WO2022075101A1 - Film, layered product, and method for producing resin composition film - Google Patents

Film, layered product, and method for producing resin composition film Download PDF

Info

Publication number
WO2022075101A1
WO2022075101A1 PCT/JP2021/035275 JP2021035275W WO2022075101A1 WO 2022075101 A1 WO2022075101 A1 WO 2022075101A1 JP 2021035275 W JP2021035275 W JP 2021035275W WO 2022075101 A1 WO2022075101 A1 WO 2022075101A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
resin
resin composition
less
mass
Prior art date
Application number
PCT/JP2021/035275
Other languages
French (fr)
Japanese (ja)
Inventor
岡田一馬
大倉正寿
辰喜利海
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to CN202180063462.6A priority Critical patent/CN116194518A/en
Priority to JP2021559355A priority patent/JPWO2022075101A1/ja
Priority to KR1020227045802A priority patent/KR20230078591A/en
Publication of WO2022075101A1 publication Critical patent/WO2022075101A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers

Definitions

  • the present invention relates to a method for producing a film, a laminate and a resin composition film having excellent releasability, rigidity and heat resistance.
  • Films are used in various applications such as packaging, surface protection, support in the manufacturing process of other materials, hygiene products, agricultural products, construction products, medical products, and capacitors.
  • films used for surface protection and support applications (hereinafter, may be referred to as surface protection films and support films) are called process films because they are used in the manufacturing process of optical members and electronic materials. ..
  • process films because they are used in the manufacturing process of optical members and electronic materials. ..
  • the characteristics of optical members and electronic materials have become more sophisticated and the demand for higher quality has increased, the required characteristics and required quality of such process films have also increased.
  • Patent Document 1 describes an example in which a phase-separated structure is formed on the surface of a support film and transferred to improve the antiglare property of the optical film and suppress glare.
  • the support film is required to have surface smoothness from the viewpoint of suppressing dent transfer, but if the surface smoothness is too high, the slipperiness of the resin composition film formed on the support film becomes low, and the surface surface becomes low.
  • the quality may be inferior due to the generation of foreign matter or wrinkles due to scraping.
  • PET polyethylene terephthalate
  • Patent Document 3 by controlling the casting process after melt extrusion of the polymer to specific equipment and conditions, the depth of the valley portion of the film surface and the volume of the valley side void are suppressed to be low, and the high temperature withstand voltage characteristic is obtained. An example of increasing is described.
  • an object of the present invention is to solve the above-mentioned problems. That is, it is an object of the present invention to provide a film capable of achieving both improvement in optical properties and quality of the obtained resin composition film and handleability when used as a process film in the process of manufacturing the resin composition film.
  • the film of the present invention has the following constitution. That is, When the surface where the skewness Sk is -5 or more and 0 or less, the load area ratio Smr2 is 70% or more and 98% or less, and the protrusion mountain height Spk is 1 nm or more and 100 nm or less is defined as the A surface, at least one surface is A film that is side A.
  • the laminated body of the present invention has the following constitution. That is, A laminate having a resin composition layer on the A surface of the film.
  • the method for producing a resin composition film of the present invention has the following constitution. That is, A method for producing a resin composition film, which comprises at least the following steps 1 to 3 in this order.
  • Step 1 Applying a coating material containing a resin composition to the A surface of the film
  • Step 2 Solidifying the coating material containing the resin composition to form a resin composition layer to form a laminate.
  • Step 3 A step of peeling the resin composition layer from the laminate to obtain a resin composition film.
  • the film of the present invention preferably has a maximum valley depth Sv of the A surface of 20 nm or more and 400 nm or less.
  • the film of the present invention preferably has a dynamic friction coefficient ⁇ d between one surface and the other surface of 0.20 or more and 0.80 or less.
  • the film of the present invention preferably has a Young's modulus in the film MD direction at 130 ° C. of 100 MPa or more and 200 MPa or less.
  • the film of the present invention preferably has a melting peak at 160 ° C. or higher when the temperature is raised from 30 ° C. to 260 ° C. with a differential scanning calorimeter DSC.
  • the film of the present invention preferably has an internal haze of 0.01% or more and 1.5% or less after heating at 130 ° C. for 10 minutes.
  • the film of the present invention preferably has a surface free energy of surface A of 15 mN / m or more and 35 mN / m or less.
  • the surface layer having the A surface contains an olefin resin as a main component.
  • the film of the present invention preferably contains at least one of an olefin elastomer resin and a polypropylene block copolymer.
  • the film of the present invention is preferably used as a process film.
  • the film of the present invention it is possible to provide a film capable of achieving both improvement in optical properties and quality of the obtained resin composition film and handleability when used as a process film in the process of manufacturing the resin composition film. ..
  • the film of the present invention is excellent in heat resistance and mold releasability, the film of the present invention can be widely and suitably used as a film for industrial materials, particularly a process film such as a protective film and a support film.
  • the surface having a skewness Sk of -5 or more and 0 or less, a load area ratio Smr2 of 70% or more and 98% or less, and a protrusion mountain height Spk of 1 nm or more and 100 nm or less is defined as the A surface.
  • At least one side is the A side. Since the film has the A side on at least one side, the coating film containing the resin composition is applied on the A side, and the resin composition film obtained by solidifying and peeling the coating film is improved in smoothness and handleability. Can be done.
  • the skewness Sk, the load area ratio Smr2, and the protrusion mountain height Spk may be simply referred to as Ssk, Smr2, and Spk, respectively.
  • Sk is a parameter defined in ISO25178-2: 2012 and is also called skewness. The details of the measurement conditions are shown in Examples. Normally, it is said that there are many fine peaks when Sk> 0 and many fine valleys when Sk ⁇ 0.
  • the majority of industrial films have a protrusion structure on the film surface in order to ensure slipperiness, and a film having a recessed structure between the protrusion structures is extremely rare. It is important that the film of the present invention has a large number of recessed structures (valleys) with respect to a protruding structure (peaks), and corresponds to a Sk of 0 or less.
  • the raw material composition of the film is in the range described later and the film forming condition is in the range described later can be mentioned.
  • the olefin-based elastomer resin and the polypropylene block co-weight formed in the resin which is the main component by containing at least one of the olefin-based elastomer resin and the polypropylene block copolymer in the film separately from the resin which is the main component.
  • Skk can be reduced by initial longitudinal stretching at a temperature equal to or higher than the softening temperature of the coalescence and then by vertical two-step stretching at a temperature equal to or higher than the softening temperature of the resin which is the main component of the film.
  • the skewness Sk on the A side is defined as the skewness Sk on the A side from the viewpoint of applying a coating material containing the resin composition on the A surface and solidifying and peeling the coating film to form protrusions on the resin composition film obtained by solidifying and peeling the coating. It is preferably ⁇ 0.001 or less, more preferably ⁇ 0.01 or less. Further, from the viewpoint of increasing the protrusion height of the resin composition film obtained by the above method and improving the handleability, the Sk on the A surface is preferably -3 or more, more preferably -1.5 or more, still more preferably. -0.5 or more.
  • Smr2 is a parameter defined in ISO25178-2: 2012, and detailed measurement conditions thereof are shown in Examples.
  • FIG. 1 which is a diagram conceptually showing the load area ratio Smr2 and the protrusion mountain height Spk
  • Smr2 (reference numeral 1) is a load area ratio Smr in the central portion of the load curve for the roughness curve (reference numeral 2).
  • the straight line with the gentlest slope is the equivalent straight line (reference numeral 3), and the equivalent straight line intersects the vertical axis at the positions of 0% and 100% of the load area ratio.
  • the load area ratio at the point where the load curve intersects the boundary line between the protruding valley portion and the core portion represents the existence ratio of the protruding valley portion.
  • the load curve is a load curve for a surface, and is expressed as a function for the load area ratio of the cutting level.
  • Smr2 is larger than 98%, the dent depth on the film surface becomes insufficient. Therefore, for example, when used as a support film, the height of the protrusions transferred to the resin composition film obtained by applying a coating agent containing a resin composition on the film and solidifying and peeling the coating film is lowered. The slipperiness of the obtained resin composition film may be insufficient, resulting in poor handleability.
  • the core valley portion is extremely large, the flat core portion is few, and the film has a undulating shape. Therefore, for example, when used as a support film as described above, the transparency of the obtained resin composition film may be impaired.
  • a coating agent containing a resin composition is applied on the A surface, and the resin composition film obtained by solidifying and peeling the coating film is formed with protrusions having an appropriate height by transfer formation to improve handleability.
  • the Smr2 on the A surface is preferably 95% or less, more preferably 92% or less.
  • the Smr2 on the A surface is preferably 80% or more, more preferably 85% or more.
  • Spk is a parameter defined in ISO25178-2: 2012, and detailed measurement conditions are shown in Examples.
  • FIG. 1 which is a diagram conceptually showing the load area ratio Smr2 and the protrusion mountain height Spk
  • Spk (reference numeral 4) is the load area ratio in the central portion of the load curve for the roughness curve (reference numeral 2).
  • the secant line of the load curve drawn with the difference ⁇ Smr of Smr set to 40% has the gentlest slope as the equivalent straight line (reference numeral 3), and the equivalent straight line intersects the vertical axis at the positions of 0% and 100% load area ratio. It is the average height of the protruding portion mountain portion above the core portion when the core portion is located between the two height positions.
  • the raw material composition of the film is in the range described later and the film forming conditions are in the range described later.
  • the inclusion of branched chain polypropylene resin reduces the size of spherulites formed during casting, lowers the extrusion temperature and the temperature of the cast drum to increase cooling during casting, and preheats during longitudinal / transverse stretching.
  • the Spk value can be lowered by increasing the temperature and stretching at a low temperature at a high magnification and uniformly at a high magnification.
  • Spk on the A side is preferable from the viewpoint of improving the smoothness of the resin composition film obtained by applying a coating agent containing a resin composition on the A surface and solidifying and peeling the coating. It is 70 nm or less, more preferably 50 nm or less, still more preferably 30 nm or less. Further, the lower the Spk of the A surface, the more preferable, but from the viewpoint of feasibility, the lower limit is 1 nm.
  • the film of the present invention has a maximum valley depth Sv of the A surface (hereinafter, may be simply referred to as Sv) of 20 nm from the viewpoint of achieving both smoothness and handleability of the resin composition film obtained when used as a support film. It is preferably 400 nm or more and preferably 400 nm or less. From the viewpoint of the smoothness of the resin composition film, the Sv of the A surface is more preferably 300 nm or less, still more preferably 250 nm or less. Further, from the viewpoint of handleability of the resin composition film, the Sv of the A surface is more preferably 30 nm or more, further preferably 40 nm or more, and particularly preferably 50 nm or more. Sv is a parameter defined in ISO25178-2: 2012 and indicates the depth of the deepest pit from the average surface of the surface (the surface whose height is the average value, corresponding to the baseline). The detailed measurement conditions are shown in Examples.
  • the raw material composition of the film is in the range described later and the film forming conditions are in the range described later.
  • the viscosity of the olefin-based elastomer resin and the polypropylene block copolymer is lowered, and the olefin-based elastomer resin and the polypropylene block copolymer are pre-compounded with the resin which is the main component of each layer raw material to finely disperse the rubber domain. Therefore, Sv can be reduced.
  • the film of the present invention preferably has a dynamic friction coefficient ⁇ d (hereinafter, may be simply referred to as ⁇ d) between one surface and the other surface of 0.20 or more and 0.80 or less.
  • ⁇ d dynamic friction coefficient
  • the ⁇ d between one surface and the other surface is more preferably 0.70 or less, still more preferably 0.60 or less.
  • the ⁇ d between one surface and the other surface is lower, and the lower limit is not particularly limited, but it is about 0.20 from the viewpoint of feasibility.
  • a method is used in which the raw material composition of the film is in the range described later and the film forming conditions are in the range described later. be able to.
  • it is effective to form fine protrusions on the film surface after stretching by containing a branched chain polypropylene resin and reducing the spherulites formed at the time of casting.
  • the ⁇ d between one surface and the other surface can be lowered.
  • the film of the present invention may be dried in a high-temperature oven at about 130 ° C. by applying a coating agent containing a resin composition on the film.
  • the Young's modulus in the film MD direction at 130 ° C. (hereinafter, may be simply referred to as the Young's modulus in the MD direction) is 100 MPa or more and 200 MPa or less. preferable.
  • the Young's modulus in the MD direction is more preferably 120 MPa or more, still more preferably 140 MPa or more. The higher the Young's modulus in the film MD direction at 130 ° C.
  • the film MD direction refers to a direction parallel to the film forming direction, and is also referred to as a film forming direction or a longitudinal direction in another expression.
  • the film TD direction refers to a direction orthogonal to the film MD direction in the film plane, and is also referred to as a width direction in another expression.
  • the Young's modulus can be measured by heating the film at 130 ° C. for 1 minute and then performing a tensile test on the film at a tensile speed of 300 mm / min, and detailed measurement conditions will be described later.
  • the direction orthogonal to the main orientation direction of the film is the MD direction.
  • the main orientation direction is a direction in which an angle of 0 ° to 175 ° is formed in 5 ° increments with respect to the arbitrary direction when the arbitrary direction is 0 ° in the film plane.
  • the direction showing the highest value when Young's modulus is measured.
  • the Young's modulus in the film MD direction is 100 MPa or more, for example, when a coating agent containing a resin composition is applied when used as a support film and solidified in a high temperature process, the elongation of the film is suppressed. , The occurrence of wrinkles associated with it is also reduced.
  • a method can be used in which the raw material composition of the film is in the range described later and the film forming conditions are in the range described later.
  • it is effective to use a raw material having a high degree of crystallinity, increase the preheating temperature at the time of longitudinal / transverse stretching, and perform stretching at a low temperature at a high magnification and uniformly at a high magnification.
  • the film of the present invention preferably has a melting peak at 160 ° C. or higher and a melting peak at 165 ° C. or higher when the temperature is raised from 30 ° C. to 260 ° C. by a differential scanning calorimeter DSC. It is more preferable to have a melting peak at 168 ° C. or higher. The higher the melting peak temperature is, the more preferable the upper limit is, but the upper limit is substantially 220 ° C.
  • “having a melting peak at 160 ° C. or higher” means that there is one melting peak and the melting peak is 160 ° C. or higher, and there are a plurality of melting peaks, and at least one of them is 160 ° C. or higher. It shall also include the case where it is included in the range of.
  • the film When it has a melting peak at 160 ° C or higher, for example, when it is used as a support film, when it is solidified in a high temperature process after applying a coating film containing a resin composition, the film breaks or the flatness deteriorates. Can be mitigated.
  • a method can be used in which the raw material composition of the film is in the range described later and the film forming conditions are in the range described later. In particular, it is effective to use a high melting point resin for the inner layer of the film to improve the heat resistance of the inner layer.
  • the film of the present invention preferably has an internal haze (hereinafter, may be simply referred to as haze) of 0.01% or more and 1.5% or less after heating at 130 ° C. for 10 minutes.
  • the haze after heating at 130 ° C. for 10 minutes is more preferably 1.0% or less, still more preferably 0.7% or less.
  • the lower the haze after heating at 130 ° C. for 10 minutes, the more preferable, and the haze is not particularly limited, but is 0.01% from the viewpoint of feasibility.
  • the haze can be measured with a known haze meter, and detailed measurement conditions thereof are shown in Examples.
  • the film of the present invention may contain various additives such as antioxidants, and such films in particular contain additives such as antioxidants when exposed to high temperature heat of, for example, 130 ° C. or higher. Bleed out to the surface and the transparency is easily impaired. Therefore, in such a film, there is a great advantage that the haze is in the above range.
  • a method in which the raw material composition of the film is in the range described later and the film forming conditions are in the range described later.
  • it contains a branched chain polypropylene resin to reduce the size of spherulites formed during casting, lower the extrusion temperature and the temperature of the cast drum to increase cooling during casting, and preheat temperature during longitudinal / transverse stretching. It is effective to stretch uniformly by increasing the temperature and stretching at a low temperature. Further, it is also effective to enhance the crystallinity by using a raw material having high stereoregularity and a low cold xylene soluble portion (CXS), and to perform heat treatment and relaxation after longitudinal and transverse stretching.
  • CXS cold xylene soluble portion
  • the film of the present invention has a surface free energy of 15 mN / m or more and 35 mN / m or less from the viewpoint of facilitating peeling of the resin composition film formed on the surface of the A layer when used as a support film.
  • the surface free energy of the A surface is more preferably 32 mN / m or less, still more preferably 29 mN / m or less.
  • the surface free energy is 35 mN / m or less, for example, when it is used as a support film, a coating film containing a resin composition is applied on the A surface, and after solidification, it is peeled off to obtain a resin composition film. At that time, the resin composition film is smoothly peeled off, and the occurrence of film breakage and peeling marks at the time of peeling is reduced.
  • the surface free energy can be measured with a known contact angle meter using four types of liquids, water, ethylene glycol, formamide, and methylene iodide, as the measuring liquid, and the detailed measurement conditions thereof are Examples. Shown in.
  • the raw material composition of the film is in the range described later and the film forming conditions are in the range described later.
  • it is also effective to use a polyolefin resin as the main component of the film surface layer corresponding to the A side (in the case of a single layer configuration, the film itself, the same applies hereinafter), or to provide a coating layer having releasability on the A side.
  • the main component of the film surface layer corresponding to the A surface is a polyolefin resin.
  • the thickness of the film of the present invention is appropriately adjusted depending on the intended use and is not particularly limited, but it is preferably 0.5 ⁇ m or more and 100 ⁇ m or less from the viewpoint of handleability.
  • the upper limit of the thickness when used as a release film is more preferably 60 ⁇ m or less, further preferably 50 ⁇ m or less, and most preferably 40 ⁇ m or less.
  • the lower limit is more preferably 4 ⁇ m or more, further preferably 8 ⁇ m or more, and most preferably 11 ⁇ m or more.
  • the thickness can be adjusted by adjusting the screw rotation speed of the extruder, the width of the unstretched sheet, the film forming speed, the stretching ratio, and the like within a range that does not deteriorate other physical properties.
  • the components constituting the film of the present invention are not particularly limited, but it is preferable that the main component is a thermoplastic resin.
  • the thermoplastic resin include polystyrene (PS) resin, styrene-based elastomer resin, polymethylpentene (PMP) resin, cyclic olefin (COP) resin, and cyclic olefin copolymer (COC) resin, in addition to the polypropylene resin described later.
  • Polyetherketone resin polyethylene terephthalate (PET) resin, polybutylene terephthalate (PBT) resin, and polyester resin such as polyethylene nareftalate (PEN) resin, polysalphon (PSU) resin, polyethersalphon (PES) resin, and poly.
  • PET polyethylene terephthalate
  • PBT polybutylene terephthalate
  • polyester resin such as polyethylene nareftalate (PEN) resin, polysalphon (PSU) resin, polyethersalphon (PES) resin, and poly.
  • Polysulfone resin such as phenylsulfone (PPSU) resin, polyphenylene sulfide (PPS) resin, polyphenylene sulfide ketone resin, polyphenylene sulfide sulfone resin, polyetherylene sulfide resin such as polyphenylene sulfide ketone sulfone resin, polyetherketone (PEK) resin, poly Polyetheretherketone (PEEK) resin, polyetherketoneketone (PEKK) resin, polyetheretherketoneketone (PEEKK) resin, polyetherketone etherketoneketone (PEKEKK) resin and other polyaryletherketone resins, polytetrafluoroethylene (polytetrafluoroethylene) PTFE) resin (also called tetrafluoroethylene resin), polytetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA) resin (also called tetrafluoroethylene-perfluor
  • modified products, derivatives, and copolymers with other compounds can also be used. Further, these raw materials may be used alone or in combination of two or more. From the viewpoint of adjusting Sk to 0 or less, it is preferable to use a polyolefin resin or polyester resin that can be easily biaxially stretched, and at least one set so as to form a microphase-separated structure having an average domain diameter of 5 ⁇ m or less before stretching. It is preferable to contain components that are incompatible with each other.
  • the film of the present invention contains various additives such as weather resistant agents, clearing agents, crystal nucleating agents, antioxidants, heat stabilizers, slip agents, antistatic agents, as long as the object of the present invention is not impaired. It can also contain anti-blocking agents, fillers, viscosity modifiers, anti-coloring agents, leveling agents, surfactants, mold release agents and the like.
  • the surface layer having the A surface contains an olefin resin as a main component.
  • PET film or the like may be coated with a resin having releasability such as silicone resin, but when the resin component such as silicone resin is adhered to the adherend and peeled off, the resin component such as silicone resin is adhered. It can be transferred to the body and contaminated.
  • the olefin resin has a relatively low releasability, it is extremely low in transfer to the adherend, and is therefore preferably used for the surface layer having the A surface.
  • the "surface layer having the A side” means the outermost surface layer on the A side when the film has a laminated structure, and refers to the film itself when the film has a single layer structure.
  • the surface layer having the A surface contains an olefin resin as a main component means that the ratio of the olefin resin to all the components constituting the surface layer having the A surface exceeds 50% by mass and 100% by mass or less. It means that there is (hereinafter, "main component” can be interpreted in the same way).
  • the surface layer having A-sides contains an olefin resin as a main component.
  • the content of the olefin resin in the surface layer having the A surface is more preferably 90% by mass or more and 100% by mass or less, further preferably 95% by mass or more and 100% by mass or less, and further preferably 96% by mass or more and 100% by mass or less. Particularly preferably, it is 97% by mass or more and 100% by mass or less, and most preferably 98% by mass or more and 100% by mass or less.
  • the olefin-based resin means a resin containing 100 mol% or less of olefin units exceeding 50 mol% when all the constituent units constituting the resin are 100 mol%.
  • Specific examples of the olefin resin include polyethylene, polypropylene, polybutene, polymethylpentene, and copolymers thereof.
  • the content of the olefin resins shall be calculated by adding up all the olefin resins.
  • olefin resin in addition to the case where one type of olefin resin is contained in an amount of more than 50% by mass, even if the individual olefin resins are less than 50% by mass, the total of all the olefin resins may exceed 50% by mass. It can be regarded as "mainly composed of an olefin resin".
  • the film of the present invention preferably contains an olefin resin as a main component from the viewpoint of releasability, flexibility, and cost not only for the surface layer having the A surface but also for the entire film.
  • the amount of the olefin resin in all the components constituting the film is more preferably 90% by mass or more and 100% by mass or less, further preferably 95% by mass or more and 100% by mass or less, and further preferably 96% by mass or more and 100% by mass or less. Particularly preferably, it is 97% by mass or more and 100% by mass or less, and most preferably 98% by mass or more and 100% by mass or less.
  • Specific examples of the olefin resin include polyethylene resin, polypropylene resin, polybutene resin, polymethylpentene resin, and copolymers thereof.
  • the film of the present invention preferably contains a polypropylene resin contained in the resin constituting the film in an amount of 95% by mass or more and 100% by mass or less. From the above viewpoint, it is more preferably 96% by mass or more, further preferably 97% by mass or more, and particularly preferably 98% by mass or more.
  • the polypropylene resin means a resin in which the propylene unit is more than 50 mol% and 100 mol% or less when all the constituent units constituting the resin are 100 mol%.
  • the surface layer having the A side in the film of the present invention contains polypropylene resin as a main component and the content of polyethylene resin is 3% by mass or less in the whole layer.
  • the content of the polyethylene resin in the surface layer having the A surface is more preferably 2% by mass or less, further preferably 1% by mass or less, and most preferably 0.5% by mass or less.
  • a polypropylene film having a matte rough surface often forms a rough surface by blending a polypropylene resin and a polyethylene resin.
  • the quality may deteriorate, such as the increase in fish eyes caused by polyethylene resin and the increase in foreign matter due to the scraping of the film surface. It is preferable to suppress the content of the polyethylene resin in the surface layer.
  • the film of the present invention is a polypropylene resin, a branched chain polypropylene resin, a low crystalline polyolefin resin, and polymethylpentene from the viewpoint of suppressing the formation of coarse protrusions on the surface of the A surface and forming a recessed structure having a predetermined depth.
  • the resin and the rubber domain-containing resin it is preferable to contain at least two or more kinds of resins.
  • the polypropylene resin (hereinafter, may be referred to as polypropylene resin A) in the film of the present invention preferably has a melting point of 155 ° C. or higher, more preferably 160 ° C. or higher, still more preferably 163 ° C. or higher, and most preferably 165 ° C. or higher. That is all.
  • the melting point of the polypropylene resin is 155 ° C. or higher, the heat resistance of the film is enhanced. Therefore, for example, when used as a release film, the softening of the film and the accompanying elongation in the tension direction are reduced when the film is attached to the adherend and then passed through a heat-applied process, so that the adherend is used. Deformation is suppressed.
  • polypropylene resin A a linear polypropylene resin is preferable.
  • the melt flow rate (MFR) at 230 ° C. under a load of 21.18 N is 1 to 10 g / 10 minutes, more preferably 1 to 8 g / 10 minutes, and particularly preferably. It is 2 to 5 g / 10 minutes.
  • the melt flow rate (MFR) is 1 to 10 g / 10 minutes or the above-mentioned preferable value.
  • the method for adjusting the hydrogen gas concentration at the time of polymerization, the selection of the catalyst and / or the co-catalyst, and the selection of the composition are appropriately selected. The method of performing is preferably adopted.
  • the polypropylene resin A may contain a copolymerization component (copolymerization unit) due to other unsaturated hydrocarbons as long as the object of the present invention is not impaired.
  • copolymerization components include ethylene, 1-butene, 1-pentene, 3-methylpentene-1, 3-methylbutene-1, 1-hexene, 4-methylpentene-1, 5-ethylhexene-1, and the like.
  • Examples thereof include 1-octene, 1-decene, 1-dodecene, vinylcyclohexene, styrene, allylbenzene, cyclopentene, norbornene, 5-methyl-2-norbornene and the like.
  • the copolymerization amount is 1 mol% or less from the viewpoint of dimensional stability.
  • the polypropylene resin A can be blended with a resin containing a propylene component, the above-mentioned copolymerization component, and the like as long as the effects of the present invention are not impaired.
  • branched polypropylene resin B in the film of the present invention is known to exhibit a nucleating agent action on a linear polypropylene resin, and after melt extrusion.
  • the content of the branched polypropylene resin B in the layer is the upper limit of the content of the branched polypropylene resin B when all the constituents of the layer are 100% by mass. Is more preferably 50% by mass or less, further preferably 40% by mass or less, further preferably 30% by mass or less, and most preferably 25% by mass or less. Further, the lower limit of the content of the branched chain polypropylene resin B is more preferably 0.1% by mass or more, further preferably 1% by mass or more, further preferably 4% by mass or more, and most preferably 10% by mass or more.
  • the MFR of the branched chain polypropylene resin B measured under a load of 230 ° C. and 21.18 N is preferably 0.5 g / 10 minutes or more and 9 g / 10 minutes or less from the viewpoint of extrusion stability.
  • the lower limit of the MFR of the branched chain polypropylene resin B measured under the same conditions is more preferably in the range of 2 g / 10 minutes, further preferably 6 g / 10 minutes or more.
  • a method for adjusting the hydrogen gas concentration at the time of polymerization, a catalyst and / or a co-catalyst , And the method of appropriately selecting the composition, etc. are preferably adopted.
  • the melt tension of the branched chain polypropylene resin B is preferably 3 gf or more and 40 gf or less from the viewpoint of stretching uniformity.
  • the lower limit of the melt tension is more preferably 4 gf, and even more preferably 6 gf.
  • the upper limit is more preferably 30 gf and even more preferably 25 gf.
  • a method of controlling the average molecular weight, the molecular weight distribution, the degree of branching in the polypropylene resin, or the like is adopted. In particular, when it has a long chain branch, the melt tension can be dramatically increased, and it can be adjusted to a preferable value by adjusting the molecular chain of the long chain branch and the degree of branching.
  • branched chain polypropylene resins B such as Ziegler-Natta catalyst system and metallocene catalyst system are commercially available, a metallocene catalyst system having few low molecular weight components and high molecular weight components and a narrow molecular weight distribution is more preferable.
  • the film of the present invention can reduce the crystallinity of the cast film after melt extrusion, and as a result, the coarseness of the film after stretching can be reduced. The formation of protrusions can be suppressed. It is preferable that the low crystallinity polyolefin resin C has a lower stereoregularity of the molecular structure of the polymer and / or a lower crystallinity than the polypropylene resin A. Examples of means for lowering the crystallinity include copolymerization with a comonomer.
  • the low crystalline polyolefin resin also includes a resin having no melting point, but in the case of a resin having a melting point, the melting point of the low crystalline polyolefin resin C is preferably lower than that of the polypropylene resin A, and is 50 ° C. or higher and 135 ° C. or lower. Is more preferably 60 ° C. or higher and 130 ° C. or lower, still more preferably 60 ° C. or higher and 120 ° C. or lower, and most preferably 60 ° C. or higher and 100 ° C. or lower. Further, it is also preferable to use a laminated film containing a low crystalline polyolefin resin having a melting point of 50 ° C. or higher and 135 ° C. or lower or the above-mentioned preferable range in at least one surface layer.
  • the melting point of the low crystalline polyolefin resin C is preferably 50 ° C. or higher from the viewpoint of preventing the film surface from melting and adhering to the roll when the preheated / stretched roll is conveyed. Further, from the viewpoint of partially melting the film surface during stretching to roughen the surface, the melting point of the low crystalline polyolefin resin C is preferably 135 ° C. or lower.
  • the content of the low crystalline polyolefin resin C in the surface layer containing the low crystalline polyolefin resin C is 100 for all the constituents of the layer.
  • the upper limit of the content of the low crystalline polyolefin resin C is more preferably 80% by mass or less, further preferably 70% by mass or less, further preferably 40% by mass or less, and most preferably 25% by mass or less. .. Further, the lower limit of the content of the low crystalline polyolefin resin C is more preferably 5% by mass or more, further preferably 15% by mass or more, and most preferably 20% by mass or more.
  • a low crystallinity polypropylene resin compatible with polypropylene resin A is preferable, and examples thereof include a copolymer of propylene and ⁇ -olefin and a polypropylene resin having low stereoregularity.
  • commercial products such as "Wintech” (registered trademark) manufactured by Japan Polypropylene Corporation, which is a polypropylene random copolymer, and "El Modu” (registered trademark) manufactured by Idemitsu Kosan Co., Ltd., which is a low stereoregular polypropylene resin. Can be used after appropriately selecting.
  • the film of the present invention preferably contains a rubber domain-forming resin (hereinafter, may be referred to as rubber domain-forming resin D).
  • the rubber domain forming resin refers to a resin capable of forming a rubber domain in a film by blending with polypropylene resin A.
  • a resin containing a rubber domain such as a polypropylene block copolymer, a thermoplastic elastomer that forms a rubber domain in a matrix of polypropylene resin A without being completely compatible with polypropylene resin A, and the like.
  • the rubber domain is stretched larger than the matrix resin during longitudinal stretching, so that a recessed structure can be formed on the film surface.
  • the rubber domain-forming resin D is not particularly limited as long as it is a resin capable of forming a rubber domain in the film, but is preferably at least one of a thermoplastic elastomer and a polypropylene block copolymer, but has an affinity with polypropylene resin A.
  • Polyolefin-based thermoplastic elastomers are particularly preferable because of their high properties.
  • the thermoplastic elastomer refers to an elastomer that softens when heated and exhibits fluidity, and returns to a rubbery state when cooled.
  • the upper limit of the preferable Vicat softening temperature of the rubber domain forming resin D is preferably 130 ° C. or lower, more preferably 122 ° C.
  • the lower limit of the Vicat softening temperature is preferably 50 ° C. or higher, more preferably 65 ° C. or higher, further preferably 80 ° C. or higher, and most preferably 90 ° C. or higher.
  • the content of the rubber domain-forming resin D in the layer containing the rubber domain-forming resin is the content of the rubber domain-forming resin D when all the constituents of the layer are 100% by mass.
  • the upper limit of the amount is more preferably 35% by mass or less, further preferably 25% by mass or less, further preferably 17% by mass or less, and most preferably 12% by mass or less.
  • the lower limit of the content of the rubber domain forming resin D is more preferably 1% by mass or more, further preferably 4% by mass or more, further preferably 6% by mass or more, and most preferably 8% by mass or more.
  • the polypropylene resin A, the branched chain polypropylene resin B, the low crystalline polyolefin resin C, and the rubber domain-forming resin D used in the film of the present invention may contain various additives such as a crystal nucleating agent as long as the object of the present invention is not impaired. , Antioxidants, heat stabilizers, slip agents, antistatic agents, antiblocking agents, fillers, viscosity modifiers, anticoloring agents and the like can also be contained.
  • the selection of the type and amount of the antioxidant is important from the viewpoint of bleeding out of the antioxidant. That is, the antioxidant is preferably a phenolic agent having steric hindrance, and at least one of them is a high molecular weight type having a molecular weight of 500 or more. Specific examples thereof include various examples, such as 1,3,5-trimethyl-2,4,6-with 2,6-di-t-butyl-p-cresol (BHT: molecular weight 220.4).
  • Tris (3,5-di-t-butyl-4-hydroxybenzyl) benzene eg, BASF's "Irganox”® 1330: molecular weight 775.2
  • tetrakis [methylene-3 (3,5-di) -T-Butyl-4-hydroxyphenyl) propionate] methane for example, "Irganox” (registered trademark) 1010: molecular weight 1,177.7) manufactured by BASF, etc. is preferably used in combination.
  • a crystal nucleating agent can be added to the polypropylene resin A used in the film of the present invention within a range not contrary to the object of the present invention.
  • Specific examples include ⁇ -crystal nucleating agents (dibenzylidene sorbitols, sodium benzoate, etc.) and ⁇ -crystal nucleating agents (potassium 1,2-hydroxystearate, magnesium benzoate, N, N'-dicyclohexyl-2,6- Amide compounds such as naphthalenedicarboxamide, quinacridone compounds, etc.) are exemplified.
  • the addition amount is usually 100 parts by mass of the polypropylene resin A. It is preferably 0.5 parts by mass or less, preferably 0.1 parts by mass or less, and more preferably 0.05 parts by mass or less.
  • the surface layer having the A surface (in the case of a single layer structure, the film itself) in the film of the present invention does not contain organic particles and inorganic particles. Since polypropylene resin has a low affinity with organic particles and inorganic particles, the particles may fall off and contaminate the process or product, and the high hardness particles form coarse protrusions on the optical member. Concavo-convex transfer may occur to the resin layer, which may be a barrier when used as a protective film or support film for products that require high quality such as display members.
  • the film of the present invention is preferably biaxially stretched after using the above-mentioned resin.
  • a method of biaxial stretching any of the inflation simultaneous biaxial stretching method, the stenter simultaneous biaxial stretching method, and the stenter sequential biaxial stretching method can be obtained.
  • the film forming stability, the thickness uniformity, and the film It is preferable to adopt the stenter sequential biaxial stretching method in terms of controlling high rigidity and dimensional stability.
  • the polypropylene resin A is 50 parts by mass
  • the branched chain polypropylene resin B is 20 parts by mass
  • the low crystalline polyolefin resin C is 20 parts by mass
  • the rubber domain forming resin D is 10 parts by mass. It was supplied to an extruder, melt-kneaded at 260 ° C., and discharged from the die in a strand shape. The discharged resin composition was cooled and solidified in a water tank at 25 ° C. and cut into chips to obtain a resin composition for the surface layer (I).
  • the resin composition for the surface layer (I) is supplied to the single-screw extruder, and A1 and B1 are dry-blended at a ratio of 95: 5 (mass ratio) to the single-screw melt extruder for the inner layer (II). It is supplied and melt-extruded at 200 to 280 ° C., more preferably 220 to 280 ° C., and even more preferably 240 to 270 ° C., respectively. Then, after removing foreign substances and modified polymers with a filter installed in the middle of the polymer tube, they are laminated with a multi-manifold type composite T-die so as to have a two-kind three-layer structure of I layer / II layer / I layer.
  • the laminated thickness ratio is preferably in the range of 1/8/1 to 1/60/1.
  • the surface temperature of the casting drum is preferably 10 to 45 ° C, more preferably 15 to 35 ° C, and even more preferably 15 to 25 ° C. Further, a two-type two-layer laminated structure of I layer / II layer may be used, but in that case, the I layer side is brought into close contact with the casting drum.
  • the adhesion method to the casting drum any of the electrostatic application method, the adhesion method using the surface tension of water, the air knife method, the press roll method, the underwater casting method, etc. may be used, but the flatness is good. Moreover, the air knife method capable of controlling the surface roughness is preferable.
  • the air temperature of the air knife is preferably 10 ° C to 30 ° C, and the blown air speed is preferably 130 m / s to 150 m / s. It is also preferable to appropriately adjust the position of the air knife so that air flows to the downstream side of the film formation so as not to cause vibration of the film.
  • the obtained unstretched sheet is introduced into the longitudinal stretching step.
  • a recessed structure can be efficiently formed on the surface of the I layer by performing two-stage stretching in which the initial longitudinal stretching is performed at a low temperature and a low magnification and then the longitudinal stretching is performed at a high temperature and a high magnification. ..
  • the rubber domain can be effectively stretched larger than the matrix resin by preheating at a temperature higher than the softening temperature of the rubber domain forming resin D and stretching it at a low magnification, and the film surface has a recessed structure. Can be formed.
  • an unstretched sheet is brought into contact with a plurality of metal rolls kept at 80 ° C.
  • a longitudinal uniaxially stretched film by longitudinally stretching at a high magnification at a temperature higher than the initial longitudinally stretched temperature in order to stabilize the transverse stretching and reduce the haze. More specifically, it is brought into contact with a metal roll which is higher than the preheating temperature of the initial longitudinal stretching and is kept at 110 ° C. or higher and 150 ° C. or lower, preferably 115 ° C. or higher and 140 ° C. or lower, and more preferably 120 ° C. or higher and 140 ° C. or lower. It is preferable to preheat the sheet and stretch the sheet between rolls provided with a peripheral speed difference.
  • the total stretching ratio of the two-stage stretching is preferably 3.5 to 7 times, more preferably 4.5 times to 5.5 times, still more preferably 4.5 times to 5.0 times. If the total draw ratio is less than 3 times, the orientation of the obtained film may be weakened and the strength may be lowered.
  • the longitudinally uniaxially stretched film is guided to the tenter, the end of the film is gripped with a clip, preheated, and then laterally stretched 7 to 13 times in the width direction. It is important that the vertically uniaxially stretched film is preheated at a low temperature and then stretched laterally so as not to break the recessed structure formed on the film surface.
  • the preheating and stretching temperatures are 120 ° C. to 175 ° C., preferably 120 ° C. to 165 ° C., and more preferably 140 ° C. to 160 ° C. Further, it is particularly preferable that the stretching temperature is lower than the preheating temperature, preferably 3 ° C. or higher with respect to the preheating temperature, more preferably 5 ° C. or higher, still more preferably 10 ° C. or higher.
  • the relaxation is applied at a relaxation rate of 2% to 20%, more preferably 5% to 18%, still more preferably 8% to 15% in the width direction. , 140 ° C. or higher and 175 ° C. or lower, preferably 140 ° C. or higher and lower than 170 ° C., more preferably 150 ° C. or higher and lower than 170 ° C., and further preferably 160 ° C. or higher and lower than 170 ° C.
  • the film is guided to the outside of the tenter through a cooling process at 80 ° C. to 100 ° C.
  • the clips at both ends in the film width direction are released, and the film edge portion is slit in the winder process. Wind up the film product roll.
  • the films obtained as described above can be used in various industrial applications such as packaging films, surface protective films, support films, sanitary products, agricultural products, construction products, medical products, and condenser films.
  • it does not have coarse protrusions, has a predetermined recessed structure, and is excellent in mold releasability, rigidity, heat resistance, and slipperiness, so that it can be preferably used for process film applications.
  • the process film is a protective film that protects the film during transportation, a support film used as a support when manufacturing a resin composition film, and a resin composition film when forming a resin composition film on the support film. Includes a cover film that covers the non-supporting side of the film.
  • the laminate of the present invention has a resin composition layer on the A side of the film of the present invention. Since the film of the present invention does not have coarse protrusions, has a predetermined recessed structure, and is excellent in mold releasability, rigidity, and heat resistance, the film should be a laminate in which a resin composition layer is formed on the A surface thereof. Therefore, it is possible to facilitate the production of the resin composition film obtained by peeling off the resin composition layer. Further, the method for producing a resin composition film of the present invention has at least the following steps 1 to 3 in this order.
  • Step 1 A step of applying a coating agent containing a resin composition to the A side of the film according to any one of claims 1 to 10.
  • Step 2 A step of solidifying the coating material containing the resin composition to form a resin composition layer to form a laminate.
  • Step 3 A step of peeling the resin composition layer from the laminate to obtain a resin composition film.
  • the film obtained by the above-mentioned method was wound into a roll and introduced into a bar coater, and a commercially available urethane acrylate (viscosity at 25 ° C., 600,000 mPa ⁇ s, weight average molecular weight Mw 1,600, glass transition temperature 10) was introduced.
  • a coating film consisting of a resin composition obtained by mixing 50 parts by mass of a commercially available methyl ethyl ketone and 3 parts by mass of a commercially available 1-hydroxycyclohexylphenyl ketone has a thickness of 1 ⁇ m or more and 100 ⁇ m or less. It is applied to the A side of the film so as to be. This is introduced into a hot air dryer and heated at 50 ° C.
  • a coating agent obtained by mixing 171 (manufactured by Ciba Japan Co., Ltd.) with 0.5 parts by mass is applied to the A side of the film so as to have a film thickness of 1 ⁇ m or more and 100 ⁇ m or less.
  • This is introduced into a hot air dryer, heated at 10 ° C. or higher and 50 ° C. or lower to remove the solvent, and the coating material on the film is cured.
  • the laminate is wound up to obtain a roll obtained by winding the laminate having the resin composition layer on the A surface of the film. By unwinding the laminate from the laminate roll and peeling the resin composition layer from the film, a resin composition film made of cellulose acetate propionate can be obtained.
  • Yet another example is a resin composition membrane made of polyetherimide.
  • 15 parts by mass of a commercially available polyetherimide resin manufactured by SABIC, trade name "ULTEM” (registered trademark) 1010, Vicat softening point temperature 215 ° C.) and 85 parts by mass of N-methyl-2-pyrrolidone were mixed.
  • the coating agent is applied to the A side of the film so that the film thickness is 1 ⁇ m or more and 100 ⁇ m or less. This is introduced into a hot air dryer, heated at 50 ° C. or higher and 150 ° C. or lower to remove the solvent, and the coating material on the film is cured to obtain a laminate composed of a resin composition layer made of polyetherimide and a film. ..
  • the laminate is wound up to obtain a roll obtained by winding the laminate having the resin composition layer on the A surface of the film.
  • a resin composition film made of polyetherimide can be obtained.
  • the measurement was performed on both sides of a 5 cm ⁇ 5 cm square cut film.
  • the intersection of the diagonal lines is set as the first measurement point (point 1), and the positions 1 cm away from each of the four corners from the starting point are set clockwise as points 2, points 3, points 4, and points 5, respectively.
  • the midpoint of the line segment connecting 2 and point 3 is point 6
  • the midpoint of the line segment connecting point 3 and point 4 is point 7
  • the midpoint of the line segment connecting point 4 and point 5 is point 8.
  • the midpoint of the line segment connecting the points 5 and 2 was set as the point 9, and a total of 9 measurement points from the points 1 to 9 were determined, and the measurement was performed at each measurement point.
  • Ssk, Smr2, Spk, and Sv at each measurement position were obtained according to the above procedure, and the 9th and 2nd largest values and the 8th and 9th largest values obtained for each parameter were obtained.
  • the average value of the five values excluding the above was adopted as Ssk, Smr2, Spk, and Sv of the film.
  • Table 2 shows the values of Ssk, Smr2, Spk, and Sv on the A side of the film. When both sides of the film are A side, the value for the side with low Spk is described. For the film having no A side, the value for the side having a low Spk is described. Further, for a film having no A side and having the same Spk on both sides, the value for the side having a small Sk value is described.
  • ⁇ Measurement conditions and device configuration> Objective lens: 10x Lens barrel: 1x Zoom lens: 1x Wavelength filter: 530nm white Measurement mode: Wave Measurement software: VS-Measure 10.0.4.0 Analysis software: VS-Viewer 10.0.3.0 Measurement area: 561.1 ⁇ m ⁇ 561.5 ⁇ m Number of pixels: 1,024 x 1,024.
  • Young's modulus at 130 ° C. Young's modulus at 130 ° C. is chucked into an oven heated to 130 ° C. using a film strength elongation measuring device (AMF / RTA-100) manufactured by Orientec Co., Ltd. After charging for 1 minute, the film was subjected to a tensile test at a tensile speed of 300 mm / min. The film is cut into a rectangular size with a measurement direction (orthogonal direction of the main orientation axis): 25 cm and a direction perpendicular to the measurement direction: 1 cm, stretched at an original length of 100 mm and a tensile speed of 300 mm / min, and specified in JIS Z 1702 (1994). Measured according to the method used.
  • the coating agent was applied to a surface having a small Sk value to obtain a resin composition film by the same procedure. This was repeated 5 times to obtain 5 resin composition films.
  • a slip tester manufactured by Toyo Seiki Kogyo Co., Ltd. the surfaces that were in contact with the film of the resin composition obtained at a load of 200 g, 25 ° C., and 65% RH were in contact with each other according to JIS K 7125 (1999).
  • the dynamic friction coefficient ⁇ d when the resin composition films were rubbed against each other in the longitudinal direction was measured by the method described in (3).
  • the sample was a rectangle with a width of 80 mm and a length of 200 mm, and 5 sets (10 sheets) were cut out. When cutting out the sample, one set was cut out from one resin composition membrane, and the region 2 cm from the end of the resin composition membrane was not used. The measurement was performed 5 times, and the average value was adopted as the value of the dynamic friction coefficient ⁇ d of the resin composition film. Based on the value of the dynamic friction coefficient ⁇ d of the resin composition film, the slipperiness of the resin composition film (effect of imparting slipperiness of the film) was evaluated according to the following criteria. Excellent: ⁇ d is 0.50 or less. Good: ⁇ d is greater than 0.50 and 0.55 or less. Possible: ⁇ d is larger than 0.55 and 0.60 or less. Impossible: ⁇ d is greater than 0.60.
  • Vicut softening temperature Prepare a test sample by press-molding each raw material to a thickness of 3 mm, and use a heat distortion tester (“148-6 series type” manufactured by Yasuda Seiki Seisakusho Co., Ltd.) in accordance with ASTM D1525. The Vicat softening temperature of each raw material was evaluated.
  • A1 Polypropylene resin (manufactured by Prime Polymer Co., Ltd., MFR: 3.0 g / 10 minutes, melting point: 164 ° C)
  • A2 Polypropylene resin (manufactured by Sumitomo Chemical Co., Ltd., MFR: 7.5 g / 10 minutes, melting point: 163 ° C)
  • A3 Polypropylene resin (manufactured by Prime Polymer Co., Ltd., MFR: 3.0 g / 10 minutes, melting point 161 ° C.)
  • A4 Polypropylene resin (manufactured by Prime Polymer Co., Ltd., MFR: 4.0 g / 10 minutes, melting point 166 ° C)
  • B1 Branched chain polypropylene resin ("WAYMAX” (registered trademark) MFX6, MFR: 3.0 g / 10 minutes manufactured by Japan Polypropylene Corporation)
  • B2 Branched chain polypropylene resin ("WAYMAX" (registered
  • Polyester B Polyester resin having an ultimate viscosity of 0.67 obtained by the following procedure Procedure: In the method for producing polyester A, 0.04 parts by mass of ethyl phosphate was added and then dispersed in ethylene glycol. Except that 0.3 parts by mass of synthetic calcium carbonate particles having a particle size distribution value of 1.70 and 0.3 parts by mass of antimony trioxide were added to stop the polycondensation reaction at a time corresponding to the ultimate viscosity of 0.66. Used the same method as the method for producing polyester A.
  • Polyester C Polyester resin with an ultimate viscosity of 0.67 obtained by the following procedure Procedure: In the method for producing polyester B, the particles to be added are amorphous silica particles having an average particle size of 1.4 ⁇ m and a particle size distribution value of 2.5. The same method as that for producing polyester B was used except that the addition amount was 0.1 part.
  • A1 is 50 parts by mass
  • B1 is 20 parts by mass
  • C1 which is a low crystalline polyolefin resin is 20 parts by mass
  • D1 which is a rubber domain forming resin is 10 parts by mass. It was melt-kneaded at 260 ° C. and discharged from the die in a strand shape. The discharged resin composition was cooled and solidified in a water tank at 25 ° C. and cut into chips to obtain a resin composition for the surface layer (I).
  • the resin composition for the surface layer (I) is supplied to the single-screw extruder, and A1 and B1 are dry-blended at a ratio of 95: 5 (mass ratio) to the single-screw melt extruder for the inner layer (II). They were fed and melt-extruded at 260 ° C., respectively. Subsequently, after removing foreign matter from each resin composition melted by a 20 ⁇ m-cut sintered filter, the surface layer (I) / inner layer (II) / surface layer (I) is 1/24/1 with a feed block type composite T-die.
  • the layers were laminated at the thickness ratio of the above, discharged to a casting drum whose surface temperature was controlled at 20 ° C., and brought into close contact with the casting drum by an air knife. Then, compressed air was injected onto the surface of the sheet on the casting drum opposite to the casting drum surface to cool the sheet, and an unstretched sheet was obtained. Subsequently, the unstretched sheet was preheated to 90 ° C. with a ceramic roll, and initial stretching was performed 1.3 times in the longitudinal direction between the 90 ° C. rolls provided with a peripheral speed difference (note that stretching in the longitudinal direction). Is sometimes referred to as longitudinal stretching.).
  • the film after the initial stretching was preheated to 140 ° C., and the second-stage longitudinal stretching was performed at a magnification of 3.5 times.
  • both ends of the film after longitudinal stretching were gripped with clips and introduced into a tenter type stretching machine, preheated at 160 ° C for 3 seconds, stretched 9.8 times in the width direction at 150 ° C, and stretched 9.8 times in the width direction.
  • the film was guided to the outside of the tenter through a cooling step of 100 ° C., the clips at both ends in the film width direction were released, and the film was wound around the core to obtain a biaxially oriented polypropylene film having a thickness of 12 ⁇ m.
  • Table 1 shows the physical characteristics and evaluation results of the obtained biaxially oriented polypropylene film.
  • Examples 2 to 4, 6 to 7, Comparative Examples 1, 2, 4, 6) A film having the thickness shown in Table 1 was obtained in the same manner as in Example 1 except that the composition, layer composition, stacking ratio, and film forming conditions of each layer were as shown in Table 1. Table 1 also shows the physical characteristics of the obtained film and the evaluation results. The film thickness was adjusted by adjusting the discharge amount at the time of extrusion.
  • Example 5 As raw materials, 65 parts by mass of the polypropylene raw material A1, 20 parts by mass of the low crystalline polyolefin raw material C1, and 15 parts by mass of the rubber domain-containing raw material D1 are dry-blended and uniaxial melt extrusion for a single layer. It was supplied to the machine, melt-extruded at 260 ° C., foreign matter was removed with a 20 ⁇ m-cut sintered filter, discharged to a casting drum whose surface temperature was controlled at 20 ° C., and brought into close contact with the casting drum with an air knife. Then, compressed air was injected onto the uncooled drum surface of the sheet on the casting drum to cool the sheet, and an unstretched sheet was obtained.
  • the sheet was preheated to 125 ° C. with a ceramic roll, and initial stretching was performed 1.2 times in the longitudinal direction of the film between the 125 ° C. rolls provided with a peripheral speed difference.
  • the temperature was preheated to 138 ° C., and the second-stage longitudinal stretching was performed at a magnification of 3.4 times.
  • it was introduced by gripping the end with a clip in a tenter type stretching machine, preheated at 168 ° C for 3 seconds, stretched 7.5 times at 163 ° C, and at 173 ° C while giving 16% relaxation in the width direction. Heat treatment was performed.
  • Table 1 also shows the physical characteristics of the obtained film and the evaluation results.
  • a coating liquid X was prepared by dissolving 25 parts by mass of methyl ethyl ketone (MEK) and 12.15 parts by mass of 1-butanol in a mixed solvent of 0.53 parts by mass of a photoinitiator. Then, the coating liquid X was coated on one side of the biaxially stretched PET film which had been easily adhered and surface-treated by the Mayer bar coating method, and dried at a temperature of 95 ° C.
  • MEK methyl ethyl ketone
  • a film was obtained by irradiating with ultraviolet rays from a high-pressure mercury lamp (manufactured by Eye Graphics Co., Ltd.) for about 10 seconds (integrated light amount of about 400 mJ / cm 2 irradiation) and UV curing treatment.
  • Table 1 also shows the physical characteristics of the obtained film and the evaluation results.
  • a mixed raw material pellet was prepared by dry blending 70 parts by mass of A3 and 30 parts by mass of D1.
  • the mixed raw material pellets were put into the single-screw extruder A from the hopper, melted, and extruded from the single-layer die as a single-layer resin layer.
  • the extruded resin layer was cooled and solidified while being pressed against a cooling drum controlled at 35 ° C. with the air pressure of an air knife to obtain a 900 ⁇ m-thick unstretched film.
  • the obtained unstretched film was simultaneously biaxially stretched using a batch type biaxial stretching machine "KAROIV" manufactured by Bruckner.
  • Table 1 also shows the physical characteristics of the obtained film and the evaluation results.
  • Device setting Preheating temperature 165 ° C., preheating time 2 minutes, stretching temperature (longitudinal stretching temperature and transverse stretching temperature) 165 ° C., stretching speed 100% / sec.
  • Propylene polymerization was carried out using the above titanium catalyst, triethylaluminum as a co-catalyst, and hydrogen as a chain transfer agent.
  • the obtained product was deactivated and then thoroughly washed with a propylene monomer to obtain a polypropylene resin.
  • the polypropylene resin had an MFR of 2.5 g / 10 min and a mesopentad fraction (mm mm) of 0.980.
  • 100% by mass of the polypropylene resin composition was supplied to a single-screw melt extruder, melt-extruded at 250 ° C., and foreign matter was removed with a 25 ⁇ m-cut sintered filter.
  • the shear rate applied by the T-die during extrusion was 300 sec -1 .
  • the molten polypropylene resin composition discharged from the T-die was brought into close contact with four consecutive cast drums to obtain a molten sheet. At this time, the diameters of the continuous cast drums were the same, and CD1, CD2, CD3, and CD4 were used from the upstream of the device, and the film paths were set so that each surface of the cast sheet alternately contacted each cast drum.
  • the surface temperature of CD1 and CD2 was 30 ° C., and the surface temperature of CD3 and CD4 was 90 ° C.
  • the time during which the cast drums of CD1, CD2, CD3, and CD4 were in close contact with the molten sheet was 0.4 seconds, respectively.
  • An air knife and end spot air were used to bring the sheet into close contact on the first cast drum, CD1.
  • the temperature of the air of the air knife was adjusted to 30 ° C.
  • the atmospheric temperature in the casting process was also adjusted to 30 ° C.
  • the cast sheet was preheated using a heated roll, heated to a film temperature of 145 ° C., and then stretched 5.5 times in the longitudinal direction.
  • the stretching speed in the longitudinal direction was 2,000,000% / min, and the neck down rate was 98%.
  • the end portion was gripped with a clip and stretched 10 times at a stretching speed of 30,000% / min in the width direction at 155 ° C. Further, heat treatment was performed at 158 ° C. for 7 seconds, and relaxation was performed by 12% in the width direction. Then, after cooling to room temperature, one side of the film was subjected to a corona discharge treatment with a processing strength of 25 W ⁇ min / m 2 , and the selvage portion of the film gripped with a clip was cut and removed.
  • the surface in contact with the CD1 and the surface treated with the corona discharge was defined as the surface A
  • the surface in contact with the other CD2 was defined as the surface B
  • the film from which the end was removed was wound with a winder to obtain a biaxially oriented polypropylene film having a thickness of 2.5 ⁇ m.
  • Examples 5 and Comparative Examples 5 and 7 have a single layer structure, there is no distinction between the surface layer (I) and the inner layer (II), but in Table 1, the film composition of Comparative Examples 5 and 7 is the surface layer. Described in the column (I).
  • the film of the present invention can be used in various industrial applications such as packaging films, surface protective films, support films, sanitary products, agricultural products, building products, medical products, and condenser films, but has particularly coarse protrusions. However, since it has a predetermined recessed structure and is excellent in releasability, rigidity, and heat resistance, it can be preferably used as a support film (particularly a process film in the process of manufacturing a resin composition film).

Abstract

Provided is a film, at least one surface of which is A surface, the A surface being a surface having a skewness Ssk of -5 to 0, a load area proportion Smr2 of 70-98%, and a projection height Spk of 1-100 nm. The film has no coarse projections, has a given recess structure, and is excellent in terms of release property, rigidity, and heat resistance.

Description

フィルム、積層体および樹脂組成物膜の製造方法Method for manufacturing film, laminate and resin composition film
 本発明は、離型性、剛性、耐熱性に優れたフィルム、積層体および樹脂組成物膜の製造方法に関する。 The present invention relates to a method for producing a film, a laminate and a resin composition film having excellent releasability, rigidity and heat resistance.
 フィルムは、包装用途、表面保護用途、他の部材の製造工程における支持用途、衛生用品、農業用品、建築用品、医療用品や、コンデンサなど様々な用途で用いられている。その中でも、表面保護用途や支持用途で用いられるフィルム(以下、表面保護フィルム、支持フィルムということがある。)は、光学部材や電子材料などの製造工程で利用されることから、工程フィルムと呼ばれる。近年、光学部材や電子材料の特性高度化、高品位化の要求向上に伴い、このような工程フィルムに求められる要求特性、要求品位も高まってきている。 Films are used in various applications such as packaging, surface protection, support in the manufacturing process of other materials, hygiene products, agricultural products, construction products, medical products, and capacitors. Among them, films used for surface protection and support applications (hereinafter, may be referred to as surface protection films and support films) are called process films because they are used in the manufacturing process of optical members and electronic materials. .. In recent years, as the characteristics of optical members and electronic materials have become more sophisticated and the demand for higher quality has increased, the required characteristics and required quality of such process films have also increased.
 特に、支持フィルムを用いて、光学用途向けの樹脂組成物膜を製膜する場合、支持フィルムの表面形状は高度な制御が要求される。たとえば特許文献1には、支持フィルム表面に相分離構造を形成して転写させることで、光学フィルムの防眩性を改良してギラツキを抑えた例が記載されている。 In particular, when a resin composition film for optical applications is formed using a support film, a high degree of control is required for the surface shape of the support film. For example, Patent Document 1 describes an example in which a phase-separated structure is formed on the surface of a support film and transferred to improve the antiglare property of the optical film and suppress glare.
 また、支持フィルムには、打痕転写を抑制する観点から表面平滑性が求められるが、表面平滑性が高過ぎる場合、支持フィルム上に形成した樹脂組成物膜の易滑性が低くなり、表面の削れによる異物の発生やシワなどにより、品位面に劣る場合がある。例えば、特許文献2には、ポリエチレンテレフタレート(PET)フィルムの表面に微細な粒子を添加し、特定の表面粗さに制御することで、光学フィルムの易滑性を改善し、欠陥を少なくした例が記載されている。 Further, the support film is required to have surface smoothness from the viewpoint of suppressing dent transfer, but if the surface smoothness is too high, the slipperiness of the resin composition film formed on the support film becomes low, and the surface surface becomes low. The quality may be inferior due to the generation of foreign matter or wrinkles due to scraping. For example, in Patent Document 2, fine particles are added to the surface of a polyethylene terephthalate (PET) film to control the surface roughness to a specific surface roughness, thereby improving the slipperiness of the optical film and reducing defects. Is described.
 また、特許文献3には、ポリマーを溶融押出した後のキャスト工程で特定の設備、条件に制御することで、フィルム表面の谷部の深さ、谷側空隙体積を低く抑え、高温耐電圧特性を高めた例が記載されている。 Further, in Patent Document 3, by controlling the casting process after melt extrusion of the polymer to specific equipment and conditions, the depth of the valley portion of the film surface and the volume of the valley side void are suppressed to be low, and the high temperature withstand voltage characteristic is obtained. An example of increasing is described.
特開2018-173546号公報Japanese Unexamined Patent Publication No. 2018-173546 特開2005-307038号公報Japanese Unexamined Patent Publication No. 2005-307038 特許第6115687号公報Japanese Patent No. 6115687
 しかしながら前述の特許文献1に記載の方法では、転写させた樹脂組成物膜表面の凹凸構造が大きく、光学特性や品位に劣る場合があった。また特許文献2に記載の方法では、転写させた樹脂組成物膜の表面の突起高さが低く、易滑性が不十分である問題があった。また、特許文献3に記載の方法では、表面の突起高さが高く、転写させた樹脂組成物膜表面の凹み深さが大きく、光学特性や品位に劣る場合があった。そこで本発明の課題は、上記した問題点を解決することにある。すなわち、樹脂組成物膜の製造工程における工程フィルムとして使用したときに、得られる樹脂組成物膜の光学特性や品位向上と、ハンドリング性を両立することが可能なフィルムを提供することにある。 However, in the method described in Patent Document 1 described above, the uneven structure on the surface of the transferred resin composition film is large, and the optical characteristics and quality may be inferior. Further, the method described in Patent Document 2 has a problem that the height of protrusions on the surface of the transferred resin composition film is low and the slipperiness is insufficient. Further, in the method described in Patent Document 3, the height of protrusions on the surface is high, the depth of dents on the surface of the transferred resin composition film is large, and the optical characteristics and quality may be inferior. Therefore, an object of the present invention is to solve the above-mentioned problems. That is, it is an object of the present invention to provide a film capable of achieving both improvement in optical properties and quality of the obtained resin composition film and handleability when used as a process film in the process of manufacturing the resin composition film.
 上述した課題を解決するために、本発明のフィルムは、次の構成を有する。すなわち、
スキューネスSskが-5以上0以下であり、負荷面積率Smr2が70%以上98%以下であり、かつ突出部山高さSpkが1nm以上100nm以下である面をA面とした際に、少なくとも片面がA面であるフィルム、である。
In order to solve the above-mentioned problems, the film of the present invention has the following constitution. That is,
When the surface where the skewness Sk is -5 or more and 0 or less, the load area ratio Smr2 is 70% or more and 98% or less, and the protrusion mountain height Spk is 1 nm or more and 100 nm or less is defined as the A surface, at least one surface is A film that is side A.
 本発明の積層体は、次の構成を有する。すなわち、
前記フィルムの前記A面上に、樹脂組成物層を有する積層体、である。
The laminated body of the present invention has the following constitution. That is,
A laminate having a resin composition layer on the A surface of the film.
 本発明の樹脂組成物膜の製造方法は、次の構成を有する。すなわち、
 少なくとも以下の工程1~3をこの順に有する樹脂組成物膜の製造方法、である。
The method for producing a resin composition film of the present invention has the following constitution. That is,
A method for producing a resin composition film, which comprises at least the following steps 1 to 3 in this order.
 工程1:前記フィルムの前記A面に、樹脂組成物を含む塗剤を塗布する工程
 工程2:前記樹脂組成物を含む塗剤を固化して樹脂組成物層を形成し、積層体とする工程
 工程3:前記積層体より樹脂組成物層を剥離して、樹脂組成物膜を得る工程。
Step 1: Applying a coating material containing a resin composition to the A surface of the film Step 2: Solidifying the coating material containing the resin composition to form a resin composition layer to form a laminate. Step 3: A step of peeling the resin composition layer from the laminate to obtain a resin composition film.
 本発明のフィルムは、前記A面の最大谷深さSvが20nm以上400nm以下であることが好ましい。 The film of the present invention preferably has a maximum valley depth Sv of the A surface of 20 nm or more and 400 nm or less.
 本発明のフィルムは、一方の表面と他方の表面との動摩擦係数μdが0.20以上0.80以下であることが好ましい。 The film of the present invention preferably has a dynamic friction coefficient μd between one surface and the other surface of 0.20 or more and 0.80 or less.
 本発明のフィルムは、130℃でのフィルムMD方向のヤング率が100MPa以上200MPa以下であることが好ましい。 The film of the present invention preferably has a Young's modulus in the film MD direction at 130 ° C. of 100 MPa or more and 200 MPa or less.
 本発明のフィルムは、示差走査熱量計DSCで30℃から260℃まで昇温した際に、160℃以上に融解ピークを有することが好ましい。 The film of the present invention preferably has a melting peak at 160 ° C. or higher when the temperature is raised from 30 ° C. to 260 ° C. with a differential scanning calorimeter DSC.
 本発明のフィルムは、130℃で10分間加熱した後の内部ヘイズが0.01%以上1.5%以下であることが好ましい。 The film of the present invention preferably has an internal haze of 0.01% or more and 1.5% or less after heating at 130 ° C. for 10 minutes.
 本発明のフィルムは、前記A面の表面自由エネルギーが15mN/m以上35mN/m以下であることが好ましい。 The film of the present invention preferably has a surface free energy of surface A of 15 mN / m or more and 35 mN / m or less.
 本発明のフィルムは、前記A面を有する表層がオレフィン系樹脂を主成分とすることが好ましい。 In the film of the present invention, it is preferable that the surface layer having the A surface contains an olefin resin as a main component.
 本発明のフィルムは、オレフィン系エラストマー樹脂及びポリプロピレンブロック共重合体の少なくとも一方を含むことが好ましい。 The film of the present invention preferably contains at least one of an olefin elastomer resin and a polypropylene block copolymer.
 本発明のフィルムは、工程フィルムに用いられることが好ましい。 The film of the present invention is preferably used as a process film.
 本発明により、樹脂組成物膜の製造工程における工程フィルムとして使用したときに、得られる樹脂組成物膜の光学特性や品位向上と、ハンドリング性を両立することが可能なフィルムを提供することができる。加えて、本発明のフィルムは耐熱性、離型性にも優れることから、本発明のフィルムは工業材料用フィルム、特に保護フィルム、支持フィルムなどの工程フィルムとして幅広く好適に使用することができる。 INDUSTRIAL APPLICABILITY According to the present invention, it is possible to provide a film capable of achieving both improvement in optical properties and quality of the obtained resin composition film and handleability when used as a process film in the process of manufacturing the resin composition film. .. In addition, since the film of the present invention is excellent in heat resistance and mold releasability, the film of the present invention can be widely and suitably used as a film for industrial materials, particularly a process film such as a protective film and a support film.
負荷面積率Smr2、突出部山高さSpkを概念的に示す図である。It is a figure which conceptually shows the load area ratio Smr2, and the protrusion mountain height Spk.
 本発明のフィルムは、スキューネスSskが-5以上0以下であり、負荷面積率Smr2が70%以上98%以下であり、かつ突出部山高さSpkが1nm以上100nm以下である面をA面とした際に、少なくとも片面がA面である。少なくとも片面にフィルムがA面を有することにより、このA面上に樹脂組成物を含む塗剤を塗布し、これを固化、剥離して得られる樹脂組成物膜の平滑性とハンドリング性を高めることができる。なお、以下、スキューネスSsk、負荷面積率Smr2および突出部山高さSpkについて、それぞれ、単に、Ssk、Smr2およびSpkということがある。 In the film of the present invention, the surface having a skewness Sk of -5 or more and 0 or less, a load area ratio Smr2 of 70% or more and 98% or less, and a protrusion mountain height Spk of 1 nm or more and 100 nm or less is defined as the A surface. At least one side is the A side. Since the film has the A side on at least one side, the coating film containing the resin composition is applied on the A side, and the resin composition film obtained by solidifying and peeling the coating film is improved in smoothness and handleability. Can be done. Hereinafter, the skewness Sk, the load area ratio Smr2, and the protrusion mountain height Spk may be simply referred to as Ssk, Smr2, and Spk, respectively.
 SskはISO25178-2:2012に規定されるパラメータであり、歪度とも呼ばれる。なお、その測定条件の詳細は実施例に示す。通常、Ssk>0の場合に細かい山が多く、Ssk<0の場合に細かい谷が多いとされる。大多数の工業用フィルムは、易滑性を確保するために、フィルム表面に突起構造を有しており、当該突起構造の間に凹み構造を有するフィルムは非常に珍しい。本発明のフィルムは、突起構造(山)に対して、凹み構造(谷)が多いことが重要であり、Sskが0以下であることに対応する。 Sk is a parameter defined in ISO25178-2: 2012 and is also called skewness. The details of the measurement conditions are shown in Examples. Normally, it is said that there are many fine peaks when Sk> 0 and many fine valleys when Sk <0. The majority of industrial films have a protrusion structure on the film surface in order to ensure slipperiness, and a film having a recessed structure between the protrusion structures is extremely rare. It is important that the film of the present invention has a large number of recessed structures (valleys) with respect to a protruding structure (peaks), and corresponds to a Sk of 0 or less.
 Sskが0より大きい場合、フィルム表面は、凹み構造よりも突起構造が多いことを示す。そのため、例えば支持フィルムとして用いた際に、フィルム上に樹脂組成物を含む塗剤を塗布し、これを固化、剥離して得られる樹脂組成物膜に転写される突起が少なく、得られる樹脂組成物膜の易滑性が不足し、ハンドリング性に劣る場合がある。一方、Sskが-5未満である場合、フィルム表面の突起が極端に少ないことを示す。そのため、フィルムの製膜中、また、支持フィルムとして加工する際の易滑性が低く、ハンドリング性が低下する場合がある。 When Sk is larger than 0, it means that the film surface has more protrusion structures than recessed structures. Therefore, for example, when used as a support film, a coating agent containing a resin composition is applied onto the film, and the coating film is solidified and peeled off to obtain a resin composition with few protrusions transferred to the film. The slipperiness of the film may be insufficient and the handleability may be inferior. On the other hand, when Sk is less than -5, it indicates that there are extremely few protrusions on the film surface. Therefore, the slipperiness is low during the film formation and when the film is processed as a support film, and the handleability may be deteriorated.
 Sskを-5以上0以下とするには、例えば、フィルムの原料組成を後述する範囲とし、また、製膜条件を後述する範囲とする方法が挙げられる。特に、フィルム中に主成分である樹脂とは別に、オレフィン系エラストマー樹脂及びポリプロピレンブロック共重合体の少なくとも一方を含有させ、主成分である樹脂中に形成されるオレフィン系エラストマー樹脂及びポリプロピレンブロック共重合体の軟化温度以上の温度で初期縦延伸し、その後、フィルムの主成分である樹脂の軟化温度以上の温度で縦二段延伸することで、Sskを小さくすることができる。 In order to set Sk to -5 or more and 0 or less, for example, a method in which the raw material composition of the film is in the range described later and the film forming condition is in the range described later can be mentioned. In particular, the olefin-based elastomer resin and the polypropylene block co-weight formed in the resin which is the main component by containing at least one of the olefin-based elastomer resin and the polypropylene block copolymer in the film separately from the resin which is the main component. Skk can be reduced by initial longitudinal stretching at a temperature equal to or higher than the softening temperature of the coalescence and then by vertical two-step stretching at a temperature equal to or higher than the softening temperature of the resin which is the main component of the film.
 本発明のフィルムにおいて、A面上に樹脂組成物を含む塗剤を塗布し、これを固化、剥離して得られる樹脂組成物膜に突起を転写形成する観点から、A面のスキューネスSskは、好ましくは-0.001以下、より好ましくは-0.01以下である。また、上記方法で得られる樹脂組成物膜の突起高さを高くし、ハンドリング性を高める観点から、A面のSskは、好ましくは-3以上、より好ましくは-1.5以上、さらに好ましくは-0.5以上である。 In the film of the present invention, the skewness Sk on the A side is defined as the skewness Sk on the A side from the viewpoint of applying a coating material containing the resin composition on the A surface and solidifying and peeling the coating film to form protrusions on the resin composition film obtained by solidifying and peeling the coating. It is preferably −0.001 or less, more preferably −0.01 or less. Further, from the viewpoint of increasing the protrusion height of the resin composition film obtained by the above method and improving the handleability, the Sk on the A surface is preferably -3 or more, more preferably -1.5 or more, still more preferably. -0.5 or more.
 Smr2はISO25178-2:2012に規定されるパラメータであり、その詳細な測定条件は実施例に示す。負荷面積率Smr2、突出部山高さSpkを概念的に示す図である図1に示す通りSmr2(符号1)は、粗さ曲線(符号2)についての負荷曲線の中央部分において、負荷面積率Smrの差ΔSmrを40%にして引いた負荷曲線の割線が、最も緩い傾斜となる直線を等価直線(符号3)とし、等価直線が負荷面積率0%と100%の位置で縦軸と交わる二つの高さ位置の間をコア部としたときに、負荷曲線が突出谷部とコア部との境界線と交わる点における負荷面積率をいい、突出谷部の存在割合をあらわす。なお、負荷曲線は、面についての負荷曲線のことであり、切断レベルの負荷面積率に対する関数で表される。 Smr2 is a parameter defined in ISO25178-2: 2012, and detailed measurement conditions thereof are shown in Examples. As shown in FIG. 1, which is a diagram conceptually showing the load area ratio Smr2 and the protrusion mountain height Spk, Smr2 (reference numeral 1) is a load area ratio Smr in the central portion of the load curve for the roughness curve (reference numeral 2). The straight line with the gentlest slope is the equivalent straight line (reference numeral 3), and the equivalent straight line intersects the vertical axis at the positions of 0% and 100% of the load area ratio. When the core portion is between two height positions, the load area ratio at the point where the load curve intersects the boundary line between the protruding valley portion and the core portion, and represents the existence ratio of the protruding valley portion. The load curve is a load curve for a surface, and is expressed as a function for the load area ratio of the cutting level.
 通常、Smr2の値が大きいほど、コア谷部が小さく、フィルム表面の凹みが微細であることを表し、Smr2の値が小さいほど、コア谷部が大きく、フィルム表面の凹みが粗大であることを表す。Smr2が98%よりも大きい場合、フィルム表面の凹み深さが不十分となる。そのため、例えば支持フィルムとして用いた際に、フィルム上に樹脂組成物を含む塗剤を塗布し、これを固化、剥離して得られる樹脂組成物膜に転写される突起の高さが低くなり、得られる樹脂組成物膜の易滑性が不足して、ハンドリング性に劣る場合がある。一方、Smr2が70%未満である場合、コア谷部が極端に大きく、平坦なコア部が少なく、フィルムの地がうねったような形状になる。そのため、例えば上記の通り支持フィルムとして用いた際に、得られる樹脂組成物膜の透明性が損なわれる場合がある。 Normally, the larger the value of Smr2, the smaller the core valley portion and the finer the dent on the film surface, and the smaller the value of Smr2, the larger the core valley portion and the coarser the dent on the film surface. show. When Smr2 is larger than 98%, the dent depth on the film surface becomes insufficient. Therefore, for example, when used as a support film, the height of the protrusions transferred to the resin composition film obtained by applying a coating agent containing a resin composition on the film and solidifying and peeling the coating film is lowered. The slipperiness of the obtained resin composition film may be insufficient, resulting in poor handleability. On the other hand, when Smr2 is less than 70%, the core valley portion is extremely large, the flat core portion is few, and the film has a undulating shape. Therefore, for example, when used as a support film as described above, the transparency of the obtained resin composition film may be impaired.
 Smr2を70%以上とするには、例えば、フィルム中のオレフィン系エラストマーの樹脂量を増やすこと、より軟化温度の低いオレフィン系エラストマーを使用すること、また、縦延伸時の初期縦延伸倍率を高くすること、初期縦延伸温度を低温化することが挙げられる。 In order to increase Smr2 to 70% or more, for example, increase the amount of resin of the olefin-based elastomer in the film, use an olefin-based elastomer having a lower softening temperature, and increase the initial longitudinal stretching ratio during longitudinal stretching. This includes lowering the initial longitudinal stretching temperature.
 本発明のフィルムにおいて、A面上に樹脂組成物を含む塗剤を塗布し、これを固化、剥離して得られる樹脂組成物膜に適度な高さの突起を転写形成し、ハンドリング性を高める観点から、A面のSmr2は、好ましくは95%以下であり、より好ましくは92%以下である。また、上記方法で得られる樹脂組成物膜の平滑性の観点から、A面のSmr2は、好ましくは80%以上、より好ましくは85%以上である。 In the film of the present invention, a coating agent containing a resin composition is applied on the A surface, and the resin composition film obtained by solidifying and peeling the coating film is formed with protrusions having an appropriate height by transfer formation to improve handleability. From the viewpoint, the Smr2 on the A surface is preferably 95% or less, more preferably 92% or less. Further, from the viewpoint of the smoothness of the resin composition film obtained by the above method, the Smr2 on the A surface is preferably 80% or more, more preferably 85% or more.
 SpkはISO25178-2:2012に規定されるパラメータであり、詳細な測定条件は実施例に示す。負荷面積率Smr2、突出部山高さSpkを概念的に示す図である図1に示す通り、Spk(符号4)は、粗さ曲線(符号2)についての負荷曲線の中央部分において、負荷面積率Smrの差ΔSmrを40%にして引いた負荷曲線の割線が、最も緩い傾斜となる直線を等価直線(符号3)とし、等価直線が負荷面積率0%と100%の位置で縦軸と交わる二つの高さ位置の間をコア部としたときの、コア部の上にある突出部山部の平均高さである。 Spk is a parameter defined in ISO25178-2: 2012, and detailed measurement conditions are shown in Examples. As shown in FIG. 1, which is a diagram conceptually showing the load area ratio Smr2 and the protrusion mountain height Spk, Spk (reference numeral 4) is the load area ratio in the central portion of the load curve for the roughness curve (reference numeral 2). The secant line of the load curve drawn with the difference ΔSmr of Smr set to 40% has the gentlest slope as the equivalent straight line (reference numeral 3), and the equivalent straight line intersects the vertical axis at the positions of 0% and 100% load area ratio. It is the average height of the protruding portion mountain portion above the core portion when the core portion is located between the two height positions.
 Spkが100nmより高い場合、フィルム表面の突起が粗大となる。そのため、例えば支持フィルムとして用いた際に、フィルム上に樹脂組成物を含む塗剤を塗布し、これを固化、剥離して得られる樹脂組成物膜に粗大な凹みが形成され、樹脂組成物膜の剥離時に剥離不良の起点になり、剥離不良が起こり破膜する場合がある。 When Spk is higher than 100 nm, the protrusions on the film surface become coarse. Therefore, for example, when used as a support film, a coating film containing a resin composition is applied onto the film, and the resin composition film obtained by solidifying and peeling the coating film is formed with coarse dents. It becomes the starting point of peeling failure at the time of peeling, and peeling failure may occur and the film may break.
 Spkを1nm以上100nm以下とするには、例えば、フィルムの原料組成を後述する範囲とし、また、製膜条件を後述する範囲とする方法を用いることができる。特に、分岐鎖状ポリプロピレン樹脂を含有させることでキャスト時に形成する球晶を小さくすること、押出温度、及びキャストドラムの温度を低くしてキャスト時の冷却を高めること、縦/横延伸時の予熱温度を高め、延伸を低温で高倍率に、均一に高倍率延伸することにより、Spkの値を低くすることができる。 In order to set the Spk to 1 nm or more and 100 nm or less, for example, a method can be used in which the raw material composition of the film is in the range described later and the film forming conditions are in the range described later. In particular, the inclusion of branched chain polypropylene resin reduces the size of spherulites formed during casting, lowers the extrusion temperature and the temperature of the cast drum to increase cooling during casting, and preheats during longitudinal / transverse stretching. The Spk value can be lowered by increasing the temperature and stretching at a low temperature at a high magnification and uniformly at a high magnification.
 本発明のフィルムにおいて、A面上に樹脂組成物を含む塗剤を塗布し、これを固化、剥離して得られる樹脂組成物膜の平滑性を高める観点から、A面のSpkは、好ましくは70nm以下、より好ましくは50nm以下、さらに好ましくは30nm以下である。また、A面のSpkは低ければ低いほど好ましいが、実現可能性の観点から下限は1nmである。 In the film of the present invention, Spk on the A side is preferable from the viewpoint of improving the smoothness of the resin composition film obtained by applying a coating agent containing a resin composition on the A surface and solidifying and peeling the coating. It is 70 nm or less, more preferably 50 nm or less, still more preferably 30 nm or less. Further, the lower the Spk of the A surface, the more preferable, but from the viewpoint of feasibility, the lower limit is 1 nm.
 本発明のフィルムは、支持フィルムとして用いたときに得られる樹脂組成膜の平滑性とハンドリング性を両立する観点から、A面の最大谷深さSv(以下、単にSvということがある)は20nm以上400nm以下であることが好ましい。樹脂組成膜の平滑性の観点から、A面のSvは、より好ましくは300nm以下、さらに好ましくは250nm以下である。また、樹脂組成膜のハンドリング性の観点から、A面のSvは、より好ましくは30nm以上、さらに好ましくは40nm以上、特に好ましくは50nm以上である。SvはISO25178-2:2012に規定されるパラメータであり、表面の平均面(高さが平均値である面、ベースラインに相当。)からの最深ピットの深さを示す。なお、その詳細な測定条件は実施例に示す。 The film of the present invention has a maximum valley depth Sv of the A surface (hereinafter, may be simply referred to as Sv) of 20 nm from the viewpoint of achieving both smoothness and handleability of the resin composition film obtained when used as a support film. It is preferably 400 nm or more and preferably 400 nm or less. From the viewpoint of the smoothness of the resin composition film, the Sv of the A surface is more preferably 300 nm or less, still more preferably 250 nm or less. Further, from the viewpoint of handleability of the resin composition film, the Sv of the A surface is more preferably 30 nm or more, further preferably 40 nm or more, and particularly preferably 50 nm or more. Sv is a parameter defined in ISO25178-2: 2012 and indicates the depth of the deepest pit from the average surface of the surface (the surface whose height is the average value, corresponding to the baseline). The detailed measurement conditions are shown in Examples.
 Svが20nm以上の場合、A面の凹み深さが過度に低くなるのを抑えることができる。そのため、例えば上記の通り支持フィルムとして用いた際に、得られる樹脂組成物膜に十分な高さの突起が形成され、樹脂組成物膜の易滑性とハンドリング性が高まる。一方、A面のSvが400nm以下である場合、A面の凹みの大きさを抑えることができる。そのため、例えば支持フィルムとして用いた際に、フィルムのA面上に樹脂組成物を含む塗剤を塗布し、これを固化、剥離して得られる樹脂組成物膜に粗大な凹みが形成されず、樹脂組成物膜の平滑性を高めることができる。また、支持フィルムの透明性にも優れ、被着体と貼り合わせた状態で欠点検査機にて検査する際の不具合も軽減される。 When Sv is 20 nm or more, it is possible to prevent the dent depth of the A surface from becoming excessively low. Therefore, for example, when used as a support film as described above, protrusions having a sufficient height are formed on the obtained resin composition film, and the slipperiness and handleability of the resin composition film are enhanced. On the other hand, when the Sv of the A surface is 400 nm or less, the size of the dent on the A surface can be suppressed. Therefore, for example, when used as a support film, a coating film containing a resin composition is applied on the A surface of the film, and the resin composition film obtained by solidifying and peeling the coating film does not form a coarse dent. The smoothness of the resin composition film can be improved. In addition, the transparency of the support film is also excellent, and defects when inspecting with a defect inspection machine in a state of being bonded to the adherend are reduced.
 Svを20nm以上400nm以下とするには、例えば、フィルムの原料組成を後述する範囲とし、また、製膜条件を後述する範囲とする方法を用いることができる。特に、オレフィン系エラストマー樹脂及びポリプロピレンブロック共重合体の粘度を下げることや、オレフィン系エラストマー樹脂及びポリプロピレンブロック共重合体を各層原料の主成分である樹脂と予めコンパウンドし、ゴムドメインを微分散化させることで、Svを小さくすることができる。 In order to set the Sv to 20 nm or more and 400 nm or less, for example, a method can be used in which the raw material composition of the film is in the range described later and the film forming conditions are in the range described later. In particular, the viscosity of the olefin-based elastomer resin and the polypropylene block copolymer is lowered, and the olefin-based elastomer resin and the polypropylene block copolymer are pre-compounded with the resin which is the main component of each layer raw material to finely disperse the rubber domain. Therefore, Sv can be reduced.
 本発明のフィルムは、品位向上の観点から、一方の表面と他方の表面との動摩擦係数μd(以下、単にμdということがある)が0.20以上0.80以下であることが好ましい。上記観点から一方の表面と他方の表面とのμdは、より好ましくは0.70以下、さらに好ましくは0.60以下である。また、一方の表面と他方の表面とのμdは低い程好ましく下限は特に制限されないが、実現可能性の観点から0.20程度である。μdを0.80以下とすることにより、フィルムの易滑性が向上するため、フィルム搬送時におけるシワや削れ異物の発生が抑えられ、品位が向上する。 From the viewpoint of improving quality, the film of the present invention preferably has a dynamic friction coefficient μd (hereinafter, may be simply referred to as μd) between one surface and the other surface of 0.20 or more and 0.80 or less. From the above viewpoint, the μd between one surface and the other surface is more preferably 0.70 or less, still more preferably 0.60 or less. Further, it is preferable that the μd between one surface and the other surface is lower, and the lower limit is not particularly limited, but it is about 0.20 from the viewpoint of feasibility. By setting μd to 0.80 or less, the slipperiness of the film is improved, so that the generation of wrinkles and scraped foreign matter during film transportation is suppressed, and the quality is improved.
 一方の表面と他方の表面とのμdを0.20以上0.80以下とするには、例えば、フィルムの原料組成を後述する範囲とし、また、製膜条件を後述する範囲とする方法を用いることができる。特に、分岐鎖状ポリプロピレン樹脂を含み、キャスト時に形成する球晶を小さくすることで、延伸後のフィルム表面に微細突起を形成することが効果的である。このとき、分岐鎖状ポリプロピレン樹脂の量を増やすことで、一方の表面と他方の表面とのμdを下げることができる。 In order to make the μd between one surface and the other surface 0.20 or more and 0.80 or less, for example, a method is used in which the raw material composition of the film is in the range described later and the film forming conditions are in the range described later. be able to. In particular, it is effective to form fine protrusions on the film surface after stretching by containing a branched chain polypropylene resin and reducing the spherulites formed at the time of casting. At this time, by increasing the amount of the branched chain polypropylene resin, the μd between one surface and the other surface can be lowered.
 本発明のフィルムは、フィルム上に樹脂組成物を含む塗剤を塗布し、130℃程度の高温オーブン中で乾燥される場合がある。このような高温オーブン中でのシワの発生を軽減する観点から、130℃でのフィルムMD方向のヤング率(以下、単にMD方向のヤング率ということがある)が100MPa以上200MPa以下であることが好ましい。上記観点から、MD方向のヤング率は、より好ましくは120MPa以上であり、さらに好ましくは140MPa以上である。130℃でのフィルムMD方向のヤング率は高いほど好ましく、特に制限されないが実現可能性の面で200MPaが上限である。なお、フィルムMD方向とはフィルムを製膜する方向に平行な方向をいい、別の表現では製膜方向、長手方向とも称する。また、フィルムTD方向とは、フィルム面内でフィルムMD方向に直交する方向をいい、別の表現では幅方向とも称する。なお、ヤング率は、130℃で1分間加熱した後、引張速度を300mm/分としてフィルムの引張試験を行うことにより測定することができ、詳細な測定条件は後述する。 The film of the present invention may be dried in a high-temperature oven at about 130 ° C. by applying a coating agent containing a resin composition on the film. From the viewpoint of reducing the occurrence of wrinkles in such a high-temperature oven, the Young's modulus in the film MD direction at 130 ° C. (hereinafter, may be simply referred to as the Young's modulus in the MD direction) is 100 MPa or more and 200 MPa or less. preferable. From the above viewpoint, the Young's modulus in the MD direction is more preferably 120 MPa or more, still more preferably 140 MPa or more. The higher the Young's modulus in the film MD direction at 130 ° C. is, the more preferable it is, and although it is not particularly limited, 200 MPa is the upper limit in terms of feasibility. The film MD direction refers to a direction parallel to the film forming direction, and is also referred to as a film forming direction or a longitudinal direction in another expression. Further, the film TD direction refers to a direction orthogonal to the film MD direction in the film plane, and is also referred to as a width direction in another expression. The Young's modulus can be measured by heating the film at 130 ° C. for 1 minute and then performing a tensile test on the film at a tensile speed of 300 mm / min, and detailed measurement conditions will be described later.
 なお、フィルムMD方向が不明な場合は、フィルムの主配向方向の直交方向をMD方向とする。ここで、主配向方向とは、フィルム面内において、任意の方向を0°とした場合に、該任意の方向に対して5°刻みに、0°~175°の角度をなす各々の方向でヤング率を測定したとき、最も高い値を示す方向をいう。フィルムMD方向のヤング率が100MPa以上である場合、例えば、支持フィルムとして用いた際に、樹脂組成物を含む塗剤を塗布し、高温の工程にて固化する際に、フィルムの伸びが抑えられ、それに伴うシワの発生も軽減される。 If the MD direction of the film is unknown, the direction orthogonal to the main orientation direction of the film is the MD direction. Here, the main orientation direction is a direction in which an angle of 0 ° to 175 ° is formed in 5 ° increments with respect to the arbitrary direction when the arbitrary direction is 0 ° in the film plane. The direction showing the highest value when Young's modulus is measured. When the Young's modulus in the film MD direction is 100 MPa or more, for example, when a coating agent containing a resin composition is applied when used as a support film and solidified in a high temperature process, the elongation of the film is suppressed. , The occurrence of wrinkles associated with it is also reduced.
 130℃でのフィルムMD方向のヤング率を100MPa以上200MPa以下とするには、フィルムの原料組成を後述する範囲とし、また、製膜条件を後述する範囲とする方法を用いることができる。特に、結晶化度の高い原料を用い、また、縦/横延伸時の予熱温度を高め、延伸を低温で高倍率に、均一に高倍率延伸することが効果的である。 In order to set the Young's modulus in the film MD direction at 130 ° C. to 100 MPa or more and 200 MPa or less, a method can be used in which the raw material composition of the film is in the range described later and the film forming conditions are in the range described later. In particular, it is effective to use a raw material having a high degree of crystallinity, increase the preheating temperature at the time of longitudinal / transverse stretching, and perform stretching at a low temperature at a high magnification and uniformly at a high magnification.
 本発明のフィルムは、耐熱性を向上させる観点から、示差走査熱量計DSCで30℃から260℃まで昇温した際に、160℃以上に融解ピークを有することが好ましく、165℃以上に融解ピークを有することがより好ましく、168℃以上に融解ピークを有することがさらに好ましい。融解ピーク温度は高いほど好ましく上限は特に制限されないが、実質的に220℃が上限となる。ここで「160℃以上に融解ピークを有する」とは、融解ピークが一つでありかつ当該融解ピークが160℃以上である場合の他、融解ピークが複数であり、その少なくとも一つが160℃以上の範囲に含まれる場合も含むものとする。 From the viewpoint of improving heat resistance, the film of the present invention preferably has a melting peak at 160 ° C. or higher and a melting peak at 165 ° C. or higher when the temperature is raised from 30 ° C. to 260 ° C. by a differential scanning calorimeter DSC. It is more preferable to have a melting peak at 168 ° C. or higher. The higher the melting peak temperature is, the more preferable the upper limit is, but the upper limit is substantially 220 ° C. Here, "having a melting peak at 160 ° C. or higher" means that there is one melting peak and the melting peak is 160 ° C. or higher, and there are a plurality of melting peaks, and at least one of them is 160 ° C. or higher. It shall also include the case where it is included in the range of.
 160℃以上に融解ピークを有する場合、例えば支持フィルムとして用いた際に、樹脂組成物を含む塗剤を塗布した後に高温の工程でこれを固化する際に、フィルムの破膜や平面性悪化を軽減することができる。融解ピーク温度を160℃以上とするには、フィルムの原料組成を後述する範囲とし、また、製膜条件を後述する範囲とする方法を用いることができる。特に、フィルム内層に高融点の樹脂を使用し、内層の耐熱性を高めることが効果的である。 When it has a melting peak at 160 ° C or higher, for example, when it is used as a support film, when it is solidified in a high temperature process after applying a coating film containing a resin composition, the film breaks or the flatness deteriorates. Can be mitigated. In order to set the melting peak temperature to 160 ° C. or higher, a method can be used in which the raw material composition of the film is in the range described later and the film forming conditions are in the range described later. In particular, it is effective to use a high melting point resin for the inner layer of the film to improve the heat resistance of the inner layer.
 本発明のフィルムは、透明性の観点から、130℃で10分間加熱した後の内部ヘイズ(以下、単にヘイズということがある)が0.01%以上1.5%以下であることが好ましい。上記観点から、130℃で10分間加熱した後のヘイズはより好ましくは1.0%以下、さらに好ましくは0.7%以下である。130℃で10分間加熱した後のヘイズは低い程好ましく、特に制限されないが、実現可能性の観点から0.01%である。なお、ヘイズは公知のヘイズメーターで測定することができ、その詳細な測定条件は実施例に示す。 From the viewpoint of transparency, the film of the present invention preferably has an internal haze (hereinafter, may be simply referred to as haze) of 0.01% or more and 1.5% or less after heating at 130 ° C. for 10 minutes. From the above viewpoint, the haze after heating at 130 ° C. for 10 minutes is more preferably 1.0% or less, still more preferably 0.7% or less. The lower the haze after heating at 130 ° C. for 10 minutes, the more preferable, and the haze is not particularly limited, but is 0.01% from the viewpoint of feasibility. The haze can be measured with a known haze meter, and detailed measurement conditions thereof are shown in Examples.
 130℃で10分間加熱した後のヘイズが1.5%以下であることにより、例えば、支持フィルムとして使用する場合、上述したような高温の熱がかかる搬送工程を通過した後であっても、支持フィルムの透明性が保たれ、被着体と貼り合わせた状態で欠点検査機にて検査する際の不具合が軽減される。本発明のフィルムは、酸化防止剤等の各種添加剤を含有する場合があり、このようなフィルムは特に、例えば130℃以上の高温の熱がかかると中の酸化防止剤等の添加剤がフィルム表面にブリードアウトして透明性が損なわれやすい。そのため、このようなフィルムでは特に、ヘイズを上記範囲とすることの利点が大きい。 Since the haze after heating at 130 ° C. for 10 minutes is 1.5% or less, for example, when used as a support film, even after passing through a transfer step in which high temperature heat is applied as described above. The transparency of the support film is maintained, and defects when inspecting with a defect inspection machine while attached to the adherend are reduced. The film of the present invention may contain various additives such as antioxidants, and such films in particular contain additives such as antioxidants when exposed to high temperature heat of, for example, 130 ° C. or higher. Bleed out to the surface and the transparency is easily impaired. Therefore, in such a film, there is a great advantage that the haze is in the above range.
 130℃で10分間加熱した後のヘイズを0.01%以上1.5%以下とするには、例えばフィルムの原料組成を後述する範囲とし、また、製膜条件を後述する範囲とする方法を用いることができる。特に、分岐鎖状ポリプロピレン樹脂を含有し、キャスト時に形成する球晶を小さくすること、押出温度、及びキャストドラムの温度を低温化し、キャスト時の冷却を高めること、縦/横延伸時の予熱温度を高め、延伸を低温で行うことで、均一に延伸することが効果的である。また、立体規則性が高く、かつ冷キシレン可溶部(CXS)の低い原料を用いて結晶性を高めること、また、縦、横延伸後に熱処理、及びリラックスを行うことも効果的である。 In order to reduce the haze after heating at 130 ° C. for 10 minutes to 0.01% or more and 1.5% or less, for example, a method in which the raw material composition of the film is in the range described later and the film forming conditions are in the range described later. Can be used. In particular, it contains a branched chain polypropylene resin to reduce the size of spherulites formed during casting, lower the extrusion temperature and the temperature of the cast drum to increase cooling during casting, and preheat temperature during longitudinal / transverse stretching. It is effective to stretch uniformly by increasing the temperature and stretching at a low temperature. Further, it is also effective to enhance the crystallinity by using a raw material having high stereoregularity and a low cold xylene soluble portion (CXS), and to perform heat treatment and relaxation after longitudinal and transverse stretching.
 本発明のフィルムは、支持フィルムとして用いた際にA層表面に形成した樹脂組成物膜の剥離を容易にする観点から、A面の表面自由エネルギーが15mN/m以上35mN/m以下であることが好ましい。上記観点から、A面の表面自由エネルギーは、より好ましくは32mN/m以下、さらに好ましくは29mN/m以下である。表面自由エネルギーは低い程、離型性が良好であり好ましいが、実現可能性の観点から15mN/mが下限である。表面自由エネルギーが35mN/m以下であることにより、例えば、支持フィルムとして使用する場合、A面上に樹脂組成物を含む塗剤を塗工し、固化後、剥離して樹脂組成物膜を得る際に、樹脂組成物膜の剥離がスムーズになり、剥離時の破膜や剥離痕の発生が軽減される。なお、表面自由エネルギーは、測定液として、水、エチレングリコール、ホルムアミド、及びヨウ化メチレンの4種類の液体を用い、公知の接触角計で測定することができ、その詳細な測定条件は実施例に示す。 The film of the present invention has a surface free energy of 15 mN / m or more and 35 mN / m or less from the viewpoint of facilitating peeling of the resin composition film formed on the surface of the A layer when used as a support film. Is preferable. From the above viewpoint, the surface free energy of the A surface is more preferably 32 mN / m or less, still more preferably 29 mN / m or less. The lower the surface free energy, the better the releasability, which is preferable, but from the viewpoint of feasibility, 15 mN / m is the lower limit. When the surface free energy is 35 mN / m or less, for example, when it is used as a support film, a coating film containing a resin composition is applied on the A surface, and after solidification, it is peeled off to obtain a resin composition film. At that time, the resin composition film is smoothly peeled off, and the occurrence of film breakage and peeling marks at the time of peeling is reduced. The surface free energy can be measured with a known contact angle meter using four types of liquids, water, ethylene glycol, formamide, and methylene iodide, as the measuring liquid, and the detailed measurement conditions thereof are Examples. Shown in.
 A面の表面自由エネルギーを15mN/m以上35mN/m以下とするには、例えばフィルムの原料組成を後述する範囲とし、また、製膜条件を後述する範囲とする方法を用いることができる。特に、A面にあたるフィルム表層(単層構成の場合は、フィルム自体、以下同じ)の主成分をポリオレフィン樹脂とすることや、A面に離型性を有するコーティング層を設けることも効果的であるが、樹枝組成物膜への成分移行やコストの観点から、A面にあたるフィルム表層の主成分をポリオレフィン樹脂とすることがより好ましい。 In order to set the surface free energy of the A surface to 15 mN / m or more and 35 mN / m or less, for example, a method can be used in which the raw material composition of the film is in the range described later and the film forming conditions are in the range described later. In particular, it is also effective to use a polyolefin resin as the main component of the film surface layer corresponding to the A side (in the case of a single layer configuration, the film itself, the same applies hereinafter), or to provide a coating layer having releasability on the A side. However, from the viewpoint of component transfer to the dendritic composition film and cost, it is more preferable that the main component of the film surface layer corresponding to the A surface is a polyolefin resin.
 本発明のフィルムの厚みは、用途によって適宜調整されるものであり特に限定はされないが、0.5μm以上100μm以下であることがハンドリング性の観点から好ましい。離型フィルムとして用いる際の厚みの上限は60μm以下がより好ましく、50μm以下がさらに好しく、40μm以下が最も好ましい。下限は4μm以上がより好ましく、8μm以上がさらに好ましく、11μm以上が最も好ましい。厚みは他の物性を低下させない範囲内で、押出機のスクリュー回転数、未延伸シートの幅、製膜速度、延伸倍率などにより調整可能である。 The thickness of the film of the present invention is appropriately adjusted depending on the intended use and is not particularly limited, but it is preferably 0.5 μm or more and 100 μm or less from the viewpoint of handleability. The upper limit of the thickness when used as a release film is more preferably 60 μm or less, further preferably 50 μm or less, and most preferably 40 μm or less. The lower limit is more preferably 4 μm or more, further preferably 8 μm or more, and most preferably 11 μm or more. The thickness can be adjusted by adjusting the screw rotation speed of the extruder, the width of the unstretched sheet, the film forming speed, the stretching ratio, and the like within a range that does not deteriorate other physical properties.
 次に本発明のフィルムの原料について説明するが、必ずしもこれに限定されるものではない。 Next, the raw material of the film of the present invention will be described, but the present invention is not necessarily limited to this.
 本発明のフィルムを構成する成分は特に限定されるものではないが、主な構成成分が熱可塑性樹脂であることが好ましい。熱可塑性樹脂としては、後述のポリプロピレン樹脂の他、例えば、ポリスチレン(PS)樹脂、スチレン系エラストマー樹脂、ポリメチルペンテン(PMP)樹脂、環状オレフィン(COP)樹脂、及び環状オレフィン・コポリマー(COC)樹脂等のポリオレフィン樹脂、ポリエチレンテレフタレート(PET)樹脂、ポリブチレンテレフタレート(PBT)樹脂、及びポリエチレンナレフタレート(PEN)樹脂等のポリエステル樹脂、ポリサルホン(PSU)樹脂、ポリエーテルサルホン(PES)樹脂、及びポリフェニルサルホン(PPSU)樹脂等のポリサルホン樹脂、ポリフェニレンスルフィド(PPS)樹脂、ポリフェニレンスルフィドケトン樹脂、ポリフェニレンスルフィドスルホン樹脂、ポリフェニレンスルフィドケトンスルホン樹脂等のポリアリーレンサルファイド樹脂、ポリエーテルケトン(PEK)樹脂、ポリエーテルエーテルケトン(PEEK)樹脂、ポリエーテルケトンケトン(PEKK)樹脂、ポリエーテルエーテルケトンケトン(PEEKK)樹脂、ポリエーテルケトンエーテルケトンケトン(PEKEKK)樹脂等のポリアリールエーテルケトン樹脂、ポリテトラフルオロエチレン(PTFE)樹脂(四フッ化エチレン樹脂ともいう)、ポリテトラフルオロエチレン‐パーフルオロアルキルビニルエーテル共重合体(PFA)樹脂(四フッ化エチレン‐パーフルオロアルキルビニルエーテル共重合体樹脂ともいう)、テトラフルオロエチレン‐ヘキサフルオロプロピレン共重合体(FEP)樹脂(四フッ化エチレン‐六フッ化プロピレン共重合体樹脂ともいう)、テトラフルオロエチレン‐エチレン共重合体(ETFE)樹脂(四フッ化エチレン‐エチレン共重合体樹脂ともいう)、ポリクロロトリフルオロエチレン(PCTFE)樹脂(三フッ化塩化エチレン樹脂ともいう)、ポリビニリデンフルオライド(PVDE)樹脂(フッ化ビニリデン樹脂ともいう)、フッ化ビニリデン・テトラフルオロエチレン・ヘキサフルオロピレン共重合体樹脂等のフッ素樹脂、ポリアセタール樹脂、液晶ポリマー(LCP)樹脂、ポリカーボネート(PC)樹脂、ポリアリレート(PAR)樹脂、アクリル樹脂、ポリメチルメタクリレート樹脂(PMMA)、ポリウレタン樹脂(PU)、ポリウレタンアクリレート樹脂、セルロース、セルロース誘導体(例えば、アセチルセルロース、カルボキシメチルセルロース、ヒドロキシエチルセルロース、ヒドロキシプロピルメチルセルロース等)、石油樹脂、テルペン樹脂、テルペンフェノール樹脂、低密度ポリエチレン、中密度ポリエチレン、高密度ポリエチレン、直鎖状低密度ポリエチレン、超高分子量ポリエチレン、低結晶性あるいは非晶性のエチレン・α-オレフィン共重合体、エチレン・プロピレン・ジエンターポリマー結晶性ポリプロピレン、ポリプロピレン、プロピレン・エチレン共重合体(ランダム共重合体および/またはブロック共重合体)、プロピレン・α-オレフィン共重合体、プロピレン・エチレン・α-オレフィン共重合体、ポリブテン、4-メチル-1-ペンテン・α-オレフィン共重合体、エチレン・エチル(メタ)アクリレート共重合体、エチレン・メチル(メタ)アクリレート共重合体、エチレン・n-ブチル(メタ)アクリレート共重合体、エチレン・酢酸ビニル共重合体等があげられる。これらの原料は、変性体、誘導体、及び他の化合物との共重合体も使用することができる。また、これらの原料は、単独で使用してもよいし、2種類以上を混合して使用することもできる。Sskを0以下に調整する観点から、二軸延伸が容易なポリオレフィン樹脂、ポリエステル樹脂を用いることが好ましく、延伸前に平均ドメイン径が5μm以下のミクロ相分離構造を作るように、少なくとも1組の互いに非相溶な成分を含有することが好ましい。 The components constituting the film of the present invention are not particularly limited, but it is preferable that the main component is a thermoplastic resin. Examples of the thermoplastic resin include polystyrene (PS) resin, styrene-based elastomer resin, polymethylpentene (PMP) resin, cyclic olefin (COP) resin, and cyclic olefin copolymer (COC) resin, in addition to the polypropylene resin described later. Polyetherketone resin, polyethylene terephthalate (PET) resin, polybutylene terephthalate (PBT) resin, and polyester resin such as polyethylene nareftalate (PEN) resin, polysalphon (PSU) resin, polyethersalphon (PES) resin, and poly. Polysulfone resin such as phenylsulfone (PPSU) resin, polyphenylene sulfide (PPS) resin, polyphenylene sulfide ketone resin, polyphenylene sulfide sulfone resin, polyetherylene sulfide resin such as polyphenylene sulfide ketone sulfone resin, polyetherketone (PEK) resin, poly Polyetheretherketone (PEEK) resin, polyetherketoneketone (PEKK) resin, polyetheretherketoneketone (PEEKK) resin, polyetherketone etherketoneketone (PEKEKK) resin and other polyaryletherketone resins, polytetrafluoroethylene (polytetrafluoroethylene) PTFE) resin (also called tetrafluoroethylene resin), polytetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA) resin (also called tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer resin), tetrafluoroethylene -Hexafluoropropylene copolymer (FEP) resin (also referred to as tetrafluoroethylene-hexfluoropropylene copolymer resin), tetrafluoroethylene-ethylene copolymer (ETFE) resin (tetrafluoroethylene-ethylene copolymer weight) Copolymerized resin), polychlorotrifluoroethylene (PCTFE) resin (also called trifluorochloride ethylene resin), polyvinylidenefluoride (PVDE) resin (also called fluorovinylidene resin), vinylidene fluoride tetrafluoroethylene -Fluorine resin such as hexafluoropyrene copolymer resin, polyacetal resin, liquid crystal polymer (LCP) resin, polycarbonate (PC) resin, polyallylate (PAR) resin, acrylic resin, polymethylmethacrylate resin (PMMA), polyurethane resin ( PU), polyurethane acrylate resin, cellulose, cellulose derivative (eg, acetyl cellulose, copolymer) Chill cellulose, hydroxyethyl cellulose, hydroxypropylmethyl cellulose, etc.), petroleum resin, terpene resin, terpene phenol resin, low density polyethylene, medium density polyethylene, high density polyethylene, linear low density polyethylene, ultrahigh molecular weight polyethylene, low crystalline or Amorphous ethylene / α-olefin copolymer, ethylene / propylene / dienterpolymer crystalline polypropylene, polypropylene, propylene / ethylene copolymer (random copolymer and / or block copolymer), propylene / α- Olefin copolymer, propylene / ethylene / α-olefin copolymer, polybutene, 4-methyl-1-pentene / α-olefin copolymer, ethylene / ethyl (meth) acrylate copolymer, ethylene / methyl (meth) Examples thereof include an acrylate copolymer, an ethylene / n-butyl (meth) acrylate copolymer, and an ethylene / vinyl acetate copolymer. As these raw materials, modified products, derivatives, and copolymers with other compounds can also be used. Further, these raw materials may be used alone or in combination of two or more. From the viewpoint of adjusting Sk to 0 or less, it is preferable to use a polyolefin resin or polyester resin that can be easily biaxially stretched, and at least one set so as to form a microphase-separated structure having an average domain diameter of 5 μm or less before stretching. It is preferable to contain components that are incompatible with each other.
 また、本発明のフィルムには、本発明の目的を損なわない範囲で種々の添加剤、例えば耐候剤、透明化剤、結晶核剤、酸化防止剤、熱安定剤、すべり剤、帯電防止剤、ブロッキング防止剤、充填剤、粘度調整剤、着色防止剤、レベリング剤、界面活性剤、離型剤などを含有せしめることもできる。 Further, the film of the present invention contains various additives such as weather resistant agents, clearing agents, crystal nucleating agents, antioxidants, heat stabilizers, slip agents, antistatic agents, as long as the object of the present invention is not impaired. It can also contain anti-blocking agents, fillers, viscosity modifiers, anti-coloring agents, leveling agents, surfactants, mold release agents and the like.
 本発明のフィルムは、離型性、コストの観点から、A面を有する表層が、オレフィン系樹脂を主成分とすることが好ましい。離型性を高める目的で、PETフィルム等にシリコーン樹脂などの離型性を有する樹脂を被覆させる場合があるが、被着体に貼り合わせ剥離する際に、シリコーン樹脂等の樹脂成分が被着体に移行し、汚染される場合がある。一方、オレフィン系樹脂は離型性が比較的低いにも関わらず、被着体に移行することが極めて低いので、A面を有する表層に好ましく用いられる。本発明において「A面を有する表層」とは、フィルムが積層構成の場合はA面側の最表層をいい、フィルムが単層構成の場合はフィルム自体をいう。「A面を有する表層が、オレフィン系樹脂を主成分とする」とは、A面を有する表層を構成する全成分に占めるオレフィン系樹脂の割合が、50質量%を超えて100質量%以下であることを意味する(以下、「主成分」については同様に解釈することができる)。なお、フィルムが積層構成であり、かつ両面がA面である場合は、A面を有する表層の少なくとも一方が上記要件を満たせば「A面を有する表層が、オレフィン系樹脂を主成分とする」とみなすことができる。A面を有する表層におけるオレフィン系樹脂の含有量は、より好ましくは90質量%以上100質量%以下、さらに好ましくは95質量%以上100質量%以下、より一層好ましくは96質量%以上100質量%以下、特に好ましくは97質量%以上100質量%以下、最も好ましくは98質量%以上100質量%以下である。 In the film of the present invention, from the viewpoint of releasability and cost, it is preferable that the surface layer having the A surface contains an olefin resin as a main component. For the purpose of improving releasability, PET film or the like may be coated with a resin having releasability such as silicone resin, but when the resin component such as silicone resin is adhered to the adherend and peeled off, the resin component such as silicone resin is adhered. It can be transferred to the body and contaminated. On the other hand, although the olefin resin has a relatively low releasability, it is extremely low in transfer to the adherend, and is therefore preferably used for the surface layer having the A surface. In the present invention, the "surface layer having the A side" means the outermost surface layer on the A side when the film has a laminated structure, and refers to the film itself when the film has a single layer structure. "The surface layer having the A surface contains an olefin resin as a main component" means that the ratio of the olefin resin to all the components constituting the surface layer having the A surface exceeds 50% by mass and 100% by mass or less. It means that there is (hereinafter, "main component" can be interpreted in the same way). When the film has a laminated structure and both sides have A-sides, if at least one of the surface layers having A-sides satisfies the above requirements, "the surface layer having A-sides contains an olefin resin as a main component". Can be regarded as. The content of the olefin resin in the surface layer having the A surface is more preferably 90% by mass or more and 100% by mass or less, further preferably 95% by mass or more and 100% by mass or less, and further preferably 96% by mass or more and 100% by mass or less. Particularly preferably, it is 97% by mass or more and 100% by mass or less, and most preferably 98% by mass or more and 100% by mass or less.
 ここでオレフィン系樹脂とは、樹脂を構成する全構成単位を100モル%としたときに、オレフィン単位が50モル%を超えて100モル%以下含まれる樹脂をいう。オレフィン系樹脂の具体例としては、ポリエチレン、ポリプロピレン、ポリブテン、ポリメチルペンテン及びこれらの共重合体等が挙げられる。なお、オレフィン系樹脂が複数種含まれる場合、オレフィン系樹脂の含有量は全てのオレフィン系樹脂を合算して算出するものとする。すなわち、1種類のオレフィン系樹脂が50質量%を超えて含まれる場合に加え、個々のオレフィン系樹脂は50質量%に満たなくとも全てのオレフィン樹脂を合算すれば50質量%を超える場合も「オレフィン系樹脂を主成分とする」ものとみなすことができる。 Here, the olefin-based resin means a resin containing 100 mol% or less of olefin units exceeding 50 mol% when all the constituent units constituting the resin are 100 mol%. Specific examples of the olefin resin include polyethylene, polypropylene, polybutene, polymethylpentene, and copolymers thereof. When a plurality of types of olefin resins are contained, the content of the olefin resins shall be calculated by adding up all the olefin resins. That is, in addition to the case where one type of olefin resin is contained in an amount of more than 50% by mass, even if the individual olefin resins are less than 50% by mass, the total of all the olefin resins may exceed 50% by mass. It can be regarded as "mainly composed of an olefin resin".
 本発明のフィルムは、A面を有する表層だけでなくフィルム全体としても、離型性、柔軟性、コストの観点から、オレフィン系樹脂を主成分とすることが好ましい。フィルムを構成する全成分に占めるオレフィン系樹脂量は、より好ましくは90質量%以上100質量%以下、さらに好ましくは95質量%以上100質量%以下、より一層好ましくは96質量%以上100質量%以下、特に好ましくは97質量%以上100質量%以下、最も好ましくは98質量%以上100質量%以下である。オレフィン系樹脂の具体例としては、ポリエチレン樹脂、ポリプロピレン樹脂、ポリブテン樹脂、ポリメチルペンテン樹脂及びこれらの共重合体等が挙げられる。 The film of the present invention preferably contains an olefin resin as a main component from the viewpoint of releasability, flexibility, and cost not only for the surface layer having the A surface but also for the entire film. The amount of the olefin resin in all the components constituting the film is more preferably 90% by mass or more and 100% by mass or less, further preferably 95% by mass or more and 100% by mass or less, and further preferably 96% by mass or more and 100% by mass or less. Particularly preferably, it is 97% by mass or more and 100% by mass or less, and most preferably 98% by mass or more and 100% by mass or less. Specific examples of the olefin resin include polyethylene resin, polypropylene resin, polybutene resin, polymethylpentene resin, and copolymers thereof.
 本発明のフィルムは、透明性、耐熱性の観点からフィルムを構成する樹脂中に含まれるポリプロピレン樹脂の含有量が95質量%以上100質量%以下であることが好ましい。上記観点から、より好ましくは96質量%以上、さらに好ましくは97質量%以上であり、特に好ましくは98質量%以上である。ここでポリプロピレン樹脂とは、樹脂を構成する全構成単位を100モル%としたときに、プロピレン単位が50モル%を超えて100モル%以下含まれる樹脂をいう。 From the viewpoint of transparency and heat resistance, the film of the present invention preferably contains a polypropylene resin contained in the resin constituting the film in an amount of 95% by mass or more and 100% by mass or less. From the above viewpoint, it is more preferably 96% by mass or more, further preferably 97% by mass or more, and particularly preferably 98% by mass or more. Here, the polypropylene resin means a resin in which the propylene unit is more than 50 mol% and 100 mol% or less when all the constituent units constituting the resin are 100 mol%.
 本発明のフィルムにおけるA面を有する表層は、ポリプロピレン樹脂を主成分とし、かつポリエチレン樹脂の含有量が層全体中3質量%以下であることがさらに好ましい。フィルムの品質の観点から、A面を有する表層中のポリエチレン樹脂の含有量は、より好ましくは2質量%以下、さらに好ましくは1質量%以下、最も好ましくは0.5質量%以下である。マット粗面のポリプロピレンフィルムは、ポリプロピレン樹脂とポリエチレン樹脂をブレンドすることにより粗面表面を形成する場合が多い。しかしながら、この方法では、ポリエチレン樹脂起因のフィッシュアイが多くなる場合があること、フィルム表面が削れることによる異物が増加する場合があるなど、品位が悪化する場合があるため、上記範囲にA面を有する表層中のポリエチレン樹脂の含有量を抑えることが好ましい。 It is more preferable that the surface layer having the A side in the film of the present invention contains polypropylene resin as a main component and the content of polyethylene resin is 3% by mass or less in the whole layer. From the viewpoint of film quality, the content of the polyethylene resin in the surface layer having the A surface is more preferably 2% by mass or less, further preferably 1% by mass or less, and most preferably 0.5% by mass or less. A polypropylene film having a matte rough surface often forms a rough surface by blending a polypropylene resin and a polyethylene resin. However, with this method, the quality may deteriorate, such as the increase in fish eyes caused by polyethylene resin and the increase in foreign matter due to the scraping of the film surface. It is preferable to suppress the content of the polyethylene resin in the surface layer.
 本発明のフィルムは、A面表面の粗大突起の形成を抑え、かつ、所定の深さの凹み構造を形成する観点から、ポリプロピレン樹脂、分岐鎖状ポリプロピレン樹脂、低結晶性ポリオレフィン樹脂、ポリメチルペンテン樹脂及びゴムドメイン含有樹脂のうち、少なくとも二種以上の樹脂を含むことが好ましい。 The film of the present invention is a polypropylene resin, a branched chain polypropylene resin, a low crystalline polyolefin resin, and polymethylpentene from the viewpoint of suppressing the formation of coarse protrusions on the surface of the A surface and forming a recessed structure having a predetermined depth. Of the resin and the rubber domain-containing resin, it is preferable to contain at least two or more kinds of resins.
 本発明のフィルムにおけるポリプロピレン樹脂(以下、ポリプロピレン樹脂Aということがある)は、融点が155℃以上であることが好ましく、より好ましくは160℃以上、さらに好ましくは163℃以上、最も好ましくは165℃以上である。ポリプロピレン樹脂の融点が155℃以上であることにより、フィルムとしたときの耐熱性が高まる。そのため、例えば離型フィルムとして用いた場合、被着体と貼り合わせた後に熱のかかる工程を通過する際に、フィルムの軟化やそれに付随する張力方向への伸長が軽減されるため、被着体の変形が抑えられる。 The polypropylene resin (hereinafter, may be referred to as polypropylene resin A) in the film of the present invention preferably has a melting point of 155 ° C. or higher, more preferably 160 ° C. or higher, still more preferably 163 ° C. or higher, and most preferably 165 ° C. or higher. That is all. When the melting point of the polypropylene resin is 155 ° C. or higher, the heat resistance of the film is enhanced. Therefore, for example, when used as a release film, the softening of the film and the accompanying elongation in the tension direction are reduced when the film is attached to the adherend and then passed through a heat-applied process, so that the adherend is used. Deformation is suppressed.
 ポリプロピレン樹脂Aとしては、直鎖状ポリプロピレン樹脂が好ましい。 As the polypropylene resin A, a linear polypropylene resin is preferable.
 また、ポリプロピレン樹脂Aとしては、より好ましくは230℃、21.18N荷重下でのメルトフローレート(MFR)が1~10g/10分、より好ましくは1~8g/10分であり、特に好ましくは2~5g/10分であるのものである。このようなポリプロピレン樹脂を用いることで、製膜性やフィルムの強度が高まる。メルトフローレート(MFR)を1~10g/10分又は上記の好ましい値とするためには、重合時の水素ガス濃度を調整する方法や、触媒および/または助触媒の選定、組成の選定を適宜行う方法等が好ましく採用される。 Further, as the polypropylene resin A, the melt flow rate (MFR) at 230 ° C. under a load of 21.18 N is 1 to 10 g / 10 minutes, more preferably 1 to 8 g / 10 minutes, and particularly preferably. It is 2 to 5 g / 10 minutes. By using such a polypropylene resin, the film-forming property and the strength of the film are enhanced. In order to set the melt flow rate (MFR) to 1 to 10 g / 10 minutes or the above-mentioned preferable value, the method for adjusting the hydrogen gas concentration at the time of polymerization, the selection of the catalyst and / or the co-catalyst, and the selection of the composition are appropriately selected. The method of performing is preferably adopted.
 ポリプロピレン樹脂Aは、本発明の目的を損なわない範囲で他の不飽和炭化水素による共重合成分(共重合単位)などを含有してもよい。このような共重合成分としては、例えばエチレン、1-ブテン、1-ペンテン、3-メチルペンテン-1、3-メチルブテンー1、1-ヘキセン、4-メチルペンテン-1、5-エチルヘキセン-1、1-オクテン、1-デセン、1-ドデセン、ビニルシクロヘキセン、スチレン、アリルベンゼン、シクロペンテン、ノルボルネン、5-メチル-2-ノルボルネンなどが挙げられる。共重合量は、寸法安定性の点から1モル%以下である。また、ポリプロピレン樹脂Aには、本発明の効果を損なわない範囲でプロピレン成分及び上記共重合成分などを含有した樹脂をブレンドすることもできる。 The polypropylene resin A may contain a copolymerization component (copolymerization unit) due to other unsaturated hydrocarbons as long as the object of the present invention is not impaired. Examples of such copolymerization components include ethylene, 1-butene, 1-pentene, 3-methylpentene-1, 3-methylbutene-1, 1-hexene, 4-methylpentene-1, 5-ethylhexene-1, and the like. Examples thereof include 1-octene, 1-decene, 1-dodecene, vinylcyclohexene, styrene, allylbenzene, cyclopentene, norbornene, 5-methyl-2-norbornene and the like. The copolymerization amount is 1 mol% or less from the viewpoint of dimensional stability. Further, the polypropylene resin A can be blended with a resin containing a propylene component, the above-mentioned copolymerization component, and the like as long as the effects of the present invention are not impaired.
 本発明のフィルムにおける分岐鎖状ポリプロピレン樹脂(以下、分岐鎖状ポリプロピレン樹脂Bということがある)は、直鎖状のポリプロピレン樹脂に対して核剤作用を示すことが知られており、溶融押出後のキャストフィルムの球晶を微細化することで、延伸後のフィルムの粗大突起の形成を抑制することができる。 The branched polypropylene resin (hereinafter, may be referred to as branched polypropylene resin B) in the film of the present invention is known to exhibit a nucleating agent action on a linear polypropylene resin, and after melt extrusion. By refining the spherulites of the cast film, it is possible to suppress the formation of coarse protrusions on the film after stretching.
 分岐鎖状ポリプロピレン樹脂Bを含む場合、当該層における分岐鎖状ポリプロピレン樹脂Bの含有量は、当該層の全構成成分を100質量%とした際に、分岐鎖状ポリプロピレン樹脂Bの含有量の上限は50質量%以下がより好ましく、40質量%以下がさらに好ましく、30質量%以下がさらに好ましく、25質量%以下が最も好ましい。また、分岐鎖状ポリプロピレン樹脂Bの含有量の下限は0.1質量%以上がより好ましく、1質量%以上がさらに好ましく、4質量%以上がさらに好ましく、10質量%以上が最も好ましい。 When the branched polypropylene resin B is contained, the content of the branched polypropylene resin B in the layer is the upper limit of the content of the branched polypropylene resin B when all the constituents of the layer are 100% by mass. Is more preferably 50% by mass or less, further preferably 40% by mass or less, further preferably 30% by mass or less, and most preferably 25% by mass or less. Further, the lower limit of the content of the branched chain polypropylene resin B is more preferably 0.1% by mass or more, further preferably 1% by mass or more, further preferably 4% by mass or more, and most preferably 10% by mass or more.
 230℃、21.18N荷重下で測定した分岐鎖状ポリプロピレン樹脂BのMFRは、0.5g/10分以上9g/10分以下であることが押出安定性の観点の観点から好ましい。同条件で測定した分岐鎖状ポリプロピレン樹脂BのMFRの下限は2g/10分の範囲であることがより好ましく、6g/10分以上がさらに好ましい。分岐鎖状ポリプロピレン樹脂BのMFRを0.5g/10分以上9g/10分以下又は上記の好ましい値とするためには、重合時の水素ガス濃度を調整する方法や、触媒および/または助触媒の選定、組成の選定を適宜行う方法等が好ましく採用される。 The MFR of the branched chain polypropylene resin B measured under a load of 230 ° C. and 21.18 N is preferably 0.5 g / 10 minutes or more and 9 g / 10 minutes or less from the viewpoint of extrusion stability. The lower limit of the MFR of the branched chain polypropylene resin B measured under the same conditions is more preferably in the range of 2 g / 10 minutes, further preferably 6 g / 10 minutes or more. In order to make the MFR of the branched chain polypropylene resin B 0.5 g / 10 minutes or more and 9 g / 10 minutes or less or the above-mentioned preferable value, a method for adjusting the hydrogen gas concentration at the time of polymerization, a catalyst and / or a co-catalyst , And the method of appropriately selecting the composition, etc. are preferably adopted.
 分岐鎖状ポリプロピレン樹脂Bの溶融張力は、3gf以上40gf以下であることが延伸均一性の観点の観点から好ましい。溶融張力の下限は4gfであることがより好ましく、6gfがさらに好ましい。上限は30gfがより好ましく、25gfがさらに好ましい。溶融張力を上記の値とするためには、平均分子量や分子量分布、ポリプロピレン樹脂中の分岐度を制御する方法などが採用される。特に、長鎖分岐を有する場合、溶融張力を飛躍的に高めることができ、長鎖分岐の分子鎖や、分岐度を調整することで、好ましい値に調整することができる。 The melt tension of the branched chain polypropylene resin B is preferably 3 gf or more and 40 gf or less from the viewpoint of stretching uniformity. The lower limit of the melt tension is more preferably 4 gf, and even more preferably 6 gf. The upper limit is more preferably 30 gf and even more preferably 25 gf. In order to set the melt tension to the above value, a method of controlling the average molecular weight, the molecular weight distribution, the degree of branching in the polypropylene resin, or the like is adopted. In particular, when it has a long chain branch, the melt tension can be dramatically increased, and it can be adjusted to a preferable value by adjusting the molecular chain of the long chain branch and the degree of branching.
 分岐鎖状ポリプロピレン樹脂Bは、チーグラーナッタ触媒系やメタロセン系触媒系など、複数市販されているが、低分子量成分、高分子量成分が少なく、分子量分布の狭いメタロセン触媒系がより好ましい。 Although a plurality of branched chain polypropylene resins B such as Ziegler-Natta catalyst system and metallocene catalyst system are commercially available, a metallocene catalyst system having few low molecular weight components and high molecular weight components and a narrow molecular weight distribution is more preferable.
 本発明のフィルムは、低結晶性ポリオレフィン樹脂(以下、低結晶性ポリオレフィン樹脂C)を含有することで、溶融押出後のキャストフィルムの結晶性を下げることができ、結果、延伸後のフィルムの粗大突起の形成を抑制することができる。低結晶性ポリオレフィン樹脂Cは、ポリプロピレン樹脂Aと比較し、ポリマーの分子構造の立体規則性が低い、及びまたは、結晶性が低いことが好ましい。結晶性を下げる手段としては、例えばコモノマーとの共重合等が挙げられる。低結晶性ポリオレフィン樹脂は融点を有さない樹脂も対象となるが、融点を有する樹脂の場合、低結晶性ポリオレフィン樹脂Cの融点は、ポリプロピレン樹脂Aより低いことが好ましく、50℃以上135℃以下がさらに好ましく、より好ましくは60℃以上130℃以下、さらに好ましくは60℃以上120℃以下、最も好ましくは60℃以上100℃以下である。また、融点が50℃以上135℃以下又は上記好ましい範囲である低結晶性ポリオレフィン樹脂を、少なくとも一方の表層に含有する積層フィルムとすることも好ましい。 By containing the low crystallinity polyolefin resin (hereinafter referred to as low crystallinity polyolefin resin C), the film of the present invention can reduce the crystallinity of the cast film after melt extrusion, and as a result, the coarseness of the film after stretching can be reduced. The formation of protrusions can be suppressed. It is preferable that the low crystallinity polyolefin resin C has a lower stereoregularity of the molecular structure of the polymer and / or a lower crystallinity than the polypropylene resin A. Examples of means for lowering the crystallinity include copolymerization with a comonomer. The low crystalline polyolefin resin also includes a resin having no melting point, but in the case of a resin having a melting point, the melting point of the low crystalline polyolefin resin C is preferably lower than that of the polypropylene resin A, and is 50 ° C. or higher and 135 ° C. or lower. Is more preferably 60 ° C. or higher and 130 ° C. or lower, still more preferably 60 ° C. or higher and 120 ° C. or lower, and most preferably 60 ° C. or higher and 100 ° C. or lower. Further, it is also preferable to use a laminated film containing a low crystalline polyolefin resin having a melting point of 50 ° C. or higher and 135 ° C. or lower or the above-mentioned preferable range in at least one surface layer.
 予熱/延伸ロールを搬送する際に、フィルム表面の溶融、ロールへの粘着を起こさない観点から、低結晶性ポリオレフィン樹脂Cの融点は50℃以上が好ましい。また、延伸時にフィルム表面を部分的に溶融し粗面化する観点から、低結晶性ポリオレフィン樹脂Cの融点は135℃以下が好ましい。フィルムが積層構成であり少なくとも一方の表層が低結晶性ポリオレフィン樹脂Cを含む場合、低結晶性ポリオレフィン樹脂Cを含む表層における低結晶性ポリオレフィン樹脂Cの含有量は、当該層の全構成成分を100質量%とした際に、低結晶性ポリオレフィン樹脂Cの含有量の上限は80質量%以下がより好ましく、70質量%以下がさらに好ましく、40質量%以下がさらに好ましく、25質量%以下が最も好ましい。また、低結晶性ポリオレフィン樹脂Cの含有量の下限は5質量%以上がより好ましく、15質量%以上がさらに好ましく、20質量%以上が最も好ましい。低結晶性ポリオレフィン樹脂Cとしては、ポリプロピレン樹脂Aに相溶する低結晶性ポリプロピレン樹脂が好ましく、プロピレンとα-オレフィンの共重合体や立体規則性の低いポリプロピレン樹脂が挙げられる。例えば、ポリプロピレンランダム共重合体である日本ポリプロ(株)製“ウィンテック”(登録商標)や、低立体規則性ポリプロピレン樹脂である出光興産(株)製“エルモーデュ”(登録商標)などの市販品を適宜選択の上、使用することができる。 The melting point of the low crystalline polyolefin resin C is preferably 50 ° C. or higher from the viewpoint of preventing the film surface from melting and adhering to the roll when the preheated / stretched roll is conveyed. Further, from the viewpoint of partially melting the film surface during stretching to roughen the surface, the melting point of the low crystalline polyolefin resin C is preferably 135 ° C. or lower. When the film has a laminated structure and at least one surface layer contains the low crystalline polyolefin resin C, the content of the low crystalline polyolefin resin C in the surface layer containing the low crystalline polyolefin resin C is 100 for all the constituents of the layer. When it is set to mass%, the upper limit of the content of the low crystalline polyolefin resin C is more preferably 80% by mass or less, further preferably 70% by mass or less, further preferably 40% by mass or less, and most preferably 25% by mass or less. .. Further, the lower limit of the content of the low crystalline polyolefin resin C is more preferably 5% by mass or more, further preferably 15% by mass or more, and most preferably 20% by mass or more. As the low crystallinity polyolefin resin C, a low crystallinity polypropylene resin compatible with polypropylene resin A is preferable, and examples thereof include a copolymer of propylene and α-olefin and a polypropylene resin having low stereoregularity. For example, commercial products such as "Wintech" (registered trademark) manufactured by Japan Polypropylene Corporation, which is a polypropylene random copolymer, and "El Modu" (registered trademark) manufactured by Idemitsu Kosan Co., Ltd., which is a low stereoregular polypropylene resin. Can be used after appropriately selecting.
 本発明のフィルムは、ゴムドメイン形成樹脂(以下、ゴムドメイン形成樹脂Dということがある)を含有することが好ましい。ここで、ゴムドメイン形成樹脂とは、ポリプロピレン樹脂Aにブレンドすることで、フィルム中にゴムドメインを形成できる樹脂のことを指す。一例としては、ポリプロピレンブロック共重合体の様に、ゴムドメインを内包している樹脂や、ポリプロピレン樹脂Aと完全相溶せずに、ポリプロピレン樹脂Aのマトリックス中にゴムドメインを形成する熱可塑性エラストマー等が例示される。このような態様とすることで、縦延伸時にゴムドメインがマトリックス樹脂より大きく延伸されるため、フィルム表面に凹み構造を形成することができる。ゴムドメイン形成樹脂Dは、フィルム中にゴムドメインを形成できる樹脂であれば、特に限定されないが、熱可塑性エラストマー及びポリプロピレンブロック共重合体の少なくとも一方であることが好ましいが、ポリプロピレン樹脂Aとの親和性が高いことから、特にポリオレフィン系の熱可塑性エラストマーが好ましい。特に、熱可塑性エラストマーとは、熱を加えると軟化して流動性を示し、冷却すればゴム状に戻る性質を持ったエラストマーのことをいう。ゴムドメイン形成樹脂Dの好ましいビカット軟化温度の上限は130℃以下が好ましく、122℃以下がより好ましく、110℃以下がさらに好ましい。ビカット軟化温度の下限は、50℃以上が好ましく、65℃以上がより好ましく、80℃以上がさらに好ましく、90℃以上が最も好ましい。 The film of the present invention preferably contains a rubber domain-forming resin (hereinafter, may be referred to as rubber domain-forming resin D). Here, the rubber domain forming resin refers to a resin capable of forming a rubber domain in a film by blending with polypropylene resin A. As an example, a resin containing a rubber domain such as a polypropylene block copolymer, a thermoplastic elastomer that forms a rubber domain in a matrix of polypropylene resin A without being completely compatible with polypropylene resin A, and the like. Is exemplified. With such an embodiment, the rubber domain is stretched larger than the matrix resin during longitudinal stretching, so that a recessed structure can be formed on the film surface. The rubber domain-forming resin D is not particularly limited as long as it is a resin capable of forming a rubber domain in the film, but is preferably at least one of a thermoplastic elastomer and a polypropylene block copolymer, but has an affinity with polypropylene resin A. Polyolefin-based thermoplastic elastomers are particularly preferable because of their high properties. In particular, the thermoplastic elastomer refers to an elastomer that softens when heated and exhibits fluidity, and returns to a rubbery state when cooled. The upper limit of the preferable Vicat softening temperature of the rubber domain forming resin D is preferably 130 ° C. or lower, more preferably 122 ° C. or lower, still more preferably 110 ° C. or lower. The lower limit of the Vicat softening temperature is preferably 50 ° C. or higher, more preferably 65 ° C. or higher, further preferably 80 ° C. or higher, and most preferably 90 ° C. or higher.
 ゴムドメイン形成樹脂Dを含む場合、ゴムドメイン形成樹脂を含有する層におけるゴムドメイン形成樹脂Dの含有量は、当該層の全構成成分を100質量%とした際に、ゴムドメイン形成樹脂Dの含有量の上限は35質量%以下がより好ましく、25質量%以下がさらに好ましく、17質量%以下がさらに好ましく、12質量%以下が最も好ましい。また、ゴムドメイン形成樹脂Dの含有量の下限は1質量%以上がより好ましく、4質量%以上がさらに好ましく、6質量%以上がさらに好ましく、8質量%以上が最も好ましい。 When the rubber domain-forming resin D is contained, the content of the rubber domain-forming resin D in the layer containing the rubber domain-forming resin is the content of the rubber domain-forming resin D when all the constituents of the layer are 100% by mass. The upper limit of the amount is more preferably 35% by mass or less, further preferably 25% by mass or less, further preferably 17% by mass or less, and most preferably 12% by mass or less. Further, the lower limit of the content of the rubber domain forming resin D is more preferably 1% by mass or more, further preferably 4% by mass or more, further preferably 6% by mass or more, and most preferably 8% by mass or more.
 本発明のフィルムに用いるポリプロピレン樹脂A、分岐鎖状ポリプロピレン樹脂B、低結晶性ポリオレフィン樹脂C、ゴムドメイン形成樹脂Dには、本発明の目的を損なわない範囲で種々の添加剤、例えば結晶核剤、酸化防止剤、熱安定剤、すべり剤、帯電防止剤、ブロッキング防止剤、充填剤、粘度調整剤、着色防止剤などを含有せしめることもできる。 The polypropylene resin A, the branched chain polypropylene resin B, the low crystalline polyolefin resin C, and the rubber domain-forming resin D used in the film of the present invention may contain various additives such as a crystal nucleating agent as long as the object of the present invention is not impaired. , Antioxidants, heat stabilizers, slip agents, antistatic agents, antiblocking agents, fillers, viscosity modifiers, anticoloring agents and the like can also be contained.
 これらの中で、酸化防止剤の種類および添加量の選定は酸化防止剤のブリードアウトの観点から重要である。すなわち、かかる酸化防止剤としては立体障害性を有するフェノール系のもので、そのうち少なくとも1種は分子量500以上の高分子量型のものが好ましい。その具体例としては種々のものが挙げられるが、例えば2,6-ジ-t-ブチル-p-クレゾール(BHT:分子量220.4)とともに1,3,5-トリメチル-2,4,6-トリス(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)ベンゼン(例えば、BASF社製“Irganox”(登録商標)1330:分子量775.2)またはテトラキス[メチレン-3(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]メタン(例えば、BASF社製“Irganox”(登録商標)1010:分子量1,177.7)等を併用することが好ましい。 Among these, the selection of the type and amount of the antioxidant is important from the viewpoint of bleeding out of the antioxidant. That is, the antioxidant is preferably a phenolic agent having steric hindrance, and at least one of them is a high molecular weight type having a molecular weight of 500 or more. Specific examples thereof include various examples, such as 1,3,5-trimethyl-2,4,6-with 2,6-di-t-butyl-p-cresol (BHT: molecular weight 220.4). Tris (3,5-di-t-butyl-4-hydroxybenzyl) benzene (eg, BASF's "Irganox"® 1330: molecular weight 775.2) or tetrakis [methylene-3 (3,5-di) -T-Butyl-4-hydroxyphenyl) propionate] methane (for example, "Irganox" (registered trademark) 1010: molecular weight 1,177.7) manufactured by BASF, etc. is preferably used in combination.
 本発明のフィルムに用いるポリプロピレン樹脂Aには、本発明の目的に反しない範囲で、結晶核剤を添加することができる。具体例としては、α晶核剤(ジベンジリデンソルビトール類、安息香酸ナトリウム等)、β晶核剤(1,2-ヒドロキシステアリン酸カリウム、安息香酸マグネシウム、N,N’-ジシクロヘキシル-2,6-ナフタレンジカルボキサミド等のアミド系化合物、キナクリドン系化合物等)等が例示される。但し、上記別種の核剤の過剰な添加は延伸性の低下やボイド形成等による透明性や強度の低下を引き起こす場合があるため、添加量はポリプロピレン樹脂Aを100質量部としたときに、通常0.5質量部以下、好ましくは0.1質量部以下、更に好ましくは0.05質量部以下とすることが好ましい。 A crystal nucleating agent can be added to the polypropylene resin A used in the film of the present invention within a range not contrary to the object of the present invention. Specific examples include α-crystal nucleating agents (dibenzylidene sorbitols, sodium benzoate, etc.) and β-crystal nucleating agents (potassium 1,2-hydroxystearate, magnesium benzoate, N, N'-dicyclohexyl-2,6- Amide compounds such as naphthalenedicarboxamide, quinacridone compounds, etc.) are exemplified. However, since excessive addition of the above-mentioned other type of nucleating agent may cause a decrease in stretchability and a decrease in transparency and strength due to void formation, etc., the addition amount is usually 100 parts by mass of the polypropylene resin A. It is preferably 0.5 parts by mass or less, preferably 0.1 parts by mass or less, and more preferably 0.05 parts by mass or less.
 本発明のフィルムにおけるA面を有する表層(単層構成である場合は、フィルム自体)には、有機粒子および無機粒子を含まないことが好ましい。ポリプロピレン樹脂は、有機粒子や無機粒子との親和性が低いため、粒子が脱落して工程や製品を汚染する場合があり、また、硬度の高い粒子によって、粗大突起が形成されて光学用部材の樹脂層に凹凸転写する場合があり、ディスプレイ部材など高品位が求められる製品の保護フィルムや支持フィルムとして用いる際に障壁となることがある。 It is preferable that the surface layer having the A surface (in the case of a single layer structure, the film itself) in the film of the present invention does not contain organic particles and inorganic particles. Since polypropylene resin has a low affinity with organic particles and inorganic particles, the particles may fall off and contaminate the process or product, and the high hardness particles form coarse protrusions on the optical member. Concavo-convex transfer may occur to the resin layer, which may be a barrier when used as a protective film or support film for products that require high quality such as display members.
 本発明のフィルムは、上述した樹脂を用いた上で二軸延伸することが好ましい。二軸延伸の方法としては、インフレーション同時二軸延伸法、ステンター同時二軸延伸法、ステンター逐次二軸延伸法のいずれによっても得られるが、その中でも、製膜安定性、厚み均一性、フィルムの高剛性と寸法安定性を制御する点においてステンター逐次二軸延伸法を採用することが好ましい。 The film of the present invention is preferably biaxially stretched after using the above-mentioned resin. As a method of biaxial stretching, any of the inflation simultaneous biaxial stretching method, the stenter simultaneous biaxial stretching method, and the stenter sequential biaxial stretching method can be obtained. Among them, the film forming stability, the thickness uniformity, and the film It is preferable to adopt the stenter sequential biaxial stretching method in terms of controlling high rigidity and dimensional stability.
 次に本発明のフィルムの製造方法の一態様を、一部の態様を例として説明するが、本発明のフィルムの製造方法は必ずしもこれに限定されるものではない。 Next, one aspect of the film manufacturing method of the present invention will be described by taking some aspects as an example, but the film manufacturing method of the present invention is not necessarily limited to this.
 まず、ポリプロピレン樹脂Aを50質量部、分岐鎖状ポリプロピレン樹脂Bを20質量部、低結晶性ポリオレフィン樹脂Cを20質量部、ゴムドメイン形成樹脂Dを10質量部となるように計量ホッパーから二軸押出機に供給し、260℃で溶融混練を行ってストランド状にダイから吐出した。吐出した樹脂組成物を25℃の水槽にて冷却固化し、チップ状にカットして、表層(I)用の樹脂組成物を得た。表層(I)用の樹脂組成物を単軸の一軸押出機に供給し、A1とB1を95:5(質量比)でドライブレンドして内層(II)用の単軸の一軸溶融押出機に供給して、それぞれ200~280℃、より好ましくは220~280℃、更に好ましくは240~270℃にて溶融押出を行う。そして、ポリマー管の途中に設置したフィルターにて異物や変性ポリマーなどを除去した後、マルチマニホールド型の複合TダイにてI層/II層/I層の2種3層構成になるように積層し、キャスティングドラム上に吐出して、I層/II層/I層の層構成を有する積層未延伸シートを得る。この際、積層厚み比は、1/8/1~1/60/1の範囲が好ましい。 First, biaxially from the measuring hopper so that the polypropylene resin A is 50 parts by mass, the branched chain polypropylene resin B is 20 parts by mass, the low crystalline polyolefin resin C is 20 parts by mass, and the rubber domain forming resin D is 10 parts by mass. It was supplied to an extruder, melt-kneaded at 260 ° C., and discharged from the die in a strand shape. The discharged resin composition was cooled and solidified in a water tank at 25 ° C. and cut into chips to obtain a resin composition for the surface layer (I). The resin composition for the surface layer (I) is supplied to the single-screw extruder, and A1 and B1 are dry-blended at a ratio of 95: 5 (mass ratio) to the single-screw melt extruder for the inner layer (II). It is supplied and melt-extruded at 200 to 280 ° C., more preferably 220 to 280 ° C., and even more preferably 240 to 270 ° C., respectively. Then, after removing foreign substances and modified polymers with a filter installed in the middle of the polymer tube, they are laminated with a multi-manifold type composite T-die so as to have a two-kind three-layer structure of I layer / II layer / I layer. Then, it is discharged onto a casting drum to obtain a laminated unstretched sheet having a layer structure of I layer / II layer / I layer. At this time, the laminated thickness ratio is preferably in the range of 1/8/1 to 1/60/1.
 また、キャスティングドラムは表面温度が10~45℃が好ましく、より好ましくは15~35℃、更に好ましくは15~25℃である。また、I層/II層の2種2層積層構成としても構わないが、その場合はI層側をキャスティングドラムに密着させる。キャスティングドラムへの密着方法としては静電印加法、水の表面張力を利用した密着方法、エアナイフ法、プレスロール法、水中キャスト法などのうちいずれの手法を用いてもよいが、平面性が良好でかつ表面粗さの制御が可能なエアナイフ法が好ましい。エアナイフのエア温度は、10℃~30℃が好ましく、吹き出しエア速度は130m/s~150m/sが好ましい。また、フィルムの振動を生じさせないために製膜下流側にエアが流れるようにエアナイフの位置を適宜調整することも好ましい。 The surface temperature of the casting drum is preferably 10 to 45 ° C, more preferably 15 to 35 ° C, and even more preferably 15 to 25 ° C. Further, a two-type two-layer laminated structure of I layer / II layer may be used, but in that case, the I layer side is brought into close contact with the casting drum. As the adhesion method to the casting drum, any of the electrostatic application method, the adhesion method using the surface tension of water, the air knife method, the press roll method, the underwater casting method, etc. may be used, but the flatness is good. Moreover, the air knife method capable of controlling the surface roughness is preferable. The air temperature of the air knife is preferably 10 ° C to 30 ° C, and the blown air speed is preferably 130 m / s to 150 m / s. It is also preferable to appropriately adjust the position of the air knife so that air flows to the downstream side of the film formation so as not to cause vibration of the film.
 得られた未延伸シートは、縦延伸工程に導入される。縦延伸工程では、低温かつ低倍率で初期縦延伸した後、その後、高温かつ高倍率で縦延伸する二段延伸とすることにより、I層の表面に効率的に凹み構造を形成することができる。まず初期縦延伸としては、ゴムドメイン形成樹脂Dの軟化温度より高い温度で予熱して低倍延伸することで、ゴムドメインを効果的にマトリックス樹脂より大きく延伸することができ、フィルム表面に凹み構造を形成することができる。この初期縦延伸は、80℃以上130℃以下、好ましくは90℃以上120℃以下、更に好ましくは100℃以上110℃以下に保たれた複数の金属ロールに未延伸シートを接触させて予熱し、周速差を設けたロール間で長手方向に1.1倍~3.0倍、好ましくは1.3倍~2.5倍で延伸することが好ましい。 The obtained unstretched sheet is introduced into the longitudinal stretching step. In the longitudinal stretching step, a recessed structure can be efficiently formed on the surface of the I layer by performing two-stage stretching in which the initial longitudinal stretching is performed at a low temperature and a low magnification and then the longitudinal stretching is performed at a high temperature and a high magnification. .. First, as the initial longitudinal stretching, the rubber domain can be effectively stretched larger than the matrix resin by preheating at a temperature higher than the softening temperature of the rubber domain forming resin D and stretching it at a low magnification, and the film surface has a recessed structure. Can be formed. In this initial longitudinal stretching, an unstretched sheet is brought into contact with a plurality of metal rolls kept at 80 ° C. or higher and 130 ° C. or lower, preferably 90 ° C. or higher and 120 ° C. or lower, more preferably 100 ° C. or higher and 110 ° C. or lower, and preheated. It is preferable to stretch the rolls provided with a peripheral speed difference by 1.1 times to 3.0 times, preferably 1.3 times to 2.5 times in the longitudinal direction.
 その後、初期縦延伸温度より高い温度で、高倍率で縦延伸することにより縦一軸延伸フィルムを得ることが横延伸を安定化させ、ヘイズを低くするために好ましい。より具体的には、初期縦延伸の予熱温度より高く、かつ110℃以上150℃以下、好ましくは115℃以上140℃以下、更に好ましくは120℃以上140℃以下に保たれた金属ロールに接触させて予熱し、周速差を設けたロール間でシートを延伸することが好ましい。二段延伸トータルとしての延伸倍率は3.5倍~7倍が好ましく、4.5倍~5.5倍がより好ましく、4.5倍~5.0倍がさらに好ましい。トータルの延伸倍率が3倍未満であると、得られるフィルムの配向が弱くなり、強度が低下する場合がある。 After that, it is preferable to obtain a longitudinal uniaxially stretched film by longitudinally stretching at a high magnification at a temperature higher than the initial longitudinally stretched temperature in order to stabilize the transverse stretching and reduce the haze. More specifically, it is brought into contact with a metal roll which is higher than the preheating temperature of the initial longitudinal stretching and is kept at 110 ° C. or higher and 150 ° C. or lower, preferably 115 ° C. or higher and 140 ° C. or lower, and more preferably 120 ° C. or higher and 140 ° C. or lower. It is preferable to preheat the sheet and stretch the sheet between rolls provided with a peripheral speed difference. The total stretching ratio of the two-stage stretching is preferably 3.5 to 7 times, more preferably 4.5 times to 5.5 times, still more preferably 4.5 times to 5.0 times. If the total draw ratio is less than 3 times, the orientation of the obtained film may be weakened and the strength may be lowered.
 次いで、縦一軸延伸フィルムをテンターに導いてフィルムの端部をクリップで把持し予熱後、幅方向に7倍~13倍に横延伸する。縦一軸延伸フィルムを低温で予熱し、横延伸することで、フィルム表面に形成した凹み構造を崩さないことが重要である。このことから、予熱及び延伸温度は120℃~175℃であり、120℃~165℃が好ましく、より好ましくは140℃~160℃である。また、予熱温度に対して延伸温度が低いことが特に好ましく、予熱温度に対して3℃以上低いことが好ましく、5℃以上がより好ましく、10℃以上がさらに好ましい。 Next, the longitudinally uniaxially stretched film is guided to the tenter, the end of the film is gripped with a clip, preheated, and then laterally stretched 7 to 13 times in the width direction. It is important that the vertically uniaxially stretched film is preheated at a low temperature and then stretched laterally so as not to break the recessed structure formed on the film surface. From this, the preheating and stretching temperatures are 120 ° C. to 175 ° C., preferably 120 ° C. to 165 ° C., and more preferably 140 ° C. to 160 ° C. Further, it is particularly preferable that the stretching temperature is lower than the preheating temperature, preferably 3 ° C. or higher with respect to the preheating temperature, more preferably 5 ° C. or higher, still more preferably 10 ° C. or higher.
 続く熱処理および弛緩処理工程ではクリップで幅方向を緊張把持したまま幅方向に2%~20%、より好ましくは5%~18%、さらに好ましくは8%~15%の弛緩率で弛緩を与えつつ、140℃以上175℃以下、好ましくは140℃以上170℃未満、より好ましくは150℃以上170℃未満、さらに好ましくは160℃以上170℃未満の温度で熱固定する。その後、クリップで幅方向を緊張把持したまま80℃~100℃での冷却工程を経てテンターの外側へ導き、フィルム幅方向両端部のクリップを解放し、ワインダ工程にてフィルムエッジ部をスリットし、フィルム製品ロールを巻き取る。上記条件にて熱固定を行うことで、フィルム内の残留応力を緩和させ、熱収縮率を低下させることができる。 In the subsequent heat treatment and relaxation treatment steps, while tensioning the width direction with a clip, the relaxation is applied at a relaxation rate of 2% to 20%, more preferably 5% to 18%, still more preferably 8% to 15% in the width direction. , 140 ° C. or higher and 175 ° C. or lower, preferably 140 ° C. or higher and lower than 170 ° C., more preferably 150 ° C. or higher and lower than 170 ° C., and further preferably 160 ° C. or higher and lower than 170 ° C. After that, the film is guided to the outside of the tenter through a cooling process at 80 ° C. to 100 ° C. while the width direction is tensely gripped with a clip, the clips at both ends in the film width direction are released, and the film edge portion is slit in the winder process. Wind up the film product roll. By performing heat fixing under the above conditions, the residual stress in the film can be relaxed and the heat shrinkage rate can be reduced.
 以上のようにして得られたフィルムは、包装用フィルム、表面保護フィルム、支持フィルム、衛生用品、農業用品、建築用品、医療用品や、コンデンサ用フィルムなど様々な工業用途で用いることができるが、特に粗大突起を有さず、所定の凹み構造を有し、離型性、剛性、耐熱性、易滑性に優れることから、工程フィルム用途に好ましく用いることができる。ここで工程フィルムとは、搬送時にフィルムを保護する保護フィルム、樹脂組成物膜を製造する際に支持体として用いる支持フィルム、支持フィルム上に樹脂組成物膜を成形する際に、樹脂組成物膜の支持フィルムとしていない方の面をカバーするカバーフィルムを含む。 The films obtained as described above can be used in various industrial applications such as packaging films, surface protective films, support films, sanitary products, agricultural products, construction products, medical products, and condenser films. In particular, it does not have coarse protrusions, has a predetermined recessed structure, and is excellent in mold releasability, rigidity, heat resistance, and slipperiness, so that it can be preferably used for process film applications. Here, the process film is a protective film that protects the film during transportation, a support film used as a support when manufacturing a resin composition film, and a resin composition film when forming a resin composition film on the support film. Includes a cover film that covers the non-supporting side of the film.
 次に、本発明の積層体、及び本発明の樹脂組成物膜の製造方法について説明する。本発明の積層体は、本発明のフィルムのA面上に、樹脂組成物層を有する。本発明のフィルムは粗大突起を有さず、所定の凹み構造を有し、離型性、剛性、耐熱性に優れることから、そのA面上に樹脂組成物層を形成した積層体とすることで、樹脂組成物層を剥離して得られる樹脂組成物膜の製造を容易とすることができる。また、本発明の樹脂組成物膜の製造方法は、少なくとも以下の工程1~3をこの順に有する。工程1:請求項1~10のいずれかに記載のフィルムの前記A面に、樹脂組成物を含む塗剤を塗布する工程。工程2:前記樹脂組成物を含む塗剤を固化して樹脂組成物層を形成し、積層体とする工程。工程3:前記積層体より樹脂組成物層を剥離して、樹脂組成物膜を得る工程。 Next, the method for producing the laminate of the present invention and the resin composition film of the present invention will be described. The laminate of the present invention has a resin composition layer on the A side of the film of the present invention. Since the film of the present invention does not have coarse protrusions, has a predetermined recessed structure, and is excellent in mold releasability, rigidity, and heat resistance, the film should be a laminate in which a resin composition layer is formed on the A surface thereof. Therefore, it is possible to facilitate the production of the resin composition film obtained by peeling off the resin composition layer. Further, the method for producing a resin composition film of the present invention has at least the following steps 1 to 3 in this order. Step 1: A step of applying a coating agent containing a resin composition to the A side of the film according to any one of claims 1 to 10. Step 2: A step of solidifying the coating material containing the resin composition to form a resin composition layer to form a laminate. Step 3: A step of peeling the resin composition layer from the laminate to obtain a resin composition film.
 以下、本発明の樹脂組成物膜の製造方法の例を、ポリウレタンアクリレート膜を製造する方法を一例として説明するが、必ずしもこれに限定されるものではない。 Hereinafter, an example of the method for producing a resin composition membrane of the present invention will be described as an example of a method for producing a polyurethane acrylate membrane, but the present invention is not necessarily limited thereto.
 前述する方法で得られたフィルムを巻き取ってロールにしたものをバーコーターに導入し、市販のウレタンアクリレート(25℃での粘度600,000mPa・s、重量平均分子量Mw1,600、ガラス転移温度10℃)を50質量部と、市販のメチルエチルケトンを50質量部と、市販の1-ヒドロキシシクロへキシルフェニルケトンを3質量部とを混合した樹脂組成物からなる塗剤を膜厚1μm以上100μm以下となるようにフィルムのA面に塗布する。これを熱風乾燥機に導入し、50℃以上150℃以下で加熱して溶媒を除去する。続いて、窒素雰囲気下でUVランプを用いて紫外線を照射し、フィルム上の塗剤を硬化させ、ポリウレタンアクリレートからなる樹脂組成物層とフィルムからなる積層体を得る。前記積層体を巻き取りフィルムのA面上に前記樹脂組成物層を有する積層体を巻き取ったロールを得る。この積層体ロールより積層体を巻出してフィルム上から樹脂組成物層を剥離することで、ポリウレタンアクリレートからなる樹脂組成物膜を得ることができる。 The film obtained by the above-mentioned method was wound into a roll and introduced into a bar coater, and a commercially available urethane acrylate (viscosity at 25 ° C., 600,000 mPa · s, weight average molecular weight Mw 1,600, glass transition temperature 10) was introduced. A coating film consisting of a resin composition obtained by mixing 50 parts by mass of a commercially available methyl ethyl ketone and 3 parts by mass of a commercially available 1-hydroxycyclohexylphenyl ketone has a thickness of 1 μm or more and 100 μm or less. It is applied to the A side of the film so as to be. This is introduced into a hot air dryer and heated at 50 ° C. or higher and 150 ° C. or lower to remove the solvent. Subsequently, ultraviolet rays are irradiated using a UV lamp in a nitrogen atmosphere to cure the coating material on the film to obtain a laminate composed of a resin composition layer made of polyurethane acrylate and a film. The laminate is wound up to obtain a roll obtained by winding the laminate having the resin composition layer on the A surface of the film. A resin composition film made of polyurethane acrylate can be obtained by unwinding the laminate from the laminate roll and peeling the resin composition layer from the film.
 その他の樹脂組成物膜の例としては、セルロースアセテートプロピオネートからなる樹枝組成物膜が挙げられる。市販のセルロースアセテートプロピオネート(アセチル基置換度+プロピオニル基置換度=2.5、重量平均分子量=180,000、Mw/Mn=3.0)を100質量部と、トリフェニルホスフェートを8質量部と、エチルフタリルエチルグリコレートを2質量部と、塩化メチレンを360質量部と、エタノールを60質量部と、チヌビン109(チバ・ジャパン(株)製)を0.5質量部と、チヌビン171(チバ・ジャパン(株)製)を0.5質量部とを混合した塗剤を膜厚1μm以上100μm以下となるようにフィルムのA面に塗布する。これを熱風乾燥機に導入し、10℃以上50℃以下で加熱して溶媒を除去し、フィルム上の塗剤を硬化させ、セルロースアセテートプロピオネートからなる樹脂組成物層とフィルムからなる積層体を得る。前記積層体を巻き取りフィルムのA面上に前記樹脂組成物層を有する積層体を巻き取ったロールを得る。この積層体ロールより積層体を巻出してフィルム上から樹脂組成物層を剥離することで、セルロースアセテートプロピオネートからなる樹脂組成物膜を得ることができる。 Examples of other resin composition membranes include dendritic composition membranes made of cellulose acetate propionate. 100 parts by mass of commercially available cellulose acetate propionate (acetyl group substitution degree + propionyl group substitution degree = 2.5, weight average molecular weight = 180,000, Mw / Mn = 3.0) and 8 parts by mass of triphenyl phosphate. 2 parts by mass of ethylphthalyl ethyl glycolate, 360 parts by mass of methylene chloride, 60 parts by mass of ethanol, 0.5 part by mass of Tinubin 109 (manufactured by Ciba Japan Co., Ltd.), and Tinubin. A coating agent obtained by mixing 171 (manufactured by Ciba Japan Co., Ltd.) with 0.5 parts by mass is applied to the A side of the film so as to have a film thickness of 1 μm or more and 100 μm or less. This is introduced into a hot air dryer, heated at 10 ° C. or higher and 50 ° C. or lower to remove the solvent, and the coating material on the film is cured. To get. The laminate is wound up to obtain a roll obtained by winding the laminate having the resin composition layer on the A surface of the film. By unwinding the laminate from the laminate roll and peeling the resin composition layer from the film, a resin composition film made of cellulose acetate propionate can be obtained.
 さらに別の例として、ポリエーテルイミドからなる樹脂組成物膜も挙げられる。市販のポリエーテルイミド樹脂(SABIC社製、商品名“ULTEM”(登録商標)1010、ビカット軟化点温度215℃)を15質量部と、N-メチル-2-ピロリドンを85質量部とを混合した塗剤を膜厚1μm以上100μm以下となるようにフィルムのA面に塗布する。これを熱風乾燥機に導入し、50℃以上150℃以下で加熱して溶媒を除去し、フィルム上の塗剤を硬化させ、ポリエーテルイミドからなる樹脂組成物層とフィルムからなる積層体を得る。前記積層体を巻き取りフィルムのA面上に前記樹脂組成物層を有する積層体を巻き取ったロールを得る。この積層体ロールより積層体を巻出してフィルム上から樹脂組成物層を剥離することで、ポリエーテルイミドからなる樹脂組成物膜を得ることができる。 Yet another example is a resin composition membrane made of polyetherimide. 15 parts by mass of a commercially available polyetherimide resin (manufactured by SABIC, trade name "ULTEM" (registered trademark) 1010, Vicat softening point temperature 215 ° C.) and 85 parts by mass of N-methyl-2-pyrrolidone were mixed. The coating agent is applied to the A side of the film so that the film thickness is 1 μm or more and 100 μm or less. This is introduced into a hot air dryer, heated at 50 ° C. or higher and 150 ° C. or lower to remove the solvent, and the coating material on the film is cured to obtain a laminate composed of a resin composition layer made of polyetherimide and a film. .. The laminate is wound up to obtain a roll obtained by winding the laminate having the resin composition layer on the A surface of the film. By unwinding the laminate from the laminate roll and peeling the resin composition layer from the film, a resin composition film made of polyetherimide can be obtained.
 以下、実施例により本発明を詳細に説明する。なお、各特性の評価方法、フィルムの製造に用いた樹脂等は以下のとおりである。 Hereinafter, the present invention will be described in detail by way of examples. The evaluation method of each characteristic, the resin used for producing the film, and the like are as follows.
 (各特性の評価方法)
 (1)フィルム厚み
 マイクロ厚み計(アンリツ(株)製)を用いて測定した。具体的には、フィルムを10cm四方にサンプリングし、任意に選定した5点の厚みを測定して平均値を求め、得られた値をフィルム厚みとした。
(Evaluation method of each characteristic)
(1) Film thickness Measured using a microthickness meter (manufactured by Anritsu Co., Ltd.). Specifically, the film was sampled in a 10 cm square, the thickness of 5 arbitrarily selected points was measured, an average value was obtained, and the obtained value was taken as the film thickness.
 (2)スキューネスSsk、負荷面積率Smr2、突出部山高さSpk、最大谷深さSv
 各パラメータは、ISO25178(2012)に準じて測定、算出した。ただし、測定は走査型白色干渉顕微鏡“VS1540”((株)日立ハイテクサイエンス製、測定条件と装置構成は後述する。)を使用して行った。また、付属の解析ソフトにより撮影画面を補完処理(完全補完)し、多項式4次近似にて面補正した後、メジアンフィルタ(3×3ピクセル)で処理したものを測定したelectro-magnetic surfaceとした。また、S-filterのS-Filter Nesting Indexは0.445とした。測定は、5cm×5cmの正方形状に切ったフィルムの両面について行った。対角線の交差点を1点目の測定点(点1)とし、開始点より4つある各角に向けて1cm離れた位置を時計回りにそれぞれ点2、点3、点4、点5とし、点2と点3を結んだ線分の中点を点6、点3と点4を結んだ線分の中点を点7、点4と点5を結んだ線分の中点を点8、点5と点2を結んだ線分の中点を点9とし、点1~点9の合計9箇所の測定点を決め、各測定点で測定を行った。測定結果から上記の手順に従って各測定位置のSsk、Smr2、Spk、Svを求め、それぞれのパラメータについて9つ得られた値の1番目、2番目に大きい値と、8番目、9番目に大きい値を除いた5つの値の平均値をフィルムのSsk、Smr2、Spk、Svとして採用した。表2には、フィルムA面のSsk、Smr2、Spk、Svの値を記載した。フィルムの両面がA面となる場合は、Spkが低い面についての値を記載した。A面を有さないフィルムについては、Spkが低い面についての値を記載した。また、A面を有さず、両面のSpkが等しいフィルムについては、Sskの値が小さい面についての値を記載した。
(2) Skewness Sk, load area ratio Smr2, protrusion mountain height Spk, maximum valley depth Sv
Each parameter was measured and calculated according to ISO25178 (2012). However, the measurement was performed using a scanning white interference microscope "VS1540" (manufactured by Hitachi High-Tech Science Co., Ltd., the measurement conditions and the device configuration will be described later). In addition, the shooting screen was complemented (completely complemented) with the attached analysis software, surface-corrected by polynomial fourth-order approximation, and then processed with a median filter (3 x 3 pixels) to obtain an ectro-magnetic surface. .. The S-Filter Nesting Index of S-filter was set to 0.445. The measurement was performed on both sides of a 5 cm × 5 cm square cut film. The intersection of the diagonal lines is set as the first measurement point (point 1), and the positions 1 cm away from each of the four corners from the starting point are set clockwise as points 2, points 3, points 4, and points 5, respectively. The midpoint of the line segment connecting 2 and point 3 is point 6, the midpoint of the line segment connecting point 3 and point 4 is point 7, and the midpoint of the line segment connecting point 4 and point 5 is point 8. The midpoint of the line segment connecting the points 5 and 2 was set as the point 9, and a total of 9 measurement points from the points 1 to 9 were determined, and the measurement was performed at each measurement point. From the measurement results, Ssk, Smr2, Spk, and Sv at each measurement position were obtained according to the above procedure, and the 9th and 2nd largest values and the 8th and 9th largest values obtained for each parameter were obtained. The average value of the five values excluding the above was adopted as Ssk, Smr2, Spk, and Sv of the film. Table 2 shows the values of Ssk, Smr2, Spk, and Sv on the A side of the film. When both sides of the film are A side, the value for the side with low Spk is described. For the film having no A side, the value for the side having a low Spk is described. Further, for a film having no A side and having the same Spk on both sides, the value for the side having a small Sk value is described.
 <測定条件と装置構成>
対物レンズ:10x
鏡筒:1x
ズームレンズ:1x
波長フィルタ:530nm white
測定モード:Wave
測定ソフトウェア:VS-Measure 10.0.4.0
解析ソフトウェア:VS-Viewer10.0.3.0
測定領域:561.1μm×561.5μm
画素数:1,024×1,024。
<Measurement conditions and device configuration>
Objective lens: 10x
Lens barrel: 1x
Zoom lens: 1x
Wavelength filter: 530nm white
Measurement mode: Wave
Measurement software: VS-Measure 10.0.4.0
Analysis software: VS-Viewer 10.0.3.0
Measurement area: 561.1 μm × 561.5 μm
Number of pixels: 1,024 x 1,024.
 (3)一方の表面と他方の表面との動摩擦係数μd
 フィルムを幅6.5cm、長さ12cmに切り出し、東洋精機工業(株)製スリップテスターを用いて、JIS K 7125(1999)に準じて、25℃、65%RHにて測定した。なお、測定は主配向直交方向を測定方向とし、かつ異なる面同士を重ねて行った。同じ測定を一つのサンプルにつき5回行い、得られた値の平均値を算出し、当該サンプルの動摩擦係数(μd)とした。
(3) Dynamic friction coefficient μd between one surface and the other surface
The film was cut into a width of 6.5 cm and a length of 12 cm, and measured at 25 ° C. and 65% RH according to JIS K 7125 (1999) using a slip tester manufactured by Toyo Seiki Kogyo Co., Ltd. The measurement was performed with the main orientation orthogonal direction as the measurement direction and the different surfaces overlapped with each other. The same measurement was performed 5 times for each sample, and the average value of the obtained values was calculated and used as the dynamic friction coefficient (μd) of the sample.
 (4)130℃でのヤング率
 130℃でのヤング率は、(株)オリエンテック製フィルム強伸度測定装置(AMF/RTA-100)を用いて、130℃に加熱されたオーブン中へチャックごと投入し、1分間加熱した後、引張速度を300mm/分としてフィルムの引張試験を行った。フィルムを測定方向(主配向軸直交方向):25cm、測定方向と直角の方向:1cmの長方形サイズに切り出し、原長100mm、引張り速度300mm/分で伸張して、JIS Z 1702(1994)に規定された方法に従い測定した。
(4) Young's modulus at 130 ° C. Young's modulus at 130 ° C. is chucked into an oven heated to 130 ° C. using a film strength elongation measuring device (AMF / RTA-100) manufactured by Orientec Co., Ltd. After charging for 1 minute, the film was subjected to a tensile test at a tensile speed of 300 mm / min. The film is cut into a rectangular size with a measurement direction (orthogonal direction of the main orientation axis): 25 cm and a direction perpendicular to the measurement direction: 1 cm, stretched at an original length of 100 mm and a tensile speed of 300 mm / min, and specified in JIS Z 1702 (1994). Measured according to the method used.
 (5)融解ピーク温度
 フィルム、または原料5mgを試料としてアルミニウム製のパンに採取し、示差走査熱量計(セイコー電子工業(株)製RDC220)を用いて測定した。窒素雰囲気下で20℃から260℃まで10℃/分で昇温し、5分保持し、その後、260℃から20℃まで10℃/分で降温し、再度20℃から260℃まで10℃/分で昇温(セカンドラン)した際に観測される最も高温側に出現する溶融カーブの頂上の温度を融解ピーク温度とした。
(5) Melting peak temperature A film or 5 mg of a raw material was sampled in an aluminum pan and measured using a differential scanning calorimeter (RDC220 manufactured by Seiko Electronics Inc.). Under a nitrogen atmosphere, the temperature is raised from 20 ° C. to 260 ° C. at 10 ° C./min, held for 5 minutes, then lowered from 260 ° C. to 20 ° C. at 10 ° C./min, and again from 20 ° C. to 260 ° C. at 10 ° C./min. The temperature at the top of the melting curve that appears on the hottest side observed when the temperature rises in minutes (second run) is defined as the melting peak temperature.
 (6)加熱処理後の内部ヘイズ
 フィルムを幅3.0cm、長さ6.0cmに切り出して試験片を紙に挟み込み、荷重ゼロの状態で130℃に保温されたオーブン内にて10分間加熱後に取り出して、室温で冷却後、サンプルとした。測定には、スガ試験機(株)製 ヘイズメーター(HGM-2DP)を用いた。テトラリンで満たした光路長1cmの石英セル中にサンプルを挿入して測定した際の測定値から加熱処理後の内部ヘイズを求めた。
(6) Internal haze after heat treatment Cut out the film to a width of 3.0 cm and a length of 6.0 cm, sandwich the test piece in paper, and heat it in an oven kept at 130 ° C. with no load for 10 minutes. It was taken out, cooled at room temperature, and used as a sample. A haze meter (HGM-2DP) manufactured by Suga Test Instruments Co., Ltd. was used for the measurement. The internal haze after the heat treatment was obtained from the measured values when the sample was inserted into a quartz cell having an optical path length of 1 cm filled with tetralin.
 (7)フィルムに塗工し、固化、剥離して得られる樹脂組成物膜の易滑性評価
 21cm×30cmに切り出したフィルムのA面に、市販のウレタンアクリレート(25℃での粘度600,000mPa・s、重量平均分子量Mw1,600、ガラス転移温度10℃)を50質量部と、市販のメチルエチルケトンを50質量部と、市販の1-ヒドロキシシクロへキシルフェニルケトンを3質量部とを混合した樹脂組成物からなる塗剤を膜厚45μmとなるように塗布した。これを熱風乾燥機に導入し、80℃で加熱して溶媒を除去した。続いて、窒素雰囲気下でUVランプを用いて紫外線を照射し、フィルム上の塗剤を硬化させた後、樹脂組成物層を剥離してポリウレタンアクリレートからなる樹脂組成物膜を得た。フィルムの両面がA面である場合は、Spkが低い面に前記塗剤を塗布して同様の手順により樹脂組成物膜を得た。A面を有さないフィルムについては、Spkが低い面に前記塗剤を塗布して同様の手順により樹脂組成物膜を得た。また、A面を有さず、両面のSpkが等しいフィルムについては、Sskの値が小さい面に前記塗剤を塗布して同様の手順により樹脂組成物膜を得た。これを5回繰り返し、5枚の樹脂組成物膜を得た。東洋精機工業(株)製スリップテスターを用いて、JIS K 7125(1999)に準じて、荷重200g、25℃、65%RHにて得られた樹脂組成物のフィルムと接していた面同士が接触するように重ねて、樹脂組成物膜の長手方向同士を摩擦させた時の動摩擦係数μdを(3)に記載の方法で測定した。サンプルは、幅80mm、長さ200mmの長方形とし、5セット(10枚)切り出した。サンプルを切り出す際は、1つの樹脂組成物膜から1セット切り出すようにし、樹脂組成物膜の端部から2cmの領域は使用しないようにした。5回測定を行い、平均値を樹脂組成物膜の動摩擦係数μdの値として採用した。樹脂組成物膜の動摩擦係数μdの値を基に、樹脂組成物膜の易滑性(フィルムの滑り性付与効果)を以下の基準で評価した。
優:μdが0.50以下。
良:μdが0.50より大きく、0.55以下。
可:μdが0.55より大きく、0.60以下。
不可:μdが0.60より大きい。
(7) Evaluation of slipperiness of a resin composition film obtained by coating, solidifying, and peeling off a film A commercially available urethane acrylate (viscosity at 25 ° C., 600,000 mPa) is formed on the A surface of a film cut into a size of 21 cm × 30 cm. A resin obtained by mixing 50 parts by mass of s, weight average molecular weight Mw 1,600, glass transition temperature 10 ° C., 50 parts by mass of commercially available methyl ethyl ketone, and 3 parts by mass of commercially available 1-hydroxycyclohexylphenyl ketone. A coating agent consisting of the composition was applied so as to have a film thickness of 45 μm. This was introduced into a hot air dryer and heated at 80 ° C. to remove the solvent. Subsequently, ultraviolet rays were irradiated using a UV lamp in a nitrogen atmosphere to cure the coating film on the film, and then the resin composition layer was peeled off to obtain a resin composition film made of polyurethane acrylate. When both sides of the film were A-sides, the coating agent was applied to the side having a low Spk to obtain a resin composition film by the same procedure. For the film having no A surface, the coating agent was applied to the surface having a low Spk to obtain a resin composition film by the same procedure. Further, for a film having no A side and having the same Spk on both sides, the coating agent was applied to a surface having a small Sk value to obtain a resin composition film by the same procedure. This was repeated 5 times to obtain 5 resin composition films. Using a slip tester manufactured by Toyo Seiki Kogyo Co., Ltd., the surfaces that were in contact with the film of the resin composition obtained at a load of 200 g, 25 ° C., and 65% RH were in contact with each other according to JIS K 7125 (1999). The dynamic friction coefficient μd when the resin composition films were rubbed against each other in the longitudinal direction was measured by the method described in (3). The sample was a rectangle with a width of 80 mm and a length of 200 mm, and 5 sets (10 sheets) were cut out. When cutting out the sample, one set was cut out from one resin composition membrane, and the region 2 cm from the end of the resin composition membrane was not used. The measurement was performed 5 times, and the average value was adopted as the value of the dynamic friction coefficient μd of the resin composition film. Based on the value of the dynamic friction coefficient μd of the resin composition film, the slipperiness of the resin composition film (effect of imparting slipperiness of the film) was evaluated according to the following criteria.
Excellent: μd is 0.50 or less.
Good: μd is greater than 0.50 and 0.55 or less.
Possible: μd is larger than 0.55 and 0.60 or less.
Impossible: μd is greater than 0.60.
 (8)フィルムに塗工し、固化、剥離して得られる樹脂組成物膜の透明性評価
 (7)に記載の方法で2枚の樹脂組成物膜を得た。得られた樹脂組成物膜を幅100mm、長さ100mmの正方形にサンプリングし、樹脂組成物膜のフィルムと接していた方の面をP面、他方の面をQ面としたときに、P面とQ面とが接触するように重ねて、それを2枚のアクリル板(幅100mm、長さ100mm)に挟んで、3kgの荷重をかけ、23℃の雰囲気下で24時間静置した。24時間後に、P面と接していたQ面を目視で観察し、工程フィルムの平滑化効果を以下の基準で評価した。
優:きれいであり、荷重をかける前と同等。
良:荷重解放直後は、弱い凹凸が確認されるが、10分後には凹凸が見えなくなる。
可:荷重解放後10分経過後も、弱い凹凸が確認される。
不可:強い凹凸の転写が確認される。
(8) Transparency Evaluation of Resin Composition Films Obtained by Coating, Solidifying, and Peeling on a Film Two resin composition films were obtained by the method described in (7). When the obtained resin composition film is sampled into a square having a width of 100 mm and a length of 100 mm, the side of the resin composition film in contact with the film is the P surface, and the other surface is the Q surface. The film was placed in contact with the Q surface, sandwiched between two acrylic plates (width 100 mm, length 100 mm), a load of 3 kg was applied, and the mixture was allowed to stand for 24 hours in an atmosphere of 23 ° C. After 24 hours, the Q surface that was in contact with the P surface was visually observed, and the smoothing effect of the process film was evaluated according to the following criteria.
Yu: It is clean and is the same as before applying the load.
Good: Weak unevenness is confirmed immediately after the load is released, but the unevenness disappears after 10 minutes.
Possible: Weak unevenness is confirmed even 10 minutes after the load is released.
Impossible: Strong uneven transfer is confirmed.
 (9)表面自由エネルギー
 測定液として、水、エチレングリコ-ル、ホルムアミド、及びヨウ化メチレンの4種類の液体を用い、協和界面科学(株)製接触角計CA-D型を用いて、各液体のフィルムA面に対する静的接触角を求めた。なお、静的接触角は、各液体をフィルムA面に滴下してから30秒後に測定した。各々の液体について得られた接触角と測定液の表面張力の各成分を下式にそれぞれ代入し、以下の式からなる連立方程式をγSd、γSp、γShについて解いた。フィルムの両面がA面を有する場合は、Spkが低い面について評価した。A面を有さないフィルムについては、Spkが低い面について評価した。また、A面を有さず、両面のSpkが等しいフィルムについては、Sskの値が小さい面について評価した。
(9) Four types of liquids, water, ethylene glycol, formamide, and methylene iodide, were used as surface free energy measurement liquids, and each was used with a contact angle meter CA-D manufactured by Kyowa Interface Science Co., Ltd. The static contact angle of the liquid with respect to the film A surface was determined. The static contact angle was measured 30 seconds after each liquid was dropped on the A surface of the film. Substituting each component of the contact angle obtained for each liquid and the surface tension of the measured liquid into the following equations, simultaneous equations consisting of the following equations were solved for γSd, γSp, and γSh. When both sides of the film had side A, the side with low Spk was evaluated. For the film having no A side, the side having a low Spk was evaluated. Further, for films having no A side and having the same Spk on both sides, the side having a small Sk value was evaluated.
 (γSd・γLd)1/2+(γSp・γLp)1/2+(γSh・γLh)1/2=γL(1+COSθ) /2
 但し、γS=γSd+γSp+γSh
 γL=γLd+γLp+γLh
 γS、γSd、γSp、γShは、それぞれフィルム表面の表面自由エネルギー、分散力成分、極性力成分、水素結合成分を、また、γL、γLd、γLp、γLhは、用いた測定液のそれぞれ表面自由エネルギー、分散力成分、極性力成分、水素結合成分を表わすものである。ここで、用いた各液体の表面張力は、Panzer(J.Panzer, J.Colloid Interface Sci.,44, 142(1973))によって提案された値を用いた。
(ΓSd / γLd) 1/2 + (γSp / γLp) 1/2 + (γSh / γLh) 1/2 = γL (1 + COSθ) / 2
However, γS = γSd + γSp + γSh
γL = γLd + γLp + γLh
γS, γSd, γSp, and γSh are surface free energies, dispersion force components, polar force components, and hydrogen bond components of the film surface, respectively, and γL, γLd, γLp, and γLh are surface free energies of the measurement liquid used. , Dispersive force component, polar force component, hydrogen bond component. Here, the surface tension of each liquid used was the value proposed by Panzer (J. Panzer, J. Colloid Interface Sc., 44, 142 (1973)).
 (10)ビカット軟化温度
 各原料を3mm厚にプレス成形した試験サンプルを作成し、ヒートディストーションテスター((株)安田精機製作所製「148-6連型」)を用いて、ASTM D1525に準拠して各原料のビカット軟化温度を評価した。
(10) Vicut softening temperature Prepare a test sample by press-molding each raw material to a thickness of 3 mm, and use a heat distortion tester (“148-6 series type” manufactured by Yasuda Seiki Seisakusho Co., Ltd.) in accordance with ASTM D1525. The Vicat softening temperature of each raw material was evaluated.
 (フィルムの製造に用いた樹脂等)
A1:ポリプロピレン樹脂((株)プライムポリマー製、MFR:3.0g/10分、融点:164℃)
A2:ポリプロピレン樹脂(住友化学(株)製、MFR:7.5g/10分、融点:163℃)
A3:ポリプロピレン樹脂((株)プライムポリマー製、MFR:3.0g/10分、融点161℃)
A4:ポリプロピレン樹脂((株)プライムポリマー製、MFR:4.0g/10分、融点166℃)
B1:分岐鎖状ポリプロピレン樹脂(日本ポリプロ(株)製“WAYMAX”(登録商標)MFX6、MFR:3.0g/10分)
B2:分岐鎖状ポリプロピレン樹脂(日本ポリプロ(株)製“WAYMAX”(登録商標)MFX3、MFR:8.0g/10分)
B3:分岐鎖状ポリプロピレン樹脂(ボレアリス社製“Daploy”(登録商標) WB140HMS、MFR:2.1g/10分)
C1:ランダムポリプロピレン樹脂(日本ポリプロ(株)製“WINTEC”(登録商標)WFW4M、MFR:7.0g/10分、融点135℃)C2:ポリプロピレン樹脂(出光興産(株)製、“L-MODU” (登録商標)S901融点80℃)
D1:熱可塑性エラストマー樹脂(日本ポリプロ(株)製“WELNEX”(登録商標)RFX4V、ビカット軟化温度:100℃)
D2:ブロックポリプロピレン樹脂(住友化学(株)製“ノーブレン”(登録商標)AW564、ビカット軟化温度:101℃)
D3:熱可塑性エラストマー樹脂(日本ポリプロ(株)製“WELNEX”(登録商標)RFX4VM、ビカット軟化温度:115℃)
D4:熱可塑性エラストマー樹脂(三井化学(株)製“タフマー”(登録商標)XM7070、ビカット軟化温度:67℃)
ポリエステルA:以下の手順で得られた極限粘度0.68のポリエステル樹脂
 手順:テレフタル酸ジメチル100質量部とエチレングリコール60質量部とを出発原料とし、触媒として酢酸マグネシウム・四水塩0.09質量部を反応器にとり、反応開始温度を150℃とし、メタノールの留去とともに徐々に反応温度を上昇させ、3時間後に230℃とした。4時間後、実質的にエステル交換反応を終了させた。この反応混合物にエチルアシッドフォスフェート0.04質量部を添加した後、三酸化アンチモン0.04質量部を加え、4時間重縮合反応を行った。すなわち、温度を230℃ から徐々に昇温し280℃ とした。一方、圧力は常圧より徐々に減じ、最終的には0.3mmHgとした。反応開始後、反応槽の攪拌動力の変化により、極限粘度0.68に相当する時点で反応を停止し、窒素加圧下ポリマーを吐出させた。
ポリエステルB:以下の手順で得られた極限粘度0.67のポリエステル樹脂
 手順:ポリエステルAの製造方法において、リン酸エチル0.04質量部を添加後、エチレングリコールに分散させた平均粒子径0.7μm、粒径分布値1.70の合成炭酸カルシウム粒子を0.3質量部、三酸化アンチモン0.04質量部を加えて、極限粘度0.66に相当する時点で重縮合反応を停止した以外は、ポリエステルAの製造方法と同様の方法を用いた。
ポリエステルC:以下の手順で得られた極限粘度0.67のポリエステル樹脂
 手順:ポリエステルBの製造方法において、添加する粒子を平均粒径1.4μm 、粒径分布値2.5の無定形シリカ粒子とし、添加量を0.1部としたこと以外は、ポリエステルBの製造方法と同様の方法を用いた。
(Resin used in film production)
A1: Polypropylene resin (manufactured by Prime Polymer Co., Ltd., MFR: 3.0 g / 10 minutes, melting point: 164 ° C)
A2: Polypropylene resin (manufactured by Sumitomo Chemical Co., Ltd., MFR: 7.5 g / 10 minutes, melting point: 163 ° C)
A3: Polypropylene resin (manufactured by Prime Polymer Co., Ltd., MFR: 3.0 g / 10 minutes, melting point 161 ° C.)
A4: Polypropylene resin (manufactured by Prime Polymer Co., Ltd., MFR: 4.0 g / 10 minutes, melting point 166 ° C)
B1: Branched chain polypropylene resin ("WAYMAX" (registered trademark) MFX6, MFR: 3.0 g / 10 minutes manufactured by Japan Polypropylene Corporation)
B2: Branched chain polypropylene resin ("WAYMAX" (registered trademark) MFX3, MFR: 8.0 g / 10 minutes manufactured by Japan Polypropylene Corporation)
B3: Branched chain polypropylene resin (Bolearis "Daplay" (registered trademark) WB140HMS, MFR: 2.1 g / 10 minutes)
C1: Random polypropylene resin ("WINTEC" (registered trademark) WFW4M manufactured by Japan Polypropylene Corporation, MFR: 7.0 g / 10 minutes, melting point 135 ° C.) C2: Polypropylene resin (manufactured by Idemitsu Kosan Co., Ltd., "L-MODU" (Registered trademark) S901 melting point 80 ° C)
D1: Thermoplastic elastomer resin (“WELNEX” (registered trademark) RFX4V manufactured by Japan Polypropylene Corporation, Vicat softening temperature: 100 ° C.)
D2: Block polypropylene resin ("Noblen" (registered trademark) AW564 manufactured by Sumitomo Chemical Co., Ltd., Vicat softening temperature: 101 ° C.)
D3: Thermoplastic elastomer resin (“WELNEX” (registered trademark) RFX4VM manufactured by Japan Polypropylene Corporation, Vicat softening temperature: 115 ° C.)
D4: Thermoplastic elastomer resin (“Toughmer” (registered trademark) XM7070 manufactured by Mitsui Chemicals, Inc., Vicat softening temperature: 67 ° C.)
Polyester A: Polyester resin with an ultimate viscosity of 0.68 obtained by the following procedure Procedure: Using 100 parts by mass of dimethyl terephthalate and 60 parts by mass of ethylene glycol as starting materials, magnesium acetate / tetrahydrate 0.09 mass as a catalyst The reaction was taken in a reactor, the reaction start temperature was set to 150 ° C., and the reaction temperature was gradually increased with the distillation of methanol to 230 ° C. after 3 hours. After 4 hours, the transesterification reaction was substantially terminated. After 0.04 part by mass of ethyl acid phosphate was added to this reaction mixture, 0.04 part by mass of antimony trioxide was added, and a polycondensation reaction was carried out for 4 hours. That is, the temperature was gradually raised from 230 ° C to 280 ° C. On the other hand, the pressure was gradually reduced from the normal pressure to finally reach 0.3 mmHg. After the reaction was started, the reaction was stopped at a time corresponding to the ultimate viscosity of 0.68 due to the change in the stirring power of the reaction tank, and the polymer under nitrogen pressure was discharged.
Polyester B: Polyester resin having an ultimate viscosity of 0.67 obtained by the following procedure Procedure: In the method for producing polyester A, 0.04 parts by mass of ethyl phosphate was added and then dispersed in ethylene glycol. Except that 0.3 parts by mass of synthetic calcium carbonate particles having a particle size distribution value of 1.70 and 0.3 parts by mass of antimony trioxide were added to stop the polycondensation reaction at a time corresponding to the ultimate viscosity of 0.66. Used the same method as the method for producing polyester A.
Polyester C: Polyester resin with an ultimate viscosity of 0.67 obtained by the following procedure Procedure: In the method for producing polyester B, the particles to be added are amorphous silica particles having an average particle size of 1.4 μm and a particle size distribution value of 2.5. The same method as that for producing polyester B was used except that the addition amount was 0.1 part.
 (実施例1)
 A1が50質量部、B1が20質量部、低結晶性ポリオレフィン樹脂であるC1が20質量部、ゴムドメイン形成樹脂であるD1が10質量部となるように計量ホッパーから二軸押出機に供給し、260℃で溶融混練を行ってストランド状にダイから吐出した。吐出した樹脂組成物を25℃の水槽にて冷却固化し、チップ状にカットして、表層(I)用の樹脂組成物を得た。表層(I)用の樹脂組成物を単軸の一軸押出機に供給し、A1とB1を95:5(質量比)でドライブレンドして内層(II)用の単軸の一軸溶融押出機に供給して、それぞれ260℃で溶融押出を行った。続いて20μmカットの焼結フィルターで溶融した各樹脂組成物から異物を除去後、フィードブロック型の複合Tダイにて表層(I)/内層(II)/表層(I)を1/24/1の厚み比で積層し、20℃に表面温度を制御したキャスティングドラムに吐出させて、エアナイフによりキャスティングドラムに密着させた。その後、キャスティングドラム上のシートのキャスティングドラム面と反対側の面に圧空エアを噴射させて冷却し、未延伸シートを得た。続いて、該未延伸シートをセラミックロールで90℃に予熱し、周速差を設けた90℃のロール間で長手方向に1.3倍の初期延伸を行った(なお、長手方向への延伸を縦延伸ということがある。)。続いて、初期延伸後のフィルムを140℃に予熱し、2段目の縦延伸を倍率3.5倍で行った。次に縦延伸後のフィルムの幅方向両端部をクリップで把持してテンター式延伸機に導入し、160℃で3秒間予熱後、150℃で幅方向に9.8倍に延伸し、幅方向に10%の弛緩を与えながら165℃で熱処理を行った。その後100℃の冷却工程を経てフィルムをテンターの外側へ導き、フィルム幅方向両端部のクリップを解放し、フィルムをコアに巻き取り、厚み12μmの二軸配向ポリプロピレンフィルムを得た。得られた二軸配向ポリプロピレンフィルムの物性および評価結果を表1に示す。
(Example 1)
A1 is 50 parts by mass, B1 is 20 parts by mass, C1 which is a low crystalline polyolefin resin is 20 parts by mass, and D1 which is a rubber domain forming resin is 10 parts by mass. It was melt-kneaded at 260 ° C. and discharged from the die in a strand shape. The discharged resin composition was cooled and solidified in a water tank at 25 ° C. and cut into chips to obtain a resin composition for the surface layer (I). The resin composition for the surface layer (I) is supplied to the single-screw extruder, and A1 and B1 are dry-blended at a ratio of 95: 5 (mass ratio) to the single-screw melt extruder for the inner layer (II). They were fed and melt-extruded at 260 ° C., respectively. Subsequently, after removing foreign matter from each resin composition melted by a 20 μm-cut sintered filter, the surface layer (I) / inner layer (II) / surface layer (I) is 1/24/1 with a feed block type composite T-die. The layers were laminated at the thickness ratio of the above, discharged to a casting drum whose surface temperature was controlled at 20 ° C., and brought into close contact with the casting drum by an air knife. Then, compressed air was injected onto the surface of the sheet on the casting drum opposite to the casting drum surface to cool the sheet, and an unstretched sheet was obtained. Subsequently, the unstretched sheet was preheated to 90 ° C. with a ceramic roll, and initial stretching was performed 1.3 times in the longitudinal direction between the 90 ° C. rolls provided with a peripheral speed difference (note that stretching in the longitudinal direction). Is sometimes referred to as longitudinal stretching.). Subsequently, the film after the initial stretching was preheated to 140 ° C., and the second-stage longitudinal stretching was performed at a magnification of 3.5 times. Next, both ends of the film after longitudinal stretching were gripped with clips and introduced into a tenter type stretching machine, preheated at 160 ° C for 3 seconds, stretched 9.8 times in the width direction at 150 ° C, and stretched 9.8 times in the width direction. Was heat-treated at 165 ° C. while giving 10% relaxation. Then, the film was guided to the outside of the tenter through a cooling step of 100 ° C., the clips at both ends in the film width direction were released, and the film was wound around the core to obtain a biaxially oriented polypropylene film having a thickness of 12 μm. Table 1 shows the physical characteristics and evaluation results of the obtained biaxially oriented polypropylene film.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 (実施例2~4、6~7、比較例1、2、4、6)
 各層の組成、層構成、積層比、及び製膜条件を表1の通りとした以外は実施例1と同様にして、表1の厚みのフィルムを得た。得られたフィルムの物性および評価結果を表1に併せて示す。なお、フィルム厚みの調整は押出時の吐出量の調整により行った。
(Examples 2 to 4, 6 to 7, Comparative Examples 1, 2, 4, 6)
A film having the thickness shown in Table 1 was obtained in the same manner as in Example 1 except that the composition, layer composition, stacking ratio, and film forming conditions of each layer were as shown in Table 1. Table 1 also shows the physical characteristics of the obtained film and the evaluation results. The film thickness was adjusted by adjusting the discharge amount at the time of extrusion.
 (実施例5)
 原料として、前記ポリプロピレン原料A1を65質量部、前記低結晶性ポリオレフィン原料C1を20質量部、前記ゴムドメイン含有原料D1を15質量部とをドライブレンドして単層用の単軸の一軸溶融押出機に供給し、260℃で溶融押出を行い、20μmカットの焼結フィルターで異物を除去後、20℃に表面温度を制御したキャスティングドラムに吐出し、エアナイフによりキャスティングドラムに密着させた。その後、キャスティングドラム上のシートの非冷却ドラム面に、圧空エアを噴射させて冷却し、未延伸シートを得た。続いて、該シートをセラミックロールで125℃に予熱し、周速差を設けた125℃のロール間でフィルムの長手方向に1.2倍初期延伸を行った。続いて、138℃に予熱し、2段目の縦延伸を3.4倍で行った。次にテンター式延伸機に端部をクリップで把持させて導入し、168℃で3秒間予熱後、163℃で7.5倍に延伸し、幅方向に16%の弛緩を与えながら173℃で熱処理を行った。その後100℃の冷却工程を経てテンターの外側へ導き、フィルム端部のクリップを解放し、フィルムをコアに巻き取り、厚み22μmの単層フィルムを得た。得られたフィルムの物性および評価結果を表1に併せて示す。
(Example 5)
As raw materials, 65 parts by mass of the polypropylene raw material A1, 20 parts by mass of the low crystalline polyolefin raw material C1, and 15 parts by mass of the rubber domain-containing raw material D1 are dry-blended and uniaxial melt extrusion for a single layer. It was supplied to the machine, melt-extruded at 260 ° C., foreign matter was removed with a 20 μm-cut sintered filter, discharged to a casting drum whose surface temperature was controlled at 20 ° C., and brought into close contact with the casting drum with an air knife. Then, compressed air was injected onto the uncooled drum surface of the sheet on the casting drum to cool the sheet, and an unstretched sheet was obtained. Subsequently, the sheet was preheated to 125 ° C. with a ceramic roll, and initial stretching was performed 1.2 times in the longitudinal direction of the film between the 125 ° C. rolls provided with a peripheral speed difference. Subsequently, the temperature was preheated to 138 ° C., and the second-stage longitudinal stretching was performed at a magnification of 3.4 times. Next, it was introduced by gripping the end with a clip in a tenter type stretching machine, preheated at 168 ° C for 3 seconds, stretched 7.5 times at 163 ° C, and at 173 ° C while giving 16% relaxation in the width direction. Heat treatment was performed. Then, it was guided to the outside of the tenter through a cooling step of 100 ° C., the clip at the end of the film was released, and the film was wound around the core to obtain a single-layer film having a thickness of 22 μm. Table 1 also shows the physical characteristics of the obtained film and the evaluation results.
 (比較例3)
 側鎖に重合性不飽和基を有するアクリル樹脂5.65質量部、セルロースアセテートプロピオネート1.2質量部、多官能アクリル系UV硬化性化合物4質量部、アクリル系UV硬化性化合物2.77質量部、光開始剤0.53質量部を、メチルエチルケトン(MEK)25質量部と1-ブタノール12.15質量部との混合溶剤に溶解し、塗工液Xを調製した。その後、二軸延伸PETフィルムの易接着表面処理した片面に、塗工液Xをメイヤーバーコーティング法によりコーティングし、95℃の温度で2分間乾燥して、厚み7μmのコーティング層を形成し、さらに、高圧水銀ランプ(アイグラフィックス(株)製)からの紫外線を約10秒間照射して(積算光量約400mJ/cm照射)、UV硬化処理することにより、フィルムを得た。得られたフィルムの物性および評価結果を表1に併せて示す。
(Comparative Example 3)
5.65 parts by mass of acrylic resin having a polymerizable unsaturated group in the side chain, 1.2 parts by mass of cellulose acetate propionate, 4 parts by mass of polyfunctional acrylic UV curable compound, 2.77 parts by mass of acrylic UV curable compound. A coating liquid X was prepared by dissolving 25 parts by mass of methyl ethyl ketone (MEK) and 12.15 parts by mass of 1-butanol in a mixed solvent of 0.53 parts by mass of a photoinitiator. Then, the coating liquid X was coated on one side of the biaxially stretched PET film which had been easily adhered and surface-treated by the Mayer bar coating method, and dried at a temperature of 95 ° C. for 2 minutes to form a coating layer having a thickness of 7 μm. A film was obtained by irradiating with ultraviolet rays from a high-pressure mercury lamp (manufactured by Eye Graphics Co., Ltd.) for about 10 seconds (integrated light amount of about 400 mJ / cm 2 irradiation) and UV curing treatment. Table 1 also shows the physical characteristics of the obtained film and the evaluation results.
 (比較例5)
 70質量部のA3と30質量部のD1とをドライブレンドして混合原料ペレットを調製した。混合原料ペレットを、ホッパーから単軸押出機Aに投入して溶融し、単層ダイより単層樹脂層として押出した。押し出された樹脂層を、35℃に制御した冷却ドラム上にエアナイフの空気圧で押しつけながら冷却固化させて、900μm厚の無延伸フィルムを得た。得られた無延伸フィルムに対して、ブルックナー社製バッチ式二軸延伸機“KAROIV”を用いて同時二軸延伸を行った。延伸条件として次の装置設定及び無延伸フィルムの延伸倍率を用い、総厚みが約100μmのフィルムを得た。得られたフィルムの物性および評価結果を表1に併せて示す。
装置設定:設定温度として予熱温度165℃、予熱時間2分、延伸温度(縦延伸温度及び横延伸温度)165℃、延伸速度100%/秒。
無延伸フィルムの延伸、熱処理条件:縦方向に3.3倍、横方向に3.3倍に同時二軸延伸後、設定温度170℃のオーブン内で、縦方向を3倍、横方向を3倍まで緩和した後、20秒間熱セットした。
(Comparative Example 5)
A mixed raw material pellet was prepared by dry blending 70 parts by mass of A3 and 30 parts by mass of D1. The mixed raw material pellets were put into the single-screw extruder A from the hopper, melted, and extruded from the single-layer die as a single-layer resin layer. The extruded resin layer was cooled and solidified while being pressed against a cooling drum controlled at 35 ° C. with the air pressure of an air knife to obtain a 900 μm-thick unstretched film. The obtained unstretched film was simultaneously biaxially stretched using a batch type biaxial stretching machine "KAROIV" manufactured by Bruckner. Using the following device settings and the draw ratio of the unstretched film as the stretching conditions, a film having a total thickness of about 100 μm was obtained. Table 1 also shows the physical characteristics of the obtained film and the evaluation results.
Device setting: Preheating temperature 165 ° C., preheating time 2 minutes, stretching temperature (longitudinal stretching temperature and transverse stretching temperature) 165 ° C., stretching speed 100% / sec.
Stretching of unstretched film, heat treatment conditions: After simultaneous biaxial stretching 3.3 times in the vertical direction and 3.3 times in the horizontal direction, in an oven at a set temperature of 170 ° C., the vertical direction is 3 times and the horizontal direction is 3 times. After relaxing to double, the heat was set for 20 seconds.
 (比較例7)
 無水塩化マグネシウム、デカン、2-エチルヘキシルアルコールを混合し、加熱した溶液に無水フタル酸を添加し、さらに撹拌した。前記溶液を冷却した後、-20℃に冷却した四塩化チタンに滴下した。ついで、前記混合物を昇温し、フタル酸ジイソブチルを加え撹拌した後、ろ過により固体を得た。得られた固体をデカンおよびヘキサンで洗浄し、プロピレン重合に使用するチタン触媒を得た。
(Comparative Example 7)
Anhydrous magnesium chloride, decane, and 2-ethylhexyl alcohol were mixed, phthalic anhydride was added to the heated solution, and the mixture was further stirred. After cooling the solution, it was added dropwise to titanium tetrachloride cooled to −20 ° C. Then, the temperature of the mixture was raised, diisobutyl phthalate was added, the mixture was stirred, and then a solid was obtained by filtration. The obtained solid was washed with decane and hexane to obtain a titanium catalyst used for propylene polymerization.
 上記チタン触媒、および助触媒としてトリエチルアルミニウム、連鎖移動剤として水素を用いてプロピレン重合を行った。得られた生成物は失活した後、プロピレンモノマーで十分に洗浄を行い、ポリプロピレン樹脂を得た。このポリプロピレン樹脂のMFRは2.5g/10分、メソペンタッド分率(mmmm)は0.980であった。 Propylene polymerization was carried out using the above titanium catalyst, triethylaluminum as a co-catalyst, and hydrogen as a chain transfer agent. The obtained product was deactivated and then thoroughly washed with a propylene monomer to obtain a polypropylene resin. The polypropylene resin had an MFR of 2.5 g / 10 min and a mesopentad fraction (mm mm) of 0.980.
 得られたポリプロピレン樹脂99.7質量%に酸化防止剤としてBHTが0.1質量%、同じく酸化防止剤としてIrganox-1010が0.2質量%となるように添加した後、260℃の温度で混練、ペレット化し、ポリプロピレン樹脂組成物を得た。 After adding BHT as an antioxidant to 0.1% by mass and Irganox-1010 as an antioxidant to 0.2% by mass in the obtained polypropylene resin at a temperature of 260 ° C. It was kneaded and pelletized to obtain a polypropylene resin composition.
 前記ポリプロピレン樹脂組成物100質量%を単軸の溶融押出機に供給し、250℃で溶融押出を行い、25μmカットの焼結フィルターで異物除去を行った。なお、押出の際のTダイでかかるせん断速度は300sec-1であった。Tダイから吐出された溶融ポリプロピレン樹脂組成物を4つの連続したキャストドラム上に密着させ溶融シートを得た。この際、連続したキャストドラムの径は同じであり、装置上流からCD1、CD2、CD3、CD4とし、キャストシートのそれぞれの面が、それぞれのキャストドラムに交互に接触するようなフィルムパスとした。CD1およびCD2の表面温度は30℃、CD3およびCD4の表面温度は90℃であった。また、CD1、CD2、CD3、CD4のそれぞれのキャストドラムと溶融シートが密着していた時間はそれぞれ0.4秒であった。シートを最初のキャストドラムであるCD1上に密着させるためにエアーナイフおよび端部スポットエアーを用いた。この際、エアーナイフのエアー温度は30℃になるように温度調整した。さらに、キャスト工程の雰囲気温度も30℃に温度調整した。ついで、加熱したロールを用いてキャストシートを予熱し、フィルム温度が145℃になるように加熱した後、長手方向に5.5倍延伸した。この際の長手方向の延伸速度は2,000,000%/分であり、ネックダウン率は98%であった。次に端部をクリップで把持して155℃で幅方向に延伸速度30,000%/分で10倍延伸した。さらに、158℃で7秒間の熱処理を行い、幅方向に12%の弛緩を行った。その後、室温まで除冷した後にフィルムの片面に25W・min/mの処理強度でコロナ放電処理を施し、クリップで把持したフィルムの耳部をカットして除去した。なお、CD1に接した面であり、コロナ放電処理した面をA面、もう片方のCD2に接した面であり、コロナ放電未処理面をB面とした。端部を除去したフィルムを巻取機で巻取り、厚み2.5μmの二軸配向ポリプロピレンフィルムを得た。 100% by mass of the polypropylene resin composition was supplied to a single-screw melt extruder, melt-extruded at 250 ° C., and foreign matter was removed with a 25 μm-cut sintered filter. The shear rate applied by the T-die during extrusion was 300 sec -1 . The molten polypropylene resin composition discharged from the T-die was brought into close contact with four consecutive cast drums to obtain a molten sheet. At this time, the diameters of the continuous cast drums were the same, and CD1, CD2, CD3, and CD4 were used from the upstream of the device, and the film paths were set so that each surface of the cast sheet alternately contacted each cast drum. The surface temperature of CD1 and CD2 was 30 ° C., and the surface temperature of CD3 and CD4 was 90 ° C. The time during which the cast drums of CD1, CD2, CD3, and CD4 were in close contact with the molten sheet was 0.4 seconds, respectively. An air knife and end spot air were used to bring the sheet into close contact on the first cast drum, CD1. At this time, the temperature of the air of the air knife was adjusted to 30 ° C. Further, the atmospheric temperature in the casting process was also adjusted to 30 ° C. Then, the cast sheet was preheated using a heated roll, heated to a film temperature of 145 ° C., and then stretched 5.5 times in the longitudinal direction. At this time, the stretching speed in the longitudinal direction was 2,000,000% / min, and the neck down rate was 98%. Next, the end portion was gripped with a clip and stretched 10 times at a stretching speed of 30,000% / min in the width direction at 155 ° C. Further, heat treatment was performed at 158 ° C. for 7 seconds, and relaxation was performed by 12% in the width direction. Then, after cooling to room temperature, one side of the film was subjected to a corona discharge treatment with a processing strength of 25 W · min / m 2 , and the selvage portion of the film gripped with a clip was cut and removed. The surface in contact with the CD1 and the surface treated with the corona discharge was defined as the surface A, the surface in contact with the other CD2, and the surface untreated with the corona discharge was defined as the surface B. The film from which the end was removed was wound with a winder to obtain a biaxially oriented polypropylene film having a thickness of 2.5 μm.
 なお、実施例5、及び比較例5、7は単層構成のため、表層(I)、内層(II)の区別は存在しないが、表1においては比較例5、7のフィルムの組成は表層(I)の欄に記載した。 Since Examples 5 and Comparative Examples 5 and 7 have a single layer structure, there is no distinction between the surface layer (I) and the inner layer (II), but in Table 1, the film composition of Comparative Examples 5 and 7 is the surface layer. Described in the column (I).
 本発明のフィルムは、包装用フィルム、表面保護フィルム、支持フィルム、衛生用品、農業用品、建築用品、医療用品や、コンデンサ用フィルムなど様々な工業用途で用いることができるが、特に粗大突起を有さず、所定の凹み構造を有し、離型性、剛性、耐熱性に優れることから、支持フィルム(特に樹脂組成物膜の製造工程における工程フィルム)として好ましく用いることができる。 The film of the present invention can be used in various industrial applications such as packaging films, surface protective films, support films, sanitary products, agricultural products, building products, medical products, and condenser films, but has particularly coarse protrusions. However, since it has a predetermined recessed structure and is excellent in releasability, rigidity, and heat resistance, it can be preferably used as a support film (particularly a process film in the process of manufacturing a resin composition film).
1:Smr2
2:粗さ曲線
3:等価直線
4:Spk
1: Smr2
2: Roughness curve 3: Equivalent straight line 4: Spk

Claims (12)

  1.  スキューネスSskが-5以上0以下であり、負荷面積率Smr2が70%以上98%以下であり、かつ突出部山高さSpkが1nm以上100nm以下である面をA面とした際に、少なくとも片面がA面であるフィルム。 When the surface where the skewness Sk is -5 or more and 0 or less, the load area ratio Smr2 is 70% or more and 98% or less, and the protrusion mountain height Spk is 1 nm or more and 100 nm or less is defined as the A surface, at least one surface is A film that is side A.
  2.  前記A面の最大谷深さSvが20nm以上400nm以下である請求項1に記載のフィルム。 The film according to claim 1, wherein the maximum valley depth Sv of the A surface is 20 nm or more and 400 nm or less.
  3.  一方の表面と他方の表面との動摩擦係数μdが0.20以上0.80以下である請求項1または2に記載のフィルム。 The film according to claim 1 or 2, wherein the dynamic friction coefficient μd between one surface and the other surface is 0.20 or more and 0.80 or less.
  4.  130℃でのフィルムMD方向のヤング率が100MPa以上200MPa以下である請求項1~3のいずれかに記載のフィルム。 The film according to any one of claims 1 to 3, wherein the Young's modulus in the MD direction of the film at 130 ° C. is 100 MPa or more and 200 MPa or less.
  5.  示差走査熱量計DSCで30℃から260℃まで昇温した際に、160℃以上に融解ピークを有する請求項1~4のいずれかに記載のフィルム。 The film according to any one of claims 1 to 4, which has a melting peak at 160 ° C. or higher when the temperature is raised from 30 ° C. to 260 ° C. with a differential scanning calorimeter DSC.
  6.  130℃で10分間加熱した後の内部ヘイズが0.01%以上1.5%以下である請求項1~5のいずれかに記載のフィルム。 The film according to any one of claims 1 to 5, wherein the internal haze after heating at 130 ° C. for 10 minutes is 0.01% or more and 1.5% or less.
  7.  前記A面の表面自由エネルギーが15mN/m以上35mN/m以下である請求項1~6のいずれかに記載のフィルム。 The film according to any one of claims 1 to 6, wherein the surface free energy of the A surface is 15 mN / m or more and 35 mN / m or less.
  8.  前記A面を有する表層がオレフィン系樹脂を主成分とする請求項1~7のいずれかに記載のフィルム。 The film according to any one of claims 1 to 7, wherein the surface layer having the A surface is mainly composed of an olefin resin.
  9.  オレフィン系エラストマー樹脂、及びポリプロピレンブロック共重合体の少なくとも一方を含む請求項1~8のいずれかに記載のフィルム。 The film according to any one of claims 1 to 8, which comprises at least one of an olefin-based elastomer resin and a polypropylene block copolymer.
  10.  工程フィルムに用いられる請求項1~9のいずれかに記載のフィルム。 The film according to any one of claims 1 to 9 used for a process film.
  11.  請求項1~10のいずれかに記載のフィルムの前記A面上に、樹脂組成物層を有する積層体。 A laminate having a resin composition layer on the A side of the film according to any one of claims 1 to 10.
  12.  少なくとも以下の工程1~3をこの順に有する樹脂組成物膜の製造方法。
     工程1:請求項1~10のいずれかに記載のフィルムの前記A面に、樹脂組成物を含む塗剤を塗布する工程
     工程2:前記樹脂組成物を含む塗剤を固化して樹脂組成物層を形成し、積層体とする工程
     工程3:前記積層体より樹脂組成物層を剥離して、樹脂組成物膜を得る工程
    A method for producing a resin composition membrane, which comprises at least the following steps 1 to 3 in this order.
    Step 1: Applying a coating material containing a resin composition to the A surface of the film according to any one of claims 1 to 10. Step 2: Solidifying the coating material containing the resin composition to make a resin composition. Step 3: Step of forming a layer to form a laminate Step 3: A step of peeling the resin composition layer from the laminate to obtain a resin composition film.
PCT/JP2021/035275 2020-10-05 2021-09-27 Film, layered product, and method for producing resin composition film WO2022075101A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202180063462.6A CN116194518A (en) 2020-10-05 2021-09-27 Film, laminate, and method for producing resin composition film
JP2021559355A JPWO2022075101A1 (en) 2020-10-05 2021-09-27
KR1020227045802A KR20230078591A (en) 2020-10-05 2021-09-27 Method for producing films, laminates and resin composition films

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020168233 2020-10-05
JP2020-168233 2020-10-05

Publications (1)

Publication Number Publication Date
WO2022075101A1 true WO2022075101A1 (en) 2022-04-14

Family

ID=81126757

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/035275 WO2022075101A1 (en) 2020-10-05 2021-09-27 Film, layered product, and method for producing resin composition film

Country Status (5)

Country Link
JP (1) JPWO2022075101A1 (en)
KR (1) KR20230078591A (en)
CN (1) CN116194518A (en)
TW (1) TW202222547A (en)
WO (1) WO2022075101A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003191324A (en) * 2001-09-28 2003-07-08 Toray Ind Inc Biaxially stretched polypropylene film, packaging material using the same, package and its manufacturing method
JP2004161799A (en) * 2002-11-08 2004-06-10 Toray Ind Inc Biaxially oriented polyproylene film
WO2005103127A1 (en) * 2004-04-22 2005-11-03 Toray Industries, Inc. Microporous polypropylene film and process for producing the same
JP2011140633A (en) * 2009-12-07 2011-07-21 Toray Ind Inc Porous polypropylene film roll
JP2014101445A (en) * 2012-11-20 2014-06-05 Mitsubishi Plastics Inc Microporous film, method for producing the same, and package body lid material using the film
JP2014233897A (en) * 2013-05-31 2014-12-15 三菱樹脂株式会社 Composite film
US20150368415A1 (en) * 2012-12-18 2015-12-24 Exxonmobil Chemical Patents Inc. Polyethylene Films and Method of Making Same
JP2016203594A (en) * 2015-04-28 2016-12-08 三菱樹脂株式会社 Composite sheet and method for producing the same
WO2020090628A1 (en) * 2018-11-01 2020-05-07 東レ株式会社 Polypropylene film and mold release film

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6115687U (en) 1984-07-03 1986-01-29 マエダ工業株式会社 Structure of bicycle hanger set
JP4610224B2 (en) 2004-04-22 2011-01-12 三菱樹脂株式会社 Support film for plastic film production by casting method
JP2018173546A (en) 2017-03-31 2018-11-08 株式会社ダイセル Transfer sheet and method of manufacturing compact

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003191324A (en) * 2001-09-28 2003-07-08 Toray Ind Inc Biaxially stretched polypropylene film, packaging material using the same, package and its manufacturing method
JP2004161799A (en) * 2002-11-08 2004-06-10 Toray Ind Inc Biaxially oriented polyproylene film
WO2005103127A1 (en) * 2004-04-22 2005-11-03 Toray Industries, Inc. Microporous polypropylene film and process for producing the same
JP2011140633A (en) * 2009-12-07 2011-07-21 Toray Ind Inc Porous polypropylene film roll
JP2014101445A (en) * 2012-11-20 2014-06-05 Mitsubishi Plastics Inc Microporous film, method for producing the same, and package body lid material using the film
US20150368415A1 (en) * 2012-12-18 2015-12-24 Exxonmobil Chemical Patents Inc. Polyethylene Films and Method of Making Same
JP2014233897A (en) * 2013-05-31 2014-12-15 三菱樹脂株式会社 Composite film
JP2016203594A (en) * 2015-04-28 2016-12-08 三菱樹脂株式会社 Composite sheet and method for producing the same
WO2020090628A1 (en) * 2018-11-01 2020-05-07 東レ株式会社 Polypropylene film and mold release film

Also Published As

Publication number Publication date
TW202222547A (en) 2022-06-16
KR20230078591A (en) 2023-06-02
JPWO2022075101A1 (en) 2022-04-14
CN116194518A (en) 2023-05-30

Similar Documents

Publication Publication Date Title
JP7459919B2 (en) Biaxially oriented laminated polypropylene film
JP7235151B2 (en) biaxially oriented polypropylene film
KR20180128027A (en) Biaxially oriented polypropylene film
JP5424169B2 (en) Polyolefin resin multilayer film
JP6090137B2 (en) Biaxially stretched polypropylene film
JP7205611B2 (en) biaxially oriented polypropylene film
JP2022061012A (en) Process film, laminate of resin composition film, resin composition film, and method for manufacturing resin composition film
JP2017226161A (en) Laminated film
JP7070426B2 (en) Laminated polypropylene film
TW201512257A (en) Porous polypropylene film
WO2022075101A1 (en) Film, layered product, and method for producing resin composition film
JP7355173B2 (en) polyolefin film
JP6414378B2 (en) Polypropylene film for in-mold labels
JP6962426B2 (en) Polyolefin film and release film
KR101502330B1 (en) Protect film for dry film photoresist
WO2022210693A1 (en) Polypropylene film
WO2024070916A1 (en) Biaxially-oriented polyolefin film
WO2019022022A1 (en) Laminate
WO2021070671A1 (en) Polyolefin film
WO2023047997A1 (en) Polyethylene film

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021559355

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21877402

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21877402

Country of ref document: EP

Kind code of ref document: A1