 includes information indicating an operation accepted by the remote controller 5 and time information indicating a time.
  • the infrared signal receiving unit 101 receives the infrared signal, it extracts information indicating an operation and time information from the received infrared signal, and outputs information indicating the extracted operation and time information to the control device 130.
  • the short-range wireless communication unit 102 exchanges data with an external device by short-range wireless communication.
  • the external device includes, for example, a wearable device worn on the user's body, a smartphone, and the like.
  • the short-range wireless communication unit 102 of the present embodiment acquires the biometric information of the user from a wearable device or an external device such as a smartphone.
  • the communication unit 103 performs wireless communication based on a predetermined wireless communication standard, and performs data communication with a device connected to a network NW such as the Internet.
  • the network NW may be configured to include, for example, the Internet, a mobile communication network, a wide area network such as WAN (Wide Area Network), or may be configured by a private network such as an intranet or LAN (Local Area Network). ..
  • a ventilation fan 300 arranged indoors together with the indoor unit 100 and an external device 200 are connected to the network NW of the present embodiment. Further, in the present embodiment, a case where the communication unit 103 performs data communication with the external device 200 and the ventilation fan 300 by wireless communication will be described.
  • the air conditioner 1A may be configured to be connected to the network NW by a wired connection using a cable such as a LAN cable.
  • the indoor sensor unit 108 includes an air quality sensor 108A, a temperature sensor 108B, a motion sensor 108C, and a solar radiation sensor 108D.
  • the air quality sensor 108A is a sensor that measures the concentration of fine particles in a room.
  • the air quality sensor 108A is a PM2.5 sensor that measures the concentration of PM2.5 which is a fine particle will be described.
  • the air quality sensor 108A may be a bacterial sensor, an allergic substance sensor, a pollen sensor, a dust sensor, or the like.
  • the temperature sensor 108B is a sensor that detects the temperature of the indoor air taken into the indoor unit 100 from an opening (not shown) provided in the indoor unit 100.
  • the motion sensor 108C detects the presence or absence of a person in the indoor space by changing the amount of infrared rays.
  • the motion sensor 108C is composed of a pyroelectric element type infrared sensor that detects infrared rays radiated from the human body.
  • the solar radiation sensor 108D is a sensor that detects the amount of solar radiation applied to the air-conditioned space.
  • the control device 130 is a computer device including a memory 133 and a processor 150.
  • the memory 133 includes semiconductor memories such as ROM (Read only memory) and RAM (Random Access Memory), and auxiliary storage devices such as HDD (Hard Disk Drive) and SSD (Solid State Drive).
  • the memory 133 stores the sensor data measured by the control program 141 executed by the processor 150, the outdoor sensor unit 16, and the sensor of the indoor sensor unit 108.
  • the processor 150 is composed of a CPU (Central Processing Unit), a microcontroller equipped with a CPU (Micro Controller Unit), or a microcontroller such as an MPU (Micro Processing Unit). Further, the control device 130 may be realized by an integrated circuit such as an ASIC (Application Specific Integrated Circuit) or an FPGA (Field Programmable Gate Array).
  • ASIC Application Specific Integrated Circuit
  • FPGA Field Programmable Gate Array
  • the control device 130 includes a time acquisition unit 151, a determination unit 153, and an operation control unit 155 as functional blocks. These functional blocks indicate the functions included in the control device 130, and are realized by the processor 150 executing the control program 141 stored in the memory 133.
  • the time acquisition unit 151 acquires the time.
  • the time acquisition unit 151 of the first embodiment may control the communication unit 103 to connect to the network NW and acquire the time from the external device 200 connected to the network NW. Further, the time acquisition unit 151 may control the short-range wireless communication unit 102 to acquire the time from another device such as a television or a refrigerator installed in the room.
  • the determination unit 153 determines whether or not the time acquired by the time acquisition unit 151 is included in the preset operation time zone.
  • the operating time zone is set to a time zone in which the amount of fine particles in the air in the room is expected to increase from a preset reference value.
  • the operating time zone may be set before a predetermined time before the time zone in which the amount of fine particles in the air is expected to increase from a preset reference value.
  • the air purifying device 110 can be operated in advance in anticipation of an increase in the amount of fine particles, and the indoor air quality can be kept in a higher quality state.
  • the determination unit 153 outputs an instruction to the operation control unit 155 so that the air purifying device 110 performs the air cleaning operation.
  • the operation control unit 155 operates the air purifier 110 according to the instruction of the determination unit 153.
  • the operation control unit 155 executes an air cleaning operation on the air cleaning device 110 by operating at least one of the ozone and ion generator 111, the electrostatic atomizing device 113, and the air cleaning filter 115 included in the air cleaning device 110. Let me. Further, the operation control unit 155 may execute the air cleaning operation by dehumidifying the refrigerant cycle circuit. Further, the operation control unit 155 may output an operation instruction to the ventilation fan 300 connected to the network NW via the communication unit 103.
  • the operation by the ozone and ion generator 111, the electrostatic atomizer 113, and the air cleaning filter 115, the operation of the dehumidifying operation, and the ventilation operation by the ventilation fan 300, which are controlled by the operation control unit 155, are collectively referred to as the cleaning function below. That is.
  • the electrostatic atomizer 113 has the highest priority for operating the operation control unit 155 during the air cleaning operation, and hereinafter, the ozone and ion generator 111, the air cleaning filter 115, and the like.
  • the order is dehumidification operation and ventilation operation by the ventilation fan 300.
  • the operation control unit 155 may change the cleaning function to be operated based on the air quality measured by the air quality sensor 108A. For example, when the fine particle concentration measured by the air quality sensor 108A is equal to or higher than the reference value, the electrostatic atomizer 113 having the highest priority is operated, and when the fine particle concentration is higher, the electrostatic atomizer 113 is added.
  • the ozone-ion generator 111 may be operated.
  • a cleaning function may be added to operate as the concentration of fine particles increases.
  • the operation control unit 155 may divide the operation time zone into a plurality of periods and change the cleaning function to operate in each of the divided periods. For example, in the period divided into a plurality of periods in which the concentration of fine particles is expected to be the highest, a plurality of cleaning functions are operated, and in the other period, only the electrostatic atomizer 113 having the highest priority is used. It may be operated.
  • the operation control unit 155 operates the cleaning function for a certain period of time not only when an instruction is input from the determination unit 153 but also when the fine particle concentration measured by the air quality sensor 108A is equal to or higher than the reference value.
  • the reference value of the fine particle concentration is set to, for example, 35 ⁇ g / m 3 .
  • FIG. 4 is a flowchart showing the operation of the control device 130. The operation of the control device 130 according to the present embodiment will be described with reference to the flowchart shown in FIG.
  • the control device 130 executes a time acquisition step for acquiring time information (step S1). For example, when the remote controller 5 receives an operation of a user who turns on the power of the air conditioner 1A, the remote controller 5 transmits an operation signal including information indicating the accepted operation and time information to the air conditioner 1A. When the control device 130 receives the operation signal, the control device 130 acquires the time information included in the received operation signal. The control device 130 may access the network NW via the communication unit 103 and acquire time information from the external device 200 connected to the network NW.
  • the control device 130 executes a determination step of determining whether or not the current time indicated by the acquired time information is included in the preset operation time zone (step S2).
  • This operating time zone is set to a time zone in which the concentration of fine particles such as PM2.5 is predicted to be higher than a preset reference value.
  • the control device 130 causes the air purifying device 110 to execute an operation step instructing the start of the air cleaning operation (step S3).
  • the control device 130 may start the dehumidifying operation in the refrigerant cycle circuit, or may transmit a signal for operating the ventilation fan 300 by the communication unit 103 (step S3).
  • the control device 130 causes the air purifying device 110 to perform an air cleaning operation by operating at least one of the ozone and ion generating device 111, the electrostatic atomizing device 113, or the air cleaning filter 115 included in the air purifying device 110. ..
  • the control device 130 may execute the air cleaning operation by dehumidifying the refrigerant cycle circuit or operating the ventilation fan 300.
  • control device 130 resets the counter (step S4) and causes the counter to start counting (step S5). Then, the control device 130 acquires the count value of the counter (step S6). Based on the acquired count value, the control device 130 determines whether or not the elapsed time from the start of the air cleaning operation or the dehumidifying operation is equal to or longer than the preset set time (step S7).
  • step S7 / NO If the elapsed time from the start of the air cleaning operation or the dehumidifying operation is not equal to or longer than the preset set time (step S7 / NO), the control device 130 returns to the process of step S6. Further, when the control device 130 determines that the elapsed time from the start of the air cleaning operation or the dehumidifying operation is equal to or longer than the preset set time (step S7 / YES), the air purifying device 110 is informed of the air cleaning. Instruct to stop the operation (step S8). Alternatively, the control device 130 instructs to stop the dehumidifying operation (step S8).
  • step S2 when it is determined that the current time indicated by the acquired time information is not included in the preset operating time zone (step S2 / NO), the control device 130 is the air quality sensor 108A. Get the sensor data of. The control device 130 determines whether or not the concentration of PM2.5 indicated by the acquired sensor data is equal to or higher than the reference value (step S10).
  • the reference value is set to, for example, 35 ⁇ g / m 3 .
  • the control device 130 instructs the air purifying device 110 to start the air cleaning operation (step S11).
  • the control device 130 may start the dehumidifying operation in the refrigerant cycle circuit, or may transmit a signal for operating the ventilation fan 300 by the communication unit 103 (step S11).
  • the control device 130 resets the count value of the counter (step S12) and starts counting the counter (step S13).
  • the control device 130 acquires the sensor data of the air quality sensor 108A (step S14).
  • the control device 130 determines whether or not the concentration of PM2.5 indicated by the sensor data is equal to or higher than the reference value (step S15).
  • the control device 130 instructs the air purifying device 110 to stop the air cleaning operation (step S8).
  • the control device 130 instructs the refrigerant cycle circuit to stop the dehumidifying operation.
  • the control device 130 acquires the count value of the counter (step S16). Based on the acquired count value, the control device 130 determines whether or not a set time or more has elapsed since the air purifying device 110 started the air cleaning operation in step S11 (step S17). Alternatively, the control device 130 determines whether or not a set time has elapsed since the refrigerant cycle circuit was started to dehumidify (step S17).
  • step S17 / YES When the set time or more has elapsed from the start of the air cleaning operation or the dehumidifying operation (step S17 / YES), the control device 130 instructs the air cleaning device 110 to stop the air cleaning operation (step S8). Alternatively, the control device 130 instructs the refrigerant cycle circuit to stop the dehumidifying operation (step S8). If the set time has not elapsed since the start of the air cleaning operation (step S17 / NO), the control device 130 returns to the process of step S14 and acquires the sensor data of the air quality sensor 108A again.
  • the control device 130 When the concentration of PM2.5 indicated by the sensor data acquired in step S9 is not equal to or higher than the reference value (step S10 / NO), the control device 130 resets the counter count value (step S18), and the counter counts. Is started (step S19). Then, the control device 130 acquires the count value of the counter (step S20). The control device 130 calculates the current time based on the time information acquired in step S1 and the acquired count value, and determines whether or not the calculated time is included in the operation time zone ( Step S21).
  • step S21 When the calculated time is included in the operating time zone (step S21 / YES), the control device 130 transitions to step S3 and instructs the air purifying device 110 to start the air cleaning operation (step S3). Alternatively, the control device 130 causes the refrigerant cycle circuit to start the dehumidifying operation (step S3).
  • step S21 / NO the control device 130 determines whether or not the time information is interrupted and acquired from the remote control 5 (step S22). When the remote controller 5 receives an operation of a user who changes the temperature setting of the air conditioner 1A, the remote controller 5 transmits an operation signal including information indicating the accepted operation and time information to the air conditioner 1A.
  • step S2 When the control device 130 has not acquired the time information by interruption (step S22 / NO), the control device 130 returns to the process of step S9, acquires the sensor data of the air quality sensor 108A, and the concentration of PM2.5 indicated by the acquired sensor data. And the reference value (step S10). Further, when the time information is interrupt-acquired (step S22 / YES), the control device 130 returns to step S2 and determines whether or not the current time is included in the operating time zone based on the interrupt-acquired time information. (Step S2).
  • the air conditioner 1A includes an outdoor unit 10, an indoor unit 100 including an air purifying device 110 for purifying air, and a control device 130 for controlling the outdoor unit 10 and the indoor unit 100. ..
  • the control device 130 includes a time acquisition unit 151, a determination unit 153, and an operation control unit 155.
  • the time acquisition unit 151 acquires the time.
  • the determination unit 153 determines whether or not the time acquired by the time acquisition unit 151 is included in the preset operation time zone.
  • the operation control unit 155 causes the air purifying device 110 to execute the air cleaning operation when the determination unit 153 determines that the time acquired by the time acquisition unit 151 is included in the preset operation time zone.
  • the air conditioner 1A can be operated in the operating time zone and the indoor air quality can be improved by setting the time zone in which the concentration of the fine particles is high as the operating time zone in advance.
  • the time acquisition unit 151 may receive an infrared signal transmitted from the remote controller 5 that operates the air conditioner 1A, and may acquire the time included in the received infrared signal. As a result, when the remote controller 5 is operated by the user, the time can be acquired together with the operation information of the remote controller 5, and the air conditioner 1A can be operated in a preset operation time zone.
  • the time acquisition unit 151 may connect to the network NW to which the external device 200 is connected and acquire the time by data communication with the external device 200. As a result, the time can be acquired by data communication with the external device 200, and the air conditioner 1A can be operated in a preset operating time zone.
  • the time acquisition unit 151 may acquire the sensor data of the indoor sensor unit 108 mounted on the air conditioner 1A.
  • the determination unit 153 may estimate the time based on the sensor data acquired by the acquisition unit, and determine whether or not the estimated time is included in the operation time zone. As a result, even if the air conditioner 1A does not have the function of measuring the time or the communication function, the time is estimated based on the sensor data of the indoor sensor unit 108 mounted on the air conditioner 1A.
  • the air conditioner 1A can be operated during the operating time zone.
  • the sensors for which the time acquisition unit 151 acquires sensor data include an ultraviolet sensor 16A for detecting the amount of ultraviolet rays, a temperature sensor 108B for detecting the temperature in the room where the indoor unit 100 of the air conditioner 1A is installed, and sunlight. At least one of a solar radiation sensor 108D for detecting an irradiation amount and a motion sensor 108C for detecting the presence or absence of a person is included. As a result, the estimation accuracy of the time estimated based on the sensor data acquired by the time acquisition unit 151 can be improved, and the air conditioner 1A can be operated in a preset operation time zone.
  • the air conditioner 1A includes a refrigeration cycle circuit including an outdoor unit 10 and an indoor unit 100.
  • the air purifier 110 includes an electrostatic atomizer 113 that generates mist containing charged fine particle water, an ozone and ion generator 111 that generates ozone and negative ions by corona discharge, and an air purifier that captures fine particles in the air. It comprises at least one with a filter 115.
  • the operation control unit 155 is at least one of the electrostatic atomizer 113, the ozone and ion generator 111, and the air cleaning filter 115. Operate one. Alternatively, the operation control unit 155 causes the refrigeration cycle circuit to execute the dehumidifying operation. This makes it possible to effectively remove the fine particles existing in the room.
  • the above-described first embodiment is an embodiment in which the air conditioner 1A has a configuration in which the time can be acquired from the outside such as the remote controller 5 and the external device 200.
  • the second embodiment is an embodiment in which the air conditioner 1B cannot acquire time information from the outside.
  • FIG. 5 is a block configuration diagram showing an example of the configuration of the air conditioner 1B of the second embodiment.
  • the structural difference between the air conditioner 1B of the second embodiment and the air conditioner 1A of the first embodiment is that the air conditioner 1B does not include either the infrared signal receiving unit 101 or the communication unit 103. Is. Since the other configurations of the air conditioner 1B are the same as those of the air conditioner 1A of the first embodiment, detailed description of the configuration of the air conditioner 1B will be omitted.
  • the air conditioner 1B does not include either the infrared signal receiving unit 101 or the communication unit 103. Therefore, the air conditioner 1B does not have a means for acquiring the time from the outside. Therefore, the determination unit 153 estimates the time or time zone based on the sensor data acquired by the time acquisition unit 151 from the indoor sensor unit 108 and the outdoor sensor unit 16.
  • the time acquisition unit 151 acquires the sensor data of the ultraviolet sensor 16A provided in the outdoor unit 10.
  • the determination unit 153 estimates the time or time zone based on the amount of ultraviolet rays indicated by the sensor data acquired by the time acquisition unit 151.
  • the memory 133 stores the measured values obtained by measuring the amount of ultraviolet rays for each preset period as a database.
  • the preset period is, for example, one week or one month.
  • the determination unit 153 inputs the sensor data of the ultraviolet sensor 16A, compares the amount of ultraviolet rays indicated by the input sensor data with the database, and estimates the current time zone.
  • the time zone estimated by the determination unit 153 is, for example, a rough time zone such as one hour unit.
  • the determination unit 153 may estimate the time zone by referring to the sensor data of the temperature sensor 108B and the solar radiation sensor 108D in addition to the sensor data of the ultraviolet sensor 16A. For example, the determination unit 153 may estimate the time zone based on the amount of ultraviolet rays measured by the ultraviolet sensor 16A, the temperature measured by the temperature sensor 108B, or the amount of solar radiation measured by the solar radiation sensor 108D.
  • the determination unit 153 may estimate the time zone based on the sensor data of the motion sensor 108C. For example, when the determination unit 153 continues to be in a state where the presence of a person is not detected for a certain period of time or more during bedtime at night, and then a certain time has elapsed after the presence of a person is detected by the motion sensor 108C. It may be determined that it is the operating time zone in the morning when the air conditioner 1B is operated. The determination unit 153 may determine that it is nighttime when the state in which the presence of a person is not detected continues for a certain period of time or longer. Then, the determination unit 153 may determine that the operation time zone (for example, from 18:00 to 24:00) at night when the concentration of PM2.5 is high is out of the range.
  • the operation time zone for example, from 18:00 to 24:00
  • the determination unit 153 may estimate the time zone based on the biometric information of the user acquired by the short-range wireless communication unit 102 from a wearable device or a device such as a smartphone. For example, the determination unit 153 determines whether or not the user is in a sleeping state based on the biometric information of the user. The determination unit 153 may determine that it is the morning operation time zone in which the air conditioner 1B is operated when a certain period of time has elapsed after the determination that the user is not in the sleeping state. When the determination unit 153 determines that the user is in a sleeping state, the determination unit 153 may determine that it is nighttime. Then, the determination unit 153 may determine that the operation time zone (for example, from 18:00 to 24:00) at night when the concentration of PM2.5 is high is out of the range.
  • the operation time zone for example, from 18:00 to 24:00
  • the control device 130 acquires the sensor data of the ultraviolet sensor 16A included in the outdoor sensor unit 16 (step T1).
  • the control device 130 estimates the current time zone based on the amount of ultraviolet rays indicated by the acquired sensor data (step T2).
  • the control device 130 determines whether or not the estimated time zone is included in the operating time zone (step T3).
  • the control device 130 instructs the air purifying device 110 to start the air purifying operation (step T4).
  • the control device 130 may start the dehumidifying operation in the refrigerant cycle circuit (step T4), and when connected to the ventilation fan 300 by the short-range wireless communication unit 102, the control device 130 sends a signal to operate the ventilation fan 300. It may be transmitted by the short-range wireless communication unit 102 (step T4). After that, the control device 130 resets the counter (step T5) and causes the counter to start counting (step T6).
  • control device 130 acquires the count value of the counter (step T7), and based on the acquired count value, the elapsed time from starting the air cleaning operation or the dehumidifying operation is equal to or longer than the preset set time. It is determined whether or not it has become (step T8).
  • step T8 / NO If the elapsed time from the start of the air cleaning operation or the dehumidifying operation is not equal to or longer than the preset set time (step T8 / NO), the control device 130 returns to the process of step T7. Further, when the control device 130 determines that the elapsed time from the start of the air cleaning operation or the dehumidifying operation is equal to or longer than the preset set time (step T8 / YES), the air cleaning device 110 is notified of the air cleaning. Instruct to stop the operation or the dehumidifying operation (step T9).
  • the control device 130 acquires the sensor data of the air quality sensor 108A (step T10).
  • the control device 130 determines whether or not the concentration of PM2.5 indicated by the acquired sensor data is equal to or higher than the reference value (step T11).
  • the reference value is the same value as in the first embodiment.
  • the control device 130 returns to the process of step T1 and acquires the sensor data of the ultraviolet sensor 16A again, and the acquired sensor.
  • the current time zone is estimated based on the amount of ultraviolet rays indicated by the data (step T2).
  • the control device 130 instructs the air purifying device 110 to start the air cleaning operation (step S12).
  • the control device 130 may start the dehumidifying operation in the refrigerant cycle circuit, or when connected to the ventilation fan 300 by the short-range wireless communication unit 102, the signal for operating the ventilation fan 300 is transmitted by short-range wireless communication. It may be transmitted by the unit 102 (step T12).
  • the control device 130 resets the count value of the counter (step T13) and starts counting the counter (step T14).
  • the control device 130 acquires the sensor data of the air quality sensor 108A (step T15), and determines whether or not the concentration of PM2.5 indicated by the sensor data is equal to or higher than the reference value (step T16).
  • the control device 130 instructs the air purifying device 110 to stop the air cleaning operation (step T9).
  • the control device 130 instructs the refrigerant cycle circuit to stop the dehumidifying operation (step T9).
  • the control device 130 acquires the count value of the counter (step T17). Based on the acquired count value, the control device 130 determines whether or not a set time has elapsed since the start of the air cleaning operation or the dehumidifying operation in step T12 (step T18). When the set time or more has elapsed from the start of the air cleaning operation (step T18 / YES), the control device 130 instructs the air cleaning device 110 to stop the air cleaning operation (step T9). Alternatively, the control device 130 instructs the refrigerant cycle circuit to stop the dehumidifying operation (step T9). If the set time has not elapsed since the start of the air cleaning operation (step T18 / NO), the control device 130 returns to the process of step T15 and acquires the sensor data of the air quality sensor 108A again.
  • the connection device for connecting to the network NW is not provided in the room where the indoor unit 100 is installed, or the connection device is installed in the room.
  • this is a case where the air conditioner 1B is intentionally not connected to the network NW.
  • the indoor unit 100 is provided with the infrared signal receiving unit 101, but is not provided with the function of acquiring the time information from the remote controller 5.
  • the time acquisition unit 151 estimates the time or time zone based on the sensor data acquired from the indoor sensor unit 108 and the outdoor sensor unit 16.
  • the operation control unit 155 causes the air purifying device 110 to perform an air purifying operation or dehumidifies the refrigerant cycle circuit, so that the air in the room can be kept as high-quality air. That is, when the indoor unit 100 includes at least one of the communication unit 103 and the infrared signal receiving unit 101, the time or time zone is estimated by the method described in the second embodiment, and the air cleaning operation is executed. You may.
  • the air conditioner 1B of the second embodiment the same effect as that of the air conditioner 1A of the first embodiment described above can be obtained.
  • the time acquisition unit 151 of the air conditioner 1B of the second embodiment acquires the sensor data of the indoor sensor unit 108 mounted on the air conditioner 1B.
  • the determination unit 153 estimates the time or time zone based on the sensor data acquired by the time acquisition unit, and determines whether or not the estimated time or time zone is included in the operation time zone.
  • the time or time zone can be set based on the sensor data of the indoor sensor unit 108 mounted on the air conditioner 1B. It is estimated that the air conditioner 1B can be operated during the operating time zone.
  • each of the above-described embodiments shows only one aspect of the present disclosure, and can be arbitrarily modified and applied within the scope of the present disclosure.
  • each part of the air conditioner 1A shown in FIG. 3 and the air conditioner 1B shown in FIG. 5 is an example, and the specific mounting form is not particularly limited. That is, it is not always necessary to implement the hardware corresponding to each part individually, and it is of course possible to realize the function of each part by executing the program by one processor.
  • a part of the functions realized by the software in each of the above-described embodiments may be realized by the hardware, or a part of the functions realized by the hardware may be realized by the software.
  • the operation unit shown in the flowcharts shown in FIGS. 4 and 6 is divided according to the main processing contents in order to facilitate understanding of the operation of the control device 130, and the method of dividing the processing unit. And the name do not limit this disclosure. It may be divided into more step units depending on the processing content. Further, one step unit may be divided so as to include more processes. Further, the order of the steps may be appropriately changed as long as it does not interfere with the purpose of the present disclosure.
  • the air conditioner and the control method of the air conditioner of the present disclosure operate the air purifier when the time or time zone acquired by the time acquisition unit is included in the preset operating time zone. Therefore, the indoor air quality can be maintained in a high quality state regardless of the information such as the air quality provided from the external device. Therefore, it can be used for removing fine particles in indoor air, especially air pollutants.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Fuzzy Systems (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Epidemiology (AREA)
  • Human Computer Interaction (AREA)
  • Air Conditioning Control Device (AREA)
  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)

Abstract

The air conditioner (1A) according to the present disclosure comprises an outdoor unit (10), an indoor unit (100) equipped with an air purifier (110) that cleans the air, and a control device (130) that controls the outdoor unit (10) and the indoor unit (100). The control device (130) is equipped with: a time acquisition unit (151) that acquires the time; a determination unit (153) that determines whether or not the time acquired by the time acquisition unit (151) is included in a preset operation time zone; and an operation control unit (155) that operates the air purifier (110) if it is determined by the determination unit (153) that the time acquired by the time acquisition unit (151) is included in the operation time zone.

Description

空気調和機及び空気調和機の制御方法Air conditioner and control method of air conditioner
 本開示は、空気調和機及び空気調和機の制御方法に関する。 This disclosure relates to an air conditioner and a control method for the air conditioner.
 特許文献1は、サーバー装置が、外部情報源から取得した未来の室外空気質情報に基づいて未来の室内空気質予測値を算出し、さらに、算出した室内空気質予測値から空気清浄運転時刻を算出し、空気調和機を制御する制御装置が、サーバー装置により算出された空気清浄運転時刻に従って空気調和機の運転を制御する空気調和システムを開示する。 In Patent Document 1, the server device calculates the future indoor air quality predicted value based on the future outdoor air quality information acquired from an external information source, and further, the air cleaning operation time is calculated from the calculated indoor air quality predicted value. Disclosed is an air conditioning system in which a controller that calculates and controls the air conditioner controls the operation of the air conditioner according to the air cleanup operation time calculated by the server device.
特開2020-46170号公報Japanese Unexamined Patent Publication No. 2020-46170
 本開示は、外部装置から提供される情報によらず、室内空気質を上質な状態に保つことができる、空気調和機及び空気調和機の制御方法を提供することを目的とする。 It is an object of the present disclosure to provide an air conditioner and a control method for an air conditioner that can maintain the indoor air quality in a high quality state regardless of the information provided from the external device.
 本開示における空気調和機は、室外機と、空気を清浄する空気清浄装置を備える室内機と、室外機及び室内機を制御する制御装置と、を備える。制御装置は、時刻又は時間帯を取得する時刻取得部と、時刻取得部が取得した時刻又は時間帯が、予め設定された動作時間帯に含まれるか否かを判定する判定部と、判定部により時刻取得部が取得した時刻又は時間帯が動作時間帯に含まれると判定された場合に、空気清浄装置を動作させる動作制御部と、を備える。 The air conditioner in the present disclosure includes an outdoor unit, an indoor unit provided with an air purifying device for purifying air, and a control device for controlling the outdoor unit and the indoor unit. The control device has a time acquisition unit for acquiring a time or a time zone, a determination unit for determining whether or not the time or time zone acquired by the time acquisition unit is included in a preset operation time zone, and a determination unit. It is provided with an operation control unit for operating the air purifying device when it is determined that the time or time zone acquired by the time acquisition unit is included in the operation time zone.
 本開示における空気調和機の制御方法は、室外機と、空気を清浄する空気清浄装置を備える室内機と、室外機及び室内機を制御する制御装置と、を備える空気調和機の制御方法であって、時刻又は時間帯を取得する時刻取得ステップと、時刻取得ステップにより取得した時刻又は時間帯が、予め設定された動作時間帯に含まれるか否かを判定する判定ステップと、判定ステップにより時刻取得ステップが取得した時刻又は時間帯が動作時間帯に含まれると判定された場合に、空気清浄装置を動作させる動作ステップと、を有する。 The control method of the air conditioner in the present disclosure is a control method of an air conditioner including an outdoor unit, an indoor unit provided with an air purifying device for purifying air, and a control device for controlling the outdoor unit and the indoor unit. The time acquisition step for acquiring the time or time zone, the determination step for determining whether or not the time or time zone acquired by the time acquisition step is included in the preset operation time zone, and the time by the determination step. It has an operation step for operating the air purifying device when it is determined that the time or time zone acquired by the acquisition step is included in the operation time zone.
図1は、PM2.5の測定結果を示す図である。FIG. 1 is a diagram showing a measurement result of PM2.5. 図2は、実施の形態1の空気調和機の右側から見た室内機の内部構成を概略的に示す図である。FIG. 2 is a diagram schematically showing the internal configuration of the indoor unit as seen from the right side of the air conditioner of the first embodiment. 図3は、実施の形態1の空気調和機の構成を示すブロック図である。FIG. 3 is a block diagram showing the configuration of the air conditioner according to the first embodiment. 図4は、実施の形態1の空気調和機の制御装置の動作を示すフローチャートである。FIG. 4 is a flowchart showing the operation of the control device of the air conditioner according to the first embodiment. 図5は、実施の形態2の空気調和機の構成を示すブロック図である。FIG. 5 is a block diagram showing the configuration of the air conditioner according to the second embodiment. 図6は、実施の形態2の空気調和機の制御装置の動作を示すフローチャートである。FIG. 6 is a flowchart showing the operation of the control device of the air conditioner according to the second embodiment.
 (本開示の基礎となった知見等)
 本発明者らが本開示に想到するに至った当時、空気調和機により室内の空気を清浄化する技術は、特許文献1に開示のように、サーバー装置が、外部情報源から取得した未来の室外空気質情報に基づいて未来の室内空気質予測値を算出し、さらに、算出した室内空気質予測値から空気清浄運転時刻を算出し、空気調和機を制御する制御装置が、サーバー装置により算出された空気清浄運転時刻に従って空気調和機の運転を制御するという状況であった。このため、当該業界では、空気調和機は、外部装置から提供される情報に依存して動作することが一般的であった。
(Knowledge, etc. that became the basis of this disclosure)
At the time when the present inventors came up with the present disclosure, the technique of purifying the indoor air by an air conditioner is the future that the server device acquired from an external information source as disclosed in Patent Document 1. The server device calculates the future indoor air quality predicted value based on the outdoor air quality information, calculates the air cleaning operation time from the calculated indoor air quality predicted value, and controls the air conditioner. The situation was that the operation of the air conditioner was controlled according to the air cleaning operation time. For this reason, it has been common in the industry for air conditioners to operate depending on information provided by an external device.
 図1は、ベトナムのある4日間のPM2.5の濃度変化を示す図である。 FIG. 1 is a diagram showing changes in PM2.5 concentration over a certain period of 4 days in Vietnam.
 本開示の発明者らは、PM2.5の濃度変化を測定した結果、1日のPM2.5の濃度変化に規則性があることを発見した。例えば、ベトナムでは、図1に破線で囲んで示す、6時(午前6時)から11時(午前11時)、及び18時(午後6時)~24時(午後12時)の時間帯でPM2.5の濃度が高くなることを発見した。 As a result of measuring the change in PM2.5 concentration, the inventors of the present disclosure found that there is regularity in the daily change in PM2.5 concentration. For example, in Vietnam, during the time period from 6:00 (6:00 am) to 11:00 (11:00 am) and from 18:00 (6:00 pm) to 24:00 (12:00 pm), which is surrounded by a broken line in Fig. 1. It was discovered that the concentration of PM2.5 was high.
 そこで、本開示の発明者らは、1日のPM2.5の濃度変化に規則性があることをヒントにして、PM2.5の濃度が多い時間帯を空気調和機の動作時間帯に設定し、この動作時間帯に空気調和機を動作させることで、室内の微粒子濃度を低減するという着想を得た。また、発明者らは、この着想を実現するためには、時刻を取得する必要があることを発見し、その課題を解決するために、本開示の主題を構成するに至った。 Therefore, the inventors of the present disclosure set the time zone in which the concentration of PM2.5 is high as the operating time zone of the air conditioner, using the hint that there is regularity in the change in the concentration of PM2.5 in one day. By operating the air conditioner during this operating time, I got the idea of reducing the concentration of fine particles in the room. In addition, the inventors have discovered that it is necessary to acquire the time in order to realize this idea, and have come to construct the subject matter of the present disclosure in order to solve the problem.
 以下、図面を参照しながら実施の形態を詳細に説明する。但し、必要以上に詳細な説明を省略する場合がある。例えば、既によく知られた事項の詳細説明、または、実質的に同一の構成に対する重複説明を省略する場合がある。 Hereinafter, embodiments will be described in detail with reference to the drawings. However, more detailed explanations may be omitted than necessary. For example, detailed explanations of already well-known matters or duplicate explanations for substantially the same configuration may be omitted.
 なお、添付図面および以下の説明は、当業者が本開示を十分に理解するために提供されるのであって、これらにより請求の範囲に記載の主題を限定することを意図していない。 It should be noted that the accompanying drawings and the following description are provided for those skilled in the art to fully understand the present disclosure, and are not intended to limit the subject matter described in the claims.
 (実施の形態1)
 以下、図2から図4を用いて実施の形態1を説明する。
(Embodiment 1)
Hereinafter, the first embodiment will be described with reference to FIGS. 2 to 4.
 [1-1.構成]
 図2は、実施の形態1の空気調和機1Aの左右方向における右側から見た室内機100の内部構成を概略的に示す図である。図3は、実施の形態1の空気調和機1Aの構成を示すブロック図である。
[1-1. Constitution]
FIG. 2 is a diagram schematically showing the internal configuration of the indoor unit 100 as seen from the right side in the left-right direction of the air conditioner 1A of the first embodiment. FIG. 3 is a block diagram showing the configuration of the air conditioner 1A of the first embodiment.
 空気調和機1Aは、室外機10(図2には図示せず)と、室内機100とを備える。室外機10と室内機100とは、不図示の冷媒配管により接続される。室外機10は、室外に配置され、室内機100は、冷却又は暖房の対象となる室内空間に配置される。 The air conditioner 1A includes an outdoor unit 10 (not shown in FIG. 2) and an indoor unit 100. The outdoor unit 10 and the indoor unit 100 are connected by a refrigerant pipe (not shown). The outdoor unit 10 is arranged outdoors, and the indoor unit 100 is arranged in an indoor space to be cooled or heated.
 室外機10は、圧縮機11、室外ファン12、及び室外熱交換器13などを備える。室内機100は、室内熱交換器104、及び室内ファン105などを備える。 The outdoor unit 10 includes a compressor 11, an outdoor fan 12, an outdoor heat exchanger 13, and the like. The indoor unit 100 includes an indoor heat exchanger 104, an indoor fan 105, and the like.
 室内機100の筐体2には、吸込口121と吹出口125とが形成される。吸込口121は筐体2の上面に形成され、吹出口125は筐体2の下面に形成される。筐体2の後面は壁面に取り付けられる。また、筐体2の内部には、空気Arを吸込口121から筐体2の内部に吸い込ませる室内ファン105と、吸込口121から吸い込まれた空気Arと熱交換する室内熱交換器104と、が設けられている。 A suction port 121 and an outlet 125 are formed in the housing 2 of the indoor unit 100. The suction port 121 is formed on the upper surface of the housing 2, and the air outlet 125 is formed on the lower surface of the housing 2. The rear surface of the housing 2 is attached to the wall surface. Further, inside the housing 2, an indoor fan 105 for sucking air Ar into the inside of the housing 2 from the suction port 121, and an indoor heat exchanger 104 for heat exchange with the air Ar sucked from the suction port 121. Is provided.
 また、室内機100には、オゾン及びイオン発生装置111と、静電霧化装置113と、空気清浄フィルタ115とを備える空気清浄装置110とが搭載される。 Further, the indoor unit 100 is equipped with an ozone and ion generator 111, an electrostatic atomizer 113, and an air purifier 110 including an air purifier filter 115.
 オゾン及びイオン発生装置111は、放電電極と対向電極とを備える。オゾン及びイオン発生装置111は、放電によって空気中の酸素分子を酸化してオゾンを発生させるとともに、放電によってプラスイオンやマイナスイオンを発生させ、イオン風としてこれらを空気中に放出させる。 The ozone and ion generator 111 includes a discharge electrode and a counter electrode. The ozone and ion generator 111 oxidizes oxygen molecules in the air by electric discharge to generate ozone, and also generates positive ions and negative ions by electric discharge, and releases them into the air as ion wind.
 オゾン及びイオン発生装置111の放電電極にマイナス電位を印加すると、放電電極の先端でコロナ放電が起こり、放電電極の先端から対向電極に向かって電子が放出される。放出された電子の流れは高電界によって加速されながら気体分子と衝突し、気体分子に運動エネルギーを与えて空気の電子誘導風となり気流を生み出す。このとき、電子の一部は気体分子の結合軌道の外殻にトラップされてマイナスに帯電したマイナスイオン分子となる。このため、電子誘導風の気流は、マイナスイオン分子を含む気流であるイオン風となる。このように、放電電極と対向電極との間に直流の電位を印加することによって生じるイオン風は、放電電極から対向電極に向けて吹き出される気流となる。従って、マイナスイオン分子を含むイオン風によってマイナスイオン分子を放電電極から対向電極に向かう方向に放出させることができる。 When a negative potential is applied to the discharge electrode of the ozone and ion generator 111, a corona discharge occurs at the tip of the discharge electrode, and electrons are emitted from the tip of the discharge electrode toward the counter electrode. The flow of emitted electrons collides with gas molecules while being accelerated by a high electric field, and gives kinetic energy to the gas molecules to become an electron-induced wind of air, creating an air flow. At this time, some of the electrons are trapped in the outer shell of the bonding orbital of the gas molecule and become negatively charged negative ion molecules. Therefore, the airflow of the electron induced wind becomes an ion wind which is an airflow containing negative ion molecules. In this way, the ionic wind generated by applying a direct current potential between the discharge electrode and the counter electrode becomes an air flow blown from the discharge electrode toward the counter electrode. Therefore, the negative ion molecules can be discharged from the discharge electrode toward the counter electrode by the ion wind containing the negative ion molecules.
 静電霧化装置113は、例えば、吸込口121により筐体2内に吸い込まれた空気の流れを案内するリアガイダ4に設けられる。静電霧化装置113は、放電部と電源回路とを備える。放電部は、供給される水分に放電して帯電微粒子水を含むミストを生成する。電源回路は、放電部に印加する高電圧を発生させる。放電部及び電源回路の図示は省略する。静電霧化装置113は、帯電微粒子水を含むミストを発生させることで、空気中のウイルス、カビ、アレルギーの原因となる物質、菌等を抑制したり、空気を脱臭したりする。帯電微粒子水には、除菌作用や脱臭作用などを発揮するラジカル等の有効成分が含まれる。 The electrostatic atomizer 113 is provided in, for example, the rear guider 4 that guides the flow of air sucked into the housing 2 by the suction port 121. The electrostatic atomizer 113 includes a discharge unit and a power supply circuit. The discharge unit discharges to the supplied water to generate a mist containing charged fine particle water. The power supply circuit generates a high voltage applied to the discharge section. Illustration of the discharge part and the power supply circuit is omitted. The electrostatic atomizer 113 generates mist containing charged fine particle water to suppress viruses, molds, substances causing allergies, bacteria and the like in the air, and deodorizes the air. The charged fine particle water contains active ingredients such as radicals that exert sterilizing action and deodorizing action.
 空気清浄装置110は、空気清浄フィルタ115を進退させるモータなどの動力源(図示略)を備える。空気清浄フィルタ115は、動力源により、室内機100の吸込口121を覆う空気清浄位置と室内機100内に収納される待機位置との間で進退する。 The air purifying device 110 includes a power source (not shown) such as a motor for advancing and retreating the air purifying filter 115. The air purifying filter 115 advances and retreats between the air purifying position covering the suction port 121 of the indoor unit 100 and the standby position housed in the indoor unit 100 by the power source.
 空気清浄フィルタ115が空気清浄位置に配置されている場合、室内ファン105の回転によって吸込口121に向かう室内空気内のカビ、細菌、アレルギー物質、花粉、PM2.5、ほこりなどの微粒子が空気清浄フィルタ115に捕集され、室内空気が清浄化される。そして、清浄化された室内空気が、吸込口121、フィルタ123、室内熱交換器104、吹出口125を経て、気流Afとして室内に戻る。その結果、室内空気の空気質が改善される。 When the air purifying filter 115 is placed in the air purifying position, fine particles such as mold, bacteria, allergens, pollen, PM2.5, and dust in the indoor air toward the suction port 121 by the rotation of the indoor fan 105 are air purified. It is collected by the filter 115 and the indoor air is purified. Then, the purified indoor air returns to the room as an air flow Af through the suction port 121, the filter 123, the indoor heat exchanger 104, and the air outlet 125. As a result, the air quality of the indoor air is improved.
 空気清浄装置110が駆動していない場合、空気清浄フィルタ115は、室内機100内に収納される待機位置で待機する。室内の空気Arは吸込口121を介してそのまま室内機100に流入する。また、空気清浄は、室内ファン105が回転していれば、空調を停止した状態で、すなわち圧縮機11を停止した状態でも行うことが可能である。 When the air purifying device 110 is not driven, the air purifying filter 115 stands by at a standby position housed in the indoor unit 100. The indoor air Ar flows into the indoor unit 100 as it is through the suction port 121. Further, the air purification can be performed even when the air conditioning is stopped, that is, when the compressor 11 is stopped, as long as the indoor fan 105 is rotating.
 図3を参照して空気調和機1Aの構成を説明する。室外機10は、圧縮機11、室外ファン12、室外熱交換器13、四方弁14、膨張弁15及び室外センサ部16を備える。室内機100は、室内熱交換器104、室内ファン105、上下ルーバー106及び左右ルーバー107を備える。室外機10に設けられた圧縮機11、室外熱交換器13、四方弁14及び膨張弁15と、室内機100に設けられた室内熱交換器104とは冷凍サイクル回路を構成する。 The configuration of the air conditioner 1A will be described with reference to FIG. The outdoor unit 10 includes a compressor 11, an outdoor fan 12, an outdoor heat exchanger 13, a four-way valve 14, an expansion valve 15, and an outdoor sensor unit 16. The indoor unit 100 includes an indoor heat exchanger 104, an indoor fan 105, upper and lower louvers 106, and left and right louvers 107. The compressor 11, the outdoor heat exchanger 13, the four-way valve 14, and the expansion valve 15 provided in the outdoor unit 10 and the indoor heat exchanger 104 provided in the indoor unit 100 form a refrigeration cycle circuit.
 四方弁14は、制御装置130により制御され、冷房運転と、暖房運転とで冷凍サイクル回路における冷媒の流れる方向を切り替える。膨張弁15は、冷房運転又は除湿運転時には、室外熱交換器13で放熱した冷凍サイクル回路の高圧の冷媒を冷凍サイクル回路の低圧まで減圧する。また、膨張弁15は、暖房運転時には、室内熱交換器104で放熱した冷凍サイクル回路の高圧の冷媒を冷凍サイクル回路の低圧まで減圧する。 The four-way valve 14 is controlled by the control device 130, and switches the flow direction of the refrigerant in the refrigeration cycle circuit between the cooling operation and the heating operation. The expansion valve 15 decompresses the high-pressure refrigerant of the refrigerating cycle circuit radiated by the outdoor heat exchanger 13 to the low pressure of the refrigerating cycle circuit during the cooling operation or the dehumidifying operation. Further, the expansion valve 15 decompresses the high-pressure refrigerant of the refrigeration cycle circuit radiated by the indoor heat exchanger 104 to the low pressure of the refrigeration cycle circuit during the heating operation.
 室内ファン105は、不図示のモータにより駆動され、室内熱交換器104に室内空間の空気を供給する。室内ファン105の回転数は、制御装置130により制御される。室内ファン105の回転数が制御されることにより、室内熱交換器104に供給される空気の送量が調整される。 The indoor fan 105 is driven by a motor (not shown) to supply air in the interior space to the indoor heat exchanger 104. The rotation speed of the indoor fan 105 is controlled by the control device 130. By controlling the rotation speed of the indoor fan 105, the amount of air supplied to the indoor heat exchanger 104 is adjusted.
 上下ルーバー106は、室内機100から吹出される風の上下方向の向きを制御する。左右ルーバー107は、室内機100から吹き出される風の左右方向の向きを制御する。 The vertical louver 106 controls the vertical direction of the wind blown from the indoor unit 100. The left and right louvers 107 control the direction of the wind blown from the indoor unit 100 in the left-right direction.
 空気調和機1Aが行う空調運転には、冷房運転、暖房運転及び除湿運転が含まれる。 The air conditioning operation performed by the air conditioner 1A includes a cooling operation, a heating operation, and a dehumidifying operation.
 室外機10は、紫外線センサ16Aを備える室外センサ部16を備える。室内機100は、赤外線信号受信部101、近距離無線通信部102、通信部103、室内センサ部108、空気清浄装置110及び制御装置130を備える。 The outdoor unit 10 includes an outdoor sensor unit 16 including an ultraviolet sensor 16A. The indoor unit 100 includes an infrared signal receiving unit 101, a short-range wireless communication unit 102, a communication unit 103, an indoor sensor unit 108, an air purifying device 110, and a control device 130.
 紫外線センサ16Aは、室外の紫外線量を検出するセンサである。 The ultraviolet sensor 16A is a sensor that detects the amount of ultraviolet rays outdoors.
 赤外線信号受信部101は、ユーザによりリモコン5が操作された場合に、リモコン5から出力される赤外線信号を受信する。リモコン5が出力する赤外線信号には、リモコン5が受け付けた操作を示す情報と、時刻を示す時刻情報とが含まれる。赤外線信号受信部101は、赤外線信号を受信すると、受信した赤外線信号から操作を示す情報と、時刻情報とを取り出し、取り出した操作を示す情報及び時刻情報を制御装置130に出力する。 The infrared signal receiving unit 101 receives an infrared signal output from the remote controller 5 when the remote controller 5 is operated by the user. The infrared signal output by the remote controller 5 includes information indicating an operation accepted by the remote controller 5 and time information indicating a time. When the infrared signal receiving unit 101 receives the infrared signal, it extracts information indicating an operation and time information from the received infrared signal, and outputs information indicating the extracted operation and time information to the control device 130.
 近距離無線通信部102は、近距離無線通信により外部デバイスと相互にデータ交換を行う。外部デバイスには、例えば、ユーザの身体に装着したウェアラブルデバイスや、スマートフォン等が含まれる。本実施の形態の近距離無線通信部102は、ウェアラブルデバイスや、スマートフォン等の外部デバイスからユーザの生体情報を取得する。 The short-range wireless communication unit 102 exchanges data with an external device by short-range wireless communication. The external device includes, for example, a wearable device worn on the user's body, a smartphone, and the like. The short-range wireless communication unit 102 of the present embodiment acquires the biometric information of the user from a wearable device or an external device such as a smartphone.
 通信部103は、所定の無線通信規格に基づいて無線通信を行い、インターネット等のネットワークNWに接続された装置と相互にデータ通信を行う。ネットワークNWは、例えば、インターネットや、移動体通信網、WAN(Wide Area Network)等の広域ネットワークを含む構成としてもよいし、イントラネットやLAN(Local Area Network)等のプライベートネットワークにより構成してもよい。本実施の形態のネットワークNWには、室内機100と共に室内に配置された換気扇300や、外部装置200が接続される。また、本実施の形態では、通信部103が無線通信により外部装置200や換気扇300とデータ通信を行う場合について説明する。しかしながら、空気調和機1AがLANケーブル等のケーブルによる有線接続によってネットワークNWに接続する構成であってもよい。 The communication unit 103 performs wireless communication based on a predetermined wireless communication standard, and performs data communication with a device connected to a network NW such as the Internet. The network NW may be configured to include, for example, the Internet, a mobile communication network, a wide area network such as WAN (Wide Area Network), or may be configured by a private network such as an intranet or LAN (Local Area Network). .. A ventilation fan 300 arranged indoors together with the indoor unit 100 and an external device 200 are connected to the network NW of the present embodiment. Further, in the present embodiment, a case where the communication unit 103 performs data communication with the external device 200 and the ventilation fan 300 by wireless communication will be described. However, the air conditioner 1A may be configured to be connected to the network NW by a wired connection using a cable such as a LAN cable.
 室内センサ部108は、空気質センサ108A、温度センサ108B、人感センサ108C及び日射センサ108Dを備える。 The indoor sensor unit 108 includes an air quality sensor 108A, a temperature sensor 108B, a motion sensor 108C, and a solar radiation sensor 108D.
 空気質センサ108Aは、室内の微粒子濃度を測定するセンサである。本実施の形態では、空気質センサ108Aが、微粒子であるPM2.5の濃度を測定するPM2.5センサである場合について説明する。しかしながら、空気質センサ108Aは、細菌センサ、アレルギー物質センサ、花粉センサ、ほこりセンサ等であってもよい。 The air quality sensor 108A is a sensor that measures the concentration of fine particles in a room. In the present embodiment, the case where the air quality sensor 108A is a PM2.5 sensor that measures the concentration of PM2.5 which is a fine particle will be described. However, the air quality sensor 108A may be a bacterial sensor, an allergic substance sensor, a pollen sensor, a dust sensor, or the like.
 温度センサ108Bは、室内機100に設けられた不図示の開口から室内機100内に取り入れられる室内空気の温度を検知するセンサである。人感センサ108Cは、赤外線量の変化により室内空間の人の存否を検出する。人感センサ108Cは、人体から放射される赤外線を検知する焦電素子型の赤外線センサにより構成される。日射センサ108Dは、空調対象空間に照射される日射量を検出するセンサである。 The temperature sensor 108B is a sensor that detects the temperature of the indoor air taken into the indoor unit 100 from an opening (not shown) provided in the indoor unit 100. The motion sensor 108C detects the presence or absence of a person in the indoor space by changing the amount of infrared rays. The motion sensor 108C is composed of a pyroelectric element type infrared sensor that detects infrared rays radiated from the human body. The solar radiation sensor 108D is a sensor that detects the amount of solar radiation applied to the air-conditioned space.
 制御装置130は、メモリ133及びプロセッサ150を備えるコンピュータ装置である。 The control device 130 is a computer device including a memory 133 and a processor 150.
 メモリ133は、ROM(Read only memory)やRAM(Random Access Memory)等の半導体メモリと、HDD(Hard Disk Drive)やSSD(Solid State Drive)等の補助記憶装置とを備える。メモリ133は、プロセッサ150が実行する制御プログラム141や、室外センサ部16や、室内センサ部108のセンサにより測定されたセンサデータを記憶する。 The memory 133 includes semiconductor memories such as ROM (Read only memory) and RAM (Random Access Memory), and auxiliary storage devices such as HDD (Hard Disk Drive) and SSD (Solid State Drive). The memory 133 stores the sensor data measured by the control program 141 executed by the processor 150, the outdoor sensor unit 16, and the sensor of the indoor sensor unit 108.
 プロセッサ150は、CPU(Central Processing Unit)、CPUを搭載したMCU(Micro Controller Unit)、又はMPU(Micro Processing Unit)等のマイクロコントローラにより構成される。また、制御装置130を、ASIC(Application Specific Integrated Circuit)やFPGA(Field Programmable Gate Array)等の集積回路により実現してもよい。 The processor 150 is composed of a CPU (Central Processing Unit), a microcontroller equipped with a CPU (Micro Controller Unit), or a microcontroller such as an MPU (Micro Processing Unit). Further, the control device 130 may be realized by an integrated circuit such as an ASIC (Application Specific Integrated Circuit) or an FPGA (Field Programmable Gate Array).
 制御装置130は、時刻取得部151、判定部153及び動作制御部155を機能ブロックとして備える。これらの機能ブロックは、制御装置130が備える機能を示すものであり、メモリ133に記憶された制御プログラム141をプロセッサ150が実行することで実現される。 The control device 130 includes a time acquisition unit 151, a determination unit 153, and an operation control unit 155 as functional blocks. These functional blocks indicate the functions included in the control device 130, and are realized by the processor 150 executing the control program 141 stored in the memory 133.
 時刻取得部151は、時刻を取得する。実施の形態1の時刻取得部151は、通信部103を制御してネットワークNWに接続し、ネットワークNWに接続された外部装置200から時刻を取得するようにしてよい。また、時刻取得部151は、近距離無線通信部102を制御して、室内に設置されたテレビや冷蔵庫等の他の装置から時刻を取得するようにしてもよい。 The time acquisition unit 151 acquires the time. The time acquisition unit 151 of the first embodiment may control the communication unit 103 to connect to the network NW and acquire the time from the external device 200 connected to the network NW. Further, the time acquisition unit 151 may control the short-range wireless communication unit 102 to acquire the time from another device such as a television or a refrigerator installed in the room.
 判定部153は、時刻取得部151が取得した時刻が、予め設定された動作時間帯に含まれるか否かを判定する。動作時間帯は、室内の空気中の微粒子量が予め設定された基準値よりも増加することが予測される時間帯に設定される。動作時間帯は、空気中の微粒子量が予め設定された基準値よりも増加することが予測される時間帯よりも所定時間前に設定してもよい。この場合、微粒子量の増加を見越して事前に空気清浄装置110を動作させ、室内の空気質をさらに上質な状態に保つことができる。判定部153は、時刻取得部151が取得した時刻が、予め設定された動作時間帯に含まれる場合、空気清浄装置110が空気清浄運転を行うように動作制御部155に指示を出力する。 The determination unit 153 determines whether or not the time acquired by the time acquisition unit 151 is included in the preset operation time zone. The operating time zone is set to a time zone in which the amount of fine particles in the air in the room is expected to increase from a preset reference value. The operating time zone may be set before a predetermined time before the time zone in which the amount of fine particles in the air is expected to increase from a preset reference value. In this case, the air purifying device 110 can be operated in advance in anticipation of an increase in the amount of fine particles, and the indoor air quality can be kept in a higher quality state. When the time acquired by the time acquisition unit 151 is included in the preset operation time zone, the determination unit 153 outputs an instruction to the operation control unit 155 so that the air purifying device 110 performs the air cleaning operation.
 動作制御部155は、判定部153の指示に従い、空気清浄装置110を動作させる。動作制御部155は、空気清浄装置110が備えるオゾン及びイオン発生装置111、静電霧化装置113及び空気清浄フィルタ115の少なくとも1つを動作させることで、空気清浄装置110に空気清浄運転を実行させる。また、動作制御部155は、冷媒サイクル回路を除湿運転させることで空気清浄運転を実行させてもよい。さらに、動作制御部155は、ネットワークNWに接続された換気扇300に、通信部103を介して動作指示を出力してもよい。動作制御部155が制御する、オゾン及びイオン発生装置111、静電霧化装置113、及び空気清浄フィルタ115による動作、除湿運転の動作、及び換気扇300による換気動作を総称して、以下では清浄機能という。 The operation control unit 155 operates the air purifier 110 according to the instruction of the determination unit 153. The operation control unit 155 executes an air cleaning operation on the air cleaning device 110 by operating at least one of the ozone and ion generator 111, the electrostatic atomizing device 113, and the air cleaning filter 115 included in the air cleaning device 110. Let me. Further, the operation control unit 155 may execute the air cleaning operation by dehumidifying the refrigerant cycle circuit. Further, the operation control unit 155 may output an operation instruction to the ventilation fan 300 connected to the network NW via the communication unit 103. The operation by the ozone and ion generator 111, the electrostatic atomizer 113, and the air cleaning filter 115, the operation of the dehumidifying operation, and the ventilation operation by the ventilation fan 300, which are controlled by the operation control unit 155, are collectively referred to as the cleaning function below. That is.
 上記の清浄機能について、動作制御部155が空気清浄運転の際に動作させる優先順位は、静電霧化装置113が最も優先順位が高く、以下、オゾン及びイオン発生装置111、空気清浄フィルタ115、除湿運転、換気扇300による換気動作の順である。動作制御部155は、空気質センサ108Aにより測定された空気質に基づいて動作させる清浄機能を変更してもよい。例えば、空気質センサ108Aにより測定された微粒子濃度が基準値以上である場合、優先順位が最も高い静電霧化装置113を動作させ、微粒子濃度がさらに高い場合、静電霧化装置113に加えてオゾン-イオン発生装置111を動作させてもよい。以下、同様に、微粒子濃度が高くなるにつれて、動作させる清浄機能を追加してもよい。 Regarding the above-mentioned cleaning function, the electrostatic atomizer 113 has the highest priority for operating the operation control unit 155 during the air cleaning operation, and hereinafter, the ozone and ion generator 111, the air cleaning filter 115, and the like. The order is dehumidification operation and ventilation operation by the ventilation fan 300. The operation control unit 155 may change the cleaning function to be operated based on the air quality measured by the air quality sensor 108A. For example, when the fine particle concentration measured by the air quality sensor 108A is equal to or higher than the reference value, the electrostatic atomizer 113 having the highest priority is operated, and when the fine particle concentration is higher, the electrostatic atomizer 113 is added. The ozone-ion generator 111 may be operated. Hereinafter, similarly, a cleaning function may be added to operate as the concentration of fine particles increases.
 動作制御部155は、動作時間帯を複数の期間に分割し、分割した各期間で動作させる清浄機能を変更してもよい。例えば、複数に分割した期間のうち、最も微粒子濃度が高くなることが予測される期間では、複数の清浄機能を動作させ、他の期間では、優先順位が最も高い静電霧化装置113のみを動作させてもよい。 The operation control unit 155 may divide the operation time zone into a plurality of periods and change the cleaning function to operate in each of the divided periods. For example, in the period divided into a plurality of periods in which the concentration of fine particles is expected to be the highest, a plurality of cleaning functions are operated, and in the other period, only the electrostatic atomizer 113 having the highest priority is used. It may be operated.
 動作制御部155は、判定部153から指示が入力された場合に加え、空気質センサ108Aにより測定された微粒子濃度が基準値以上である場合も、清浄機能を一定時間動作させる。微粒子濃度の基準値は、例えば、35μg/mに設定される。 The operation control unit 155 operates the cleaning function for a certain period of time not only when an instruction is input from the determination unit 153 but also when the fine particle concentration measured by the air quality sensor 108A is equal to or higher than the reference value. The reference value of the fine particle concentration is set to, for example, 35 μg / m 3 .
 [1-2.動作]
 図4は、制御装置130の動作を示すフローチャートである。図4に示すフローチャートを参照しながら本実施の形態の制御装置130の動作を説明する。
[1-2. motion]
FIG. 4 is a flowchart showing the operation of the control device 130. The operation of the control device 130 according to the present embodiment will be described with reference to the flowchart shown in FIG.
 制御装置130は、時刻情報を取得する時刻取得ステップを実行する(ステップS1)。例えば、リモコン5は、空気調和機1Aの電源をオンするユーザの操作を受け付けると、受け付けた操作を示す情報と、時刻情報とを含む操作信号を空気調和機1Aに送信する。制御装置130は、操作信号を受信すると、受信した操作信号に含まれる時刻情報を取得する。制御装置130は、通信部103を介してネットワークNWにアクセスし、ネットワークNWに接続された外部装置200から時刻情報を取得してもよい。 The control device 130 executes a time acquisition step for acquiring time information (step S1). For example, when the remote controller 5 receives an operation of a user who turns on the power of the air conditioner 1A, the remote controller 5 transmits an operation signal including information indicating the accepted operation and time information to the air conditioner 1A. When the control device 130 receives the operation signal, the control device 130 acquires the time information included in the received operation signal. The control device 130 may access the network NW via the communication unit 103 and acquire time information from the external device 200 connected to the network NW.
 制御装置130は、時刻情報を取得すると、取得した時刻情報が示す現在の時刻が、予め設定された動作時間帯に含まれるか否かを判定する判定ステップを実行する(ステップS2)。この動作時間帯は、PM2.5等の微粒子の濃度が予め設定された基準値よりも多いことが予測される時間帯が設定される。制御装置130は、現在の時刻が動作時間帯に含まれる場合(ステップS2/YES)、空気清浄装置110に空気清浄運転の開始を指示する動作ステップを実行させる(ステップS3)。制御装置130は、冷媒サイクル回路に除湿運転を開始させてもよいし、換気扇300を動作させる信号を通信部103により送信してもよい(ステップS3)。制御装置130は、空気清浄装置110が備えるオゾン及びイオン発生装置111、静電霧化装置113又は空気清浄フィルタ115の少なくとも1つを動作させることで、空気清浄装置110に空気清浄運転を実行させる。制御装置130は、冷媒サイクル回路を除湿運転させたり、換気扇300を動作させたりすることで、空気清浄運転を実行させてもよい。 When the control device 130 acquires the time information, the control device 130 executes a determination step of determining whether or not the current time indicated by the acquired time information is included in the preset operation time zone (step S2). This operating time zone is set to a time zone in which the concentration of fine particles such as PM2.5 is predicted to be higher than a preset reference value. When the current time is included in the operating time zone (step S2 / YES), the control device 130 causes the air purifying device 110 to execute an operation step instructing the start of the air cleaning operation (step S3). The control device 130 may start the dehumidifying operation in the refrigerant cycle circuit, or may transmit a signal for operating the ventilation fan 300 by the communication unit 103 (step S3). The control device 130 causes the air purifying device 110 to perform an air cleaning operation by operating at least one of the ozone and ion generating device 111, the electrostatic atomizing device 113, or the air cleaning filter 115 included in the air purifying device 110. .. The control device 130 may execute the air cleaning operation by dehumidifying the refrigerant cycle circuit or operating the ventilation fan 300.
 その後、制御装置130は、カウンタをリセットし(ステップS4)、カウンタにカウントを開始させる(ステップS5)。そして、制御装置130は、カウンタのカウント値を取得する(ステップS6)。制御装置130は、取得したカウント値に基づき、空気清浄運転又は除湿運転を開始させてからの経過時間が、予め設定された設定時間以上であるか否かを判定する(ステップS7)。 After that, the control device 130 resets the counter (step S4) and causes the counter to start counting (step S5). Then, the control device 130 acquires the count value of the counter (step S6). Based on the acquired count value, the control device 130 determines whether or not the elapsed time from the start of the air cleaning operation or the dehumidifying operation is equal to or longer than the preset set time (step S7).
 制御装置130は、空気清浄運転又は除湿運転を開始させてからの経過時間が、予め設定された設定時間以上ではない場合(ステップS7/NO)、ステップS6の処理に戻る。また、制御装置130は、空気清浄運転又は除湿運転を開始させてからの経過時間が、予め設定された設定時間以上であると判定すると(ステップS7/YES)、空気清浄装置110に、空気清浄運転の停止を指示する(ステップS8)。又は、制御装置130は、除湿運転の停止を指示する(ステップS8)。 If the elapsed time from the start of the air cleaning operation or the dehumidifying operation is not equal to or longer than the preset set time (step S7 / NO), the control device 130 returns to the process of step S6. Further, when the control device 130 determines that the elapsed time from the start of the air cleaning operation or the dehumidifying operation is equal to or longer than the preset set time (step S7 / YES), the air purifying device 110 is informed of the air cleaning. Instruct to stop the operation (step S8). Alternatively, the control device 130 instructs to stop the dehumidifying operation (step S8).
 また、ステップS2の判定において、取得した時刻情報が示す現在の時刻が、予め設定された動作時間帯に含まれないと判定した場合(ステップS2/NO)、制御装置130は、空気質センサ108Aのセンサデータを取得する。制御装置130は、取得したセンサデータが示すPM2.5の濃度が、基準値以上であるか否かを判定する(ステップS10)。基準値は、例えば、35μg/mに設定される。 Further, in the determination of step S2, when it is determined that the current time indicated by the acquired time information is not included in the preset operating time zone (step S2 / NO), the control device 130 is the air quality sensor 108A. Get the sensor data of. The control device 130 determines whether or not the concentration of PM2.5 indicated by the acquired sensor data is equal to or higher than the reference value (step S10). The reference value is set to, for example, 35 μg / m 3 .
 制御装置130は、センサデータが示すPM2.5の濃度が、基準値以上である場合(ステップS10/YES)、空気清浄装置110に空気清浄運転の開始を指示する(ステップS11)。又は、制御装置130は、冷媒サイクル回路に除湿運転を開始させてもよいし、換気扇300を動作させる信号を通信部103により送信してもよい(ステップS11)。その後、制御装置130は、カウンタのカウント値をリセットし(ステップS12)、カウンタのカウントを開始する(ステップS13)。そして、制御装置130は、空気質センサ108Aのセンサデータを取得する(ステップS14)。制御装置130は、センサデータが示すPM2.5の濃度が基準値以上であるか否かを判定する(ステップS15)。制御装置130は、センサデータが示すPM2.5の濃度が基準値以上ではない場合(ステップS15/NO)、空気清浄装置110に空気清浄運転の停止を指示する(ステップS8)。又は、制御装置130は、冷媒サイクル回路に除湿運転の停止を指示する。 When the concentration of PM2.5 indicated by the sensor data is equal to or higher than the reference value (step S10 / YES), the control device 130 instructs the air purifying device 110 to start the air cleaning operation (step S11). Alternatively, the control device 130 may start the dehumidifying operation in the refrigerant cycle circuit, or may transmit a signal for operating the ventilation fan 300 by the communication unit 103 (step S11). After that, the control device 130 resets the count value of the counter (step S12) and starts counting the counter (step S13). Then, the control device 130 acquires the sensor data of the air quality sensor 108A (step S14). The control device 130 determines whether or not the concentration of PM2.5 indicated by the sensor data is equal to or higher than the reference value (step S15). When the concentration of PM2.5 indicated by the sensor data is not equal to or higher than the reference value (step S15 / NO), the control device 130 instructs the air purifying device 110 to stop the air cleaning operation (step S8). Alternatively, the control device 130 instructs the refrigerant cycle circuit to stop the dehumidifying operation.
 制御装置130は、センサデータが示すPM2.5の濃度が基準値以上である場合(ステップS15/YES)、カウンタのカウント値を取得する(ステップS16)。制御装置130は、取得したカウント値に基づき、ステップS11で空気清浄装置110が空気清浄運転を開始してから設定時間以上経過したか否かを判定する(ステップS17)。又は、制御装置130は、冷媒サイクル回路に除湿運転を開始させてから設定時間以上経過したか否かを判定する(ステップS17)。制御装置130は、空気清浄運転又は除湿運転を開始してから設定時間以上経過した場合(ステップS17/YES)、空気清浄装置110に空気清浄運転の停止を指示する(ステップS8)。又は、制御装置130は、冷媒サイクル回路に除湿運転の停止を指示する(ステップS8)。制御装置130は、空気清浄運転を開始してから設定時間以上経過していない場合(ステップS17/NO)、ステップS14の処理に戻り、空気質センサ108Aのセンサデータを再度取得する。 When the concentration of PM2.5 indicated by the sensor data is equal to or higher than the reference value (step S15 / YES), the control device 130 acquires the count value of the counter (step S16). Based on the acquired count value, the control device 130 determines whether or not a set time or more has elapsed since the air purifying device 110 started the air cleaning operation in step S11 (step S17). Alternatively, the control device 130 determines whether or not a set time has elapsed since the refrigerant cycle circuit was started to dehumidify (step S17). When the set time or more has elapsed from the start of the air cleaning operation or the dehumidifying operation (step S17 / YES), the control device 130 instructs the air cleaning device 110 to stop the air cleaning operation (step S8). Alternatively, the control device 130 instructs the refrigerant cycle circuit to stop the dehumidifying operation (step S8). If the set time has not elapsed since the start of the air cleaning operation (step S17 / NO), the control device 130 returns to the process of step S14 and acquires the sensor data of the air quality sensor 108A again.
 ステップS9で取得したセンサデータの示すPM2.5の濃度が、基準値以上ではなかった場合(ステップS10/NO)、制御装置130は、カウンタのカウント値をリセットし(ステップS18)、カウンタのカウントを開始する(ステップS19)。そして、制御装置130は、カウンタのカウント値を取得する(ステップS20)。制御装置130は、ステップS1で取得した時刻情報と、取得したカウント値と、に基づき、現在の時刻を演算し、演算して求めた時刻が動作時間帯に含まれるか否かを判定する(ステップS21)。 When the concentration of PM2.5 indicated by the sensor data acquired in step S9 is not equal to or higher than the reference value (step S10 / NO), the control device 130 resets the counter count value (step S18), and the counter counts. Is started (step S19). Then, the control device 130 acquires the count value of the counter (step S20). The control device 130 calculates the current time based on the time information acquired in step S1 and the acquired count value, and determines whether or not the calculated time is included in the operation time zone ( Step S21).
 制御装置130は、演算して求めた時刻が動作時間帯に含まれる場合(ステップS21/YES)、ステップS3に遷移し、空気清浄装置110に空気清浄運転の開始を指示する(ステップS3)。又は、制御装置130は、冷媒サイクル回路に除湿運転を開始させる(ステップS3)。制御装置130は、演算して求めた時刻が動作時間帯に含まれない場合(ステップS21/NO)、リモコン5から時刻情報を割り込み取得したか否かを判定する(ステップS22)。リモコン5は、空気調和機1Aの温度設定を変更するユーザの操作を受け付けると、受け付けた操作を示す情報と、時刻情報とを含む操作信号を空気調和機1Aに送信する。 When the calculated time is included in the operating time zone (step S21 / YES), the control device 130 transitions to step S3 and instructs the air purifying device 110 to start the air cleaning operation (step S3). Alternatively, the control device 130 causes the refrigerant cycle circuit to start the dehumidifying operation (step S3). When the calculated time is not included in the operating time zone (step S21 / NO), the control device 130 determines whether or not the time information is interrupted and acquired from the remote control 5 (step S22). When the remote controller 5 receives an operation of a user who changes the temperature setting of the air conditioner 1A, the remote controller 5 transmits an operation signal including information indicating the accepted operation and time information to the air conditioner 1A.
 制御装置130は、時刻情報を割り込み取得していない場合(ステップS22/NO)、ステップS9の処理に戻り、空気質センサ108Aのセンサデータを取得し、取得したセンサデータが示すPM2.5の濃度と、基準値とを比較する(ステップS10)。また、制御装置130は、時刻情報を割り込み取得した場合(ステップS22/YES)、ステップS2に戻り、割り込み取得した時刻情報に基づき、現在の時刻が動作時間帯に含まれるか否かを判定する(ステップS2)。 When the control device 130 has not acquired the time information by interruption (step S22 / NO), the control device 130 returns to the process of step S9, acquires the sensor data of the air quality sensor 108A, and the concentration of PM2.5 indicated by the acquired sensor data. And the reference value (step S10). Further, when the time information is interrupt-acquired (step S22 / YES), the control device 130 returns to step S2 and determines whether or not the current time is included in the operating time zone based on the interrupt-acquired time information. (Step S2).
 [1-3.効果等]
 以上、説明したように、空気調和機1Aは、室外機10と、空気を清浄する空気清浄装置110を備える室内機100と、室外機10及び室内機100を制御する制御装置130と、を備える。制御装置130は、時刻取得部151と、判定部153と、動作制御部155とを備える。時刻取得部151は、時刻を取得する。判定部153は、時刻取得部151が取得した時刻が、予め設定された動作時間帯に含まれるか否かを判定する。動作制御部155は、時刻取得部151が取得した時刻が、予め設定された動作時間帯に含まれると判定部153により判定された場合に、空気清浄装置110に空気清浄運転を実行させる。これにより、微粒子の濃度が高い時間帯を動作時間帯として予め設定しておくことで、空気調和機1Aを動作時間帯で動作させ、室内の空気質を改善させることができる。
[1-3. Effect, etc.]
As described above, the air conditioner 1A includes an outdoor unit 10, an indoor unit 100 including an air purifying device 110 for purifying air, and a control device 130 for controlling the outdoor unit 10 and the indoor unit 100. .. The control device 130 includes a time acquisition unit 151, a determination unit 153, and an operation control unit 155. The time acquisition unit 151 acquires the time. The determination unit 153 determines whether or not the time acquired by the time acquisition unit 151 is included in the preset operation time zone. The operation control unit 155 causes the air purifying device 110 to execute the air cleaning operation when the determination unit 153 determines that the time acquired by the time acquisition unit 151 is included in the preset operation time zone. As a result, the air conditioner 1A can be operated in the operating time zone and the indoor air quality can be improved by setting the time zone in which the concentration of the fine particles is high as the operating time zone in advance.
 時刻取得部151は、空気調和機1Aを操作するリモコン5から送信される赤外線信号を受信し、受信した赤外線信号に含まれる時刻を取得してよい。これにより、ユーザによりリモコン5が操作されたときに、リモコン5の操作情報と共に時刻を取得することができ、空気調和機1Aを予め設定された動作時間帯に動作させることができる。 The time acquisition unit 151 may receive an infrared signal transmitted from the remote controller 5 that operates the air conditioner 1A, and may acquire the time included in the received infrared signal. As a result, when the remote controller 5 is operated by the user, the time can be acquired together with the operation information of the remote controller 5, and the air conditioner 1A can be operated in a preset operation time zone.
 時刻取得部151は、外部装置200が接続されたネットワークNWに接続し、外部装置200とのデータ通信により時刻を取得してもよい。これにより、外部装置200とのデータ通信により時刻を取得することができ、空気調和機1Aを予め設定された動作時間帯に動作させることができる。 The time acquisition unit 151 may connect to the network NW to which the external device 200 is connected and acquire the time by data communication with the external device 200. As a result, the time can be acquired by data communication with the external device 200, and the air conditioner 1A can be operated in a preset operating time zone.
 時刻取得部151は、空気調和機1Aに搭載された室内センサ部108のセンサデータを取得してもよい。判定部153は、取得部が取得したセンサデータに基づいて時刻を推定し、推定した時刻が動作時間帯に含まれるか否かを判定してもよい。これにより、空気調和機1Aが時刻を計時する機能や、通信機能を備えていない場合であっても、空気調和機1Aに搭載された室内センサ部108のセンサデータに基づいて時刻を推定し、空気調和機1Aを動作時間帯に動作させることができる。 The time acquisition unit 151 may acquire the sensor data of the indoor sensor unit 108 mounted on the air conditioner 1A. The determination unit 153 may estimate the time based on the sensor data acquired by the acquisition unit, and determine whether or not the estimated time is included in the operation time zone. As a result, even if the air conditioner 1A does not have the function of measuring the time or the communication function, the time is estimated based on the sensor data of the indoor sensor unit 108 mounted on the air conditioner 1A. The air conditioner 1A can be operated during the operating time zone.
 時刻取得部151がセンサデータを取得するセンサには、紫外線量を検出する紫外線センサ16Aと、空気調和機1Aの室内機100が設置された室内の温度を検出する温度センサ108Bと、太陽光の照射量を検出する日射センサ108Dと、人の存否を検出する人感センサ108Cとの少なくとも1つが含まれる。これにより、時刻取得部151が取得したセンサデータに基づいて推定する時刻の推定精度を高めることができ、空気調和機1Aを予め設定した動作時間帯で動作させることができる。 The sensors for which the time acquisition unit 151 acquires sensor data include an ultraviolet sensor 16A for detecting the amount of ultraviolet rays, a temperature sensor 108B for detecting the temperature in the room where the indoor unit 100 of the air conditioner 1A is installed, and sunlight. At least one of a solar radiation sensor 108D for detecting an irradiation amount and a motion sensor 108C for detecting the presence or absence of a person is included. As a result, the estimation accuracy of the time estimated based on the sensor data acquired by the time acquisition unit 151 can be improved, and the air conditioner 1A can be operated in a preset operation time zone.
 空気調和機1Aは、室外機10と室内機100とを含む冷凍サイクル回路を備える。空気清浄装置110は、帯電微粒子水を含むミストを発生させる静電霧化装置113と、コロナ放電によりオゾン及びマイナスイオンを発生させるオゾン及びイオン発生装置111と、空気中の微粒子を捕獲する空気清浄フィルタ115との少なくとも1つを備える。動作制御部155は、時刻取得部151が取得した時刻が、予め設定された動作時間帯に含まれる場合、静電霧化装置113、オゾン及びイオン発生装置111、及び空気清浄フィルタ115の少なくとも1つを動作させる。又は、動作制御部155は、冷凍サイクル回路に除湿運転を実行させる。これにより、室内に存在する微粒子を効果的に除去することができる。 The air conditioner 1A includes a refrigeration cycle circuit including an outdoor unit 10 and an indoor unit 100. The air purifier 110 includes an electrostatic atomizer 113 that generates mist containing charged fine particle water, an ozone and ion generator 111 that generates ozone and negative ions by corona discharge, and an air purifier that captures fine particles in the air. It comprises at least one with a filter 115. When the time acquired by the time acquisition unit 151 is included in the preset operation time zone, the operation control unit 155 is at least one of the electrostatic atomizer 113, the ozone and ion generator 111, and the air cleaning filter 115. Operate one. Alternatively, the operation control unit 155 causes the refrigeration cycle circuit to execute the dehumidifying operation. This makes it possible to effectively remove the fine particles existing in the room.
 (実施の形態2)
 以下、図5及び図6を用いて実施の形態2について説明する。
(Embodiment 2)
Hereinafter, the second embodiment will be described with reference to FIGS. 5 and 6.
 [2-1.構成]
 上述した実施の形態1は、空気調和機1Aが、リモコン5や外部装置200等の外部から時刻を取得することが可能な構成である場合の実施の形態であった。実施の形態2は、空気調和機1Bが外部から時刻情報を取得することができない場合の実施の形態である。
[2-1. Constitution]
The above-described first embodiment is an embodiment in which the air conditioner 1A has a configuration in which the time can be acquired from the outside such as the remote controller 5 and the external device 200. The second embodiment is an embodiment in which the air conditioner 1B cannot acquire time information from the outside.
 図5は、実施の形態2の空気調和機1Bの構成の一例を示すブロック構成図である。実施の形態2の空気調和機1Bと、実施の形態1の空気調和機1Aとの構成上の相違点は、空気調和機1Bが赤外線信号受信部101及び通信部103のいずれも備えていない点である。それ以外の空気調和機1Bの構成は、実施の形態1の空気調和機1Aと同一であるため、空気調和機1Bの構成についての詳細な説明は省略する。 FIG. 5 is a block configuration diagram showing an example of the configuration of the air conditioner 1B of the second embodiment. The structural difference between the air conditioner 1B of the second embodiment and the air conditioner 1A of the first embodiment is that the air conditioner 1B does not include either the infrared signal receiving unit 101 or the communication unit 103. Is. Since the other configurations of the air conditioner 1B are the same as those of the air conditioner 1A of the first embodiment, detailed description of the configuration of the air conditioner 1B will be omitted.
 空気調和機1Bは、赤外線信号受信部101及び通信部103のいずれも備えていない。従って、空気調和機1Bは、外部から時刻を取得する手段を備えていない。このため、判定部153は、時刻取得部151が室内センサ部108及び室外センサ部16から取得したセンサデータに基づいて時刻又は時間帯を推定する。 The air conditioner 1B does not include either the infrared signal receiving unit 101 or the communication unit 103. Therefore, the air conditioner 1B does not have a means for acquiring the time from the outside. Therefore, the determination unit 153 estimates the time or time zone based on the sensor data acquired by the time acquisition unit 151 from the indoor sensor unit 108 and the outdoor sensor unit 16.
 時刻取得部151は、室外機10に設けられた紫外線センサ16Aのセンサデータを取得する。判定部153は、時刻取得部151が取得したセンサデータが示す紫外線量に基づいて時刻又は時間帯を推定する。例えば、メモリ133に、予め設定された期間ごとの紫外線量を測定した測定値をデータベースとして記憶させておく。予め設定された期間は、例えば、1週間や1ケ月等である。判定部153は、紫外線センサ16Aのセンサデータを入力し、入力したセンサデータが示す紫外線量をデータベースと比較して、現在の時間帯を推定する。ここで、判定部153が推定する時間帯は、例えば、一時間単位等の大まかな時間帯である。 The time acquisition unit 151 acquires the sensor data of the ultraviolet sensor 16A provided in the outdoor unit 10. The determination unit 153 estimates the time or time zone based on the amount of ultraviolet rays indicated by the sensor data acquired by the time acquisition unit 151. For example, the memory 133 stores the measured values obtained by measuring the amount of ultraviolet rays for each preset period as a database. The preset period is, for example, one week or one month. The determination unit 153 inputs the sensor data of the ultraviolet sensor 16A, compares the amount of ultraviolet rays indicated by the input sensor data with the database, and estimates the current time zone. Here, the time zone estimated by the determination unit 153 is, for example, a rough time zone such as one hour unit.
 また、判定部153は、紫外線センサ16Aのセンサデータに加え、温度センサ108Bや、日射センサ108Dのセンサデータを参照して、時間帯を推定してもよい。例えば、判定部153は、紫外線センサ16Aにより測定された紫外線量と、温度センサ108Bにより測定された温度、又は日射センサ108Dにより測定された日射量とに基づいて時間帯を推定してもよい。 Further, the determination unit 153 may estimate the time zone by referring to the sensor data of the temperature sensor 108B and the solar radiation sensor 108D in addition to the sensor data of the ultraviolet sensor 16A. For example, the determination unit 153 may estimate the time zone based on the amount of ultraviolet rays measured by the ultraviolet sensor 16A, the temperature measured by the temperature sensor 108B, or the amount of solar radiation measured by the solar radiation sensor 108D.
 また、判定部153は、人感センサ108Cのセンサデータに基づいて時間帯を推定してもよい。例えば、判定部153は、夜間の就寝時間等で、人の存在が検出されない状態が一定時間以上継続した後、人感センサ108Cにより人の存在が検出されてから一定時間を経過した場合に、空気調和機1Bを動作させる朝の動作時間帯であると判定してもよい。判定部153は、人の存在が検出されない状態が一定時間以上継続した場合に、夜間であると判定してもよい。そして、これにより判定部153は、PM2.5の濃度の高い夜の動作時間帯(例えば18時から24時)を外れたと判定してもよい。 Further, the determination unit 153 may estimate the time zone based on the sensor data of the motion sensor 108C. For example, when the determination unit 153 continues to be in a state where the presence of a person is not detected for a certain period of time or more during bedtime at night, and then a certain time has elapsed after the presence of a person is detected by the motion sensor 108C. It may be determined that it is the operating time zone in the morning when the air conditioner 1B is operated. The determination unit 153 may determine that it is nighttime when the state in which the presence of a person is not detected continues for a certain period of time or longer. Then, the determination unit 153 may determine that the operation time zone (for example, from 18:00 to 24:00) at night when the concentration of PM2.5 is high is out of the range.
 判定部153は、近距離無線通信部102がウェアラブルデバイスや、スマートフォン等のデバイスから取得したユーザの生体情報に基づいて時間帯を推定してもよい。例えば、判定部153は、ユーザの生体情報に基づき、ユーザが睡眠状態にあるか否かを判定する。判定部153は、ユーザが睡眠状態にはないと判定してから一定時間を経過した場合に、空気調和機1Bを動作させる朝の動作時間帯であると判定してもよい。判定部153は、ユーザが睡眠状態にあると判定した場合に、夜間であると判定してもよい。そして、これにより判定部153は、PM2.5の濃度の高い夜の動作時間帯(例えば18時から24時)を外れたと判定してもよい。 The determination unit 153 may estimate the time zone based on the biometric information of the user acquired by the short-range wireless communication unit 102 from a wearable device or a device such as a smartphone. For example, the determination unit 153 determines whether or not the user is in a sleeping state based on the biometric information of the user. The determination unit 153 may determine that it is the morning operation time zone in which the air conditioner 1B is operated when a certain period of time has elapsed after the determination that the user is not in the sleeping state. When the determination unit 153 determines that the user is in a sleeping state, the determination unit 153 may determine that it is nighttime. Then, the determination unit 153 may determine that the operation time zone (for example, from 18:00 to 24:00) at night when the concentration of PM2.5 is high is out of the range.
 [2-2.動作]
 実施の形態2の制御装置130の動作について、図6に示すフローチャートを参照しながら説明する。なお、このフローチャートでは、紫外線センサ16Aのセンサデータに基づいて時間帯を推定する場合について説明する。
[2-2. motion]
The operation of the control device 130 according to the second embodiment will be described with reference to the flowchart shown in FIG. In this flowchart, a case where the time zone is estimated based on the sensor data of the ultraviolet sensor 16A will be described.
 制御装置130は、室外センサ部16が備える紫外線センサ16Aのセンサデータを取得する(ステップT1)。制御装置130は、取得したセンサデータが示す紫外線量に基づいて現在の時間帯を推定する(ステップT2)。制御装置130は、推定した時間帯が動作時間帯に含まれるか否かを判定する(ステップT3)。 The control device 130 acquires the sensor data of the ultraviolet sensor 16A included in the outdoor sensor unit 16 (step T1). The control device 130 estimates the current time zone based on the amount of ultraviolet rays indicated by the acquired sensor data (step T2). The control device 130 determines whether or not the estimated time zone is included in the operating time zone (step T3).
 制御装置130は、推定した時刻時間帯が動作時間帯に含まれる場合(ステップT3/YES)、空気清浄装置110に空気清浄運転の開始を指示する(ステップT4)。又は、制御装置130は、冷媒サイクル回路に除湿運転を開始させてもよいし(ステップT4)、近距離無線通信部102により換気扇300に接続されている場合には、換気扇300を動作させる信号を近距離無線通信部102により送信してもよい(ステップT4)。その後、制御装置130は、カウンタをリセットし(ステップT5)、カウンタにカウントを開始させる(ステップT6)。そして、制御装置130は、カウンタのカウント値を取得し(ステップT7)、取得したカウント値に基づき、空気清浄運転又は除湿運転を開始させてからの経過時間が、予め設定された設定時間以上になったか否かを判定する(ステップT8)。 When the estimated time zone is included in the operating time zone (step T3 / YES), the control device 130 instructs the air purifying device 110 to start the air purifying operation (step T4). Alternatively, the control device 130 may start the dehumidifying operation in the refrigerant cycle circuit (step T4), and when connected to the ventilation fan 300 by the short-range wireless communication unit 102, the control device 130 sends a signal to operate the ventilation fan 300. It may be transmitted by the short-range wireless communication unit 102 (step T4). After that, the control device 130 resets the counter (step T5) and causes the counter to start counting (step T6). Then, the control device 130 acquires the count value of the counter (step T7), and based on the acquired count value, the elapsed time from starting the air cleaning operation or the dehumidifying operation is equal to or longer than the preset set time. It is determined whether or not it has become (step T8).
 制御装置130は、空気清浄運転又は除湿運転を開始させてからの経過時間が、予め設定された設定時間以上ではない場合(ステップT8/NO)、ステップT7の処理に戻る。また、制御装置130は、空気清浄運転又は除湿運転を開始させてからの経過時間が、予め設定された設定時間以上であると判定すると(ステップT8/YES)、空気清浄装置110に、空気清浄運転又は除湿運転の停止を指示する(ステップT9)。 If the elapsed time from the start of the air cleaning operation or the dehumidifying operation is not equal to or longer than the preset set time (step T8 / NO), the control device 130 returns to the process of step T7. Further, when the control device 130 determines that the elapsed time from the start of the air cleaning operation or the dehumidifying operation is equal to or longer than the preset set time (step T8 / YES), the air cleaning device 110 is notified of the air cleaning. Instruct to stop the operation or the dehumidifying operation (step T9).
 ステップT3の判定において、推定した時間帯が動作時間帯に含まれないと判定した場合(ステップT3/NO)、制御装置130は、空気質センサ108Aのセンサデータを取得する(ステップT10)。制御装置130は、取得したセンサデータが示すPM2.5の濃度が、基準値以上であるか否かを判定する(ステップT11)。基準値は、実施の形態1と同一の値である。制御装置130は、センサデータが示すPM2.5の濃度が、基準値以上ではない場合(ステップT11/NO)、ステップT1の処理に戻り、紫外線センサ16Aのセンサデータを再度取得し、取得したセンサデータが示す紫外線量に基づいて現在の時間帯を推定する(ステップT2)。 When it is determined in the determination of step T3 that the estimated time zone is not included in the operating time zone (step T3 / NO), the control device 130 acquires the sensor data of the air quality sensor 108A (step T10). The control device 130 determines whether or not the concentration of PM2.5 indicated by the acquired sensor data is equal to or higher than the reference value (step T11). The reference value is the same value as in the first embodiment. When the concentration of PM2.5 indicated by the sensor data is not equal to or higher than the reference value (step T11 / NO), the control device 130 returns to the process of step T1 and acquires the sensor data of the ultraviolet sensor 16A again, and the acquired sensor. The current time zone is estimated based on the amount of ultraviolet rays indicated by the data (step T2).
 制御装置130は、センサデータが示すPM2.5の濃度が、基準値以上である場合(ステップT11/YES)、空気清浄装置110に空気清浄運転の開始を指示する(ステップS12)。又は、制御装置130は、冷媒サイクル回路に除湿運転を開始させてもよいし、近距離無線通信部102により換気扇300に接続されている場合には、換気扇300を動作させる信号を近距離無線通信部102により送信してもよい(ステップT12)。その後、制御装置130は、カウンタのカウント値をリセットし(ステップT13)、カウンタのカウントを開始する(ステップT14)。そして、制御装置130は、空気質センサ108Aのセンサデータを取得し(ステップT15)、センサデータが示すPM2.5の濃度が基準値以上であるか否かを判定する(ステップT16)。制御装置130は、センサデータが示すPM2.5の濃度が基準値以上ではない場合(ステップT16/NO)、空気清浄装置110に空気清浄運転の停止を指示する(ステップT9)。又は、制御装置130は、冷媒サイクル回路に除湿運転の停止を指示する(ステップT9)。 When the concentration of PM2.5 indicated by the sensor data is equal to or higher than the reference value (step T11 / YES), the control device 130 instructs the air purifying device 110 to start the air cleaning operation (step S12). Alternatively, the control device 130 may start the dehumidifying operation in the refrigerant cycle circuit, or when connected to the ventilation fan 300 by the short-range wireless communication unit 102, the signal for operating the ventilation fan 300 is transmitted by short-range wireless communication. It may be transmitted by the unit 102 (step T12). After that, the control device 130 resets the count value of the counter (step T13) and starts counting the counter (step T14). Then, the control device 130 acquires the sensor data of the air quality sensor 108A (step T15), and determines whether or not the concentration of PM2.5 indicated by the sensor data is equal to or higher than the reference value (step T16). When the concentration of PM2.5 indicated by the sensor data is not equal to or higher than the reference value (step T16 / NO), the control device 130 instructs the air purifying device 110 to stop the air cleaning operation (step T9). Alternatively, the control device 130 instructs the refrigerant cycle circuit to stop the dehumidifying operation (step T9).
 また、制御装置130は、センサデータが示すPM2.5の濃度が基準値以上である場合(ステップT16/YES)、カウンタのカウント値を取得する(ステップT17)。制御装置130は、取得したカウント値に基づき、ステップT12で空気清浄運転又は除湿運転を開始してから設定時間以上経過したか否かを判定する(ステップT18)。制御装置130は、空気清浄運転を開始してから設定時間以上経過した場合(ステップT18/YES)、空気清浄装置110に空気清浄運転の停止を指示する(ステップT9)。又は、制御装置130は、冷媒サイクル回路に除湿運転の停止を指示する(ステップT9)。制御装置130は、空気清浄運転を開始してから設定時間以上経過していない場合(ステップT18/NO)、ステップT15の処理に戻り、空気質センサ108Aのセンサデータを再度取得する。 Further, when the concentration of PM2.5 indicated by the sensor data is equal to or higher than the reference value (step T16 / YES), the control device 130 acquires the count value of the counter (step T17). Based on the acquired count value, the control device 130 determines whether or not a set time has elapsed since the start of the air cleaning operation or the dehumidifying operation in step T12 (step T18). When the set time or more has elapsed from the start of the air cleaning operation (step T18 / YES), the control device 130 instructs the air cleaning device 110 to stop the air cleaning operation (step T9). Alternatively, the control device 130 instructs the refrigerant cycle circuit to stop the dehumidifying operation (step T9). If the set time has not elapsed since the start of the air cleaning operation (step T18 / NO), the control device 130 returns to the process of step T15 and acquires the sensor data of the air quality sensor 108A again.
 上述した実施の形態2では、空気調和機1Bが赤外線信号受信部101及び通信部103のいずれも備えていない構成について説明した。なお、空気調和機1Bが時刻情報を取得することができないケースには、以下のような場合も想定される。 In the second embodiment described above, the configuration in which the air conditioner 1B is not provided with either the infrared signal receiving unit 101 or the communication unit 103 has been described. In the case where the air conditioner 1B cannot acquire the time information, the following cases are also assumed.
 第1に、室内機100が通信部103を備えているが、室内機100が設置された室内にネットワークNWに接続する接続装置が設けられていないか、又は、室内に接続装置が設置されていても意図的に空気調和機1BをネットワークNWに接続しない場合である。 First, although the indoor unit 100 is provided with the communication unit 103, the connection device for connecting to the network NW is not provided in the room where the indoor unit 100 is installed, or the connection device is installed in the room. However, this is a case where the air conditioner 1B is intentionally not connected to the network NW.
 第2に、室内機100が赤外線信号受信部101を備えているが、リモコン5から時刻情報を取得する機能を備えていない場合である。 Second, the indoor unit 100 is provided with the infrared signal receiving unit 101, but is not provided with the function of acquiring the time information from the remote controller 5.
 これらのいずれの場合であっても、上述した実施の形態2のように、時刻取得部151が室内センサ部108及び室外センサ部16から取得したセンサデータに基づいて時刻又は時間帯を推定し、動作制御部155が、空気清浄装置110に空気清浄運転を実行させたり、冷媒サイクル回路を除湿運転させたりすることで、室内の空気を上質な空気に保つことができる。すなわち、室内機100が通信部103及び赤外線信号受信部101の少なくともいずれかを備えている場合においては、実施の形態2で説明した方法によって時刻又は時間帯を推定し、空気清浄運転を実行させてもよい。 In any of these cases, as in the second embodiment described above, the time acquisition unit 151 estimates the time or time zone based on the sensor data acquired from the indoor sensor unit 108 and the outdoor sensor unit 16. The operation control unit 155 causes the air purifying device 110 to perform an air purifying operation or dehumidifies the refrigerant cycle circuit, so that the air in the room can be kept as high-quality air. That is, when the indoor unit 100 includes at least one of the communication unit 103 and the infrared signal receiving unit 101, the time or time zone is estimated by the method described in the second embodiment, and the air cleaning operation is executed. You may.
 [2-3.効果]
 実施の形態2の空気調和機1Bによれば、上述した実施の形態1の空気調和機1Aと同様の効果を得ることができる。特に、実施の形態2の空気調和機1Bの時刻取得部151は、空気調和機1Bに搭載された室内センサ部108のセンサデータを取得する。判定部153は、時刻取得部が取得したセンサデータに基づいて時刻又は時間帯を推定し、推定した時刻又は時間帯が動作時間帯に含まれるか否かを判定する。これによって、空気調和機1Bが時刻を計時する機能や、通信機能を備えていない場合であっても、空気調和機1Bに搭載された室内センサ部108のセンサデータに基づいて時刻又は時間帯を推定し、空気調和機1Bを動作時間帯に動作させることができる。
[2-3. effect]
According to the air conditioner 1B of the second embodiment, the same effect as that of the air conditioner 1A of the first embodiment described above can be obtained. In particular, the time acquisition unit 151 of the air conditioner 1B of the second embodiment acquires the sensor data of the indoor sensor unit 108 mounted on the air conditioner 1B. The determination unit 153 estimates the time or time zone based on the sensor data acquired by the time acquisition unit, and determines whether or not the estimated time or time zone is included in the operation time zone. As a result, even if the air conditioner 1B does not have the function of measuring the time or the communication function, the time or time zone can be set based on the sensor data of the indoor sensor unit 108 mounted on the air conditioner 1B. It is estimated that the air conditioner 1B can be operated during the operating time zone.
 上述した各実施の形態は、あくまでも本開示の一態様を示すものであり、本開示の範囲内で任意に変形および応用が可能である。例えば、図3に示した空気調和機1A及び図5に示した空気調和機1Bの各部は一例であって、具体的な実装形態は特に限定されない。つまり、必ずしも各部に個別に対応するハードウェアが実装される必要はなく、一つのプロセッサがプログラムを実行することで各部の機能を実現する構成とすることも勿論可能である。また、上述した各実施の形態においてソフトウェアで実現される機能の一部をハードウェアとしてもよく、或いは、ハードウェアで実現される機能の一部をソフトウェアで実現してもよい。 Each of the above-described embodiments shows only one aspect of the present disclosure, and can be arbitrarily modified and applied within the scope of the present disclosure. For example, each part of the air conditioner 1A shown in FIG. 3 and the air conditioner 1B shown in FIG. 5 is an example, and the specific mounting form is not particularly limited. That is, it is not always necessary to implement the hardware corresponding to each part individually, and it is of course possible to realize the function of each part by executing the program by one processor. Further, a part of the functions realized by the software in each of the above-described embodiments may be realized by the hardware, or a part of the functions realized by the hardware may be realized by the software.
 また、図4及び図6に示すフローチャートに示す動作の単位は、制御装置130の動作の理解を容易にするために、主な処理内容に応じて分割したものであり、処理単位の分割の仕方や名称によって、本開示が限定されることはない。処理内容に応じて、さらに多くのステップ単位に分割してもよい。また、1つのステップ単位がさらに多くの処理を含むように分割してもよい。また、そのステップの順番は、本開示の趣旨に支障のない範囲で適宜に入れ替えてもよい。 Further, the operation unit shown in the flowcharts shown in FIGS. 4 and 6 is divided according to the main processing contents in order to facilitate understanding of the operation of the control device 130, and the method of dividing the processing unit. And the name do not limit this disclosure. It may be divided into more step units depending on the processing content. Further, one step unit may be divided so as to include more processes. Further, the order of the steps may be appropriately changed as long as it does not interfere with the purpose of the present disclosure.
 なお、上述の各実施の形態は、本開示における技術を例示するためのものであるから、請求の範囲またはその均等の範囲において種々の変更、置き換え、付加、省略などを行うことができる。 Since each of the above embodiments is for exemplifying the technology in the present disclosure, various changes, replacements, additions, omissions, etc. can be made within the scope of the claims or the equivalent thereof.
 以上のように、本開示の空気調和機及び空気調和機の制御方法は、時刻取得部が取得した時刻又は時間帯が、予め設定された動作時間帯に含まれる場合に、空気清浄装置を動作させるため、外部装置から提供される空気質等の情報によらず、室内空気質を上質な状態に保つことができる。従って、室内の空気中の微粒子、特に大気汚染物質の除去の用途に利用可能である。 As described above, the air conditioner and the control method of the air conditioner of the present disclosure operate the air purifier when the time or time zone acquired by the time acquisition unit is included in the preset operating time zone. Therefore, the indoor air quality can be maintained in a high quality state regardless of the information such as the air quality provided from the external device. Therefore, it can be used for removing fine particles in indoor air, especially air pollutants.
 1A 空気調和機
 1B 空気調和機
 5 リモコン
 10 室外機
 11 圧縮機
 12 室外ファン
 13 室外熱交換器
 14 四方弁
 15 膨張弁
 16 室外センサ部
 16A 紫外線センサ
 100 室内機
 101 赤外線信号受信部
 102 近距離無線通信部
 103 通信部
 104 室内熱交換器
 105 室内ファン
 106 上下ルーバー
 107 左右ルーバー
 108 室内センサ部
 108A 空気質センサ
 108B 温度センサ
 108C 人感センサ
 108D 日射センサ
 110 空気清浄装置
 111 イオン発生装置
 113 静電霧化装置
 115 空気清浄フィルタ
 121 吸込口
 123 フィルタ
 125 吹出口
 130 制御装置
 133 メモリ
 150 プロセッサ
 151 時刻取得部
 153 判定部
 155 動作制御部
 200 外部装置
 300 換気扇
 NW ネットワーク
1A Air conditioner 1B Air conditioner 5 Remote control 10 Outdoor unit 11 Compressor 12 Outdoor fan 13 Outdoor heat exchanger 14 Four-way valve 15 Expansion valve 16 Outdoor sensor unit 16A Ultraviolet sensor 100 Indoor unit 101 Infrared signal receiver 102 Short-range wireless communication Unit 103 Communication unit 104 Indoor heat exchanger 105 Indoor fan 106 Vertical louver 107 Left and right louver 108 Indoor sensor unit 108A Air quality sensor 108B Temperature sensor 108C Human sensor 108D Solar radiation sensor 110 Air purifier 111 Ion generator 113 Electrostatic atomizer 115 Air purification filter 121 Suction port 123 Filter 125 Blowout port 130 Control device 133 Memory 150 Processor 151 Time acquisition unit 153 Judgment unit 155 Operation control unit 200 External device 300 Ventilation fan NW network

Claims (7)

  1.  室外機と、
     空気を清浄する空気清浄装置を備える室内機と、
     前記室外機及び前記室内機を制御する制御装置と、を備え、
     前記制御装置は、時刻又は時間帯を取得する時刻取得部と、
     前記時刻取得部が取得した時刻又は時間帯が、予め設定された動作時間帯に含まれるか否かを判定する判定部と、
     前記判定部により前記時刻取得部が取得した時刻又は時間帯が前記動作時間帯に含まれると判定された場合に、前記空気清浄装置を動作させる動作制御部と、
     を備える空気調和機。
    Outdoor unit and
    An indoor unit equipped with an air purifier that purifies the air,
    The outdoor unit and the control device for controlling the indoor unit are provided.
    The control device includes a time acquisition unit that acquires a time or a time zone, and a time acquisition unit.
    A determination unit for determining whether or not the time or time zone acquired by the time acquisition unit is included in the preset operation time zone.
    An operation control unit that operates the air purifier when the determination unit determines that the time or time zone acquired by the time acquisition unit is included in the operation time zone.
    Air conditioner equipped with.
  2.  前記空気清浄装置は、帯電微粒子水を含むミストを発生させる静電霧化装置と、コロナ放電によりオゾン及びマイナスイオンを発生させるオゾン及びイオン発生装置と、空気中の微粒子を捕獲する空気清浄フィルタとの少なくとも1つを備え、
     前記動作制御部は、前記時刻取得部が取得した時刻又は時間帯が、前記予め設定された動作時間帯に含まれる場合、
      前記静電霧化装置、前記オゾン及びイオン発生装置、前記空気清浄フィルタ、及び前記空気調和機に接続された換気扇の少なくとも1つを動作させる、又は、
      前記空気調和機に除湿運転を実行させる、
    請求項1記載の空気調和機。
    The air purifier includes an electrostatic atomizer that generates mist containing charged fine particle water, an ozone and ion generator that generates ozone and negative ions by corona discharge, and an air purifying filter that captures fine particles in the air. Equipped with at least one of
    When the time or time zone acquired by the time acquisition unit is included in the preset operation time zone, the operation control unit may use the operation control unit.
    Operate or operate at least one of the electrostatic atomizer, the ozone and ion generator, the air purifying filter, and the ventilation fan connected to the air conditioner.
    Let the air conditioner perform a dehumidifying operation,
    The air conditioner according to claim 1.
  3.  前記時刻取得部は、前記空気調和機を操作するリモコンから送信される赤外線信号を受信し、受信した前記赤外線信号に含まれる時刻を取得する、請求項1又は請求項2記載の空気調和機。 The air conditioner according to claim 1 or 2, wherein the time acquisition unit receives an infrared signal transmitted from a remote controller that operates the air conditioner and acquires the time included in the received infrared signal.
  4.  前記時刻取得部は、外部装置が接続されたネットワークに接続し、前記外部装置とのデータ通信により時刻を取得する、請求項1又は請求項2記載の空気調和機。 The air conditioner according to claim 1 or 2, wherein the time acquisition unit connects to a network to which an external device is connected and acquires the time by data communication with the external device.
  5.  前記時刻取得部は、前記空気調和機に搭載されたセンサのセンサデータを取得し、
     前記判定部は、前記取得部が取得した前記センサデータに基づいて時刻又は時間帯を推定し、前記推定した時刻又は時間帯が前記動作時間帯に含まれるか否かを判定する、請求項1又は請求項2記載の空気調和機。
    The time acquisition unit acquires the sensor data of the sensor mounted on the air conditioner and obtains the sensor data.
    The determination unit estimates a time or time zone based on the sensor data acquired by the acquisition unit, and determines whether or not the estimated time or time zone is included in the operation time zone. Or the air conditioner according to claim 2.
  6.  前記時刻取得部が前記センサデータを取得する前記センサには、紫外線量を検出する紫外線センサと、前記空気調和機の室内機が設置された室内の温度を検出する温度センサと、太陽光の照射量を検出する日射センサと、の少なくとも1つが含まれる、請求項5記載の空気調和機。 The sensor for which the time acquisition unit acquires the sensor data includes an ultraviolet sensor that detects the amount of ultraviolet rays, a temperature sensor that detects the temperature in the room where the indoor unit of the air conditioner is installed, and irradiation with sunlight. The air conditioner according to claim 5, comprising at least one of a solar radiation sensor that detects an amount.
  7.  室外機と、空気を清浄する空気清浄装置を備える室内機と、前記室外機及び前記室内機を制御する制御装置と、を備える空気調和機の制御方法であって、
      時刻又は時間帯を取得する取得ステップと、
      前記取得ステップにより取得した時刻又は時間帯が、予め設定された動作時間帯に含まれるか否かを判定する判定ステップと、
      前記判定ステップにより前記取得ステップが取得した時刻又は時間帯が前記動作時間帯に含まれると判定された場合に、前記空気清浄装置を動作させる動作ステップと、
     を有する空気調和機の制御方法。
    A control method for an air conditioner including an outdoor unit, an indoor unit provided with an air purifying device for purifying air, and a control device for controlling the outdoor unit and the indoor unit.
    The acquisition step to acquire the time or time zone, and
    A determination step for determining whether or not the time or time zone acquired by the acquisition step is included in the preset operation time zone, and
    When it is determined by the determination step that the time or time zone acquired by the acquisition step is included in the operation time zone, the operation step for operating the air purifier and the operation step.
    How to control an air conditioner with.
PCT/JP2021/035768 2020-10-06 2021-09-29 Air conditioner and method for controlling air conditioner WO2022075131A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020169407A JP2022061413A (en) 2020-10-06 2020-10-06 Air conditioner and method for controlling air conditioner
JP2020-169407 2020-10-06

Publications (1)

Publication Number Publication Date
WO2022075131A1 true WO2022075131A1 (en) 2022-04-14

Family

ID=81125966

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/035768 WO2022075131A1 (en) 2020-10-06 2021-09-29 Air conditioner and method for controlling air conditioner

Country Status (2)

Country Link
JP (1) JP2022061413A (en)
WO (1) WO2022075131A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115355608A (en) * 2022-07-01 2022-11-18 宁波奥克斯电气股份有限公司 Control method and control device for preventing peculiar smell of air conditioner and air conditioner

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008261602A (en) * 2007-04-13 2008-10-30 Sharp Corp Air conditioner
JP2009219636A (en) * 2008-03-14 2009-10-01 Hitachi Plant Technologies Ltd Air sterilization system
JP2018089209A (en) * 2016-12-06 2018-06-14 シャープ株式会社 Home electric appliance system
JP2020060655A (en) * 2018-10-09 2020-04-16 エーイーテック株式会社 Internally illuminated structure monitoring system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008261602A (en) * 2007-04-13 2008-10-30 Sharp Corp Air conditioner
JP2009219636A (en) * 2008-03-14 2009-10-01 Hitachi Plant Technologies Ltd Air sterilization system
JP2018089209A (en) * 2016-12-06 2018-06-14 シャープ株式会社 Home electric appliance system
JP2020060655A (en) * 2018-10-09 2020-04-16 エーイーテック株式会社 Internally illuminated structure monitoring system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115355608A (en) * 2022-07-01 2022-11-18 宁波奥克斯电气股份有限公司 Control method and control device for preventing peculiar smell of air conditioner and air conditioner

Also Published As

Publication number Publication date
JP2022061413A (en) 2022-04-18

Similar Documents

Publication Publication Date Title
US11555626B2 (en) Ventilation unit, system and method
KR102486845B1 (en) Air purifying system
WO2020255875A1 (en) Air quality control system, air quality control method, and program
JP6380026B2 (en) Ventilation device and ventilation system
WO2019000694A1 (en) Control method, control apparatus, computer readable storage medium and air conditioner
CN108105865B (en) Control method of air conditioner and air conditioner
JP5774119B2 (en) Methods for capturing and inactivating microorganisms and viruses
WO2022075131A1 (en) Air conditioner and method for controlling air conditioner
CN107270400A (en) Air conditioner room unit and its control method with air-cleaning function
CN105258220A (en) Integrated air conditioner system
KR100763481B1 (en) Air cleaning system for vehicle
KR102300902B1 (en) Apparatus for dehumidifier and method for controlling the same
JP2020109350A (en) Air cleaner
KR20200089197A (en) Air-conditioner and Method thereof
JP2018132251A (en) Air conditioner
JP6423596B2 (en) Air conditioning system and blower
JP2002089940A (en) Air conditioner
WO2021098530A1 (en) Intelligent air conditioning system
CN205261738U (en) Integral type air conditioning system
JP2015203556A (en) Indoor unit of air conditioner, and air conditioner including indoor unit
JP7183074B2 (en) ventilation system
KR102328819B1 (en) Apparatus for dehumidifier and method for controlling the same
JPH0129474Y2 (en)
CN112406476B (en) Blower and ventilation system
KR20150006636A (en) Air conditioner and a vehicle using air conditioner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21877432

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21877432

Country of ref document: EP

Kind code of ref document: A1