WO2022075039A1 - Information processing device, information processing system, and information processing method - Google Patents

Information processing device, information processing system, and information processing method Download PDF

Info

Publication number
WO2022075039A1
WO2022075039A1 PCT/JP2021/034193 JP2021034193W WO2022075039A1 WO 2022075039 A1 WO2022075039 A1 WO 2022075039A1 JP 2021034193 W JP2021034193 W JP 2021034193W WO 2022075039 A1 WO2022075039 A1 WO 2022075039A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
sensor
vehicle
unit
information processing
Prior art date
Application number
PCT/JP2021/034193
Other languages
French (fr)
Japanese (ja)
Inventor
卓義 小曽根
一人 廣瀬
Original Assignee
ソニーセミコンダクタソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーセミコンダクタソリューションズ株式会社 filed Critical ソニーセミコンダクタソリューションズ株式会社
Publication of WO2022075039A1 publication Critical patent/WO2022075039A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules

Definitions

  • This disclosure relates to an information processing device, an information processing system, and an information processing method.
  • recognition processing is generally performed on the image acquired by the image sensor, but the image acquired by the image sensor mounted on the moving object is subject to shaking or vibration of the image sensor itself. Distortion can occur due to this. The distortion generated in this way becomes a factor that lowers the recognition accuracy.
  • the present disclosure proposes an information processing device, an information processing system, and an information processing method capable of suppressing a decrease in recognition accuracy.
  • the information processing apparatus has a sensor for acquiring environmental information and for correcting shaking caused by an external impact in the environmental information acquired by the sensor. It is provided with a control unit for adding the correction information of the above to the environment information.
  • ROI data image data
  • FIG. 1 is a block diagram showing a configuration example of a vehicle control system 11 which is an example of a mobile device control system to which the present technology is applied.
  • the vehicle control system 11 is provided in the vehicle 1 and performs processing related to driving support and automatic driving of the vehicle 1.
  • the vehicle control system 11 includes a vehicle control ECU (Electronic Control Unit) 21, a communication unit 22, a map information storage unit 23, a GNSS (Global Navigation Satellite System) receiving unit 24, an external recognition sensor 25, an in-vehicle sensor 26, and a vehicle sensor 27. It includes a recording unit 28, a driving support / automatic driving control unit 29, a driver monitoring system (DMS) 30, a human machine interface (HMI) 31, and a vehicle control unit 32.
  • a vehicle control ECU Electronic Control Unit
  • a communication unit 22 a communication unit 22
  • a map information storage unit 23 a GNSS (Global Navigation Satellite System) receiving unit 24
  • GNSS Global Navigation Satellite System
  • DMS driver monitoring system
  • HMI human machine interface
  • the vehicle control unit 32 is connected to each other so as to be able to communicate with each other via the communication network 41.
  • the communication network 41 is in-vehicle compliant with digital bidirectional communication standards such as CAN (Controller Area Network), LIN (Local Interconnect Network), LAN (Local Area Network), FlexRay (registered trademark), and Ethernet (registered trademark). It consists of a communication network and a bus.
  • the communication network 41 may be used properly depending on the type of data to be communicated.
  • CAN is applied for data related to vehicle control
  • Ethernet is applied for large-capacity data.
  • each part of the vehicle control system 11 does not go through the communication network 41, but wireless communication assuming relatively short-distance communication such as short-range wireless communication (NFC (Near Field Communication)) and Bluetooth (registered trademark). In some cases, it is directly connected using.
  • NFC Near Field Communication
  • Bluetooth registered trademark
  • the description of the communication network 41 shall be omitted.
  • the vehicle control ECU 21 and the communication unit 22 communicate with each other via the communication network 41, it is described that the processor 21 and the communication unit 22 simply communicate with each other.
  • the vehicle control ECU 21 is composed of various processors such as a CPU (Central Processing Unit) and an MPU (Micro Processing Unit), for example.
  • the vehicle control ECU 21 controls the functions of the entire vehicle control system 11 or a part of the vehicle control system 11.
  • the communication unit 22 communicates with various devices inside and outside the vehicle, other vehicles, servers, base stations, etc., and transmits and receives various data. At this time, the communication unit 22 can perform communication using a plurality of communication methods.
  • the communication unit 22 will roughly explain the feasible communication with the outside of the vehicle.
  • the communication unit 22 is on an external network via a base station or an access point by a wireless communication method such as 5G (5th generation mobile communication system), LTE (Long Term Evolution), DSRC (Dedicated Short Range Communications), etc. Communicates with a server (hereinafter referred to as an external server) that exists in.
  • the external network with which the communication unit 22 communicates is, for example, the Internet, a cloud network, a network peculiar to a business operator, or the like.
  • the communication method for communicating with the external network by the communication unit 22 is not particularly limited as long as it is a wireless communication method capable of digital bidirectional communication at a communication speed of a predetermined value or higher and a distance of a predetermined distance or more.
  • the communication unit 22 can communicate with a terminal existing in the vicinity of the own vehicle by using P2P (Peer To Peer) technology.
  • Terminals that exist near the vehicle are, for example, terminals worn by moving objects that move at relatively low speeds such as pedestrians and bicycles, terminals that are fixedly installed in stores, or MTC (Machine Type Communication).
  • MTC Machine Type Communication
  • the communication unit 22 can also perform V2X communication.
  • V2X communication is, for example, vehicle-to-vehicle (Vehicle to Vehicle) communication with other vehicles, road-to-vehicle (Vehicle to Infrastructure) communication with roadside devices, etc., and vehicle-to-home (Vehicle to Home) communication.
  • And communication between the vehicle and others such as vehicle-to-Pedestrian communication with terminals owned by pedestrians.
  • the communication unit 22 can receive, for example, a program for updating the software that controls the operation of the vehicle control system 11 from the outside (Over The Air).
  • the communication unit 22 can further receive map information, traffic information, information around the vehicle 1, and the like from the outside. Further, for example, the communication unit 22 can transmit information about the vehicle 1, information around the vehicle 1, and the like to the outside.
  • Information about the vehicle 1 transmitted by the communication unit 22 to the outside includes, for example, data indicating the state of the vehicle 1, recognition result by the recognition unit 73, and the like. Further, for example, the communication unit 22 performs communication corresponding to a vehicle emergency call system such as eCall.
  • the communication unit 22 will roughly explain the feasible communication with the inside of the vehicle.
  • the communication unit 22 can communicate with each device in the vehicle by using, for example, wireless communication.
  • the communication unit 22 performs wireless communication with devices in the vehicle by a communication method such as wireless LAN, Bluetooth, NFC, WUSB (Wireless USB), which enables digital bidirectional communication at a communication speed higher than a predetermined value by wireless communication. Can be done.
  • the communication unit 22 can also communicate with each device in the vehicle by using wired communication.
  • the communication unit 22 can communicate with each device in the vehicle by wired communication via a cable connected to a connection terminal (not shown).
  • the communication unit 22 is digital bidirectional communication at a communication speed higher than a predetermined speed by wired communication such as USB (Universal Serial Bus), HDMI (High-Definition Multimedia Interface) (registered trademark), and MHL (Mobile High-definition Link). It is possible to communicate with each device in the car by the communication method capable of.
  • USB Universal Serial Bus
  • HDMI High-Definition Multimedia Interface
  • MHL Mobile High-definition Link
  • the device in the vehicle refers to, for example, a device that is not connected to the communication network 41 in the vehicle.
  • the equipment in the vehicle for example, mobile equipment and wearable equipment possessed by passengers such as drivers, information equipment brought into the vehicle and temporarily installed, and the like are assumed.
  • the communication unit 22 receives an electromagnetic wave transmitted by a vehicle information and communication system (VICS (Vehicle Information and Communication System) (registered trademark)) such as a radio wave beacon, an optical beacon, and FM multiplex broadcasting.
  • VICS Vehicle Information and Communication System
  • the map information storage unit 23 stores one or both of the map acquired from the outside and the map created by the vehicle 1.
  • the map information storage unit 23 stores a three-dimensional high-precision map, a global map that is less accurate than the high-precision map and covers a wide area, and the like.
  • High-precision maps are, for example, dynamic maps, point cloud maps, vector maps, etc.
  • the dynamic map is, for example, a map composed of four layers of dynamic information, quasi-dynamic information, quasi-static information, and static information, and is provided to the vehicle 1 from an external server or the like.
  • the point cloud map is a map composed of point clouds (point cloud data).
  • the vector map refers to a map conforming to ADAS (Advanced Driver Assistance System) in which traffic information such as lanes and signal positions are associated with a point cloud map.
  • ADAS Advanced Driver Assistance System
  • the point cloud map and the vector map may be provided from, for example, an external server or the like, and the vehicle 1 is used as a map for matching with a local map described later based on the sensing result by the radar 52, LiDAR 53, or the like. It may be created and stored in the map information storage unit 23. Further, when a high-precision map is provided from an external server or the like, in order to reduce the communication capacity, map data of, for example, several hundred meters square, related to the planned route on which the vehicle 1 will travel from now on is acquired from the external server or the like. ..
  • the GNSS receiving unit 24 receives the GNSS signal from the GNSS satellite and acquires the position information of the vehicle 1.
  • the received GNSS signal is supplied to the driving support / automatic driving control unit 29.
  • the GNSS receiving unit 24 is not limited to the method using the GNSS signal, and may acquire the position information by using, for example, a beacon.
  • the external recognition sensor 25 includes various sensors used for recognizing the external situation of the vehicle 1, and supplies sensor data from each sensor to each part of the vehicle control system 11.
  • the type and number of sensors included in the external recognition sensor 25 are arbitrary.
  • the external recognition sensor 25 includes a camera 51, a radar 52, a LiDAR (Light Detection and Ringing, Laser Imaging Detection and Ringing) 53, and an ultrasonic sensor 54.
  • the external recognition sensor 25 may be configured to include one or more of the camera 51, the radar 52, the LiDAR 53, and the ultrasonic sensor 54.
  • the number of cameras 51, radar 52, LiDAR 53, and ultrasonic sensors 54 is not particularly limited as long as they can be practically installed in the vehicle 1.
  • the type of sensor included in the external recognition sensor 25 is not limited to this example, and the external recognition sensor 25 may include other types of sensors. An example of the sensing area of each sensor included in the external recognition sensor 25 will be described later.
  • the shooting method of the camera 51 is not particularly limited as long as it is a shooting method capable of distance measurement.
  • cameras of various shooting methods such as a ToF (Time Of Flight) camera, a stereo camera, a monocular camera, and an infrared camera can be applied as needed.
  • the camera 51 may be simply for acquiring a captured image regardless of the distance measurement.
  • the external recognition sensor 25 can be provided with an environment sensor for detecting the environment for the vehicle 1.
  • the environment sensor is a sensor for detecting the environment such as weather, weather, and brightness, and may include various sensors such as a raindrop sensor, a fog sensor, a sunshine sensor, a snow sensor, and an illuminance sensor.
  • the external recognition sensor 25 includes a microphone used for detecting the sound around the vehicle 1 and the position of the sound source.
  • the in-vehicle sensor 26 includes various sensors for detecting information in the vehicle, and supplies sensor data from each sensor to each part of the vehicle control system 11.
  • the type and number of various sensors included in the in-vehicle sensor 26 are not particularly limited as long as they can be practically installed in the vehicle 1.
  • the in-vehicle sensor 26 can include one or more of a camera, a radar, a seating sensor, a steering wheel sensor, a microphone, and a biosensor.
  • a camera included in the in-vehicle sensor 26 for example, a camera of various shooting methods capable of measuring a distance, such as a ToF camera, a stereo camera, a monocular camera, and an infrared camera, can be used. Not limited to this, the camera included in the in-vehicle sensor 26 may be simply for acquiring a captured image regardless of the distance measurement.
  • the biosensor included in the in-vehicle sensor 26 is provided on, for example, a seat, a stelling wheel, or the like, and detects various biometric information of a passenger such as a driver.
  • the vehicle sensor 27 includes various sensors for detecting the state of the vehicle 1, and supplies sensor data from each sensor to each part of the vehicle control system 11.
  • the type and number of various sensors included in the vehicle sensor 27 are not particularly limited as long as they can be practically installed in the vehicle 1.
  • the vehicle sensor 27 includes a speed sensor, an acceleration sensor, an angular velocity sensor (gyro sensor), and an inertial measurement unit (IMU (Inertial Measurement Unit)) that integrates them.
  • the vehicle sensor 27 includes a steering angle sensor that detects the steering angle of the steering wheel, a yaw rate sensor, an accelerator sensor that detects the operation amount of the accelerator pedal, and a brake sensor that detects the operation amount of the brake pedal.
  • the vehicle sensor 27 includes a rotation sensor that detects the rotation speed of an engine or a motor, an air pressure sensor that detects tire air pressure, a slip ratio sensor that detects tire slip ratio, and a wheel speed that detects wheel rotation speed. Equipped with a sensor.
  • the vehicle sensor 27 includes a battery sensor that detects the remaining amount and temperature of the battery, and an impact sensor that detects an impact from the outside.
  • the recording unit 28 includes at least one of a non-volatile storage medium and a volatile storage medium, and stores data and programs.
  • the recording unit 28 is used as, for example, an EEPROM (Electrically Erasable Programmable Read Only Memory) and a RAM (Random Access Memory), and as a storage medium, a magnetic storage device such as an HDD (Hard Disc Drive), a semiconductor storage device, an optical storage device, and the like. And a photomagnetic storage device can be applied.
  • the recording unit 28 records various programs and data used by each unit of the vehicle control system 11.
  • the recording unit 28 is equipped with EDR (Event Data Recorder) and DSSAD (Data Storage System for Automated Driving), and records information on the vehicle 1 before and after an event such as an accident and biometric information acquired by the in-vehicle sensor 26. ..
  • EDR Event Data Recorder
  • DSSAD Data Storage System for Automated Driving
  • the driving support / automatic driving control unit 29 controls the driving support and automatic driving of the vehicle 1.
  • the driving support / automatic driving control unit 29 includes an analysis unit 61, an action planning unit 62, and an motion control unit 63.
  • the analysis unit 61 analyzes the vehicle 1 and the surrounding conditions.
  • the analysis unit 61 includes a self-position estimation unit 71, a sensor fusion unit 72, and a recognition unit 73.
  • the self-position estimation unit 71 estimates the self-position of the vehicle 1 based on the sensor data from the external recognition sensor 25 and the high-precision map stored in the map information storage unit 23. For example, the self-position estimation unit 71 generates a local map based on the sensor data from the external recognition sensor 25, and estimates the self-position of the vehicle 1 by matching the local map with the high-precision map.
  • the position of the vehicle 1 is based on, for example, the center of the rear wheel-to-axle.
  • the local map is, for example, a three-dimensional high-precision map created by using a technology such as SLAM (Simultaneous Localization and Mapping), an occupied grid map (Occupancy Grid Map), or the like.
  • the three-dimensional high-precision map is, for example, the point cloud map described above.
  • the occupied grid map is a map that divides a three-dimensional or two-dimensional space around the vehicle 1 into a grid (grid) of a predetermined size and shows the occupied state of an object in grid units.
  • the occupied state of an object is indicated by, for example, the presence or absence of an object and the probability of existence.
  • the local map is also used, for example, in the detection process and the recognition process of the external situation of the vehicle 1 by the recognition unit 73.
  • the self-position estimation unit 71 may estimate the self-position of the vehicle 1 based on the GNSS signal and the sensor data from the vehicle sensor 27.
  • the sensor fusion unit 72 performs a sensor fusion process for obtaining new information by combining a plurality of different types of sensor data (for example, image data supplied from the camera 51 and sensor data supplied from the radar 52). .. Methods for combining different types of sensor data include integration, fusion, and association.
  • the recognition unit 73 executes a detection process for detecting the external situation of the vehicle 1 and a recognition process for recognizing the external situation of the vehicle 1.
  • the recognition unit 73 performs detection processing and recognition processing of the external situation of the vehicle 1 based on the information from the external recognition sensor 25, the information from the self-position estimation unit 71, the information from the sensor fusion unit 72, and the like. ..
  • the recognition unit 73 performs detection processing, recognition processing, and the like of objects around the vehicle 1.
  • the object detection process is, for example, a process of detecting the presence / absence, size, shape, position, movement, etc. of an object.
  • the object recognition process is, for example, a process of recognizing an attribute such as an object type or identifying a specific object.
  • the detection process and the recognition process are not always clearly separated and may overlap.
  • the recognition unit 73 detects an object around the vehicle 1 by performing clustering that classifies the point cloud based on the sensor data by the LiDAR 53, the radar 52, or the like into each block of the point cloud. As a result, the presence / absence, size, shape, and position of an object around the vehicle 1 are detected.
  • the recognition unit 73 detects the movement of an object around the vehicle 1 by performing tracking that follows the movement of a mass of point clouds classified by clustering. As a result, the velocity and the traveling direction (movement vector) of the object around the vehicle 1 are detected.
  • the recognition unit 73 detects or recognizes a vehicle, a person, a bicycle, an obstacle, a structure, a road, a traffic light, a traffic sign, a road sign, or the like with respect to the image data supplied from the camera 51. Further, the type of the object around the vehicle 1 may be recognized by performing the recognition process such as semantic segmentation.
  • the recognition unit 73 is based on the map stored in the map information storage unit 23, the self-position estimation result by the self-position estimation unit 71, and the recognition result of the object around the vehicle 1 by the recognition unit 73. It is possible to perform recognition processing of traffic rules around the vehicle 1. By this processing, the recognition unit 73 can recognize the position and state of the signal, the content of the traffic sign and the road marking, the content of the traffic regulation, the lane in which the vehicle can travel, and the like.
  • the recognition unit 73 can perform recognition processing of the environment around the vehicle 1.
  • the surrounding environment to be recognized by the recognition unit 73 weather, temperature, humidity, brightness, road surface condition, and the like are assumed.
  • the action planning unit 62 creates an action plan for the vehicle 1. For example, the action planning unit 62 creates an action plan by performing route planning and route tracking processing.
  • route planning is a process of planning a rough route from the start to the goal.
  • This route plan is called a track plan, and in the route planned by the route plan, the track generation (Local) capable of safely and smoothly traveling in the vicinity of the vehicle 1 in consideration of the motion characteristics of the vehicle 1 is taken into consideration.
  • the processing of path planning is also included.
  • the route plan may be distinguished from the long-term route plan and the activation generation from the short-term route plan or the local route plan.
  • the safety priority route represents a concept similar to activation generation, short-term route planning, or local route planning.
  • Route tracking is a process of planning an operation for safely and accurately traveling on a route planned by route planning within a planned time.
  • the action planning unit 62 can calculate, for example, the target speed and the target angular velocity of the vehicle 1 based on the result of this route tracking process.
  • the motion control unit 63 controls the motion of the vehicle 1 in order to realize the action plan created by the action plan unit 62.
  • the motion control unit 63 controls the steering control unit 81, the brake control unit 82, and the drive control unit 83, which are included in the vehicle control unit 32 described later, and the vehicle 1 controls the track calculated by the track plan. Acceleration / deceleration control and direction control are performed so as to proceed.
  • the motion control unit 63 performs coordinated control for the purpose of realizing ADAS functions such as collision avoidance or impact mitigation, follow-up travel, vehicle speed maintenance travel, collision warning of own vehicle, and lane deviation warning of own vehicle.
  • the motion control unit 63 performs coordinated control for the purpose of automatic driving or the like that autonomously travels without being operated by the driver.
  • the DMS 30 performs driver authentication processing, driver status recognition processing, and the like based on sensor data from the in-vehicle sensor 26 and input data input to HMI 31 described later.
  • the state of the driver to be recognized by the DMS 30 for example, physical condition, arousal degree, concentration degree, fatigue degree, line-of-sight direction, drunkenness, driving operation, posture and the like are assumed.
  • the DMS 30 may perform authentication processing for passengers other than the driver and recognition processing for the status of the passenger. Further, for example, the DMS 30 may perform the recognition processing of the situation inside the vehicle based on the sensor data from the sensor 26 in the vehicle. As the situation inside the vehicle to be recognized, for example, temperature, humidity, brightness, odor, etc. are assumed.
  • HMI31 inputs various data and instructions, and presents various data to the driver and the like.
  • the data input by HMI31 will be outlined.
  • the HMI 31 includes an input device for a person to input data.
  • the HMI 31 generates an input signal based on data, instructions, and the like input by the input device, and supplies the input signal to each part of the vehicle control system 11.
  • the HMI 31 includes an operator such as a touch panel, a button, a switch, and a lever as an input device.
  • the HMI 31 may further include an input device capable of inputting information by a method other than manual operation by voice, gesture, or the like.
  • the HMI 31 may use, for example, a remote control device using infrared rays or radio waves, or an externally connected device such as a mobile device or a wearable device corresponding to the operation of the vehicle control system 11 as an input device.
  • the presentation of data by HMI31 will be outlined.
  • the HMI 31 generates visual information, auditory information, and tactile information for the passenger or the outside of the vehicle. Further, the HMI 31 performs output control for controlling the output, output content, output timing, output method, etc. of each of the generated information.
  • visual information the HMI 31 generates and outputs, for example, an image such as an operation screen, a status display of the vehicle 1, a warning display, a monitor image showing the situation around the vehicle 1, or information indicated by light.
  • the HMI 31 generates and outputs as auditory information, for example, information indicated by sounds such as voice guidance, warning sounds, and warning messages.
  • the HMI 31 generates and outputs tactile information that is given to the tactile sensation of the occupant by, for example, force, vibration, movement, or the like.
  • a display device that presents visual information by displaying an image by itself or a projector device that presents visual information by projecting an image can be applied. ..
  • the display device displays visual information in the passenger's field of view, such as a head-up display, a transmissive display, and a wearable device having an AR (Augmented Reality) function. It may be a device.
  • the HMI 31 can also use a display device of a navigation device, an instrument panel, a CMS (Camera Monitoring System), an electronic mirror, a lamp, etc. provided in the vehicle 1 as an output device for outputting visual information.
  • an output device for which the HMI 31 outputs auditory information for example, an audio speaker, headphones, or earphones can be applied.
  • a haptics element using haptics technology can be applied as an output device for which the HMI 31 outputs tactile information.
  • the haptic element is provided in a portion of the vehicle 1 in contact with the occupant, such as a steering wheel or a seat.
  • the vehicle control unit 32 controls each part of the vehicle 1.
  • the vehicle control unit 32 includes a steering control unit 81, a brake control unit 82, a drive control unit 83, a body system control unit 84, a light control unit 85, and a horn control unit 86.
  • the steering control unit 81 detects and controls the state of the steering system of the vehicle 1.
  • the steering system includes, for example, a steering mechanism including a steering wheel, electric power steering, and the like.
  • the steering control unit 81 includes, for example, a control unit such as an ECU that controls the steering system, an actuator that drives the steering system, and the like.
  • the brake control unit 82 detects and controls the state of the brake system of the vehicle 1.
  • the brake system includes, for example, a brake mechanism including a brake pedal, ABS (Antilock Brake System), a regenerative brake mechanism, and the like.
  • the brake control unit 82 includes, for example, a control unit such as an ECU that controls the brake system.
  • the drive control unit 83 detects and controls the state of the drive system of the vehicle 1.
  • the drive system includes, for example, a drive force generator for generating a drive force of an accelerator pedal, an internal combustion engine, a drive motor, or the like, a drive force transmission mechanism for transmitting the drive force to the wheels, and the like.
  • the drive control unit 83 includes, for example, a control unit such as an ECU that controls the drive system.
  • the body system control unit 84 detects and controls the state of the body system of the vehicle 1.
  • the body system includes, for example, a keyless entry system, a smart key system, a power window device, a power seat, an air conditioner, an airbag, a seat belt, a shift lever, and the like.
  • the body system control unit 84 includes, for example, a control unit such as an ECU that controls the body system.
  • the light control unit 85 detects and controls various light states of the vehicle 1. As the light to be controlled, for example, a headlight, a backlight, a fog light, a turn signal, a brake light, a projection, a bumper display, or the like is assumed.
  • the light control unit 85 includes a control unit such as an ECU that controls the light.
  • the horn control unit 86 detects and controls the state of the car horn of the vehicle 1.
  • the horn control unit 86 includes, for example, a control unit such as an ECU that controls the car horn.
  • FIG. 2 is a diagram showing an example of a sensing region of the external recognition sensor 25 of FIG. 1 by a camera 51, a radar 52, a LiDAR 53, an ultrasonic sensor 54, and the like. Note that FIG. 2 schematically shows a view of the vehicle 1 from above, with the left end side being the front end (front) side of the vehicle 1 and the right end side being the rear end (rear) side of the vehicle 1.
  • the sensing area 91F and the sensing area 91B show an example of the sensing area of the ultrasonic sensor 54.
  • the sensing region 91F covers the vicinity of the front end of the vehicle 1 by a plurality of ultrasonic sensors 54.
  • the sensing region 91B covers the periphery of the rear end of the vehicle 1 by a plurality of ultrasonic sensors 54.
  • the sensing results in the sensing area 91F and the sensing area 91B are used, for example, for parking support of the vehicle 1.
  • the sensing area 92F to the sensing area 92B show an example of the sensing area of the radar 52 for a short distance or a medium distance.
  • the sensing area 92F covers a position farther than the sensing area 91F in front of the vehicle 1.
  • the sensing region 92B covers the rear of the vehicle 1 to a position farther than the sensing region 91B.
  • the sensing region 92L covers the rear periphery of the left side surface of the vehicle 1.
  • the sensing region 92R covers the rear periphery of the right side surface of the vehicle 1.
  • the sensing result in the sensing area 92F is used, for example, for detecting a vehicle, a pedestrian, or the like existing in front of the vehicle 1.
  • the sensing result in the sensing region 92B is used, for example, for a collision prevention function behind the vehicle 1.
  • the sensing results in the sensing region 92L and the sensing region 92R are used, for example, for detecting an object in a blind spot on the side of the vehicle 1.
  • the sensing area 93F to the sensing area 93B show an example of the sensing area by the camera 51.
  • the sensing region 93F covers a position farther than the sensing region 92F in front of the vehicle 1.
  • the sensing region 93B covers the rear of the vehicle 1 to a position farther than the sensing region 92B.
  • the sensing region 93L covers the periphery of the left side surface of the vehicle 1.
  • the sensing region 93R covers the periphery of the right side surface of the vehicle 1.
  • the sensing result in the sensing area 93F can be used, for example, for recognition of traffic lights and traffic signs, a lane departure prevention support system, and an automatic headlight control system.
  • the sensing result in the sensing region 93B can be used, for example, for parking assistance and a surround view system.
  • the sensing results in the sensing region 93L and the sensing region 93R can be used, for example, in a surround view system.
  • the sensing area 94 shows an example of the sensing area of LiDAR53.
  • the sensing region 94 covers a position far from the sensing region 93F in front of the vehicle 1.
  • the sensing area 94 has a narrower range in the left-right direction than the sensing area 93F.
  • the sensing result in the sensing area 94 is used for detecting an object such as a peripheral vehicle, for example.
  • the sensing area 95 shows an example of the sensing area of the radar 52 for a long distance.
  • the sensing region 95 covers a position far from the sensing region 94 in front of the vehicle 1.
  • the sensing region 95 has a narrower range in the left-right direction than the sensing region 94.
  • the sensing result in the sensing area 95 is used for, for example, ACC (Adaptive Cruise Control), emergency braking, collision avoidance, and the like.
  • ACC Adaptive Cruise Control
  • emergency braking braking
  • collision avoidance collision avoidance
  • the sensing areas of the cameras 51, radar 52, LiDAR 53, and ultrasonic sensors 54 included in the external recognition sensor 25 may have various configurations other than those in FIG. 2.
  • the ultrasonic sensor 54 may be made to sense the side of the vehicle 1, or the LiDAR 53 may be made to sense the rear of the vehicle 1.
  • the installation position of each sensor is not limited to each of the above-mentioned examples. Further, the number of each sensor may be one or a plurality.
  • the camera 51 when the direction (that is, the posture) of the camera 51 suddenly changes due to the inertial force when the vehicle starts, stops, turns, etc., or the vibration of the vehicle due to the unevenness of the road surface during traveling, the camera The image quality may be significantly deteriorated due to expansion and contraction or distortion of the image acquired by 51, or a sudden change in the position of an object appearing in the acquired image. Deterioration of image quality due to such distortion or position change can induce erroneous recognition or loss of an object in the recognition process, which is a factor of deteriorating recognition accuracy.
  • FIG. 3 is a diagram showing an example of an image taken by the front camera of the vehicle during normal driving
  • FIG. 4 is a diagram showing an example of an image taken by the front camera of the vehicle during a sudden stop.
  • an information processing device an information processing system, and an information processing method capable of suppressing a decrease in recognition accuracy.
  • a sensor such as an image sensor suddenly changes its posture based on an external impact
  • the environmental information such as image data acquired by the sensor shakes due to this external impact, thereby causing the quality of the environmental information ( If it is image data, the image quality) may deteriorate. Therefore, in the following embodiments, we propose an information processing device, an information processing system, and an information processing method capable of suppressing a decrease in recognition accuracy due to a decrease in information quality caused by such factors.
  • the vehicle control system described above is merely an example of the application destination of the embodiment described below. That is, the embodiments described below can be applied to various devices, systems, methods, programs, and the like that involve the transfer of data such as image data.
  • FIG. 5 is a block diagram showing an outline of a recognition system according to the present embodiment.
  • the recognition system includes an image pickup device 100 and a recognition unit 120.
  • the image pickup apparatus 100 may correspond to, for example, an example of an information processing apparatus within the scope of claims.
  • the recognition unit 120 may correspond to, for example, an example of a processing unit within the scope of claims.
  • the image pickup device 100 corresponds to, for example, the camera 51, the in-vehicle sensor 26, etc. described above with reference to FIG. 1, and generates and outputs image data of a color image or a monochrome image.
  • the output image data is input to the recognition unit 120 via a predetermined network such as the communication network 41 described above with reference to FIG. 1.
  • the image pickup device 100 is connected to sensors such as the IMU 131 and the position sensor 132 that acquire information regarding the posture change of the image pickup device 100.
  • the IMU 131 corresponds to an acceleration sensor, an angular velocity sensor (gyro sensor), an IMU, etc. in the vehicle sensor 27 described above with reference to FIG. 1, and information on the detected acceleration and angular velocity (hereinafter referred to as acceleration / angular velocity information).
  • the position sensor 132 corresponds to, for example, a steering angle sensor, a yaw rate sensor, an accelerator sensor, a brake sensor, etc. in the vehicle sensor 27 described above with reference to FIG. 1, and captures odometry information detected by each sensor. Output to device 100.
  • sensor information detected by various sensors mounted on the vehicle 1 as the vehicle sensor 27 may be input to the image pickup apparatus 100.
  • the recognition unit 120 corresponds to, for example, the recognition unit 73 or the like described above with reference to FIG. 1, and by executing a recognition process on the image data input from the image pickup apparatus 100, an object included in the image or an object or the like.
  • the object may include a moving object such as a car, a bicycle, or a pedestrian, as well as a fixed object such as a building, a house, or a tree.
  • the background may be a wide area located in a distant place such as the sky, mountains, plains, and the sea.
  • the recognition unit 120 determines the area of the object or the area of the background obtained as a result of the recognition process for the image data as the ROI (Region of Interest) which is a part of the effective pixel area in the image sensor 101. You may. At that time, the recognition unit 120 may determine the resolution at which the image data is read from each ROI. In that case, the recognition unit 120 notifies the image pickup apparatus 100 of the determined ROI and resolution information (hereinafter referred to as ROI / resolution information), so that the ROI to be read and the image data are read from each ROI. The resolution may be set in the image pickup device 100.
  • the ROI information may be, for example, information regarding the address of the pixel that is the starting point of the ROI and the size in the vertical and horizontal directions.
  • each ROI is a rectangular area.
  • the ROI is not limited to this, and the ROI may be a circle, an ellipse, or a polygon, or may be a region having an indefinite shape specified by information specifying a boundary (contour).
  • the recognition unit 120 may determine a different resolution for each ROI.
  • FIG. 6 is a block diagram showing a schematic configuration example of the image pickup device according to the present embodiment.
  • the image pickup apparatus 100 includes an image sensor 101, a control unit 102, a signal processing unit 103, a storage unit 104, and an input / output unit 105.
  • One or more of the control unit 102, the signal processing unit 103, the storage unit 104, and the input / output unit 105 may be provided on the same chip as the image sensor 101.
  • the image sensor 101 converts a pixel array unit in which a plurality of pixels are arranged in a two-dimensional grid, a drive circuit for driving the pixels, and a pixel signal read from each pixel into digital values.
  • the image data read from the entire pixel array unit or individual ROIs is output to the signal processing unit 103.
  • the image sensor 101 is a so-called rolling shutter type image sensor 101 in which image data is read out row by row from the pixel array unit is illustrated.
  • the signal processing unit 103 executes predetermined signal processing such as noise reduction and white balance adjustment on the image data output from the image sensor 101.
  • the signal processing unit 103 refers to the image data output from the image sensor 101 in line units (hereinafter referred to as line data), and the time required to read the line (read time information). Information about) is given. That is, in the image data output from the image pickup apparatus 100 in the present embodiment, the read time information is added to each pixel row. For this read time information, various information related to the time required for reading the row, such as the time from the read timing of the first pixel to the read timing of the last pixel in each row and the number of pixels to be read in each row, is used. It's okay.
  • the signal processing unit 103 may add acceleration / angular velocity information input from the IMU 131 and / or odometry information input from the position sensor 132 to each row data.
  • the acceleration / angular velocity information and the odometry information are collectively referred to as sensor information.
  • the sensor information added to each row data is the sensor information input from the IMU 131 and / or the position sensor 132 during the exposure period of each pixel row in the pixel array unit, and the IMU 131 at the timing when each row data is output from the image sensor 101.
  • / or sensor information input from the position sensor 132 may be used.
  • the signal processing unit 103 includes sensor information input from the IMU 131 and / or the position sensor 132 during the reading period (also referred to as a frame period) of one image data, and various information obtained from the sensor information (also referred to as a frame period). For example, speed information, etc., hereinafter also referred to as additional information) may be included in the image data.
  • the signal processing unit 103 outputs the image data to which the predetermined signal processing is performed and the read time information and the sensor information (and additional information) are added to the input / output unit 105.
  • the storage unit 104 temporarily holds the image data processed or unprocessed by the signal processing unit 103, the sensor information input from the IMU 131 and / or the position sensor 132, and the like as needed.
  • the input / output unit 105 transmits the image data input via the signal processing unit 103 to the recognition unit 120 via a predetermined network (for example, the communication network 41).
  • a predetermined network for example, the communication network 41.
  • the control unit 102 controls the operation of the image sensor 101. Further, the control unit 102 sets one or more ROIs (also referred to as a read target area) and the resolution of each ROI in the image sensor 101 based on the ROI / resolution information input via the input / output unit 105.
  • ROIs also referred to as a read target area
  • the distortion caused by environmental information acquired by the sensor is referred to as image data, but the image data is merely an example of the environmental information. Therefore, the environmental information is the image sensor 101 (camera 51). , Radar 52, LiDAR53, ultrasonic sensor 54, etc., may be variously changed depending on the type of sensor used and the like.
  • Factors that cause distortion in image data include abrupt changes in the image pickup direction (that is, posture) of the image sensor 101 (shaking due to an external impact), and when multiple ROIs are read out at the same time, a part of the ROIs is lined up. There are things such as overlapping with each other in the direction.
  • the image data that does not include the correction information is referred to as frame data in order to distinguish between the image data that includes the correction information for correcting the distortion generated in the image data and the image data that does not include the correction information.
  • the included image data is called image data as it is.
  • the frame data and the image data are also referred to as two-dimensional data because they have a two-dimensional data structure in the row direction and the column direction.
  • FIG. 7 is a schematic diagram for explaining the reading operation of the rolling shutter method.
  • FIG. 8 is a diagram for explaining an example of distortion of frame data that may occur when the image sensor suddenly points downward during reading by the rolling shutter method.
  • the effective pixel area in the pixel array unit 101a of the image sensor 101 is a column in which the pixels (pixel rows) arranged in the row direction are in units of one pixel row. It is read out sequentially in the direction. Therefore, if the orientation of the image sensor 101 suddenly changes downward while reading one frame data from the image sensor 101, the frame data G2 read from the image sensor 101 becomes a frame data G2 as shown in FIG. Compared with the frame data G1 read when the posture of the image sensor 101 is constant, the image is extended downward.
  • the sensor information input from the IMU 131 and / or the position sensor 132 is added to the frame data while reading each line data of the frame data. This makes it possible to correct the distortion of the frame data based on the sensor information.
  • a method of adding sensor information to frame data a method of adding sensor information input while reading the row data for each row data (hereinafter referred to as the first method) or one frame data.
  • Various methods such as a method of adding sensor information input while reading is added to a header or footer of frame data (hereinafter referred to as a second method) may be applied.
  • the sensor information is one aspect of the correction information for correcting the distortion generated in the image data.
  • a method of adding correction information to the frame data a method of adding the sensor information input from the IMU 131 or the position sensor 132 to the row data or the frame data as it is, or a method of adding speed, acceleration or angular speed from the input sensor information.
  • a method of calculating information for specifying or correcting distortion generated in image data such as angular acceleration (hereinafter referred to as distortion information) and adding the calculated distortion information to the frame data can be considered.
  • the distortion information is one aspect of the correction information for correcting the distortion generated in the image data.
  • FIG. 9 is a flowchart for explaining an example of the reading operation according to the first method of the present embodiment
  • FIG. 10 is a diagram for supplementing the flowchart shown in FIG.
  • control unit 102 inputs sensor information from the IMU 131 and / or the position sensor 132 while reading the row data in step S102 (step S103), and inputs the input sensor information as shown in FIG. It is added to the row data read in step S102 (step S104).
  • control unit 102 determines whether or not the variable L has reached the maximum value L_max (step S105), and if not (NO in step S105), the variable L1 is incremented by 1 (step S106). , Return to step S102, and continue the subsequent operations.
  • control unit 102 connects the image data (see FIG. 10) to which the sensor information is added to each row data of the frame data to a predetermined network (for example,). , Output to the recognition unit 120 via the communication network 41) (step S107).
  • control unit 102 determines whether or not to end this operation (step S108), and if it ends (YES in step S108), ends this operation. On the other hand, if it does not end (NO in step S108), the control unit 102 returns to step S101 and executes the subsequent operations.
  • FIG. 11 is a flowchart for explaining an example of the reading operation according to the second method of the present embodiment.
  • the control unit 102 of the image pickup apparatus 100 drives the image sensor 101 to read out the frame data (step S121).
  • control unit 102 inputs sensor information from the IMU 131 and the position sensor 132 to the signal processing unit 103 (step S122) while the frame data is being read out in step S121, and calculates distortion information in the signal processing unit 103. Is executed (step S123).
  • control unit 102 generates image data by adding the distortion information calculated in step S123 to the frame data read in step S121 (step S124), and the generated image data is used in a predetermined network. It is output to the recognition unit 120 via (for example, the communication network 41) (step S125).
  • control unit 102 determines whether or not to end this operation (step S126), and if it ends (YES in step S126), ends this operation. On the other hand, if it does not end (NO in step S126), the control unit 102 returns to step S121 and executes the subsequent operations.
  • FIG. 12 is a diagram illustrating a case where two ROIs partially overlapping in the row direction are set in the pixel array portion
  • FIG. 13 is a diagram. It is a figure for demonstrating the reading of the image data (hereinafter referred to as ROI data) from each ROI shown in FIG. 12, and FIG. 14 shows two ROIs partially overlapping in the row direction in the reading operation of the rolling shutter method. It is a figure which shows an example of the read start timing of each line at the time of reading ROI data from.
  • ROI data image data
  • the number of pixels in each row in the range R22 is twice the number of pixels in each row in the ranges R21 and R23. Become. Therefore, since the read time of each row changes between the range R22 and the ranges R21 and R23, as shown in FIG. 14, in the rolling shutter type read operation, the read start timing of each line in each of the ranges R21 to R23 changes. It will be. Such a change in the read start timing causes the ROI data to be distorted.
  • the number of read pixels of each row in the ROI data (hereinafter, also referred to as the number of read pixels) is added to the ROI data. This makes it possible to correct the distortion of the ROI data based on the number of read pixels.
  • the number of read pixels is an aspect of correction information for correcting the distortion generated in the image data.
  • FIG. 15 is a flowchart showing an example of the reading operation according to the present embodiment
  • FIG. 16 is a diagram for supplementing the flowchart shown in FIG.
  • the control unit 102 of the image pickup apparatus 100 sets a variable L for managing read rows for one or more ROIs to '1' indicating the first row. (Step S141). Then, the control unit 102 causes the image sensor 101 to read the row data from the Lth row in the range where the ROI exists (step S142). Then, as shown in FIG. 16, the control unit 102 adds the number of read pixels in the Lth row to the row data read in step S102 (step S143).
  • control unit 102 determines whether or not the variable L has reached the maximum value L_max (step S144), and if not (NO in step S144), the variable L1 is incremented by 1 (step S145). , Return to step S142, and continue the subsequent operations.
  • control unit 102 connects the image data (see FIG. 10) to which the sensor information is added to each row data of the frame data to a predetermined network (for example, FIG. 10). , Output to the recognition unit 120 via the communication network 41) (step S146).
  • control unit 102 determines whether or not to end the main operation (step S147), and if it ends (YES in step S147), the control unit 102 ends the main operation. On the other hand, if it does not end (NO in step S147), the control unit 102 returns to step S141 and executes the subsequent operations.
  • sensor information and the number of read pixels may be added to each row data of the frame data.
  • the imaging direction (that is, the posture) of the image sensor 101 changes abruptly, or when a plurality of ROIs are read out at the same time, some of the ROIs overlap each other in the row direction.
  • the case of correcting the distortion generated in the frame data or the ROI data has been illustrated, but the present embodiment is not limited to this, and the correction information for correcting the distortion generated in the frame data on the image pickup apparatus 100 side for some reason. It is possible to apply various configurations as long as the configuration is such that the above is added.
  • FIG. 17 is a diagram for explaining the difference in distortion when the image sensor and EVS are combined.
  • the image data reading method in the image sensor 101 is the rolling shutter method
  • a time difference D1 occurs in the reading timing between the highest pixel row and the lowest pixel row in the column direction, so that the read image data G31 is referred to as so-called.
  • a distortion called rolling shutter distortion occurs.
  • EVS an event is detected in each pixel by the same operation as the so-called global shutter method in which all pixels are simultaneously driven, so that the image data G32 output from EVS is not distorted or is not distorted. It is small enough to be ignored in the recognition process by the recognition unit 120.
  • the difference in distortion between the two image data caused by the different drive methods can be eliminated by using, for example, the first method and / or the second method described above.
  • FIG. 18 is a flowchart showing an example of the operation according to the present embodiment.
  • FIG. 19 is a diagram for explaining an example of distortion correction shown in step S164 of FIG.
  • the recognition unit 120 when the recognition unit 120 inputs image data via a predetermined network (for example, communication network 41) (step S161), the recognition unit 120 receives correction information (for example, sensor information, distortion information) included in the image data. , Number of read pixels) (step S162).
  • correction information for example, sensor information, distortion information
  • the recognition unit 120 corrects the distortion of the frame data based on the specified correction information (step S163). For example, when the frame data G2 is distorted as described above with reference to FIG. 8, the recognition unit 120 uses the sensor information added to each row data of the frame data G2 as shown in FIG. Then, the frame data G2 is corrected to the frame data G3 in which the distortion (for example, the delay) is reduced or eliminated.
  • the distortion for example, the delay
  • the recognition unit 120 executes the recognition process for the frame data whose distortion has been corrected (step S164), and the result is the action planning unit 62, the operation control unit 63, etc. (FIG. FIG. 1) (see step S165).
  • step S166 determines whether or not to end the main operation (step S166), and if it ends (YES in step S166), the recognition unit 120 ends the main operation. On the other hand, if it does not end (NO in step S166), the control unit 102 returns to step S161 and executes the subsequent operations.
  • the image data acquired by the recognition unit 120 may include sensor information and distortion information.
  • the speed of the vehicle 1 can be directly or indirectly specified from the sensor information and the distortion information included in the image data. Further, it is possible to directly or indirectly identify whether the vehicle 1 is traveling straight or turning from the sensor information and the distortion information included in the image data. Therefore, in the present embodiment, the recognition unit 120 may determine the ROI and the resolution in the next frame and thereafter based on the sensor information and the distortion information.
  • FIG. 20 to 25 are diagrams for explaining the ROI determination method according to the present embodiment.
  • FIG. 20 is a diagram showing a sensing region of the vehicle when traveling straight at a low speed
  • FIG. 21 is a diagram showing an ROI corresponding to the sensing region shown in FIG. 20.
  • FIG. 22 shows the sensing region of the vehicle when traveling straight at high speed
  • FIG. 23 is a diagram showing the ROI corresponding to the sensing region shown in FIG. 22.
  • FIG. 24 shows the sensing region of the vehicle when turning left
  • FIG. 25 is a diagram showing the ROI corresponding to the sensing region shown in FIG. 24.
  • the recognition unit 120 may determine the ROI region R101 in the entire area or a wide area of the pixel array unit 101a as shown in FIG. Further, the object existing in the vicinity of the vehicle 1 is imaged as a large image. Therefore, when the vehicle 1 is traveling straight at a low speed, the recognition unit 120 may determine the resolution for the ROI to be low.
  • the sensing region SR102 may cover a distant narrow range in front of the vehicle 1. Therefore, when the vehicle 1 is traveling straight at high speed, the recognition unit 120 may determine the ROI region R102 in a part of the central region of the pixel array unit 101a as shown in FIG. 23. Further, an object existing in the distance of the vehicle 1 is imaged as a small image. Therefore, when the vehicle 1 is traveling straight at high speed, the recognition unit 120 may determine the resolution for ROI to be high resolution.
  • the recognition unit 120 may determine the ROI region R103 in the region of the pixel array unit 101a that is closer to the turning direction (to the left in FIG. 25), as shown in FIG. 25. How much to shift in the turning direction may be determined based on, for example, odometry information (steering angle, etc.) input from the position sensor 132. Further, when the vehicle 1 is turning, it is considered that the vehicle 1 is traveling at an intersection, a corner, or the like. Therefore, the recognition unit 120 determines the resolution for the ROI to be low in order to execute the recognition process at high speed. You may.
  • the image data may include sensor information (information regarding acceleration and angular velocity) indicating the attitude displacement of the image sensor 101. Therefore, in the present embodiment, it is possible to generate super-resolution image data higher than the maximum resolution of the image sensor 101 by utilizing the posture change of the image sensor 101 between frames.
  • the frame data G101, G102, G103, ... Input from the image sensor 101 are moved in the vertical and horizontal directions due to the posture change caused by the shaking or vibration of the image sensor 101 itself. It's shifting. Then, the direction in which the frame data is shifted can be specified from the sensor information added to the frame data G101, G102, G103, ....
  • the recognition unit 120 assumes that a certain frame data G112 is shifted by, for example, half a pixel in the left-right direction with respect to the frame data G111 of the previous frame based on the sensor information added to the frame data.
  • a certain frame data G112 is shifted by, for example, half a pixel in the left-right direction with respect to the frame data G111 of the previous frame based on the sensor information added to the frame data.
  • the resolution in the horizontal direction (row direction) twice the resolution of the frame data G111 and G112.
  • the frame data G111 and G112 assuming that a certain frame data G112 is, for example, half a pixel shifted in the vertical direction with respect to the frame data G111 of the previous frame, the resolution in the vertical direction (column direction) is frame data. It is possible to have twice the resolution of G111 and G112.
  • the image data G123 in which a part of the region (ROI) is super-resolution is generated. It is also possible to do.
  • the recognition unit 120 since the image data includes the correction information for correcting the distortion, the recognition unit 120 has the distortion generated in the frame data based on the correction information. Can be corrected. As a result, in the present embodiment, it is possible to suppress a decrease in recognition accuracy.
  • correction information is included in the frame data acquired by the image sensor 101 , but the present disclosure is not limited to this, and for example, the radar 52, the LiDAR 53, the ultrasonic sensor 54, etc. 2 It is also possible to add correction information to two-dimensional data output from various sensors having a dimensional data structure.
  • the recognition unit 120 executes correction processing or the like on the image data acquired by one image pickup device 100 is illustrated, but the configuration is not limited to such a configuration.
  • the recognition unit 120 may execute correction processing or the like on the image data acquired by each of the two or more image pickup devices 100.
  • the image data acquired by each of the two or more image pickup devices 100 may be integrated by the sensor fusion unit 72 and then input to the recognition unit 120.
  • the sensor fusion unit 72 may correspond to an example of an integrated unit within the scope of claims.
  • the vehicle control system 11 described above with reference to FIG. 1 may include, for example, a system structure based on a domain architecture as shown in FIG. 29.
  • the system structure exemplified in FIG. 29 is configured such that domain controllers 311 to 315 that manage each of the front, left, left rear, right rear, and right side of the vehicle 1 are connected to each other via the gateway 301 and cooperate with each other.
  • each domain controller 311 to 315 is connected to sensor groups 321 to 325 such as an external recognition sensor 25, an in-vehicle sensor 26, and a vehicle sensor 27, and the vehicle is based on sensor information acquired by each sensor group 321 to 325. Control each part of 1.
  • each domain controller 311 to 315 may correspond to the vehicle control system 11 shown in FIG.
  • One domain controller may input image data including correction information acquired by the external recognition sensor 25 in the other one or more domain controllers, and process the input image data in an integrated manner.
  • this central controller is the correction information acquired by the external recognition sensor 25 in the other one or more domain controllers.
  • Image data including the above may be input and the input image data may be processed in an integrated manner.
  • At least one of the domain controllers 311 to 315 goes to the cloud via a mobile communication network such as LTE (Long Term Evolution) or 5G (5th Generation) or a predetermined network such as a wireless LAN (Local Area Network).
  • a mobile communication network such as LTE (Long Term Evolution) or 5G (5th Generation) or a predetermined network such as a wireless LAN (Local Area Network).
  • LTE Long Term Evolution
  • 5G Fifth Generation
  • a predetermined network such as a wireless LAN (Local Area Network).
  • the image data including the correction information acquired by the external recognition sensor 25 in one or more domain controllers and the processing result obtained by processing this image data in an integrated manner are uploaded to the cloud. It may be configured to do so. In that case, the above-mentioned frame data distortion correction, recognition processing, and the like may be executed on the cloud side.
  • FIG. 30 is a hardware configuration diagram showing an example of a computer 1000 that realizes the functions of the information processing apparatus constituting the recognition unit 120.
  • the computer 1000 has a CPU 1100, a RAM 1200, a ROM (Read Only Memory) 1300, an HDD (Hard Disk Drive) 1400, a communication interface 1500, and an input / output interface 1600. Each part of the computer 1000 is connected by a bus 1050.
  • the CPU 1100 operates based on the program stored in the ROM 1300 or the HDD 1400, and controls each part. For example, the CPU 1100 expands the program stored in the ROM 1300 or the HDD 1400 into the RAM 1200, and executes processing corresponding to various programs.
  • the ROM 1300 stores a boot program such as a BIOS (Basic Input Output System) executed by the CPU 1100 when the computer 1000 is started, a program depending on the hardware of the computer 1000, and the like.
  • BIOS Basic Input Output System
  • the HDD 1400 is a computer-readable recording medium that non-temporarily records a program executed by the CPU 1100 and data used by such a program.
  • the HDD 1400 is a recording medium for recording a projection control program according to the present disclosure, which is an example of program data 1450.
  • the communication interface 1500 is an interface for the computer 1000 to connect to an external network 1550 (for example, the Internet).
  • the CPU 1100 receives data from another device or transmits data generated by the CPU 1100 to another device via the communication interface 1500.
  • the input / output interface 1600 has a configuration including the above-mentioned I / F unit 18, and is an interface for connecting the input / output device 1650 and the computer 1000.
  • the CPU 1100 receives data from an input device such as a keyboard or mouse via the input / output interface 1600. Further, the CPU 1100 transmits data to an output device such as a display, a speaker, or a printer via the input / output interface 1600.
  • the input / output interface 1600 may function as a media interface for reading a program or the like recorded on a predetermined recording medium (media).
  • the media is, for example, an optical recording medium such as DVD (Digital Versatile Disc) or PD (Phase change rewritable Disk), a magneto-optical recording medium such as MO (Magneto-Optical disk), a tape medium, a magnetic recording medium, or a semiconductor memory.
  • an optical recording medium such as DVD (Digital Versatile Disc) or PD (Phase change rewritable Disk)
  • a magneto-optical recording medium such as MO (Magneto-Optical disk)
  • tape medium such as DVD (Digital Versatile Disc) or PD (Phase change rewritable Disk)
  • MO Magneto-optical disk
  • the CPU 1100 of the computer 1000 functions as the recognition unit 120 according to the above-described embodiment by executing the program loaded on the RAM 1200. Further, the program and the like related to the present disclosure are stored in the HDD 1400. The CPU 1100 reads the program data 1450 from the HDD 1400 and executes the program, but as another example, these programs may be acquired from another device via the external network 1550.
  • the present technology can also have the following configurations.
  • Information processing device equipped with (2) The information processing device according to (1) above, wherein the sensor is any one of an image sensor, a radar, a LiDAR, and an ultrasonic sensor. (3) The sensor is an image sensor and is an image sensor.
  • the environmental information is imaging data and is The information processing apparatus according to (2), wherein the control unit adds the correction information for each row data to each row data constituting the imaging data.
  • the correction information includes at least one of acceleration, angular velocity, odometry information, and the number of pixels read out for each row.
  • the control unit adds the acceleration, the angular velocity, the odometry information, and the correction information calculated based on at least one of the acceleration, the angular velocity, and the odometry information to the environment information.
  • the information processing apparatus according to (4).
  • (6) The information processing apparatus according to any one of (1) to (5) above, A processing unit connected to the information processing device via a predetermined network, Equipped with The information processing apparatus transmits the environmental information to which the correction information is added to the processing unit via the predetermined network.
  • the processing unit is an information processing system that corrects shaking due to the external impact generated in the environmental information based on the correction information added to the environmental information. (7) The information processing system according to (6), wherein the processing unit executes recognition processing for environmental information corrected based on the correction information. (8) The processing unit determines the read target area in the sensor and the resolution of the read target area based on the correction information, sets the determined read target area and the resolution in the control unit, and sets the determined read target area and the resolution in the control unit. The information processing system according to (6) or (7), wherein the control unit drives the sensor based on the set read-out target area and the resolution. (9) Further equipped with an integration unit that integrates environmental information transmitted from two or more information processing devices.
  • the information processing system according to any one of (6) to (8) above, wherein the processing unit executes processing on the environmental information integrated by the integrated unit.
  • At least one of the environment information output from the information processing apparatus, the environment information corrected by the processing unit, and the predetermined processing result for the corrected environment information by the processing unit is transmitted via a predetermined network.
  • the information processing system according to (6) above, further comprising a transmission unit for transmission.
  • An information processing method including correcting a shake caused by an external impact generated in the environmental information received from an information processing apparatus via a predetermined network based on the correction information added to the environmental information.
  • Image pickup device 101 Image sensor 102 Control unit 103 Signal processing unit 104 Storage unit 105 Input / output unit 120 Recognition unit 131 IMU 132 Position sensor

Abstract

The present invention suppresses transfer delay. An information processing device according to an embodiment of the present invention comprises: a sensor which acquires environment information; and a control unit which adds, to the environment information, correction information for correcting shake that occurs in the environment information acquired by the sensor and that is based on an external impact.

Description

情報処理装置、情報処理システム及び情報処理方法Information processing equipment, information processing system and information processing method
 本開示は、情報処理装置、情報処理システム及び情報処理方法に関する。 This disclosure relates to an information processing device, an information processing system, and an information processing method.
 近年、自動車やロボットなど移動体の自律化やIoT(Internet of Things)等の普及に伴い、画像認識の高速化及び高精度化が強く望まれている。 In recent years, with the autonomy of moving objects such as automobiles and robots and the spread of IoT (Internet of Things), there is a strong demand for higher speed and higher accuracy of image recognition.
特開2018-75923号公報Japanese Unexamined Patent Publication No. 2018-75923
 画像認識では、一般的にイメージセンサで取得された画像に対して認識処理が実行されるが、移動体に搭載されたイメージセンサで取得された画像には、イメージセンサ自身の揺れや振動等に起因して歪みが発生し得る。このようにして生じた歪みは、認識精度を低下させる要因となる。 In image recognition, recognition processing is generally performed on the image acquired by the image sensor, but the image acquired by the image sensor mounted on the moving object is subject to shaking or vibration of the image sensor itself. Distortion can occur due to this. The distortion generated in this way becomes a factor that lowers the recognition accuracy.
 そこで本開示は、認識精度の低下を抑制することが可能な情報処理装置、情報処理システム及び情報処理方法を提案する。 Therefore, the present disclosure proposes an information processing device, an information processing system, and an information processing method capable of suppressing a decrease in recognition accuracy.
 上記の課題を解決するために、本開示に係る一形態の情報処理装置は、環境情報を取得するセンサと、前記センサで取得された環境情報に生じた、外部衝撃に基づく揺れを補正するための補正情報を前記環境情報に付加する制御部と、を備える。 In order to solve the above-mentioned problems, the information processing apparatus according to the present disclosure has a sensor for acquiring environmental information and for correcting shaking caused by an external impact in the environmental information acquired by the sensor. It is provided with a control unit for adding the correction information of the above to the environment information.
車両制御システムの構成例を示すブロック図である。It is a block diagram which shows the configuration example of a vehicle control system. センシング領域の例を示す図である。It is a figure which shows the example of the sensing area. 正常走行時に車両の前方カメラで撮影された画像の一例を示す図である。It is a figure which shows an example of the image taken by the front camera of a vehicle at the time of normal running. 急停止時に車両の前方カメラで撮影された画像の一例を示す図である。It is a figure which shows an example of the image taken by the front camera of a vehicle at the time of a sudden stop. 実施形態に係る認識システムの概要を示すブロック図である。It is a block diagram which shows the outline of the recognition system which concerns on embodiment. 実施形態に係る撮像装置の概略構成例を示すブロック図である。It is a block diagram which shows the schematic structure example of the image pickup apparatus which concerns on embodiment. ローリングシャッタ方式の読出し動作を説明するための模式図である。It is a schematic diagram for demonstrating the reading operation of a rolling shutter system. ローリングシャッタ方式での読出し中にイメージセンサが急激に下を向いた場合に発生し得るフレームデータの歪みの一例を説明するための図である。It is a figure for demonstrating an example of the distortion of frame data which may occur when an image sensor suddenly points downward during reading by a rolling shutter system. 実施形態の第1手法に係る読出し動作の一例を説明するためのフローチャートである。It is a flowchart for demonstrating an example of the reading operation which concerns on 1st method of Embodiment. 図9に示すフローチャートを補足するための図である。It is a figure for supplementing the flowchart shown in FIG. 実施形態の第2手法に係る読出し動作の一例を説明するためのフローチャートである。It is a flowchart for demonstrating an example of the reading operation which concerns on the 2nd method of Embodiment. 画素アレイ部に行方向に一部が重複する2つのROIが設定された場合を例示する図である。It is a figure which illustrates the case where two ROIs which partially overlap in a row direction are set in a pixel array part. 図12に示す各ROIからの画像データ(以下、ROIデータという)の読出しを説明するための図である。It is a figure for demonstrating the reading of the image data (hereinafter referred to as ROI data) from each ROI shown in FIG. ローリングシャッタ方式の読出し動作において行方向に一部が重複する2つのROIからROIデータを読み出す際の各行の読出し開始タイミングの一例を示す図である。It is a figure which shows an example of the reading start timing of each row at the time of reading ROI data from two ROIs which partially overlap in a row direction in the reading operation of a rolling shutter system. 実施形態に係る読出し動作の一例を示すフローチャートである。It is a flowchart which shows an example of the reading operation which concerns on embodiment. 図15に示すフローチャートを補足するための図である。It is a figure for supplementing the flowchart shown in FIG. イメージセンサとEVSとを組み合わせた場合などの歪みの差を説明するための図である。It is a figure for demonstrating the difference of distortion when the image sensor and EVS are combined. 実施形態に係る動作の一例を示すフローチャートである。It is a flowchart which shows an example of the operation which concerns on embodiment. 図18のステップS164に示す歪み補正の一例を説明するための図である。It is a figure for demonstrating an example of the distortion correction shown in step S164 of FIG. 実施形態に係るROI決定方法を説明するための図である(低速・直進)。It is a figure for demonstrating the ROI determination method which concerns on embodiment (low speed, straight-ahead). 実施形態に係るROI決定方法を説明するための図である(低速・直進)。It is a figure for demonstrating the ROI determination method which concerns on embodiment (low speed, straight-ahead). 実施形態に係るROI決定方法を説明するための図である(高速・直進)。It is a figure for demonstrating the ROI determination method which concerns on embodiment (high speed, straight-ahead). 実施形態に係るROI決定方法を説明するための図である(高速・直進)。It is a figure for demonstrating the ROI determination method which concerns on embodiment (high speed, straight-ahead). 実施形態に係るROI決定方法を説明するための図である(旋回)。It is a figure for demonstrating the ROI determination method which concerns on embodiment (turning). 実施形態に係るROI決定方法を説明するための図である(旋回)。It is a figure for demonstrating the ROI determination method which concerns on embodiment (turning). フレームデータに生じた揺らぎを説明するための図である。It is a figure for demonstrating the fluctuation which occurred in the frame data. 実施形態に係るフレームデータの超解像度化を説明するための図である(全体)。It is a figure for demonstrating super-resolution of frame data which concerns on embodiment (overall). 実施形態に係るフレームデータの超解像度化を説明するための図である(ROI)。It is a figure for demonstrating the super-resolution of the frame data which concerns on embodiment (ROI). 実施形態に係る車両制御システムの一例を示すシステム図である。It is a system diagram which shows an example of the vehicle control system which concerns on embodiment. 本開示に係る情報処理装置の機能を実現するコンピュータの一例を示すハードウエア構成図である。It is a hardware block diagram which shows an example of the computer which realizes the function of the information processing apparatus which concerns on this disclosure.
 以下に、本開示の実施形態について図面に基づいて詳細に説明する。なお、以下の実施形態において、同一の部位には同一の符号を付することにより重複する説明を省略する。 Hereinafter, embodiments of the present disclosure will be described in detail with reference to the drawings. In the following embodiments, the same parts are designated by the same reference numerals, so that overlapping description will be omitted.
 また、以下に示す項目順序に従って本開示を説明する。
  1.車両制御システムの構成例
  2.一実施形態
   2.1 認識システムの概略構成例
   2.2 撮像装置の概略構成例
   2.3 環境情報に生じた歪みの補正について
    2.3.1 向きの急激な変化に起因した歪みについて
    2.3.2 行方向にROIが重なることによる歪みについて
    3.3.3 歪み補正について
    2.3.4 動作例
   2.4 ROIの設定について
   2.5 画像データの超解像度化について
   2.6 作用・効果
  3.車両制御システムについて
  4.ハードウエア構成
In addition, the present disclosure will be described according to the order of items shown below.
1. 1. Configuration example of vehicle control system 2. (1) Embodiment 2.1 Schematic configuration example of recognition system 2.2 Schematic configuration example of image pickup device 2.3 Correction of distortion caused by environmental information 2.3.1 Distortion caused by sudden change in direction 2. 3.2 Distortion due to overlapping ROIs in the row direction 3.3.3 Distortion correction 2.3.4 Operation example 2.4 ROI setting 2.5 Super-resolution image data 2.6 Action ・Effect 3. About vehicle control system 4. Hardware configuration
 1.車両制御システムの構成例
 図1は、本技術が適用される移動装置制御システムの一例である車両制御システム11の構成例を示すブロック図である。
1. 1. Configuration Example of Vehicle Control System FIG. 1 is a block diagram showing a configuration example of a vehicle control system 11 which is an example of a mobile device control system to which the present technology is applied.
 車両制御システム11は、車両1に設けられ、車両1の走行支援及び自動運転に関わる処理を行う。 The vehicle control system 11 is provided in the vehicle 1 and performs processing related to driving support and automatic driving of the vehicle 1.
 車両制御システム11は、車両制御ECU(Electronic Control Unit )21、通信部22、地図情報蓄積部23、GNSS(Global Navigation Satellite System)受信部24、外部認識センサ25、車内センサ26、車両センサ27、記録部28、走行支援・自動運転制御部29、ドライバモニタリングシステム(Driver Monitoring System:DMS)30、ヒューマンマシーンインタフェース(Human Machine Interface:HMI)31、及び、車両制御部32を備える。 The vehicle control system 11 includes a vehicle control ECU (Electronic Control Unit) 21, a communication unit 22, a map information storage unit 23, a GNSS (Global Navigation Satellite System) receiving unit 24, an external recognition sensor 25, an in-vehicle sensor 26, and a vehicle sensor 27. It includes a recording unit 28, a driving support / automatic driving control unit 29, a driver monitoring system (DMS) 30, a human machine interface (HMI) 31, and a vehicle control unit 32.
 車両制御ECU21、通信部22、地図情報蓄積部23、GNSS受信部24、外部認識センサ25、車内センサ26、車両センサ27、記録部28、走行支援・自動運転制御部29、DMS30、HMI31、及び、車両制御部32は、通信ネットワーク41を介して相互に通信可能に接続されている。通信ネットワーク41は、例えば、CAN(Controller Area Network)、LIN(Local Interconnect Network)、LAN(Local Area Network)、FlexRay(登録商標)、イーサネット(登録商標)といったディジタル双方向通信の規格に準拠した車載通信ネットワークやバス等により構成される。通信ネットワーク41は、通信されるデータの種類によって使い分けられても良く、例えば、車両制御に関するデータであればCANが適用され、大容量データであればイーサネットが適用される。なお、車両制御システム11の各部は、通信ネットワーク41を介さずに、例えば近距離無線通信(NFC(Near Field Communication))やBluetooth(登録商標)といった比較的近距離での通信を想定した無線通信を用いて直接的に接続される場合もある。 Vehicle control ECU 21, communication unit 22, map information storage unit 23, GNSS receiving unit 24, external recognition sensor 25, in-vehicle sensor 26, vehicle sensor 27, recording unit 28, driving support / automatic driving control unit 29, DMS30, HMI31, and , The vehicle control unit 32 is connected to each other so as to be able to communicate with each other via the communication network 41. The communication network 41 is in-vehicle compliant with digital bidirectional communication standards such as CAN (Controller Area Network), LIN (Local Interconnect Network), LAN (Local Area Network), FlexRay (registered trademark), and Ethernet (registered trademark). It consists of a communication network and a bus. The communication network 41 may be used properly depending on the type of data to be communicated. For example, CAN is applied for data related to vehicle control, and Ethernet is applied for large-capacity data. In addition, each part of the vehicle control system 11 does not go through the communication network 41, but wireless communication assuming relatively short-distance communication such as short-range wireless communication (NFC (Near Field Communication)) and Bluetooth (registered trademark). In some cases, it is directly connected using.
 なお、以下、車両制御システム11の各部が、通信ネットワーク41を介して通信を行う場合、通信ネットワーク41の記載を省略するものとする。例えば、車両制御ECU21と通信部22が通信ネットワーク41を介して通信を行う場合、単にプロセッサ21と通信部22とが通信を行うと記載する。 Hereinafter, when each part of the vehicle control system 11 communicates via the communication network 41, the description of the communication network 41 shall be omitted. For example, when the vehicle control ECU 21 and the communication unit 22 communicate with each other via the communication network 41, it is described that the processor 21 and the communication unit 22 simply communicate with each other.
 車両制御ECU21は、例えば、CPU(Central Processing Unit)、MPU(Micro Processing Unit)といった各種プロセッサにより構成される。車両制御ECU21は、車両制御システム11全体もしくは一部の機能の制御を行う。 The vehicle control ECU 21 is composed of various processors such as a CPU (Central Processing Unit) and an MPU (Micro Processing Unit), for example. The vehicle control ECU 21 controls the functions of the entire vehicle control system 11 or a part of the vehicle control system 11.
 通信部22は、車内及び車外の様々な機器、他の車両、サーバ、基地局等と通信を行い、各種のデータの送受信を行う。このとき、通信部22は、複数の通信方式を用いて通信を行うことができる。 The communication unit 22 communicates with various devices inside and outside the vehicle, other vehicles, servers, base stations, etc., and transmits and receives various data. At this time, the communication unit 22 can perform communication using a plurality of communication methods.
 通信部22が実行可能な車外との通信について、概略的に説明する。通信部22は、例えば、5G(第5世代移動通信システム)、LTE(Long Term Evolution)、DSRC(Dedicated Short Range Communications)等の無線通信方式により、基地局又はアクセスポイントを介して、外部ネットワーク上に存在するサーバ(以下、外部のサーバと呼ぶ)等と通信を行う。通信部22が通信を行う外部ネットワークは、例えば、インターネット、クラウドネットワーク、又は、事業者固有のネットワーク等である。通信部22による外部ネットワークに対して通信を行う通信方式は、所定以上の通信速度、且つ、所定以上の距離間でディジタル双方向通信が可能な無線通信方式であれば、特に限定されない。 The communication unit 22 will roughly explain the feasible communication with the outside of the vehicle. The communication unit 22 is on an external network via a base station or an access point by a wireless communication method such as 5G (5th generation mobile communication system), LTE (Long Term Evolution), DSRC (Dedicated Short Range Communications), etc. Communicates with a server (hereinafter referred to as an external server) that exists in. The external network with which the communication unit 22 communicates is, for example, the Internet, a cloud network, a network peculiar to a business operator, or the like. The communication method for communicating with the external network by the communication unit 22 is not particularly limited as long as it is a wireless communication method capable of digital bidirectional communication at a communication speed of a predetermined value or higher and a distance of a predetermined distance or more.
 また例えば、通信部22は、P2P(Peer To Peer)技術を用いて、自車の近傍に存在する端末と通信を行うことができる。自車の近傍に存在する端末は、例えば、歩行者や自転車など比較的低速で移動する移動体が装着する端末、店舗などに位置が固定されて設置される端末、あるいは、MTC(Machine Type Communication)端末である。さらに、通信部22は、V2X通信を行うこともできる。V2X通信とは、例えば、他の車両との間の車車間(Vehicle to Vehicle)通信、路側器等との間の路車間(Vehicle to Infrastructure)通信、家との間(Vehicle to Home)の通信、及び、歩行者が所持する端末等との間の歩車間(Vehicle to Pedestrian)通信等の、自車と他との通信をいう。 Further, for example, the communication unit 22 can communicate with a terminal existing in the vicinity of the own vehicle by using P2P (Peer To Peer) technology. Terminals that exist near the vehicle are, for example, terminals worn by moving objects that move at relatively low speeds such as pedestrians and bicycles, terminals that are fixedly installed in stores, or MTC (Machine Type Communication). ) It is a terminal. Further, the communication unit 22 can also perform V2X communication. V2X communication is, for example, vehicle-to-vehicle (Vehicle to Vehicle) communication with other vehicles, road-to-vehicle (Vehicle to Infrastructure) communication with roadside devices, etc., and vehicle-to-home (Vehicle to Home) communication. , And communication between the vehicle and others, such as vehicle-to-Pedestrian communication with terminals owned by pedestrians.
 通信部22は、例えば、車両制御システム11の動作を制御するソフトウエアを更新するためのプログラムを外部から受信することができる(Over The Air)。通信部22は、さらに、地図情報、交通情報、車両1の周囲の情報等を外部から受信することができる。また例えば、通信部22は、車両1に関する情報や、車両1の周囲の情報等を外部に送信することができる。通信部22が外部に送信する車両1に関する情報としては、例えば、車両1の状態を示すデータ、認識部73による認識結果等がある。さらに例えば、通信部22は、eコール等の車両緊急通報システムに対応した通信を行う。 The communication unit 22 can receive, for example, a program for updating the software that controls the operation of the vehicle control system 11 from the outside (Over The Air). The communication unit 22 can further receive map information, traffic information, information around the vehicle 1, and the like from the outside. Further, for example, the communication unit 22 can transmit information about the vehicle 1, information around the vehicle 1, and the like to the outside. Information about the vehicle 1 transmitted by the communication unit 22 to the outside includes, for example, data indicating the state of the vehicle 1, recognition result by the recognition unit 73, and the like. Further, for example, the communication unit 22 performs communication corresponding to a vehicle emergency call system such as eCall.
 通信部22が実行可能な車内との通信について、概略的に説明する。通信部22は、例えば無線通信を用いて、車内の各機器と通信を行うことができる。通信部22は、例えば、無線LAN、Bluetooth、NFC、WUSB(Wireless USB)といった、無線通信により所定以上の通信速度でディジタル双方向通信が可能な通信方式により、車内の機器と無線通信を行うことができる。これに限らず、通信部22は、有線通信を用いて車内の各機器と通信を行うこともできる。例えば、通信部22は、図示しない接続端子に接続されるケーブルを介した有線通信により、車内の各機器と通信を行うことができる。通信部22は、例えば、USB(Universal Serial Bus)、HDMI(High-Definition Multimedia Interface)(登録商標)、MHL(Mobile High-definition Link)といった、有線通信により所定以上の通信速度でディジタル双方向通信が可能な通信方式により、車内の各機器と通信を行うことができる。 The communication unit 22 will roughly explain the feasible communication with the inside of the vehicle. The communication unit 22 can communicate with each device in the vehicle by using, for example, wireless communication. The communication unit 22 performs wireless communication with devices in the vehicle by a communication method such as wireless LAN, Bluetooth, NFC, WUSB (Wireless USB), which enables digital bidirectional communication at a communication speed higher than a predetermined value by wireless communication. Can be done. Not limited to this, the communication unit 22 can also communicate with each device in the vehicle by using wired communication. For example, the communication unit 22 can communicate with each device in the vehicle by wired communication via a cable connected to a connection terminal (not shown). The communication unit 22 is digital bidirectional communication at a communication speed higher than a predetermined speed by wired communication such as USB (Universal Serial Bus), HDMI (High-Definition Multimedia Interface) (registered trademark), and MHL (Mobile High-definition Link). It is possible to communicate with each device in the car by the communication method capable of.
 ここで、車内の機器とは、例えば、車内において通信ネットワーク41に接続されていない機器を指す。車内の機器としては、例えば、運転者等の搭乗者が所持するモバイル機器やウェアラブル機器、車内に持ち込まれ一時的に設置される情報機器等が想定される。 Here, the device in the vehicle refers to, for example, a device that is not connected to the communication network 41 in the vehicle. As the equipment in the vehicle, for example, mobile equipment and wearable equipment possessed by passengers such as drivers, information equipment brought into the vehicle and temporarily installed, and the like are assumed.
 例えば、通信部22は、電波ビーコン、光ビーコン、FM多重放送等の道路交通情報通信システム(VICS(Vehicle Information and Communication System)(登録商標))により送信される電磁波を受信する。 For example, the communication unit 22 receives an electromagnetic wave transmitted by a vehicle information and communication system (VICS (Vehicle Information and Communication System) (registered trademark)) such as a radio wave beacon, an optical beacon, and FM multiplex broadcasting.
 地図情報蓄積部23は、外部から取得した地図及び車両1で作成した地図の一方または両方を蓄積する。例えば、地図情報蓄積部23は、3次元の高精度地図、高精度地図より精度が低く、広いエリアをカバーするグローバルマップ等を蓄積する。 The map information storage unit 23 stores one or both of the map acquired from the outside and the map created by the vehicle 1. For example, the map information storage unit 23 stores a three-dimensional high-precision map, a global map that is less accurate than the high-precision map and covers a wide area, and the like.
 高精度地図は、例えば、ダイナミックマップ、ポイントクラウドマップ、ベクターマップなどである。ダイナミックマップは、例えば、動的情報、準動的情報、準静的情報、静的情報の4層からなる地図であり、外部のサーバ等から車両1に提供される。ポイントクラウドマップは、ポイントクラウド(点群データ)により構成される地図である。ここで、ベクターマップは、車線や信号の位置といった交通情報などをポイントクラウドマップに対応付けた、ADAS(Advanced Driver Assistance System)に適合させた地図を指すものとする。 High-precision maps are, for example, dynamic maps, point cloud maps, vector maps, etc. The dynamic map is, for example, a map composed of four layers of dynamic information, quasi-dynamic information, quasi-static information, and static information, and is provided to the vehicle 1 from an external server or the like. The point cloud map is a map composed of point clouds (point cloud data). Here, the vector map refers to a map conforming to ADAS (Advanced Driver Assistance System) in which traffic information such as lanes and signal positions are associated with a point cloud map.
 ポイントクラウドマップ及びベクターマップは、例えば、外部のサーバ等から提供されてもよいし、レーダ52、LiDAR53等によるセンシング結果に基づいて、後述するローカルマップとのマッチングを行うための地図として車両1で作成され、地図情報蓄積部23に蓄積されてもよい。また、外部のサーバ等から高精度地図が提供される場合、通信容量を削減するため、車両1がこれから走行する計画経路に関する、例えば数百メートル四方の地図データが外部のサーバ等から取得される。 The point cloud map and the vector map may be provided from, for example, an external server or the like, and the vehicle 1 is used as a map for matching with a local map described later based on the sensing result by the radar 52, LiDAR 53, or the like. It may be created and stored in the map information storage unit 23. Further, when a high-precision map is provided from an external server or the like, in order to reduce the communication capacity, map data of, for example, several hundred meters square, related to the planned route on which the vehicle 1 will travel from now on is acquired from the external server or the like. ..
 GNSS受信部24は、GNSS衛星からGNSS信号を受信し、車両1の位置情報を取得する。受信したGNSS信号は、走行支援・自動運転制御部29に供給される。尚、GNSS受信部24は、GNSS信号を用いた方式に限定されず、例えば、ビーコンを用いて位置情報を取得しても良い。 The GNSS receiving unit 24 receives the GNSS signal from the GNSS satellite and acquires the position information of the vehicle 1. The received GNSS signal is supplied to the driving support / automatic driving control unit 29. The GNSS receiving unit 24 is not limited to the method using the GNSS signal, and may acquire the position information by using, for example, a beacon.
 外部認識センサ25は、車両1の外部の状況の認識に用いられる各種のセンサを備え、各センサからのセンサデータを車両制御システム11の各部に供給する。外部認識センサ25が備えるセンサの種類や数は任意である。 The external recognition sensor 25 includes various sensors used for recognizing the external situation of the vehicle 1, and supplies sensor data from each sensor to each part of the vehicle control system 11. The type and number of sensors included in the external recognition sensor 25 are arbitrary.
 例えば、外部認識センサ25は、カメラ51、レーダ52、LiDAR(Light Detection and Ranging、Laser Imaging Detection and Ranging)53、及び、超音波センサ54を備える。これに限らず、外部認識センサ25は、カメラ51、レーダ52、LiDAR53、及び、超音波センサ54のうち1種類以上のセンサを備える構成でもよい。カメラ51、レーダ52、LiDAR53、及び、超音波センサ54の数は、現実的に車両1に設置可能な数であれば特に限定されない。また、外部認識センサ25が備えるセンサの種類は、この例に限定されず、外部認識センサ25は、他の種類のセンサを備えてもよい。外部認識センサ25が備える各センサのセンシング領域の例は、後述する。 For example, the external recognition sensor 25 includes a camera 51, a radar 52, a LiDAR (Light Detection and Ringing, Laser Imaging Detection and Ringing) 53, and an ultrasonic sensor 54. Not limited to this, the external recognition sensor 25 may be configured to include one or more of the camera 51, the radar 52, the LiDAR 53, and the ultrasonic sensor 54. The number of cameras 51, radar 52, LiDAR 53, and ultrasonic sensors 54 is not particularly limited as long as they can be practically installed in the vehicle 1. Further, the type of sensor included in the external recognition sensor 25 is not limited to this example, and the external recognition sensor 25 may include other types of sensors. An example of the sensing area of each sensor included in the external recognition sensor 25 will be described later.
 なお、カメラ51の撮影方式は、測距が可能な撮影方式であれば特に限定されない。例えば、カメラ51は、ToF(Time Of Flight)カメラ、ステレオカメラ、単眼カメラ、赤外線カメラといった各種の撮影方式のカメラを、必要に応じて適用することができる。これに限らず、カメラ51は、測距に関わらずに、単に撮影画像を取得するためのものであってもよい。 The shooting method of the camera 51 is not particularly limited as long as it is a shooting method capable of distance measurement. For example, as the camera 51, cameras of various shooting methods such as a ToF (Time Of Flight) camera, a stereo camera, a monocular camera, and an infrared camera can be applied as needed. Not limited to this, the camera 51 may be simply for acquiring a captured image regardless of the distance measurement.
 また、例えば、外部認識センサ25は、車両1に対する環境を検出するための環境センサを備えることができる。環境センサは、天候、気象、明るさ等の環境を検出するためのセンサであって、例えば、雨滴センサ、霧センサ、日照センサ、雪センサ、照度センサ等の各種センサを含むことができる。 Further, for example, the external recognition sensor 25 can be provided with an environment sensor for detecting the environment for the vehicle 1. The environment sensor is a sensor for detecting the environment such as weather, weather, and brightness, and may include various sensors such as a raindrop sensor, a fog sensor, a sunshine sensor, a snow sensor, and an illuminance sensor.
 さらに、例えば、外部認識センサ25は、車両1の周囲の音や音源の位置の検出等に用いられるマイクロフォンを備える。 Further, for example, the external recognition sensor 25 includes a microphone used for detecting the sound around the vehicle 1 and the position of the sound source.
 車内センサ26は、車内の情報を検出するための各種のセンサを備え、各センサからのセンサデータを車両制御システム11の各部に供給する。車内センサ26が備える各種センサの種類や数は、現実的に車両1に設置可能な数であれば特に限定されない。 The in-vehicle sensor 26 includes various sensors for detecting information in the vehicle, and supplies sensor data from each sensor to each part of the vehicle control system 11. The type and number of various sensors included in the in-vehicle sensor 26 are not particularly limited as long as they can be practically installed in the vehicle 1.
 例えば、車内センサ26は、カメラ、レーダ、着座センサ、ステアリングホイールセンサ、マイクロフォン、生体センサのうち1種類以上のセンサを備えることができる。車内センサ26が備えるカメラとしては、例えば、ToFカメラ、ステレオカメラ、単眼カメラ、赤外線カメラといった、測距可能な各種の撮影方式のカメラを用いることができる。これに限らず、車内センサ26が備えるカメラは、測距に関わらずに、単に撮影画像を取得するためのものであってもよい。車内センサ26が備える生体センサは、例えば、シートやステリングホイール等に設けられ、運転者等の搭乗者の各種の生体情報を検出する。 For example, the in-vehicle sensor 26 can include one or more of a camera, a radar, a seating sensor, a steering wheel sensor, a microphone, and a biosensor. As the camera included in the in-vehicle sensor 26, for example, a camera of various shooting methods capable of measuring a distance, such as a ToF camera, a stereo camera, a monocular camera, and an infrared camera, can be used. Not limited to this, the camera included in the in-vehicle sensor 26 may be simply for acquiring a captured image regardless of the distance measurement. The biosensor included in the in-vehicle sensor 26 is provided on, for example, a seat, a stelling wheel, or the like, and detects various biometric information of a passenger such as a driver.
 車両センサ27は、車両1の状態を検出するための各種のセンサを備え、各センサからのセンサデータを車両制御システム11の各部に供給する。車両センサ27が備える各種センサの種類や数は、現実的に車両1に設置可能な数であれば特に限定されない。 The vehicle sensor 27 includes various sensors for detecting the state of the vehicle 1, and supplies sensor data from each sensor to each part of the vehicle control system 11. The type and number of various sensors included in the vehicle sensor 27 are not particularly limited as long as they can be practically installed in the vehicle 1.
 例えば、車両センサ27は、速度センサ、加速度センサ、角速度センサ(ジャイロセンサ)、及び、それらを統合した慣性計測装置(IMU(Inertial Measurement Unit))を備える。例えば、車両センサ27は、ステアリングホイールの操舵角を検出する操舵角センサ、ヨーレートセンサ、アクセルペダルの操作量を検出するアクセルセンサ、及び、ブレーキペダルの操作量を検出するブレーキセンサを備える。例えば、車両センサ27は、エンジンやモータの回転数を検出する回転センサ、タイヤの空気圧を検出する空気圧センサ、タイヤのスリップ率を検出するスリップ率センサ、及び、車輪の回転速度を検出する車輪速センサを備える。例えば、車両センサ27は、バッテリの残量及び温度を検出するバッテリセンサ、及び、外部からの衝撃を検出する衝撃センサを備える。 For example, the vehicle sensor 27 includes a speed sensor, an acceleration sensor, an angular velocity sensor (gyro sensor), and an inertial measurement unit (IMU (Inertial Measurement Unit)) that integrates them. For example, the vehicle sensor 27 includes a steering angle sensor that detects the steering angle of the steering wheel, a yaw rate sensor, an accelerator sensor that detects the operation amount of the accelerator pedal, and a brake sensor that detects the operation amount of the brake pedal. For example, the vehicle sensor 27 includes a rotation sensor that detects the rotation speed of an engine or a motor, an air pressure sensor that detects tire air pressure, a slip ratio sensor that detects tire slip ratio, and a wheel speed that detects wheel rotation speed. Equipped with a sensor. For example, the vehicle sensor 27 includes a battery sensor that detects the remaining amount and temperature of the battery, and an impact sensor that detects an impact from the outside.
 記録部28は、不揮発性の記憶媒体および揮発性の記憶媒体のうち少なくとも一方を含み、データやプログラムを記憶する。記録部28は、例えばEEPROM(Electrically Erasable Programmable Read Only Memory)およびRAM(Random Access Memory)として用いられ、記憶媒体としては、HDD(Hard Disc Drive)といった磁気記憶デバイス、半導体記憶デバイス、光記憶デバイス、及び、光磁気記憶デバイスを適用することができる。記録部28は、車両制御システム11の各部が用いる各種プログラムやデータを記録する。例えば、記録部28は、EDR(Event Data Recorder)やDSSAD(Data Storage System for Automated Driving)を備え、事故等のイベントの前後の車両1の情報や車内センサ26によって取得された生体情報を記録する。 The recording unit 28 includes at least one of a non-volatile storage medium and a volatile storage medium, and stores data and programs. The recording unit 28 is used as, for example, an EEPROM (Electrically Erasable Programmable Read Only Memory) and a RAM (Random Access Memory), and as a storage medium, a magnetic storage device such as an HDD (Hard Disc Drive), a semiconductor storage device, an optical storage device, and the like. And a photomagnetic storage device can be applied. The recording unit 28 records various programs and data used by each unit of the vehicle control system 11. For example, the recording unit 28 is equipped with EDR (Event Data Recorder) and DSSAD (Data Storage System for Automated Driving), and records information on the vehicle 1 before and after an event such as an accident and biometric information acquired by the in-vehicle sensor 26. ..
 走行支援・自動運転制御部29は、車両1の走行支援及び自動運転の制御を行う。例えば、走行支援・自動運転制御部29は、分析部61、行動計画部62、及び、動作制御部63を備える。 The driving support / automatic driving control unit 29 controls the driving support and automatic driving of the vehicle 1. For example, the driving support / automatic driving control unit 29 includes an analysis unit 61, an action planning unit 62, and an motion control unit 63.
 分析部61は、車両1及び周囲の状況の分析処理を行う。分析部61は、自己位置推定部71、センサフュージョン部72、及び、認識部73を備える。 The analysis unit 61 analyzes the vehicle 1 and the surrounding conditions. The analysis unit 61 includes a self-position estimation unit 71, a sensor fusion unit 72, and a recognition unit 73.
 自己位置推定部71は、外部認識センサ25からのセンサデータ、及び、地図情報蓄積部23に蓄積されている高精度地図に基づいて、車両1の自己位置を推定する。例えば、自己位置推定部71は、外部認識センサ25からのセンサデータに基づいてローカルマップを生成し、ローカルマップと高精度地図とのマッチングを行うことにより、車両1の自己位置を推定する。車両1の位置は、例えば、後輪対車軸の中心が基準とされる。 The self-position estimation unit 71 estimates the self-position of the vehicle 1 based on the sensor data from the external recognition sensor 25 and the high-precision map stored in the map information storage unit 23. For example, the self-position estimation unit 71 generates a local map based on the sensor data from the external recognition sensor 25, and estimates the self-position of the vehicle 1 by matching the local map with the high-precision map. The position of the vehicle 1 is based on, for example, the center of the rear wheel-to-axle.
 ローカルマップは、例えば、SLAM(Simultaneous Localization and Mapping)等の技術を用いて作成される3次元の高精度地図、占有格子地図(Occupancy Grid Map)等である。3次元の高精度地図は、例えば、上述したポイントクラウドマップ等である。占有格子地図は、車両1の周囲の3次元又は2次元の空間を所定の大きさのグリッド(格子)に分割し、グリッド単位で物体の占有状態を示す地図である。物体の占有状態は、例えば、物体の有無や存在確率により示される。ローカルマップは、例えば、認識部73による車両1の外部の状況の検出処理及び認識処理にも用いられる。 The local map is, for example, a three-dimensional high-precision map created by using a technology such as SLAM (Simultaneous Localization and Mapping), an occupied grid map (Occupancy Grid Map), or the like. The three-dimensional high-precision map is, for example, the point cloud map described above. The occupied grid map is a map that divides a three-dimensional or two-dimensional space around the vehicle 1 into a grid (grid) of a predetermined size and shows the occupied state of an object in grid units. The occupied state of an object is indicated by, for example, the presence or absence of an object and the probability of existence. The local map is also used, for example, in the detection process and the recognition process of the external situation of the vehicle 1 by the recognition unit 73.
 なお、自己位置推定部71は、GNSS信号、及び、車両センサ27からのセンサデータに基づいて、車両1の自己位置を推定してもよい。 The self-position estimation unit 71 may estimate the self-position of the vehicle 1 based on the GNSS signal and the sensor data from the vehicle sensor 27.
 センサフュージョン部72は、複数の異なる種類のセンサデータ(例えば、カメラ51から供給される画像データ、及び、レーダ52から供給されるセンサデータ)を組み合わせて、新たな情報を得るセンサフュージョン処理を行う。異なる種類のセンサデータを組合せる方法としては、統合、融合、連合等がある。 The sensor fusion unit 72 performs a sensor fusion process for obtaining new information by combining a plurality of different types of sensor data (for example, image data supplied from the camera 51 and sensor data supplied from the radar 52). .. Methods for combining different types of sensor data include integration, fusion, and association.
 認識部73は、車両1の外部の状況の検出を行う検出処理と、車両1の外部の状況の認識を行う認識処理と、を実行する。 The recognition unit 73 executes a detection process for detecting the external situation of the vehicle 1 and a recognition process for recognizing the external situation of the vehicle 1.
 例えば、認識部73は、外部認識センサ25からの情報、自己位置推定部71からの情報、センサフュージョン部72からの情報等に基づいて、車両1の外部の状況の検出処理及び認識処理を行う。 For example, the recognition unit 73 performs detection processing and recognition processing of the external situation of the vehicle 1 based on the information from the external recognition sensor 25, the information from the self-position estimation unit 71, the information from the sensor fusion unit 72, and the like. ..
 具体的には、例えば、認識部73は、車両1の周囲の物体の検出処理及び認識処理等を行う。物体の検出処理とは、例えば、物体の有無、大きさ、形、位置、動き等を検出する処理である。物体の認識処理とは、例えば、物体の種類等の属性を認識したり、特定の物体を識別したりする処理である。ただし、検出処理と認識処理とは、必ずしも明確に分かれるものではなく、重複する場合がある。 Specifically, for example, the recognition unit 73 performs detection processing, recognition processing, and the like of objects around the vehicle 1. The object detection process is, for example, a process of detecting the presence / absence, size, shape, position, movement, etc. of an object. The object recognition process is, for example, a process of recognizing an attribute such as an object type or identifying a specific object. However, the detection process and the recognition process are not always clearly separated and may overlap.
 例えば、認識部73は、LiDAR53又はレーダ52等によるセンサデータに基づくポイントクラウドを点群の塊毎に分類するクラスタリングを行うことにより、車両1の周囲の物体を検出する。これにより、車両1の周囲の物体の有無、大きさ、形状、位置が検出される。 For example, the recognition unit 73 detects an object around the vehicle 1 by performing clustering that classifies the point cloud based on the sensor data by the LiDAR 53, the radar 52, or the like into each block of the point cloud. As a result, the presence / absence, size, shape, and position of an object around the vehicle 1 are detected.
 例えば、認識部73は、クラスタリングにより分類された点群の塊の動きを追従するトラッキングを行うことにより、車両1の周囲の物体の動きを検出する。これにより、車両1の周囲の物体の速度及び進行方向(移動ベクトル)が検出される。 For example, the recognition unit 73 detects the movement of an object around the vehicle 1 by performing tracking that follows the movement of a mass of point clouds classified by clustering. As a result, the velocity and the traveling direction (movement vector) of the object around the vehicle 1 are detected.
 例えば、認識部73は、カメラ51から供給される画像データに対して、車両、人、自転車、障害物、構造物、道路、信号機、交通標識、道路標示などを検出または認識する。また、セマンティックセグメンテーション等の認識処理を行うことにより、車両1の周囲の物体の種類を認識してもよい。 For example, the recognition unit 73 detects or recognizes a vehicle, a person, a bicycle, an obstacle, a structure, a road, a traffic light, a traffic sign, a road sign, or the like with respect to the image data supplied from the camera 51. Further, the type of the object around the vehicle 1 may be recognized by performing the recognition process such as semantic segmentation.
 例えば、認識部73は、地図情報蓄積部23に蓄積されている地図、自己位置推定部71による自己位置の推定結果、及び、認識部73による車両1の周囲の物体の認識結果に基づいて、車両1の周囲の交通ルールの認識処理を行うことができる。認識部73は、この処理により、信号の位置及び状態、交通標識及び道路標示の内容、交通規制の内容、並びに、走行可能な車線などを認識することができる。 For example, the recognition unit 73 is based on the map stored in the map information storage unit 23, the self-position estimation result by the self-position estimation unit 71, and the recognition result of the object around the vehicle 1 by the recognition unit 73. It is possible to perform recognition processing of traffic rules around the vehicle 1. By this processing, the recognition unit 73 can recognize the position and state of the signal, the content of the traffic sign and the road marking, the content of the traffic regulation, the lane in which the vehicle can travel, and the like.
 例えば、認識部73は、車両1の周囲の環境の認識処理を行うことができる。認識部73が認識対象とする周囲の環境としては、天候、気温、湿度、明るさ、及び、路面の状態等が想定される。 For example, the recognition unit 73 can perform recognition processing of the environment around the vehicle 1. As the surrounding environment to be recognized by the recognition unit 73, weather, temperature, humidity, brightness, road surface condition, and the like are assumed.
 行動計画部62は、車両1の行動計画を作成する。例えば、行動計画部62は、経路計画、経路追従の処理を行うことにより、行動計画を作成する。 The action planning unit 62 creates an action plan for the vehicle 1. For example, the action planning unit 62 creates an action plan by performing route planning and route tracking processing.
 なお、経路計画(Global path planning)とは、スタートからゴールまでの大まかな経路を計画する処理である。この経路計画には、軌道計画と言われ、経路計画で計画された経路において、車両1の運動特性を考慮して、車両1の近傍で安全かつ滑らかに進行することが可能な軌道生成(Local path planning)の処理も含まれる。経路計画を長期経路計画、および起動生成を短期経路計画、または局所経路計画と区別してもよい。安全優先経路は、起動生成、短期経路計画、または局所経路計画と同様の概念を表す。 Note that route planning (Global path planning) is a process of planning a rough route from the start to the goal. This route plan is called a track plan, and in the route planned by the route plan, the track generation (Local) capable of safely and smoothly traveling in the vicinity of the vehicle 1 in consideration of the motion characteristics of the vehicle 1 is taken into consideration. The processing of path planning) is also included. The route plan may be distinguished from the long-term route plan and the activation generation from the short-term route plan or the local route plan. The safety priority route represents a concept similar to activation generation, short-term route planning, or local route planning.
 経路追従とは、経路計画により計画した経路を計画された時間内で安全かつ正確に走行するための動作を計画する処理である。行動計画部62は、例えば、この経路追従の処理の結果に基づき、車両1の目標速度と目標角速度を計算することができる。 Route tracking is a process of planning an operation for safely and accurately traveling on a route planned by route planning within a planned time. The action planning unit 62 can calculate, for example, the target speed and the target angular velocity of the vehicle 1 based on the result of this route tracking process.
 動作制御部63は、行動計画部62により作成された行動計画を実現するために、車両1の動作を制御する。 The motion control unit 63 controls the motion of the vehicle 1 in order to realize the action plan created by the action plan unit 62.
 例えば、動作制御部63は、後述する車両制御部32に含まれる、ステアリング制御部81、ブレーキ制御部82、及び、駆動制御部83を制御して、軌道計画により計算された軌道を車両1が進行するように、加減速制御及び方向制御を行う。例えば、動作制御部63は、衝突回避あるいは衝撃緩和、追従走行、車速維持走行、自車の衝突警告、自車のレーン逸脱警告等のADASの機能実現を目的とした協調制御を行う。例えば、動作制御部63は、運転者の操作によらずに自律的に走行する自動運転等を目的とした協調制御を行う。 For example, the motion control unit 63 controls the steering control unit 81, the brake control unit 82, and the drive control unit 83, which are included in the vehicle control unit 32 described later, and the vehicle 1 controls the track calculated by the track plan. Acceleration / deceleration control and direction control are performed so as to proceed. For example, the motion control unit 63 performs coordinated control for the purpose of realizing ADAS functions such as collision avoidance or impact mitigation, follow-up travel, vehicle speed maintenance travel, collision warning of own vehicle, and lane deviation warning of own vehicle. For example, the motion control unit 63 performs coordinated control for the purpose of automatic driving or the like that autonomously travels without being operated by the driver.
 DMS30は、車内センサ26からのセンサデータ、及び、後述するHMI31に入力される入力データ等に基づいて、運転者の認証処理、及び、運転者の状態の認識処理等を行う。この場合にDMS30の認識対象となる運転者の状態としては、例えば、体調、覚醒度、集中度、疲労度、視線方向、酩酊度、運転操作、姿勢等が想定される。 The DMS 30 performs driver authentication processing, driver status recognition processing, and the like based on sensor data from the in-vehicle sensor 26 and input data input to HMI 31 described later. In this case, as the state of the driver to be recognized by the DMS 30, for example, physical condition, arousal degree, concentration degree, fatigue degree, line-of-sight direction, drunkenness, driving operation, posture and the like are assumed.
 なお、DMS30が、運転者以外の搭乗者の認証処理、及び、当該搭乗者の状態の認識処理を行うようにしてもよい。また、例えば、DMS30が、車内センサ26からのセンサデータに基づいて、車内の状況の認識処理を行うようにしてもよい。認識対象となる車内の状況としては、例えば、気温、湿度、明るさ、臭い等が想定される。 Note that the DMS 30 may perform authentication processing for passengers other than the driver and recognition processing for the status of the passenger. Further, for example, the DMS 30 may perform the recognition processing of the situation inside the vehicle based on the sensor data from the sensor 26 in the vehicle. As the situation inside the vehicle to be recognized, for example, temperature, humidity, brightness, odor, etc. are assumed.
 HMI31は、各種のデータや指示等の入力と、各種のデータの運転者などへの提示を行う。 HMI31 inputs various data and instructions, and presents various data to the driver and the like.
 HMI31によるデータの入力について、概略的に説明する。HMI31は、人がデータを入力するための入力デバイスを備える。HMI31は、入力デバイスにより入力されたデータや指示等に基づいて入力信号を生成し、車両制御システム11の各部に供給する。HMI31は、入力デバイスとして、例えばタッチパネル、ボタン、スイッチ、及び、レバーといった操作子を備える。これに限らず、HMI31は、音声やジェスチャ等により手動操作以外の方法で情報を入力可能な入力デバイスをさらに備えてもよい。さらに、HMI31は、例えば、赤外線あるいは電波を利用したリモートコントロール装置や、車両制御システム11の操作に対応したモバイル機器若しくはウェアラブル機器等の外部接続機器を入力デバイスとして用いてもよい。 The data input by HMI31 will be outlined. The HMI 31 includes an input device for a person to input data. The HMI 31 generates an input signal based on data, instructions, and the like input by the input device, and supplies the input signal to each part of the vehicle control system 11. The HMI 31 includes an operator such as a touch panel, a button, a switch, and a lever as an input device. Not limited to this, the HMI 31 may further include an input device capable of inputting information by a method other than manual operation by voice, gesture, or the like. Further, the HMI 31 may use, for example, a remote control device using infrared rays or radio waves, or an externally connected device such as a mobile device or a wearable device corresponding to the operation of the vehicle control system 11 as an input device.
 HMI31によるデータの提示について、概略的に説明する。HMI31は、搭乗者又は車外に対する視覚情報、聴覚情報、及び、触覚情報の生成を行う。また、HMI31は、生成されたこれら各情報の出力、出力内容、出力タイミングおよび出力方法等を制御する出力制御を行う。HMI31は、視覚情報として、例えば、操作画面、車両1の状態表示、警告表示、車両1の周囲の状況を示すモニタ画像等の画像や光により示される情報を生成および出力する。また、HMI31は、聴覚情報として、例えば、音声ガイダンス、警告音、警告メッセージ等の音により示される情報を生成および出力する。さらに、HMI31は、触覚情報として、例えば、力、振動、動き等により搭乗者の触覚に与えられる情報を生成および出力する。 The presentation of data by HMI31 will be outlined. The HMI 31 generates visual information, auditory information, and tactile information for the passenger or the outside of the vehicle. Further, the HMI 31 performs output control for controlling the output, output content, output timing, output method, etc. of each of the generated information. As visual information, the HMI 31 generates and outputs, for example, an image such as an operation screen, a status display of the vehicle 1, a warning display, a monitor image showing the situation around the vehicle 1, or information indicated by light. Further, the HMI 31 generates and outputs as auditory information, for example, information indicated by sounds such as voice guidance, warning sounds, and warning messages. Further, the HMI 31 generates and outputs tactile information that is given to the tactile sensation of the occupant by, for example, force, vibration, movement, or the like.
 HMI31が視覚情報を出力する出力デバイスとしては、例えば、自身が画像を表示することで視覚情報を提示する表示装置や、画像を投影することで視覚情報を提示するプロジェクタ装置を適用することができる。なお、表示装置は、通常のディスプレイを有する表示装置以外にも、例えば、ヘッドアップディスプレイ、透過型ディスプレイ、AR(Augmented Reality)機能を備えるウエアラブルデバイスといった、搭乗者の視界内に視覚情報を表示する装置であってもよい。また、HMI31は、車両1に設けられるナビゲーション装置、インストルメントパネル、CMS(Camera Monitoring System)、電子ミラー、ランプなどが有する表示デバイスを、視覚情報を出力する出力デバイスとして用いることも可能である。 As an output device for which the HMI 31 outputs visual information, for example, a display device that presents visual information by displaying an image by itself or a projector device that presents visual information by projecting an image can be applied. .. In addition to the display device having a normal display, the display device displays visual information in the passenger's field of view, such as a head-up display, a transmissive display, and a wearable device having an AR (Augmented Reality) function. It may be a device. Further, the HMI 31 can also use a display device of a navigation device, an instrument panel, a CMS (Camera Monitoring System), an electronic mirror, a lamp, etc. provided in the vehicle 1 as an output device for outputting visual information.
 HMI31が聴覚情報を出力する出力デバイスとしては、例えば、オーディオスピーカ、ヘッドホン、イヤホンを適用することができる。 As an output device for which the HMI 31 outputs auditory information, for example, an audio speaker, headphones, or earphones can be applied.
 HMI31が触覚情報を出力する出力デバイスとしては、例えば、ハプティクス技術を用いたハプティクス素子を適用することができる。ハプティクス素子は、例えば、ステアリングホイール、シートといった、車両1の搭乗者が接触する部分に設けられる。 As an output device for which the HMI 31 outputs tactile information, for example, a haptics element using haptics technology can be applied. The haptic element is provided in a portion of the vehicle 1 in contact with the occupant, such as a steering wheel or a seat.
 車両制御部32は、車両1の各部の制御を行う。車両制御部32は、ステアリング制御部81、ブレーキ制御部82、駆動制御部83、ボディ系制御部84、ライト制御部85、及び、ホーン制御部86を備える。 The vehicle control unit 32 controls each part of the vehicle 1. The vehicle control unit 32 includes a steering control unit 81, a brake control unit 82, a drive control unit 83, a body system control unit 84, a light control unit 85, and a horn control unit 86.
 ステアリング制御部81は、車両1のステアリングシステムの状態の検出及び制御等を行う。ステアリングシステムは、例えば、ステアリングホイール等を備えるステアリング機構、電動パワーステアリング等を備える。ステアリング制御部81は、例えば、ステアリングシステムの制御を行うECU等の制御ユニット、ステアリングシステムの駆動を行うアクチュエータ等を備える。 The steering control unit 81 detects and controls the state of the steering system of the vehicle 1. The steering system includes, for example, a steering mechanism including a steering wheel, electric power steering, and the like. The steering control unit 81 includes, for example, a control unit such as an ECU that controls the steering system, an actuator that drives the steering system, and the like.
 ブレーキ制御部82は、車両1のブレーキシステムの状態の検出及び制御等を行う。ブレーキシステムは、例えば、ブレーキペダル等を含むブレーキ機構、ABS(Antilock Brake System)、回生ブレーキ機構等を備える。ブレーキ制御部82は、例えば、ブレーキシステムの制御を行うECU等の制御ユニット等を備える。 The brake control unit 82 detects and controls the state of the brake system of the vehicle 1. The brake system includes, for example, a brake mechanism including a brake pedal, ABS (Antilock Brake System), a regenerative brake mechanism, and the like. The brake control unit 82 includes, for example, a control unit such as an ECU that controls the brake system.
 駆動制御部83は、車両1の駆動システムの状態の検出及び制御等を行う。駆動システムは、例えば、アクセルペダル、内燃機関又は駆動用モータ等の駆動力を発生させるための駆動力発生装置、駆動力を車輪に伝達するための駆動力伝達機構等を備える。駆動制御部83は、例えば、駆動システムの制御を行うECU等の制御ユニット等を備える。 The drive control unit 83 detects and controls the state of the drive system of the vehicle 1. The drive system includes, for example, a drive force generator for generating a drive force of an accelerator pedal, an internal combustion engine, a drive motor, or the like, a drive force transmission mechanism for transmitting the drive force to the wheels, and the like. The drive control unit 83 includes, for example, a control unit such as an ECU that controls the drive system.
 ボディ系制御部84は、車両1のボディ系システムの状態の検出及び制御等を行う。ボディ系システムは、例えば、キーレスエントリシステム、スマートキーシステム、パワーウインドウ装置、パワーシート、空調装置、エアバッグ、シートベルト、シフトレバー等を備える。ボディ系制御部84は、例えば、ボディ系システムの制御を行うECU等の制御ユニット等を備える。 The body system control unit 84 detects and controls the state of the body system of the vehicle 1. The body system includes, for example, a keyless entry system, a smart key system, a power window device, a power seat, an air conditioner, an airbag, a seat belt, a shift lever, and the like. The body system control unit 84 includes, for example, a control unit such as an ECU that controls the body system.
 ライト制御部85は、車両1の各種のライトの状態の検出及び制御等を行う。制御対象となるライトとしては、例えば、ヘッドライト、バックライト、フォグライト、ターンシグナル、ブレーキライト、プロジェクション、バンパーの表示等が想定される。ライト制御部85は、ライトの制御を行うECU等の制御ユニット等を備える。 The light control unit 85 detects and controls various light states of the vehicle 1. As the light to be controlled, for example, a headlight, a backlight, a fog light, a turn signal, a brake light, a projection, a bumper display, or the like is assumed. The light control unit 85 includes a control unit such as an ECU that controls the light.
 ホーン制御部86は、車両1のカーホーンの状態の検出及び制御等を行う。ホーン制御部86は、例えば、カーホーンの制御を行うECU等の制御ユニット等を備える。 The horn control unit 86 detects and controls the state of the car horn of the vehicle 1. The horn control unit 86 includes, for example, a control unit such as an ECU that controls the car horn.
 図2は、図1の外部認識センサ25のカメラ51、レーダ52、LiDAR53、及び、超音波センサ54等によるセンシング領域の例を示す図である。なお、図2において、車両1を上面から見た様子が模式的に示され、左端側が車両1の前端(フロント)側であり、右端側が車両1の後端(リア)側となっている。 FIG. 2 is a diagram showing an example of a sensing region of the external recognition sensor 25 of FIG. 1 by a camera 51, a radar 52, a LiDAR 53, an ultrasonic sensor 54, and the like. Note that FIG. 2 schematically shows a view of the vehicle 1 from above, with the left end side being the front end (front) side of the vehicle 1 and the right end side being the rear end (rear) side of the vehicle 1.
 センシング領域91F及びセンシング領域91Bは、超音波センサ54のセンシング領域の例を示している。センシング領域91Fは、複数の超音波センサ54によって車両1の前端周辺をカバーしている。センシング領域91Bは、複数の超音波センサ54によって車両1の後端周辺をカバーしている。 The sensing area 91F and the sensing area 91B show an example of the sensing area of the ultrasonic sensor 54. The sensing region 91F covers the vicinity of the front end of the vehicle 1 by a plurality of ultrasonic sensors 54. The sensing region 91B covers the periphery of the rear end of the vehicle 1 by a plurality of ultrasonic sensors 54.
 センシング領域91F及びセンシング領域91Bにおけるセンシング結果は、例えば、車両1の駐車支援等に用いられる。 The sensing results in the sensing area 91F and the sensing area 91B are used, for example, for parking support of the vehicle 1.
 センシング領域92F乃至センシング領域92Bは、短距離又は中距離用のレーダ52のセンシング領域の例を示している。センシング領域92Fは、車両1の前方において、センシング領域91Fより遠い位置までカバーしている。センシング領域92Bは、車両1の後方において、センシング領域91Bより遠い位置までカバーしている。センシング領域92Lは、車両1の左側面の後方の周辺をカバーしている。センシング領域92Rは、車両1の右側面の後方の周辺をカバーしている。 The sensing area 92F to the sensing area 92B show an example of the sensing area of the radar 52 for a short distance or a medium distance. The sensing area 92F covers a position farther than the sensing area 91F in front of the vehicle 1. The sensing region 92B covers the rear of the vehicle 1 to a position farther than the sensing region 91B. The sensing region 92L covers the rear periphery of the left side surface of the vehicle 1. The sensing region 92R covers the rear periphery of the right side surface of the vehicle 1.
 センシング領域92Fにおけるセンシング結果は、例えば、車両1の前方に存在する車両や歩行者等の検出等に用いられる。センシング領域92Bにおけるセンシング結果は、例えば、車両1の後方の衝突防止機能等に用いられる。センシング領域92L及びセンシング領域92Rにおけるセンシング結果は、例えば、車両1の側方の死角における物体の検出等に用いられる。 The sensing result in the sensing area 92F is used, for example, for detecting a vehicle, a pedestrian, or the like existing in front of the vehicle 1. The sensing result in the sensing region 92B is used, for example, for a collision prevention function behind the vehicle 1. The sensing results in the sensing region 92L and the sensing region 92R are used, for example, for detecting an object in a blind spot on the side of the vehicle 1.
 センシング領域93F乃至センシング領域93Bは、カメラ51によるセンシング領域の例を示している。センシング領域93Fは、車両1の前方において、センシング領域92Fより遠い位置までカバーしている。センシング領域93Bは、車両1の後方において、センシング領域92Bより遠い位置までカバーしている。センシング領域93Lは、車両1の左側面の周辺をカバーしている。センシング領域93Rは、車両1の右側面の周辺をカバーしている。 The sensing area 93F to the sensing area 93B show an example of the sensing area by the camera 51. The sensing region 93F covers a position farther than the sensing region 92F in front of the vehicle 1. The sensing region 93B covers the rear of the vehicle 1 to a position farther than the sensing region 92B. The sensing region 93L covers the periphery of the left side surface of the vehicle 1. The sensing region 93R covers the periphery of the right side surface of the vehicle 1.
 センシング領域93Fにおけるセンシング結果は、例えば、信号機や交通標識の認識、車線逸脱防止支援システム、自動ヘッドライト制御システムに用いることができる。センシング領域93Bにおけるセンシング結果は、例えば、駐車支援、及び、サラウンドビューシステムに用いることができる。センシング領域93L及びセンシング領域93Rにおけるセンシング結果は、例えば、サラウンドビューシステムに用いることができる。 The sensing result in the sensing area 93F can be used, for example, for recognition of traffic lights and traffic signs, a lane departure prevention support system, and an automatic headlight control system. The sensing result in the sensing region 93B can be used, for example, for parking assistance and a surround view system. The sensing results in the sensing region 93L and the sensing region 93R can be used, for example, in a surround view system.
 センシング領域94は、LiDAR53のセンシング領域の例を示している。センシング領域94は、車両1の前方において、センシング領域93Fより遠い位置までカバーしている。一方、センシング領域94は、センシング領域93Fより左右方向の範囲が狭くなっている。 The sensing area 94 shows an example of the sensing area of LiDAR53. The sensing region 94 covers a position far from the sensing region 93F in front of the vehicle 1. On the other hand, the sensing area 94 has a narrower range in the left-right direction than the sensing area 93F.
 センシング領域94におけるセンシング結果は、例えば、周辺車両等の物体検出に用いられる。 The sensing result in the sensing area 94 is used for detecting an object such as a peripheral vehicle, for example.
 センシング領域95は、長距離用のレーダ52のセンシング領域の例を示している。センシング領域95は、車両1の前方において、センシング領域94より遠い位置までカバーしている。一方、センシング領域95は、センシング領域94より左右方向の範囲が狭くなっている。 The sensing area 95 shows an example of the sensing area of the radar 52 for a long distance. The sensing region 95 covers a position far from the sensing region 94 in front of the vehicle 1. On the other hand, the sensing region 95 has a narrower range in the left-right direction than the sensing region 94.
 センシング領域95におけるセンシング結果は、例えば、ACC(Adaptive Cruise Control)、緊急ブレーキ、衝突回避等に用いられる。 The sensing result in the sensing area 95 is used for, for example, ACC (Adaptive Cruise Control), emergency braking, collision avoidance, and the like.
 なお、外部認識センサ25が含むカメラ51、レーダ52、LiDAR53、及び、超音波センサ54の各センサのセンシング領域は、図2以外に各種の構成をとってもよい。具体的には、超音波センサ54が車両1の側方もセンシングするようにしてもよいし、LiDAR53が車両1の後方をセンシングするようにしてもよい。また、各センサの設置位置は、上述した各例に限定されない。また、各センサの数は、1つでも良いし、複数であっても良い。 Note that the sensing areas of the cameras 51, radar 52, LiDAR 53, and ultrasonic sensors 54 included in the external recognition sensor 25 may have various configurations other than those in FIG. 2. Specifically, the ultrasonic sensor 54 may be made to sense the side of the vehicle 1, or the LiDAR 53 may be made to sense the rear of the vehicle 1. Further, the installation position of each sensor is not limited to each of the above-mentioned examples. Further, the number of each sensor may be one or a plurality.
 以上のような構成において、車両の発進時、停車時、旋回時等における慣性力や走行中の路面の凹凸による車両の振動等によってカメラ51の向き(すなわち、姿勢)が急激に変化すると、カメラ51により取得される画像に伸縮や歪みが発生したり、取得された画像に写る物体の位置が急激に変化したりなどにより、画質が著しく低下してしまう場合がある。このような歪みや位置変化による画質の低下は、認識処理における物体の誤認識やロストなどを誘発させ得るため、認識精度を低下させる要因となる。 In the above configuration, when the direction (that is, the posture) of the camera 51 suddenly changes due to the inertial force when the vehicle starts, stops, turns, etc., or the vibration of the vehicle due to the unevenness of the road surface during traveling, the camera The image quality may be significantly deteriorated due to expansion and contraction or distortion of the image acquired by 51, or a sudden change in the position of an object appearing in the acquired image. Deterioration of image quality due to such distortion or position change can induce erroneous recognition or loss of an object in the recognition process, which is a factor of deteriorating recognition accuracy.
 図3は、正常走行時に車両の前方カメラで撮影された画像の一例を示す図であり、図4は、急停止時に車両の前方カメラで撮影された画像の一例を示す図である。車両1が走行中に急停止すると、慣性モーメントにより車両1の前方が沈み込む、いわゆるノーズダイブが発生する。すると、図3から図4に示すように、車両1の前方カメラの向きが急激に下方向に向くこととなり、それにより、通常走行中に撮影されていた被写体(例えば、前方を走る車両)が矢印A1の方向へ瞬間的に移動することとなる。このような現象が発生すると、認識処理において被写体の誤認識やロストなどが発生し、認識精度が低下するため、例えば自動運転などにおいて正常に被写体を追尾することが困難となり得る。 FIG. 3 is a diagram showing an example of an image taken by the front camera of the vehicle during normal driving, and FIG. 4 is a diagram showing an example of an image taken by the front camera of the vehicle during a sudden stop. When the vehicle 1 suddenly stops while traveling, a so-called nose dive occurs in which the front of the vehicle 1 sinks due to the moment of inertia. Then, as shown in FIGS. 3 to 4, the direction of the front camera of the vehicle 1 suddenly turns downward, whereby the subject (for example, the vehicle running in front) photographed during normal driving is exposed. It will move momentarily in the direction of arrow A1. When such a phenomenon occurs, erroneous recognition or loss of the subject occurs in the recognition process, and the recognition accuracy is lowered. Therefore, it may be difficult to track the subject normally in, for example, automatic driving.
 そこで以下の実施形態では、認識精度の低下を抑制することが可能な情報処理装置、情報処理システム及び情報処理方法を提案する。例えば、イメージセンサなどのセンサが外部衝撃などに基づいて急激に姿勢変化した場合、センサで取得される画像データなどの環境情報にこの外部衝撃に基づく揺れが生じ、それにより、環境情報の質(画像データであれば画質)が低下し得る。そこで以下の実施形態では、このような要因等により生じた情報品質の低下に起因する認識精度の低下を抑制することが可能な情報処理装置、情報処理システム及び情報処理方法を提案する。なお、以上で説明した車両制御システムは、以下で説明する実施形態の適用先の単なる一例である。すなわち、以下で説明する実施形態は、画像データなどのデータの転送を伴う種々の装置、システム、方法、プログラム等に対して適用することが可能である。 Therefore, in the following embodiments, we propose an information processing device, an information processing system, and an information processing method capable of suppressing a decrease in recognition accuracy. For example, when a sensor such as an image sensor suddenly changes its posture based on an external impact, the environmental information such as image data acquired by the sensor shakes due to this external impact, thereby causing the quality of the environmental information ( If it is image data, the image quality) may deteriorate. Therefore, in the following embodiments, we propose an information processing device, an information processing system, and an information processing method capable of suppressing a decrease in recognition accuracy due to a decrease in information quality caused by such factors. The vehicle control system described above is merely an example of the application destination of the embodiment described below. That is, the embodiments described below can be applied to various devices, systems, methods, programs, and the like that involve the transfer of data such as image data.
 2.一実施形態
 2.1 認識システムの概略構成例
 図5は、本実施形態に係る認識システムの概要を示すブロック図である。図5に示すように、認識システムは、撮像装置100と、認識部120とを備える。撮像装置100は、例えば、特許請求の範囲における情報処理装置の一例に相当し得る。また、認識部120は、例えば、特許請求の範囲における処理部の一例に相当し得る。
2. 2. (1) Embodiment 2.1 Schematic configuration example of a recognition system FIG. 5 is a block diagram showing an outline of a recognition system according to the present embodiment. As shown in FIG. 5, the recognition system includes an image pickup device 100 and a recognition unit 120. The image pickup apparatus 100 may correspond to, for example, an example of an information processing apparatus within the scope of claims. Further, the recognition unit 120 may correspond to, for example, an example of a processing unit within the scope of claims.
 撮像装置100は、例えば、上述において図1を用いて説明したカメラ51や車内センサ26等に相当し、カラー画像又はモノクロ画像の画像データを生成して出力する。出力された画像データは、例えば、上述において図1を用いて説明した通信ネットワーク41等の所定のネットワークを介して、認識部120に入力される。 The image pickup device 100 corresponds to, for example, the camera 51, the in-vehicle sensor 26, etc. described above with reference to FIG. 1, and generates and outputs image data of a color image or a monochrome image. The output image data is input to the recognition unit 120 via a predetermined network such as the communication network 41 described above with reference to FIG. 1.
 撮像装置100には、IMU131やポジションセンサ132など、撮像装置100の姿勢変化に関する情報を取得するセンサ類が接続される。例えば、IMU131は、上述において図1を用いて説明した車両センサ27における加速度センサ、角速度センサ(ジャイロセンサ)、IMU等に相当し、検出された加速度及び角速度に関する情報(以下、加速度・角速度情報という)を撮像装置100に出力する。また、ポジションセンサ132は、例えば、上述において図1を用いて説明した車両センサ27における操舵角センサ、ヨーレートセンサ、アクセルセンサ、ブレーキセンサ等に相当し、それぞれのセンサで検出されたオドメトリ情報を撮像装置100に出力する。なお、この他にも、車両センサ27として車両1に搭載された種々のセンサで検出されたセンサ情報が撮像装置100に入力されてもよい。 The image pickup device 100 is connected to sensors such as the IMU 131 and the position sensor 132 that acquire information regarding the posture change of the image pickup device 100. For example, the IMU 131 corresponds to an acceleration sensor, an angular velocity sensor (gyro sensor), an IMU, etc. in the vehicle sensor 27 described above with reference to FIG. 1, and information on the detected acceleration and angular velocity (hereinafter referred to as acceleration / angular velocity information). ) Is output to the image pickup apparatus 100. Further, the position sensor 132 corresponds to, for example, a steering angle sensor, a yaw rate sensor, an accelerator sensor, a brake sensor, etc. in the vehicle sensor 27 described above with reference to FIG. 1, and captures odometry information detected by each sensor. Output to device 100. In addition to this, sensor information detected by various sensors mounted on the vehicle 1 as the vehicle sensor 27 may be input to the image pickup apparatus 100.
 認識部120は、例えば、上述において図1を用いて説明した認識部73等に相当し、撮像装置100から入力された画像データに対して認識処理を実行することで、画像に含まれる物体や背景等を検出する。なお、物体とは、自動車や自転車や歩行者などの移動物体の他、ビルや家屋や樹木などの固定物も含まれてもよい。一方、背景とは、空や山や平野や海など、遠方に位置する広範囲の領域であってよい。 The recognition unit 120 corresponds to, for example, the recognition unit 73 or the like described above with reference to FIG. 1, and by executing a recognition process on the image data input from the image pickup apparatus 100, an object included in the image or an object or the like. Detect the background etc. The object may include a moving object such as a car, a bicycle, or a pedestrian, as well as a fixed object such as a building, a house, or a tree. On the other hand, the background may be a wide area located in a distant place such as the sky, mountains, plains, and the sea.
 また、認識部120は、画像データに対する認識処理の結果として得られた物体の領域や背景の領域を、イメージセンサ101における有効画素領域の一部の領域であるROI(Region of Interest)に決定してもよい。その際、認識部120は、各ROIから画像データを読み出す際の解像度を決定してもよい。その場合、認識部120は、決定されたROI及び解像度の情報(以下、ROI・解像度情報という)を撮像装置100に通知することで、読出し対象のROIと、各ROIから画像データを読み出す際の解像度とを撮像装置100に設定してもよい。 Further, the recognition unit 120 determines the area of the object or the area of the background obtained as a result of the recognition process for the image data as the ROI (Region of Interest) which is a part of the effective pixel area in the image sensor 101. You may. At that time, the recognition unit 120 may determine the resolution at which the image data is read from each ROI. In that case, the recognition unit 120 notifies the image pickup apparatus 100 of the determined ROI and resolution information (hereinafter referred to as ROI / resolution information), so that the ROI to be read and the image data are read from each ROI. The resolution may be set in the image pickup device 100.
 なお、ROIの情報は、例えば、ROIの起点となる画素のアドレスと縦横方向のサイズとに関する情報であってよい。その場合、各ROIは矩形領域となる。ただし、これに限定されず、ROIは、円形や楕円形や多角形であってもよく、また、境界(輪郭)を指定する情報により特定される不定形状の領域であってもよい。また、認識部120は、複数のROIを決定した場合には、ROIごとに異なる解像度を決定してもよい。 Note that the ROI information may be, for example, information regarding the address of the pixel that is the starting point of the ROI and the size in the vertical and horizontal directions. In that case, each ROI is a rectangular area. However, the ROI is not limited to this, and the ROI may be a circle, an ellipse, or a polygon, or may be a region having an indefinite shape specified by information specifying a boundary (contour). Further, when the recognition unit 120 determines a plurality of ROIs, the recognition unit 120 may determine a different resolution for each ROI.
 2.2 撮像装置の概略構成例
 図6は、本実施形態に係る撮像装置の概略構成例を示すブロック図である。図6に示すように、撮像装置100は、イメージセンサ101と、制御部102と、信号処理部103と、記憶部104と、入出力部105とを備える。なお、制御部102、信号処理部103、記憶部104及び入出力部105のうちの1以上は、イメージセンサ101と同一のチップに設けられてもよい。
2.2 Schematic configuration example of the image pickup device FIG. 6 is a block diagram showing a schematic configuration example of the image pickup device according to the present embodiment. As shown in FIG. 6, the image pickup apparatus 100 includes an image sensor 101, a control unit 102, a signal processing unit 103, a storage unit 104, and an input / output unit 105. One or more of the control unit 102, the signal processing unit 103, the storage unit 104, and the input / output unit 105 may be provided on the same chip as the image sensor 101.
 イメージセンサ101は、その図示は省略するが、複数の画素が2次元格子状に配列する画素アレイ部と、画素を駆動する駆動回路と、各画素から読み出された画素信号をデジタル値に変換する処理回路とを備え、画素アレイ部全体又は個々のROIから読み出した画像データを信号処理部103に出力する。なお、本実施形態では、画素アレイ部から行単位で画像データが読み出される、所謂ローリングシャッタ方式のイメージセンサ101である場合を例示する。 Although not shown, the image sensor 101 converts a pixel array unit in which a plurality of pixels are arranged in a two-dimensional grid, a drive circuit for driving the pixels, and a pixel signal read from each pixel into digital values. The image data read from the entire pixel array unit or individual ROIs is output to the signal processing unit 103. In this embodiment, a case where the image sensor 101 is a so-called rolling shutter type image sensor 101 in which image data is read out row by row from the pixel array unit is illustrated.
 信号処理部103は、イメージセンサ101から出力された画像データに対し、ノイズリダクションやホワイトバランス調整等の所定の信号処理を実行する。 The signal processing unit 103 executes predetermined signal processing such as noise reduction and white balance adjustment on the image data output from the image sensor 101.
 また、後述において詳細に説明するが、信号処理部103は、イメージセンサ101から行単位で出力される画像データ(以下、行データという)に対し、当該行の読み出しに要した時間(読出時間情報ともいう)に関する情報を付与する。すなわち、本実施形態において撮像装置100から出力される画像データでは、画素行それぞれに読出時間情報が付与されている。この読出時間情報には、各行における先頭画素の読出しタイミングから最後尾画素の読出しタイミングまでの時間や、各行における読出し対象の画素の数など、行の読み出しに要した時間に関する種々の情報が用いられてよい。 Further, as will be described in detail later, the signal processing unit 103 refers to the image data output from the image sensor 101 in line units (hereinafter referred to as line data), and the time required to read the line (read time information). Information about) is given. That is, in the image data output from the image pickup apparatus 100 in the present embodiment, the read time information is added to each pixel row. For this read time information, various information related to the time required for reading the row, such as the time from the read timing of the first pixel to the read timing of the last pixel in each row and the number of pixels to be read in each row, is used. It's okay.
 さらに、信号処理部103は、行データそれぞれに対して、IMU131から入力された加速度・角速度情報、及び/又は、ポジションセンサ132から入力されたオドメトリ情報を付加してもよい。以下、説明の簡略化のため、加速度・角速度情報及びオドメトリ情報をまとめてセンサ情報ともいう。各行データに付加されるセンサ情報は、画素アレイ部における各画素行の露光期間中にIMU131及び/又はポジションセンサ132から入力されたセンサ情報や、イメージセンサ101から各行データが出力されるタイミングでIMU131及び/又はポジションセンサ132から入力されたセンサ情報などであってよい。 Further, the signal processing unit 103 may add acceleration / angular velocity information input from the IMU 131 and / or odometry information input from the position sensor 132 to each row data. Hereinafter, for the sake of simplification of the explanation, the acceleration / angular velocity information and the odometry information are collectively referred to as sensor information. The sensor information added to each row data is the sensor information input from the IMU 131 and / or the position sensor 132 during the exposure period of each pixel row in the pixel array unit, and the IMU 131 at the timing when each row data is output from the image sensor 101. And / or sensor information input from the position sensor 132 may be used.
 さらにまた、信号処理部103は、1枚の画像データの読出し期間(フレーム期間ともいう)中にIMU131及び/又はポジションセンサ132から入力されたセンサ情報や、このセンサ情報から求められた各種情報(例えば、速度情報など。以下、付加情報ともいう)を、当該画像データに含めてもよい。 Furthermore, the signal processing unit 103 includes sensor information input from the IMU 131 and / or the position sensor 132 during the reading period (also referred to as a frame period) of one image data, and various information obtained from the sensor information (also referred to as a frame period). For example, speed information, etc., hereinafter also referred to as additional information) may be included in the image data.
 そして、信号処理部103は、所定の信号処理が施され、且つ、読出時間情報及びセンサ情報(及び付加情報)が付加された画像データを入出力部105へ出力する。 Then, the signal processing unit 103 outputs the image data to which the predetermined signal processing is performed and the read time information and the sensor information (and additional information) are added to the input / output unit 105.
 記憶部104は、信号処理部103による処理済み又は未処理の画像データやIMU131及び/又はポジションセンサ132から入力されたセンサ情報等を必要に応じて一時的に保持する。 The storage unit 104 temporarily holds the image data processed or unprocessed by the signal processing unit 103, the sensor information input from the IMU 131 and / or the position sensor 132, and the like as needed.
 入出力部105は、信号処理部103を介して入力された画像データを所定のネットワーク(例えば、通信ネットワーク41)を介して認識部120へ送信する。 The input / output unit 105 transmits the image data input via the signal processing unit 103 to the recognition unit 120 via a predetermined network (for example, the communication network 41).
 制御部102は、イメージセンサ101の動作を制御する。また、制御部102は、入出力部105を介して入力されたROI・解像度情報に基づき、1以上のROI(読出し対象領域ともいう)と各ROIの解像度とをイメージセンサ101に設定する。 The control unit 102 controls the operation of the image sensor 101. Further, the control unit 102 sets one or more ROIs (also referred to as a read target area) and the resolution of each ROI in the image sensor 101 based on the ROI / resolution information input via the input / output unit 105.
 2.3 環境情報に生じた歪みの補正について
 つづいて、センサで取得される環境情報に生じた歪みについて説明する。なお、以下では、説明の明確化のため、センサで取得される環境情報を画像データとするが、画像データは環境情報の単なる一例であり、したがって、環境情報は、イメージセンサ101(カメラ51)、レーダ52、LiDAR53、超音波センサ54など、使用するセンサの種類等に応じて種々変更されるものであってよい。
2.3 Correction of distortion caused by environmental information Next, the distortion caused by environmental information acquired by the sensor will be described. In the following, for the sake of clarification of the explanation, the environmental information acquired by the sensor is referred to as image data, but the image data is merely an example of the environmental information. Therefore, the environmental information is the image sensor 101 (camera 51). , Radar 52, LiDAR53, ultrasonic sensor 54, etc., may be variously changed depending on the type of sensor used and the like.
 画像データに歪みが生じる要因としては、イメージセンサ101の撮像方向(すなわち、姿勢)が急激に変化すること(外部衝撃に基づく揺れ)や、複数のROIを同時に読み出す場合にROIの一部が行方向に互いに重なっていることなどが存在する。ここでは、これらの要因で画像データに発生した歪みを補正する場合について説明する。なお、以下の説明では、画像データに発生した歪みを補正するための補正情報を含む画像データと、含まない画像データとを区別するために、補正情報を含まない画像データをフレームデータといい、含む画像データをそのまま画像データという。なお、フレームデータ及び画像データは、行方向及び列方向の2次元のデータ構造を備えることから、2次元データとも称される。 Factors that cause distortion in image data include abrupt changes in the image pickup direction (that is, posture) of the image sensor 101 (shaking due to an external impact), and when multiple ROIs are read out at the same time, a part of the ROIs is lined up. There are things such as overlapping with each other in the direction. Here, a case of correcting the distortion generated in the image data due to these factors will be described. In the following description, the image data that does not include the correction information is referred to as frame data in order to distinguish between the image data that includes the correction information for correcting the distortion generated in the image data and the image data that does not include the correction information. The included image data is called image data as it is. The frame data and the image data are also referred to as two-dimensional data because they have a two-dimensional data structure in the row direction and the column direction.
 2.3.1 向きの急激な変化に起因した歪みについて
 図7は、ローリングシャッタ方式の読出し動作を説明するための模式図である。図8は、ローリングシャッタ方式での読出し中にイメージセンサが急激に下を向いた場合に発生し得るフレームデータの歪みの一例を説明するための図である。
2.3.1 Distortion caused by abrupt changes in orientation FIG. 7 is a schematic diagram for explaining the reading operation of the rolling shutter method. FIG. 8 is a diagram for explaining an example of distortion of frame data that may occur when the image sensor suddenly points downward during reading by the rolling shutter method.
 図7に示すように、ローリングシャッタ方式の読出し動作では、イメージセンサ101の画素アレイ部101aにおける有効画素領域が、行方向に配列する画素(画素行)が、1つの画素行を単位として、列方向に向かって順次読み出される。そのため、イメージセンサ101から1枚のフレームデータを読み出している最中にイメージセンサ101の向きが下方向へ急激に変化すると、図8に示すように、イメージセンサ101から読み出されるフレームデータG2が、イメージセンサ101の姿勢が一定である際に読みされたフレームデータG1と比較して、下方向に間延びした画像となる。 As shown in FIG. 7, in the reading operation of the rolling shutter method, the effective pixel area in the pixel array unit 101a of the image sensor 101 is a column in which the pixels (pixel rows) arranged in the row direction are in units of one pixel row. It is read out sequentially in the direction. Therefore, if the orientation of the image sensor 101 suddenly changes downward while reading one frame data from the image sensor 101, the frame data G2 read from the image sensor 101 becomes a frame data G2 as shown in FIG. Compared with the frame data G1 read when the posture of the image sensor 101 is constant, the image is extended downward.
 また、上述において図3及び図4を用いて説明したように、前フレームの読出しと現フレームの読出しとの間にイメージセンサ101の向きが下方向へ急激に変化すると、前フレームと現フレームとで、フレームデータに写る被写体(例えば、前方を走る車両)が矢印A1の方向へ瞬間的に移動することとなる。 Further, as described above with reference to FIGS. 3 and 4, when the direction of the image sensor 101 suddenly changes downward between the reading of the previous frame and the reading of the current frame, the front frame and the current frame are displayed. Then, the subject (for example, the vehicle running in front) reflected in the frame data momentarily moves in the direction of the arrow A1.
 そこで本実施形態では、フレームデータの各行データを読み出している最中にIMU131及び/又はポジションセンサ132から入力されたセンサ情報をフレームデータに付加する。これにより、センサ情報に基づいたフレームデータの歪み補正が可能となる。 Therefore, in the present embodiment, the sensor information input from the IMU 131 and / or the position sensor 132 is added to the frame data while reading each line data of the frame data. This makes it possible to correct the distortion of the frame data based on the sensor information.
 フレームデータにセンサ情報を付加する手法としては、行データごとに当該行データを読み出している最中に入力されたセンサ情報を付加する手法(以下、第1手法という)や、1枚のフレームデータを読み出している最中に入力されたセンサ情報をフレームデータのヘッダ又はフッタに付加する手法(以下、第2手法という)等、種々の手法が適用されてよい。なお、センサ情報は、画像データに発生した歪みを補正するための補正情報の一態様である。 As a method of adding sensor information to frame data, a method of adding sensor information input while reading the row data for each row data (hereinafter referred to as the first method) or one frame data. Various methods such as a method of adding sensor information input while reading is added to a header or footer of frame data (hereinafter referred to as a second method) may be applied. The sensor information is one aspect of the correction information for correcting the distortion generated in the image data.
 また、フレームデータに補正情報を付加する方法としては、IMU131やポジションセンサ132から入力されたセンサ情報をそのまま行データ又はフレームデータに付加する方法や、入力されたセンサ情報から速度や加速度や角速度や角加速度などの画像データに発生した歪みを特定又は補正するための情報(以下、歪み情報という)を算出し、算出された歪み情報をフレームデータに付与する方法などが考えられる。なお、歪み情報は、画像データに発生した歪みを補正するための補正情報の一態様である。 Further, as a method of adding correction information to the frame data, a method of adding the sensor information input from the IMU 131 or the position sensor 132 to the row data or the frame data as it is, or a method of adding speed, acceleration or angular speed from the input sensor information. A method of calculating information for specifying or correcting distortion generated in image data such as angular acceleration (hereinafter referred to as distortion information) and adding the calculated distortion information to the frame data can be considered. The distortion information is one aspect of the correction information for correcting the distortion generated in the image data.
 (第1手法)
 図9は、本実施形態の第1手法に係る読出し動作の一例を説明するためのフローチャートであり、図10は、図9に示すフローチャートを補足するための図である。
(First method)
FIG. 9 is a flowchart for explaining an example of the reading operation according to the first method of the present embodiment, and FIG. 10 is a diagram for supplementing the flowchart shown in FIG.
 図9及び図10に示すように、第1手法では、まず、撮像装置100の制御部102は、読出し行を管理するための変数Lに先頭行を示す‘1’を設定する(ステップS101)。そして、制御部102は、イメージセンサ101に、第L行からの行データの読出しを実行させる(ステップS102)。なお、ROIに対する読出しを実行する場合には、L=0が示す先頭行は、ROIにおける最上位の行であってよい。 As shown in FIGS. 9 and 10, in the first method, first, the control unit 102 of the image pickup apparatus 100 sets the variable L for managing the read row to '1' indicating the first row (step S101). .. Then, the control unit 102 causes the image sensor 101 to read the row data from the Lth row (step S102). When reading to the ROI, the first line indicated by L = 0 may be the highest line in the ROI.
 また、制御部102は、ステップS102で行データを読み出している最中にIMU131及び/又はポジションセンサ132からセンサ情報を入力し(ステップS103)、図10に示すように、入力されたセンサ情報をステップS102で読み出された行データに付加する(ステップS104)。 Further, the control unit 102 inputs sensor information from the IMU 131 and / or the position sensor 132 while reading the row data in step S102 (step S103), and inputs the input sensor information as shown in FIG. It is added to the row data read in step S102 (step S104).
 次に、制御部102は、変数Lが最大値L_maxに達しているか否かを判定し(ステップS105)、達していない場合(ステップS105のNO)、変数L1を1インクリメント(ステップS106)した後、ステップS102へ戻り、以降の動作を継続する。 Next, the control unit 102 determines whether or not the variable L has reached the maximum value L_max (step S105), and if not (NO in step S105), the variable L1 is incremented by 1 (step S106). , Return to step S102, and continue the subsequent operations.
 一方、変数Lが最大値L_maxに達している場合(ステップS105のYES)、制御部102は、フレームデータの各行データにセンサ情報が付加された画像データ(図10参照)を所定のネットワーク(例えば、通信ネットワーク41)を介して認識部120へ出力する(ステップS107)。 On the other hand, when the variable L reaches the maximum value L_max (YES in step S105), the control unit 102 connects the image data (see FIG. 10) to which the sensor information is added to each row data of the frame data to a predetermined network (for example,). , Output to the recognition unit 120 via the communication network 41) (step S107).
 その後、制御部102は、本動作を終了するか否かを判定し(ステップS108)、終了する場合(ステップS108のYES)、本動作を終了する。一方、終了しない場合(ステップS108のNO)、制御部102は、ステップS101へ戻り、以降の動作を実行する。 After that, the control unit 102 determines whether or not to end this operation (step S108), and if it ends (YES in step S108), ends this operation. On the other hand, if it does not end (NO in step S108), the control unit 102 returns to step S101 and executes the subsequent operations.
 (第2手法)
 図11は、本実施形態の第2手法に係る読出し動作の一例を説明するためのフローチャートである。図11に示すように、第2手法では、まず、撮像装置100の制御部102は、イメージセンサ101を駆動してフレームデータの読出しを実行する(ステップS121)。
(Second method)
FIG. 11 is a flowchart for explaining an example of the reading operation according to the second method of the present embodiment. As shown in FIG. 11, in the second method, first, the control unit 102 of the image pickup apparatus 100 drives the image sensor 101 to read out the frame data (step S121).
 また、制御部102は、ステップS121でフレームデータを読み出している最中にIMU131及びポジションセンサ132からからセンサ情報を信号処理部103に入力し(ステップS122)、信号処理部103に歪み情報の算出を実行させる(ステップS123)。 Further, the control unit 102 inputs sensor information from the IMU 131 and the position sensor 132 to the signal processing unit 103 (step S122) while the frame data is being read out in step S121, and calculates distortion information in the signal processing unit 103. Is executed (step S123).
 次に、制御部102は、ステップS121で読み出されたフレームデータにステップS123で算出された歪み情報を付加することで画像データを生成し(ステップS124)、生成された画像データを所定のネットワーク(例えば、通信ネットワーク41)を介して認識部120へ出力する(ステップS125)。 Next, the control unit 102 generates image data by adding the distortion information calculated in step S123 to the frame data read in step S121 (step S124), and the generated image data is used in a predetermined network. It is output to the recognition unit 120 via (for example, the communication network 41) (step S125).
 その後、制御部102は、本動作を終了するか否かを判定し(ステップS126)、終了する場合(ステップS126のYES)、本動作を終了する。一方、終了しない場合(ステップS126のNO)、制御部102は、ステップS121へ戻り、以降の動作を実行する。 After that, the control unit 102 determines whether or not to end this operation (step S126), and if it ends (YES in step S126), ends this operation. On the other hand, if it does not end (NO in step S126), the control unit 102 returns to step S121 and executes the subsequent operations.
 2.3.2 行方向にROIが重なることによる歪みについて
 図12は、画素アレイ部に行方向に一部が重複する2つのROIが設定された場合を例示する図であり、図13は、図12に示す各ROIからの画像データ(以下、ROIデータという)の読出しを説明するための図であり、図14は、ローリングシャッタ方式の読出し動作において行方向に一部が重複する2つのROIからROIデータを読み出す際の各行の読出し開始タイミングの一例を示す図である。
2.3.2 Distortion due to overlapping ROIs in the row direction FIG. 12 is a diagram illustrating a case where two ROIs partially overlapping in the row direction are set in the pixel array portion, and FIG. 13 is a diagram. It is a figure for demonstrating the reading of the image data (hereinafter referred to as ROI data) from each ROI shown in FIG. 12, and FIG. 14 shows two ROIs partially overlapping in the row direction in the reading operation of the rolling shutter method. It is a figure which shows an example of the read start timing of each line at the time of reading ROI data from.
 図12に示すように、画素アレイ部101aに2つのROI領域R11及びR12が設定され、2つのROI領域R11及びR12の一部が行方向において互いに重複する場合、ローリングシャッタ方式の読出し動作においては、ROI領域R11の行データのみを読み出す範囲R21と、ROI領域R11及びROI領域R12の両方の行データを読み出す範囲R22と、ROI領域R12の行データのみを読み出す範囲R23とが存在する。そのため、図13に示すように、各範囲R21~R23で、行データを構成する画素数が変化する。具体的には、例えば、ROI領域R11とROI領域R12との行方向の画素数が同じであるとすると、範囲R22における各行の画素数は、範囲R21及びR23における各行の画素数の2倍となる。そのため、範囲R22と範囲R21及びR23とで各行の読出し時間が変化するため、図14に示すように、ローリングシャッタ方式の読出し動作においては、範囲R21~R23それぞれにおける各行の読出し開始タイミングが変化することとなる。このような読出し開始タイミングの変化は、ROIデータが歪む要因となる。 As shown in FIG. 12, when two ROI regions R11 and R12 are set in the pixel array unit 101a and a part of the two ROI regions R11 and R12 overlap each other in the row direction, in the reading operation of the rolling shutter method, the reading operation is performed. , There is a range R21 for reading only the row data in the ROI area R11, a range R22 for reading both the row data in the ROI area R11 and the ROI area R12, and a range R23 for reading only the row data in the ROI area R12. Therefore, as shown in FIG. 13, the number of pixels constituting the row data changes in each range R21 to R23. Specifically, for example, assuming that the number of pixels in the row direction in the ROI region R11 and the ROI region R12 is the same, the number of pixels in each row in the range R22 is twice the number of pixels in each row in the ranges R21 and R23. Become. Therefore, since the read time of each row changes between the range R22 and the ranges R21 and R23, as shown in FIG. 14, in the rolling shutter type read operation, the read start timing of each line in each of the ranges R21 to R23 changes. It will be. Such a change in the read start timing causes the ROI data to be distorted.
 そこで本実施形態では、ROIデータにおける各行の読み出した画素数(以下、読出し画素数ともいう)をROIデータに付加する。これにより、読出し画素数に基づいたROIデータの歪み補正が可能となる。なお、読出し画素数は、画像データに発生した歪みを補正するための補正情報の一態様である。 Therefore, in the present embodiment, the number of read pixels of each row in the ROI data (hereinafter, also referred to as the number of read pixels) is added to the ROI data. This makes it possible to correct the distortion of the ROI data based on the number of read pixels. The number of read pixels is an aspect of correction information for correcting the distortion generated in the image data.
 図15は、本実施形態に係る読出し動作の一例を示すフローチャートであり、図16は、図15に示すフローチャートを補足するための図である。 FIG. 15 is a flowchart showing an example of the reading operation according to the present embodiment, and FIG. 16 is a diagram for supplementing the flowchart shown in FIG.
 図15及び図16に示すように、本動作では、まず、撮像装置100の制御部102は、1以上のROIに対する読出し行を管理するための変数Lに先頭行を示す‘1’を設定する(ステップS141)。そして、制御部102は、イメージセンサ101に、ROIが存在する範囲について、第L行からの行データの読出しを実行させる(ステップS142)。そして、制御部102は、図16に示すように、第L行の読出し画素数を、ステップS102で読み出した行データに付加する(ステップS143)。 As shown in FIGS. 15 and 16, in this operation, first, the control unit 102 of the image pickup apparatus 100 sets a variable L for managing read rows for one or more ROIs to '1' indicating the first row. (Step S141). Then, the control unit 102 causes the image sensor 101 to read the row data from the Lth row in the range where the ROI exists (step S142). Then, as shown in FIG. 16, the control unit 102 adds the number of read pixels in the Lth row to the row data read in step S102 (step S143).
 次に、制御部102は、変数Lが最大値L_maxに達しているか否かを判定し(ステップS144)、達していない場合(ステップS144のNO)、変数L1を1インクリメント(ステップS145)した後、ステップS142へ戻り、以降の動作を継続する。 Next, the control unit 102 determines whether or not the variable L has reached the maximum value L_max (step S144), and if not (NO in step S144), the variable L1 is incremented by 1 (step S145). , Return to step S142, and continue the subsequent operations.
 一方、変数Lが最大値L_maxに達している場合(ステップS144のYES)、制御部102は、フレームデータの各行データにセンサ情報が付加された画像データ(図10参照)を所定のネットワーク(例えば、通信ネットワーク41)を介して認識部120へ出力する(ステップS146)。 On the other hand, when the variable L reaches the maximum value L_max (YES in step S144), the control unit 102 connects the image data (see FIG. 10) to which the sensor information is added to each row data of the frame data to a predetermined network (for example, FIG. 10). , Output to the recognition unit 120 via the communication network 41) (step S146).
 その後、制御部102は、本動作を終了するか否かを判定し(ステップS147)、終了する場合(ステップS147のYES)、本動作を終了する。一方、終了しない場合(ステップS147のNO)、制御部102は、ステップS141へ戻り、以降の動作を実行する。 After that, the control unit 102 determines whether or not to end the main operation (step S147), and if it ends (YES in step S147), the control unit 102 ends the main operation. On the other hand, if it does not end (NO in step S147), the control unit 102 returns to step S141 and executes the subsequent operations.
 なお、以上で説明した第1手法及び第2手法は、組み合わせて実施することも可能である。その場合、フレームデータの各行データには、センサ情報と読出し画素数とが付与されてよい。 The first method and the second method described above can be implemented in combination. In that case, sensor information and the number of read pixels may be added to each row data of the frame data.
 また、本説明では、イメージセンサ101の撮像方向(すなわち、姿勢)が急激に変化すること、又は、複数のROIを同時に読み出す場合にROIの一部が行方向に互いに重なっていることに起因してフレームデータ又はROIデータに発生した歪みを補正する場合について例示したが、本実施形態はこれに限定されず、撮像装置100側において何らかの要因でフレームデータに発生した歪みを補正するための補正情報を付加する構成であれば、種々の構成を適用することが可能である。 Further, in this description, the imaging direction (that is, the posture) of the image sensor 101 changes abruptly, or when a plurality of ROIs are read out at the same time, some of the ROIs overlap each other in the row direction. The case of correcting the distortion generated in the frame data or the ROI data has been illustrated, but the present embodiment is not limited to this, and the correction information for correcting the distortion generated in the frame data on the image pickup apparatus 100 side for some reason. It is possible to apply various configurations as long as the configuration is such that the above is added.
 3.3.3 歪み補正について
 また、フレームデータに生じた歪みが問題となるケースとしては、例えば、イメージセンサとEVS(Event Vision Sensor)となど、読出し方式の異なるセンサを組み合わせた場合なども存在する。例えば、各画素の輝度変化をイベントとして検出するEVSは、グローバルシャッタ方式と同様に、各画素の露光期間が揃っているため、生成される画像データ(差分画像ともいう)に含まれる歪みは小さい。そのため、イメージセンサから出力された画像データとEVSから出力された差分画像とを統合して、例えば、現フレームの画像データを再構成するなどの処理を実行する場合には、イメージセンサから出力された画像データとEVSから出力された差分画像との歪みの差が問題となり得る。
3.3.3 Distortion correction In addition, there are cases where distortion generated in frame data becomes a problem, for example, when a sensor with a different reading method such as an image sensor and an EVS (Event Vision Sensor) is combined. do. For example, EVS, which detects a change in the brightness of each pixel as an event, has the same exposure period for each pixel as in the global shutter method, so that the distortion included in the generated image data (also referred to as a difference image) is small. .. Therefore, when the image data output from the image sensor and the difference image output from the EVS are integrated to perform a process such as reconstructing the image data of the current frame, the image data is output from the image sensor. The difference in distortion between the image data and the difference image output from the EVS can be a problem.
 図17は、イメージセンサとEVSとを組み合わせた場合などの歪みの差を説明するための図である。イメージセンサ101における画像データの読出し方式がローリングシャッタ方式である場合、列方向において最上位の画素行と最下位の画素行とで読出しのタイミングに時間差D1が生じるため、読み出される画像データG31に所謂ローリングシャッタ歪みと呼ばれる歪みが発生する。これに対し、EVSは、全画素同時駆動の所謂グローバルシャッタ方式と同様の動作で個々の画素においてイベントが検出されるため、EVSから出力される画像データG32には、歪みが発生しないか、若しくは認識部120による認識処理において無視できる程度に小さい。 FIG. 17 is a diagram for explaining the difference in distortion when the image sensor and EVS are combined. When the image data reading method in the image sensor 101 is the rolling shutter method, a time difference D1 occurs in the reading timing between the highest pixel row and the lowest pixel row in the column direction, so that the read image data G31 is referred to as so-called. A distortion called rolling shutter distortion occurs. On the other hand, in EVS, an event is detected in each pixel by the same operation as the so-called global shutter method in which all pixels are simultaneously driven, so that the image data G32 output from EVS is not distorted or is not distorted. It is small enough to be ignored in the recognition process by the recognition unit 120.
 このように、駆動方式が異なることにより生じる2つの画像データ間の歪みの差は、例えば、上述で説明した第1手法及び/又は第2手法を用いることで解消することが可能である。 As described above, the difference in distortion between the two image data caused by the different drive methods can be eliminated by using, for example, the first method and / or the second method described above.
 2.3.4 動作例
 次に、以上のようにフレームデータに付加された補正情報に基づく動作について説明する。本動作は、例えば、所定のネットワーク(例えば、通信ネットワーク41)を介して画像データが入力される認識部120が実行してよい。図18は、本実施形態に係る動作の一例を示すフローチャートである。図19は、図18のステップS164に示す歪み補正の一例を説明するための図である。
2.3.4 Operation example Next, the operation based on the correction information added to the frame data as described above will be described. This operation may be executed, for example, by the recognition unit 120 in which image data is input via a predetermined network (for example, a communication network 41). FIG. 18 is a flowchart showing an example of the operation according to the present embodiment. FIG. 19 is a diagram for explaining an example of distortion correction shown in step S164 of FIG.
 図18に示すように、認識部120は、所定のネットワーク(例えば、通信ネットワーク41)を介して画像データを入力すると(ステップS161)、画像データに含まれる補正情報(例えば、センサ情報、歪み情報、読出し画素数)を特定する(ステップS162)。 As shown in FIG. 18, when the recognition unit 120 inputs image data via a predetermined network (for example, communication network 41) (step S161), the recognition unit 120 receives correction information (for example, sensor information, distortion information) included in the image data. , Number of read pixels) (step S162).
 次に、認識部120は、特定した補正情報に基づいてフレームデータの歪みを補正する(ステップS163)。例えば、上述において図8を用いて説明したようにフレームデータG2が歪んでいた場合は、図19に示すように、認識部120は、フレームデータG2の各行データに付加されたセンサ情報を用いることで、フレームデータG2を歪み(例えば、間延び)の低減又は解消されたフレームデータG3に補正する。 Next, the recognition unit 120 corrects the distortion of the frame data based on the specified correction information (step S163). For example, when the frame data G2 is distorted as described above with reference to FIG. 8, the recognition unit 120 uses the sensor information added to each row data of the frame data G2 as shown in FIG. Then, the frame data G2 is corrected to the frame data G3 in which the distortion (for example, the delay) is reduced or eliminated.
 このように、フレームデータの歪みを補正すると、認識部120は、歪みが補正されたフレームデータに対する認識処理を実行し(ステップS164)、その結果を行動計画部62や動作制御部63等(図1参照)へ出力する(ステップS165)。 When the distortion of the frame data is corrected in this way, the recognition unit 120 executes the recognition process for the frame data whose distortion has been corrected (step S164), and the result is the action planning unit 62, the operation control unit 63, etc. (FIG. FIG. 1) (see step S165).
 その後、認識部120は、本動作を終了するか否かを判定し(ステップS166)、終了する場合(ステップS166のYES)、本動作を終了する。一方、終了しない場合(ステップS166のNO)、制御部102は、ステップS161へ戻り、以降の動作を実行する。 After that, the recognition unit 120 determines whether or not to end the main operation (step S166), and if it ends (YES in step S166), the recognition unit 120 ends the main operation. On the other hand, if it does not end (NO in step S166), the control unit 102 returns to step S161 and executes the subsequent operations.
 2.4 ROIの設定について
 以上のように、本実施形態では、認識部120が取得する画像データにセンサ情報や歪み情報が含まれ得る。例えば、車両1の速度は、画像データに含まれるセンサ情報や歪み情報から直接又は間接に特定することが可能である。また、車両1が直進しているか旋回しているかも、画像データに含まれるセンサ情報や歪み情報から直接又は間接に特定することが可能である。そこで本実施形態では、認識部120がセンサ情報や歪み情報に基づいて次フレーム以降におけるROI及び解像度を決定してもよい。
2.4 ROI setting As described above, in the present embodiment, the image data acquired by the recognition unit 120 may include sensor information and distortion information. For example, the speed of the vehicle 1 can be directly or indirectly specified from the sensor information and the distortion information included in the image data. Further, it is possible to directly or indirectly identify whether the vehicle 1 is traveling straight or turning from the sensor information and the distortion information included in the image data. Therefore, in the present embodiment, the recognition unit 120 may determine the ROI and the resolution in the next frame and thereafter based on the sensor information and the distortion information.
 図20~図25は、本実施形態に係るROI決定方法を説明するための図である。図20は、低速で直進する際の車両のセンシング領域を示し、図21は、図20に示すセンシング領域に対応するROIを示す図である。図22は、高速で直進する際の車両のセンシング領域を示し、図23は、図22に示すセンシング領域に対応するROIを示す図である。図24は、左旋回時における車両のセンシング領域を示し、図25は、図24に示すセンシング領域に対応するROIを示す図である。 20 to 25 are diagrams for explaining the ROI determination method according to the present embodiment. FIG. 20 is a diagram showing a sensing region of the vehicle when traveling straight at a low speed, and FIG. 21 is a diagram showing an ROI corresponding to the sensing region shown in FIG. 20. FIG. 22 shows the sensing region of the vehicle when traveling straight at high speed, and FIG. 23 is a diagram showing the ROI corresponding to the sensing region shown in FIG. 22. FIG. 24 shows the sensing region of the vehicle when turning left, and FIG. 25 is a diagram showing the ROI corresponding to the sensing region shown in FIG. 24.
 まず、図20に示すように、車両1が低速で直進している場合、センシング領域SR101は、車両1の前方における近傍の広範囲をカバーしていることが望ましい。そこで、認識部120は、車両1が低速で直進している場合、図21に示すように、画素アレイ部101aの全領域又は広範囲にROI領域R101を決定してもよい。また、車両1の近傍に存在する物体は、大きな像として撮像される。そのため、車両1が低速で直進している場合、認識部120は、ROIに対する解像度を低解像度に決定してもよい。 First, as shown in FIG. 20, when the vehicle 1 is traveling straight at a low speed, it is desirable that the sensing region SR101 covers a wide area in the vicinity in front of the vehicle 1. Therefore, when the vehicle 1 is traveling straight at a low speed, the recognition unit 120 may determine the ROI region R101 in the entire area or a wide area of the pixel array unit 101a as shown in FIG. Further, the object existing in the vicinity of the vehicle 1 is imaged as a large image. Therefore, when the vehicle 1 is traveling straight at a low speed, the recognition unit 120 may determine the resolution for the ROI to be low.
 また、図22に示すように、車両1が高速で直進している場合、センシング領域SR102は、車両1の前方における遠方の狭範囲をカバーしていればよい。そこで、認識部120は、車両1が高速で直進している場合、図23に示すように、画素アレイ部101aの中央の一部の領域にROI領域R102を決定してもよい。また、車両1の遠方に存在する物体は、小さな像として撮像される。そのため、車両1が高速で直進している場合、認識部120は、ROIに対する解像度を高解像度に決定してもよい。 Further, as shown in FIG. 22, when the vehicle 1 is traveling straight at high speed, the sensing region SR102 may cover a distant narrow range in front of the vehicle 1. Therefore, when the vehicle 1 is traveling straight at high speed, the recognition unit 120 may determine the ROI region R102 in a part of the central region of the pixel array unit 101a as shown in FIG. 23. Further, an object existing in the distance of the vehicle 1 is imaged as a small image. Therefore, when the vehicle 1 is traveling straight at high speed, the recognition unit 120 may determine the resolution for ROI to be high resolution.
 さらに、図24に示すように、車両1が旋回(図24では左旋回)している場合、センシング領域SR103は、車両1の旋回方向をカバーしていることが望ましい。そこで、認識部120は、車両1が旋回している場合、図25に示すように、画素アレイ部101aにおける旋回方向寄り(図25では左寄り)の領域にROI領域R103を決定してもよい。旋回方向にどの程度シフトさせるかは、例えば、ポジションセンサ132から入力されたオドメトリ情報(操舵角等)に基づいて決定されてもよい。また、車両1が旋回している場合は、車両1が交差点や曲がり角などを走行中と考えられるため、認識部120は、高速に認識処理を実行するために、ROIに対する解像度を低解像度に決定してもよい。 Further, as shown in FIG. 24, when the vehicle 1 is turning (turning to the left in FIG. 24), it is desirable that the sensing region SR103 covers the turning direction of the vehicle 1. Therefore, when the vehicle 1 is turning, the recognition unit 120 may determine the ROI region R103 in the region of the pixel array unit 101a that is closer to the turning direction (to the left in FIG. 25), as shown in FIG. 25. How much to shift in the turning direction may be determined based on, for example, odometry information (steering angle, etc.) input from the position sensor 132. Further, when the vehicle 1 is turning, it is considered that the vehicle 1 is traveling at an intersection, a corner, or the like. Therefore, the recognition unit 120 determines the resolution for the ROI to be low in order to execute the recognition process at high speed. You may.
 2.5 画像データの超解像度化について
 また、本実施形態では、画像データにイメージセンサ101の姿勢変位を示すセンサ情報(加速度や角速度に関する情報)が含まれ得る。そこで、本実施形態では、フレーム間でのイメージセンサ101の姿勢変化を利用することで、イメージセンサ101の最大の解像度よりも高い超解像度の画像データを生成することも可能である。
2.5 Regarding super-resolution of image data Further, in the present embodiment, the image data may include sensor information (information regarding acceleration and angular velocity) indicating the attitude displacement of the image sensor 101. Therefore, in the present embodiment, it is possible to generate super-resolution image data higher than the maximum resolution of the image sensor 101 by utilizing the posture change of the image sensor 101 between frames.
 具体的には、図26に示すように、イメージセンサ101から入力されるフレームデータG101、G102、G103、…は、イメージセンサ101自身の揺れや振動等に起因した姿勢変化により、上下左右方向にシフトしている。そして、フレームデータがどの方向にシフトしたかは、フレームデータG101、G102、G103、…に付加されたセンサ情報から特定することができる。 Specifically, as shown in FIG. 26, the frame data G101, G102, G103, ... Input from the image sensor 101 are moved in the vertical and horizontal directions due to the posture change caused by the shaking or vibration of the image sensor 101 itself. It's shifting. Then, the direction in which the frame data is shifted can be specified from the sensor information added to the frame data G101, G102, G103, ....
 そこで、図27に示すように、認識部120は、フレームデータに付加されたセンサ情報に基づき、あるフレームデータG112が前フレームのフレームデータG111に対して例えば左右方向に半画素ズレているものとしてフレームデータG111及びG112を合成することで、横方向(行方向)の解像度をフレームデータG111及びG112の2倍の解像度とすることが可能である。同様に、あるフレームデータG112が前フレームのフレームデータG111に対して例えば上下方向に半画素ズレているものとしてフレームデータG111及びG112を合成することで、縦方向(列方向)の解像度をフレームデータG111及びG112の2倍の解像度とすることが可能である。 Therefore, as shown in FIG. 27, the recognition unit 120 assumes that a certain frame data G112 is shifted by, for example, half a pixel in the left-right direction with respect to the frame data G111 of the previous frame based on the sensor information added to the frame data. By synthesizing the frame data G111 and G112, it is possible to make the resolution in the horizontal direction (row direction) twice the resolution of the frame data G111 and G112. Similarly, by synthesizing the frame data G111 and G112 assuming that a certain frame data G112 is, for example, half a pixel shifted in the vertical direction with respect to the frame data G111 of the previous frame, the resolution in the vertical direction (column direction) is frame data. It is possible to have twice the resolution of G111 and G112.
 また、図28に示すように、キーフレームとなるフレームデータG121に対して合成する画像データをROIデータG122とすることで、一部の領域(ROI)が超解像度化された画像データG123を生成することも可能である。 Further, as shown in FIG. 28, by setting the image data to be combined with the frame data G121 as a key frame as the ROI data G122, the image data G123 in which a part of the region (ROI) is super-resolution is generated. It is also possible to do.
 2.6 作用・効果
 以上のように、本実施形態によれば、画像データに歪みを補正するための補正情報が含まれるため、認識部120は、補正情報に基づいてフレームデータに発生した歪みを補正することが可能となる。それにより、本実施形態では、認識精度の低下を抑制することが可能となる。
2.6 Actions / Effects As described above, according to the present embodiment, since the image data includes the correction information for correcting the distortion, the recognition unit 120 has the distortion generated in the frame data based on the correction information. Can be corrected. As a result, in the present embodiment, it is possible to suppress a decrease in recognition accuracy.
 なお、以上の説明では、イメージセンサ101で取得されるフレームデータに補正情報を含める場合を例示したが、本開示はこれに限定されず、例えば、レーダ52やLiDAR53や超音波センサ54など、2次元的なデータ構造を備える種々のセンサから出力される2次元データを対象として、補正情報を付加するように構成することも可能である。 In the above description, the case where the correction information is included in the frame data acquired by the image sensor 101 is illustrated, but the present disclosure is not limited to this, and for example, the radar 52, the LiDAR 53, the ultrasonic sensor 54, etc. 2 It is also possible to add correction information to two-dimensional data output from various sensors having a dimensional data structure.
 また、本実施形態では、認識部120が1つの撮像装置100で取得された画像データに対して補正処理等を実行する場合を例示したが、このような構成に限定されない。例えば、認識部120が2以上の撮像装置100それぞれで取得された画像データに対して補正処理等を実行してもよい。その場合、2以上の撮像装置100それぞれで取得された画像データは、センサフュージョン部72で統合された後、認識部120に入力されてもよい。センサフュージョン部72は、特許請求の範囲における統合部の一例に相当し得る。 Further, in the present embodiment, a case where the recognition unit 120 executes correction processing or the like on the image data acquired by one image pickup device 100 is illustrated, but the configuration is not limited to such a configuration. For example, the recognition unit 120 may execute correction processing or the like on the image data acquired by each of the two or more image pickup devices 100. In that case, the image data acquired by each of the two or more image pickup devices 100 may be integrated by the sensor fusion unit 72 and then input to the recognition unit 120. The sensor fusion unit 72 may correspond to an example of an integrated unit within the scope of claims.
 3.車両制御システムについて
 上述において図1を用いて説明した車両制御システム11は、例えば、図29に示すような、ドメイン・アーキテクチャに基づくシステム構造を備えていてもよい。図29に例示するシステム構造は、車両1の前方、左側、左後方、右後方及び右側のそれぞれを管理するドメインコントローラ311~315がゲートウエイ301を介して相互に接続され、連携するように構成されている。また、各ドメインコントローラ311~315は、外部認識センサ25や車内センサ26や車両センサ27などのセンサ群321~325に接続され、それぞれのセンサ群321~325で取得されたセンサ情報に基づいて車両1の各部を制御する。
3. 3. The vehicle control system 11 described above with reference to FIG. 1 may include, for example, a system structure based on a domain architecture as shown in FIG. 29. The system structure exemplified in FIG. 29 is configured such that domain controllers 311 to 315 that manage each of the front, left, left rear, right rear, and right side of the vehicle 1 are connected to each other via the gateway 301 and cooperate with each other. ing. Further, each domain controller 311 to 315 is connected to sensor groups 321 to 325 such as an external recognition sensor 25, an in-vehicle sensor 26, and a vehicle sensor 27, and the vehicle is based on sensor information acquired by each sensor group 321 to 325. Control each part of 1.
 このような構成において、各ドメインコントローラ311~315は、図1に示す車両制御システム11に相当し得る。1つのドメインコントローラは、他の1以上のドメインコントローラにおける外部認識センサ25で取得された補正情報を含む画像データを入力し、入力された画像データを統合的に処理してもよい。また、ドメインコントローラ311~315のうちの1つがセントラルコントローラ(メインコントローラともいう)として機能する場合には、このセントラルコントローラが、他の1以上のドメインコントローラにおける外部認識センサ25で取得された補正情報を含む画像データを入力し、入力された画像データを統合的に処理してもよい。 In such a configuration, each domain controller 311 to 315 may correspond to the vehicle control system 11 shown in FIG. One domain controller may input image data including correction information acquired by the external recognition sensor 25 in the other one or more domain controllers, and process the input image data in an integrated manner. Further, when one of the domain controllers 311 to 315 functions as a central controller (also referred to as a main controller), this central controller is the correction information acquired by the external recognition sensor 25 in the other one or more domain controllers. Image data including the above may be input and the input image data may be processed in an integrated manner.
 さらに、ドメインコントローラ311~315のうちの少なくとも1つが例えばLTE(Long Term Evolution)や5G(5th Generation)などの移動体通信網や無線LAN(Local Area Network)などの所定のネットワークを介してクラウドにアクセス可能な場合には、1以上のドメインコントローラにおける外部認識センサ25で取得された補正情報を含む画像データや、この画像データを統合的に処理することで得られた処理結果を、クラウドへアップロードするように構成されてもよい。その場合、上述したフレームデータの歪み補正や認識処理等がクラウド側で実行されてもよい。 Furthermore, at least one of the domain controllers 311 to 315 goes to the cloud via a mobile communication network such as LTE (Long Term Evolution) or 5G (5th Generation) or a predetermined network such as a wireless LAN (Local Area Network). If it is accessible, the image data including the correction information acquired by the external recognition sensor 25 in one or more domain controllers and the processing result obtained by processing this image data in an integrated manner are uploaded to the cloud. It may be configured to do so. In that case, the above-mentioned frame data distortion correction, recognition processing, and the like may be executed on the cloud side.
 4.ハードウエア構成
 上述してきた実施形態及びその変形例並びに応用例に係る認識部120は、例えば図30に示すような構成のコンピュータ1000によって実現され得る。図30は、認識部120を構成する情報処理装置の機能を実現するコンピュータ1000の一例を示すハードウエア構成図である。コンピュータ1000は、CPU1100、RAM1200、ROM(Read Only Memory)1300、HDD(Hard Disk Drive)1400、通信インタフェース1500、及び入出力インタフェース1600を有する。コンピュータ1000の各部は、バス1050によって接続される。
4. Hardware Configuration The recognition unit 120 according to the above-described embodiment, modifications thereof, and application examples can be realized by, for example, a computer 1000 having a configuration as shown in FIG. FIG. 30 is a hardware configuration diagram showing an example of a computer 1000 that realizes the functions of the information processing apparatus constituting the recognition unit 120. The computer 1000 has a CPU 1100, a RAM 1200, a ROM (Read Only Memory) 1300, an HDD (Hard Disk Drive) 1400, a communication interface 1500, and an input / output interface 1600. Each part of the computer 1000 is connected by a bus 1050.
 CPU1100は、ROM1300又はHDD1400に格納されたプログラムに基づいて動作し、各部の制御を行う。例えば、CPU1100は、ROM1300又はHDD1400に格納されたプログラムをRAM1200に展開し、各種プログラムに対応した処理を実行する。 The CPU 1100 operates based on the program stored in the ROM 1300 or the HDD 1400, and controls each part. For example, the CPU 1100 expands the program stored in the ROM 1300 or the HDD 1400 into the RAM 1200, and executes processing corresponding to various programs.
 ROM1300は、コンピュータ1000の起動時にCPU1100によって実行されるBIOS(Basic Input Output System)等のブートプログラムや、コンピュータ1000のハードウエアに依存するプログラム等を格納する。 The ROM 1300 stores a boot program such as a BIOS (Basic Input Output System) executed by the CPU 1100 when the computer 1000 is started, a program depending on the hardware of the computer 1000, and the like.
 HDD1400は、CPU1100によって実行されるプログラム、及び、かかるプログラムによって使用されるデータ等を非一時的に記録する、コンピュータが読み取り可能な記録媒体である。具体的には、HDD1400は、プログラムデータ1450の一例である本開示に係る投影制御プログラムを記録する記録媒体である。 The HDD 1400 is a computer-readable recording medium that non-temporarily records a program executed by the CPU 1100 and data used by such a program. Specifically, the HDD 1400 is a recording medium for recording a projection control program according to the present disclosure, which is an example of program data 1450.
 通信インタフェース1500は、コンピュータ1000が外部ネットワーク1550(例えばインターネット)と接続するためのインタフェースである。例えば、CPU1100は、通信インタフェース1500を介して、他の機器からデータを受信したり、CPU1100が生成したデータを他の機器へ送信したりする。 The communication interface 1500 is an interface for the computer 1000 to connect to an external network 1550 (for example, the Internet). For example, the CPU 1100 receives data from another device or transmits data generated by the CPU 1100 to another device via the communication interface 1500.
 入出力インタフェース1600は、上述したI/F部18を含む構成であり、入出力デバイス1650とコンピュータ1000とを接続するためのインタフェースである。例えば、CPU1100は、入出力インタフェース1600を介して、キーボードやマウス等の入力デバイスからデータを受信する。また、CPU1100は、入出力インタフェース1600を介して、ディスプレイやスピーカやプリンタ等の出力デバイスにデータを送信する。また、入出力インタフェース1600は、所定の記録媒体(メディア)に記録されたプログラム等を読み取るメディアインタフェースとして機能してもよい。メディアとは、例えばDVD(Digital Versatile Disc)、PD(Phase change rewritable Disk)等の光学記録媒体、MO(Magneto-Optical disk)等の光磁気記録媒体、テープ媒体、磁気記録媒体、または半導体メモリ等である。 The input / output interface 1600 has a configuration including the above-mentioned I / F unit 18, and is an interface for connecting the input / output device 1650 and the computer 1000. For example, the CPU 1100 receives data from an input device such as a keyboard or mouse via the input / output interface 1600. Further, the CPU 1100 transmits data to an output device such as a display, a speaker, or a printer via the input / output interface 1600. Further, the input / output interface 1600 may function as a media interface for reading a program or the like recorded on a predetermined recording medium (media). The media is, for example, an optical recording medium such as DVD (Digital Versatile Disc) or PD (Phase change rewritable Disk), a magneto-optical recording medium such as MO (Magneto-Optical disk), a tape medium, a magnetic recording medium, or a semiconductor memory. Is.
 例えば、コンピュータ1000のCPU1100は、RAM1200上にロードされたプログラムを実行することにより、上述の実施形態に係る認識部120として機能する。また、HDD1400には、本開示に係るプログラム等が格納される。なお、CPU1100は、プログラムデータ1450をHDD1400から読み取って実行するが、他の例として、外部ネットワーク1550を介して、他の装置からこれらのプログラムを取得してもよい。 For example, the CPU 1100 of the computer 1000 functions as the recognition unit 120 according to the above-described embodiment by executing the program loaded on the RAM 1200. Further, the program and the like related to the present disclosure are stored in the HDD 1400. The CPU 1100 reads the program data 1450 from the HDD 1400 and executes the program, but as another example, these programs may be acquired from another device via the external network 1550.
 以上、本開示の実施形態について説明したが、本開示の技術的範囲は、上述の実施形態そのままに限定されるものではなく、本開示の要旨を逸脱しない範囲において種々の変更が可能である。また、異なる実施形態及び変形例にわたる構成要素を適宜組み合わせてもよい。 Although the embodiments of the present disclosure have been described above, the technical scope of the present disclosure is not limited to the above-described embodiments as they are, and various changes can be made without departing from the gist of the present disclosure. In addition, components spanning different embodiments and modifications may be combined as appropriate.
 また、本明細書に記載された各実施形態における効果はあくまで例示であって限定されるものでは無く、他の効果があってもよい。 Further, the effects in each embodiment described in the present specification are merely examples and are not limited, and other effects may be obtained.
 なお、本技術は以下のような構成も取ることができる。
(1)
 環境情報を取得するセンサと、
 前記センサで取得された環境情報に生じた、外部衝撃に基づく揺れを補正するための補正情報を前記環境情報に付加する制御部と、
 を備える情報処理装置。
(2)
 前記センサは、イメージセンサ、レーダ、LiDAR、及び、超音波センサのうちのいずれかである
 前記(1)に記載の情報処理装置。
(3)
 前記センサは、イメージセンサであり、
 前記環境情報は、撮像データであり、
 前記制御部は、前記撮像データを構成する各行データに対して行データごとの前記補正情報を付加する
 前記(2)に記載の情報処理装置。
(4)
 前記補正情報は、加速度、角速度、オドメトリ情報、及び、行ごとの読み出した画素数のうち少なくとも1つを含む
 前記(3)に記載の情報処理装置。
(5)
 前記制御部は、前記加速度、前記角速度、前記オドメトリ情報、及び、前記加速度と前記角速度と前記オドメトリ情報とのうちの少なくとも1つに基づいて算出された前記補正情報を前記環境情報に付加する
 前記(4)に記載の情報処理装置。
(6)
 前記(1)~(5)の何れか1つに記載の情報処理装置と、
 前記情報処理装置と所定のネットワークを介して接続された処理部と、
 を備え、
 前記情報処理装置は、前記補正情報が付加された前記環境情報を前記所定のネットワークを介して前記処理部に送信し、
 前記処理部は、前記環境情報に付加された前記補正情報に基づいて、前記環境情報に生じた前記外部衝撃に基づく揺れを補正する
 情報処理システム。
(7)
 前記処理部は、前記補正情報に基づいて補正された環境情報に対する認識処理を実行する
 前記(6)に記載の情報処理システム。
(8)
 前記処理部は、前記補正情報に基づいて、前記センサにおける読出し対象領域と、当該読出し対象領域の解像度とを決定し、決定した前記読出し対象領域及び前記解像度を前記制御部に設定し、
 前記制御部は、設定された前記読出し対象領域及び前記解像度に基づいて前記センサを駆動する
 前記(6)又は(7)に記載の情報処理システム。
(9)
 2以上の前記情報処理装置から送信された環境情報を統合する統合部をさらに備え、
 前記処理部は、前記統合部で統合された環境情報に対する処理を実行する
 前記(6)~(8)の何れか1つに記載の情報処理システム。
(10)
 複数の前記処理部と、
 前記処理部それぞれに一対一で接続された複数の前記情報処理装置と、
 を備える前記(6)~(9)の何れか1つに記載の情報処理システム。
(11)
 前記複数の処理部のうちの1つは、前記複数の情報処理装置のうちの2以上から出力された環境情報を統合的に処理する
 前記(10)に記載の情報処理システム。
(12)
 前記情報処理装置から出力された環境情報、前記処理部による補正後の環境情報、及び、前記処理部による前記補正後の環境情報に対する所定の処理結果のうちの少なくとも1つを所定のネットワークを介して送信する送信部をさらに備える
 前記(6)に記載の情報処理システム。
(13)
 情報処理システムが実行する情報処理方法であって、
 センサで取得された環境情報に生じた、外部衝撃に基づく揺れを補正するための補正情報を前記環境情報に付加し、
 情報処理装置から所定のネットワークを介して受信した前記環境情報に生じた前記外部衝撃に基づく揺れを当該環境情報に付加された前記補正情報に基づいて補正する
 ことを含む情報処理方法。
The present technology can also have the following configurations.
(1)
Sensors that acquire environmental information and
A control unit that adds correction information to the environmental information for correcting shaking caused by an external impact generated in the environmental information acquired by the sensor, and a control unit.
Information processing device equipped with.
(2)
The information processing device according to (1) above, wherein the sensor is any one of an image sensor, a radar, a LiDAR, and an ultrasonic sensor.
(3)
The sensor is an image sensor and is an image sensor.
The environmental information is imaging data and is
The information processing apparatus according to (2), wherein the control unit adds the correction information for each row data to each row data constituting the imaging data.
(4)
The information processing apparatus according to (3) above, wherein the correction information includes at least one of acceleration, angular velocity, odometry information, and the number of pixels read out for each row.
(5)
The control unit adds the acceleration, the angular velocity, the odometry information, and the correction information calculated based on at least one of the acceleration, the angular velocity, and the odometry information to the environment information. The information processing apparatus according to (4).
(6)
The information processing apparatus according to any one of (1) to (5) above,
A processing unit connected to the information processing device via a predetermined network,
Equipped with
The information processing apparatus transmits the environmental information to which the correction information is added to the processing unit via the predetermined network.
The processing unit is an information processing system that corrects shaking due to the external impact generated in the environmental information based on the correction information added to the environmental information.
(7)
The information processing system according to (6), wherein the processing unit executes recognition processing for environmental information corrected based on the correction information.
(8)
The processing unit determines the read target area in the sensor and the resolution of the read target area based on the correction information, sets the determined read target area and the resolution in the control unit, and sets the determined read target area and the resolution in the control unit.
The information processing system according to (6) or (7), wherein the control unit drives the sensor based on the set read-out target area and the resolution.
(9)
Further equipped with an integration unit that integrates environmental information transmitted from two or more information processing devices.
The information processing system according to any one of (6) to (8) above, wherein the processing unit executes processing on the environmental information integrated by the integrated unit.
(10)
With the plurality of the processing units
A plurality of the information processing devices connected to each of the processing units on a one-to-one basis,
The information processing system according to any one of (6) to (9) above.
(11)
The information processing system according to (10), wherein one of the plurality of processing units integrally processes environment information output from two or more of the plurality of information processing devices.
(12)
At least one of the environment information output from the information processing apparatus, the environment information corrected by the processing unit, and the predetermined processing result for the corrected environment information by the processing unit is transmitted via a predetermined network. The information processing system according to (6) above, further comprising a transmission unit for transmission.
(13)
It is an information processing method executed by an information processing system.
Correction information for correcting the shaking caused by the external impact generated in the environmental information acquired by the sensor is added to the environmental information.
An information processing method including correcting a shake caused by an external impact generated in the environmental information received from an information processing apparatus via a predetermined network based on the correction information added to the environmental information.
 100 撮像装置
 101 イメージセンサ
 102 制御部
 103 信号処理部
 104 記憶部
 105 入出力部
 120 認識部
 131 IMU
 132 ポジションセンサ
100 Image pickup device 101 Image sensor 102 Control unit 103 Signal processing unit 104 Storage unit 105 Input / output unit 120 Recognition unit 131 IMU
132 Position sensor

Claims (13)

  1.  環境情報を取得するセンサと、
     前記センサで取得された環境情報に生じた、外部衝撃に基づく揺れを補正するための補正情報を前記環境情報に付加する制御部と、
     を備える情報処理装置。
    Sensors that acquire environmental information and
    A control unit that adds correction information to the environmental information for correcting shaking caused by an external impact generated in the environmental information acquired by the sensor, and a control unit.
    Information processing device equipped with.
  2.  前記センサは、イメージセンサ、レーダ、LiDAR、及び、超音波センサのうちのいずれかである
     請求項1に記載の情報処理装置。
    The information processing device according to claim 1, wherein the sensor is any one of an image sensor, a radar, a LiDAR, and an ultrasonic sensor.
  3.  前記センサは、イメージセンサであり、
     前記環境情報は、撮像データであり、
     前記制御部は、前記撮像データを構成する各行データに対して行データごとの前記補正情報を付加する
     請求項2に記載の情報処理装置。
    The sensor is an image sensor and is an image sensor.
    The environmental information is imaging data and is
    The information processing device according to claim 2, wherein the control unit adds the correction information for each row data to each row data constituting the imaging data.
  4.  前記補正情報は、加速度、角速度、オドメトリ情報、及び、行ごとの読み出した画素数のうち少なくとも1つを含む
     請求項3に記載の情報処理装置。
    The information processing apparatus according to claim 3, wherein the correction information includes at least one of acceleration, angular velocity, odometry information, and the number of pixels read out for each row.
  5.  前記制御部は、前記加速度、前記角速度、前記オドメトリ情報、及び、前記加速度と前記角速度と前記オドメトリ情報とのうちの少なくとも1つに基づいて算出された前記補正情報を前記環境情報に付加する
     請求項4に記載の情報処理装置。
    The control unit adds the acceleration, the angular velocity, the odometry information, and the correction information calculated based on at least one of the acceleration, the angular velocity, and the odometry information to the environment information. Item 4. The information processing apparatus according to item 4.
  6.  請求項1に記載の情報処理装置と、
     前記情報処理装置と所定のネットワークを介して接続された処理部と、
     を備え、
     前記情報処理装置は、前記補正情報が付加された前記環境情報を前記所定のネットワークを介して前記処理部に送信し、
     前記処理部は、前記環境情報に付加された前記補正情報に基づいて、前記環境情報に生じた前記外部衝撃に基づく揺れを補正する
     情報処理システム。
    The information processing apparatus according to claim 1 and
    A processing unit connected to the information processing device via a predetermined network,
    Equipped with
    The information processing apparatus transmits the environmental information to which the correction information is added to the processing unit via the predetermined network.
    The processing unit is an information processing system that corrects shaking due to the external impact generated in the environmental information based on the correction information added to the environmental information.
  7.  前記処理部は、前記補正情報に基づいて補正された環境情報に対する認識処理を実行する
     請求項6に記載の情報処理システム。
    The information processing system according to claim 6, wherein the processing unit executes recognition processing for environmental information corrected based on the correction information.
  8.  前記処理部は、前記補正情報に基づいて、前記センサにおける読出し対象領域と、当該読出し対象領域の解像度とを決定し、決定した前記読出し対象領域及び前記解像度を前記制御部に設定し、
     前記制御部は、設定された前記読出し対象領域及び前記解像度に基づいて前記センサを駆動する
     請求項6に記載の情報処理システム。
    The processing unit determines the read target area in the sensor and the resolution of the read target area based on the correction information, sets the determined read target area and the resolution in the control unit, and sets the determined read target area and the resolution in the control unit.
    The information processing system according to claim 6, wherein the control unit drives the sensor based on the set read-out target area and the resolution.
  9.  2以上の前記情報処理装置から送信された環境情報を統合する統合部をさらに備え、
     前記処理部は、前記統合部で統合された環境情報に対する処理を実行する
     請求項6に記載の情報処理システム。
    Further equipped with an integration unit that integrates environmental information transmitted from two or more information processing devices.
    The information processing system according to claim 6, wherein the processing unit executes processing on the environmental information integrated by the integrated unit.
  10.  複数の前記処理部と、
     前記処理部それぞれに一対一で接続された複数の前記情報処理装置と、
     を備える請求項6に記載の情報処理システム。
    With the plurality of the processing units
    A plurality of the information processing devices connected to each of the processing units on a one-to-one basis,
    The information processing system according to claim 6.
  11.  前記複数の処理部のうちの1つは、前記複数の情報処理装置のうちの2以上から出力された環境情報を統合的に処理する
     請求項10に記載の情報処理システム。
    The information processing system according to claim 10, wherein one of the plurality of processing units integrally processes environment information output from two or more of the plurality of information processing devices.
  12.  前記情報処理装置から出力された環境情報、前記処理部による補正後の環境情報、及び、前記処理部による前記補正後の環境情報に対する所定の処理結果のうちの少なくとも1つを所定のネットワークを介して送信する送信部をさらに備える
     請求項6に記載の情報処理システム。
    At least one of the environment information output from the information processing apparatus, the environment information corrected by the processing unit, and the predetermined processing result for the corrected environment information by the processing unit is transmitted via a predetermined network. The information processing system according to claim 6, further comprising a transmission unit for transmitting information.
  13.  情報処理システムが実行する情報処理方法であって、
     センサで取得された環境情報に生じた、外部衝撃に基づく揺れを補正するための補正情報を前記環境情報に付加し、
     情報処理装置から所定のネットワークを介して受信した前記環境情報に生じた前記外部衝撃に基づく揺れを当該環境情報に付加された前記補正情報に基づいて補正する
     ことを含む情報処理方法。
    It is an information processing method executed by an information processing system.
    Correction information for correcting the shaking caused by the external impact generated in the environmental information acquired by the sensor is added to the environmental information.
    An information processing method including correcting a shake caused by an external impact generated in the environmental information received from an information processing apparatus via a predetermined network based on the correction information added to the environmental information.
PCT/JP2021/034193 2020-10-08 2021-09-16 Information processing device, information processing system, and information processing method WO2022075039A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020170669 2020-10-08
JP2020-170669 2020-10-08

Publications (1)

Publication Number Publication Date
WO2022075039A1 true WO2022075039A1 (en) 2022-04-14

Family

ID=81126482

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/034193 WO2022075039A1 (en) 2020-10-08 2021-09-16 Information processing device, information processing system, and information processing method

Country Status (1)

Country Link
WO (1) WO2022075039A1 (en)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0393369A (en) * 1989-09-05 1991-04-18 Toshiba Corp Pattern blur correction device for video camera
JPH0963000A (en) * 1995-08-21 1997-03-07 Olympus Optical Co Ltd On-vehicle video device
JPH10500480A (en) * 1994-05-31 1998-01-13 アライド・シグナル・インコーポレーテツド Radar system including a stabilizing calibration device
JP2005318568A (en) * 2004-03-30 2005-11-10 Fuji Photo Film Co Ltd Image compensation device and image compensation method
JP2014154898A (en) * 2013-02-05 2014-08-25 Nissan Motor Co Ltd Object detection device
JP2015033108A (en) * 2013-08-07 2015-02-16 ソニー株式会社 Image processing device, image processing method, and program
JP2015195569A (en) * 2014-03-25 2015-11-05 パナソニック インテレクチュアル プロパティ コーポレーション オブアメリカPanasonic Intellectual Property Corporation of America Imaging device for mobile
WO2019131931A1 (en) * 2017-12-28 2019-07-04 富士フイルム株式会社 Image blurring correction device, imaging device, position detection method and position detection program
WO2019225192A1 (en) * 2018-05-24 2019-11-28 ソニー株式会社 Information processing device and information processing method
WO2020027233A1 (en) * 2018-07-31 2020-02-06 ソニーセミコンダクタソリューションズ株式会社 Imaging device and vehicle control system
WO2020170969A1 (en) * 2019-02-22 2020-08-27 ソニーセミコンダクタソリューションズ株式会社 Ranging device and ranging device controlling method, and electronic device
WO2020170606A1 (en) * 2019-02-21 2020-08-27 ソニー株式会社 Image processing device, image processing method, and program

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0393369A (en) * 1989-09-05 1991-04-18 Toshiba Corp Pattern blur correction device for video camera
JPH10500480A (en) * 1994-05-31 1998-01-13 アライド・シグナル・インコーポレーテツド Radar system including a stabilizing calibration device
JPH0963000A (en) * 1995-08-21 1997-03-07 Olympus Optical Co Ltd On-vehicle video device
JP2005318568A (en) * 2004-03-30 2005-11-10 Fuji Photo Film Co Ltd Image compensation device and image compensation method
JP2014154898A (en) * 2013-02-05 2014-08-25 Nissan Motor Co Ltd Object detection device
JP2015033108A (en) * 2013-08-07 2015-02-16 ソニー株式会社 Image processing device, image processing method, and program
JP2015195569A (en) * 2014-03-25 2015-11-05 パナソニック インテレクチュアル プロパティ コーポレーション オブアメリカPanasonic Intellectual Property Corporation of America Imaging device for mobile
WO2019131931A1 (en) * 2017-12-28 2019-07-04 富士フイルム株式会社 Image blurring correction device, imaging device, position detection method and position detection program
WO2019225192A1 (en) * 2018-05-24 2019-11-28 ソニー株式会社 Information processing device and information processing method
WO2020027233A1 (en) * 2018-07-31 2020-02-06 ソニーセミコンダクタソリューションズ株式会社 Imaging device and vehicle control system
WO2020170606A1 (en) * 2019-02-21 2020-08-27 ソニー株式会社 Image processing device, image processing method, and program
WO2020170969A1 (en) * 2019-02-22 2020-08-27 ソニーセミコンダクタソリューションズ株式会社 Ranging device and ranging device controlling method, and electronic device

Similar Documents

Publication Publication Date Title
JP7314798B2 (en) IMAGING DEVICE, IMAGE PROCESSING DEVICE, AND IMAGE PROCESSING METHOD
WO2020116195A1 (en) Information processing device, information processing method, program, mobile body control device, and mobile body
WO2020116206A1 (en) Information processing device, information processing method, and program
WO2021241189A1 (en) Information processing device, information processing method, and program
WO2021060018A1 (en) Signal processing device, signal processing method, program, and moving device
JPWO2020116194A1 (en) Information processing device, information processing method, program, mobile control device, and mobile
WO2022075133A1 (en) Imaging device, information processing device, imaging system, and imaging method
WO2021241260A1 (en) Information processing device, information processing method, information processing system, and program
WO2022153896A1 (en) Imaging device, image processing method, and image processing program
WO2022004423A1 (en) Information processing device, information processing method, and program
WO2022075039A1 (en) Information processing device, information processing system, and information processing method
WO2024062976A1 (en) Information processing device and information processing method
WO2023149089A1 (en) Learning device, learning method, and learning program
WO2023054090A1 (en) Recognition processing device, recognition processing method, and recognition processing system
WO2022024569A1 (en) Information processing device, information processing method, and program
WO2024024471A1 (en) Information processing device, information processing method, and information processing system
WO2023063145A1 (en) Information processing device, information processing method, and information processing program
WO2024009829A1 (en) Information processing device, information processing method, and vehicle control system
US20230377108A1 (en) Information processing apparatus, information processing method, and program
WO2023074419A1 (en) Information processing device, information processing method, and information processing system
WO2023106235A1 (en) Information processing device, information processing method, and vehicle control system
WO2024038759A1 (en) Information processing device, information processing method, and program
WO2023145460A1 (en) Vibration detection system and vibration detection method
WO2023053498A1 (en) Information processing device, information processing method, recording medium, and in-vehicle system
WO2023162497A1 (en) Image-processing device, image-processing method, and image-processing program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21877340

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21877340

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP