WO2022075092A1 - Système de transmission d'énergie sans fil, dispositif de transmission d'énergie, et corps mobile - Google Patents

Système de transmission d'énergie sans fil, dispositif de transmission d'énergie, et corps mobile Download PDF

Info

Publication number
WO2022075092A1
WO2022075092A1 PCT/JP2021/035077 JP2021035077W WO2022075092A1 WO 2022075092 A1 WO2022075092 A1 WO 2022075092A1 JP 2021035077 W JP2021035077 W JP 2021035077W WO 2022075092 A1 WO2022075092 A1 WO 2022075092A1
Authority
WO
WIPO (PCT)
Prior art keywords
power transmission
impedance
power
electrode group
matching circuit
Prior art date
Application number
PCT/JP2021/035077
Other languages
English (en)
Japanese (ja)
Inventor
真悟 榎本
啓伸 鎌田
悟 菊池
浩司 山本
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to JP2022555367A priority Critical patent/JPWO2022075092A1/ja
Publication of WO2022075092A1 publication Critical patent/WO2022075092A1/fr

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/05Circuit arrangements or systems for wireless supply or distribution of electric power using capacitive coupling
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/70Circuit arrangements or systems for wireless supply or distribution of electric power involving the reduction of electric, magnetic or electromagnetic leakage fields

Definitions

  • the power transmission circuit 110 has two terminals for outputting AC power. One terminal is connected to the two first power transmission electrodes 120a and the other terminal is connected to the two second power transmission electrodes 120b. During power transmission, the power transmission circuit 110 applies a first voltage to the two first power transmission electrodes 120a, and applies a second voltage having a phase opposite to the first voltage to the two second power transmission electrodes 120b. Apply. As a result, electric power is transmitted wirelessly by electric field coupling between the power transmission electrode group including the four power transmission electrodes and the power reception electrode group including the four power reception electrodes. According to such a configuration, it is possible to obtain the effect of suppressing the leakage electric field on the boundary between any two adjacent power transmission electrodes. As described above, in each of the power transmission device 100 and the power reception device 200, the number of electrodes that transmit or receive power is not limited to two.
  • the magnitude of the voltage generated on the input side and the output side of the electrode pair becomes non-uniform, and an increase in the voltage value on the high voltage side can be a problem.
  • the electrode termination condition that minimizes the voltage generated between the electrodes is not taken into consideration, and the above-mentioned problem cannot be solved.
  • the resistance component of the impedance on the first matching circuit side seen from the power transmission electrode group is R1
  • the resistance component of the impedance on the second matching circuit side seen from the power receiving electrode group is R2.
  • the first matching circuit and the second matching circuit may be configured so as to satisfy
  • the at least one control circuit is configured to satisfy at least one of the conditions
  • the impedance of the matching circuit may be adjusted so as to satisfy at least one of the conditions
  • the first control circuit may satisfy the condition
  • the second control circuit may satisfy the condition
  • the impedance of each matching circuit may be adjusted so as to satisfy both the conditions
  • the impedance of the matching circuit may be adjusted so as to satisfy both the conditions
  • the “mobile body” in the present disclosure is not limited to a vehicle such as the above-mentioned automatic guided vehicle (AGV), but means any movable object driven by electric power.
  • the moving body includes, for example, an electric vehicle equipped with an electric motor and one or more wheels. Such vehicles may be, for example, the aforementioned AGVs, transfer robots, electric vehicles (EVs), electric carts, electric wheelchairs.
  • the "moving body” in the present disclosure also includes a movable object having no wheels.
  • unmanned aerial vehicles UAVs, so-called drones
  • UAVs unmanned aerial vehicles
  • the power receiving device is not limited to such a mobile body, and may be mounted on an electronic device such as a mobile phone.
  • the frequency of power transmission can be set, for example, 50 Hz to 300 GHz, 20 kHz to 10 GHz in one example, 20 kHz to 20 MHz in another example, and 80 kHz to 14 MHz in another example. However, it is not limited to these frequency ranges.
  • the matching circuit 280 in the power receiving device 200 is connected between the two power receiving electrodes 220 and the rectifier circuit 260.
  • the matching circuit 280 matches the impedance between the two receiving electrodes 220 and the rectifying circuit 260.
  • the matching circuit 280 includes one or more reactance elements such as an inductor or a capacitor.
  • the matching circuit 280 may be configured so that the impedance can be changed according to the control from the power receiving control circuit 250.
  • the matching circuit 280 may include one or more switches that switch a combination of a plurality of reactance elements connected to a transmission line.
  • the matching circuit 280 may include at least one variable reactance element that changes the reactance.
  • the rectifier circuit 260 converts the AC power output from the matching circuit 280 into DC power.
  • FIG. 7 is a diagram schematically showing a configuration example of the rectifier circuit 260.
  • the rectifier circuit 260 in this example is a full-wave rectifier circuit including a diode bridge and a smoothing capacitor.
  • the rectifier circuit 260 may have other configurations, such as a half-wave rectifier circuit.
  • the rectifier circuit 260 converts the received AC energy into DC energy available to the load 300.
  • the battery 320 is a secondary battery such as a lithium ion battery or a nickel hydrogen battery.
  • the mobile body 10 moves by driving the motor 330 by the electric power stored in the battery 320.
  • another type of power storage device such as an electric double layer capacitor or a lithium ion capacitor may be used.
  • each of the housing of the mobile body 10, each power transmission electrode 120, and each power receiving electrode 220 in the present embodiment is not particularly limited, but may be set to the following sizes, for example.
  • the length of each transmission electrode 120 ie, the size in the Y direction
  • the width of each transmission electrode 120 ie, the size in the X direction
  • the respective sizes of the housing of the moving body 10 in the moving direction and the lateral direction can be set within the range of, for example, 20 cm to 5 m.
  • FIG. 9 is a diagram showing the impedance of the inverter circuit 160 and the rectifier circuit 260 and the impedance of the electrode portion including the transmission electrode 120 and the power receiving electrode 220 on the Smith chart.
  • the impedances (resistance values) of the inverter circuit 160 and the rectifier circuit 260 are both 15 ⁇ , and the reactance component of the impedance of the electrode portion is 3000 ⁇ .
  • the reactance values (that is, the capacitance value or the inductance value) of the reactance elements of the matching circuits 180 and 280 are appropriately designed in order to match the impedances having such a large gap.
  • the reactance component of the first termination impedance on the matching circuit 180 side and the reactance component of the second termination impedance on the matching circuit 280 side both have a symmetrical value of X / 2. Impedance is converted symmetrically to the resistance axis on the Smith chart. As a result, the voltage on the input side (representing the effective value; the same applies hereinafter) of the electrode portion and the voltage on the output side can be substantially equalized.
  • the coupling capacitance of the electrode portion is Cm
  • the transmission frequency is f0
  • power is input from the input port p1 to the output port p2.
  • the termination impedance Z1 satisfying the condition that reflection does not occur at both ends of the electrode portion is represented by the following equation 1.
  • ⁇ Z1 represents the phase of Z1.
  • the design in the single-ended configuration may be applied as it is to the paths on both the positive and negative sides.
  • the termination impedance Z1 is set to twice the termination impedance in the single-ended configuration.
  • these minimum values are in good agreement with the result of multiplying the value calculated using Equation 6 by ⁇ 2 and converting the effective value into the peak value. From these results, it was confirmed that the voltage between the power transmission electrode 120 and the power reception electrode 220 can be reduced by the configuration of the present embodiment.
  • FIG. 14A is a diagram showing a configuration example of a transmission circuit including matching circuits 180 and 280 and an electrode portion 400.
  • FIG. 14A also shows the values of each parameter as an example.
  • the matching circuits 180 and 280 have the same circuit topology and are symmetrical to each other.
  • Each of the matching circuits 180 and 280 includes a circuit portion that functions as a high-pass filter and a circuit portion that functions as a low-pass filter.
  • the circuit portion that functions as a high-pass filter includes two parallel inductors and two series capacitors.
  • the circuit portion that functions as a low-pass filter includes two parallel capacitors and two series inductors.
  • the parallel capacitor and the parallel inductor may each be composed of one element.
  • FIGS. 16A and 16B are diagrams showing the simulation results on the Smith chart.
  • the Smith charts shown in FIGS. 16A and 16B are normalized to 3183 ⁇ , which is half the reactance for a transmission frequency of 0.5 MHz and a coupling capacitance of 50 pF.
  • the dark marker position indicates the design value of the terminal impedance of the electrode portion 400. This position is at (1,1) in the impedance coordinate system (R, X). 200 Monte Carlo (random number) simulations were performed for each of the case where the component variation was 5% uniform distribution and the case where the component variation was 10% uniform distribution.

Abstract

L'invention concerne un système de transmission d'énergie sans fil, comprenant : un groupe d'électrodes de transmission d'énergie qui comprend au moins deux électrodes de transmission d'énergie et délivre une énergie à courant alternatif; un premier circuit d'adaptation qui est branché entre un circuit onduleur et le groupe d'électrodes de transmission d'énergie et qui adapte une impédance entre le circuit onduleur et le groupe d'électrodes de transmission d'énergie; un groupe d'électrodes de réception d'énergie qui comprend au moins deux électrodes de réception d'énergie et reçoit la sortie de courant alternatif provenant du groupe d'électrodes de transmission d'énergie; et un deuxième circuit d'adaptation qui est branché entre le groupe d'électrodes de réception d'énergie et un circuit redresseur et qui adapte une impédance entre le groupe d'électrodes de réception d'énergie et le circuit redresseur. Lorsqu'une réactance due à une capacité de couplage entre le groupe d'électrodes de transmission d'énergie et le groupe d'électrodes de réception d'énergie est X, une composante de réactance de l'impédance du premier côté du circuit d'adaptation, vue depuis le groupe d'électrodes de transmission d'énergie, est X1, et une composante de réactance de l'impédance du deuxième côté du circuit d'adaptation, vue depuis le groupe d'électrodes de réception d'énergie, est X2, les expressions |X1-X/2|<0,5X et |X2-X/2|<0,5X sont satisfaites.
PCT/JP2021/035077 2020-10-09 2021-09-24 Système de transmission d'énergie sans fil, dispositif de transmission d'énergie, et corps mobile WO2022075092A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022555367A JPWO2022075092A1 (fr) 2020-10-09 2021-09-24

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020171205 2020-10-09
JP2020-171205 2020-10-09

Publications (1)

Publication Number Publication Date
WO2022075092A1 true WO2022075092A1 (fr) 2022-04-14

Family

ID=81126766

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/035077 WO2022075092A1 (fr) 2020-10-09 2021-09-24 Système de transmission d'énergie sans fil, dispositif de transmission d'énergie, et corps mobile

Country Status (2)

Country Link
JP (1) JPWO2022075092A1 (fr)
WO (1) WO2022075092A1 (fr)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014148369A1 (fr) * 2013-03-19 2014-09-25 株式会社村田製作所 Système de transmission d'énergie sans fil
JP2017204997A (ja) * 2016-05-14 2017-11-16 駒崎 友和 電界結合型電力供給システム用フィルタ
JP2019176621A (ja) * 2018-03-28 2019-10-10 パナソニックIpマネジメント株式会社 電極ユニット、送電装置、受電装置、および無線電力伝送システム
US20200287413A1 (en) * 2017-11-07 2020-09-10 B.G. Negev Technologies And Applications Ltd., At Ben-Gurion University Capacitive wireless power transfer by means of adaptive matching networks

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014148369A1 (fr) * 2013-03-19 2014-09-25 株式会社村田製作所 Système de transmission d'énergie sans fil
JP2017204997A (ja) * 2016-05-14 2017-11-16 駒崎 友和 電界結合型電力供給システム用フィルタ
US20200287413A1 (en) * 2017-11-07 2020-09-10 B.G. Negev Technologies And Applications Ltd., At Ben-Gurion University Capacitive wireless power transfer by means of adaptive matching networks
JP2019176621A (ja) * 2018-03-28 2019-10-10 パナソニックIpマネジメント株式会社 電極ユニット、送電装置、受電装置、および無線電力伝送システム

Also Published As

Publication number Publication date
JPWO2022075092A1 (fr) 2022-04-14

Similar Documents

Publication Publication Date Title
KR102655303B1 (ko) 비접촉 전력전송 시스템
Al-Saadi et al. Capacitive Power Transfer for Wireless Batteries Charging.
WO2017056343A1 (fr) Système de transmission d&#39;énergie sans fil et dispositif de transmission d&#39;énergie
WO2019189578A1 (fr) Unité d&#39;électrode, dispositif de transmission d&#39;énergie, dispositif de réception d&#39;énergie et système de transfert d&#39;énergie sans fil
JP2019009981A (ja) 無線電力伝送システム、送電装置、および受電装置
JP2019176621A (ja) 電極ユニット、送電装置、受電装置、および無線電力伝送システム
JP7304530B2 (ja) 送電モジュール、受電モジュール、送電装置、受電装置、および無線電力伝送システム
WO2022075092A1 (fr) Système de transmission d&#39;énergie sans fil, dispositif de transmission d&#39;énergie, et corps mobile
CN113508510A (zh) 无线电力传送系统、送电装置、受电装置以及移动体
JP2019176697A (ja) 電極ユニット、送電装置、受電装置、および無線電力伝送システム
US20230253947A1 (en) Matching Networks, Inductors, and Coupled-Inductor Capacitive Wireless Power Transfer Circuit and Related Techniques
JP6817604B2 (ja) 送電装置および無線電力伝送システム
Ong et al. Analysis of impedance matched circuit for wireless power transfer
WO2019189374A1 (fr) Module et dispositif de transmission d&#39;énergie, et système de transfert d&#39;énergie sans fil
Teeneti et al. 1-kW wireless charger for power wheelchairs
WO2021080009A1 (fr) Dispositif de transmission d&#39;énergie, dispositif de réception d&#39;énergie et système de transmission d&#39;énergie sans fil
WO2021192623A1 (fr) Dispositif de réception de puissance, dispositif de transmission de puissance et système de transmission de puissance sans fil
Costa et al. Resonant converter topology impact on a Dynamic IPT application
Rehman et al. A Review of Inductive Power Transfer: Emphasis on Performance Parameters, Compensation Topologies and Coil Design Aspects
Lee et al. Triangular DQ Tx Coils of Wireless EV Chargers for Large Misalignment Tolerances
Liu et al. A wireless selective frequency hybrid compensation network with constant power profile against pad misalignment
Ponnuswamy et al. Transmitter-side controlled series-series compensated wireless charging system without wireless communication for electric vehicles
Wang et al. A composite decoupling method of the 2D WPT transmitter array based on the compensation topology and orthogonal coupling
WO2021235523A1 (fr) Dispositif de réception de courant, dispositif d&#39;émission de courant et système d&#39;émission de courant sans fil
Madawala et al. The impact of variations in component values on power-frequency control of bi-directional Inductive Power Transfer systems

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21877393

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022555367

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21877393

Country of ref document: EP

Kind code of ref document: A1