WO2023162497A1 - Image-processing device, image-processing method, and image-processing program - Google Patents

Image-processing device, image-processing method, and image-processing program Download PDF

Info

Publication number
WO2023162497A1
WO2023162497A1 PCT/JP2023/000707 JP2023000707W WO2023162497A1 WO 2023162497 A1 WO2023162497 A1 WO 2023162497A1 JP 2023000707 W JP2023000707 W JP 2023000707W WO 2023162497 A1 WO2023162497 A1 WO 2023162497A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
point cloud
cloud data
vehicle
image processing
Prior art date
Application number
PCT/JP2023/000707
Other languages
French (fr)
Japanese (ja)
Inventor
友城 門野
Original Assignee
ソニーセミコンダクタソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーセミコンダクタソリューションズ株式会社 filed Critical ソニーセミコンダクタソリューションズ株式会社
Publication of WO2023162497A1 publication Critical patent/WO2023162497A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C3/00Measuring distances in line of sight; Optical rangefinders
    • G01C3/02Details
    • G01C3/06Use of electric means to obtain final indication
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/86Combinations of lidar systems with systems other than lidar, radar or sonar, e.g. with direction finders
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/89Lidar systems specially adapted for specific applications for mapping or imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/93Lidar systems specially adapted for specific applications for anti-collision purposes
    • G01S17/931Lidar systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/50Depth or shape recovery
    • G06T7/521Depth or shape recovery from laser ranging, e.g. using interferometry; from the projection of structured light

Definitions

  • the present disclosure relates to an image processing device, an image processing method, and an image processing program. More specifically, the present invention relates to image processing applied to an image captured by a camera provided in a moving object such as an automobile.
  • point cloud data obtained by LiDAR when using point cloud data obtained by LiDAR to analyze information captured by other sensors (for example, two-dimensional image data captured by a camera), the installation position of each sensor is different. Therefore, point cloud data may not be used appropriately.
  • point cloud data may be used as erroneous depth information.
  • this disclosure proposes an image processing device, an image processing method, and an image processing program that can appropriately utilize point cloud data obtained by sensing.
  • an image processing apparatus provides point cloud data indicating that surrounding objects have been detected from LiDAR (Light Detection and Ranging), which is a sensor using a laser. and when the point cloud data is superimposed on an image including the laser irradiation range of the LiDAR in the imaging range, based on the irradiation information of the LiDAR, out of the superimposed point cloud data, an identifying unit for identifying a false transmission point, which is actually a point not illuminated on an object in the image.
  • LiDAR Light Detection and Ranging
  • FIG. 1 is a diagram (1) for explaining an overview of image processing according to the present disclosure
  • FIG. FIG. 2 is a diagram (2) for explaining an overview of image processing according to the present disclosure
  • FIG. 3 is a diagram (3) for explaining an overview of image processing according to the present disclosure
  • 3 is a block diagram for explaining the flow of image processing according to the present disclosure
  • FIG. 1 is a diagram illustrating a configuration example of an image processing apparatus according to an embodiment
  • FIG. 4 is a flowchart showing the flow of processing according to the embodiment
  • 1 is a block diagram showing a schematic functional configuration example of a vehicle control system to which the present technology can be applied
  • FIG. FIG. 4 is a diagram illustrating an example of a sensing area by a vehicle control system to which the present technology can be applied
  • 1 is a hardware configuration diagram showing an example of a computer that implements functions of an image processing apparatus according to the present disclosure
  • Embodiment 1-1 Outline of image processing according to present disclosure 1-2.
  • Configuration example of image processing apparatus according to embodiment 1-3 Image processing procedure according to embodiment 1-4.
  • FIG. 1 is a diagram (1) for explaining an overview of image processing according to the present disclosure.
  • Image processing according to the present disclosure is performed by an image processing device 100 mounted on a vehicle 1 shown in FIG.
  • the image processing apparatus 100 executes image processing according to the embodiment (acquisition of point cloud data using LiDAR, superimposition processing of point cloud data on an image, etc.) by operating various functional units to be described later. .
  • the vehicle 1 is, for example, a four-wheeled vehicle equipped with technology related to automatic driving. For example, using the object detection function performed by the image processing device 100, the vehicle 1 automatically parks in a predetermined parking space, controls behavior to avoid objects, and selects an appropriate route.
  • the external situation is detected by various sensors, and from the detected information, it is detected whether or not the object is actually located.
  • sensors include LiDAR, which uses lasers to measure the position of an object and the distance to an object, image sensors mounted on cameras, and millimeter-wave radar (radar sensor), which uses the reflection of radio waves such as millimeter waves. etc.
  • object detection is a method of determining whether or not there is an object in the image by inputting an image captured by a camera (image sensor) and recognizing the image with a detector.
  • object detection is a method of detecting an object by using point cloud data obtained by LiDAR (such as depth information obtained from information reflected from an object) as input to a detector.
  • image recognition and object detection using a camera have been mainly used with the dramatic improvement in image recognition accuracy.
  • multiple sensors are also used together.
  • a LiDAR together with a camera or the like
  • Detection using multiple sensors has the advantage of being able to accurately detect an object compared to detection using a single sensor.
  • point cloud data obtained from LiDAR is superimposed on the image captured by the camera, and the depth information of each object included in the image is used to accurately measure the distance to each object. do.
  • a highly accurate distance estimation model can be learned by learning the relationship between each object on the image and the distance using the object captured in the image and the depth information as correct data.
  • the image processing apparatus 100 executes the following processing. That is, the image processing apparatus 100 acquires point cloud data indicating that a surrounding object has been detected from the LiDAR, and superimposes the point cloud data on an image including the laser irradiation range of the LiDAR in the imaging range. , based on the illumination information of the LiDAR, identify the false transmission points, which are points that are not actually illuminated on the object in the image, in the superimposed point cloud data. Then, the image processing apparatus 100 deletes the false transmission points from the point cloud data, and then generates an image by superimposing the point cloud data excluding the false transmission points. As a result, the image processing apparatus 100 can generate image data in which only the point cloud data that accurately hit the object are superimposed, so that learning processing and analysis processing using images can be performed with high accuracy.
  • FIG. 1 the vehicle 1 has a LiDAR 150 on the top of the head.
  • the vehicle 1 also includes a camera 160 for capturing an image of the front.
  • the vehicle 1 may include more LiDARs 150 and cameras 160.
  • FIG. 1 shows a point 310 indicating that the laser emitted by the LiDAR 150 hits an arbitrary object further forward than the vehicle 200 ahead, and a point 330 indicating that the laser hits the rear of the vehicle 200 ahead. show.
  • the camera 160 captures an imaging range including the vehicle 200 ahead of the vehicle 1 .
  • the camera 160 captures an image including the point 330 in the imaging range.
  • the image captured by the camera 160 includes the vehicle 200 in the imaging range and does not include the point 310 because the vehicle 200 blocks the target ahead.
  • point 320 is included such that point 310 exists on an extension line. That is, although the point 320 is not actually illuminated by the laser emitted by the LiDAR 150, when the point cloud data is superimposed on the image, the vehicle 200 is apparently illuminated by the laser. point (false transparent point).
  • the point 330 is a point indicating that the laser actually emitted from the LiDAR 150 hits the vehicle 200, and the depression angle (inclination), which is the irradiation information of the laser, is obtained from the line segment connecting the LiDAR 150 and the point 330.
  • the point 320 which is a false transmission point, is actually based on the laser beam emitted from the LiDAR 150 at the depression angle at which the point 310 is obtained. Nonetheless, it is a point obtained based on a laser irradiated at a depression angle shallower than that of point 330 .
  • FIG. 2 is a diagram (2) for explaining an outline of image processing according to the present disclosure.
  • An image 340 shown in FIG. 2 shows a state in which points 330 and 320, which are point cloud data obtained from the LiDAR 150, are superimposed on the captured image.
  • the point 320 is obtained by the shallow depression angle laser ("Line 1" shown in FIG. 2) emitted from the LiDAR 150, and actually indicates that the object in front of the vehicle 200 has been hit.
  • 310 is the false transmission point.
  • a point 330 is obtained by a laser beam emitted from the LiDAR 150 and having a deeper depression angle than the laser beam corresponding to the point 310 (“Line 2” in FIG. 2).
  • the image 342 in FIG. 2 is obtained by superimposing the point cloud data irradiated by the LiDAR 150 on the image of the vehicle 200 captured by the image processing device 100 .
  • the image 342 is composed of point cloud data 332 obtained based on substantially the same elevation/depression angle information as the point 330 (in the image, the values of the vertical axis appear to be substantially the same), and the point 320. 10 shows a state in which point cloud data 322 obtained based on the same elevation/depression angle information is superimposed on the rear portion of the vehicle 200.
  • the image 342 also includes point cloud data 334 and point cloud data 336 indicating that the vehicle 200 was actually hit by the laser. Also, although not shown in the image 342, other point cloud data indicating that the laser actually hit the vehicle 200 may be superimposed in the vicinity of the point cloud data 322, which is the false transmission point. sell.
  • the point cloud data 322 is point cloud data that is superimposed on the image 342 and observed as if it hit the vehicle 200, even though the vehicle 200 is not actually hit by the laser. Therefore, if an attempt is made to use the depth information and the like included in the image 342 and the point cloud data 322 as learning data, the distance to the vehicle 200 and the depth information included in the point cloud data 322 will contradict each other. less reliable.
  • FIG. 3 is a diagram (3) for explaining an outline of image processing according to the present disclosure.
  • the LiDAR 150 When the LiDAR 150 irradiates a laser, the "elevation” indicating the angle of the height at which the laser is emitted, that is, elevation/depression angle information 410, and the “azimuth” indicating the horizontal angle with respect to the vehicle 1, that is, the azimuth angle information 420. It is possible to acquire irradiation information including Also, the LiDAR 150 can acquire identification information (irradiation ID) for each irradiation as irradiation information. The image processing apparatus 100 acquires these irradiation information together with the point cloud data.
  • irradiation ID identification information
  • the image processing apparatus 100 can specify the elevation/depression angle information 410 and the azimuth angle information 420 when the laser is irradiated for each of the point cloud data obtained from the LiDAR 150 based on the irradiation ID.
  • the image processing apparatus 100 can specify height (y-axis) information and horizontal position (x-axis) in the image 430 captured by the camera 160 .
  • the image processing apparatus 100 identifies false transparent points. First, the image processing apparatus 100 selects one point to be processed from the point cloud data superimposed on the image 342 . For example, the image processing apparatus 100 selects point 330 . Subsequently, the image processing apparatus 100 selects another point on substantially the same x-axis. Here, the image processing apparatus 100 selects a point 320 which is another point on substantially the same x-axis.
  • the image processing apparatus 100 compares the irradiation information based on the two irradiation IDs. Specifically, the image processing apparatus 100 compares elevation/depression angle information of two points. Then, if there is a contradiction in the elevation/depression angles of the points on the same x-axis, the image processing apparatus 100 identifies the point with the contradiction as a false transmission point. Specifically, the image processing apparatus 100 detects that the point 320, which should be superimposed at a higher position on the y-axis of the image 342 than the point 330, is superimposed on the image 342 relative to the point 330, because the irradiation is performed at a shallower depression angle.
  • the image processing apparatus 100 draws the point 330 above the point 320 in the image 342, If the "elevation" value of point 330 is less than the "elevation” value of point 320, point 320 is identified as a false transparent point. Also, if the "elevation" value of the point 330 is greater than the "elevation” value of the point 320, the image processing apparatus 100 determines that neither the point 330 nor the point 320 is a false transparent point.
  • the point to be processed (the point 338 in the example of FIG. 3) is compared with the irradiation information of the point 330, and the false transmission points are identified in order.
  • the image processing apparatus 100 deletes the specified false transparent point and does not superimpose it on the image 342 .
  • the image processing apparatus 100 can specify all the false transparent points included in the image 342 by performing the processing for all the point cloud data of the image 342 .
  • the image processing apparatus 100 may specify the false transmission point using not only the elevation/depression angle information but also the azimuth angle information. That is, depending on the relationship between the installation positions of the LiDAR 150 and the camera 160, not only the situation where the laser ahead of the object is detected as a false transmission point due to the difference in the installation position based on the elevation as described above, but also the object This is because a false transmission point may be detected by irradiating the tip of the object with the laser so as to go around from the side of the object.
  • the image processing apparatus 100 has identified points 320, 324, and 326 as false transparent points.
  • the image processing apparatus 100 removes the points 320 , 324 and 326 and generates an image by superimposing the remaining point cloud data on the image 342 .
  • the image processing apparatus 100 can obtain an image in which only point cloud data having accurate depth information corresponding to the object on the image are superimposed.
  • FIG. 4 is a block diagram for explaining the flow of image processing according to the present disclosure.
  • FIG. 4 is a schematic block diagram showing an example of a procedure of automatic driving by the vehicle 1 including image processing executed by the image processing device 100. As shown in FIG.
  • the image processing device 100 acquires a camera image 550 and LiDAR data 552 (point cloud data). Then, the image processing apparatus 100 generates a LiDAR data superimposed image 554 in which the LiDAR data 552 is superimposed on the camera image 550 by the image processing described above.
  • the image processing device 100 executes processing such as 3D semantic segmentation (3D Semantic Segmentation) 556 for detecting or recognizing surrounding objects, roads, etc. based on the camera image 550 and the LiDAR data superimposed image 554. .
  • processing such as 3D semantic segmentation (3D Semantic Segmentation) 556 for detecting or recognizing surrounding objects, roads, etc. based on the camera image 550 and the LiDAR data superimposed image 554.
  • the detection technique is not limited to 3D semantic segmentation, and the image processing apparatus 100 may use other known techniques.
  • the image processing device 100 uses the acquired peripheral information to perform predetermined automatic driving processing (task execution 558) such as parking processing in a parking space and driving to a destination.
  • FIG. 5 is a diagram showing a configuration example of the image processing device 100 according to the embodiment of the present disclosure.
  • the image processing apparatus 100 has a communication section 110, a storage section 120, a control section 130, and a detection section 140.
  • the configuration shown in FIG. 5 is a functional configuration, and the hardware configuration may differ from this.
  • the functions of the image processing apparatus 100 may be distributed and implemented in a plurality of physically separated apparatuses.
  • the communication unit 110 is implemented by, for example, a network interface controller or NIC (Network Interface Card).
  • the communication unit 110 may be a USB interface configured by a USB (Universal Serial Bus) host controller, a USB port, or the like.
  • the communication unit 110 may be a wired interface or a wireless interface.
  • the communication unit 110 may be a wireless communication interface of a wireless LAN system or a cellular communication system.
  • the communication unit 110 functions as communication means or transmission means of the image processing apparatus 100 .
  • the communication unit 110 is connected to the network N by wire or wirelessly, and transmits/receives information to/from another information processing terminal such as an external device such as a cloud server via the network N.
  • Network N is, for example, Bluetooth (registered trademark), the Internet, Wi-Fi (registered trademark), UWB (Ultra Wide Band), LPWA (Low Power Wide Area), ELTRES (registered trademark), or other wireless communication standards or methods. Realized.
  • the storage unit 120 is implemented by, for example, a semiconductor memory device such as RAM (Random Access Memory) or flash memory, or a storage device such as a hard disk or optical disk.
  • the storage unit 120 stores various data.
  • the storage unit 120 stores irradiation information when the LiDAR 150 emits laser light, image data captured by the camera 160, and the like.
  • the storage unit 120 may store a learning device (object detection model) trained for object detection, image data used for learning, and the like.
  • the storage unit 120 may also store map data or the like for executing automatic driving. Note that although the present disclosure shows an example in which the storage unit 120 is installed in the image processing device 100 (that is, the vehicle 1), the data stored in the storage unit 120 is stored on an external device such as a cloud server. may
  • the detection unit 140 detects various types of information regarding the vehicle 1 and the image processing device 100 . Specifically, the detection unit 140 detects the environment around the vehicle 1, the location information of the vehicle 1, the information related to other devices connected to the image processing device 100 mounted on the vehicle 1, and the like. do. The detection unit 140 may be read as a sensor that detects various types of information.
  • the detection unit 140 has a LiDAR 150 and a camera 160 as sensors.
  • the LiDAR 150 is a sensor that reads the three-dimensional structure of the surrounding environment of the vehicle 1 . Specifically, the LiDAR 150 irradiates a surrounding object with a laser beam such as an infrared laser and measures the time it takes for the laser beam to reflect and return, thereby detecting the distance to the object and the relative speed.
  • a laser beam such as an infrared laser
  • the camera 160 is a sensor that has a function of imaging the surroundings of the vehicle 1.
  • the camera 160 may take any form, such as a stereo camera, a monocular camera, or a lensless camera. Also, the camera 160 is not limited to a visible light camera such as an RGB camera, and may be a camera with a depth sensor including a ToF (Time of Flight) sensor.
  • the camera 160 may also include an AI-equipped image sensor capable of object detection and recognition processing.
  • the detection unit 140 may have various sensors other than the LiDAR 150 and the camera 160.
  • the detection unit 140 may include a ranging system using millimeter wave radar.
  • the detection unit 140 may include a depth sensor for acquiring depth data.
  • the sensing unit 140 may be a sonar that searches the surrounding environment with sound waves.
  • the detection unit 140 includes a microphone that collects sounds around the vehicle 1, an illuminance sensor that detects the illuminance around the vehicle 1, a humidity sensor that detects the humidity around the vehicle 1, and a location sensor of the vehicle 1. It may also include a geomagnetic sensor or the like that detects the magnetic field in the .
  • the image processing apparatus 100 may include a display unit that displays various information.
  • the display unit is a mechanism for outputting various information, such as a liquid crystal display.
  • the display unit may display an image captured by the detection unit 140 or an object detected by the image processing device 100 in the image.
  • the display unit may also serve as a processing unit for receiving various operations from a user or the like who uses the image processing apparatus 100 .
  • the display unit may receive input of various information via key operations, a touch panel, or the like.
  • the control unit 130 stores a program (for example, an image processing program according to the present disclosure) stored inside the image processing apparatus 100 by a CPU (Central Processing Unit) or MPU (Micro Processing Unit), for example, in a RAM (Random Access Memory). ) etc. as a work area.
  • a program for example, an image processing program according to the present disclosure
  • the control unit 130 is a controller, and may be realized by an integrated circuit such as an ASIC (Application Specific Integrated Circuit) or an FPGA (Field Programmable Gate Array).
  • control unit 130 includes an acquisition unit 131, an imaging unit 132, an identification unit 133, and a generation unit 134, and implements or executes the information processing functions and actions described below.
  • the internal configuration of the control unit 130 is not limited to the configuration shown in FIG. 5, and may be another configuration as long as it performs information processing described later.
  • the acquisition unit 131 acquires various types of information. For example, the acquisition unit 131 acquires point cloud data indicating detection of surrounding objects from the LiDAR 150, which is a sensor using a laser.
  • the acquisition unit 131 acquires the point cloud data as well as the laser irradiation information when the point cloud data was obtained. For example, the acquisition unit 131 acquires elevation/depression angle information and azimuth angle information of laser irradiation as the irradiation information. In other words, the acquisition unit 131 acquires, as the irradiation information, a numerical value (elevation) indicating the height direction and a numerical value (azimuth) indicating the horizontal direction when the laser is irradiated.
  • the imaging unit 132 captures a two-dimensional image including the laser irradiation range of the LiDAR 150 in the imaging range. Specifically, the imaging unit 132 controls the camera 160 to capture an image of the surroundings of the vehicle 1 and captures an image including the laser irradiation range of the LiDAR 150 in the imaging range.
  • the specifying unit 133 determines, based on the irradiation information of the LiDAR 150, that of the superimposed point cloud data, the actual Identify false transmission points, which are points not illuminated on the object. Specifically, the specifying unit 133 specifies a false transmission point based on the irradiation information of the LiDAR 150 when the point cloud data is superimposed on the image captured by the imaging unit 132 .
  • the specifying unit 133 specifies the false transmission point based on the elevation/depression angle information and the azimuth angle information in the laser irradiation as the irradiation information.
  • the specifying unit 133 first specifies two point cloud data having substantially the same azimuth angle information among the point cloud data. Then, the specifying unit 133 compares the elevation/depression angle information corresponding to the two specified point cloud data with the values of the vertical axis coordinates when the two point cloud data are projected onto the image, thereby determining false Identify the transmission point.
  • the identifying unit 133 selects two points having substantially the same azimuth angle information in the image (in other words, horizontal axis coordinates (x-axis coordinates) on the image). Extract point cloud data. Furthermore, the specifying unit 133 determines that, of the two extracted point cloud data, a point that should have a higher vertical axis coordinate (y-axis coordinate) value, that is, a point having a larger elevation value, is replaced by the other point. A point is identified as a false transmission point if it is drawn at a position lower than . Note that when the specifying unit 133 determines that two points are drawn on the image without contradiction, the specifying unit 133 determines that the points are not false transparent points, and proceeds to the process of comparing the next two points.
  • the specifying unit 133 may specify a false transmission point not only based on elevation/depression angle information, that is, contradiction with respect to the height direction, but also based on contradiction with respect to the horizontal direction.
  • a false transmission point not only based on elevation/depression angle information, that is, contradiction with respect to the height direction, but also based on contradiction with respect to the horizontal direction.
  • the irradiation of the laser exceeds the imaging range in the horizontal direction of the camera 160, and the object in the front included in the captured image is captured in the image. This may occur, for example, when an object in the back that is not included in the
  • the specifying unit 133 specifies two point cloud data having substantially the same elevation/depression angle information among the point cloud data. Then, the specifying unit 133 compares the azimuth angle information corresponding to the two point cloud data with the value of the horizontal axis coordinate when the two point cloud data are projected onto the two-dimensional image, thereby determining the false transmission. Identify points.
  • the specifying unit 133 selects two points having substantially the same elevation/depression angle information (in other words, vertical axis coordinates (y-axis coordinates) on the image) in the image, among the point cloud data superimposed on the image. Extract point cloud data. Furthermore, the specifying unit 133 determines that, of the two extracted point cloud data, a point that should have a higher (or lower) horizontal axis coordinate (x-axis coordinate) value, that is, a point that has a larger (smaller) azimuth value A point is identified as a false transparent point if it is drawn at an inconsistent position either to the left or right of another point. Note that when the specifying unit 133 determines that two points are drawn on the image without contradiction, the specifying unit 133 determines that the points are not false transparent points, and proceeds to the process of comparing the next two points.
  • the generation unit 134 removes the false transmission points identified by the identification unit 133 and generates an image in which the point cloud data excluding the removed false transmission points is superimposed.
  • the generation unit 134 removes these four points from the original image, generates an image in which the point cloud data of is superimposed. As a result, the generation unit 134 can generate an image in which only the point cloud data accurately irradiated onto the object on the image are superimposed, so that an image that does not interfere with the subsequent object detection processing and learning processing can be generated. can provide.
  • FIG. 6 is a flowchart showing the flow of processing according to the embodiment.
  • the image processing device 100 acquires point cloud data from the LiDAR 150 (step S31). Also, the image processing device 100 uses the camera 160 to capture an image of a range including the irradiation range of the LiDAR 150 (step S32).
  • the image processing device 100 superimposes the acquired point cloud data on the captured image (step S33). Then, the image processing apparatus 100 extracts two points to be processed from the superimposed plurality of point cloud data (step S34).
  • the image processing apparatus 100 executes the above-described specific processing for the relationship between the extracted two points, and determines whether there is a point that contradicts the irradiation information when the LiDAR 150 irradiates the laser (step S35). If contradictory points exist (step S35; Yes), the image processing apparatus 100 deletes the contradictory points (step S36).
  • step S35; No the image processing apparatus 100 determines whether or not all point cloud data have been processed at that time (step S37). If point cloud data to be processed remains (step S37; No), the image processing apparatus 100 repeats the process of extracting the following two points and identifying false transparent points.
  • step S37 when all the point cloud data have been processed (step S37; Yes), the image processing apparatus 100 generates an image in which the remaining point cloud data after deleting the false transmission points are superimposed (step S38). .
  • a mobile object that executes image processing may be a small vehicle such as a motorcycle or a tricycle, a large vehicle such as a bus or truck, or an autonomous mobile object such as a robot or drone.
  • the image processing apparatus 100 is not necessarily integrated with a mobile object such as the vehicle 1, and may be a cloud server or the like that acquires information from the mobile object via a network and performs image processing based on the acquired information. .
  • the image processing device 100 may be realized by an autonomous mobile body (automobile) that automatically drives.
  • vehicle 1 and image processing device 100 may have configurations shown in FIGS. 7 and 8 in addition to the configuration shown in FIG.
  • each part shown below may be included in each part shown in FIG. 5, for example.
  • FIG. 7 is a block diagram showing a schematic functional configuration example of the vehicle control system 11 to which the present technology can be applied.
  • the vehicle control system 11 is provided in the vehicle 1 and performs processing related to driving support and automatic driving of the vehicle 1.
  • the vehicle control system 11 includes a vehicle control ECU (Electronic Control Unit) 21, a communication unit 22, a map information storage unit 23, a GNSS (Global Navigation Satellite System) receiving unit 24, an external recognition sensor 25, an in-vehicle sensor 26, a vehicle sensor 27, It has a recording unit 28 , a driving support/automatic driving control unit 29 , a DMS (Driver Monitoring System) 30 , an HMI (Human Machine Interface) 31 , and a vehicle control unit 32 .
  • vehicle control ECU Electronic Control Unit
  • a communication unit 22 a communication unit 22
  • a map information storage unit 23 a GNSS (Global Navigation Satellite System) receiving unit 24
  • an external recognition sensor 25
  • an in-vehicle sensor 26 a vehicle sensor 27
  • It has a recording unit 28 , a driving support/automatic driving control unit 29 , a DMS (Driver Monitoring System) 30 , an HMI (Human Machine Interface) 31 , and a vehicle control unit 32 .
  • DMS Driver Monitoring System
  • the vehicle control ECU 21, communication unit 22, map information storage unit 23, GNSS reception unit 24, external recognition sensor 25, in-vehicle sensor 26, vehicle sensor 27, recording unit 28, driving support/automatic driving control unit 29, DMS 30, HMI 31, and , and the vehicle control unit 32 are communicably connected to each other via a communication network 41 .
  • the communication network 41 is, for example, a CAN (Controller Area Network), LIN (Local Interconnect Network), LAN (Local Area Network), FlexRay (registered trademark), Ethernet (registered trademark), and other digital two-way communication standards. It is composed of a communication network, a bus, and the like.
  • the communication network 41 may be selectively used depending on the type of data to be communicated.
  • CAN is applied for data related to vehicle control
  • Ethernet is applied for large-capacity data.
  • Each part of the vehicle control system 11 performs wireless communication assuming relatively short-range communication such as near field communication (NFC (Near Field Communication)) or Bluetooth (registered trademark) without going through the communication network 41. may be connected directly using NFC (Near Field Communication) or Bluetooth (registered trademark)
  • the vehicle control ECU 21 is composed of various processors such as a CPU (Central Processing Unit) and an MPU (Micro Processing Unit).
  • the vehicle control ECU 21 controls all or part of the functions of the vehicle control system 11 .
  • the communication unit 22 communicates with various devices inside and outside the vehicle, other vehicles, servers, base stations, etc., and transmits and receives various data. At this time, the communication unit 22 can perform communication using a plurality of communication methods.
  • the communication with the outside of the vehicle that can be performed by the communication unit 22 will be described schematically.
  • the communication unit 22 uses a wireless communication method such as 5G (5th generation mobile communication system), LTE (Long Term Evolution), DSRC (Dedicated Short Range Communications), etc., via a base station or access point, on an external network communicates with a server (hereinafter referred to as an external server) located in the
  • the external network with which the communication unit 22 communicates is, for example, the Internet, a cloud network, or a provider's own network.
  • the communication method for communicating with the external network by the communication unit 22 is not particularly limited as long as it is a wireless communication method capable of digital two-way communication at a predetermined communication speed or higher and at a predetermined distance or longer.
  • the communication unit 22 can communicate with a terminal existing in the vicinity of the own vehicle using P2P (Peer To Peer) technology.
  • Terminals in the vicinity of one's own vehicle include, for example, terminals worn by pedestrians, bicycles, and other moving bodies that move at relatively low speeds, terminals installed at fixed locations such as stores, or MTC (Machine Type Communication).
  • MTC Machine Type Communication
  • the communication unit 22 can also perform V2X communication.
  • V2X communication includes, for example, vehicle-to-vehicle communication with other vehicles, vehicle-to-infrastructure communication with roadside equipment, etc., and vehicle-to-home communication , and communication between the vehicle and others, such as vehicle-to-pedestrian communication with a terminal or the like possessed by a pedestrian.
  • the communication unit 22 can receive from the outside a program for updating the software that controls the operation of the vehicle control system 11 (Over The Air).
  • the communication unit 22 can also receive map information, traffic information, information around the vehicle 1, and the like from the outside.
  • the communication unit 22 can transmit information about the vehicle 1, information about the surroundings of the vehicle 1, and the like to the outside.
  • the information about the vehicle 1 that the communication unit 22 transmits to the outside includes, for example, data indicating the state of the vehicle 1, recognition results by the recognition unit 73, and the like.
  • the communication unit 22 performs communication corresponding to a vehicle emergency call system such as e-call.
  • the communication with the inside of the vehicle that can be performed by the communication unit 22 will be described schematically.
  • the communication unit 22 can communicate with each device in the vehicle using, for example, wireless communication.
  • the communication unit 22 performs wireless communication with devices in the vehicle using a communication method such as wireless LAN, Bluetooth, NFC, and WUSB (Wireless USB) that enables digital two-way communication at a communication speed higher than a predetermined value. can be done.
  • the communication unit 22 can also communicate with each device in the vehicle using wired communication.
  • the communication unit 22 can communicate with each device in the vehicle by wired communication via a cable connected to a connection terminal (not shown).
  • the communication unit 22 performs digital two-way communication at a predetermined communication speed or higher by wired communication, such as USB (Universal Serial Bus), HDMI (High-Definition Multimedia Interface) (registered trademark), and MHL (Mobile High-definition Link). can communicate with each device in the vehicle.
  • wired communication such as USB (Universal Serial Bus), HDMI (High-Definition Multimedia Interface) (registered trademark), and MHL (Mobile High-definition Link).
  • equipment in the vehicle refers to equipment that is not connected to the communication network 41 in the vehicle, for example.
  • in-vehicle devices include mobile devices and wearable devices possessed by passengers such as drivers, information devices that are brought into the vehicle and temporarily installed, and the like.
  • the communication unit 22 receives electromagnetic waves transmitted by a vehicle information and communication system (VICS (registered trademark)) such as radio beacons, optical beacons, and FM multiplex broadcasting.
  • VICS vehicle information and communication system
  • the map information accumulation unit 23 accumulates one or both of the map obtained from the outside and the map created by the vehicle 1. For example, the map information accumulation unit 23 accumulates a three-dimensional high-precision map, a global map covering a wide area, and the like, which is lower in accuracy than the high-precision map.
  • High-precision maps are, for example, dynamic maps, point cloud maps, and vector maps.
  • the dynamic map is, for example, a map consisting of four layers of dynamic information, quasi-dynamic information, quasi-static information, and static information, and is provided to the vehicle 1 from an external server or the like.
  • a point cloud map is a map composed of a point cloud (point cloud data).
  • the vector map refers to a map adapted to ADAS (Advanced Driver Assistance System) in which traffic information such as lane and signal positions are associated with a point cloud map.
  • ADAS Advanced Driver Assistance System
  • the point cloud map and the vector map may be provided from an external server or the like, and based on the sensing results of the radar 52, LiDAR 53, etc., the vehicle 1 as a map for matching with a local map described later. It may be created and stored in the map information storage unit 23 . Further, when a high-precision map is provided from an external server or the like, in order to reduce the communication capacity, map data of, for example, several hundred meters square, regarding the planned route that the vehicle 1 will travel from now on, is acquired from the external server or the like. .
  • the GNSS receiver 24 receives GNSS signals from GNSS satellites and acquires position information of the vehicle 1 .
  • the received GNSS signal is supplied to the driving support/automatic driving control unit 29 .
  • the GNSS receiver 24 is not limited to the method using the GNSS signal, and may acquire the position information using, for example, a beacon.
  • the external recognition sensor 25 includes various sensors used for recognizing situations outside the vehicle 1 and supplies sensor data from each sensor to each part of the vehicle control system 11 .
  • the type and number of sensors included in the external recognition sensor 25 are arbitrary.
  • the external recognition sensor 25 includes a camera 51 , a radar 52 , a LiDAR (Light Detection and Ranging, Laser Imaging Detection and Ranging) 53 , and an ultrasonic sensor 54 .
  • the configuration is not limited to this, and the external recognition sensor 25 may be configured to include one or more types of sensors among the camera 51, radar 52, LiDAR 53, and ultrasonic sensor .
  • the numbers of cameras 51 , radars 52 , LiDARs 53 , and ultrasonic sensors 54 are not particularly limited as long as they are realistically installable in the vehicle 1 .
  • the type of sensor provided in the external recognition sensor 25 is not limited to this example, and the external recognition sensor 25 may be provided with other types of sensors. An example of the sensing area of each sensor included in the external recognition sensor 25 will be described later.
  • the shooting method of the camera 51 is not particularly limited as long as it is a shooting method that enables distance measurement.
  • the camera 51 may be a ToF (Time Of Flight) camera, a stereo camera, a monocular camera, an infrared camera, or any other type of camera as required.
  • the camera 51 is not limited to this, and may simply acquire a photographed image regardless of distance measurement.
  • the external recognition sensor 25 can include an environment sensor for detecting the environment with respect to the vehicle 1.
  • the environment sensor is a sensor for detecting the environment such as weather, weather, brightness, etc., and can include various sensors such as raindrop sensors, fog sensors, sunshine sensors, snow sensors, and illuminance sensors.
  • the external recognition sensor 25 includes a microphone used for detecting the sound around the vehicle 1 and the position of the sound source.
  • the in-vehicle sensor 26 includes various sensors for detecting information inside the vehicle, and supplies sensor data from each sensor to each part of the vehicle control system 11 .
  • the types and number of various sensors included in the in-vehicle sensor 26 are not particularly limited as long as they are realistically installable in the vehicle 1 .
  • the in-vehicle sensor 26 can include one or more sensors among cameras, radars, seating sensors, steering wheel sensors, microphones, and biosensors.
  • the camera provided in the in-vehicle sensor 26 for example, cameras of various shooting methods capable of distance measurement, such as a ToF camera, a stereo camera, a monocular camera, and an infrared camera, can be used.
  • the camera included in the in-vehicle sensor 26 is not limited to this, and may simply acquire a photographed image regardless of distance measurement.
  • the biosensors included in the in-vehicle sensor 26 are provided, for example, in seats, steering wheels, etc., and detect various biometric information of passengers such as the driver.
  • the vehicle sensor 27 includes various sensors for detecting the state of the vehicle 1, and supplies sensor data from each sensor to each section of the vehicle control system 11.
  • the types and number of various sensors included in the vehicle sensor 27 are not particularly limited as long as they can be installed in the vehicle 1 realistically.
  • the vehicle sensor 27 includes a speed sensor, an acceleration sensor, an angular velocity sensor (gyro sensor), and an inertial measurement unit (IMU (Inertial Measurement Unit)) integrating them.
  • the vehicle sensor 27 includes a steering angle sensor that detects the steering angle of the steering wheel, a yaw rate sensor, an accelerator sensor that detects the amount of operation of the accelerator pedal, and a brake sensor that detects the amount of operation of the brake pedal.
  • the vehicle sensor 27 includes a rotation sensor that detects the number of rotations of an engine or a motor, an air pressure sensor that detects tire air pressure, a slip rate sensor that detects a tire slip rate, and a wheel speed sensor that detects the rotational speed of a wheel.
  • a sensor is provided.
  • the vehicle sensor 27 includes a battery sensor that detects the remaining battery level and temperature, and an impact sensor that detects external impact.
  • the recording unit 28 includes at least one of a nonvolatile storage medium and a volatile storage medium, and stores data and programs.
  • the recording unit 28 is used, for example, as EEPROM (Electrically Erasable Programmable Read Only Memory) and RAM (Random Access Memory), and as a storage medium, magnetic storage devices such as HDD (Hard Disc Drive), semiconductor storage devices, optical storage devices, And a magneto-optical storage device can be applied.
  • the recording unit 28 records various programs and data used by each unit of the vehicle control system 11 .
  • the recording unit 28 includes an EDR (Event Data Recorder) and a DSSAD (Data Storage System for Automated Driving), and records information on the vehicle 1 before and after an event such as an accident and biometric information acquired by the in-vehicle sensor 26. .
  • EDR Event Data Recorder
  • DSSAD Data Storage System for Automated Driving
  • the driving support/automatic driving control unit 29 controls driving support and automatic driving of the vehicle 1 .
  • the driving support/automatic driving control unit 29 includes an analysis unit 61 , an action planning unit 62 and an operation control unit 63 .
  • the analysis unit 61 analyzes the vehicle 1 and its surroundings.
  • the analysis unit 61 includes a self-position estimation unit 71 , a sensor fusion unit 72 and a recognition unit 73 .
  • the self-position estimation unit 71 estimates the self-position of the vehicle 1 based on the sensor data from the external recognition sensor 25 and the high-precision map accumulated in the map information accumulation unit 23. For example, the self-position estimation unit 71 generates a local map based on sensor data from the external recognition sensor 25, and estimates the self-position of the vehicle 1 by matching the local map and the high-precision map.
  • the position of the vehicle 1 is based on, for example, the center of the rear wheel versus axle.
  • a local map is, for example, a three-dimensional high-precision map created using techniques such as SLAM (Simultaneous Localization and Mapping), an occupancy grid map, or the like.
  • the three-dimensional high-precision map is, for example, the point cloud map described above.
  • the occupancy grid map is a map that divides the three-dimensional or two-dimensional space around the vehicle 1 into grids (lattice) of a predetermined size and shows the occupancy state of objects in grid units.
  • the occupancy state of an object is indicated, for example, by the presence or absence of the object and the existence probability.
  • the local map is also used, for example, by the recognizing unit 73 for detection processing and recognition processing of the situation outside the vehicle 1 .
  • the self-position estimation unit 71 may estimate the self-position of the vehicle 1 based on the GNSS signal and sensor data from the vehicle sensor 27.
  • the sensor fusion unit 72 combines a plurality of different types of sensor data (for example, image data supplied from the camera 51 and sensor data supplied from the radar 52) to perform sensor fusion processing to obtain new information.
  • Methods for combining different types of sensor data include integration, fusion, federation, and the like.
  • the recognition unit 73 executes a detection process for detecting the situation outside the vehicle 1 and a recognition process for recognizing the situation outside the vehicle 1 .
  • the recognition unit 73 performs detection processing and recognition processing of the external situation of the vehicle 1 based on information from the external recognition sensor 25, information from the self-position estimation unit 71, information from the sensor fusion unit 72, and the like. .
  • the recognition unit 73 performs detection processing and recognition processing of objects around the vehicle 1 .
  • Object detection processing is, for example, processing for detecting the presence or absence, size, shape, position, movement, and the like of an object.
  • Object recognition processing is, for example, processing for recognizing an attribute such as the type of an object or identifying a specific object.
  • detection processing and recognition processing are not always clearly separated, and may overlap.
  • the recognition unit 73 detects objects around the vehicle 1 by clustering the point cloud based on sensor data from the LiDAR 53 or the radar 52 or the like for each cluster of point groups. As a result, presence/absence, size, shape, and position of objects around the vehicle 1 are detected.
  • the recognition unit 73 detects the movement of objects around the vehicle 1 by performing tracking that follows the movement of the masses of point groups classified by clustering. As a result, the speed and traveling direction (movement vector) of the object around the vehicle 1 are detected.
  • the recognition unit 73 detects or recognizes vehicles, people, bicycles, obstacles, structures, roads, traffic lights, traffic signs, road markings, etc. from the image data supplied from the camera 51 . Also, the types of objects around the vehicle 1 may be recognized by performing recognition processing such as semantic segmentation.
  • the recognition unit 73 based on the map accumulated in the map information accumulation unit 23, the estimation result of the self-position by the self-position estimation unit 71, and the recognition result of the object around the vehicle 1 by the recognition unit 73, Recognition processing of traffic rules around the vehicle 1 can be performed. Through this processing, the recognizing unit 73 can recognize the position and state of traffic signals, the content of traffic signs and road markings, the content of traffic restrictions, and the lanes in which the vehicle can travel.
  • the recognition unit 73 can perform recognition processing of the environment around the vehicle 1 .
  • the surrounding environment to be recognized by the recognition unit 73 includes the weather, temperature, humidity, brightness, road surface conditions, and the like.
  • the action plan section 62 creates an action plan for the vehicle 1.
  • the action planning unit 62 creates an action plan by performing route planning and route following processing.
  • trajectory planning is the process of planning a rough route from the start to the goal. This route planning is referred to as a trajectory plan.
  • a trajectory generation (Local path planning) processing is also included.
  • Path planning may be distinguished from long-term path planning and activation generation from short-term path planning, or from local path planning.
  • a safety priority path represents a concept similar to launch generation, short-term path planning, or local path planning.
  • Route following is the process of planning actions to safely and accurately travel the route planned by route planning within the planned time.
  • the action planning unit 62 can, for example, calculate the target speed and target angular speed of the vehicle 1 based on the result of this route following processing.
  • the motion control unit 63 controls the motion of the vehicle 1 in order to implement the action plan created by the action planning unit 62.
  • the operation control unit 63 controls a steering control unit 81, a brake control unit 82, and a drive control unit 83 included in the vehicle control unit 32, which will be described later, so that the vehicle 1 can control the trajectory calculated by the trajectory plan. Acceleration/deceleration control and direction control are performed so as to advance.
  • the operation control unit 63 performs cooperative control aimed at realizing ADAS functions such as collision avoidance or shock mitigation, follow-up driving, vehicle speed maintenance driving, collision warning of own vehicle, and lane deviation warning of own vehicle.
  • the operation control unit 63 performs cooperative control aimed at automatic driving in which the vehicle autonomously travels without depending on the operation of the driver.
  • the DMS 30 performs driver authentication processing, driver state recognition processing, etc., based on sensor data from the in-vehicle sensor 26 and input data input to the HMI 31, which will be described later.
  • the driver's condition to be recognized by the DMS 30 includes, for example, physical condition, wakefulness, concentration, fatigue, gaze direction, drunkenness, driving operation, posture, and the like.
  • the DMS 30 may perform authentication processing for passengers other than the driver and processing for recognizing the state of the passenger. Further, for example, the DMS 30 may perform recognition processing of the situation inside the vehicle based on the sensor data from the sensor 26 inside the vehicle. Conditions inside the vehicle to be recognized include temperature, humidity, brightness, smell, and the like, for example.
  • the HMI 31 inputs various data, instructions, etc., and presents various data to the driver.
  • the HMI 31 comprises an input device for human input of data.
  • the HMI 31 generates an input signal based on data, instructions, etc. input from an input device, and supplies the input signal to each section of the vehicle control system 11 .
  • the HMI 31 includes operators such as a touch panel, buttons, switches, and levers as input devices.
  • the HMI 31 is not limited to this, and may further include an input device capable of inputting information by a method other than manual operation using voice, gestures, or the like. Further, the HMI 31 may use, as an input device, a remote control device using infrared rays or radio waves, or an externally connected device such as a mobile device or wearable device corresponding to the operation of the vehicle control system 11 .
  • the presentation of data by HMI31 will be briefly explained.
  • the HMI 31 generates visual information, auditory information, and tactile information for the passenger or outside the vehicle.
  • the HMI 31 also performs output control for controlling the output, output content, output timing, output method, and the like of each of the generated information.
  • the HMI 31 generates and outputs visual information such as an operation screen, a status display of the vehicle 1, a warning display, an image such as a monitor image showing the situation around the vehicle 1, and information indicated by light.
  • the HMI 31 also generates and outputs information indicated by sounds such as voice guidance, warning sounds, warning messages, etc., as auditory information.
  • the HMI 31 generates and outputs, as tactile information, information given to the passenger's tactile sense by force, vibration, motion, or the like.
  • a display device that presents visual information by displaying an image by itself or a projector device that presents visual information by projecting an image can be applied.
  • the display device displays visual information within the passenger's field of view, such as a head-up display, a transmissive display, or a wearable device with an AR (Augmented Reality) function. It may be a device.
  • the HMI 31 can also use display devices such as a navigation device, an instrument panel, a CMS (Camera Monitoring System), an electronic mirror, and lamps provided in the vehicle 1 as output devices for outputting visual information.
  • Audio speakers, headphones, and earphones can be applied as output devices for the HMI 31 to output auditory information.
  • a haptic element using haptic technology can be applied as an output device for the HMI 31 to output tactile information.
  • a haptic element is provided at a portion of the vehicle 1 that is in contact with a passenger, such as a steering wheel or a seat.
  • the vehicle control unit 32 controls each unit of the vehicle 1.
  • the vehicle control section 32 includes a steering control section 81 , a brake control section 82 , a drive control section 83 , a body system control section 84 , a light control section 85 and a horn control section 86 .
  • the steering control unit 81 detects and controls the state of the steering system of the vehicle 1 .
  • the steering system includes, for example, a steering mechanism including a steering wheel, an electric power steering, and the like.
  • the steering control unit 81 includes, for example, a control unit such as an ECU that controls the steering system, an actuator that drives the steering system, and the like.
  • the brake control unit 82 detects and controls the state of the brake system of the vehicle 1 .
  • the brake system includes, for example, a brake mechanism including a brake pedal, an ABS (Antilock Brake System), a regenerative brake mechanism, and the like.
  • the brake control unit 82 includes, for example, a control unit such as an ECU that controls the brake system.
  • the drive control unit 83 detects and controls the state of the drive system of the vehicle 1 .
  • the drive system includes, for example, an accelerator pedal, a driving force generator for generating driving force such as an internal combustion engine or a driving motor, and a driving force transmission mechanism for transmitting the driving force to the wheels.
  • the drive control unit 83 includes, for example, a control unit such as an ECU that controls the drive system.
  • the body system control unit 84 detects and controls the state of the body system of the vehicle 1 .
  • the body system includes, for example, a keyless entry system, smart key system, power window device, power seat, air conditioner, air bag, seat belt, shift lever, and the like.
  • the body system control unit 84 includes, for example, a control unit such as an ECU that controls the body system.
  • the light control unit 85 detects and controls the states of various lights of the vehicle 1 .
  • Lights to be controlled include, for example, headlights, backlights, fog lights, turn signals, brake lights, projections, bumper displays, and the like.
  • the light control unit 85 includes a control unit such as an ECU for controlling lights.
  • the horn control unit 86 detects and controls the state of the car horn of the vehicle 1 .
  • the horn control unit 86 includes, for example, a control unit such as an ECU that controls the car horn.
  • control unit 130 shown in FIG. 5 corresponds to the vehicle control ECU 21 and the like. 5 corresponds to the external recognition sensor 25, the vehicle interior sensor 26, the vehicle sensor 27, and the like.
  • FIG. 8 is a diagram showing an example of sensing areas by the camera 51, radar 52, LiDAR 53, ultrasonic sensor 54, etc. of the external recognition sensor 25 in FIG. 8 schematically shows the vehicle 1 viewed from above, the left end side is the front end (front) side of the vehicle 1, and the right end side is the rear end (rear) side of the vehicle 1.
  • a sensing area 101F and a sensing area 101B are examples of sensing areas of the ultrasonic sensor 54.
  • FIG. The sensing area 101 ⁇ /b>F covers the periphery of the front end of the vehicle 1 with a plurality of ultrasonic sensors 54 .
  • the sensing area 101B covers the periphery of the rear end of the vehicle 1 with a plurality of ultrasonic sensors 54 .
  • the sensing results in the sensing area 101F and the sensing area 101B are used, for example, for parking assistance of the vehicle 1 and the like.
  • Sensing areas 102F to 102B show examples of sensing areas of the radar 52 for short or medium range.
  • the sensing area 102F covers the front of the vehicle 1 to a position farther than the sensing area 101F.
  • the sensing area 102B covers the rear of the vehicle 1 to a position farther than the sensing area 101B.
  • the sensing area 102L covers the rear periphery of the left side surface of the vehicle 1 .
  • the sensing area 102R covers the rear periphery of the right side surface of the vehicle 1 .
  • the sensing result in the sensing area 102F is used, for example, to detect vehicles, pedestrians, etc. existing in front of the vehicle 1.
  • the sensing result in the sensing area 102B is used, for example, for the rear collision prevention function of the vehicle 1 or the like.
  • the sensing results in the sensing area 102L and the sensing area 102R are used, for example, to detect an object in a blind spot on the side of the vehicle 1, or the like.
  • Sensing areas 103F to 103B show examples of sensing areas by the camera 51 .
  • the sensing area 103F covers the front of the vehicle 1 to a position farther than the sensing area 102F.
  • the sensing area 103B covers the rear of the vehicle 1 to a position farther than the sensing area 102B.
  • the sensing area 103L covers the periphery of the left side surface of the vehicle 1 .
  • the sensing area 103R covers the periphery of the right side surface of the vehicle 1 .
  • the sensing results in the sensing area 103F can be used, for example, for recognition of traffic lights and traffic signs, lane departure prevention support systems, and automatic headlight control systems.
  • a sensing result in the sensing area 103B can be used for parking assistance and a surround view system, for example.
  • Sensing results in the sensing area 103L and the sensing area 103R can be used, for example, in a surround view system.
  • the sensing area 104 shows an example of the sensing area of the LiDAR53.
  • the sensing area 104 covers the front of the vehicle 1 to a position farther than the sensing area 103F.
  • the sensing area 104 has a narrower lateral range than the sensing area 103F.
  • the sensing results in the sensing area 104 are used, for example, to detect objects such as surrounding vehicles.
  • a sensing area 105 shows an example of a sensing area of the long-range radar 52 .
  • the sensing area 105 covers the front of the vehicle 1 to a position farther than the sensing area 104 .
  • the sensing area 105 has a narrower lateral range than the sensing area 104 .
  • the sensing results in the sensing area 105 are used, for example, for ACC (Adaptive Cruise Control), emergency braking, and collision avoidance.
  • ACC Adaptive Cruise Control
  • emergency braking emergency braking
  • collision avoidance collision avoidance
  • the sensing regions of the cameras 51, the radar 52, the LiDAR 53, and the ultrasonic sensors 54 included in the external recognition sensor 25 may have various configurations other than those shown in FIG. Specifically, the ultrasonic sensor 54 may also sense the sides of the vehicle 1 , and the LiDAR 53 may sense the rear of the vehicle 1 . Moreover, the installation position of each sensor is not limited to each example mentioned above. Also, the number of each sensor may be one or plural.
  • each component of each device illustrated is functionally conceptual and does not necessarily need to be physically configured as illustrated.
  • the specific form of distribution and integration of each device is not limited to the one shown in the figure, and all or part of them can be functionally or physically distributed and integrated in arbitrary units according to various loads and usage conditions. Can be integrated and configured.
  • the image processing of the present disclosure is not limited to object detection on a moving body, and various task processing in other applications. may be used for
  • the image processing apparatus (the image processing apparatus 100 in the embodiment) according to the present disclosure includes the acquisition section (the acquisition section 131 in the embodiment) and the specifying section (the specifying section 133 in the embodiment).
  • the acquisition unit acquires point cloud data indicating detection of surrounding objects from LiDAR (Light Detection and Ranging), which is a sensor using a laser.
  • LiDAR Light Detection and Ranging
  • the identifying unit determines, based on the irradiation information of the LiDAR, among the superimposed point cloud data, the target in the image actually. Identify false transmission points, which are points not illuminated on the object.
  • the image processing apparatus identifies, among the point cloud data superimposed on the image, false transmission points, which are points that are not actually illuminated on the object in the image.
  • the image processing apparatus can utilize only the points that are actually irradiated on the object for the subsequent processing, so that the point cloud data obtained by sensing can be appropriately utilized.
  • the image processing apparatus further includes a generating unit (generating unit 134 in the embodiment) that removes the identified false transmission points and generates an image in which the point cloud data excluding the removed false transmission points is superimposed.
  • a generating unit generating unit 134 in the embodiment
  • the image processing device generates an image in which the point cloud data after removing the false transparent points are superimposed.
  • the image processing apparatus can use the image as correct data in the detection process and the learning process, so that the process can be performed with higher accuracy in the subsequent stages.
  • the image processing apparatus further includes an imaging unit (the imaging unit 132 in the embodiment) that captures an image including the laser irradiation range of the LiDAR in the imaging range.
  • the specifying unit specifies the false transmission point based on the irradiation information of the LiDAR when the point cloud data is superimposed on the image captured by the imaging unit.
  • the image processing device may identify the false transmission point using the image captured by its own device.
  • the image processing apparatus executes the imaging process and the false transmission point identification process during automatic driving, so task processing such as automatic driving is executed while eliminating false transmission points that may hinder automatic driving. can do.
  • the specifying unit specifies the false transmission point based on the elevation/depression angle information and the azimuth angle information in the laser irradiation as the irradiation information.
  • the image processing apparatus can accurately identify the false transmission point by using the elevation/depression angle information and the azimuth angle information included in the irradiation information.
  • the specifying unit specifies two point cloud data having substantially the same azimuth angle information among the point cloud data, and the elevation/depression angle information corresponding to the two point cloud data and the two point cloud data are included in the image. False transmission points are identified by comparing the value of the vertical axis coordinate when projected upward.
  • the specifying unit specifies two point cloud data having substantially the same elevation/depression angle information among the point cloud data, and also specifies the azimuth angle information corresponding to the two point cloud data and the two point cloud data as an image. False transmission points may be identified by comparing the value of the abscissa when projected upward.
  • the image processing apparatus compares the irradiation information with the coordinates on the image and determines whether the coordinates contradict the irradiation information, so that the false transmission point can be specified with high accuracy.
  • FIG. 9 is a hardware configuration diagram showing an example of a computer 1000 that implements the functions of the image processing apparatus 100 according to the present disclosure.
  • the image processing apparatus 100 according to the embodiment will be described below as an example of the computer 1000 .
  • the computer 1000 has a CPU 1100 , a RAM 1200 , a ROM (Read Only Memory) 1300 , a HDD (Hard Disk Drive) 1400 , a communication interface 1500 and an input/output interface 1600 .
  • Each part of computer 1000 is connected by bus 1050 .
  • the CPU 1100 operates based on programs stored in the ROM 1300 or HDD 1400 and controls each section. For example, the CPU 1100 loads programs stored in the ROM 1300 or HDD 1400 into the RAM 1200 and executes processes corresponding to various programs.
  • the ROM 1300 stores a boot program such as BIOS (Basic Input Output System) executed by the CPU 1100 when the computer 1000 is started, and programs dependent on the hardware of the computer 1000.
  • BIOS Basic Input Output System
  • the HDD 1400 is a computer-readable recording medium that non-temporarily records programs executed by the CPU 1100 and data used by such programs.
  • HDD 1400 is a recording medium that records an image processing program according to the present disclosure, which is an example of program data 1450 .
  • a communication interface 1500 is an interface for connecting the computer 1000 to an external network 1550 (for example, the Internet).
  • CPU 1100 receives data from another device via communication interface 1500, and transmits data generated by CPU 1100 to another device.
  • the input/output interface 1600 is an interface for connecting the input/output device 1650 and the computer 1000 .
  • the CPU 1100 receives data from input devices such as a keyboard and mouse via the input/output interface 1600 .
  • the CPU 1100 also transmits data to an output device such as a display, speaker, or printer via the input/output interface 1600 .
  • the input/output interface 1600 may function as a media interface for reading a program or the like recorded on a predetermined recording medium.
  • Media include, for example, optical recording media such as DVD (Digital Versatile Disc) and PD (Phase change rewritable disk), magneto-optical recording media such as MO (Magneto-Optical disk), tape media, magnetic recording media, semiconductor memories, etc. is.
  • the CPU 1100 of the computer 1000 implements the functions of the control unit 130 and the like by executing an image processing program loaded onto the RAM 1200.
  • the HDD 1400 also stores an image processing program according to the present disclosure and data in the storage unit 120 .
  • CPU 1100 reads and executes program data 1450 from HDD 1400 , as another example, these programs may be obtained from another device via external network 1550 .
  • An acquisition unit that acquires point cloud data indicating that a surrounding object has been detected from LiDAR (Light Detection and Ranging), which is a sensor using a laser;
  • LiDAR Light Detection and Ranging
  • the point cloud data is superimposed on the image including the irradiation range of the laser by the LiDAR in the imaging range, based on the irradiation information of the LiDAR, out of the superimposed point cloud data, actually in the image a specifying unit that specifies a false transmission point that is a point that is not irradiated on the object
  • An image processing device comprising: (2) a generating unit that removes the identified false transmission points and generates the image in which the point cloud data excluding the removed false transmission points is superimposed;
  • the image processing apparatus further comprising: (3) An imaging unit that captures an image including the laser irradiation range of the LiDAR in the imaging range, The identification unit identifying the false transmission point based on the irradiation information of the LiD
  • the identification unit Identifying the false transmission point based on elevation/depression angle information and azimuth angle information in the irradiation of the laser as the irradiation information; The image processing apparatus according to any one of (1) to (3) above.
  • the identification unit Among the point cloud data, two point cloud data having substantially the same azimuth angle information are specified, and elevation/depression angle information corresponding to the two point cloud data and the two point cloud data are displayed on the image. Identifying the false transmission point by comparing the value of the vertical axis coordinate when projected; The image processing device according to (4) above.
  • the identification unit Among the point cloud data, two point cloud data having substantially the same elevation/depression angle information are specified, and azimuth angle information corresponding to the two point cloud data and the two point cloud data are displayed on the image. Identifying the false transmission point by comparing the value of the abscissa coordinate when projected; The image processing device according to (4) above.
  • the computer From LiDAR (Light Detection and Ranging), which is a sensor using a laser, acquire point cloud data indicating that the surrounding objects have been detected,
  • LiDAR Light Detection and Ranging
  • An image processing method comprising: (8) the computer, An acquisition unit that acquires point cloud data indicating that a surrounding object has been detected from LiDAR (Light Detection and Ranging), which is a sensor using a laser;

Abstract

An image processing device (100) according to the present disclosure comprises: an acquisition unit (131) which acquires, from light detection and ranging (LiDAR) constituted by a sensor that uses a laser, point cloud data indicating that an object in the surroundings has been detected; and an identification unit (133) which, in a case in which the point cloud data has been superimposed on an image in which the range of laser irradiation by the LiDAR is included in an imaging range, identifies, from among the superimposed point cloud data and on the basis of irradiation information of the LiDAR, false transmission points which are points that are not actually irradiated onto the object in the image.

Description

画像処理装置、画像処理方法及び画像処理プログラムImage processing device, image processing method and image processing program
 本開示は、画像処理装置、画像処理方法及び画像処理プログラムに関する。詳しくは、自動車等の移動体が備えるカメラによって撮像された画像に適用される画像処理に関する。 The present disclosure relates to an image processing device, an image processing method, and an image processing program. More specifically, the present invention relates to image processing applied to an image captured by a camera provided in a moving object such as an automobile.
 自動運転に関連する技術の一つとして、自動車が備える複数のセンサを併用することで物体検出の精度を向上させる技術が提案されている。 As one of the technologies related to autonomous driving, a technology has been proposed that improves the accuracy of object detection by using multiple sensors installed in the car.
 例えば、レーザを用いたセンサであるLiDAR(Light Detection and Ranging)を複数使用することで、測定された点群データのうち適切でない点(外れ値)を除去する技術が知られている。 For example, there is a known technology that removes inappropriate points (outliers) from the measured point cloud data by using multiple LiDAR (Light Detection and Ranging) sensors that use lasers.
特開2021-47157号公報JP 2021-47157 A
 従来技術は、複数のLiDARを使用することで外れ値を除去する。しかしながら、自動運転を行う移動体の形状や構造によっては、複数のLiDARを備えることが難しい場合もある。 Conventional technology removes outliers by using multiple LiDARs. However, depending on the shape and structure of a mobile object that automatically operates, it may be difficult to provide multiple LiDARs.
 また、例えば、LiDARによって得られた点群データを、他のセンサが捉えた情報(例えば、カメラによって撮像された二次元画像データなど)の解析に利用する場合、それぞれのセンサの設置位置が異なることから、適切に点群データを利用できない場合がある。一例として、カメラが捉えた画像上の物体に関して、実際にはレーザが物体に照射されていないにもかかわらず、点群データが画像に重畳された際に物体と重なってしまうことにより、画像解析の際に、誤った深度情報として点群データが用いられる可能性がある。 Also, for example, when using point cloud data obtained by LiDAR to analyze information captured by other sensors (for example, two-dimensional image data captured by a camera), the installation position of each sensor is different. Therefore, point cloud data may not be used appropriately. As an example, regarding an object on the image captured by the camera, even though the object is not actually irradiated with the laser, when the point cloud data is superimposed on the image, it overlaps with the object, resulting in image analysis. , the point cloud data may be used as erroneous depth information.
 そこで、本開示では、センシングによって得られる点群データを適切に活用することができる画像処理装置、画像処理方法及び画像処理プログラムを提案する。 Therefore, this disclosure proposes an image processing device, an image processing method, and an image processing program that can appropriately utilize point cloud data obtained by sensing.
 上記の課題を解決するために、本開示に係る一形態の画像処理装置は、レーザを用いたセンサであるLiDAR(Light Detection and Ranging)から、周囲の対象物を検出したことを示す点群データを取得する取得部と、前記LiDARによるレーザの照射範囲を撮像範囲に含む画像上に前記点群データを重畳した場合に、前記LiDARの照射情報に基づいて、重畳した前記点群データのうち、実際には前記画像内の対象物に照射されていない点である偽透過点を特定する特定部と、を備える。 In order to solve the above problems, an image processing apparatus according to one embodiment of the present disclosure provides point cloud data indicating that surrounding objects have been detected from LiDAR (Light Detection and Ranging), which is a sensor using a laser. and when the point cloud data is superimposed on an image including the laser irradiation range of the LiDAR in the imaging range, based on the irradiation information of the LiDAR, out of the superimposed point cloud data, an identifying unit for identifying a false transmission point, which is actually a point not illuminated on an object in the image.
本開示に係る画像処理の概要を説明するための図(1)である。1 is a diagram (1) for explaining an overview of image processing according to the present disclosure; FIG. 本開示に係る画像処理の概要を説明するための図(2)である。FIG. 2 is a diagram (2) for explaining an overview of image processing according to the present disclosure; 本開示に係る画像処理の概要を説明するための図(3)である。FIG. 3 is a diagram (3) for explaining an overview of image processing according to the present disclosure; 本開示に係る画像処理の流れを説明するためのブロック図である。3 is a block diagram for explaining the flow of image processing according to the present disclosure; FIG. 実施形態に係る画像処理装置の構成例を示す図である。1 is a diagram illustrating a configuration example of an image processing apparatus according to an embodiment; FIG. 実施形態に係る処理の流れを示すフローチャートである。4 is a flowchart showing the flow of processing according to the embodiment; 本技術が適用され得る車両制御システムの概略的な機能の構成例を示すブロック図である。1 is a block diagram showing a schematic functional configuration example of a vehicle control system to which the present technology can be applied; FIG. 本技術が適用され得る車両制御システムによるセンシング領域の例を示す図である。FIG. 4 is a diagram illustrating an example of a sensing area by a vehicle control system to which the present technology can be applied; 本開示に係る画像処理装置の機能を実現するコンピュータの一例を示すハードウェア構成図である。1 is a hardware configuration diagram showing an example of a computer that implements functions of an image processing apparatus according to the present disclosure; FIG.
 以下に、本開示の実施形態について図面に基づいて詳細に説明する。なお、以下の各実施形態において、同一の部位には同一の符号を付することにより重複する説明を省略する。 Below, embodiments of the present disclosure will be described in detail based on the drawings. In addition, in each of the following embodiments, the same parts are denoted by the same reference numerals, thereby omitting redundant explanations.
 以下に示す項目順序に従って本開示を説明する。
  1.実施形態
   1-1.本開示に係る画像処理の概要
   1-2.実施形態に係る画像処理装置の構成例
   1-3.実施形態に係る画像処理の手順
   1-4.実施形態に係る変形例
  2.その他の実施形態
   2-1.移動体の構成
   2-2.その他
  3.本開示に係る画像処理装置の効果
  4.ハードウェア構成
The present disclosure will be described according to the order of items shown below.
1. Embodiment 1-1. Outline of image processing according to present disclosure 1-2. Configuration example of image processing apparatus according to embodiment 1-3. Image processing procedure according to embodiment 1-4. Modified example according to the embodiment 2. Other Embodiments 2-1. Configuration of moving body 2-2. Others 3. Effects of the image processing apparatus according to the present disclosure4. Hardware configuration
(1.実施形態)
(1-1.本開示に係る画像処理の概要)
 まず、図1乃至図3を用いて、本開示に係る画像処理の概要を説明する。図1は、本開示に係る画像処理の概要を説明するための図(1)である。本開示に係る画像処理は、図1に示す車両1に搭載された画像処理装置100によって実行される。
(1. Embodiment)
(1-1. Overview of image processing according to the present disclosure)
First, an overview of image processing according to the present disclosure will be described with reference to FIGS. 1 to 3. FIG. FIG. 1 is a diagram (1) for explaining an overview of image processing according to the present disclosure. Image processing according to the present disclosure is performed by an image processing device 100 mounted on a vehicle 1 shown in FIG.
 画像処理装置100は、後述する各種機能部を動作することにより、実施形態に係る画像処理(LiDARを用いた点群データの取得、および、画像への点群データの重畳処理等)を実行する。 The image processing apparatus 100 executes image processing according to the embodiment (acquisition of point cloud data using LiDAR, superimposition processing of point cloud data on an image, etc.) by operating various functional units to be described later. .
 車両1は、例えば四輪自動車であり、自動運転に係る技術を搭載した車両である。例えば、車両1は、画像処理装置100が行う物体検出機能を用いて、所定の駐車区画に自動で駐車を行ったり、物体を回避する挙動を制御したり、適切な経路を選択したりする。 The vehicle 1 is, for example, a four-wheeled vehicle equipped with technology related to automatic driving. For example, using the object detection function performed by the image processing device 100, the vehicle 1 automatically parks in a predetermined parking space, controls behavior to avoid objects, and selects an appropriate route.
 車両1のような自動運転を行う移動体が行う物体検出では、各種センサにより外部状況が検知され、検知した情報から、物体が実際に所在しているか否か等の検出が実行される。 In the object detection performed by a moving object that performs automatic driving, such as the vehicle 1, the external situation is detected by various sensors, and from the detected information, it is detected whether or not the object is actually located.
 センサの例としては、レーザを用いて物体の位置や物体までの距離を測定するLiDARや、カメラに搭載されるイメージセンサや、ミリ波等の電波の反射を利用したミリ波レーダ(レーダセンサ)等がある。物体検出の一例は、カメラ(イメージセンサ)によって撮像された画像を入力とし、検出器で画像認識することにより、画像内に物体として判定されるものがあるか否かを判定する手法である。他の一例は、LiDARによって得られた点群データ(物体から反射される情報によって得られる深度情報等)を検出器への入力として物体検出を行う手法である。近年では、画像認識精度の飛躍的な向上に伴い、カメラ(イメージセンサ)による画像認識および物体検出が主に利用される。 Examples of sensors include LiDAR, which uses lasers to measure the position of an object and the distance to an object, image sensors mounted on cameras, and millimeter-wave radar (radar sensor), which uses the reflection of radio waves such as millimeter waves. etc. One example of object detection is a method of determining whether or not there is an object in the image by inputting an image captured by a camera (image sensor) and recognizing the image with a detector. Another example is a method of detecting an object by using point cloud data obtained by LiDAR (such as depth information obtained from information reflected from an object) as input to a detector. In recent years, image recognition and object detection using a camera (image sensor) have been mainly used with the dramatic improvement in image recognition accuracy.
 さらに、物体検出では、複数のセンサを併用することも行われる。例えば、LiDARとカメラ等を併用することで、複数のセンサから得られた特徴情報を検出器であるニューラルネットワークへの入力とし、物体検出結果という出力を得る検出器を生成しうる。複数センサを利用した検出は、単独のセンサを利用した検出と比較して、物体を正確に検出できるという利点がある。 Furthermore, in object detection, multiple sensors are also used together. For example, by using a LiDAR together with a camera or the like, it is possible to generate a detector that obtains an output as an object detection result by inputting feature information obtained from a plurality of sensors into a neural network that is a detector. Detection using multiple sensors has the advantage of being able to accurately detect an object compared to detection using a single sensor.
 また、センサによる検知(センシング)により得られた情報に基づいて検出器等の学習を行うこともできる。学習の一例では、カメラが撮像した画像上に、LiDARから得られた点群データを重畳し、画像に含まれる各々のオブジェクトの深度情報を利用して、個々のオブジェクトまでの距離を正確に測定する。そして、画像に撮像されたオブジェクトと、深度情報とを正解データとして、画像上の個々のオブジェクトと距離との関係性を学習することで、精度の高い距離推定モデルを学習することができる。 It is also possible to learn detectors, etc., based on information obtained by sensing. In one example of learning, point cloud data obtained from LiDAR is superimposed on the image captured by the camera, and the depth information of each object included in the image is used to accurately measure the distance to each object. do. A highly accurate distance estimation model can be learned by learning the relationship between each object on the image and the distance using the object captured in the image and the depth information as correct data.
 しかしながら、かかる手法において、複数のセンサの設置位置が異なることにより、点群データを適切に取り扱うことのできない場合がある。例えば、一般にLiDARは広い範囲への照射を行うため、比較的高い位置(車両1のルーフなど)に設置される。また、カメラは、前後左右の進行方向を撮像するため、フロントパネルやリアパネル付近に設置される。かかる状況では、LiDARが照射された物体と、カメラが捉えた物体とに齟齬が生じる可能性がある。この場合、点群データを画像に描画した際、カメラが捉えた物体よりも遠方に当たっている点群が、当該物体に当たっているように誤認された画像が生成される。かかる画像を正解データとして学習が行われると、精度の高い学習を行うことのできないおそれがある。 However, in such a method, it may not be possible to handle point cloud data appropriately due to differences in the installation positions of multiple sensors. For example, since LiDAR generally irradiates a wide range, it is installed at a relatively high position (such as the roof of the vehicle 1). In addition, the cameras are installed near the front panel and the rear panel in order to take images in the front, rear, left, and right directions of travel. In such a situation, there may be discrepancies between the object illuminated by the LiDAR and the object captured by the camera. In this case, when the point cloud data is drawn on an image, an image is generated in which the point cloud that hits the object farther than the object captured by the camera is erroneously recognized as hitting the object. If learning is performed using such images as correct data, highly accurate learning may not be possible.
 そこで、本開示に係る画像処理装置100は、以下の処理を実行する。すなわち、画像処理装置100は、LiDARから周囲の対象物を検出したことを示す点群データを取得し、LiDARによるレーザの照射範囲を撮像範囲に含む画像上にその点群データを重畳した場合に、LiDARの照射情報に基づいて、重畳した点群データのうち、実際には画像内の対象物に照射されていない点である偽透過点を特定する。そして、画像処理装置100は、点群データのうち偽透過点を削除したのち、偽透過点を除いた点群データを重畳した画像を生成する。これにより、画像処理装置100は、正確に物体に当たった点群データのみが重畳された画像データを生成できるので、画像を用いた学習処理や解析処理を精度よく行うことができる。 Therefore, the image processing apparatus 100 according to the present disclosure executes the following processing. That is, the image processing apparatus 100 acquires point cloud data indicating that a surrounding object has been detected from the LiDAR, and superimposes the point cloud data on an image including the laser irradiation range of the LiDAR in the imaging range. , based on the illumination information of the LiDAR, identify the false transmission points, which are points that are not actually illuminated on the object in the image, in the superimposed point cloud data. Then, the image processing apparatus 100 deletes the false transmission points from the point cloud data, and then generates an image by superimposing the point cloud data excluding the false transmission points. As a result, the image processing apparatus 100 can generate image data in which only the point cloud data that accurately hit the object are superimposed, so that learning processing and analysis processing using images can be performed with high accuracy.
 以下、図1乃至図3を用いて、かかる画像処理について説明する。まず、図1を用いて、車両1が備えるLiDAR150の照射範囲と、カメラ160の撮像範囲との相違について説明する。図1に示すように、車両1は、頭頂部にLiDAR150を備える。また、車両1は、前方を撮像するためのカメラ160を備える。なお、図1での図示は省略するが、車両1は、さらに多くのLiDAR150やカメラ160を備えていてもよい。 Such image processing will be described below with reference to FIGS. 1 to 3. FIG. First, the difference between the irradiation range of the LiDAR 150 provided in the vehicle 1 and the imaging range of the camera 160 will be described with reference to FIG. As shown in FIG. 1, the vehicle 1 has a LiDAR 150 on the top of the head. The vehicle 1 also includes a camera 160 for capturing an image of the front. Although not shown in FIG. 1, the vehicle 1 may include more LiDARs 150 and cameras 160. FIG.
 車両1は、走行中、LiDAR150やカメラ160による検知を継続的に行う。図1には、LiDAR150が照射したレーザが、前方の車両200よりもさらに前方にある任意の対象物に当たった点を示す310や、前方の車両200の後方に当たったことを示す点330を示す。 The vehicle 1 continuously performs detection by the LiDAR 150 and the camera 160 while driving. FIG. 1 shows a point 310 indicating that the laser emitted by the LiDAR 150 hits an arbitrary object further forward than the vehicle 200 ahead, and a point 330 indicating that the laser hits the rear of the vehicle 200 ahead. show.
 また、カメラ160は、車両1よりも前方にある車両200を含む撮像範囲を撮像する。例えば、カメラ160は、撮像により、撮像範囲に点330を含む画像を撮像する。このとき、カメラ160が撮像する画像には、撮像範囲に車両200が含まれ、その先の対象物を遮ることから、点310が含まれない。一方で、カメラ160が撮像する画像に点310に対応するデータを重畳した場合、延長線上に点310が存在するような点320を含む。すなわち、点320とは、実際にはLiDAR150が照射したレーザが当たっていないにもかかわらず、画像に点群データを重畳した場合に、画像での見かけ上、車両200にレーザが当たったとみなされる点(偽透過点)である。 Also, the camera 160 captures an imaging range including the vehicle 200 ahead of the vehicle 1 . For example, the camera 160 captures an image including the point 330 in the imaging range. At this time, the image captured by the camera 160 includes the vehicle 200 in the imaging range and does not include the point 310 because the vehicle 200 blocks the target ahead. On the other hand, when data corresponding to point 310 is superimposed on an image captured by camera 160, point 320 is included such that point 310 exists on an extension line. That is, although the point 320 is not actually illuminated by the laser emitted by the LiDAR 150, when the point cloud data is superimposed on the image, the vehicle 200 is apparently illuminated by the laser. point (false transparent point).
 このとき、点330は実際にLiDAR150から照射されたレーザが車両200に当たったことを示す点であり、そのレーザの照射情報である俯角(伏角)は、LiDAR150と点330を結ぶ線分から得られる。一方、偽透過点である点320は、実際には点310が得られる俯角でLiDAR150から照射されたレーザに基づく点であるため、画像上では点330よりも縦軸上で下に位置するにも関わらず、点330よりも浅い俯角で照射されたレーザに基づき得られた点となる。 At this time, the point 330 is a point indicating that the laser actually emitted from the LiDAR 150 hits the vehicle 200, and the depression angle (inclination), which is the irradiation information of the laser, is obtained from the line segment connecting the LiDAR 150 and the point 330. . On the other hand, the point 320, which is a false transmission point, is actually based on the laser beam emitted from the LiDAR 150 at the depression angle at which the point 310 is obtained. Nonetheless, it is a point obtained based on a laser irradiated at a depression angle shallower than that of point 330 .
 この点について、図2を用いて詳細に説明する。図2は、本開示に係る画像処理の概要を説明するための図(2)である。 This point will be explained in detail using FIG. FIG. 2 is a diagram (2) for explaining an outline of image processing according to the present disclosure.
 図2に示す画像340は、LiDAR150から得られた点群データである点330と点320が、撮像画像上に重畳された状態を示す。このとき、点320は、LiDAR150から照射された浅い俯角のレーザ(図2で示す「Line 1」)により得られるものであり、実際には車両200の前方の対象物に当たったことを示す点310の偽透過点である。また、点330は、LiDAR150から照射されたレーザであって、点310に対応するレーザよりも深い俯角のレーザ(図2で示す「Line 2」)により得られるものである。 An image 340 shown in FIG. 2 shows a state in which points 330 and 320, which are point cloud data obtained from the LiDAR 150, are superimposed on the captured image. At this time, the point 320 is obtained by the shallow depression angle laser ("Line 1" shown in FIG. 2) emitted from the LiDAR 150, and actually indicates that the object in front of the vehicle 200 has been hit. 310 is the false transmission point. Also, a point 330 is obtained by a laser beam emitted from the LiDAR 150 and having a deeper depression angle than the laser beam corresponding to the point 310 (“Line 2” in FIG. 2).
 図2の画像342は、画像処理装置100が車両200を撮像した画像に、LiDAR150が照射した点群データを重畳したものである。具体的には、画像342は、点330と略同一の仰俯角情報(画像上では縦軸の値が見かけ上略同一となる)に基づき得られた点群データ332、および、点320と略同一の仰俯角情報に基づき得られた点群データ322と、を車両200の後方部に重畳した様子を示したものである。 The image 342 in FIG. 2 is obtained by superimposing the point cloud data irradiated by the LiDAR 150 on the image of the vehicle 200 captured by the image processing device 100 . Specifically, the image 342 is composed of point cloud data 332 obtained based on substantially the same elevation/depression angle information as the point 330 (in the image, the values of the vertical axis appear to be substantially the same), and the point 320. 10 shows a state in which point cloud data 322 obtained based on the same elevation/depression angle information is superimposed on the rear portion of the vehicle 200. FIG.
 この例では、点群データ322に含まれる4点は、すべて偽透過点である。なお、画像342には、点群データ322および点群データ332のほかに、実際に車両200にレーザが当たったことを示す点群データ334や点群データ336も含まれる。また、画像342での図示は省略するが、偽透過点である点群データ322の付近には、実際に車両200にレーザが当たったことを示す他の点群データが重畳される場合もありうる。 In this example, all four points included in the point cloud data 322 are false transmission points. In addition to the point cloud data 322 and the point cloud data 332, the image 342 also includes point cloud data 334 and point cloud data 336 indicating that the vehicle 200 was actually hit by the laser. Also, although not shown in the image 342, other point cloud data indicating that the laser actually hit the vehicle 200 may be superimposed in the vicinity of the point cloud data 322, which is the false transmission point. sell.
 このように、点群データ322は、実際には車両200にレーザが当たっていないにも関わらず、画像342に重畳されると、車両200に当たったように観測される点群データである。このため、画像342と点群データ322が含む深度情報等を学習データとして利用しようとすると、車両200までの距離と、点群データ322が含む深度情報とに矛盾が生じるため、正解データとしての信頼度が低くなる。 In this way, the point cloud data 322 is point cloud data that is superimposed on the image 342 and observed as if it hit the vehicle 200, even though the vehicle 200 is not actually hit by the laser. Therefore, if an attempt is made to use the depth information and the like included in the image 342 and the point cloud data 322 as learning data, the distance to the vehicle 200 and the depth information included in the point cloud data 322 will contradict each other. less reliable.
 そこで、画像処理装置100は、偽透過点である点320(および点群データ322)を特定し、特定した偽透過点を除去する処理を実行する。この点について、図3を用いて説明する。図3は、本開示に係る画像処理の概要を説明するための図(3)である。 Therefore, the image processing apparatus 100 identifies points 320 (and point cloud data 322) that are false transparent points, and executes processing for removing the identified false transparent points. This point will be described with reference to FIG. FIG. 3 is a diagram (3) for explaining an outline of image processing according to the present disclosure.
 LiDAR150は、レーザを照射する際に、その照射する高さの角度を示す「elevation」、すなわち仰俯角情報410と、車両1との水平方向の角度を示す「azimuth」、すなわち方位角情報420とを含む照射情報を取得可能である。また、LiDAR150は、照射情報として、それぞれの照射についての識別情報(照射ID)を取得可能である。画像処理装置100は、点群データとともに、これらの照射情報を取得する。すなわち、画像処理装置100は、LiDAR150から得られた点群データの各々について、照射IDに基づいて、レーザが照射された際の仰俯角情報410および方位角情報420とを特定可能である。また、画像処理装置100は、カメラ160が撮像した画像430に対して、画像430における高さ(y軸)情報や水平位置(x軸)を特定可能である。 When the LiDAR 150 irradiates a laser, the "elevation" indicating the angle of the height at which the laser is emitted, that is, elevation/depression angle information 410, and the "azimuth" indicating the horizontal angle with respect to the vehicle 1, that is, the azimuth angle information 420. It is possible to acquire irradiation information including Also, the LiDAR 150 can acquire identification information (irradiation ID) for each irradiation as irradiation information. The image processing apparatus 100 acquires these irradiation information together with the point cloud data. That is, the image processing apparatus 100 can specify the elevation/depression angle information 410 and the azimuth angle information 420 when the laser is irradiated for each of the point cloud data obtained from the LiDAR 150 based on the irradiation ID. In addition, the image processing apparatus 100 can specify height (y-axis) information and horizontal position (x-axis) in the image 430 captured by the camera 160 .
 かかる情報に基づいて、画像処理装置100は、偽透過点を特定する。まず、画像処理装置100は、画像342に重畳される点群データのうち、処理対象とする点を一つ選択する。例えば、画像処理装置100は、点330を選択するものとする。続いて、画像処理装置100は、略同一のx軸上にある他の一つの点を選択する。ここでは、画像処理装置100は、略同一のx軸上にある他の点である点320を選択する。 Based on this information, the image processing apparatus 100 identifies false transparent points. First, the image processing apparatus 100 selects one point to be processed from the point cloud data superimposed on the image 342 . For example, the image processing apparatus 100 selects point 330 . Subsequently, the image processing apparatus 100 selects another point on substantially the same x-axis. Here, the image processing apparatus 100 selects a point 320 which is another point on substantially the same x-axis.
 そして、画像処理装置100は、2点の照射IDに基づいて、照射情報を対照する。具体的には、画像処理装置100は、2点の仰俯角情報を比較する。そして、画像処理装置100は、同一のx軸上の点であるにもかかわらず、仰俯角に矛盾が生じている場合、矛盾が生じた点を偽透過点として特定する。具体的には、画像処理装置100は、俯角がより浅い角度で照射されたために、点330よりも画像342のy軸において高い位置に重畳されるはずの点320が、画像342において点330よりも低い位置に重畳されている場合に、点320を偽透過点として特定する。あるいは、画像処理装置100は、点群データの照射情報が「(elevation, azimuth)」で特定される場合、点330の方が画像342において点320よりも上に描画されるのに対して、点330の「elevation」の値が点320の「elevation」の値よりも小さい場合に、点320を偽透過点として特定する。また、仮に点330の「elevation」の値が点320の「elevation」の値よりも大きい場合には、画像処理装置100は、点330も点320も偽透過点ではないと判定し、次の処理対象とする点(図3の例では点338)と点330の照射情報を比較し、順に偽透過点を特定していく。 Then, the image processing apparatus 100 compares the irradiation information based on the two irradiation IDs. Specifically, the image processing apparatus 100 compares elevation/depression angle information of two points. Then, if there is a contradiction in the elevation/depression angles of the points on the same x-axis, the image processing apparatus 100 identifies the point with the contradiction as a false transmission point. Specifically, the image processing apparatus 100 detects that the point 320, which should be superimposed at a higher position on the y-axis of the image 342 than the point 330, is superimposed on the image 342 relative to the point 330, because the irradiation is performed at a shallower depression angle. Identify point 320 as a false transmission point if it is superimposed at a lower position than . Alternatively, when the irradiation information of the point cloud data is specified by "(elevation, azimuth)", the image processing apparatus 100 draws the point 330 above the point 320 in the image 342, If the "elevation" value of point 330 is less than the "elevation" value of point 320, point 320 is identified as a false transparent point. Also, if the "elevation" value of the point 330 is greater than the "elevation" value of the point 320, the image processing apparatus 100 determines that neither the point 330 nor the point 320 is a false transparent point. The point to be processed (the point 338 in the example of FIG. 3) is compared with the irradiation information of the point 330, and the false transmission points are identified in order.
 画像処理装置100は、特定した偽透過点を削除し、画像342に重畳させないものとする。画像処理装置100は、画像342のすべての点群データにかかる処理を施すことで、画像342に含まれるすべての偽透過点を特定することができる。 The image processing apparatus 100 deletes the specified false transparent point and does not superimpose it on the image 342 . The image processing apparatus 100 can specify all the false transparent points included in the image 342 by performing the processing for all the point cloud data of the image 342 .
 なお、画像処理装置100は、仰俯角情報のみならず、方位角情報を用いて偽透過点を特定してもよい。すなわち、LiDAR150とカメラ160の設置位置の関係によっては、上述したような高さ方向(elevation)に基づく設置位置の相違によって物体の先のレーザが偽透過点として検出される状況のみならず、物体の横から回り込むようにレーザが物体の先に照射されることで偽透過点と検出される場合もありうるからである。 Note that the image processing apparatus 100 may specify the false transmission point using not only the elevation/depression angle information but also the azimuth angle information. That is, depending on the relationship between the installation positions of the LiDAR 150 and the camera 160, not only the situation where the laser ahead of the object is detected as a false transmission point due to the difference in the installation position based on the elevation as described above, but also the object This is because a false transmission point may be detected by irradiating the tip of the object with the laser so as to go around from the side of the object.
 図3の例では、画像処理装置100が、偽透過点として点320、点324、点326を特定したものとする。この場合、画像処理装置100は、点320、点324、点326を除去し、残りの点群データを画像342に重畳した画像を生成する。これにより、画像処理装置100は、画像上の物体に対応した正確な深度情報を有する点群データのみを重畳した画像を得ることができる。 In the example of FIG. 3, it is assumed that the image processing apparatus 100 has identified points 320, 324, and 326 as false transparent points. In this case, the image processing apparatus 100 removes the points 320 , 324 and 326 and generates an image by superimposing the remaining point cloud data on the image 342 . Thereby, the image processing apparatus 100 can obtain an image in which only point cloud data having accurate depth information corresponding to the object on the image are superimposed.
 上記した画像処理について、図4を用いて、処理手順の概要を説明する。図4は、本開示に係る画像処理の流れを説明するためのブロック図である。図4では、画像処理装置100が実行する画像処理を含む車両1による自動運転の処理手順の一例を、模式的なブロック図で示す。 With regard to the image processing described above, an outline of the processing procedure will be described using FIG. FIG. 4 is a block diagram for explaining the flow of image processing according to the present disclosure. FIG. 4 is a schematic block diagram showing an example of a procedure of automatic driving by the vehicle 1 including image processing executed by the image processing device 100. As shown in FIG.
 図4に示すように、画像処理装置100は、カメラ画像550と、LiDARデータ552(点群データ)とを取得する。そして、画像処理装置100は、上述した画像処理により、LiDARデータ552をカメラ画像550に重畳したLiDARデータ重畳画像554を生成する。 As shown in FIG. 4, the image processing device 100 acquires a camera image 550 and LiDAR data 552 (point cloud data). Then, the image processing apparatus 100 generates a LiDAR data superimposed image 554 in which the LiDAR data 552 is superimposed on the camera image 550 by the image processing described above.
 その後、画像処理装置100は、カメラ画像550や、LiDARデータ重畳画像554に基づいて、周囲のオブジェクトや道路等を検出もしくは認識するための3Dセマンティックセグメンテーション(3D Semantic Segmentation)556等の処理を実行する。なお、検出手法は3Dセマンティックセグメンテーションに限られず、画像処理装置100は、他の公知技術を利用してもよい。そして、画像処理装置100は、獲得した周辺の情報を用いて、駐車区画への駐車処理や、目的地までの走行など、所定の自動運転処理(タスク実行558)を行う。 After that, the image processing device 100 executes processing such as 3D semantic segmentation (3D Semantic Segmentation) 556 for detecting or recognizing surrounding objects, roads, etc. based on the camera image 550 and the LiDAR data superimposed image 554. . Note that the detection technique is not limited to 3D semantic segmentation, and the image processing apparatus 100 may use other known techniques. Then, the image processing device 100 uses the acquired peripheral information to perform predetermined automatic driving processing (task execution 558) such as parking processing in a parking space and driving to a destination.
(1-2.実施形態に係る画像処理装置の構成例)
 次に、図5を用いて、画像処理装置100の構成について説明する。図5は、本開示の実施形態に係る画像処理装置100の構成例を示す図である。図5に示すように、画像処理装置100は、通信部110と、記憶部120と、制御部130と、検知部140とを有する。なお、図5に示した構成は機能的な構成であり、ハードウェア構成はこれとは異なっていてもよい。また、画像処理装置100の機能は、複数の物理的に分離された装置に分散して実装されてもよい。
(1-2. Configuration example of image processing apparatus according to embodiment)
Next, the configuration of the image processing apparatus 100 will be described using FIG. FIG. 5 is a diagram showing a configuration example of the image processing device 100 according to the embodiment of the present disclosure. As shown in FIG. 5, the image processing apparatus 100 has a communication section 110, a storage section 120, a control section 130, and a detection section 140. As shown in FIG. Note that the configuration shown in FIG. 5 is a functional configuration, and the hardware configuration may differ from this. Also, the functions of the image processing apparatus 100 may be distributed and implemented in a plurality of physically separated apparatuses.
 通信部110は、例えば、ネットワークインタフェースコントローラ(Network Interface Controller)やNIC(Network Interface Card)等によって実現される。通信部110は、USB(Universal Serial Bus)ホストコントローラ、USBポート等により構成されるUSBインターフェイスであってもよい。また、通信部110は、有線インターフェイスであってもよいし、無線インターフェイスであってもよい。例えば、通信部110は、無線LAN方式やセルラー通信方式の無線通信インターフェイスであってもよい。通信部110は、画像処理装置100の通信手段或いは送信手段として機能する。例えば、通信部110は、ネットワークNと有線又は無線で接続され、ネットワークNを介してクラウドサーバ等の外部装置等、他の情報処理端末等との間で情報の送受信を行う。ネットワークNは、例えば、Bluetooth(登録商標)、インターネット、Wi-Fi(登録商標)、UWB(Ultra Wide Band)、LPWA(Low Power Wide Area)、ELTRES(登録商標)等の無線通信規格もしくは方式で実現される。 The communication unit 110 is implemented by, for example, a network interface controller or NIC (Network Interface Card). The communication unit 110 may be a USB interface configured by a USB (Universal Serial Bus) host controller, a USB port, or the like. Also, the communication unit 110 may be a wired interface or a wireless interface. For example, the communication unit 110 may be a wireless communication interface of a wireless LAN system or a cellular communication system. The communication unit 110 functions as communication means or transmission means of the image processing apparatus 100 . For example, the communication unit 110 is connected to the network N by wire or wirelessly, and transmits/receives information to/from another information processing terminal such as an external device such as a cloud server via the network N. Network N is, for example, Bluetooth (registered trademark), the Internet, Wi-Fi (registered trademark), UWB (Ultra Wide Band), LPWA (Low Power Wide Area), ELTRES (registered trademark), or other wireless communication standards or methods. Realized.
 記憶部120は、例えば、RAM(Random Access Memory)、フラッシュメモリ(Flash Memory)等の半導体メモリ素子、または、ハードディスク、光ディスク等の記憶装置によって実現される。記憶部120は、各種データを記憶する。例えば、記憶部120は、LiDAR150がレーザを照射した際の照射情報や、カメラ160が撮像した画像データ等を記憶する。記憶部120は、物体検出のために学習された学習器(物体検出モデル)や、学習に用いられる画像データ等を記憶してもよい。また、記憶部120は、自動運転を実行するための地図データ等を記憶してもよい。なお、本開示では、記憶部120が画像処理装置100(すなわち車両1)に搭載される例を示しているが、記憶部120に記憶されるデータは、クラウドサーバなどの外部装置上に記憶されてもよい。 The storage unit 120 is implemented by, for example, a semiconductor memory device such as RAM (Random Access Memory) or flash memory, or a storage device such as a hard disk or optical disk. The storage unit 120 stores various data. For example, the storage unit 120 stores irradiation information when the LiDAR 150 emits laser light, image data captured by the camera 160, and the like. The storage unit 120 may store a learning device (object detection model) trained for object detection, image data used for learning, and the like. The storage unit 120 may also store map data or the like for executing automatic driving. Note that although the present disclosure shows an example in which the storage unit 120 is installed in the image processing device 100 (that is, the vehicle 1), the data stored in the storage unit 120 is stored on an external device such as a cloud server. may
 検知部140は、車両1および画像処理装置100に関する各種情報を検知する。具体的には、検知部140は、車両1の周囲の環境や、車両1の所在する位置情報や、車両1に搭載された画像処理装置100と接続されている他の機器に関する情報等を検知する。検知部140は、各種の情報を検知するセンサと読み替えてもよい。 The detection unit 140 detects various types of information regarding the vehicle 1 and the image processing device 100 . Specifically, the detection unit 140 detects the environment around the vehicle 1, the location information of the vehicle 1, the information related to other devices connected to the image processing device 100 mounted on the vehicle 1, and the like. do. The detection unit 140 may be read as a sensor that detects various types of information.
 例えば、検知部140は、センサとして、LiDAR150やカメラ160を有する。LiDAR150は、車両1の周辺環境の三次元的な構造を読み取るセンサである。具体的には、LiDAR150は、赤外線レーザ等のレーザ光線を周囲の物体に照射し、反射して戻るまでの時間を計測することにより、物体までの距離や相対速度を検知する。 For example, the detection unit 140 has a LiDAR 150 and a camera 160 as sensors. The LiDAR 150 is a sensor that reads the three-dimensional structure of the surrounding environment of the vehicle 1 . Specifically, the LiDAR 150 irradiates a surrounding object with a laser beam such as an infrared laser and measures the time it takes for the laser beam to reflect and return, thereby detecting the distance to the object and the relative speed.
 カメラ160は、車両1の周囲を撮像する機能を有するセンサである。カメラ160は、ステレオカメラや単眼カメラ、レンズレスカメラ等、どのような形態であってもよい。また、カメラ160は、RGBカメラのような可視光カメラに限らず、ToF(Time of Flight)センサを備える深度センサ付きカメラ等であってもよい。また、カメラ160は、物体の検出や認識処理が可能なAI付きイメージセンサを備えてもよい。 The camera 160 is a sensor that has a function of imaging the surroundings of the vehicle 1. The camera 160 may take any form, such as a stereo camera, a monocular camera, or a lensless camera. Also, the camera 160 is not limited to a visible light camera such as an RGB camera, and may be a camera with a depth sensor including a ToF (Time of Flight) sensor. The camera 160 may also include an AI-equipped image sensor capable of object detection and recognition processing.
 また、検知部140は、LiDAR150やカメラ160以外にも、種々のセンサを有していてもよい。例えば、検知部140は、ミリ波レーダを使った測距システムを含んでもよい。また、検知部140は、深度データを取得するためのデプスセンサを含んでもよい。また、検知部140は、音波によって周辺環境を探索するソナー(sonar)であってもよい。また、検知部140は、車両1の周囲の音を収集するマイクロフォンや、車両1の周囲の照度を検知する照度センサや、車両1の周囲の湿度を検知する湿度センサや、車両1の所在位置における磁場を検知する地磁気センサ等を含んでもよい。 In addition, the detection unit 140 may have various sensors other than the LiDAR 150 and the camera 160. For example, the detection unit 140 may include a ranging system using millimeter wave radar. Also, the detection unit 140 may include a depth sensor for acquiring depth data. Also, the sensing unit 140 may be a sonar that searches the surrounding environment with sound waves. Further, the detection unit 140 includes a microphone that collects sounds around the vehicle 1, an illuminance sensor that detects the illuminance around the vehicle 1, a humidity sensor that detects the humidity around the vehicle 1, and a location sensor of the vehicle 1. It may also include a geomagnetic sensor or the like that detects the magnetic field in the .
 また、図5での図示は省略するが、画像処理装置100は、各種情報を表示する表示部を備えてもよい。表示部は、各種情報を出力するための機構であり、例えば液晶ディスプレイ等である。例えば、表示部は、検知部140によって撮像された画像を表示したり、画像内で画像処理装置100が検出した物体を表示したりしてもよい。また、表示部は、画像処理装置100を利用するユーザ等から各種操作を受け付けるための処理部を兼ねてもよい。例えば、表示部は、キー操作やタッチパネル等を介して、各種情報の入力を受け付けてもよい。 Although not shown in FIG. 5, the image processing apparatus 100 may include a display unit that displays various information. The display unit is a mechanism for outputting various information, such as a liquid crystal display. For example, the display unit may display an image captured by the detection unit 140 or an object detected by the image processing device 100 in the image. Further, the display unit may also serve as a processing unit for receiving various operations from a user or the like who uses the image processing apparatus 100 . For example, the display unit may receive input of various information via key operations, a touch panel, or the like.
 制御部130は、例えば、CPU(Central Processing Unit)やMPU(Micro Processing Unit)等によって、画像処理装置100内部に記憶されたプログラム(例えば、本開示に係る画像処理プログラム)がRAM(Random Access Memory)等を作業領域として実行されることにより実現される。また、制御部130は、コントローラ(controller)であり、例えば、ASIC(Application Specific Integrated Circuit)やFPGA(Field Programmable Gate Array)等の集積回路により実現されてもよい。 The control unit 130 stores a program (for example, an image processing program according to the present disclosure) stored inside the image processing apparatus 100 by a CPU (Central Processing Unit) or MPU (Micro Processing Unit), for example, in a RAM (Random Access Memory). ) etc. as a work area. Also, the control unit 130 is a controller, and may be realized by an integrated circuit such as an ASIC (Application Specific Integrated Circuit) or an FPGA (Field Programmable Gate Array).
 図5に示すように、制御部130は、取得部131と、撮像部132と、特定部133と、生成部134とを有し、以下に説明する情報処理の機能や作用を実現または実行する。なお、制御部130の内部構成は、図5に示した構成に限られず、後述する情報処理を行う構成であれば他の構成であってもよい。 As shown in FIG. 5, the control unit 130 includes an acquisition unit 131, an imaging unit 132, an identification unit 133, and a generation unit 134, and implements or executes the information processing functions and actions described below. . Note that the internal configuration of the control unit 130 is not limited to the configuration shown in FIG. 5, and may be another configuration as long as it performs information processing described later.
 取得部131は、各種情報を取得する。例えば、取得部131は、レーザを用いたセンサであるLiDAR150から、周囲の対象物を検出したことを示す点群データを取得する。 The acquisition unit 131 acquires various types of information. For example, the acquisition unit 131 acquires point cloud data indicating detection of surrounding objects from the LiDAR 150, which is a sensor using a laser.
 また、取得部131は、点群データとともに、かかる点群データが得られた際のレーザの照射情報を取得する。例えば、取得部131は、照射情報として、レーザが照射された仰俯角情報および方位角情報を取得する。言い換えれば、取得部131は、照射情報として、レーザが照射された際の高さ方向を示す数値(elevation)および水平方向を示す数値(azimuth)を取得する。 In addition, the acquisition unit 131 acquires the point cloud data as well as the laser irradiation information when the point cloud data was obtained. For example, the acquisition unit 131 acquires elevation/depression angle information and azimuth angle information of laser irradiation as the irradiation information. In other words, the acquisition unit 131 acquires, as the irradiation information, a numerical value (elevation) indicating the height direction and a numerical value (azimuth) indicating the horizontal direction when the laser is irradiated.
 撮像部132は、LiDAR150によるレーザの照射範囲を撮像範囲に含んだ二次元画像を撮像する。具体的には、撮像部132は、カメラ160を制御することにより、車両1の周囲を撮像し、LiDAR150によるレーザの照射範囲を撮像範囲に含む画像を撮像する。 The imaging unit 132 captures a two-dimensional image including the laser irradiation range of the LiDAR 150 in the imaging range. Specifically, the imaging unit 132 controls the camera 160 to capture an image of the surroundings of the vehicle 1 and captures an image including the laser irradiation range of the LiDAR 150 in the imaging range.
 特定部133は、LiDAR150によるレーザの照射範囲を撮像範囲に含む画像上に点群データを重畳した場合に、LiDAR150の照射情報に基づいて、重畳した点群データのうち、実際には画像内の対象物に照射されていない点である偽透過点を特定する。具体的には、特定部133は、撮像部132により撮像された画像上に点群データを重畳した場合に、LiDAR150の照射情報に基づいて、偽透過点を特定する。 When the point cloud data is superimposed on the image including the irradiation range of the laser by the LiDAR 150 in the imaging range, the specifying unit 133 determines, based on the irradiation information of the LiDAR 150, that of the superimposed point cloud data, the actual Identify false transmission points, which are points not illuminated on the object. Specifically, the specifying unit 133 specifies a false transmission point based on the irradiation information of the LiDAR 150 when the point cloud data is superimposed on the image captured by the imaging unit 132 .
 図1乃至図3を用いて説明したように、特定部133は、照射情報として、レーザの照射における仰俯角情報および方位角情報に基づいて偽透過点を特定する。 As described with reference to FIGS. 1 to 3, the specifying unit 133 specifies the false transmission point based on the elevation/depression angle information and the azimuth angle information in the laser irradiation as the irradiation information.
 具体的には、特定部133は、点群データのうち、まず、略同一の方位角情報を有する2つの点群データを特定する。そして、特定部133は、特定された2つの点群データに対応する仰俯角情報と、2つの点群データが画像上に投影された場合の縦軸座標の値とを比較することにより、偽透過点を特定する。 Specifically, the specifying unit 133 first specifies two point cloud data having substantially the same azimuth angle information among the point cloud data. Then, the specifying unit 133 compares the elevation/depression angle information corresponding to the two specified point cloud data with the values of the vertical axis coordinates when the two point cloud data are projected onto the image, thereby determining false Identify the transmission point.
 より具体的には、特定部133は、画像に重畳した点群データのうち、画像内における略同一の方位角情報(言い換えれば、画像上の横軸座標(x軸座標))を有する2つの点群データを抽出する。さらに、特定部133は、抽出した2つの点群データのうち、本来、縦軸座標(y軸座標)がより高い値を有するはずの点、すなわちelevationの値が大きい点が、もう一方の点よりも低い位置に描写されている場合に、その点を偽透過点と特定する。なお、特定部133は、矛盾がなく2つの点が画像上に描写されていると判定した場合、かかる点は偽透過点でないとして、次の2点を比較する処理に移行する。 More specifically, of the point cloud data superimposed on the image, the identifying unit 133 selects two points having substantially the same azimuth angle information in the image (in other words, horizontal axis coordinates (x-axis coordinates) on the image). Extract point cloud data. Furthermore, the specifying unit 133 determines that, of the two extracted point cloud data, a point that should have a higher vertical axis coordinate (y-axis coordinate) value, that is, a point having a larger elevation value, is replaced by the other point. A point is identified as a false transmission point if it is drawn at a position lower than . Note that when the specifying unit 133 determines that two points are drawn on the image without contradiction, the specifying unit 133 determines that the points are not false transparent points, and proceeds to the process of comparing the next two points.
 なお、特定部133は、仰俯角情報、すなわち、高さ方向に対する矛盾に基づいて偽透過点を特定するのみならず、水平方向に対する矛盾に基づいて偽透過点を特定してもよい。かかる状況は、例えば、車両1の端部などにLiDAR150が設置されることにより、レーザの照射がカメラ160の水平方向に係る撮像範囲を超えて、撮像画像に含まれる手前の物体よりも、画像には含まれない奥の物体に照射された場合等に起こりうる。 Note that the specifying unit 133 may specify a false transmission point not only based on elevation/depression angle information, that is, contradiction with respect to the height direction, but also based on contradiction with respect to the horizontal direction. In such a situation, for example, when the LiDAR 150 is installed at the end of the vehicle 1, the irradiation of the laser exceeds the imaging range in the horizontal direction of the camera 160, and the object in the front included in the captured image is captured in the image. This may occur, for example, when an object in the back that is not included in the
 この場合、特定部133は、点群データのうち、略同一の仰俯角情報を有する2つの点群データを特定する。そして、特定部133は、2つの点群データに対応する方位角情報と、2つの点群データが二次元画像上に投影された場合の横軸座標の値とを比較することにより、偽透過点を特定する。 In this case, the specifying unit 133 specifies two point cloud data having substantially the same elevation/depression angle information among the point cloud data. Then, the specifying unit 133 compares the azimuth angle information corresponding to the two point cloud data with the value of the horizontal axis coordinate when the two point cloud data are projected onto the two-dimensional image, thereby determining the false transmission. Identify points.
 より具体的には、特定部133は、画像に重畳した点群データのうち、画像内における略同一の仰俯角情報(言い換えれば、画像上の縦軸座標(y軸座標))を有する2つの点群データを抽出する。さらに、特定部133は、抽出した2つの点群データのうち、本来、横軸座標(x軸座標)がより高い(もしくは低い)値を有するはずの点、すなわちazimuthの値が大きい(小さい)点が、もう一方の点よりも左右いずれかの矛盾する位置に描写されている場合に、その点を偽透過点と特定する。なお、特定部133は、矛盾がなく2つの点が画像上に描写されていると判定した場合、かかる点は偽透過点でないとして、次の2点を比較する処理に移行する。 More specifically, the specifying unit 133 selects two points having substantially the same elevation/depression angle information (in other words, vertical axis coordinates (y-axis coordinates) on the image) in the image, among the point cloud data superimposed on the image. Extract point cloud data. Furthermore, the specifying unit 133 determines that, of the two extracted point cloud data, a point that should have a higher (or lower) horizontal axis coordinate (x-axis coordinate) value, that is, a point that has a larger (smaller) azimuth value A point is identified as a false transparent point if it is drawn at an inconsistent position either to the left or right of another point. Note that when the specifying unit 133 determines that two points are drawn on the image without contradiction, the specifying unit 133 determines that the points are not false transparent points, and proceeds to the process of comparing the next two points.
 生成部134は、特定部133によって特定された偽透過点を除去し、除去した偽透過点を除く点群データを重畳した画像を生成する。 The generation unit 134 removes the false transmission points identified by the identification unit 133 and generates an image in which the point cloud data excluding the removed false transmission points is superimposed.
 図2を例に挙げると、生成部134は、点350および略同一の仰俯角情報を有する他の3点が偽透過点として特定された場合、かかる4点を元の画像から除去し、残りの点群データが重畳された画像を生成する。これにより、生成部134は、画像上の物体に正確に照射された点群データのみが重畳された画像を生成することができるので、後段の物体検出処理や学習処理に支障のきたさない画像を提供することができる。 Taking FIG. 2 as an example, when the point 350 and the other three points having substantially the same elevation/depression angle information are identified as false transmission points, the generation unit 134 removes these four points from the original image, generates an image in which the point cloud data of is superimposed. As a result, the generation unit 134 can generate an image in which only the point cloud data accurately irradiated onto the object on the image are superimposed, so that an image that does not interfere with the subsequent object detection processing and learning processing can be generated. can provide.
(1-3.実施形態に係る画像処理の手順)
 上記した画像処理について、図6を用いて、処理の手順を説明する。図6は、実施形態に係る処理の流れを示すフローチャートである。
(1-3. Image processing procedure according to the embodiment)
The procedure of the image processing described above will be described with reference to FIG. FIG. 6 is a flowchart showing the flow of processing according to the embodiment.
 図6に示すように、画像処理装置100は、LiDAR150から点群データを取得する(ステップS31)。また、画像処理装置100は、カメラ160を用いて、LiDAR150の照射範囲を含む範囲について、画像を撮像する(ステップS32)。 As shown in FIG. 6, the image processing device 100 acquires point cloud data from the LiDAR 150 (step S31). Also, the image processing device 100 uses the camera 160 to capture an image of a range including the irradiation range of the LiDAR 150 (step S32).
 続いて、画像処理装置100は、取得した点群データを撮像した画像に重畳する(ステップS33)。そして、画像処理装置100は、重畳された複数の点群データから、処理対象の2点を抽出する(ステップS34)。 Subsequently, the image processing device 100 superimposes the acquired point cloud data on the captured image (step S33). Then, the image processing apparatus 100 extracts two points to be processed from the superimposed plurality of point cloud data (step S34).
 そして、画像処理装置100は、抽出した2点の関係について、上述した特定処理を実行し、LiDAR150がレーザを照射した際の照射情報と矛盾する点が存在するかを判定する(ステップS35)。矛盾する点が存在する場合(ステップS35;Yes)、画像処理装置100は、矛盾する点を削除する(ステップS36)。 Then, the image processing apparatus 100 executes the above-described specific processing for the relationship between the extracted two points, and determines whether there is a point that contradicts the irradiation information when the LiDAR 150 irradiates the laser (step S35). If contradictory points exist (step S35; Yes), the image processing apparatus 100 deletes the contradictory points (step S36).
 一方、矛盾する点が存在しない場合(ステップS35;No)、画像処理装置100は、その時点において、すべての点群データの処理が終了したか否かを判定する(ステップS37)。処理すべき点群データが残っている場合(ステップS37;No)、画像処理装置100は、次の2点を抽出し、偽透過点を特定する処理を繰り返す。 On the other hand, if there is no inconsistent point (step S35; No), the image processing apparatus 100 determines whether or not all point cloud data have been processed at that time (step S37). If point cloud data to be processed remains (step S37; No), the image processing apparatus 100 repeats the process of extracting the following two points and identifying false transparent points.
 一方、すべての点群データの処理が終了した場合(ステップS37;Yes)、画像処理装置100は、偽透過点を削除したのちの残りの点群データを重畳した画像を生成する(ステップS38)。 On the other hand, when all the point cloud data have been processed (step S37; Yes), the image processing apparatus 100 generates an image in which the remaining point cloud data after deleting the false transmission points are superimposed (step S38). .
(1-4.実施形態に係る変形例)
 上述した実施形態では、LiDAR150およびカメラ160を備える自動運転車である車両1が、実施形態に係る画像処理を実行する例を示した。しかし、実施形態に係る画像処理は、自動運転車(いわゆる自動車)に限らず、様々な移動体によって実行されてもよい。
(1-4. Modified Example of Embodiment)
In the embodiment described above, an example in which the vehicle 1, which is an automatic driving vehicle equipped with the LiDAR 150 and the camera 160, executes the image processing according to the embodiment has been described. However, the image processing according to the embodiment may be performed by various moving bodies, not limited to self-driving vehicles (so-called automobiles).
 例えば、実施形態に係る画像処理を実行する移動体は、自動二輪車や自動三輪車等の小型車両や、バスやトラック等の大型車両、あるいは、ロボットやドローン等の自律型移動体であってもよい。また、画像処理装置100は、必ずしも車両1などの移動体と一体ではなく、移動体からネットワークを介して情報を取得し、取得した情報に基づいて画像処理を行うクラウドサーバ等であってもよい。 For example, a mobile object that executes image processing according to the embodiment may be a small vehicle such as a motorcycle or a tricycle, a large vehicle such as a bus or truck, or an autonomous mobile object such as a robot or drone. . Further, the image processing apparatus 100 is not necessarily integrated with a mobile object such as the vehicle 1, and may be a cloud server or the like that acquires information from the mobile object via a network and performs image processing based on the acquired information. .
(2.その他の実施形態)
 上述した各実施形態に係る処理は、上記各実施形態以外にも種々の異なる形態にて実施されてよい。
(2. Other embodiments)
The processing according to each of the above-described embodiments may be implemented in various different forms other than the above-described respective embodiments.
(2-1.移動体の構成)
 例えば、画像処理装置100は、自動運転を行う自律型移動体(自動車)によって実現されてもよい。この場合、車両1および画像処理装置100は、図5に示した構成の他に、図7および図8に示す構成を有してもよい。なお、以下に示す各部は、例えば、図5に示した各部に含まれてもよい。
(2-1. Configuration of moving body)
For example, the image processing device 100 may be realized by an autonomous mobile body (automobile) that automatically drives. In this case, vehicle 1 and image processing device 100 may have configurations shown in FIGS. 7 and 8 in addition to the configuration shown in FIG. In addition, each part shown below may be included in each part shown in FIG. 5, for example.
 すなわち、本技術の画像処理装置100は、以下に示す車両制御システム11の一部として構成することも可能である。図7は、本技術が適用され得る車両制御システム11の概略的な機能の構成例を示すブロック図である。 That is, the image processing device 100 of the present technology can also be configured as part of the vehicle control system 11 described below. FIG. 7 is a block diagram showing a schematic functional configuration example of the vehicle control system 11 to which the present technology can be applied.
 車両制御システム11は、車両1に設けられ、車両1の走行支援及び自動運転に関わる処理を行う。 The vehicle control system 11 is provided in the vehicle 1 and performs processing related to driving support and automatic driving of the vehicle 1.
 車両制御システム11は、車両制御ECU(Electronic Control Unit )21、通信部22、地図情報蓄積部23、GNSS(Global Navigation Satellite System)受信部24、外部認識センサ25、車内センサ26、車両センサ27、記録部28、走行支援・自動運転制御部29、DMS(Driver Monitoring System)30、HMI(Human Machine Interface)31、及び、車両制御部32を備える。 The vehicle control system 11 includes a vehicle control ECU (Electronic Control Unit) 21, a communication unit 22, a map information storage unit 23, a GNSS (Global Navigation Satellite System) receiving unit 24, an external recognition sensor 25, an in-vehicle sensor 26, a vehicle sensor 27, It has a recording unit 28 , a driving support/automatic driving control unit 29 , a DMS (Driver Monitoring System) 30 , an HMI (Human Machine Interface) 31 , and a vehicle control unit 32 .
 車両制御ECU21、通信部22、地図情報蓄積部23、GNSS受信部24、外部認識センサ25、車内センサ26、車両センサ27、記録部28、走行支援・自動運転制御部29、DMS30、HMI31、及び、車両制御部32は、通信ネットワーク41を介して相互に通信可能に接続されている。通信ネットワーク41は、例えば、CAN(Controller Area Network)、LIN(Local Interconnect Network)、LAN(Local Area Network)、FlexRay(登録商標)、イーサネット(登録商標)といったディジタル双方向通信の規格に準拠した車載通信ネットワークやバス等により構成される。通信ネットワーク41は、通信されるデータの種類によって使い分けられても良く、例えば、車両制御に関するデータであればCANが適用され、大容量データであればイーサネットが適用される。なお、車両制御システム11の各部は、通信ネットワーク41を介さずに、例えば近距離無線通信(NFC(Near Field Communication))やBluetooth(登録商標)といった比較的近距離での通信を想定した無線通信を用いて直接的に接続される場合もある。 vehicle control ECU 21, communication unit 22, map information storage unit 23, GNSS reception unit 24, external recognition sensor 25, in-vehicle sensor 26, vehicle sensor 27, recording unit 28, driving support/automatic driving control unit 29, DMS 30, HMI 31, and , and the vehicle control unit 32 are communicably connected to each other via a communication network 41 . The communication network 41 is, for example, a CAN (Controller Area Network), LIN (Local Interconnect Network), LAN (Local Area Network), FlexRay (registered trademark), Ethernet (registered trademark), and other digital two-way communication standards. It is composed of a communication network, a bus, and the like. The communication network 41 may be selectively used depending on the type of data to be communicated. For example, CAN is applied for data related to vehicle control, and Ethernet is applied for large-capacity data. Each part of the vehicle control system 11 performs wireless communication assuming relatively short-range communication such as near field communication (NFC (Near Field Communication)) or Bluetooth (registered trademark) without going through the communication network 41. may be connected directly using
 なお、以下、車両制御システム11の各部が、通信ネットワーク41を介して通信を行う場合、通信ネットワーク41の記載を省略するものとする。例えば、車両制御ECU21と通信部22が通信ネットワーク41を介して通信を行う場合、単に車両制御ECU21と通信部22とが通信を行うと記載する。 In addition, hereinafter, when each part of the vehicle control system 11 communicates via the communication network 41, the description of the communication network 41 will be omitted. For example, when the vehicle control ECU 21 and the communication unit 22 communicate via the communication network 41, it is simply described that the vehicle control ECU 21 and the communication unit 22 communicate.
 車両制御ECU 21は、例えば、CPU(Central Processing Unit)、MPU(Micro Processing Unit)といった各種プロセッサにより構成される。車両制御ECU 21は、車両制御システム11全体もしくは一部の機能の制御を行う。 The vehicle control ECU 21 is composed of various processors such as a CPU (Central Processing Unit) and an MPU (Micro Processing Unit). The vehicle control ECU 21 controls all or part of the functions of the vehicle control system 11 .
 通信部22は、車内及び車外の様々な機器、他の車両、サーバ、基地局等と通信を行い、各種のデータの送受信を行う。このとき、通信部22は、複数の通信方式を用いて通信を行うことができる。 The communication unit 22 communicates with various devices inside and outside the vehicle, other vehicles, servers, base stations, etc., and transmits and receives various data. At this time, the communication unit 22 can perform communication using a plurality of communication methods.
 通信部22が実行可能な車外との通信について、概略的に説明する。通信部22は、例えば、5G(第5世代移動通信システム)、LTE(Long Term Evolution)、DSRC(Dedicated Short Range Communications)等の無線通信方式により、基地局又はアクセスポイントを介して、外部ネットワーク上に存在するサーバ(以下、外部のサーバと呼ぶ)等と通信を行う。通信部22が通信を行う外部ネットワークは、例えば、インターネット、クラウドネットワーク、又は、事業者固有のネットワーク等である。通信部22による外部ネットワークに対して通信を行う通信方式は、所定以上の通信速度、且つ、所定以上の距離間でディジタル双方向通信が可能な無線通信方式であれば、特に限定されない。 The communication with the outside of the vehicle that can be performed by the communication unit 22 will be described schematically. The communication unit 22 uses a wireless communication method such as 5G (5th generation mobile communication system), LTE (Long Term Evolution), DSRC (Dedicated Short Range Communications), etc., via a base station or access point, on an external network communicates with a server (hereinafter referred to as an external server) located in the The external network with which the communication unit 22 communicates is, for example, the Internet, a cloud network, or a provider's own network. The communication method for communicating with the external network by the communication unit 22 is not particularly limited as long as it is a wireless communication method capable of digital two-way communication at a predetermined communication speed or higher and at a predetermined distance or longer.
 また例えば、通信部22は、P2P(Peer To Peer)技術を用いて、自車の近傍に存在する端末と通信を行うことができる。自車の近傍に存在する端末は、例えば、歩行者や自転車など比較的低速で移動する移動体が装着する端末、店舗などに位置が固定されて設置される端末、あるいは、MTC(Machine Type Communication)端末である。さらに、通信部22は、V2X通信を行うこともできる。V2X通信とは、例えば、他の車両との間の車車間(Vehicle to Vehicle)通信、路側器等との間の路車間(Vehicle to Infrastructure)通信、家との間(Vehicle to Home)の通信、及び、歩行者が所持する端末等との間の歩車間(Vehicle to Pedestrian)通信等の、自車と他との通信をいう。 Also, for example, the communication unit 22 can communicate with a terminal existing in the vicinity of the own vehicle using P2P (Peer To Peer) technology. Terminals in the vicinity of one's own vehicle include, for example, terminals worn by pedestrians, bicycles, and other moving bodies that move at relatively low speeds, terminals installed at fixed locations such as stores, or MTC (Machine Type Communication). ) terminal. Furthermore, the communication unit 22 can also perform V2X communication. V2X communication includes, for example, vehicle-to-vehicle communication with other vehicles, vehicle-to-infrastructure communication with roadside equipment, etc., and vehicle-to-home communication , and communication between the vehicle and others, such as vehicle-to-pedestrian communication with a terminal or the like possessed by a pedestrian.
 通信部22は、例えば、車両制御システム11の動作を制御するソフトウエアを更新するためのプログラムを外部から受信することができる(Over The Air)。通信部22は、さらに、地図情報、交通情報、車両1の周囲の情報等を外部から受信することができる。また例えば、通信部22は、車両1に関する情報や、車両1の周囲の情報等を外部に送信することができる。通信部22が外部に送信する車両1に関する情報としては、例えば、車両1の状態を示すデータ、認識部73による認識結果等がある。さらに例えば、通信部22は、eコール等の車両緊急通報システムに対応した通信を行う。 For example, the communication unit 22 can receive from the outside a program for updating the software that controls the operation of the vehicle control system 11 (Over The Air). The communication unit 22 can also receive map information, traffic information, information around the vehicle 1, and the like from the outside. Further, for example, the communication unit 22 can transmit information about the vehicle 1, information about the surroundings of the vehicle 1, and the like to the outside. The information about the vehicle 1 that the communication unit 22 transmits to the outside includes, for example, data indicating the state of the vehicle 1, recognition results by the recognition unit 73, and the like. Furthermore, for example, the communication unit 22 performs communication corresponding to a vehicle emergency call system such as e-call.
 通信部22が実行可能な車内との通信について、概略的に説明する。通信部22は、例えば無線通信を用いて、車内の各機器と通信を行うことができる。通信部22は、例えば、無線LAN、Bluetooth、NFC、WUSB(Wireless USB)といった、無線通信により所定以上の通信速度でディジタル双方向通信が可能な通信方式により、車内の機器と無線通信を行うことができる。これに限らず、通信部22は、有線通信を用いて車内の各機器と通信を行うこともできる。例えば、通信部22は、図示しない接続端子に接続されるケーブルを介した有線通信により、車内の各機器と通信を行うことができる。通信部22は、例えば、USB(Universal Serial Bus)、HDMI(High-Definition Multimedia Interface)(登録商標)、MHL(Mobile High-definition Link)といった、有線通信により所定以上の通信速度でディジタル双方向通信が可能な通信方式により、車内の各機器と通信を行うことができる。 The communication with the inside of the vehicle that can be performed by the communication unit 22 will be described schematically. The communication unit 22 can communicate with each device in the vehicle using, for example, wireless communication. The communication unit 22 performs wireless communication with devices in the vehicle using a communication method such as wireless LAN, Bluetooth, NFC, and WUSB (Wireless USB) that enables digital two-way communication at a communication speed higher than a predetermined value. can be done. Not limited to this, the communication unit 22 can also communicate with each device in the vehicle using wired communication. For example, the communication unit 22 can communicate with each device in the vehicle by wired communication via a cable connected to a connection terminal (not shown). The communication unit 22 performs digital two-way communication at a predetermined communication speed or higher by wired communication, such as USB (Universal Serial Bus), HDMI (High-Definition Multimedia Interface) (registered trademark), and MHL (Mobile High-definition Link). can communicate with each device in the vehicle.
 ここで、車内の機器とは、例えば、車内において通信ネットワーク41に接続されていない機器を指す。車内の機器としては、例えば、運転者等の搭乗者が所持するモバイル機器やウェアラブル機器、車内に持ち込まれ一時的に設置される情報機器等が想定される。 Here, equipment in the vehicle refers to equipment that is not connected to the communication network 41 in the vehicle, for example. Examples of in-vehicle devices include mobile devices and wearable devices possessed by passengers such as drivers, information devices that are brought into the vehicle and temporarily installed, and the like.
 例えば、通信部22は、電波ビーコン、光ビーコン、FM多重放送等の道路交通情報通信システム(VICS(Vehicle Information and Communication System)(登録商標))により送信される電磁波を受信する。 For example, the communication unit 22 receives electromagnetic waves transmitted by a vehicle information and communication system (VICS (registered trademark)) such as radio beacons, optical beacons, and FM multiplex broadcasting.
 地図情報蓄積部23は、外部から取得した地図及び車両1で作成した地図の一方または両方を蓄積する。例えば、地図情報蓄積部23は、3次元の高精度地図、高精度地図より精度が低く、広いエリアをカバーするグローバルマップ等を蓄積する。 The map information accumulation unit 23 accumulates one or both of the map obtained from the outside and the map created by the vehicle 1. For example, the map information accumulation unit 23 accumulates a three-dimensional high-precision map, a global map covering a wide area, and the like, which is lower in accuracy than the high-precision map.
 高精度地図は、例えば、ダイナミックマップ、ポイントクラウドマップ、ベクターマップなどである。ダイナミックマップは、例えば、動的情報、準動的情報、準静的情報、静的情報の4層からなる地図であり、外部のサーバ等から車両1に提供される。ポイントクラウドマップは、ポイントクラウド(点群データ)により構成される地図である。ここで、ベクターマップは、車線や信号の位置といった交通情報などをポイントクラウドマップに対応付けた、ADAS(Advanced Driver Assistance System)に適合させた地図を指すものとする。 High-precision maps are, for example, dynamic maps, point cloud maps, and vector maps. The dynamic map is, for example, a map consisting of four layers of dynamic information, quasi-dynamic information, quasi-static information, and static information, and is provided to the vehicle 1 from an external server or the like. A point cloud map is a map composed of a point cloud (point cloud data). Here, the vector map refers to a map adapted to ADAS (Advanced Driver Assistance System) in which traffic information such as lane and signal positions are associated with a point cloud map.
 ポイントクラウドマップ及びベクターマップは、例えば、外部のサーバ等から提供されてもよいし、レーダ52、LiDAR53等によるセンシング結果に基づいて、後述するローカルマップとのマッチングを行うための地図として車両1で作成され、地図情報蓄積部23に蓄積されてもよい。また、外部のサーバ等から高精度地図が提供される場合、通信容量を削減するため、車両1がこれから走行する計画経路に関する、例えば数百メートル四方の地図データが外部のサーバ等から取得される。 The point cloud map and the vector map, for example, may be provided from an external server or the like, and based on the sensing results of the radar 52, LiDAR 53, etc., the vehicle 1 as a map for matching with a local map described later. It may be created and stored in the map information storage unit 23 . Further, when a high-precision map is provided from an external server or the like, in order to reduce the communication capacity, map data of, for example, several hundred meters square, regarding the planned route that the vehicle 1 will travel from now on, is acquired from the external server or the like. .
 GNSS受信部24は、GNSS衛星からGNSS信号を受信し、車両1の位置情報を取得する。受信したGNSS信号は、走行支援・自動運転制御部29に供給される。尚、GNSS受信部24は、GNSS信号を用いた方式に限定されず、例えば、ビーコンを用いて位置情報を取得しても良い。 The GNSS receiver 24 receives GNSS signals from GNSS satellites and acquires position information of the vehicle 1 . The received GNSS signal is supplied to the driving support/automatic driving control unit 29 . In addition, the GNSS receiver 24 is not limited to the method using the GNSS signal, and may acquire the position information using, for example, a beacon.
 外部認識センサ25は、車両1の外部の状況の認識に用いられる各種のセンサを備え、各センサからのセンサデータを車両制御システム11の各部に供給する。外部認識センサ25が備えるセンサの種類や数は任意である。 The external recognition sensor 25 includes various sensors used for recognizing situations outside the vehicle 1 and supplies sensor data from each sensor to each part of the vehicle control system 11 . The type and number of sensors included in the external recognition sensor 25 are arbitrary.
 例えば、外部認識センサ25は、カメラ51、レーダ52、LiDAR(Light Detection and Ranging、Laser Imaging Detection and Ranging)53、及び、超音波センサ54を備える。これに限らず、外部認識センサ25は、カメラ51、レーダ52、LiDAR53、及び、超音波センサ54のうち1種類以上のセンサを備える構成でもよい。カメラ51、レーダ52、LiDAR53、及び、超音波センサ54の数は、現実的に車両1に設置可能な数であれば特に限定されない。また、外部認識センサ25が備えるセンサの種類は、この例に限定されず、外部認識センサ25は、他の種類のセンサを備えてもよい。外部認識センサ25が備える各センサのセンシング領域の例は、後述する。 For example, the external recognition sensor 25 includes a camera 51 , a radar 52 , a LiDAR (Light Detection and Ranging, Laser Imaging Detection and Ranging) 53 , and an ultrasonic sensor 54 . The configuration is not limited to this, and the external recognition sensor 25 may be configured to include one or more types of sensors among the camera 51, radar 52, LiDAR 53, and ultrasonic sensor . The numbers of cameras 51 , radars 52 , LiDARs 53 , and ultrasonic sensors 54 are not particularly limited as long as they are realistically installable in the vehicle 1 . Moreover, the type of sensor provided in the external recognition sensor 25 is not limited to this example, and the external recognition sensor 25 may be provided with other types of sensors. An example of the sensing area of each sensor included in the external recognition sensor 25 will be described later.
 なお、カメラ51の撮影方式は、測距が可能な撮影方式であれば特に限定されない。例えば、カメラ51は、ToF(Time Of Flight)カメラ、ステレオカメラ、単眼カメラ、赤外線カメラといった各種の撮影方式のカメラを、必要に応じて適用することができる。これに限らず、カメラ51は、測距に関わらずに、単に撮影画像を取得するためのものであってもよい。 Note that the shooting method of the camera 51 is not particularly limited as long as it is a shooting method that enables distance measurement. For example, the camera 51 may be a ToF (Time Of Flight) camera, a stereo camera, a monocular camera, an infrared camera, or any other type of camera as required. The camera 51 is not limited to this, and may simply acquire a photographed image regardless of distance measurement.
 また、例えば、外部認識センサ25は、車両1に対する環境を検出するための環境センサを備えることができる。環境センサは、天候、気象、明るさ等の環境を検出するためのセンサであって、例えば、雨滴センサ、霧センサ、日照センサ、雪センサ、照度センサ等の各種センサを含むことができる。 Also, for example, the external recognition sensor 25 can include an environment sensor for detecting the environment with respect to the vehicle 1. The environment sensor is a sensor for detecting the environment such as weather, weather, brightness, etc., and can include various sensors such as raindrop sensors, fog sensors, sunshine sensors, snow sensors, and illuminance sensors.
 さらに、例えば、外部認識センサ25は、車両1の周囲の音や音源の位置の検出等に用いられるマイクロフォンを備える。 Furthermore, for example, the external recognition sensor 25 includes a microphone used for detecting the sound around the vehicle 1 and the position of the sound source.
 車内センサ26は、車内の情報を検出するための各種のセンサを備え、各センサからのセンサデータを車両制御システム11の各部に供給する。車内センサ26が備える各種センサの種類や数は、現実的に車両1に設置可能な数であれば特に限定されない。 The in-vehicle sensor 26 includes various sensors for detecting information inside the vehicle, and supplies sensor data from each sensor to each part of the vehicle control system 11 . The types and number of various sensors included in the in-vehicle sensor 26 are not particularly limited as long as they are realistically installable in the vehicle 1 .
 例えば、車内センサ26は、カメラ、レーダ、着座センサ、ステアリングホイールセンサ、マイクロフォン、生体センサのうち1種類以上のセンサを備えることができる。車内センサ26が備えるカメラとしては、例えば、ToFカメラ、ステレオカメラ、単眼カメラ、赤外線カメラといった、測距可能な各種の撮影方式のカメラを用いることができる。これに限らず、車内センサ26が備えるカメラは、測距に関わらずに、単に撮影画像を取得するためのものであってもよい。車内センサ26が備える生体センサは、例えば、シートやステリングホイール等に設けられ、運転者等の搭乗者の各種の生体情報を検出する。 For example, the in-vehicle sensor 26 can include one or more sensors among cameras, radars, seating sensors, steering wheel sensors, microphones, and biosensors. As the camera provided in the in-vehicle sensor 26, for example, cameras of various shooting methods capable of distance measurement, such as a ToF camera, a stereo camera, a monocular camera, and an infrared camera, can be used. The camera included in the in-vehicle sensor 26 is not limited to this, and may simply acquire a photographed image regardless of distance measurement. The biosensors included in the in-vehicle sensor 26 are provided, for example, in seats, steering wheels, etc., and detect various biometric information of passengers such as the driver.
 車両センサ27は、車両1の状態を検出するための各種のセンサを備え、各センサからのセンサデータを車両制御システム11の各部に供給する。車両センサ27が備える各種センサの種類や数は、現実的に車両1に設置可能な数であれば特に限定されない。 The vehicle sensor 27 includes various sensors for detecting the state of the vehicle 1, and supplies sensor data from each sensor to each section of the vehicle control system 11. The types and number of various sensors included in the vehicle sensor 27 are not particularly limited as long as they can be installed in the vehicle 1 realistically.
 例えば、車両センサ27は、速度センサ、加速度センサ、角速度センサ(ジャイロセンサ)、及び、それらを統合した慣性計測装置(IMU(Inertial Measurement Unit))を備える。例えば、車両センサ27は、ステアリングホイールの操舵角を検出する操舵角センサ、ヨーレートセンサ、アクセルペダルの操作量を検出するアクセルセンサ、及び、ブレーキペダルの操作量を検出するブレーキセンサを備える。例えば、車両センサ27は、エンジンやモータの回転数を検出する回転センサ、タイヤの空気圧を検出する空気圧センサ、タイヤのスリップ率を検出するスリップ率センサ、及び、車輪の回転速度を検出する車輪速センサを備える。例えば、車両センサ27は、バッテリの残量及び温度を検出するバッテリセンサ、及び、外部からの衝撃を検出する衝撃センサを備える。 For example, the vehicle sensor 27 includes a speed sensor, an acceleration sensor, an angular velocity sensor (gyro sensor), and an inertial measurement unit (IMU (Inertial Measurement Unit)) integrating them. For example, the vehicle sensor 27 includes a steering angle sensor that detects the steering angle of the steering wheel, a yaw rate sensor, an accelerator sensor that detects the amount of operation of the accelerator pedal, and a brake sensor that detects the amount of operation of the brake pedal. For example, the vehicle sensor 27 includes a rotation sensor that detects the number of rotations of an engine or a motor, an air pressure sensor that detects tire air pressure, a slip rate sensor that detects a tire slip rate, and a wheel speed sensor that detects the rotational speed of a wheel. A sensor is provided. For example, the vehicle sensor 27 includes a battery sensor that detects the remaining battery level and temperature, and an impact sensor that detects external impact.
 記録部28は、不揮発性の記憶媒体および揮発性の記憶媒体のうち少なくとも一方を含み、データやプログラムを記憶する。記録部28は、例えばEEPROM(Electrically Erasable Programmable Read Only Memory)およびRAM(Random Access Memory)として用いられ、記憶媒体としては、HDD(Hard Disc Drive)といった磁気記憶デバイス、半導体記憶デバイス、光記憶デバイス、及び、光磁気記憶デバイスを適用することができる。記録部28は、車両制御システム11の各部が用いる各種プログラムやデータを記録する。例えば、記録部28は、EDR(Event Data Recorder)やDSSAD(Data Storage System for Automated Driving)を備え、事故等のイベントの前後の車両1の情報や車内センサ26によって取得された生体情報を記録する。 The recording unit 28 includes at least one of a nonvolatile storage medium and a volatile storage medium, and stores data and programs. The recording unit 28 is used, for example, as EEPROM (Electrically Erasable Programmable Read Only Memory) and RAM (Random Access Memory), and as a storage medium, magnetic storage devices such as HDD (Hard Disc Drive), semiconductor storage devices, optical storage devices, And a magneto-optical storage device can be applied. The recording unit 28 records various programs and data used by each unit of the vehicle control system 11 . For example, the recording unit 28 includes an EDR (Event Data Recorder) and a DSSAD (Data Storage System for Automated Driving), and records information on the vehicle 1 before and after an event such as an accident and biometric information acquired by the in-vehicle sensor 26. .
 走行支援・自動運転制御部29は、車両1の走行支援及び自動運転の制御を行う。例えば、走行支援・自動運転制御部29は、分析部61、行動計画部62、及び、動作制御部63を備える。 The driving support/automatic driving control unit 29 controls driving support and automatic driving of the vehicle 1 . For example, the driving support/automatic driving control unit 29 includes an analysis unit 61 , an action planning unit 62 and an operation control unit 63 .
 分析部61は、車両1及び周囲の状況の分析処理を行う。分析部61は、自己位置推定部71、センサフュージョン部72、及び、認識部73を備える。 The analysis unit 61 analyzes the vehicle 1 and its surroundings. The analysis unit 61 includes a self-position estimation unit 71 , a sensor fusion unit 72 and a recognition unit 73 .
 自己位置推定部71は、外部認識センサ25からのセンサデータ、及び、地図情報蓄積部23に蓄積されている高精度地図に基づいて、車両1の自己位置を推定する。例えば、自己位置推定部71は、外部認識センサ25からのセンサデータに基づいてローカルマップを生成し、ローカルマップと高精度地図とのマッチングを行うことにより、車両1の自己位置を推定する。車両1の位置は、例えば、後輪対車軸の中心が基準とされる。 The self-position estimation unit 71 estimates the self-position of the vehicle 1 based on the sensor data from the external recognition sensor 25 and the high-precision map accumulated in the map information accumulation unit 23. For example, the self-position estimation unit 71 generates a local map based on sensor data from the external recognition sensor 25, and estimates the self-position of the vehicle 1 by matching the local map and the high-precision map. The position of the vehicle 1 is based on, for example, the center of the rear wheel versus axle.
 ローカルマップは、例えば、SLAM(Simultaneous Localization and Mapping)等の技術を用いて作成される3次元の高精度地図、占有格子地図(Occupancy Grid Map)等である。3次元の高精度地図は、例えば、上述したポイントクラウドマップ等である。占有格子地図は、車両1の周囲の3次元又は2次元の空間を所定の大きさのグリッド(格子)に分割し、グリッド単位で物体の占有状態を示す地図である。物体の占有状態は、例えば、物体の有無や存在確率により示される。ローカルマップは、例えば、認識部73による車両1の外部の状況の検出処理及び認識処理にも用いられる。 A local map is, for example, a three-dimensional high-precision map created using techniques such as SLAM (Simultaneous Localization and Mapping), an occupancy grid map, or the like. The three-dimensional high-precision map is, for example, the point cloud map described above. The occupancy grid map is a map that divides the three-dimensional or two-dimensional space around the vehicle 1 into grids (lattice) of a predetermined size and shows the occupancy state of objects in grid units. The occupancy state of an object is indicated, for example, by the presence or absence of the object and the existence probability. The local map is also used, for example, by the recognizing unit 73 for detection processing and recognition processing of the situation outside the vehicle 1 .
 なお、自己位置推定部71は、GNSS信号、及び、車両センサ27からのセンサデータに基づいて、車両1の自己位置を推定してもよい。 The self-position estimation unit 71 may estimate the self-position of the vehicle 1 based on the GNSS signal and sensor data from the vehicle sensor 27.
 センサフュージョン部72は、複数の異なる種類のセンサデータ(例えば、カメラ51から供給される画像データ、及び、レーダ52から供給されるセンサデータ)を組み合わせて、新たな情報を得るセンサフュージョン処理を行う。異なる種類のセンサデータを組合せる方法としては、統合、融合、連合等がある。 The sensor fusion unit 72 combines a plurality of different types of sensor data (for example, image data supplied from the camera 51 and sensor data supplied from the radar 52) to perform sensor fusion processing to obtain new information. . Methods for combining different types of sensor data include integration, fusion, federation, and the like.
 認識部73は、車両1の外部の状況の検出を行う検出処理と、車両1の外部の状況の認識を行う認識処理と、を実行する。 The recognition unit 73 executes a detection process for detecting the situation outside the vehicle 1 and a recognition process for recognizing the situation outside the vehicle 1 .
 例えば、認識部73は、外部認識センサ25からの情報、自己位置推定部71からの情報、センサフュージョン部72からの情報等に基づいて、車両1の外部の状況の検出処理及び認識処理を行う。 For example, the recognition unit 73 performs detection processing and recognition processing of the external situation of the vehicle 1 based on information from the external recognition sensor 25, information from the self-position estimation unit 71, information from the sensor fusion unit 72, and the like. .
 具体的には、例えば、認識部73は、車両1の周囲の物体の検出処理及び認識処理等を行う。物体の検出処理とは、例えば、物体の有無、大きさ、形、位置、動き等を検出する処理である。物体の認識処理とは、例えば、物体の種類等の属性を認識したり、特定の物体を識別したりする処理である。ただし、検出処理と認識処理とは、必ずしも明確に分かれるものではなく、重複する場合がある。 Specifically, for example, the recognition unit 73 performs detection processing and recognition processing of objects around the vehicle 1 . Object detection processing is, for example, processing for detecting the presence or absence, size, shape, position, movement, and the like of an object. Object recognition processing is, for example, processing for recognizing an attribute such as the type of an object or identifying a specific object. However, detection processing and recognition processing are not always clearly separated, and may overlap.
 例えば、認識部73は、LiDAR53又はレーダ52等によるセンサデータに基づくポイントクラウドを点群の塊毎に分類するクラスタリングを行うことにより、車両1の周囲の物体を検出する。これにより、車両1の周囲の物体の有無、大きさ、形状、位置が検出される。 For example, the recognition unit 73 detects objects around the vehicle 1 by clustering the point cloud based on sensor data from the LiDAR 53 or the radar 52 or the like for each cluster of point groups. As a result, presence/absence, size, shape, and position of objects around the vehicle 1 are detected.
 例えば、認識部73は、クラスタリングにより分類された点群の塊の動きを追従するトラッキングを行うことにより、車両1の周囲の物体の動きを検出する。これにより、車両1の周囲の物体の速度及び進行方向(移動ベクトル)が検出される。 For example, the recognition unit 73 detects the movement of objects around the vehicle 1 by performing tracking that follows the movement of the masses of point groups classified by clustering. As a result, the speed and traveling direction (movement vector) of the object around the vehicle 1 are detected.
 例えば、認識部73は、カメラ51から供給される画像データに対して、車両、人、自転車、障害物、構造物、道路、信号機、交通標識、道路標示などを検出または認識する。また、セマンティックセグメンテーション等の認識処理を行うことにより、車両1の周囲の物体の種類を認識してもいい。 For example, the recognition unit 73 detects or recognizes vehicles, people, bicycles, obstacles, structures, roads, traffic lights, traffic signs, road markings, etc. from the image data supplied from the camera 51 . Also, the types of objects around the vehicle 1 may be recognized by performing recognition processing such as semantic segmentation.
 例えば、認識部73は、地図情報蓄積部23に蓄積されている地図、自己位置推定部71による自己位置の推定結果、及び、認識部73による車両1の周囲の物体の認識結果に基づいて、車両1の周囲の交通ルールの認識処理を行うことができる。認識部73は、この処理により、信号の位置及び状態、交通標識及び道路標示の内容、交通規制の内容、並びに、走行可能な車線などを認識することができる。 For example, the recognition unit 73, based on the map accumulated in the map information accumulation unit 23, the estimation result of the self-position by the self-position estimation unit 71, and the recognition result of the object around the vehicle 1 by the recognition unit 73, Recognition processing of traffic rules around the vehicle 1 can be performed. Through this processing, the recognizing unit 73 can recognize the position and state of traffic signals, the content of traffic signs and road markings, the content of traffic restrictions, and the lanes in which the vehicle can travel.
 例えば、認識部73は、車両1の周囲の環境の認識処理を行うことができる。認識部73が認識対象とする周囲の環境としては、天候、気温、湿度、明るさ、及び、路面の状態等が想定される。 For example, the recognition unit 73 can perform recognition processing of the environment around the vehicle 1 . The surrounding environment to be recognized by the recognition unit 73 includes the weather, temperature, humidity, brightness, road surface conditions, and the like.
 行動計画部62は、車両1の行動計画を作成する。例えば、行動計画部62は、経路計画、経路追従の処理を行うことにより、行動計画を作成する。 The action plan section 62 creates an action plan for the vehicle 1. For example, the action planning unit 62 creates an action plan by performing route planning and route following processing.
 なお、経路計画(Global path planning)とは、スタートからゴールまでの大まかな経路を計画する処理である。この経路計画には、軌道計画と言われ、経路計画で計画された経路において、車両1の運動特性を考慮して、車両1の近傍で安全かつ滑らかに進行することが可能な軌道生成(Local path planning)の処理も含まれる。経路計画を長期経路計画、および起動生成を短期経路計画、または局所経路計画と区別してもよい。安全優先経路は、起動生成、短期経路計画、または局所経路計画と同様の概念を表す。 Note that global path planning is the process of planning a rough route from the start to the goal. This route planning is referred to as a trajectory plan. In the route planned by the route planning, a trajectory generation (Local path planning) processing is also included. Path planning may be distinguished from long-term path planning and activation generation from short-term path planning, or from local path planning. A safety priority path represents a concept similar to launch generation, short-term path planning, or local path planning.
 経路追従とは、経路計画により計画した経路を計画された時間内で安全かつ正確に走行するための動作を計画する処理である。行動計画部62は、例えば、この経路追従の処理の結果に基づき、車両1の目標速度と目標角速度を計算することができる。  Route following is the process of planning actions to safely and accurately travel the route planned by route planning within the planned time. The action planning unit 62 can, for example, calculate the target speed and target angular speed of the vehicle 1 based on the result of this route following processing.
 動作制御部63は、行動計画部62により作成された行動計画を実現するために、車両1の動作を制御する。 The motion control unit 63 controls the motion of the vehicle 1 in order to implement the action plan created by the action planning unit 62.
 例えば、動作制御部63は、後述する車両制御部32に含まれる、ステアリング制御部81、ブレーキ制御部82、及び、駆動制御部83を制御して、軌道計画により計算された軌道を車両1が進行するように、加減速制御及び方向制御を行う。例えば、動作制御部63は、衝突回避あるいは衝撃緩和、追従走行、車速維持走行、自車の衝突警告、自車のレーン逸脱警告等のADASの機能実現を目的とした協調制御を行う。例えば、動作制御部63は、運転者の操作によらずに自律的に走行する自動運転等を目的とした協調制御を行う。 For example, the operation control unit 63 controls a steering control unit 81, a brake control unit 82, and a drive control unit 83 included in the vehicle control unit 32, which will be described later, so that the vehicle 1 can control the trajectory calculated by the trajectory plan. Acceleration/deceleration control and direction control are performed so as to advance. For example, the operation control unit 63 performs cooperative control aimed at realizing ADAS functions such as collision avoidance or shock mitigation, follow-up driving, vehicle speed maintenance driving, collision warning of own vehicle, and lane deviation warning of own vehicle. For example, the operation control unit 63 performs cooperative control aimed at automatic driving in which the vehicle autonomously travels without depending on the operation of the driver.
 DMS30は、車内センサ26からのセンサデータ、及び、後述するHMI31に入力される入力データ等に基づいて、運転者の認証処理、及び、運転者の状態の認識処理等を行う。この場合にDMS30の認識対象となる運転者の状態としては、例えば、体調、覚醒度、集中度、疲労度、視線方向、酩酊度、運転操作、姿勢等が想定される。 The DMS 30 performs driver authentication processing, driver state recognition processing, etc., based on sensor data from the in-vehicle sensor 26 and input data input to the HMI 31, which will be described later. In this case, the driver's condition to be recognized by the DMS 30 includes, for example, physical condition, wakefulness, concentration, fatigue, gaze direction, drunkenness, driving operation, posture, and the like.
 なお、DMS30が、運転者以外の搭乗者の認証処理、及び、当該搭乗者の状態の認識処理を行うようにしてもよい。また、例えば、DMS30が、車内センサ26からのセンサデータに基づいて、車内の状況の認識処理を行うようにしてもよい。認識対象となる車内の状況としては、例えば、気温、湿度、明るさ、臭い等が想定される。 It should be noted that the DMS 30 may perform authentication processing for passengers other than the driver and processing for recognizing the state of the passenger. Further, for example, the DMS 30 may perform recognition processing of the situation inside the vehicle based on the sensor data from the sensor 26 inside the vehicle. Conditions inside the vehicle to be recognized include temperature, humidity, brightness, smell, and the like, for example.
 HMI31は、各種のデータや指示等の入力と、各種のデータの運転者などへの提示を行う。 The HMI 31 inputs various data, instructions, etc., and presents various data to the driver.
 HMI31によるデータの入力について、概略的に説明する。HMI31は、人がデータを入力するための入力デバイスを備える。HMI31は、入力デバイスにより入力されたデータや指示等に基づいて入力信号を生成し、車両制御システム11の各部に供給する。HMI31は、入力デバイスとして、例えばタッチパネル、ボタン、スイッチ、及び、レバーといった操作子を備える。これに限らず、HMI31は、音声やジェスチャ等により手動操作以外の方法で情報を入力可能な入力デバイスをさらに備えてもよい。さらに、HMI31は、例えば、赤外線あるいは電波を利用したリモートコントロール装置や、車両制御システム11の操作に対応したモバイル機器若しくはウェアラブル機器等の外部接続機器を入力デバイスとして用いてもよい。 The input of data by the HMI 31 will be roughly explained. The HMI 31 comprises an input device for human input of data. The HMI 31 generates an input signal based on data, instructions, etc. input from an input device, and supplies the input signal to each section of the vehicle control system 11 . The HMI 31 includes operators such as a touch panel, buttons, switches, and levers as input devices. The HMI 31 is not limited to this, and may further include an input device capable of inputting information by a method other than manual operation using voice, gestures, or the like. Further, the HMI 31 may use, as an input device, a remote control device using infrared rays or radio waves, or an externally connected device such as a mobile device or wearable device corresponding to the operation of the vehicle control system 11 .
 HMI31によるデータの提示について、概略的に説明する。HMI31は、搭乗者又は車外に対する視覚情報、聴覚情報、及び、触覚情報の生成を行う。また、HMI31は、生成されたこれら各情報の出力、出力内容、出力タイミングおよび出力方法等を制御する出力制御を行う。HMI31は、視覚情報として、例えば、操作画面、車両1の状態表示、警告表示、車両1の周囲の状況を示すモニタ画像等の画像や光により示される情報を生成および出力する。また、HMI31は、聴覚情報として、例えば、音声ガイダンス、警告音、警告メッセージ等の音により示される情報を生成および出力する。さらに、HMI31は、触覚情報として、例えば、力、振動、動き等により搭乗者の触覚に与えられる情報を生成および出力する。 The presentation of data by HMI31 will be briefly explained. The HMI 31 generates visual information, auditory information, and tactile information for the passenger or outside the vehicle. The HMI 31 also performs output control for controlling the output, output content, output timing, output method, and the like of each of the generated information. The HMI 31 generates and outputs visual information such as an operation screen, a status display of the vehicle 1, a warning display, an image such as a monitor image showing the situation around the vehicle 1, and information indicated by light. The HMI 31 also generates and outputs information indicated by sounds such as voice guidance, warning sounds, warning messages, etc., as auditory information. Furthermore, the HMI 31 generates and outputs, as tactile information, information given to the passenger's tactile sense by force, vibration, motion, or the like.
 HMI31が視覚情報を出力する出力デバイスとしては、例えば、自身が画像を表示することで視覚情報を提示する表示装置や、画像を投影することで視覚情報を提示するプロジェクタ装置を適用することができる。なお、表示装置は、通常のディスプレイを有する表示装置以外にも、例えば、ヘッドアップディスプレイ、透過型ディスプレイ、AR(Augmented Reality)機能を備えるウエアラブルデバイスといった、搭乗者の視界内に視覚情報を表示する装置であってもよい。また、HMI31は、車両1に設けられるナビゲーション装置、インストルメントパネル、CMS(Camera Monitoring System)、電子ミラー、ランプなどが有する表示デバイスを、視覚情報を出力する出力デバイスとして用いることも可能である。 As an output device from which the HMI 31 outputs visual information, for example, a display device that presents visual information by displaying an image by itself or a projector device that presents visual information by projecting an image can be applied. . In addition to a display device having a normal display, the display device displays visual information within the passenger's field of view, such as a head-up display, a transmissive display, or a wearable device with an AR (Augmented Reality) function. It may be a device. The HMI 31 can also use display devices such as a navigation device, an instrument panel, a CMS (Camera Monitoring System), an electronic mirror, and lamps provided in the vehicle 1 as output devices for outputting visual information.
 HMI31が聴覚情報を出力する出力デバイスとしては、例えば、オーディオスピーカ、ヘッドホン、イヤホンを適用することができる。 Audio speakers, headphones, and earphones, for example, can be applied as output devices for the HMI 31 to output auditory information.
 HMI31が触覚情報を出力する出力デバイスとしては、例えば、ハプティクス技術を用いたハプティクス素子を適用することができる。ハプティクス素子は、例えば、ステアリングホイール、シートといった、車両1の搭乗者が接触する部分に設けられる。 As an output device for the HMI 31 to output tactile information, for example, a haptic element using haptic technology can be applied. A haptic element is provided at a portion of the vehicle 1 that is in contact with a passenger, such as a steering wheel or a seat.
 車両制御部32は、車両1の各部の制御を行う。車両制御部32は、ステアリング制御部81、ブレーキ制御部82、駆動制御部83、ボディ系制御部84、ライト制御部85、及び、ホーン制御部86を備える。 The vehicle control unit 32 controls each unit of the vehicle 1. The vehicle control section 32 includes a steering control section 81 , a brake control section 82 , a drive control section 83 , a body system control section 84 , a light control section 85 and a horn control section 86 .
 ステアリング制御部81は、車両1のステアリングシステムの状態の検出及び制御等を行う。ステアリングシステムは、例えば、ステアリングホイール等を備えるステアリング機構、電動パワーステアリング等を備える。ステアリング制御部81は、例えば、ステアリングシステムの制御を行うECU等の制御ユニット、ステアリングシステムの駆動を行うアクチュエータ等を備える。 The steering control unit 81 detects and controls the state of the steering system of the vehicle 1 . The steering system includes, for example, a steering mechanism including a steering wheel, an electric power steering, and the like. The steering control unit 81 includes, for example, a control unit such as an ECU that controls the steering system, an actuator that drives the steering system, and the like.
 ブレーキ制御部82は、車両1のブレーキシステムの状態の検出及び制御等を行う。ブレーキシステムは、例えば、ブレーキペダル等を含むブレーキ機構、ABS(Antilock Brake System)、回生ブレーキ機構等を備える。ブレーキ制御部82は、例えば、ブレーキシステムの制御を行うECU等の制御ユニット等を備える。 The brake control unit 82 detects and controls the state of the brake system of the vehicle 1 . The brake system includes, for example, a brake mechanism including a brake pedal, an ABS (Antilock Brake System), a regenerative brake mechanism, and the like. The brake control unit 82 includes, for example, a control unit such as an ECU that controls the brake system.
 駆動制御部83は、車両1の駆動システムの状態の検出及び制御等を行う。駆動システムは、例えば、アクセルペダル、内燃機関又は駆動用モータ等の駆動力を発生させるための駆動力発生装置、駆動力を車輪に伝達するための駆動力伝達機構等を備える。駆動制御部83は、例えば、駆動システムの制御を行うECU等の制御ユニット等を備える。 The drive control unit 83 detects and controls the state of the drive system of the vehicle 1 . The drive system includes, for example, an accelerator pedal, a driving force generator for generating driving force such as an internal combustion engine or a driving motor, and a driving force transmission mechanism for transmitting the driving force to the wheels. The drive control unit 83 includes, for example, a control unit such as an ECU that controls the drive system.
 ボディ系制御部84は、車両1のボディ系システムの状態の検出及び制御等を行う。ボディ系システムは、例えば、キーレスエントリシステム、スマートキーシステム、パワーウインドウ装置、パワーシート、空調装置、エアバッグ、シートベルト、シフトレバー等を備える。ボディ系制御部84は、例えば、ボディ系システムの制御を行うECU等の制御ユニット等を備える。 The body system control unit 84 detects and controls the state of the body system of the vehicle 1 . The body system includes, for example, a keyless entry system, smart key system, power window device, power seat, air conditioner, air bag, seat belt, shift lever, and the like. The body system control unit 84 includes, for example, a control unit such as an ECU that controls the body system.
 ライト制御部85は、車両1の各種のライトの状態の検出及び制御等を行う。制御対象となるライトとしては、例えば、ヘッドライト、バックライト、フォグライト、ターンシグナル、ブレーキライト、プロジェクション、バンパーの表示等が想定される。ライト制御部85は、ライトの制御を行うECU等の制御ユニット等を備える。 The light control unit 85 detects and controls the states of various lights of the vehicle 1 . Lights to be controlled include, for example, headlights, backlights, fog lights, turn signals, brake lights, projections, bumper displays, and the like. The light control unit 85 includes a control unit such as an ECU for controlling lights.
 ホーン制御部86は、車両1のカーホーンの状態の検出及び制御等を行う。ホーン制御部86は、例えば、カーホーンの制御を行うECU等の制御ユニット等を備える。 The horn control unit 86 detects and controls the state of the car horn of the vehicle 1 . The horn control unit 86 includes, for example, a control unit such as an ECU that controls the car horn.
 画像処理装置100が車両制御システム11の一部として構成される場合、例えば、図5で示した制御部130は、車両制御ECU21等に対応する。また、図5で示した検知部140は、外部認識センサ25、車内センサ26、車両センサ27等に対応する。 When the image processing device 100 is configured as part of the vehicle control system 11, for example, the control unit 130 shown in FIG. 5 corresponds to the vehicle control ECU 21 and the like. 5 corresponds to the external recognition sensor 25, the vehicle interior sensor 26, the vehicle sensor 27, and the like.
 図8は、図7の外部認識センサ25のカメラ51、レーダ52、LiDAR53、及び、超音波センサ54等によるセンシング領域の例を示す図である。なお、図8において、車両1を上面から見た様子が模式的に示され、左端側が車両1の前端(フロント)側であり、右端側が車両1の後端(リア)側となっている。 FIG. 8 is a diagram showing an example of sensing areas by the camera 51, radar 52, LiDAR 53, ultrasonic sensor 54, etc. of the external recognition sensor 25 in FIG. 8 schematically shows the vehicle 1 viewed from above, the left end side is the front end (front) side of the vehicle 1, and the right end side is the rear end (rear) side of the vehicle 1.
 センシング領域101F及びセンシング領域101Bは、超音波センサ54のセンシング領域の例を示している。センシング領域101Fは、複数の超音波センサ54によって車両1の前端周辺をカバーしている。センシング領域101Bは、複数の超音波センサ54によって車両1の後端周辺をカバーしている。 A sensing area 101F and a sensing area 101B are examples of sensing areas of the ultrasonic sensor 54. FIG. The sensing area 101</b>F covers the periphery of the front end of the vehicle 1 with a plurality of ultrasonic sensors 54 . The sensing area 101B covers the periphery of the rear end of the vehicle 1 with a plurality of ultrasonic sensors 54 .
 センシング領域101F及びセンシング領域101Bにおけるセンシング結果は、例えば、車両1の駐車支援等に用いられる。 The sensing results in the sensing area 101F and the sensing area 101B are used, for example, for parking assistance of the vehicle 1 and the like.
 センシング領域102F乃至センシング領域102Bは、短距離又は中距離用のレーダ52のセンシング領域の例を示している。センシング領域102Fは、車両1の前方において、センシング領域101Fより遠い位置までカバーしている。センシング領域102Bは、車両1の後方において、センシング領域101Bより遠い位置までカバーしている。センシング領域102Lは、車両1の左側面の後方の周辺をカバーしている。センシング領域102Rは、車両1の右側面の後方の周辺をカバーしている。 Sensing areas 102F to 102B show examples of sensing areas of the radar 52 for short or medium range. The sensing area 102F covers the front of the vehicle 1 to a position farther than the sensing area 101F. The sensing area 102B covers the rear of the vehicle 1 to a position farther than the sensing area 101B. The sensing area 102L covers the rear periphery of the left side surface of the vehicle 1 . The sensing area 102R covers the rear periphery of the right side surface of the vehicle 1 .
 センシング領域102Fにおけるセンシング結果は、例えば、車両1の前方に存在する車両や歩行者等の検出等に用いられる。センシング領域102Bにおけるセンシング結果は、例えば、車両1の後方の衝突防止機能等に用いられる。センシング領域102L及びセンシング領域102Rにおけるセンシング結果は、例えば、車両1の側方の死角における物体の検出等に用いられる。 The sensing result in the sensing area 102F is used, for example, to detect vehicles, pedestrians, etc. existing in front of the vehicle 1. The sensing result in the sensing area 102B is used, for example, for the rear collision prevention function of the vehicle 1 or the like. The sensing results in the sensing area 102L and the sensing area 102R are used, for example, to detect an object in a blind spot on the side of the vehicle 1, or the like.
 センシング領域103F乃至センシング領域103Bは、カメラ51によるセンシング領域の例を示している。センシング領域103Fは、車両1の前方において、センシング領域102Fより遠い位置までカバーしている。センシング領域103Bは、車両1の後方において、センシング領域102Bより遠い位置までカバーしている。センシング領域103Lは、車両1の左側面の周辺をカバーしている。センシング領域103Rは、車両1の右側面の周辺をカバーしている。 Sensing areas 103F to 103B show examples of sensing areas by the camera 51 . The sensing area 103F covers the front of the vehicle 1 to a position farther than the sensing area 102F. The sensing area 103B covers the rear of the vehicle 1 to a position farther than the sensing area 102B. The sensing area 103L covers the periphery of the left side surface of the vehicle 1 . The sensing area 103R covers the periphery of the right side surface of the vehicle 1 .
 センシング領域103Fにおけるセンシング結果は、例えば、信号機や交通標識の認識、車線逸脱防止支援システム、自動ヘッドライト制御システムに用いることができる。センシング領域103Bにおけるセンシング結果は、例えば、駐車支援、及び、サラウンドビューシステムに用いることができる。センシング領域103L及びセンシング領域103Rにおけるセンシング結果は、例えば、サラウンドビューシステムに用いることができる。 The sensing results in the sensing area 103F can be used, for example, for recognition of traffic lights and traffic signs, lane departure prevention support systems, and automatic headlight control systems. A sensing result in the sensing area 103B can be used for parking assistance and a surround view system, for example. Sensing results in the sensing area 103L and the sensing area 103R can be used, for example, in a surround view system.
 センシング領域104は、LiDAR53のセンシング領域の例を示している。センシング領域104は、車両1の前方において、センシング領域103Fより遠い位置までカバーしている。一方、センシング領域104は、センシング領域103Fより左右方向の範囲が狭くなっている。 The sensing area 104 shows an example of the sensing area of the LiDAR53. The sensing area 104 covers the front of the vehicle 1 to a position farther than the sensing area 103F. On the other hand, the sensing area 104 has a narrower lateral range than the sensing area 103F.
 センシング領域104におけるセンシング結果は、例えば、周辺車両等の物体検出に用いられる。 The sensing results in the sensing area 104 are used, for example, to detect objects such as surrounding vehicles.
 センシング領域105は、長距離用のレーダ52のセンシング領域の例を示している。センシング領域105は、車両1の前方において、センシング領域104より遠い位置までカバーしている。一方、センシング領域105は、センシング領域104より左右方向の範囲が狭くなっている。 A sensing area 105 shows an example of a sensing area of the long-range radar 52 . The sensing area 105 covers the front of the vehicle 1 to a position farther than the sensing area 104 . On the other hand, the sensing area 105 has a narrower lateral range than the sensing area 104 .
 センシング領域105におけるセンシング結果は、例えば、ACC(Adaptive Cruise Control)、緊急ブレーキ、衝突回避等に用いられる。 The sensing results in the sensing area 105 are used, for example, for ACC (Adaptive Cruise Control), emergency braking, and collision avoidance.
 なお、外部認識センサ25が含むカメラ51、レーダ52、LiDAR53、及び、超音波センサ54の各センサのセンシング領域は、図8以外に各種の構成をとってもよい。具体的には、超音波センサ54が車両1の側方もセンシングするようにしてもよいし、LiDAR53が車両1の後方をセンシングするようにしてもよい。また、各センサの設置位置は、上述した各例に限定されない。また、各センサの数は、1つでも良いし、複数であっても良い。 The sensing regions of the cameras 51, the radar 52, the LiDAR 53, and the ultrasonic sensors 54 included in the external recognition sensor 25 may have various configurations other than those shown in FIG. Specifically, the ultrasonic sensor 54 may also sense the sides of the vehicle 1 , and the LiDAR 53 may sense the rear of the vehicle 1 . Moreover, the installation position of each sensor is not limited to each example mentioned above. Also, the number of each sensor may be one or plural.
(2-2.その他)
 上記各実施形態において説明した各処理のうち、自動的に行われるものとして説明した処理の全部または一部を手動的に行うこともでき、あるいは、手動的に行われるものとして説明した処理の全部または一部を公知の方法で自動的に行うこともできる。この他、上記文書中や図面中で示した処理手順、具体的名称、各種のデータやパラメータを含む情報については、特記する場合を除いて任意に変更することができる。例えば、各図に示した各種情報は、図示した情報に限られない。
(2-2. Others)
Of the processes described in each of the above embodiments, all or part of the processes described as being performed automatically can be performed manually, or all of the processes described as being performed manually Alternatively, some can be done automatically by known methods. In addition, information including processing procedures, specific names, various data and parameters shown in the above documents and drawings can be arbitrarily changed unless otherwise specified. For example, the various information shown in each drawing is not limited to the illustrated information.
 また、図示した各装置の各構成要素は機能概念的なものであり、必ずしも物理的に図示の如く構成されていることを要しない。すなわち、各装置の分散・統合の具体的形態は図示のものに限られず、その全部または一部を、各種の負荷や使用状況などに応じて、任意の単位で機能的または物理的に分散・統合して構成することができる。 Also, each component of each device illustrated is functionally conceptual and does not necessarily need to be physically configured as illustrated. In other words, the specific form of distribution and integration of each device is not limited to the one shown in the figure, and all or part of them can be functionally or physically distributed and integrated in arbitrary units according to various loads and usage conditions. Can be integrated and configured.
 また、上述してきた各実施形態及び変形例は、処理内容を矛盾させない範囲で適宜組み合わせることが可能である。 In addition, the above-described embodiments and modifications can be appropriately combined within a range that does not contradict the processing content.
 また、実施形態では、移動体における物体検出に本開示の画像処理が適用される例を示したが、本開示の画像処理は、移動体における物体検出に限らず、その他の用途における各種タスク処理に利用されてもよい。 Further, in the embodiments, an example in which the image processing of the present disclosure is applied to object detection on a moving body has been described, but the image processing of the present disclosure is not limited to object detection on a moving body, and various task processing in other applications. may be used for
 また、本明細書に記載された効果はあくまで例示であって限定されるものでは無く、他の効果があってもよい。 In addition, the effects described in this specification are only examples and are not limited, and other effects may be provided.
(3.本開示に係る画像処理装置の効果)
 上述のように、本開示に係る画像処理装置(実施形態では画像処理装置100)は、取得部(実施形態では取得部131)と、特定部(実施形態では特定部133)とを備える。取得部は、レーザを用いたセンサであるLiDAR(Light Detection and Ranging)から、周囲の対象物を検出したことを示す点群データを取得する。特定部は、LiDARによるレーザの照射範囲を撮像範囲に含む画像上に点群データを重畳した場合に、LiDARの照射情報に基づいて、重畳した点群データのうち、実際には画像内の対象物に照射されていない点である偽透過点を特定する。
(3. Effect of the image processing device according to the present disclosure)
As described above, the image processing apparatus (the image processing apparatus 100 in the embodiment) according to the present disclosure includes the acquisition section (the acquisition section 131 in the embodiment) and the specifying section (the specifying section 133 in the embodiment). The acquisition unit acquires point cloud data indicating detection of surrounding objects from LiDAR (Light Detection and Ranging), which is a sensor using a laser. When the point cloud data is superimposed on the image including the irradiation range of the laser by LiDAR in the imaging range, the identifying unit determines, based on the irradiation information of the LiDAR, among the superimposed point cloud data, the target in the image actually. Identify false transmission points, which are points not illuminated on the object.
 このように、本開示に係る画像処理装置は、画像に重畳した点群データのうち、実際には画像内の対象物に照射されていない点である偽透過点を特定する。これにより、画像処理装置は、実際に対象物に照射された点のみを後段の処理に活用することができるので、センシングによって得られる点群データを適切に活用することができる。 In this way, the image processing apparatus according to the present disclosure identifies, among the point cloud data superimposed on the image, false transmission points, which are points that are not actually illuminated on the object in the image. As a result, the image processing apparatus can utilize only the points that are actually irradiated on the object for the subsequent processing, so that the point cloud data obtained by sensing can be appropriately utilized.
 また、画像処理装置は、特定した偽透過点を除去し、除去した偽透過点を除く点群データを重畳した画像を生成する生成部(実施形態では生成部134)をさらに備える。 The image processing apparatus further includes a generating unit (generating unit 134 in the embodiment) that removes the identified false transmission points and generates an image in which the point cloud data excluding the removed false transmission points is superimposed.
 このように、画像処理装置は、偽透過点を除去したのちの点群データを重畳した画像を生成する。これにより、画像処理装置は、かかる画像を検出処理や学習処理における正解データとして利用することができるので、後段において、より精度の高い処理を実行することができる。 In this way, the image processing device generates an image in which the point cloud data after removing the false transparent points are superimposed. As a result, the image processing apparatus can use the image as correct data in the detection process and the learning process, so that the process can be performed with higher accuracy in the subsequent stages.
 また、画像処理装置は、LiDARによるレーザの照射範囲を撮像範囲に含んだ画像を撮像する撮像部(実施形態では撮像部132)をさらに備える。特定部は、撮像部により撮像された画像上に点群データを重畳した場合に、LiDARの照射情報に基づいて、偽透過点を特定する。 In addition, the image processing apparatus further includes an imaging unit (the imaging unit 132 in the embodiment) that captures an image including the laser irradiation range of the LiDAR in the imaging range. The specifying unit specifies the false transmission point based on the irradiation information of the LiDAR when the point cloud data is superimposed on the image captured by the imaging unit.
 このように、画像処理装置は、自装置で撮像された画像を用いて偽透過点を特定してもよい。かかる構成により、画像処理装置は、自動運転中に撮像処理と偽透過点の特定処理とを実行するので、自動運転の支障となりうる偽透過点を除去しつつ、自動運転等のタスク処理を実行することができる。 In this way, the image processing device may identify the false transmission point using the image captured by its own device. With such a configuration, the image processing apparatus executes the imaging process and the false transmission point identification process during automatic driving, so task processing such as automatic driving is executed while eliminating false transmission points that may hinder automatic driving. can do.
 また、特定部は、照射情報として、レーザの照射における仰俯角情報および方位角情報に基づいて、偽透過点を特定する。 Further, the specifying unit specifies the false transmission point based on the elevation/depression angle information and the azimuth angle information in the laser irradiation as the irradiation information.
 このように、画像処理装置は、照射情報に含まれる仰俯角情報および方位角情報を利用することで、精度よく偽透過点を特定することができる。 In this way, the image processing apparatus can accurately identify the false transmission point by using the elevation/depression angle information and the azimuth angle information included in the irradiation information.
 また、特定部は、点群データのうち、略同一の方位角情報を有する2つの点群データを特定するとともに、2つの点群データに対応する仰俯角情報と、2つの点群データが画像上に投影された場合の縦軸座標の値とを比較することにより、偽透過点を特定する。 Further, the specifying unit specifies two point cloud data having substantially the same azimuth angle information among the point cloud data, and the elevation/depression angle information corresponding to the two point cloud data and the two point cloud data are included in the image. False transmission points are identified by comparing the value of the vertical axis coordinate when projected upward.
 また、特定部は、点群データのうち、略同一の仰俯角情報を有する2つの点群データを特定するとともに、2つの点群データに対応する方位角情報と、2つの点群データが画像上に投影された場合の横軸座標の値とを比較することにより、偽透過点を特定してもよい。 Further, the specifying unit specifies two point cloud data having substantially the same elevation/depression angle information among the point cloud data, and also specifies the azimuth angle information corresponding to the two point cloud data and the two point cloud data as an image. False transmission points may be identified by comparing the value of the abscissa when projected upward.
 このように、画像処理装置は、照射情報と画像上の座標とを比較し、照射情報と矛盾する座標か否かを判定するので、精度よく偽透過点を特定することができる。 In this way, the image processing apparatus compares the irradiation information with the coordinates on the image and determines whether the coordinates contradict the irradiation information, so that the false transmission point can be specified with high accuracy.
(4.ハードウェア構成)
 上述してきた本開示に係る画像処理装置100等の情報処理装置は、例えば図9に示すような構成のコンピュータ1000によって実現される。図9は、本開示に係る画像処理装置100の機能を実現するコンピュータ1000の一例を示すハードウェア構成図である。以下では、コンピュータ1000の一例として、実施形態に係る画像処理装置100を例に挙げて説明する。コンピュータ1000は、CPU1100、RAM1200、ROM(Read Only Memory)1300、HDD(Hard Disk Drive)1400、通信インターフェイス1500、及び入出力インターフェイス1600を有する。コンピュータ1000の各部は、バス1050によって接続される。
(4. Hardware configuration)
An information processing apparatus such as the image processing apparatus 100 according to the present disclosure described above is realized by a computer 1000 configured as shown in FIG. 9, for example. FIG. 9 is a hardware configuration diagram showing an example of a computer 1000 that implements the functions of the image processing apparatus 100 according to the present disclosure. The image processing apparatus 100 according to the embodiment will be described below as an example of the computer 1000 . The computer 1000 has a CPU 1100 , a RAM 1200 , a ROM (Read Only Memory) 1300 , a HDD (Hard Disk Drive) 1400 , a communication interface 1500 and an input/output interface 1600 . Each part of computer 1000 is connected by bus 1050 .
 CPU1100は、ROM1300又はHDD1400に格納されたプログラムに基づいて動作し、各部の制御を行う。例えば、CPU1100は、ROM1300又はHDD1400に格納されたプログラムをRAM1200に展開し、各種プログラムに対応した処理を実行する。 The CPU 1100 operates based on programs stored in the ROM 1300 or HDD 1400 and controls each section. For example, the CPU 1100 loads programs stored in the ROM 1300 or HDD 1400 into the RAM 1200 and executes processes corresponding to various programs.
 ROM1300は、コンピュータ1000の起動時にCPU1100によって実行されるBIOS(Basic Input Output System)等のブートプログラムや、コンピュータ1000のハードウェアに依存するプログラム等を格納する。 The ROM 1300 stores a boot program such as BIOS (Basic Input Output System) executed by the CPU 1100 when the computer 1000 is started, and programs dependent on the hardware of the computer 1000.
 HDD1400は、CPU1100によって実行されるプログラム、及び、かかるプログラムによって使用されるデータ等を非一時的に記録する、コンピュータが読み取り可能な記録媒体である。具体的には、HDD1400は、プログラムデータ1450の一例である本開示に係る画像処理プログラムを記録する記録媒体である。 The HDD 1400 is a computer-readable recording medium that non-temporarily records programs executed by the CPU 1100 and data used by such programs. Specifically, HDD 1400 is a recording medium that records an image processing program according to the present disclosure, which is an example of program data 1450 .
 通信インターフェイス1500は、コンピュータ1000が外部ネットワーク1550(例えばインターネット)と接続するためのインターフェイスである。例えば、CPU1100は、通信インターフェイス1500を介して、他の機器からデータを受信したり、CPU1100が生成したデータを他の機器へ送信したりする。 A communication interface 1500 is an interface for connecting the computer 1000 to an external network 1550 (for example, the Internet). For example, CPU 1100 receives data from another device via communication interface 1500, and transmits data generated by CPU 1100 to another device.
 入出力インターフェイス1600は、入出力デバイス1650とコンピュータ1000とを接続するためのインターフェイスである。例えば、CPU1100は、入出力インターフェイス1600を介して、キーボードやマウス等の入力デバイスからデータを受信する。また、CPU1100は、入出力インターフェイス1600を介して、ディスプレイやスピーカーやプリンタ等の出力デバイスにデータを送信する。また、入出力インターフェイス1600は、所定の記録媒体(メディア)に記録されたプログラム等を読み取るメディアインターフェイスとして機能してもよい。メディアとは、例えばDVD(Digital Versatile Disc)、PD(Phase change rewritable Disk)等の光学記録媒体、MO(Magneto-Optical disk)等の光磁気記録媒体、テープ媒体、磁気記録媒体、または半導体メモリ等である。 The input/output interface 1600 is an interface for connecting the input/output device 1650 and the computer 1000 . For example, the CPU 1100 receives data from input devices such as a keyboard and mouse via the input/output interface 1600 . The CPU 1100 also transmits data to an output device such as a display, speaker, or printer via the input/output interface 1600 . Also, the input/output interface 1600 may function as a media interface for reading a program or the like recorded on a predetermined recording medium. Media include, for example, optical recording media such as DVD (Digital Versatile Disc) and PD (Phase change rewritable disk), magneto-optical recording media such as MO (Magneto-Optical disk), tape media, magnetic recording media, semiconductor memories, etc. is.
 例えば、コンピュータ1000が実施形態に係る画像処理装置100として機能する場合、コンピュータ1000のCPU1100は、RAM1200上にロードされた画像処理プログラムを実行することにより、制御部130等の機能を実現する。また、HDD1400には、本開示に係る画像処理プログラムや、記憶部120内のデータが格納される。なお、CPU1100は、プログラムデータ1450をHDD1400から読み取って実行するが、他の例として、外部ネットワーク1550を介して、他の装置からこれらのプログラムを取得してもよい。 For example, when the computer 1000 functions as the image processing apparatus 100 according to the embodiment, the CPU 1100 of the computer 1000 implements the functions of the control unit 130 and the like by executing an image processing program loaded onto the RAM 1200. The HDD 1400 also stores an image processing program according to the present disclosure and data in the storage unit 120 . Although CPU 1100 reads and executes program data 1450 from HDD 1400 , as another example, these programs may be obtained from another device via external network 1550 .
 なお、本技術は以下のような構成も取ることができる。
(1)
 レーザを用いたセンサであるLiDAR(Light Detection and Ranging)から、周囲の対象物を検出したことを示す点群データを取得する取得部と、
 前記LiDARによるレーザの照射範囲を撮像範囲に含む画像上に前記点群データを重畳した場合に、前記LiDARの照射情報に基づいて、重畳した前記点群データのうち、実際には前記画像内の対象物に照射されていない点である偽透過点を特定する特定部と、
 を備える画像処理装置。
(2)
 前記特定した偽透過点を除去し、除去した偽透過点を除く前記点群データを重畳した前記画像を生成する生成部、
 をさらに備える前記(1)に記載の画像処理装置。
(3)
 前記LiDARによるレーザの照射範囲を撮像範囲に含んだ画像を撮像する撮像部、をさらに備え、
 前記特定部は、
 前記撮像部により撮像された画像上に前記点群データを重畳した場合に、前記LiDARの照射情報に基づいて、前記偽透過点を特定する、
 前記(1)または(2)に記載の画像処理装置。
(4)
 前記特定部は、
 前記照射情報として、前記レーザの照射における仰俯角情報および方位角情報に基づいて、前記偽透過点を特定する、
 前記(1)から(3)のいずれかに記載の画像処理装置。
(5)
 前記特定部は、
 前記点群データのうち、略同一の方位角情報を有する2つの点群データを特定するとともに、当該2つの点群データに対応する仰俯角情報と、当該2つの点群データが前記画像上に投影された場合の縦軸座標の値とを比較することにより、前記偽透過点を特定する、
 前記(4)に記載の画像処理装置。
(6)
 前記特定部は、
 前記点群データのうち、略同一の仰俯角情報を有する2つの点群データを特定するとともに、当該2つの点群データに対応する方位角情報と、当該2つの点群データが前記画像上に投影された場合の横軸座標の値とを比較することにより、前記偽透過点を特定する、
 前記(4)に記載の画像処理装置。
(7)
 コンピュータが、
 レーザを用いたセンサであるLiDAR(Light Detection and Ranging)から、周囲の対象物を検出したことを示す点群データを取得し、
 前記LiDARによるレーザの照射範囲を撮像範囲に含む画像上に前記点群データを重畳した場合に、前記LiDARの照射情報に基づいて、重畳した前記点群データのうち、実際には前記画像内の対象物に照射されていない点である偽透過点を特定する、
 ことを含む画像処理方法。
(8)
 コンピュータを、
 レーザを用いたセンサであるLiDAR(Light Detection and Ranging)から、周囲の対象物を検出したことを示す点群データを取得する取得部と、
 前記LiDARによるレーザの照射範囲を撮像範囲に含む画像上に前記点群データを重畳した場合に、前記LiDARの照射情報に基づいて、重畳した前記点群データのうち、実際には前記画像内の対象物に照射されていない点である偽透過点を特定する特定部と、
 を備える画像処理装置として機能させるための画像処理プログラム。
Note that the present technology can also take the following configuration.
(1)
An acquisition unit that acquires point cloud data indicating that a surrounding object has been detected from LiDAR (Light Detection and Ranging), which is a sensor using a laser;
When the point cloud data is superimposed on the image including the irradiation range of the laser by the LiDAR in the imaging range, based on the irradiation information of the LiDAR, out of the superimposed point cloud data, actually in the image a specifying unit that specifies a false transmission point that is a point that is not irradiated on the object;
An image processing device comprising:
(2)
a generating unit that removes the identified false transmission points and generates the image in which the point cloud data excluding the removed false transmission points is superimposed;
The image processing apparatus according to (1), further comprising:
(3)
An imaging unit that captures an image including the laser irradiation range of the LiDAR in the imaging range,
The identification unit
identifying the false transmission point based on the irradiation information of the LiDAR when the point cloud data is superimposed on the image captured by the imaging unit;
The image processing apparatus according to (1) or (2) above.
(4)
The identification unit
Identifying the false transmission point based on elevation/depression angle information and azimuth angle information in the irradiation of the laser as the irradiation information;
The image processing apparatus according to any one of (1) to (3) above.
(5)
The identification unit
Among the point cloud data, two point cloud data having substantially the same azimuth angle information are specified, and elevation/depression angle information corresponding to the two point cloud data and the two point cloud data are displayed on the image. Identifying the false transmission point by comparing the value of the vertical axis coordinate when projected;
The image processing device according to (4) above.
(6)
The identification unit
Among the point cloud data, two point cloud data having substantially the same elevation/depression angle information are specified, and azimuth angle information corresponding to the two point cloud data and the two point cloud data are displayed on the image. Identifying the false transmission point by comparing the value of the abscissa coordinate when projected;
The image processing device according to (4) above.
(7)
the computer
From LiDAR (Light Detection and Ranging), which is a sensor using a laser, acquire point cloud data indicating that the surrounding objects have been detected,
When the point cloud data is superimposed on the image including the irradiation range of the laser by the LiDAR in the imaging range, based on the irradiation information of the LiDAR, out of the superimposed point cloud data, actually in the image identifying false transmission points, which are points not illuminated on the object;
An image processing method comprising:
(8)
the computer,
An acquisition unit that acquires point cloud data indicating that a surrounding object has been detected from LiDAR (Light Detection and Ranging), which is a sensor using a laser;
When the point cloud data is superimposed on the image including the irradiation range of the laser by the LiDAR in the imaging range, based on the irradiation information of the LiDAR, out of the superimposed point cloud data, actually in the image a specifying unit that specifies a false transmission point that is a point that is not irradiated on the object;
An image processing program for functioning as an image processing device comprising:
 1   車両
 100 画像処理装置
 110 通信部
 120 記憶部
 130 制御部
 131 取得部
 132 撮像部
 133 特定部
 134 生成部
 140 検知部
 150 LiDAR
 160 カメラ
1 vehicle 100 image processing device 110 communication unit 120 storage unit 130 control unit 131 acquisition unit 132 imaging unit 133 identification unit 134 generation unit 140 detection unit 150 LiDAR
160 camera

Claims (8)

  1.  レーザを用いたセンサであるLiDAR(Light Detection and Ranging)から、周囲の対象物を検出したことを示す点群データを取得する取得部と、
     前記LiDARによるレーザの照射範囲を撮像範囲に含む画像上に前記点群データを重畳した場合に、前記LiDARの照射情報に基づいて、重畳した前記点群データのうち、実際には前記画像内の対象物に照射されていない点である偽透過点を特定する特定部と、
     を備える画像処理装置。
    An acquisition unit that acquires point cloud data indicating that a surrounding object has been detected from LiDAR (Light Detection and Ranging), which is a sensor using a laser;
    When the point cloud data is superimposed on the image including the irradiation range of the laser by the LiDAR in the imaging range, based on the irradiation information of the LiDAR, out of the superimposed point cloud data, actually in the image a specifying unit that specifies a false transmission point that is a point that is not irradiated on the object;
    An image processing device comprising:
  2.  前記特定した偽透過点を除去し、除去した偽透過点を除く前記点群データを重畳した前記画像を生成する生成部、
     をさらに備える請求項1に記載の画像処理装置。
    a generating unit that removes the identified false transmission points and generates the image in which the point cloud data excluding the removed false transmission points is superimposed;
    The image processing apparatus according to claim 1, further comprising:
  3.  前記LiDARによるレーザの照射範囲を撮像範囲に含んだ画像を撮像する撮像部、をさらに備え、
     前記特定部は、
     前記撮像部により撮像された画像上に前記点群データを重畳した場合に、前記LiDARの照射情報に基づいて、前記偽透過点を特定する、
     請求項1に記載の画像処理装置。
    An imaging unit that captures an image including the laser irradiation range of the LiDAR in the imaging range,
    The identification unit
    identifying the false transmission point based on the irradiation information of the LiDAR when the point cloud data is superimposed on the image captured by the imaging unit;
    The image processing apparatus according to claim 1.
  4.  前記特定部は、
     前記照射情報として、前記レーザの照射における仰俯角情報および方位角情報に基づいて、前記偽透過点を特定する、
     請求項1に記載の画像処理装置。
    The identification unit
    Identifying the false transmission point based on elevation/depression angle information and azimuth angle information in the irradiation of the laser as the irradiation information;
    The image processing apparatus according to claim 1.
  5.  前記特定部は、
     前記点群データのうち、略同一の方位角情報を有する2つの点群データを特定するとともに、当該2つの点群データに対応する仰俯角情報と、当該2つの点群データが前記画像上に投影された場合の縦軸座標の値とを比較することにより、前記偽透過点を特定する、
     請求項4に記載の画像処理装置。
    The identification unit
    Among the point cloud data, two point cloud data having substantially the same azimuth angle information are specified, and elevation/depression angle information corresponding to the two point cloud data and the two point cloud data are displayed on the image. Identifying the false transmission point by comparing the value of the vertical axis coordinate when projected;
    The image processing apparatus according to claim 4.
  6.  前記特定部は、
     前記点群データのうち、略同一の仰俯角情報を有する2つの点群データを特定するとともに、当該2つの点群データに対応する方位角情報と、当該2つの点群データが前記画像上に投影された場合の横軸座標の値とを比較することにより、前記偽透過点を特定する、
     請求項4に記載の画像処理装置。
    The identification unit
    Among the point cloud data, two point cloud data having substantially the same elevation/depression angle information are specified, and azimuth angle information corresponding to the two point cloud data and the two point cloud data are displayed on the image. Identifying the false transmission point by comparing the value of the abscissa coordinate when projected;
    The image processing apparatus according to claim 4.
  7.  コンピュータが、
     レーザを用いたセンサであるLiDAR(Light Detection and Ranging)から、周囲の対象物を検出したことを示す点群データを取得し、
     前記LiDARによるレーザの照射範囲を撮像範囲に含む画像上に前記点群データを重畳した場合に、前記LiDARの照射情報に基づいて、重畳した前記点群データのうち、実際には前記画像内の対象物に照射されていない点である偽透過点を特定する、
     ことを含む画像処理方法。
    the computer
    From LiDAR (Light Detection and Ranging), which is a sensor using a laser, acquire point cloud data indicating that the surrounding objects have been detected,
    When the point cloud data is superimposed on the image including the irradiation range of the laser by the LiDAR in the imaging range, based on the irradiation information of the LiDAR, out of the superimposed point cloud data, actually in the image identifying false transmission points, which are points not illuminated on the object;
    An image processing method comprising:
  8.  コンピュータを、
     レーザを用いたセンサであるLiDAR(Light Detection and Ranging)から、周囲の対象物を検出したことを示す点群データを取得する取得部と、
     前記LiDARによるレーザの照射範囲を撮像範囲に含む画像上に前記点群データを重畳した場合に、前記LiDARの照射情報に基づいて、重畳した前記点群データのうち、実際には前記画像内の対象物に照射されていない点である偽透過点を特定する特定部と、
     を備える画像処理装置として機能させるための画像処理プログラム。
    the computer,
    An acquisition unit that acquires point cloud data indicating that a surrounding object has been detected from LiDAR (Light Detection and Ranging), which is a sensor using a laser;
    When the point cloud data is superimposed on the image including the irradiation range of the laser by the LiDAR in the imaging range, based on the irradiation information of the LiDAR, out of the superimposed point cloud data, actually in the image a specifying unit that specifies a false transmission point that is a point that is not irradiated on the object;
    An image processing program for functioning as an image processing device comprising:
PCT/JP2023/000707 2022-02-22 2023-01-13 Image-processing device, image-processing method, and image-processing program WO2023162497A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-025916 2022-02-22
JP2022025916 2022-02-22

Publications (1)

Publication Number Publication Date
WO2023162497A1 true WO2023162497A1 (en) 2023-08-31

Family

ID=87765399

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/000707 WO2023162497A1 (en) 2022-02-22 2023-01-13 Image-processing device, image-processing method, and image-processing program

Country Status (1)

Country Link
WO (1) WO2023162497A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11218410A (en) * 1998-02-02 1999-08-10 Matsushita Electric Ind Co Ltd Range finder device and image transmission device
JP2004259114A (en) * 2003-02-27 2004-09-16 Seiko Epson Corp Object identification method, object identification device, and object identification program
JP2020061114A (en) * 2018-10-09 2020-04-16 財團法人工業技術研究院Industrial Technology Research Institute Depth estimation device, self-driving vehicle using depth estimation device, and depth estimation method used for self-driving vehicle
US20210158079A1 (en) * 2019-11-22 2021-05-27 Samsung Electronics Co., Ltd. System and method for joint image and lidar annotation and calibration

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11218410A (en) * 1998-02-02 1999-08-10 Matsushita Electric Ind Co Ltd Range finder device and image transmission device
JP2004259114A (en) * 2003-02-27 2004-09-16 Seiko Epson Corp Object identification method, object identification device, and object identification program
JP2020061114A (en) * 2018-10-09 2020-04-16 財團法人工業技術研究院Industrial Technology Research Institute Depth estimation device, self-driving vehicle using depth estimation device, and depth estimation method used for self-driving vehicle
US20210158079A1 (en) * 2019-11-22 2021-05-27 Samsung Electronics Co., Ltd. System and method for joint image and lidar annotation and calibration

Similar Documents

Publication Publication Date Title
US20200409387A1 (en) Image processing apparatus, image processing method, and program
WO2020116195A1 (en) Information processing device, information processing method, program, mobile body control device, and mobile body
US20210027486A1 (en) Controller, control method, and program
WO2021241189A1 (en) Information processing device, information processing method, and program
WO2022138123A1 (en) Available parking space identification device, available parking space identification method, and program
US20220383749A1 (en) Signal processing device, signal processing method, program, and mobile device
WO2023153083A1 (en) Information processing device, information processing method, information processing program, and moving device
WO2022158185A1 (en) Information processing device, information processing method, program, and moving device
US20230245423A1 (en) Information processing apparatus, information processing method, and program
JP2023062484A (en) Information processing device, information processing method, and information processing program
WO2023162497A1 (en) Image-processing device, image-processing method, and image-processing program
WO2023149089A1 (en) Learning device, learning method, and learning program
WO2024024471A1 (en) Information processing device, information processing method, and information processing system
WO2023063145A1 (en) Information processing device, information processing method, and information processing program
WO2022019117A1 (en) Information processing device, information processing method, and program
WO2023068116A1 (en) On-vehicle communication device, terminal device, communication method, information processing method, and communication system
WO2023145460A1 (en) Vibration detection system and vibration detection method
WO2023007785A1 (en) Information processing device, information processing method, and program
US20230206596A1 (en) Information processing device, information processing method, and program
WO2023090001A1 (en) Information processing device, information processing method, and program
WO2023058342A1 (en) Information processing device, information processing method, and program
WO2022024569A1 (en) Information processing device, information processing method, and program
WO2022201892A1 (en) Information processing apparatus, information processing method, and program
WO2023054090A1 (en) Recognition processing device, recognition processing method, and recognition processing system
WO2024009829A1 (en) Information processing device, information processing method, and vehicle control system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23759503

Country of ref document: EP

Kind code of ref document: A1