WO2022075026A1 - Rectangular steel pipe and production method therefor, and building structure - Google Patents

Rectangular steel pipe and production method therefor, and building structure Download PDF

Info

Publication number
WO2022075026A1
WO2022075026A1 PCT/JP2021/034008 JP2021034008W WO2022075026A1 WO 2022075026 A1 WO2022075026 A1 WO 2022075026A1 JP 2021034008 W JP2021034008 W JP 2021034008W WO 2022075026 A1 WO2022075026 A1 WO 2022075026A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel pipe
square
less
flat plate
square steel
Prior art date
Application number
PCT/JP2021/034008
Other languages
French (fr)
Japanese (ja)
Inventor
晃英 松本
稜 仲澤
昌士 松本
信介 井手
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to CN202180066462.1A priority Critical patent/CN116323065A/en
Priority to KR1020237010699A priority patent/KR20230059820A/en
Priority to JP2021575382A priority patent/JP7306494B2/en
Publication of WO2022075026A1 publication Critical patent/WO2022075026A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C37/00Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape
    • B21C37/06Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape of tubes or metal hoses; Combined procedures for making tubes, e.g. for making multi-wall tubes
    • B21C37/15Making tubes of special shape; Making tube fittings
    • B21C37/155Making tubes with non circular section
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C37/00Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape
    • B21C37/06Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape of tubes or metal hoses; Combined procedures for making tubes, e.g. for making multi-wall tubes
    • B21C37/15Making tubes of special shape; Making tube fittings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K13/00Welding by high-frequency current heating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K13/00Welding by high-frequency current heating
    • B23K13/04Welding by high-frequency current heating by conduction heating
    • B23K13/043Seam welding
    • B23K13/046Seam welding for tubes
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/18Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons
    • E04B1/24Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons the supporting parts consisting of metal
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite

Definitions

  • the present invention relates to a square steel pipe and a method for manufacturing the same, which are particularly preferably used for a medium-rise building having a height of more than 20 m and a building member of a large building such as a factory or a warehouse. Further, the present invention relates to a building structure using the square steel pipe of the present invention as a column material.
  • a square steel pipe having corners and flat plates used for columns is greatly deformed especially on the outer surface of the corners when it receives a large external force such as seismic force. Therefore, the square steel pipe needs to sufficiently enhance the ductility and toughness of the outer surface of the corner portion.
  • Cold roll-formed square steel pipe is a square steel pipe widely used as a pillar material for buildings. This is done by using rolls arranged on the top, bottom, left, and right of the electric pipe after the steel strip is made into a cylindrical open pipe by cold roll forming and the butt portion of the open pipe is electric-sewn to make an electric-sewn steel pipe. , It is manufactured by drawing a pipe in the axial direction of the electric pipe while keeping it cylindrical, and then forming it into a square shape. In the above-mentioned electric sewing welding, the butt portion is heated and melted, and is pressure-welded and solidified to complete the joining.
  • the square steel pipe used for the pillar material should have a small radius of curvature at the corner of the square steel pipe from the viewpoint of workability at the construction site and the design of the building. This is because the larger the area of the flat plate portion of the column material, the larger the area where the column material and the beam material can be joined, and the more flexible the architectural design becomes possible.
  • the larger the ratio of the average wall thickness t to the average side length H that is, t / H
  • the amount of work hardening increases.
  • the smaller the radius of curvature of the corner portion the larger the circumferential bending strain required for forming the corner portion, and the larger the amount of work hardening of the corner portion. Therefore, in the roll-formed square steel pipe having a large ratio (t / H) of the average wall thickness t to the average side length H and a small radius of curvature of the corners, the ductility and toughness of the corners are particularly low, which is sufficient. It was difficult to ensure seismic performance.
  • the above-mentioned “average wall thickness t” is an average value of the wall thickness (mm) at the center position in the pipe circumferential direction of the three flat plate portions excluding the flat plate portion including the welded portion (electrically sewn welded portion). ..
  • the above-mentioned “average side length H” is an average value of the side lengths of two flat plate portions adjacent to each other with a corner portion sandwiched between them.
  • Patent Document 1 a steel plate to which vanadium is added as a chemical component is bent and then welded to form a semi-formed square steel pipe, and this semi-formed square steel pipe is heated to the vicinity of the A3 transformation point and hot - formed. Later, a square steel pipe obtained by cooling has been proposed. It is disclosed that this square steel pipe improves the yield strength and toughness and forms the shape of the corner portion sharply.
  • Patent Document 2 proposes a square steel pipe in which a cold-formed portion is heat-treated. It is disclosed that this square steel pipe has improved the mechanical properties and weldability of the cold formed portion.
  • Patent Document 3 describes a square steel tube with improved toughness and plastic deformability of the corners by appropriately controlling the chemical composition of the material steel sheet, the bainite fraction of the metal structure, and the Vickers hardness of the surface layer of the corners. Has been proposed.
  • Patent Document 4 proposes a square steel pipe having improved toughness at the corners by appropriately controlling the chemical composition of the raw steel sheet and the average crystal grain size of the hard phase of the metal structure and ferrite.
  • Patent Document 5 and Patent Document 6 propose techniques for improving shape characteristics by adjusting manufacturing conditions during roll molding.
  • Patent Document 5 when a steel pipe is formed into a square pipe with a three-stage or four-stage square forming roll and the reduction rate of the final stage roll is constant, the wall thickness / outer diameter ratio of the steel pipe is large. As a result, a method for forming a square steel pipe in which the roll caliber in the final stage is made smaller (from a convex shape to a concave shape) has been proposed.
  • a method for manufacturing a structural square tube has been proposed, which undergoes a molding step of the second and subsequent stages for forming the raw tube formed in the above into a target shape.
  • Japanese Unexamined Patent Publication No. 2004-330222 Japanese Unexamined Patent Publication No. 10-60580
  • Japanese Patent No. 5385760 Japanese Unexamined Patent Publication No. 2018-53281 Japanese Unexamined Patent Publication No. 4-224023 Japanese Patent No. 3197661
  • Patent Document 1 and Patent Document 2 require a heating step at the time of forming or after forming, the cost is very high as compared with the roll-formed square steel pipe formed cold. Therefore, it is required to establish a technique for obtaining a desired square steel pipe without requiring a heating step at the time of forming or after forming.
  • the present invention has been made in view of the above circumstances, and provides a square steel pipe having excellent shape characteristics, ductility and toughness of the outer surface of a corner portion, and a method for manufacturing the square steel pipe, and a building structure having excellent seismic performance.
  • the purpose is to provide things.
  • excellent in shape characteristics in the present invention refers to a square steel pipe having a small radius of curvature at the corner and a flat flat plate.
  • small radius of curvature of the corner means that the radius of curvature R outside the corner is controlled within a predetermined range, specifically, the average wall thickness of the flat plate is t (mm). When this is done, it means that the radius of curvature R on the outside of the corner is 2.0t or more and 3.0t or less.
  • flat plate portion means that the flatness of the outer surface of the flat plate portion in the pipe axis direction is 2.5 mm or less, specifically, in the cross section of the surface perpendicular to the pipe axis direction, the flat plate is used. It means that the maximum absolute value represented by the maximum bulge amount and the maximum dent amount with respect to a straight line passing through two points at both ends in the circumferential direction on the same side of the outer surface of the portion is 2.5 mm or less (FIG. 10 described later). reference).
  • excellent in ductility of the outer surface of the corner portion in the present invention means that when the average wall thickness of the flat plate portion and the corner portion is t, uniform elongation at the 1/4 t position from the outer surface of the corner portion in the wall thickness direction. It means that E2 is 0.60 times or more the uniform elongation E1 at the 1 / 4t position in the wall thickness direction from the outer surface of the flat plate portion.
  • excellent in toughness of the outer surface of the corner portion in the present invention means that the Charpy absorption energy of the corner portion at ⁇ 10 ° C. at a position 1 / 4t in the wall thickness direction from the outer surface of the corner portion is 100J or more. Point to.
  • the radius of curvature, flatness, uniform elongation and toughness described above can be measured by the methods described in Examples described later.
  • the present inventors have made diligent studies to solve the above problems.
  • the radius of curvature of the corner is controlled by controlling the circumference of the square steel pipe on the exit side of the square forming stand and the circumference of the electrosewn steel pipe on the entrance side of the square forming stand within an appropriate range. It has been found that a square steel pipe having a small size, a flat flat plate portion, and excellent extensibility and toughness on the outer surface of the corner portion can be manufactured.
  • a square steel pipe having a flat plate portion and a corner portion.
  • the radius of curvature R on the outside of the corner portion is 2.0 t or more and 3.0 t or less when the average wall thickness of the flat plate portion is t (mm).
  • the flatness of the outer surface of the flat plate portion is 2.5 mm or less.
  • the uniform elongation E2 at the position of 1 / 4t in the wall thickness direction from the outer surface of the corner portion is 0.60 times or more the uniform elongation E1 at the position of 1 / 4t in the wall thickness direction from the outer surface of the flat plate portion.
  • the yield strength of the flat plate portion is 295 MPa or more, and the yield strength is 295 MPa or more.
  • the tensile strength of the flat plate portion is 400 MPa or more, and the plate portion has a tensile strength of 400 MPa or more.
  • the square steel pipe according to any one of [1] to [3], wherein the yield ratio of the corner portion is 90% or less. [5]
  • the composition of the square steel pipe is mass%. C: 0.020 to 0.45%, Si: 0.01-1.0%, Mn: 0.30 to 3.0%, P: 0.10% or less, S: 0.050% or less, Al: 0.005 to 0.10%, N: 0.010% or less, Ti: contains 0.001 to 0.15%, the balance consists of Fe and unavoidable impurities.
  • the steel structure at the center of the wall thickness of the flat plate portion is
  • the total volume fraction of ferrite and bainite is 70% or more and 95% or less with respect to the entire steel structure at the center of the thickness of the flat plate, and the balance is one or more selected from pearlite, martensite, and austenite. Consists of When a region surrounded by a boundary with an orientation difference of 15 ° or more between adjacent crystals is used as a crystal grain.
  • the average crystal grain size of the crystal grains is 15.0 ⁇ m or less, and the average crystal grain size is 15.0 ⁇ m or less.
  • Equation (2) W: Plate width (mm) of the steel plate that is the material
  • C IN Perimeter (mm) of the electric resistance sewn steel pipe on the entrance side of the first stage square forming stand
  • C OUT Perimeter (mm) of the square steel pipe on the exit side of the square forming stand in the final stage
  • t Average wall thickness (mm) of the flat plate portion after square forming
  • H Average side length (mm) of the flat plate portion after square forming
  • the present invention it is possible to provide a square steel pipe having excellent shape characteristics and excellent ductility and toughness on the outer surface of the corner portion, a method for manufacturing the square steel pipe, and a building structure.
  • FIG. 1 is a schematic view showing a cross section perpendicular to the pipe axis direction of the square steel pipe of the present invention.
  • FIG. 2 is a schematic view showing a pipe making process of an electrosewn steel pipe in the present invention.
  • FIG. 3 is a schematic view showing a forming process of the square steel pipe of the present invention.
  • FIG. 4 is a schematic view illustrating a melt-solidified portion in a welded portion of an electrosewn steel pipe.
  • FIG. 5 is a schematic view showing an example of the building structure of the present invention.
  • FIG. 6 is a schematic view showing the sampling positions of the tensile test pieces of the flat plate portion and the corner portion carried out in the present invention.
  • FIG. 1 is a schematic view showing a cross section perpendicular to the pipe axis direction of the square steel pipe of the present invention.
  • FIG. 2 is a schematic view showing a pipe making process of an electrosewn steel pipe in the present invention.
  • FIG. 7 is a schematic view showing a detailed sampling position of the tensile test piece at the corner portion carried out in the present invention.
  • FIG. 8 is a schematic view showing the collection position of the Charpy test piece at the corner portion carried out in the present invention.
  • FIG. 9 is a schematic view showing a detailed collection position of the Charpy impact test piece at the corner portion carried out in the present invention.
  • FIG. 10 is a schematic view illustrating the method for measuring flatness carried out in the present invention.
  • the present invention is a square steel pipe having a flat plate portion and a corner portion, and the radius of curvature R outside the corner portion is 2.0 t or more and 3.0 t or less when the average wall thickness of the flat plate portion is t (mm).
  • the flatness of the outer surface of the flat plate portion in the pipe axis direction is 2.5 mm or less, and the uniform elongation E2 at the 1/4 t position in the wall thickness direction from the outer surface of the corner portion is from the outer surface of the flat plate portion in the wall thickness direction. It is 0.60 times or more with respect to the uniform elongation E1 at the 1 / 4t position, and the charmy absorption energy at ⁇ 10 ° C. at the 1 / 4t position in the wall thickness direction from the outer surface of the corner portion is 100J or more.
  • FIG. 1 shows a cross section perpendicular to the pipe axis direction of the square steel pipe 10 of the present invention.
  • a plurality of flat plate portions 11 and square portions 12 are alternately formed in the circumferential direction of the pipe.
  • four square portions 12 and four flat plate portions 11 are formed in order in the circumferential direction of the pipe.
  • the square steel pipe 10 is a rectangle (substantially rectangular) or a square (substantially square) in a cross-sectional view perpendicular to the pipe axis direction.
  • H 1 and H 2 when the side lengths of two flat plate portions 11 adjacent to each other across the corner portion 12 are H 1 and H 2 , H 1 > H 2 , that is, facing the welded portion (electrically sewn welded portion) 13 described later.
  • the side length H 2 of the flat plate portion to be welded is shorter than the side length H 1 of the flat plate portion 11 adjacent thereto.
  • the square steel pipe 10 is manufactured by using an electrosewn steel pipe as a raw pipe and forming the raw pipe into a roll-formed square steel pipe. Therefore, the square steel pipe 10 is formed on the flat plate portion 11 and has an electric resistance welded portion 13 extending in the pipe axis direction. Although not shown, the width of the melt-solidified portion of the electric stitch welded portion 13 in the tube circumferential direction is 1.0 ⁇ m or more and 1000 ⁇ m or less over the entire thickness of the pipe.
  • the radius of curvature R on the outside of the corner portion is 2.0 t or more and 3.0 t or less when the average wall thickness of the flat plate portion is t (mm).
  • the average wall thickness t is a value calculated by the formula (3) described later.
  • the radius of curvature R on the outside of the corner is less than 2.0t, the circumferential bending strain of the corner when forming the steel strip becomes large. As a result, the ductility and toughness desired in the present invention cannot be obtained at the corners.
  • the radius of curvature R on the outside of the corner portion exceeds 3.0 t, the amount of circumferential bending back strain (and the amount of circumferential bending strain of the corner portion) of the flat plate portion in the square forming stand becomes small. As a result, the flatness desired in the present invention cannot be obtained in the flat plate portion.
  • the radius of curvature R described above is preferably 2.2 t or more, and preferably 2.9 t or less.
  • the radius of curvature at a plurality of locations when the radius of curvature at a plurality of locations is measured and the maximum and minimum values thereof are within the above range, the radius of curvature R outside the corner portion is small. Evaluate as. The reason for this evaluation is that the R of the corners of the square steel pipe acts independently on the seismic resistance and workability, not as the average value of the four points, but as the individual values.
  • the radius of curvature R on the outside of the corner portion is a straight line (extension line) extended from the outer surface of the flat plate portions 11 on both sides adjacent to the corner portion 12 (the corner portion on the upper right side in the example of FIG. 1). ) The radius of curvature at the intersection B of the straight line L passing through the intersection P of L1 and L2 and forming an angle of 45 ° with the extension line L1 or L2 and the curve outside the corner 12.
  • the measurement of the radius of curvature R consists of the connection points (points A and A'in FIG. 1) between the extension lines L1 and L2 and the flat plate portion 11, the corner portion 12, and the outer surface of the corner portion 12, and the center is a straight line L.
  • this is performed within a range of a central angle of 65 ° centered on the intersection B of the straight line L and the outer surface of the corner portion 12.
  • a method for measuring the radius of curvature for example, a method of measuring the radius of curvature from a radial gauge that matches well with the outer surface of the corner portion 12 in the above-mentioned range of a central angle of 65 ° can be mentioned, but measurement other than this method is also possible. Is.
  • the flatness of the outer surface of the flat plate portion 11 in the pipe axis direction is 2.5 mm or less.
  • the flatness is the maximum bulge amount and maximum dent amount with respect to a straight line passing through two points in the circumferential direction on the same side of the outer surface of the flat plate portion in the cross section of the surface perpendicular to the pipe axis direction. It is a value obtained by measuring. In the present invention, the flatness was determined by the method described in Examples described later.
  • the flatness exceeds 2.5 mm, the buckling resistance of the square steel pipe during bending deformation will decrease. As a result, the seismic resistance of the square steel pipe is reduced. In addition, since the joint surface with the beam material is greatly curved, welding joint becomes difficult. As a result, workability is reduced. The smaller the value, the better the flatness. It is not necessary to specify the lower limit of flatness, but 0.6 mm is acceptable as the lower limit of flatness.
  • the lower limit of flatness is preferably 0.2 mm, more preferably 0 mm. It is preferably 2.0 mm or less, and more preferably 1.5 mm or less.
  • the uniform elongation E2 at the 1 / 4t position in the wall thickness direction from the outer surface of the corner portion is 0 with respect to the uniform elongation E1 at the 1 / 4t position in the wall thickness direction from the outer surface of the flat plate portion. .60 times or more.
  • the outer surface of the square steel pipe is greatly deformed especially when it receives a large external force such as seismic force. Therefore, the square steel pipe needs to sufficiently enhance the ductility and toughness of the outer surface of the corner portion.
  • the value of uniform elongation E2 (value of E2 / E1) at the 1 / 4t position from the outer surface of the corner portion in the wall thickness direction is 0.60 with respect to the uniform elongation E1 at the 1 / 4t position in the wall thickness direction from the outer surface of the flat plate portion. If it is less than, the ductility on the outer surface side of the corner becomes small. As a result, the seismic resistance of the square steel pipe is reduced.
  • the value of E2 / E1 is preferably 0.70 or more, more preferably 0.80 or more, and further preferably 0.82 or more.
  • the upper limit of the value of E2 / E1 is not particularly specified, but the corner portion is 1.00 or less because the work hardening amount at the time of roll forming is larger and the uniform elongation is smaller than that of the flat plate portion.
  • the square steel pipe 10 of the present invention has a Charpy absorption energy of 100 J or more at ⁇ 10 ° C. at a position 1 / 4t in the wall thickness direction from the outer surface of the corner portion 12. If the Charpy absorption energy is less than 100 J, there is a high risk of brittle fracture without plastic deformation when a large external force such as an earthquake force is applied.
  • the Charpy absorption energy is preferably 150 J or more, and more preferably 200 J or more.
  • the square steel pipe 10 of the present invention preferably has the following configuration in addition to the above configuration.
  • the average wall thickness of the flat plate portion of the square steel pipe 10 is t (mm) and the average side length of the flat plate portion is H (mm)
  • the average wall thickness t is more than 0.030 times the average side length H. Is preferable.
  • the ratio (t / H) is preferably more than 0.030. It is more preferably 0.035 or more, still more preferably 0.040 or more.
  • the upper limit of the above ratio (t / H) is preferably 0.10. More preferably, it is 0.080 or less.
  • the average wall thickness t (mm) is obtained by the following formula (3).
  • t (t 1 + t 2 + t 3 ) / 3 ... Equation (3)
  • t 1 , t 2 meat at the center position in the pipe circumferential direction of two flat plate portions 11 adjacent to the flat plate portion 11 including the welded portion (electrically sewn welded portion) 13 with the corner portion 12 sandwiched between them.
  • Thickness (mm) t 3 : The wall thickness (mm) at the center position in the pipe circumferential direction of the flat plate portion facing the flat plate portion including the welded portion (electrically sewn welded portion). That is, the average wall thickness t is the average value of the wall thickness at the center position with respect to the pipe circumferential direction in the three flat plate portions excluding the flat plate portion including the welded portion (see FIG. 1).
  • the average side length H (mm) is calculated by the following equation (4).
  • H (H 1 + H 2 ) / 2 ... Equation (4)
  • H 1 the side length of the cross section perpendicular to the pipe axis direction of any flat plate portion (vertical side length in FIG. 1) (mm)
  • H 2 the side length is H 1 .
  • H the side length (horizontal side length in FIG. 1) (mm) of the flat plate portion adjacent to the flat plate portion with the corner portion interposed therebetween.
  • the average side length H is the average value of the side lengths of the cross sections perpendicular to the pipe axis direction in the two flat plate portions 11 adjacent to each other with the corner portion interposed therebetween.
  • the square steel pipe 10 of the present invention has an average wall thickness t of 20 mm or more, particularly from the viewpoint that it can be suitably used for a medium-rise building having a height of more than 20 m and a building member of a large building such as a factory or a warehouse. It is preferably 40 mm or less.
  • the yield strength of the flat plate portion 11 is preferably 295 MPa or more, and the tensile strength of the flat plate portion 11 is preferably 400 MPa or more, depending on the seismic resistance. It is preferable that the yield ratio of the corner portion 12 is 90% or less because it is more excellent.
  • the yield strength of the flat plate portion 11 is 320 MPa or more, the tensile strength of the flat plate portion 11 is 410 MPa or more, and the yield ratio of the corner portion 12 is 89.5% or less. Further, preferably, the yield strength of the flat plate portion 11 is 500 MPa or less, the tensile strength of the flat plate portion 11 is 600 MPa or less, and the yield ratio of the corner portion 12 is 80.0% or more.
  • the above-mentioned yield strength, tensile strength, and yield ratio can be obtained by carrying out a tensile test in accordance with the provisions of JIS Z 2241 as described in Examples described later.
  • Charpy absorption energy can be obtained by conducting a Charpy impact test at a test temperature of -10 ° C using a V-notch standard test piece in accordance with JIS Z 2242, as described in Examples described later. ..
  • the square steel pipe 10 of the present invention has a mass% of C: 0.020 to 0.45%, Si: 0.01 to 1.0%, Mn: 0.30 to 3.0%, P: 0.10. % Or less, S: 0.050% or less, Al: 0.005 to 0.10%, N: 0.010% or less, Ti: 0.001 to 0.15%, and the balance is Fe and unavoidable. It is preferable to have a component composition composed of impurities. In the present specification, unless otherwise specified, "%" indicating the steel composition is "mass%". The following composition is the composition of the flat plate portion and the corner portion excluding the welded portion of the square steel pipe.
  • C 0.020 to 0.45%
  • C is an element that increases the strength of steel by solid solution strengthening. Further, C is an element that contributes to the miniaturization of the structure by lowering the ferrite transformation start temperature. In order to obtain such an effect, it contains 0.020% or more of C.
  • C is an element that promotes the formation of pearlite, enhances hardenability, contributes to the formation of martensite, and contributes to the stabilization of austenite, and thus contributes to the formation of a hard phase.
  • the C content exceeds 0.45%, the proportion of the hard phase becomes high, the toughness decreases, and the weldability also deteriorates. Therefore, the C content is set to 0.020 to 0.45%.
  • the C content is preferably 0.040% or more, more preferably 0.050% or more.
  • the C content is preferably 0.40% or less, more preferably 0.30% or less.
  • Si 0.01-1.0%
  • Si is an element that increases the strength of steel by solid solution strengthening. In order to obtain such an effect, it contains 0.01% or more of Si. However, when the Si content exceeds 1.0%, oxides are likely to be generated in the electrosewn welded portion, and the characteristics of the welded portion deteriorate. In addition, the yield ratio of the base metal portion other than the electric stitch welded portion becomes high, and the toughness decreases. Therefore, the Si content is set to 0.01 to 1.0%.
  • the Si content is preferably 0.02% or more, more preferably 0.05% or more.
  • the Si content is preferably 0.50% or less, more preferably 0.40% or less.
  • Mn 0.30 to 3.0%
  • Mn is an element that increases the strength of steel by solid solution strengthening.
  • Mn is an element that contributes to the miniaturization of the structure by lowering the ferrite transformation start temperature. In order to obtain such an effect, Mn of 0.30% or more is contained.
  • the Mn content is set to 0.30 to 3.0%.
  • the Mn content is preferably 0.40% or more, more preferably 0.50% or more.
  • the Mn content is preferably 2.5% or less, more preferably 2.0% or less.
  • the P content is set to 0.10% or less.
  • the P content is preferably 0.050% or less, more preferably 0.030% or less.
  • the P content is preferably 0.002% or more because excessive reduction causes an increase in smelting cost.
  • S 0.050% or less S usually exists as MnS in steel, but MnS is thinly stretched in the hot rolling process and adversely affects ductility. Therefore, in the present invention, it is preferable to reduce S as much as possible, but up to 0.050% is acceptable. Therefore, the S content is set to 0.050% or less.
  • the S content is preferably 0.030% or less, more preferably 0.010% or less.
  • the lower limit of S is not specified, it is preferable that S is 0.0002% or more because excessive reduction causes an increase in smelting cost.
  • Al 0.005 to 0.10%
  • Al is an element that acts as a powerful deoxidizer. In order to obtain such an effect, it is necessary to contain 0.005% or more of Al. However, when the Al content exceeds 0.10%, the weldability deteriorates, the amount of alumina-based inclusions increases, and the surface texture deteriorates. In addition, the toughness of the weld is reduced. Therefore, the Al content is set to 0.005 to 0.10%.
  • the Al content is preferably 0.010% or more, more preferably 0.015% or more.
  • the Al content is preferably 0.080% or less, more preferably 0.070% or less.
  • N 0.010% or less
  • N is an unavoidable impurity and is an element having an action of lowering toughness by firmly fixing the motion of dislocations.
  • the N content is preferably 0.0080% or less. From the viewpoint of refining cost, the N content is preferably 0.0008% or more.
  • Ti 0.001 to 0.15%
  • Ti is an element that contributes to improving the strength of steel by forming fine carbides and nitrides in the steel. Further, since it has a high affinity with N, it is an element that detoxifies N in steel as a nitride and contributes to improvement of toughness of steel. In order to obtain the above-mentioned effects, it is preferable to contain 0.001% or more of Ti. However, when the Ti content exceeds 0.15%, the yield ratio becomes high and the toughness decreases. Therefore, the Ti content is set to 0.15% or less. The Ti content is more preferably 0.002% or more, still more preferably 0.005% or more. The Ti content is more preferably 0.10% or less, still more preferably 0.08% or less.
  • O may be contained in an amount of 0.0050% or less.
  • O refers to total oxygen including O as an oxide.
  • Nb 0 to less than 0.001%
  • V 0 to less than 0.001%
  • Cr 0 to less than 0.01%
  • Mo 0 to less than 0.01%
  • Cu 0 to less than 0.01%
  • Ni 0 to less than 0.01%
  • Ca 0 to less than 0.0002%
  • B less than 0 to 0.0001% are treated as unavoidable impurities.
  • the above-mentioned components it is preferable to use the above-mentioned components as the basic component composition.
  • the above-mentioned suitable elements can obtain the characteristics desired in the present invention, further, for the purpose of further improving the characteristics, Nb: 0.001 to 0.15%, V: 0.001 to, if necessary. 0.15%, Cr: 0.01-1.0%, Mo: 0.01-1.0%, Cu: 0.01-1.0%, Ni: 0.01-1.0%, Ca It can contain one or more selected from: 0.0002 to 0.010% and B: 0.0001 to 0.010%.
  • Nb 0.001 to 0.15%
  • Nb is an element that contributes to improving the strength of steel by forming fine carbides and nitrides in steel, and also contributes to the miniaturization of structure by suppressing the coarsening of austenite during hot rolling. And can be contained as needed.
  • Nb when Nb is contained, it is preferable to contain 0.001% or more of Nb.
  • the Nb content when the Nb content exceeds 0.15%, the yield ratio becomes high and the toughness decreases. Therefore, when Nb is contained, the Nb content is preferably 0.15% or less.
  • the Nb content is more preferably 0.002% or more, still more preferably 0.005% or more.
  • the Nb content is more preferably 0.10% or less, still more preferably 0.08% or less.
  • V 0.001 to 0.15%
  • V is an element that contributes to improving the strength of steel by forming fine carbides and nitrides in the steel, and can be contained as needed.
  • V content is preferably 0.15% or less.
  • the V content is more preferably 0.002% or more, still more preferably 0.005% or more.
  • the V content is more preferably 0.10% or less, still more preferably 0.08% or less.
  • Cr 0.01-1.0% Cr is an element that enhances the hardenability of steel and increases the strength of steel, and can be contained as needed.
  • the Cr content is preferably 0.01% or more.
  • the content of Cr exceeds 1.0%, the toughness may be lowered and the weldability may be deteriorated. Therefore, when Cr is contained, the Cr content is preferably 1.0% or less.
  • the Cr content is more preferably 0.02% or more, still more preferably 0.05% or more.
  • the Cr content is more preferably 0.90% or less, still more preferably 0.80% or less.
  • Mo 0.01-1.0%
  • Mo is an element that enhances the hardenability of steel and increases the strength of steel, and can be contained as needed.
  • the Mo content is preferably 0.01% or more.
  • the Mo content is more preferably 0.02% or more, still more preferably 0.05% or more.
  • the Mo content is more preferably 0.90% or less, still more preferably 0.80% or less.
  • Cu 0.01-1.0%
  • Cu is an element that increases the strength of steel by solid solution strengthening, and can be contained as needed.
  • the Cu content is preferably 0.01% or more.
  • the toughness may be lowered and the weldability may be deteriorated. Therefore, when Cu is contained, the Cu content is preferably 1.0% or less.
  • the Cu content is more preferably 0.02% or more, still more preferably 0.05% or more.
  • the Cu content is more preferably 0.80% or less, still more preferably 0.60% or less.
  • Ni 0.01-1.0%
  • Ni is an element that increases the strength of steel by solid solution strengthening, and can be contained as needed.
  • the Ni content is preferably 0.01% or more.
  • the toughness may be lowered and the weldability may be deteriorated. Therefore, when Ni is contained, the Ni content is preferably 1.0% or less.
  • the Ni content is more preferably 0.02% or more, still more preferably 0.05% or more.
  • the Ni content is more preferably 0.80% or less, still more preferably 0.60% or less.
  • Ca 0.0002 to 0.010%
  • Ca is an element that contributes to improving the toughness of steel by spheroidizing sulfides such as MnS that are thinly stretched in the hot rolling process in the production of raw steel sheets, and can be contained as needed.
  • the Ca content is preferably 0.010% or less.
  • the Ca content is more preferably 0.0005% or more, still more preferably 0.0010% or more.
  • the Ca content is more preferably 0.008% or less, still more preferably 0.0060% or less.
  • B 0.0001 to 0.010%
  • B is an element that contributes to the miniaturization of the structure by lowering the ferrite transformation start temperature, and can be contained as needed.
  • the B content is preferably 0.010% or less.
  • the B content is more preferably 0.0005% or more, still more preferably 0.0008% or more.
  • the B content is more preferably 0.0050% or less, further preferably 0.0030% or less, and even more preferably 0.0020% or less.
  • the total volume ratio of ferrite and bainite is 70% or more and 95% or less of the entire steel structure at the center of the flat plate portion.
  • the balance consists of one or more types selected from pearlite, martensite, and austenite, and the region surrounded by the boundary where the orientation difference between adjacent crystals is 15 ° or more is defined as the crystal grains, the average of the crystal grains is used.
  • the crystal grain size is 15.0 ⁇ m or less, and the total of the crystal grains having a crystal grain size of 40 ⁇ m or more is 40% or less in terms of volume ratio with respect to the entire steel structure at the center of the wall thickness of the flat plate portion.
  • Total volume fraction of ferrite and bainite 70% or more and 95% or less Ferrite has a soft structure.
  • bainite is harder than ferrite, softer than pearlite, martensite and austenite, and has an excellent toughness structure.
  • pearlite, martensite and austenite When a hard structure (pearlite, martensite and austenite) is mixed with ferrite and bainite, the yield ratio decreases, but on the other hand, the stress concentration caused by the difference in hardness tends to cause the interface to become the starting point of fracture and the toughness decreases. do.
  • the total volume fraction of ferrite and bainite at the center of the plate thickness is 70% or more and 95% or less of the entire steel structure at the center of the plate portion. Is preferable.
  • the total volume fraction of ferrite and bainite is less than 70%, the proportion of hard structure is high and the yield stress increases, so that the yield ratio increases and the toughness decreases.
  • the total volume fraction of ferrite and bainite exceeds 95%, the tensile strength decreases and the yield ratio increases. More preferably, it is 73% or more and 93% or less. More preferably, it is 75% or more and 92% or less.
  • the remaining structure (residual structure) excluding ferrite and bainite is one or more selected from pearlite, martensite, and austenite.
  • the total volume fraction of the residual structure is less than 5%, the tensile strength decreases and the yield ratio increases. Further, when the total volume fraction of the residual structure exceeds 30%, the proportion of the hard structure is high and the yield stress increases, so that the yield ratio increases and the toughness decreases. Therefore, the total volume fraction of the remaining structure is preferably 5% or more and 30% or less with respect to the entire steel plate structure at the center of the wall thickness of the flat plate portion. More preferably, it is 7% or more and 27% or less. More preferably, it is 8% or more and 25% or less.
  • the austenite grain boundary or the deformation zone in the austenite grain is the nucleation site.
  • a large amount of dislocations are introduced into austenite by increasing the amount of reduction at low temperatures where recrystallization of austenite is unlikely to occur in hot rolling in the process of manufacturing steel sheets made of electric resistance steel pipes (bare pipes) used in the manufacture of square steel pipes.
  • austenite can be refined and a large amount of deformation zone can be introduced into the grain.
  • the area of the nucleation site increases, the frequency of nucleation increases, and the steel structure can be miniaturized.
  • the above-mentioned effect can be similarly obtained even if the above-mentioned steel structure exists within a range of ⁇ 1.0 mm in the wall-thickness direction centering on the center of the wall-thickness. Therefore, in the present invention, the "steel structure at the center of the wall thickness" means that the above-mentioned steel structure exists in any of the range of ⁇ 1.0 mm in the wall thickness direction centering on the center of the wall thickness. ..
  • a test piece for structure observation is collected so that the observation surface has a cross section parallel to both the longitudinal direction and the wall thickness direction of the square steel pipe and the wall thickness center of the flat plate portion, and a mirror surface is used. After polishing, it is produced by nital corrosion.
  • an optical microscope magnification: 1000 times
  • a scanning electron microscope SEM, magnification: 1000 times
  • the area ratio of ferrite, bainite and the balance pearlite, martensite, austenite
  • the area ratio of each tissue is calculated as the average value of the values obtained in each visual field by observing in 5 or more visual fields.
  • the area ratio obtained by observing the tissue is defined as the volume fraction of each tissue.
  • ferrite is a product of diffusion transformation, and exhibits a structure with low dislocation density and almost recovery. This includes polygonal ferrite and pseudopolygonal ferrite.
  • Bainite is a double-phase structure of lath-like ferrite and cementite with high dislocation density.
  • Pearlite is an eutectoid structure of iron and iron carbide (ferrite + cementite), and exhibits a lamellar structure in which linear ferrite and cementite are alternately arranged.
  • Martensite is a lath-like low-temperature transformation structure with a very high dislocation density.
  • the SEM image shows a bright contrast as compared with ferrite and bainite. Since it is difficult to distinguish between martensite and austenite in the optical microscope image and the SEM image, the area ratio of the tissue observed as martensite or austenite is measured from the obtained SEM image, and then the volume of austenite measured by the method described later. The value obtained by subtracting the rate is taken as the volume ratio of martensite.
  • the volume fraction of austenite is measured by X-ray diffraction using a test piece prepared by the same method as the test piece used for measuring the dislocation density.
  • the volume fraction of austenite is obtained from the integrated intensities of the (200), (220) and (311) planes of the obtained fcc iron and the (200) and (211) planes of the bcc iron.
  • Average crystal grain size of crystal grains 15.0 ⁇ m or less
  • the average crystal grain size is defined as the crystal grain (grain boundary) in the region surrounded by the boundary where the orientation difference between adjacent crystals is 15 ° or more.
  • the circle equivalent diameter (crystal grain size) is the diameter of a circle having the same area as the target crystal grain.
  • the average crystal grain size of the crystal grains is 15.0 ⁇ m or less.
  • the average crystal grain size of the crystal grains is preferably 13.0 ⁇ m or less, more preferably 10.0 ⁇ m or less.
  • the total volume fraction of crystal grains having a crystal grain size of 40 ⁇ m or more is set to 40% or less. More preferably, it is 30% or less. For the above reasons, it is desirable that the number of coarse crystal grains is small, and the total volume fraction of the crystal grains is preferably 0%.
  • the measurement of the average crystal grain size of the crystal grains and the total volume ratio of the crystal grains having a crystal grain size of 40 ⁇ m or more is as follows. First, a test piece for microstructure observation was collected so that the observation surface had a cross section parallel to both the longitudinal direction and the wall thickness direction of the square steel tube and the wall thickness center of the flat plate portion, and after mirror polishing, the wall thickness center. In, a histogram of the particle size distribution (horizontal axis: particle size, vertical axis: graph with abundance ratio (area ratio) at each particle size) is calculated using the SEM / EBSD method. The average crystal grain size is obtained from the above histogram as an arithmetic mean of the grain size.
  • the total volume fraction of crystal grains having a particle size of 40 ⁇ m or more is obtained as the total abundance ratio of crystal grains having a particle size of 40 ⁇ m or more from the above histogram.
  • the measurement conditions are an acceleration voltage of 15 kV, a measurement area of 500 ⁇ m ⁇ 500 ⁇ m, and a measurement step size (measurement resolution) of 0.5 ⁇ m.
  • those having a crystal grain size of less than 2.0 ⁇ m are excluded from the analysis target as measurement noise.
  • a steel plate as a material is cold-roll-formed, and then both ends of the cold-roll-formed steel plate in the width direction are welded to form an electric-sewn steel pipe, and then the electric-sewn steel pipe is obtained.
  • the ratio of the plate width W of the steel plate to the peripheral length C OUT of the square steel pipe on the exit side of the square forming stand satisfies the formula (1), and the circumference C OUT of the square steel pipe on the exit side of the square forming stand is satisfied.
  • the gap between the rolls of the sizing stand immediately before square forming and the gap between the rolls of the square forming stand are controlled so that the ratio of the peripheral length CIN of the electric resistance pipe on the entrance side of the square forming stand satisfies the equation (2).
  • Equation (2) W: Plate width (mm) of the steel plate that is the material
  • C IN Perimeter (mm) of the electric resistance sewn steel pipe on the entrance side of the first stage square forming stand
  • C OUT Perimeter (mm) of the square steel pipe on the exit side of the square forming stand in the final stage
  • t Average wall thickness (mm) of the flat plate portion after square forming
  • H Average side length (mm) of the flat plate portion after square forming
  • the average wall thickness t is calculated by the above formula (3), and the average side length H is calculated by the above formula (4).
  • FIG. 2 shows a diagram illustrating a pipe making process of a raw pipe (electric pipe) of a square steel pipe of the present invention.
  • FIG. 3 shows a diagram illustrating a forming process of the square steel pipe of the present invention.
  • the electric pipe 7 is manufactured using a steel plate (steel strip) as a material (pipe making process).
  • the steel sheet 1 (hot-rolled steel sheet, hot-rolled steel strip) having the above-mentioned composition, which is wound around the coil, is dispensed, straightened by the leveler 2, and is a cage roll group composed of a plurality of rolls. It is intermediately molded in step 3 to form a cylindrical open tube. After that, it is finish-molded by the finpass roll group 4 composed of a plurality of rolls.
  • the above open tube is formed into a cylindrical shape by cold roll forming.
  • the square steel pipe of the present invention preferably has the above-mentioned steel structure.
  • the material steel plate (steel plate 1) also has the above-mentioned composition and composition. It is preferable to have a steel structure. Since the preferable manufacturing conditions for the steel sheet 1 will be described later, the description thereof is omitted here.
  • the finish-formed open pipe is pressure-welded with a squeeze roll 5 and a pair of butt portions (both ends in the width direction) facing each other in the circumferential direction of the steel plate 1 are electrically resistance welded (electrically welded) with a welding machine 6. It is a welded steel pipe 7.
  • the butt portion is heated and melted, and the butt portion is pressed and solidified to complete the joining.
  • the welded portion (electrically sewn welded portion) 13 is extended in the pipe axis direction.
  • the manufacturing equipment used for manufacturing the electric resistance pipe 7 is not limited to the manufacturing equipment having the pipe making process shown in FIG.
  • the amount of upset by the squeeze roll 5 is preferably in the range of 20% or more and 100% or less with respect to the wall thickness of the electric resistance pipe 7.
  • the amount of upset is less than 20% of the wall thickness, the discharge of molten steel becomes insufficient and the toughness of the welded portion deteriorates.
  • the amount of upset is more than 100% of the wall thickness, the load on the squeeze roll becomes large, the work hardening amount of the welded portion (electrically sewn welded portion) 13 becomes large, and the hardness becomes excessively high.
  • the molding step includes a sizing step and a square molding step.
  • the electric resistance pipe 7 is reduced in diameter (sizing) in a cylindrical shape by a sizing roll group (sizing stand) 8 composed of a plurality of rolls arranged vertically and horizontally with respect to the electric resistance pipe 7. Process). After that, it is squarely formed into the shapes shown in R1, R2, and R3 by a square forming roll group (square forming stand) 9 composed of a plurality of rolls arranged vertically and horizontally with respect to the electrosewn steel pipe 7. (Square forming process). Each roll constituting the square forming stand 9 is a hole-shaped roll (caliber roll) having a caliber curvature, and the caliber curvature increases as the stand becomes a subsequent stand. As a result, a flat plate portion and a square portion of the square steel pipe are formed.
  • the number of stands constituting the sizing roll group 8 and the square forming roll group 9 is not particularly limited. It may be composed of a multi-stage stand, or it may be composed of a single-stage stand. Further, when the caliber curvature of each roll in the sizing roll group 8 or the square forming roll group 9 is not constant (has a plurality of curvatures), the shape irregularity occurs when the electric resistance pipe 7 being formed is twisted in the circumferential direction. Therefore, it is preferable that the caliber curvature of each roll is constant.
  • the ratio of the plate width W of the steel plate to the peripheral length C OUT of the square steel pipe on the outlet side of the square forming stand satisfies the formula (1), and the square steel pipe on the exit side of the square forming stand.
  • the gap between the rolls of the sizing stand immediately before square forming and the roll of the square forming stand so that the ratio of the circumferential length C IN of the electric resistance pipe on the entrance side of the square forming stand to the circumferential length C OUT satisfies the formula (2). It is important to control the gap.
  • the plate width W (mm) of the material steel plate (steel plate) 1 and the peripheral length of the square steel pipe 10 immediately after square forming (the peripheral length of the steel pipe (mm) on the outlet side of the square forming stand in the final stage, hereinafter "C OUT ".
  • the ratio (W / C OUT ) of (referred to as) and the ratio (t / H) of the average wall thickness t immediately after square forming and the average side length H immediately after square forming satisfy the above formula (1). The reason for controlling is explained.
  • a flat plate-shaped steel plate 1 material steel plate
  • a cylindrical electric resistance pipe 7 bare pipe
  • a cylindrical electric pipe is squarely formed.
  • the steel plate 1 and the electrosewn steel pipe 7 are caused by bending deformation in the pipe circumferential direction and drawing in the pipe circumferential direction. Extension deformation in the longitudinal direction of the pipe is added.
  • it is effective to appropriately control the above-mentioned two ratios "t / H" and "W / C OUT ".
  • the “W / C OUT ” of the above ratio is preferably (1.000 + 0.080 ⁇ t / H) or more and (1.000 + 0.48 ⁇ t / H) or less, and more preferably (1.000 + 0.10). ⁇ t / H) or more (1.000 + 0.45 ⁇ t / H) or less.
  • the circumference of the electric resistance pipe 7 immediately before square forming (the circumference (mm) of the electric resistance pipe 7 on the entrance side of the first stage square forming stand, hereinafter referred to as "C IN ") and the corner.
  • the ratio of the circumference (C OUT ) of the square steel pipe 10 immediately after forming (C IN / C OUT ) and the ratio of the average wall thickness t immediately after square forming to the average side length H immediately after square forming (t / H) are as follows. The reason for controlling the above equation (2) to be satisfied will be described.
  • the corner forming is completed with almost no contact between the rolls of the square forming roll group 9.
  • the corner portion 12 is formed by projecting by free deformation.
  • the higher the rigidity of the corner portion 12 and the smaller the amount of throttle in the circumferential direction the smaller the bending deformation amount of the corner portion 12, and the larger the radius of curvature on the outside of the corner portion.
  • the lower the rigidity of the corner portion 12 and the larger the circumferential diaphragm the larger the bending deformation of the corner portion 12 and the smaller the radius of curvature on the outside of the corner portion.
  • the rigidity of the corner portion 12 against bending deformation increases as the ratio (t / H) of the average wall thickness t and the average side length H increases. Further, the circumferential drawing amount in square forming is obtained by the peripheral length ratio (C IN / C OUT ), and the larger this is, the larger the circumferential drawing amount is.
  • the circumference ratio (C IN / C OUT ) is preferably (0.33 ⁇ t / H + 0.99) or more and (0.47 ⁇ t / H + 0.99) or less, and more preferably (0.35 ⁇ t). / H + 0.99) or more (0.45 ⁇ t / H + 0.99) or less.
  • the average wall thickness of the flat plate portion of the square steel pipe 10 is t (mm) and the average side length of the flat plate portion is H (mm)
  • the average wall thickness t is more than 0.030 times the average side length H. Is preferable.
  • the ratio (t / H) of the average wall thickness t and the average side length H is more preferably 0.035 times or more.
  • it is preferably 0.10 times or less, and more preferably 0.080 times or less.
  • the average wall thickness t is 20 mm or more and 40 mm or less. The reason is the same as the reason for controlling the average wall thickness t of the square steel pipe, and is therefore omitted.
  • C IN and C OUT are controlled by controlling the gap between the recesses of the caliber roll.
  • the maximum gap between the recesses of the roll of the sizing stand immediately before square forming (hereinafter, also referred to as “sizing stand gap”) and the maximum gap between the recesses of the roll of the square forming stand (hereinafter, also referred to as "gap of the square forming stand”).
  • sizing stand gap The maximum gap between the recesses of the roll of the sizing stand immediately before square forming
  • the gap of the sizing stand immediately before the above-mentioned square forming and the gap of other sizing stands may be the same.
  • the gap of the above-mentioned square forming stand is the gap of the first stage of the square forming stand.
  • the gaps between the first stage and the other square forming stands may all be the same.
  • C IN is the peripheral length (length of the outer circumference in the peripheral direction of the pipe) (mm) of the electric resistance sewn steel pipe 7 on the entrance side of the square forming stand of the first stage.
  • the pipe forming direction is the positive direction of the X axis
  • the X coordinate of any one of the rotation axes of the sizing roll group 8 immediately before the square forming is Xa (m)
  • the first stage is the peripheral length (length of the outer circumference in the peripheral direction of the pipe) (mm) of the electric resistance sewn steel pipe 7 on the entrance side of the square forming stand of the first stage.
  • the outer peripheral length of the peripheral cross section of the tube in the plane X (Xa + Xb) / 2 (m) perpendicular to the X axis. Is obtained by measuring with a scale.
  • C OUT is the peripheral length (the length of the outer circumference in the peripheral direction of the pipe) (mm) of the square steel pipe 10 on the exit side of the square forming stand in the final stage.
  • the above-mentioned method for manufacturing a square steel pipe of the present invention aims to reduce variations in the flatness of each flat plate portion and the radius of curvature of each corner portion in the process of forming a square steel pipe from an electrosewn steel pipe (bare pipe). In addition to the conditions of, it can be further controlled by the following conditions.
  • the diameter of the steel pipe may be reduced so that the circumference of the steel pipe is reduced at a rate of 0.30% or more in total in order to satisfy the preferable roundness.
  • each flat plate portion and each corner portion are uniformly (symmetrically) formed in the subsequent corner forming step, and the variation in flatness and radius of curvature is reduced.
  • preferable roundness means that the vertical outer diameter D1 and the horizontal outer diameter D2 of the pipe are
  • the diameter is reduced so that the circumference of the steel pipe decreases at a rate of more than 2.0% in total, the amount of bending in the pipe axis direction when passing through the roll becomes large, and the yield ratio increases. Therefore, it is preferable to reduce the diameter so that the circumference of the steel pipe decreases at a rate of 0.30% or more and 2.0% or less.
  • the sizing step it is preferable to perform multi-step diameter reduction with a plurality of stands in order to minimize the bending amount in the pipe axis direction when passing through the roll and to suppress the generation of residual stress in the pipe axis direction.
  • the diameter reduction of each stand is preferably performed so that the circumference of the steel pipe is reduced by 1.0% or less as compared with the diameter reduction of the stand installed immediately before the stand.
  • the square steel pipe of the present invention uses an electric resistance sewn steel pipe as a raw pipe.
  • the square steel pipe 10 was cut perpendicularly in the pipe axis direction, the cut surface including the welded portion (electrosewn welded portion) 13 was polished, and then corroded. It can be judged by observing with an optical microscope. If the width of the melt-solidified portion of the welded portion (electrically sewn welded portion) 13 in the pipe circumferential direction is 1.0 ⁇ m or more and 1000 ⁇ m or less over the entire thickness of the pipe, the electric resistance pipe 7 is used.
  • the corrosive liquid may be appropriately selected according to the steel composition and the type of steel pipe.
  • FIG. 4 shows a schematic view of the melt-solidified portion 16 in the welded portion 13.
  • FIG. 4 shows a state after the cut surface including the welded portion is polished and corroded.
  • the melt-solidified portion 16 can be visually recognized as a region having a structure shape and contrast different from those of the base metal portion 14 and the heat-affected zone 15 in FIG.
  • the melt-solidified portion 16 of the electrosewn steel pipe of carbon steel and low alloy steel can be identified as a region observed white by an optical microscope in the above cross section corroded by nital.
  • a hot rolling treatment with a total rolling reduction at 950 ° C or lower: 50% or more is performed (hot rolling step), and then the average cooling rate at the wall thickness center temperature: 5 ° C / s or more and 30 ° C / s or less, cooling. Stopping temperature: It is preferable to cool the product at 400 ° C. or higher and 650 ° C. or lower (cooling step), and then wind it at 400 ° C. or higher and 650 ° C. or lower (winding step) to obtain a hot-rolled steel plate (steel plate 1).
  • the "°C” indication regarding the temperature shall be the surface temperature of the steel material and the steel plate (hot-rolled steel plate) unless otherwise specified. These surface temperatures can be measured with a radiation thermometer or the like. Further, the temperature at the center of the thickness of the steel sheet can be obtained by calculating the temperature distribution in the cross section of the steel sheet by heat transfer analysis and correcting the result by the surface temperature of the steel sheet.
  • the "hot-rolled steel plate” includes hot-rolled plates and hot-rolled steel strips.
  • the melting method of the steel material is not particularly limited, and any known melting method such as a converter, an electric furnace, or a vacuum melting furnace is suitable.
  • the casting method is also not particularly limited, but it is manufactured to a desired size by a known casting method such as a continuous casting method. It should be noted that there is no problem even if the ingot-breaking rolling method is applied instead of the continuous casting method.
  • the molten steel may be further subjected to secondary refining such as ladle refining.
  • Hot rolling process Heating temperature 1100 ° C or more and 1300 ° C or less
  • the heating temperature in the hot rolling step is set to 1100 ° C. or higher and 1300 ° C. or lower. This heating temperature is more preferably 1120 ° C. or higher. Further, this heating temperature is more preferably 1280 ° C. or lower.
  • the steel slab in addition to the conventional method in which a steel slab (slab) is manufactured, cooled to room temperature, and then heated again, the steel slab is not cooled to room temperature and is charged into a heating furnace as a hot piece.
  • Rough rolling end temperature 850 ° C or higher and 1150 ° C or less
  • the rough rolling end temperature is less than 850 ° C
  • the surface temperature of the steel sheet becomes lower than the ferrite transformation start temperature during the subsequent finish rolling, a large amount of processed ferrite is generated, and yielding occurs.
  • the ratio goes up.
  • the rough rolling end temperature exceeds 1150 ° C.
  • the amount of rolling in the austenite unrecrystallized temperature range is insufficient, and fine austenite grains cannot be obtained. As a result, it becomes difficult to secure the average crystal grain size of the steel structure of the above-mentioned square steel pipe, and the toughness is lowered.
  • the rough rolling end temperature is more preferably 860 ° C. or higher.
  • the rough rolling end temperature is more preferably 1000 ° C. or lower.
  • the finish rolling start temperature is preferably 800 ° C. or higher and 980 ° C. or lower.
  • the finish rolling start temperature is less than 800 ° C., the steel sheet surface temperature becomes lower than the ferrite transformation start temperature during finish rolling, a large amount of processed ferrite is generated, and the yield ratio increases.
  • the finish rolling start temperature exceeds 980 ° C., the austenite becomes coarse and a sufficient deformation zone is not introduced into the austenite, so that it becomes difficult to secure the average crystal grain size of the steel structure of the above-mentioned square steel pipe. , The toughness decreases.
  • the finish rolling start temperature is more preferably 820 ° C. or higher.
  • the finish rolling start temperature is more preferably 950 ° C. or lower.
  • Finish rolling end temperature 750 ° C or more and 900 ° C or less
  • the finish rolling end temperature is less than 750 ° C
  • the steel sheet surface temperature becomes below the ferrite transformation start temperature during finish rolling, a large amount of processed ferrite is generated, and the yield ratio is high.
  • the finish rolling end temperature exceeds 900 ° C.
  • the amount of rolling in the austenite unrecrystallized temperature range is insufficient, and fine austenite grains cannot be obtained. As a result, it becomes difficult to secure the average crystal grain size of the steel structure of the above-mentioned square steel pipe, and the toughness is lowered.
  • the finish rolling end temperature is more preferably 770 ° C. or higher.
  • the finish rolling end temperature is more preferably 880 ° C. or lower.
  • Total reduction rate at 950 ° C or lower 50% or more
  • the ferrite, bainite and the residual structure produced in the subsequent cooling process and winding process are made fine.
  • the steel structure of the square steel pipe having the above-mentioned strength and toughness can be obtained.
  • the total reduction rate of 950 ° C. or lower is set to 50% or more.
  • the total reduction rate at 950 ° C. or lower is less than 50%, sufficient machining strain cannot be introduced in the hot rolling process, so that a structure having the average crystal grain size of the above-mentioned square steel pipe cannot be obtained.
  • the total reduction rate at 950 ° C. or lower is more preferably 55% or more, still more preferably 57% or more.
  • the upper limit is not specified, if it exceeds 80%, the effect of improving the toughness on the increase in the reduction rate becomes small, and the equipment load only increases. Therefore, the total reduction rate at 950 ° C. or lower is preferably 80% or less. More preferably, it is 70% or less.
  • the above-mentioned total rolling reduction rate at 950 ° C. or lower refers to the total rolling reduction rate of each rolling path in the temperature range of 950 ° C. or lower.
  • Cooling process After the hot rolling process, the hot rolled plate is cooled in the cooling process.
  • cooling is performed at an average cooling rate up to the cooling stop temperature: 5 ° C./s or more and 30 ° C./s or less, and a cooling stop temperature: 400 ° C. or more and 650 ° C. or less.
  • Average cooling rate from the start of cooling to the stop of cooling (end of cooling) 5 ° C / s or more and 30 ° C / s or less
  • the average cooling rate in the temperature range from the start of cooling to the stop of cooling described later If the temperature is less than 5 ° C./s, the frequency of nucleation of ferrite or bainite decreases and these become coarse, so that a structure having the average crystal grain size of the above-mentioned square steel tube cannot be obtained.
  • the average cooling rate exceeds 30 ° C./s, a large amount of martensite is generated and the toughness is lowered.
  • the average cooling rate is preferably 10 ° C./s or higher.
  • the average cooling rate is preferably 25 ° C./s or less.
  • Cooling stop temperature 400 ° C. or higher and 650 ° C. or lower
  • the cooling shutdown temperature is preferably 430 ° C. or higher.
  • the cooling shutdown temperature is preferably 620 ° C. or lower.
  • the average cooling rate is a value obtained by ((the center temperature of the wall thickness of the hot-rolled plate before cooling-the center temperature of the wall thickness of the hot-rolled plate after cooling) / cooling time) unless otherwise specified.
  • the cooling method include water cooling such as injection of water from a nozzle, cooling by injection of cooling gas, and the like.
  • the hot-rolled steel sheet is wound into a coil in the winding process and then allowed to cool.
  • a winding temperature 400 ° C. or higher and 650 ° C. or lower. If the take-up temperature is less than 400 ° C., a large amount of martensite is generated and the toughness is lowered. When the winding temperature exceeds 650 ° C., the frequency of nucleation of ferrite or bainite decreases, and these become coarse, so that a structure having the average crystal grain size of the above-mentioned square steel pipe cannot be obtained.
  • the take-up temperature is preferably 430 ° C. or higher.
  • the winding temperature is preferably 620 ° C. or lower.
  • FIG. 5 shows an example of a building structure 100 in which the square steel pipe 10 of the present invention is used as a member (for example, a pillar material) of a building structure.
  • a plurality of square steel pipes 10 (pillars) established via a diaphragm 17 are welded together.
  • a girder 18 is erected between the adjacent square steel pipes 10, and a girder 19 is erected between the adjacent girders 18.
  • studs 20 are appropriately provided for mounting the wall or the like.
  • known members can be used for the building structure 100.
  • the radius of curvature of the square portion 12 is small, the flat plate portion 11 is flat, and the shape characteristics are excellent. Further, the square steel pipe 10 of the present invention is excellent in ductility and toughness on the outer surface of the square portion 12. Therefore, the building structure 100 of the present invention using the square steel pipe 10 as a pillar material can secure the plastic deformability of the entire structure, and therefore has excellent earthquake resistance as compared with the conventional building structure using the square steel pipe. Demonstrate performance.
  • the square steel pipe of the present invention was manufactured under the following conditions.
  • the molten steel having the composition shown in Table 1 was melted and used as a slab (steel material).
  • the obtained slab was subjected to a hot rolling step, a cooling step, and a winding step under the conditions shown in Table 2-1 to obtain a hot-rolled steel sheet.
  • the obtained hot-rolled steel sheet (material steel sheet) was continuously cold-formed into an open pipe having an elliptical cross section using a cage roll group and a fin pass roll group.
  • the opposite end faces (both ends in the width direction) of the open pipe were heated above the melting point by high frequency induction heating or high frequency resistance heating, and pressed with a squeeze roll to obtain an electrosewn steel pipe.
  • the obtained electric resistance pipe (bare pipe) was reduced in diameter with a 2-stand (2-stage) sizing roll group, and then square-formed with a 4-stand (4 stage) square forming roll group.
  • Square steel pipes with the dimensions shown in 2 were obtained respectively.
  • the gap of the sizing roll and the gap of the square forming roll immediately before the square forming were controlled under the conditions shown in Table 2-2.
  • the obtained square steel pipe was substantially rectangular in the vertical cross-sectional view in the pipe axis direction.
  • the average wall thickness t (mm) of the square steel pipe shown in Table 2-2 is calculated by using the above formula (3), and the average side length H (mm) of the square steel pipe is calculated by using the above formula (4). Calculated using.
  • the side lengths H 1 and H 2 (mm) of the square steel pipe the side lengths of the flat plate portions at the locations shown in FIG. 1 were measured.
  • the width W (mm) of the material steel sheet the width of the steel sheet immediately after passing through the leveler was measured.
  • each square steel pipe was cut perpendicular to the pipe axis direction, the cut surface including the electrosewn weld was polished, and then nital corroded and observed with an optical microscope. It was also confirmed that the width of the melt-solidified portion of the electric stitch welded portion in the pipe circumferential direction was 1.0 ⁇ m or more and 1000 ⁇ m or less over the entire thickness of the pipe. The melt-solidified portion was identified as a region observed white with an optical microscope in the above cross section corroded by nital.
  • the steel structure of the obtained square steel pipe was quantified, tested and evaluated by the method shown below.
  • the radius of curvature of the corner of the obtained square steel pipe is the radius of curvature of the outer surface of the four corners (outside of the corner) at 10 arbitrary positions in the pipe axis direction.
  • the radius of curvature (mm) was measured respectively.
  • the maximum value Rmax and the minimum value Rmin were obtained from the measured values at a total of 40 points.
  • the values are shown in Table 4.
  • the maximum value Rmax and the minimum value Rmin of the radius of curvature are in the range of 2.0t or more and 3.0t or less, it is evaluated that the radius of curvature of the outer surface of the corner portion is small.
  • a radial gauge was used to measure the radius of curvature on the outside of the corner.
  • the method of measuring the radius of curvature was measured by the above-mentioned method described with reference to FIG.
  • the absolute values of the maximum bulge amount and the maximum dent amount at each measurement point were obtained, and the maximum values were defined as the flatness of the flat plate portion and are shown in Table 4. However, when there was no bulge or dent, the value of the bulge amount or dent amount was set to 0.
  • the flatness (mm) of the flat plate portion is 2.5 mm or less, it is evaluated that the flat plate portion is flat.
  • FIG. 6 shows the sampling positions of the flat plate portion and the corner tensile test piece, respectively, and FIG. 7 shows the detailed sampling positions of the corner tensile test pieces.
  • JIS No. 5 tensile test pieces and JIS No. 12B tensile test pieces shown by broken lines were taken from the flat plate portion and the corner portion of the square steel pipe so that the tensile direction was parallel to the pipe axis direction, respectively.
  • the tensile test pieces were collected by grinding them so that the thickness was 5 mm and the center of the thickness was 1/4 t of the wall thickness t from the outer surface of the pipe.
  • the tensile test piece at the corner is collected from an intersection that extends the outer surfaces of the flat plates on both sides adjacent to the corner, and from a line forming 45 ° with the outer surface of the flat plate. bottom.
  • the number of tensile test pieces was two each, and the average value thereof was calculated to obtain the yield strength YS (MPa), the tensile strength TS (MPa), the yield ratio (%), and the uniform elongation (%). These values are shown in Table 4.
  • the value of the uniform elongation E2 of the corner portion with respect to the uniform elongation E1 of the flat plate portion is 0.60 or more, it is evaluated that the ductility of the outer surface of the corner portion is excellent. It was evaluated that the yield ratio of the corner portion was good when it was 90% or less, the yield strength YS of the flat plate portion was good when it was 295 MPa or more, and the tensile strength TS of the flat plate portion was good when it was 400 MPa or more.
  • the tensile test piece of the flat plate portion was taken from the position at the center of the width of the flat plate portion 11b located next to the flat plate portion 11a including the electric resistance welded portion 13 of the square steel pipe.
  • the tensile test piece at the corner was taken from the corner 12a adjacent to the flat plate portion 11a including the electric stitch welded portion 13.
  • FIG. 8 shows the collection position of the Charpy test piece at the corner
  • FIG. 9 shows the detailed collection position of the Charpy test piece at the corner.
  • JIS was taken so that the longitudinal direction of the test piece was parallel to the axial direction of the pipe at a position 1/4 t of the wall thickness t from the outer surface of the pipe of the square steel pipe.
  • a V-notch standard test piece conforming to the provisions of Z 2242 was used.
  • the Charpy test piece at the corner was taken from the corner 12a adjacent to the flat plate portion 11a including the electric stitch welded portion 13. More specifically, as shown in FIG. 9, the samples were taken from the intersections extending the outer surfaces of the flat plate portions on both sides adjacent to the corner portion 12a, and from the line forming an angle of 45 ° with the outer surface of the flat plate portion.
  • a Charpy impact test was carried out at a test temperature of -10 ° C in accordance with JIS Z 2242 to determine the Charpy absorption energy (J).
  • the number of test pieces was 3 each, and the average value of them was calculated to obtain the Charpy absorption energy (J).
  • the values are shown in Table 4.
  • the toughness of the outer surface of the corner is excellent when the Charpy absorption energy of the corner at -10 ° C is 100 J or more.
  • the radius of curvature R on the outside of the corner portion is 2.0 t or more and 3.0 t or less
  • the flatness of the outer surface of the flat plate portion in the pipe axis direction is 2.5 mm or less
  • the angle is square.
  • the uniform elongation E2 at the 1 / 4t position from the outer surface of the flat plate portion is 0.60 times or more the uniform elongation E1 at the 1 / 4t position from the outer surface of the flat plate portion
  • the charmy absorption energy of the corner portion at ⁇ 10 ° C. is 100J. That was all.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Architecture (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Electromagnetism (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Heat Treatment Of Steel (AREA)
  • Rod-Shaped Construction Members (AREA)

Abstract

Provided are a rectangular steel pipe, a production method therefor, and a building structure. The present invention is a rectangular steel pipe having flat plate parts and corner parts, wherein, when the average thickness of the plate parts is t (mm), the outer radius of curvature R of the corner parts is 2.0-3.0t, the flatness of the outer surface of the flat plate parts is 2.5 mm or less, the uniform elongation E2 at a position 1/4t in the thickness direction from the outer surface of the corner parts is 0.60 times or greater than the uniform elongation E1 at a position 1/4t in the thickness direction from the outer surface of the flat plate parts, and the Charpy absorbed energy at -10°C at a position 1/4t in the thickness direction from the outer surface of the corner parts is 100J or greater.

Description

角形鋼管およびその製造方法並びに建築構造物Square steel pipe and its manufacturing method and building structure
 本発明は、特に、高さ20mを超える中層建築物や、工場、倉庫などの大型建築物の建築部材に好適に用いられる、角形鋼管およびその製造方法に関する。また、本発明の角形鋼管を柱材に用いた建築構造物に関する。 The present invention relates to a square steel pipe and a method for manufacturing the same, which are particularly preferably used for a medium-rise building having a height of more than 20 m and a building member of a large building such as a factory or a warehouse. Further, the present invention relates to a building structure using the square steel pipe of the present invention as a column material.
 建築物の柱材には、耐震性の観点から、高い延性および靭性が要求される。 High ductility and toughness are required for pillar materials of buildings from the viewpoint of earthquake resistance.
 柱材に用いられる角部および平板部を有する角形鋼管は、地震力等の大きな外力を受ける際に、特に角部の外面が大きく変形する。このため、角形鋼管は、角部の外面の延性および靭性を十分に高める必要がある。 A square steel pipe having corners and flat plates used for columns is greatly deformed especially on the outer surface of the corners when it receives a large external force such as seismic force. Therefore, the square steel pipe needs to sufficiently enhance the ductility and toughness of the outer surface of the corner portion.
 冷間ロール成形角形鋼管(ロール成形角形鋼管)は、建築物の柱材として広く用いられている角形鋼管である。これは、鋼帯を冷間ロール成形により円筒状のオープン管とし、オープン管の突合せ部分を電縫溶接して電縫鋼管とした後、電縫鋼管の上下左右に配置されたロールを用いて、電縫鋼管に対して円筒状のまま管軸方向に絞りを加え、続けて角形に成形することで製造される。上記の電縫溶接においては、突合せ部分が加熱され溶融し、圧接され凝固することで接合が完了する。 Cold roll-formed square steel pipe (roll-formed square steel pipe) is a square steel pipe widely used as a pillar material for buildings. This is done by using rolls arranged on the top, bottom, left, and right of the electric pipe after the steel strip is made into a cylindrical open pipe by cold roll forming and the butt portion of the open pipe is electric-sewn to make an electric-sewn steel pipe. , It is manufactured by drawing a pipe in the axial direction of the electric pipe while keeping it cylindrical, and then forming it into a square shape. In the above-mentioned electric sewing welding, the butt portion is heated and melted, and is pressure-welded and solidified to complete the joining.
 しかし、ロール成形角形鋼管は、生産性が高い反面、製造時に角部が大きく加工硬化するため、角部の延性および靱性が、平板部と比較して低いという問題があった。 However, while the roll-formed square steel pipe has high productivity, there is a problem that the ductility and toughness of the corners are lower than those of the flat plate because the corners are work-hardened greatly during manufacturing.
 また、柱材に用いられる角形鋼管には、建設現場における施工性および建築物の意匠性の観点から、角形鋼管の角部の曲率半径は小さいほうが好ましいとする要求もある。これは、柱材の平板部の面積が広い方が、柱材と梁材の接合可能な面積が広く、より自由度の高い建築設計が可能となるからである。 There is also a demand that the square steel pipe used for the pillar material should have a small radius of curvature at the corner of the square steel pipe from the viewpoint of workability at the construction site and the design of the building. This is because the larger the area of the flat plate portion of the column material, the larger the area where the column material and the beam material can be joined, and the more flexible the architectural design becomes possible.
 しかし、ロール成形角形鋼管は、平均辺長Hに対する平均肉厚tの比(すなわち、t/H)が大きいほど、鋼帯を成形するのに必要な周方向曲げひずみが大きくなり、角部の加工硬化量が大きくなる。また、角部の曲率半径が小さいほど、角部を成形するのに必要な周方向曲げひずみが大きくなり、角部の加工硬化量が大きくなる。そのため、上記の平均辺長Hに対する平均肉厚tの比(t/H)が大きく、かつ、角部の曲率半径が小さいロール成形角形鋼管では、角部の延性および靭性が特に低く、十分な耐震性能を確保することが困難であった。 However, in the roll-formed square steel pipe, the larger the ratio of the average wall thickness t to the average side length H (that is, t / H), the larger the circumferential bending strain required for forming the steel strip, and the greater the circumferential bending strain of the square portion. The amount of work hardening increases. Further, the smaller the radius of curvature of the corner portion, the larger the circumferential bending strain required for forming the corner portion, and the larger the amount of work hardening of the corner portion. Therefore, in the roll-formed square steel pipe having a large ratio (t / H) of the average wall thickness t to the average side length H and a small radius of curvature of the corners, the ductility and toughness of the corners are particularly low, which is sufficient. It was difficult to ensure seismic performance.
 ここで、上記した「平均肉厚t」とは、溶接部(電縫溶接部)を含む平板部を除く、3つの平板部の管周方向中央位置における肉厚(mm)の平均値である。上記した「平均辺長H」とは、角部を挟んで隣接する2つの平板部の辺長の平均値である。 Here, the above-mentioned "average wall thickness t" is an average value of the wall thickness (mm) at the center position in the pipe circumferential direction of the three flat plate portions excluding the flat plate portion including the welded portion (electrically sewn welded portion). .. The above-mentioned "average side length H" is an average value of the side lengths of two flat plate portions adjacent to each other with a corner portion sandwiched between them.
 このような要求に対し、例えば、特許文献1~特許文献4に記載の角形鋼管が提案されている。 In response to such a request, for example, the square steel pipes described in Patent Documents 1 to 4 have been proposed.
 特許文献1には、化学成分としてバナジウムを添加している鋼板を折り曲げ加工したのち溶接して半成形角形鋼管とし、この半成形角形鋼管をA変態点の近辺に加熱して熱間成形したのち、冷却して得られた角形鋼管が提案されている。この角形鋼管は、耐力と靭性を改善し、コーナ部の形状をシャープに形成することが開示されている。 In Patent Document 1, a steel plate to which vanadium is added as a chemical component is bent and then welded to form a semi-formed square steel pipe, and this semi-formed square steel pipe is heated to the vicinity of the A3 transformation point and hot - formed. Later, a square steel pipe obtained by cooling has been proposed. It is disclosed that this square steel pipe improves the yield strength and toughness and forms the shape of the corner portion sharply.
 特許文献2には、冷間成形部に熱処理を施した角形鋼管が提案されている。この角形鋼管は、冷間成形部の機械的性質や溶接性を改善したことが開示されている。 Patent Document 2 proposes a square steel pipe in which a cold-formed portion is heat-treated. It is disclosed that this square steel pipe has improved the mechanical properties and weldability of the cold formed portion.
 特許文献3には、素材鋼板の化学成分と、金属組織のベイナイト分率および角部の表層部のビッカース硬さを適切に制御することにより、角部の靱性および塑性変形能を改善した角形鋼管が提案されている。 Patent Document 3 describes a square steel tube with improved toughness and plastic deformability of the corners by appropriately controlling the chemical composition of the material steel sheet, the bainite fraction of the metal structure, and the Vickers hardness of the surface layer of the corners. Has been proposed.
 特許文献4には、素材鋼板の化学成分と、金属組織の硬質相およびフェライトの平均結晶粒径を適切に制御することにより、角部の靱性を改善した角形鋼管が提案されている。 Patent Document 4 proposes a square steel pipe having improved toughness at the corners by appropriately controlling the chemical composition of the raw steel sheet and the average crystal grain size of the hard phase of the metal structure and ferrite.
 ところで、ロール成形角形鋼管は、形状特性を向上させた技術、特には、平板部の平坦度の向上と角部の曲率半径の低減を両立した技術の確立も求められている。この要求に対しては、例えば特許文献5および特許文献6に、ロール成形の際の製造条件を調整することで、形状特性を改善する技術が提案されている。 By the way, for roll-formed square steel pipes, it is also required to establish a technology for improving the shape characteristics, particularly a technology for improving the flatness of the flat plate portion and reducing the radius of curvature of the corner portion. In response to this requirement, for example, Patent Document 5 and Patent Document 6 propose techniques for improving shape characteristics by adjusting manufacturing conditions during roll molding.
 具体的に、特許文献5には、鋼管を、3段または4段の角成形ロールで、かつ最終段ロールの圧下率を一定で角管成形する際、鋼管の肉厚/外径比が大きくなるにつれて、最終段のロールカリバーを小さくして(凸型から凹型にして)成形する角鋼管の成形方法が提案されている。 Specifically, in Patent Document 5, when a steel pipe is formed into a square pipe with a three-stage or four-stage square forming roll and the reduction rate of the final stage roll is constant, the wall thickness / outer diameter ratio of the steel pipe is large. As a result, a method for forming a square steel pipe in which the roll caliber in the final stage is made smaller (from a convex shape to a concave shape) has been proposed.
 特許文献6には、円筒状の素管を角管にロール成形する際、素管の外径をD、素管の肉厚をt、最大カリバー高さをHとするとき、Q=(D-H)/(D-t)×100で定義される設定押込み率Qを12~23%の範囲に維持して素管を矩形断面形状に成形する第1段の成形工程と、矩形断面形状に成形された素管を目標形状に成形する第2段以降の成形工程を経る構造用角管の製造方法が提案されている。 In Patent Document 6, when a cylindrical raw tube is roll-formed into a square tube, when the outer diameter of the raw tube is D, the wall thickness of the raw tube is t, and the maximum caliber height is H, Q = (D). The first-stage molding step of forming the raw tube into a rectangular cross-sectional shape while maintaining the set push-in ratio Q defined by −H) / (Dt) × 100 in the range of 12 to 23%, and the rectangular cross-sectional shape. A method for manufacturing a structural square tube has been proposed, which undergoes a molding step of the second and subsequent stages for forming the raw tube formed in the above into a target shape.
特開2004-330222号公報Japanese Unexamined Patent Publication No. 2004-330222 特開平10-60580号公報Japanese Unexamined Patent Publication No. 10-60580 特許第5385760号公報Japanese Patent No. 5385760 特開2018-53281号公報Japanese Unexamined Patent Publication No. 2018-53281 特開平4-224023号公報Japanese Unexamined Patent Publication No. 4-224023 特許第3197661号公報Japanese Patent No. 3197661
 しかしながら、特許文献1および特許文献2に記載の角形鋼管は、成形時または成形後に加熱工程を必要とするため、冷間で成形したロール成形角形鋼管と比較して非常にコストが高かった。そのため、成形時または成形後の加熱工程を必要とせず、所望の角形鋼管を得る技術の確立が求められている。 However, since the square steel pipes described in Patent Document 1 and Patent Document 2 require a heating step at the time of forming or after forming, the cost is very high as compared with the roll-formed square steel pipe formed cold. Therefore, it is required to establish a technique for obtaining a desired square steel pipe without requiring a heating step at the time of forming or after forming.
 また、特許文献3および特許文献4に記載の角形鋼管は、成形時の加工硬化による角部の均一伸びの低下を十分に抑制できていないため、角部の外面の延性および靭性を十分に確保できているとは言えなかった。 Further, since the square steel pipes described in Patent Documents 3 and 4 cannot sufficiently suppress the decrease in uniform elongation of the corners due to work hardening during forming, the ductility and toughness of the outer surface of the corners are sufficiently ensured. I couldn't say it was done.
 さらに、特許文献5および特許文献6に記載の技術は、角部の加工硬化を抑制しつつ成形することができないため、角形鋼管の平板部の平坦度向上と角部の曲率半径低減を両立すると共に、角部の外面の延性および靭性を十分に確保する技術としては十分であるとは言えなかった。 Further, since the techniques described in Patent Documents 5 and 6 cannot be formed while suppressing work hardening of the corners, the flatness of the flat plate portion of the square steel pipe is improved and the radius of curvature of the corners is reduced at the same time. At the same time, it could not be said that it was sufficient as a technique for sufficiently ensuring the ductility and toughness of the outer surface of the corner.
 本発明は、上記の事情を鑑みてなされたものであって、形状特性、角部の外面の延性および靭性に優れる角形鋼管およびその製造方法を提供すること、並びに優れた耐震性能を有する建築構造物を提供することを目的とする。 The present invention has been made in view of the above circumstances, and provides a square steel pipe having excellent shape characteristics, ductility and toughness of the outer surface of a corner portion, and a method for manufacturing the square steel pipe, and a building structure having excellent seismic performance. The purpose is to provide things.
 ここで、本発明でいう「形状特性に優れる」とは、角部の曲率半径が小さく、かつ、平板部が平坦である角形鋼管を指す。 Here, "excellent in shape characteristics" in the present invention refers to a square steel pipe having a small radius of curvature at the corner and a flat flat plate.
 上記の「角部の曲率半径が小さい」とは、角部の外側の曲率半径Rが所定範囲内に制御されていること、具体的には、平板部の平均肉厚をt(mm)とするとき、角部の外側の曲率半径Rが2.0t以上3.0t以下であることを指す。 The above-mentioned "small radius of curvature of the corner" means that the radius of curvature R outside the corner is controlled within a predetermined range, specifically, the average wall thickness of the flat plate is t (mm). When this is done, it means that the radius of curvature R on the outside of the corner is 2.0t or more and 3.0t or less.
 上記の「平板部が平坦である」とは、平板部の外面の管軸方向における平坦度が2.5mm以下であること、具体的には、管軸方向に垂直な面の断面において、平板部の外面の同一辺上における周方向両端の2点を通る直線に対する最大膨らみ量および最大凹み量で表される絶対値の最大が、2.5mm以下であることを指す(後述する図10を参照)。 The above-mentioned "flat plate portion" means that the flatness of the outer surface of the flat plate portion in the pipe axis direction is 2.5 mm or less, specifically, in the cross section of the surface perpendicular to the pipe axis direction, the flat plate is used. It means that the maximum absolute value represented by the maximum bulge amount and the maximum dent amount with respect to a straight line passing through two points at both ends in the circumferential direction on the same side of the outer surface of the portion is 2.5 mm or less (FIG. 10 described later). reference).
 また、本発明でいう「角部の外面の延性に優れる」とは、平板部および角部の平均肉厚をtとするとき、角部の外面から肉厚方向で1/4t位置における均一伸びE2が、平板部の外面から肉厚方向で1/4t位置における均一伸びE1に対して0.60倍以上であることを指す。 Further, "excellent in ductility of the outer surface of the corner portion" in the present invention means that when the average wall thickness of the flat plate portion and the corner portion is t, uniform elongation at the 1/4 t position from the outer surface of the corner portion in the wall thickness direction. It means that E2 is 0.60 times or more the uniform elongation E1 at the 1 / 4t position in the wall thickness direction from the outer surface of the flat plate portion.
 また、本発明でいう「角部の外面の靭性に優れる」とは、角部の外面から肉厚方向で1/4t位置における、-10℃における角部のシャルピー吸収エネルギーが100J以上であることを指す。 Further, "excellent in toughness of the outer surface of the corner portion" in the present invention means that the Charpy absorption energy of the corner portion at −10 ° C. at a position 1 / 4t in the wall thickness direction from the outer surface of the corner portion is 100J or more. Point to.
 なお、上述した曲率半径、平坦度、均一伸びおよび靭性は、後述する実施例に記載の方法で測定することができる。 The radius of curvature, flatness, uniform elongation and toughness described above can be measured by the methods described in Examples described later.
 本発明者らは、上記課題を解決すべく鋭意検討を行った。その結果、角成形スタンド出側における角形鋼管の周長に対し、素材鋼板の板幅および角成形スタンド入側における電縫鋼管の周長を適切な範囲に管理することで、角部の曲率半径が小さく、平板部が平坦であり、且つ、角部の外面の延性および靭性に優れる角形鋼管を製造できることを見出した。 The present inventors have made diligent studies to solve the above problems. As a result, the radius of curvature of the corner is controlled by controlling the circumference of the square steel pipe on the exit side of the square forming stand and the circumference of the electrosewn steel pipe on the entrance side of the square forming stand within an appropriate range. It has been found that a square steel pipe having a small size, a flat flat plate portion, and excellent extensibility and toughness on the outer surface of the corner portion can be manufactured.
 本発明は、上記の知見に基づいて完成させたものであり、下記の要旨からなる。
[1] 平板部と角部を有する角形鋼管であって、
 前記角部の外側の曲率半径Rが、前記平板部の平均肉厚をt(mm)とするとき、2.0t以上3.0t以下であり、
 前記平板部の外面の平坦度が、2.5mm以下であり、
 前記角部の外面から肉厚方向で1/4tの位置における均一伸びE2が、前記平板部の外面から肉厚方向で1/4tの位置における均一伸びE1に対して0.60倍以上であり、
 前記角部の外面から肉厚方向で1/4tの位置における-10℃でのシャルピー吸収エネルギーが100J以上である、角形鋼管。
[2] 前記平均肉厚tが、前記平板部の平均辺長H(mm)に対して0.030倍超である、[1]に記載の角形鋼管。
[3] 前記平均肉厚tが20mm以上40mm以下である、[1]または[2]に記載の角形鋼管。
[4] 前記平板部の降伏強度が295MPa以上であり、
 前記平板部の引張強度が400MPa以上であり、
 前記角部の降伏比が90%以下である、[1]~[3]のいずれかに記載の角形鋼管。
[5] 前記角形鋼管の成分組成は、質量%で、
C:0.020~0.45%、
Si:0.01~1.0%、
Mn:0.30~3.0%、
P:0.10%以下、
S:0.050%以下、
Al:0.005~0.10%、
N:0.010%以下、
Ti:0.001~0.15%を含み、残部がFeおよび不可避的不純物からなり、
 前記平板部の肉厚中央における鋼組織は、
フェライトとベイナイトの体積率の合計が、平板部の肉厚中央における鋼組織全体に対して70%以上95%以下であり、残部がパーライト、マルテンサイト、オーステナイトから選択される1種または2種以上からなり、
隣り合う結晶の方位差が15°以上の境界で囲まれた領域を結晶粒としたとき、
前記結晶粒の平均結晶粒径が15.0μm以下であり、
結晶粒径で40μm以上の前記結晶粒の体積率の合計が、平板部の肉厚中央における鋼組織全体に対して40%以下である、[1]~[4]のいずれかに記載の角形鋼管。
[6] 前記成分組成に加えてさらに、質量%で、
Nb:0.001~0.15%、
V:0.001~0.15%、
Cr:0.01~1.0%、
Mo:0.01~1.0%、
Cu:0.01~1.0%、
Ni:0.01~1.0%、
Ca:0.0002~0.010%、
B:0.0001~0.010%
から選ばれる1種又は2種以上を含む、[1]~[5]のいずれかに記載の角形鋼管。
[7] [1]~[6]のいずれかに記載の角形鋼管の製造方法であって、
 鋼板を冷間ロール成形し、前記鋼板の幅方向両端部を電縫溶接して電縫鋼管とした後、前記電縫鋼管をサイジングスタンドによって縮径し、次いで角成形スタンドによって角成形して角形鋼管を製造する際に、
 前記角成形スタンドの出側における角形鋼管の周長COUTに対する前記鋼板の板幅Wの比が式(1)を満たし、かつ、前記角成形スタンドの出側における角形鋼管の周長COUTに対する前記角成形スタンドの入側における電縫鋼管の周長CINの比が式(2)を満たすように、角成形直前の前記サイジングスタンドのロールのギャップおよび前記角成形スタンドのロールのギャップを制御する、角形鋼管の製造方法。
1.000+0.050×t/H<W/COUT<1.000+0.50×t/H・・・式(1)
0.30×t/H+0.99≦CIN/COUT<0.50×t/H+0.99・・・式(2)
ここで、式(1)および式(2)において、
 W:素材である鋼板の板幅(mm)、
 CIN:第一段目の角成形スタンドの入側における電縫鋼管の周長(mm)、
 COUT:最終段の角成形スタンドの出側における角形鋼管の周長(mm)、
 t:角成形後の平板部の平均肉厚(mm)、
 H:角成形後の平板部の平均辺長(mm)、
である。
但し、1段の角成形スタンドにより角成形を行う場合には、前記第一段目の角成形スタンドと前記最終段の角成形スタンドとは、同一の角成形スタンドを指すものとする。
[8] 前記鋼板は、鋼素材を、加熱温度:1100℃以上1300℃以下に加熱した後、粗圧延終了温度:850℃以上1150℃以下、仕上圧延終了温度:750℃以上900℃以下、かつ、950℃以下での合計圧下率:50%以上である熱延処理を施し、
次いで、肉厚中心温度で平均冷却速度:5℃/s以上30℃/s以下、冷却停止温度:400℃以上650℃以下で冷却を施し、
次いで、400℃以上650℃以下で巻取る、[7]に記載の角形鋼管の製造方法。
[9] 前記平均肉厚tが、前記平板部の平均辺長Hに対して0.030倍超である、[7]または[8]に記載の角形鋼管の製造方法。
[10] 前記平均肉厚tが20mm以上40mm以下である、[7]~[9]のいずれかに記載の角形鋼管の製造方法。
[11] [1]~[6]のいずれかに記載の角形鋼管を柱材に用いた建築構造物。
The present invention has been completed based on the above findings, and has the following gist.
[1] A square steel pipe having a flat plate portion and a corner portion.
The radius of curvature R on the outside of the corner portion is 2.0 t or more and 3.0 t or less when the average wall thickness of the flat plate portion is t (mm).
The flatness of the outer surface of the flat plate portion is 2.5 mm or less.
The uniform elongation E2 at the position of 1 / 4t in the wall thickness direction from the outer surface of the corner portion is 0.60 times or more the uniform elongation E1 at the position of 1 / 4t in the wall thickness direction from the outer surface of the flat plate portion. ,
A square steel pipe having a Charpy absorption energy of 100 J or more at −10 ° C. at a position 1/4 t in the wall thickness direction from the outer surface of the corner portion.
[2] The square steel pipe according to [1], wherein the average wall thickness t is more than 0.030 times the average side length H (mm) of the flat plate portion.
[3] The square steel pipe according to [1] or [2], wherein the average wall thickness t is 20 mm or more and 40 mm or less.
[4] The yield strength of the flat plate portion is 295 MPa or more, and the yield strength is 295 MPa or more.
The tensile strength of the flat plate portion is 400 MPa or more, and the plate portion has a tensile strength of 400 MPa or more.
The square steel pipe according to any one of [1] to [3], wherein the yield ratio of the corner portion is 90% or less.
[5] The composition of the square steel pipe is mass%.
C: 0.020 to 0.45%,
Si: 0.01-1.0%,
Mn: 0.30 to 3.0%,
P: 0.10% or less,
S: 0.050% or less,
Al: 0.005 to 0.10%,
N: 0.010% or less,
Ti: contains 0.001 to 0.15%, the balance consists of Fe and unavoidable impurities.
The steel structure at the center of the wall thickness of the flat plate portion is
The total volume fraction of ferrite and bainite is 70% or more and 95% or less with respect to the entire steel structure at the center of the thickness of the flat plate, and the balance is one or more selected from pearlite, martensite, and austenite. Consists of
When a region surrounded by a boundary with an orientation difference of 15 ° or more between adjacent crystals is used as a crystal grain.
The average crystal grain size of the crystal grains is 15.0 μm or less, and the average crystal grain size is 15.0 μm or less.
The square according to any one of [1] to [4], wherein the total volume fraction of the crystal grains having a crystal grain size of 40 μm or more is 40% or less with respect to the entire steel structure at the center of the wall thickness of the flat plate portion. Steel pipe.
[6] In addition to the above-mentioned composition, by mass%,
Nb: 0.001 to 0.15%,
V: 0.001 to 0.15%,
Cr: 0.01-1.0%,
Mo: 0.01-1.0%,
Cu: 0.01-1.0%,
Ni: 0.01-1.0%,
Ca: 0.0002 to 0.010%,
B: 0.0001 to 0.010%
The square steel pipe according to any one of [1] to [5], which comprises one kind or two or more kinds selected from.
[7] The method for manufacturing a square steel pipe according to any one of [1] to [6].
A steel plate is cold-rolled, and both ends of the steel plate in the width direction are welded and welded to form an electric resistance pipe. When manufacturing steel pipes
The ratio of the plate width W of the steel plate to the peripheral length C OUT of the square steel pipe on the outlet side of the square forming stand satisfies the formula (1), and the peripheral length C OUT of the square steel pipe on the exit side of the square forming stand. The gap between the rolls of the sizing stand and the gap between the rolls of the square forming stand immediately before square forming are controlled so that the ratio of the peripheral length CIN of the electric resistance pipe on the entrance side of the square forming stand satisfies the formula (2). How to manufacture a square steel pipe.
1.000 + 0.050 × t / H <W / C OUT <1.000 + 0.50 × t / H ... Equation (1)
0.30 × t / H + 0.99 ≦ C IN / C OUT <0.50 × t / H + 0.99 ... Equation (2)
Here, in equations (1) and (2),
W: Plate width (mm) of the steel plate that is the material,
C IN : Perimeter (mm) of the electric resistance sewn steel pipe on the entrance side of the first stage square forming stand,
C OUT : Perimeter (mm) of the square steel pipe on the exit side of the square forming stand in the final stage,
t: Average wall thickness (mm) of the flat plate portion after square forming,
H: Average side length (mm) of the flat plate portion after square forming,
Is.
However, when square forming is performed by a one-stage square forming stand, the first-stage square forming stand and the final stage square forming stand refer to the same square forming stand.
[8] In the steel sheet, after the steel material is heated to a heating temperature of 1100 ° C. or higher and 1300 ° C. or lower, the rough rolling end temperature: 850 ° C. or higher and 1150 ° C. or lower, the finish rolling end temperature: 750 ° C. or higher and 900 ° C. or lower, and , Total reduction rate at 950 ° C or lower: Hot-rolled at 50% or higher,
Next, cooling was performed at the center temperature of the wall thickness at an average cooling rate of 5 ° C./s or more and 30 ° C./s or less, and a cooling shutdown temperature: 400 ° C. or more and 650 ° C. or less.
Next, the method for manufacturing a square steel pipe according to [7], which is wound at 400 ° C. or higher and 650 ° C. or lower.
[9] The method for manufacturing a square steel pipe according to [7] or [8], wherein the average wall thickness t is more than 0.030 times the average side length H of the flat plate portion.
[10] The method for manufacturing a square steel pipe according to any one of [7] to [9], wherein the average wall thickness t is 20 mm or more and 40 mm or less.
[11] A building structure using the square steel pipe according to any one of [1] to [6] as a column material.
 本発明によれば、形状特性に優れ、且つ、角部の外面の延性および靭性に優れる角形鋼管およびその製造方法、並びに建築構造物を提供することが可能となる。 According to the present invention, it is possible to provide a square steel pipe having excellent shape characteristics and excellent ductility and toughness on the outer surface of the corner portion, a method for manufacturing the square steel pipe, and a building structure.
 これにより、角部の曲率半径が小さく、平板部が平坦であり、且つ、角部の外面の延性および靱性に優れる冷間ロール成形角形鋼管を製造することができる。また、本発明の角形鋼管を柱材として使用した建築構造物は、従来の冷間ロール成形角形鋼管を使用した建築構造物と比べて、より優れた耐震性能を発揮する。 This makes it possible to manufacture a cold roll-formed square steel pipe having a small radius of curvature at the corners, a flat flat plate, and excellent ductility and toughness on the outer surface of the corners. Further, the building structure using the square steel pipe of the present invention as a pillar material exhibits more excellent seismic performance as compared with the building structure using the conventional cold roll formed square steel pipe.
図1は、本発明の角形鋼管の管軸方向に対して垂直な断面を示す概略図である。FIG. 1 is a schematic view showing a cross section perpendicular to the pipe axis direction of the square steel pipe of the present invention. 図2は、本発明における電縫鋼管の造管工程を示す模式図である。FIG. 2 is a schematic view showing a pipe making process of an electrosewn steel pipe in the present invention. 図3は、本発明の角形鋼管の成形過程を示す模式図である。FIG. 3 is a schematic view showing a forming process of the square steel pipe of the present invention. 図4は、電縫鋼管の溶接部における溶融凝固部を説明する概略図である。FIG. 4 is a schematic view illustrating a melt-solidified portion in a welded portion of an electrosewn steel pipe. 図5は、本発明の建築構造物の一例を示す概略図である。FIG. 5 is a schematic view showing an example of the building structure of the present invention. 図6は、本発明で実施した平板部および角部の引張試験片の採取位置を示す概略図である。FIG. 6 is a schematic view showing the sampling positions of the tensile test pieces of the flat plate portion and the corner portion carried out in the present invention. 図7は、本発明で実施した角部の引張試験片の詳細な採取位置を示す概略図である。FIG. 7 is a schematic view showing a detailed sampling position of the tensile test piece at the corner portion carried out in the present invention. 図8は、本発明で実施した角部のシャルピー試験片の採取位置を示す概略図である。FIG. 8 is a schematic view showing the collection position of the Charpy test piece at the corner portion carried out in the present invention. 図9は、本発明で実施した角部のシャルピー試験片の詳細な採取位置を示す概略図である。FIG. 9 is a schematic view showing a detailed collection position of the Charpy impact test piece at the corner portion carried out in the present invention. 図10は、本発明で実施した平坦度の測定方法を説明する概略図である。FIG. 10 is a schematic view illustrating the method for measuring flatness carried out in the present invention.
 本発明について、図面を参照しながら説明する。なお、この実施形態によって本発明が限定されるものではない。 The present invention will be described with reference to the drawings. The present invention is not limited to this embodiment.
 <角形鋼管>
 本発明は、平板部と角部を有する角形鋼管であって、角部の外側の曲率半径Rが、平板部の平均肉厚をt(mm)とするとき、2.0t以上3.0t以下であり、平板部の外面の管軸方向における平坦度が、2.5mm以下であり、角部の外面から肉厚方向で1/4t位置における均一伸びE2が、平板部の外面から肉厚方向で1/4t位置における均一伸びE1に対して0.60倍以上であり、角部の外面から肉厚方向で1/4t位置における-10℃でのシャルピー吸収エネルギーが100J以上である。
<Square steel pipe>
The present invention is a square steel pipe having a flat plate portion and a corner portion, and the radius of curvature R outside the corner portion is 2.0 t or more and 3.0 t or less when the average wall thickness of the flat plate portion is t (mm). The flatness of the outer surface of the flat plate portion in the pipe axis direction is 2.5 mm or less, and the uniform elongation E2 at the 1/4 t position in the wall thickness direction from the outer surface of the corner portion is from the outer surface of the flat plate portion in the wall thickness direction. It is 0.60 times or more with respect to the uniform elongation E1 at the 1 / 4t position, and the charmy absorption energy at −10 ° C. at the 1 / 4t position in the wall thickness direction from the outer surface of the corner portion is 100J or more.
 図1には、本発明の角形鋼管10の管軸方向に対して垂直な断面を示す。 FIG. 1 shows a cross section perpendicular to the pipe axis direction of the square steel pipe 10 of the present invention.
 本発明の角形鋼管10は、管周方向に平板部11と角部12が交互に複数形成される。図1に示す例では、角形鋼管10は、管周方向に角部12と平板部11が順に4つずつ形成される。角形鋼管10は、管軸方向に対して垂直な断面視で長方形(略長方形)あるいは正方形(略正方形)である。図1では、角部12を挟んで隣接する2つの平板部11の辺長をH、Hとするとき、H>H、すなわち後述の溶接部(電縫溶接部)13に対向する平板部の辺長Hが、それに隣接する平板部11の辺長Hよりも短い関係にある。本発明ではこの一例に限定されず、H=Hの関係でもよく、H<Hの関係でもよい。 In the square steel pipe 10 of the present invention, a plurality of flat plate portions 11 and square portions 12 are alternately formed in the circumferential direction of the pipe. In the example shown in FIG. 1, in the square steel pipe 10, four square portions 12 and four flat plate portions 11 are formed in order in the circumferential direction of the pipe. The square steel pipe 10 is a rectangle (substantially rectangular) or a square (substantially square) in a cross-sectional view perpendicular to the pipe axis direction. In FIG. 1, when the side lengths of two flat plate portions 11 adjacent to each other across the corner portion 12 are H 1 and H 2 , H 1 > H 2 , that is, facing the welded portion (electrically sewn welded portion) 13 described later. The side length H 2 of the flat plate portion to be welded is shorter than the side length H 1 of the flat plate portion 11 adjacent thereto. The present invention is not limited to this example, and the relationship may be H 1 = H 2 or H 1 <H 2 .
 角形鋼管10は、電縫鋼管を素管とし、素管を成形してロール成形角形鋼管とすることで製造される。このため、角形鋼管10は、平板部11に形成され、管軸方向に延びた電縫溶接部13を有する。図示は省略するが、電縫溶接部13の溶融凝固部の管周方向の幅は、管全厚にわたり1.0μm以上1000μm以下である。 The square steel pipe 10 is manufactured by using an electrosewn steel pipe as a raw pipe and forming the raw pipe into a roll-formed square steel pipe. Therefore, the square steel pipe 10 is formed on the flat plate portion 11 and has an electric resistance welded portion 13 extending in the pipe axis direction. Although not shown, the width of the melt-solidified portion of the electric stitch welded portion 13 in the tube circumferential direction is 1.0 μm or more and 1000 μm or less over the entire thickness of the pipe.
 また、本発明の角形鋼管10は、角部の外側の曲率半径Rが、平板部の平均肉厚をt(mm)とするとき、2.0t以上3.0t以下である。平均肉厚tは、後述する式(3)で算出される値である。 Further, in the square steel pipe 10 of the present invention, the radius of curvature R on the outside of the corner portion is 2.0 t or more and 3.0 t or less when the average wall thickness of the flat plate portion is t (mm). The average wall thickness t is a value calculated by the formula (3) described later.
 角部の外側の曲率半径Rが、2.0t未満の場合、鋼帯を成形する際の角部の周方向曲げひずみが大きくなる。その結果、角部において本発明で目的とする延性および靭性が得られない。一方、角部の外側の曲率半径Rが3.0t超えの場合、角成形スタンドにおける平板部の周方向曲げ戻しひずみ量(および角部の周方向曲げひずみ量)が小さくなる。その結果、平板部において本発明で目的とする平坦度が得られない。上記した曲率半径Rは、好ましくは2.2t以上であり、好ましくは2.9t以下である。 When the radius of curvature R on the outside of the corner is less than 2.0t, the circumferential bending strain of the corner when forming the steel strip becomes large. As a result, the ductility and toughness desired in the present invention cannot be obtained at the corners. On the other hand, when the radius of curvature R on the outside of the corner portion exceeds 3.0 t, the amount of circumferential bending back strain (and the amount of circumferential bending strain of the corner portion) of the flat plate portion in the square forming stand becomes small. As a result, the flatness desired in the present invention cannot be obtained in the flat plate portion. The radius of curvature R described above is preferably 2.2 t or more, and preferably 2.9 t or less.
 なお、本発明では、後述の実施例に記載するように、複数個所の曲率半径を測定し、その最大値および最小値が上記範囲内にある場合に、角部の外側の曲率半径Rが小さいと評価する。このように評価する理由は、耐震性および施工性に対し、角形鋼管の角部のRは、4か所の平均値としてではなく、個々の値が独立して作用するからである。 In the present invention, as described in Examples described later, when the radius of curvature at a plurality of locations is measured and the maximum and minimum values thereof are within the above range, the radius of curvature R outside the corner portion is small. Evaluate as. The reason for this evaluation is that the R of the corners of the square steel pipe acts independently on the seismic resistance and workability, not as the average value of the four points, but as the individual values.
 角部の外側の曲率半径Rとは、図1に示すように、角部12(図1の例では右上側の角部)に隣接する両側の平板部11の外面から引き延ばした直線(延長線)L1およびL2の交点Pを通り、延長線L1またはL2と45°の角をなす直線Lと、角部12の外側の曲線との交点Bにおける曲率半径をいう。 As shown in FIG. 1, the radius of curvature R on the outside of the corner portion is a straight line (extension line) extended from the outer surface of the flat plate portions 11 on both sides adjacent to the corner portion 12 (the corner portion on the upper right side in the example of FIG. 1). ) The radius of curvature at the intersection B of the straight line L passing through the intersection P of L1 and L2 and forming an angle of 45 ° with the extension line L1 or L2 and the curve outside the corner 12.
 上記曲率半径Rの測定は、延長線L1、L2と平板部11、角部12との接続点(図1に示す点A、点A’)および角部12の外面からなり、中心が直線L上に存在する中心角90°の扇形において、直線Lと角部12の外面の交点Bを中心とした中心角65°の範囲で行う。曲率半径の測定方法は、例えば、上記の中心角65°の範囲において角部12の外面とよく一致するラジアルゲージから曲率半径を計測する方法が挙げられるが、この方法以外でも測定することは可能である。 The measurement of the radius of curvature R consists of the connection points (points A and A'in FIG. 1) between the extension lines L1 and L2 and the flat plate portion 11, the corner portion 12, and the outer surface of the corner portion 12, and the center is a straight line L. In the fan shape having a central angle of 90 ° existing above, this is performed within a range of a central angle of 65 ° centered on the intersection B of the straight line L and the outer surface of the corner portion 12. As a method for measuring the radius of curvature, for example, a method of measuring the radius of curvature from a radial gauge that matches well with the outer surface of the corner portion 12 in the above-mentioned range of a central angle of 65 ° can be mentioned, but measurement other than this method is also possible. Is.
 さらに、本発明の角形鋼管10は、平板部11の外面の管軸方向における平坦度が、2.5mm以下である。 Further, in the square steel pipe 10 of the present invention, the flatness of the outer surface of the flat plate portion 11 in the pipe axis direction is 2.5 mm or less.
 図10を用いて平坦度について説明する。平坦度は、図10に示すように、管軸方向に対して垂直な面の断面において、平板部の外面の同一辺上における周方向両端の2点を通る直線に対する最大膨らみ量および最大凹み量を測定して求めた値である。なお、本発明では後述する実施例に記載の方法で平坦度を求めた。 The flatness will be described with reference to FIG. As shown in FIG. 10, the flatness is the maximum bulge amount and maximum dent amount with respect to a straight line passing through two points in the circumferential direction on the same side of the outer surface of the flat plate portion in the cross section of the surface perpendicular to the pipe axis direction. It is a value obtained by measuring. In the present invention, the flatness was determined by the method described in Examples described later.
 上記の平坦度が2.5mmを超える場合、角形鋼管の曲げ変形時の耐座屈性が低下する。その結果、角形鋼管の耐震性が低下する。また、梁材との接合面が大きく湾曲するため、溶接接合が困難になる。その結果、施工性が低下する。平坦度は、値が小さいほど良好となる。平坦度の下限を規定する必要はないが、平坦度の下限として、0.6mmを許容できる。平坦度の下限は、好ましくは、0.2mmであり、より好ましくは、0mmである。好ましくは2.0mm以下であり、より好ましくは1.5mm以下である。 If the flatness exceeds 2.5 mm, the buckling resistance of the square steel pipe during bending deformation will decrease. As a result, the seismic resistance of the square steel pipe is reduced. In addition, since the joint surface with the beam material is greatly curved, welding joint becomes difficult. As a result, workability is reduced. The smaller the value, the better the flatness. It is not necessary to specify the lower limit of flatness, but 0.6 mm is acceptable as the lower limit of flatness. The lower limit of flatness is preferably 0.2 mm, more preferably 0 mm. It is preferably 2.0 mm or less, and more preferably 1.5 mm or less.
 さらに、本発明の角形鋼管10は、角部の外面から肉厚方向で1/4t位置における均一伸びE2が、平板部の外面から肉厚方向で1/4t位置における均一伸びE1に対して0.60倍以上である。 Further, in the square steel pipe 10 of the present invention, the uniform elongation E2 at the 1 / 4t position in the wall thickness direction from the outer surface of the corner portion is 0 with respect to the uniform elongation E1 at the 1 / 4t position in the wall thickness direction from the outer surface of the flat plate portion. .60 times or more.
 角形鋼管は、地震力等の大きな外力を受けた際に、特に角部の外面が大きく変形する。このため、角形鋼管は、角部の外面の延性および靭性を十分に高める必要がある。 The outer surface of the square steel pipe is greatly deformed especially when it receives a large external force such as seismic force. Therefore, the square steel pipe needs to sufficiently enhance the ductility and toughness of the outer surface of the corner portion.
 平板部の外面から肉厚方向で1/4t位置における均一伸びE1に対する、角部の外面から肉厚方向で1/4t位置における均一伸びE2の値(E2/E1の値)が、0.60未満の場合、角部外面側の延性が小さくなる。その結果、角形鋼管の耐震性が低下する。E2/E1の値は、好ましくは0.70以上であり、より好ましくは0.80以上であり、さらに好ましくは0.82以上である。E2/E1の値の上限は特に規定しないが、角部は平板部よりもロール成形時の加工硬化量が大きく、均一伸びが小さいことから、1.00以下である。 The value of uniform elongation E2 (value of E2 / E1) at the 1 / 4t position from the outer surface of the corner portion in the wall thickness direction is 0.60 with respect to the uniform elongation E1 at the 1 / 4t position in the wall thickness direction from the outer surface of the flat plate portion. If it is less than, the ductility on the outer surface side of the corner becomes small. As a result, the seismic resistance of the square steel pipe is reduced. The value of E2 / E1 is preferably 0.70 or more, more preferably 0.80 or more, and further preferably 0.82 or more. The upper limit of the value of E2 / E1 is not particularly specified, but the corner portion is 1.00 or less because the work hardening amount at the time of roll forming is larger and the uniform elongation is smaller than that of the flat plate portion.
 さらに、本発明の角形鋼管10は、角部12の外面から肉厚方向で1/4t位置において、-10℃における角部12のシャルピー吸収エネルギーが100J以上である。このシャルピー吸収エネルギーが100J未満の場合、地震力等の大きな外力を受けた際に、塑性変形せずに脆性破壊する危険性が高くなる。上記シャルピー吸収エネルギーは、好ましくは150J以上であり、より好ましくは200J以上である。 Further, the square steel pipe 10 of the present invention has a Charpy absorption energy of 100 J or more at −10 ° C. at a position 1 / 4t in the wall thickness direction from the outer surface of the corner portion 12. If the Charpy absorption energy is less than 100 J, there is a high risk of brittle fracture without plastic deformation when a large external force such as an earthquake force is applied. The Charpy absorption energy is preferably 150 J or more, and more preferably 200 J or more.
 なお、本発明の角形鋼管10は、上記した構成に加えて、さらに次の構成を有することが好ましい。 The square steel pipe 10 of the present invention preferably has the following configuration in addition to the above configuration.
 角形鋼管10の平板部の平均肉厚をt(mm)、平板部の平均辺長をH(mm)とするとき、上記平均肉厚tが上記平均辺長Hに対して0.030倍超とすることが好ましい。 When the average wall thickness of the flat plate portion of the square steel pipe 10 is t (mm) and the average side length of the flat plate portion is H (mm), the average wall thickness t is more than 0.030 times the average side length H. Is preferable.
 上述したように、角形鋼管では、平均辺長Hに対する平均肉厚tの比(t/H)が大きいほど、かつ、角部の曲率半径が小さいほど、角部を成形するのに必要な周方向曲げひずみが大きくなり、角部の曲げ変形量が大きくなる。その結果、上記比(t/H)が大きな角形鋼管では、角部の延性および靱性は低くなる傾向にある。 As described above, in a square steel pipe, the larger the ratio (t / H) of the average wall thickness t to the average side length H and the smaller the radius of curvature of the corner, the more the circumference required to form the corner. The directional bending strain increases, and the amount of bending deformation at the corners increases. As a result, in a square steel pipe having a large ratio (t / H), the ductility and toughness of the corners tend to be low.
 上記比(t/H)の値が、0.030以下の場合、柱材としての耐力が低くなるため、適用できる建築構造物が限られる。したがって、上記比(t/H)は0.030超えとすることが好ましい。より好ましくは0.035以上であり、さらに好ましくは0.040以上である。一方、角部の延性および靭性の確保のため、上記比(t/H)の上限は0.10が好ましい。より好ましくは0.080以下である。 When the value of the above ratio (t / H) is 0.030 or less, the proof stress as a pillar material becomes low, so that the applicable building structure is limited. Therefore, the ratio (t / H) is preferably more than 0.030. It is more preferably 0.035 or more, still more preferably 0.040 or more. On the other hand, in order to secure the ductility and toughness of the corners, the upper limit of the above ratio (t / H) is preferably 0.10. More preferably, it is 0.080 or less.
 ここで、平均肉厚t(mm)は、次の式(3)で求められる。
t=(t+t+t)/3・・・式(3)
式(3)において、t、t:溶接部(電縫溶接部)13を含む平板部11に対して角部12を挟んで隣接する2つの平板部11の管周方向中央位置における肉厚(mm)、t:溶接部(電縫溶接部)を含む平板部に対向する平板部の管周方向中央位置における肉厚(mm)である。すなわち、平均肉厚tは、溶接部を含む平板部を除く3つの平板部における、管周方向に対して中央位置の肉厚の平均値である(図1を参照)。
Here, the average wall thickness t (mm) is obtained by the following formula (3).
t = (t 1 + t 2 + t 3 ) / 3 ... Equation (3)
In formula (3), t 1 , t 2 : meat at the center position in the pipe circumferential direction of two flat plate portions 11 adjacent to the flat plate portion 11 including the welded portion (electrically sewn welded portion) 13 with the corner portion 12 sandwiched between them. Thickness (mm), t 3 : The wall thickness (mm) at the center position in the pipe circumferential direction of the flat plate portion facing the flat plate portion including the welded portion (electrically sewn welded portion). That is, the average wall thickness t is the average value of the wall thickness at the center position with respect to the pipe circumferential direction in the three flat plate portions excluding the flat plate portion including the welded portion (see FIG. 1).
 平均辺長H(mm)は、次の式(4)で求められる。
H=(H+H)/2・・・式(4)
式(4)において、H:任意の平板部の管軸方向に対して垂直な断面の辺長(図1中の縦の辺長)(mm)、H:辺長がHである平板部に対して角部を挟んで隣接する平板部の辺長(図1中の横の辺長)(mm)である。すなわち、平均辺長Hは、角部を挟んで隣接する2つの平板部11における、管軸方向に対して垂直な断面の辺長の平均値である。
The average side length H (mm) is calculated by the following equation (4).
H = (H 1 + H 2 ) / 2 ... Equation (4)
In equation (4), H 1 : the side length of the cross section perpendicular to the pipe axis direction of any flat plate portion (vertical side length in FIG. 1) (mm), H 2 : the side length is H 1 . It is the side length (horizontal side length in FIG. 1) (mm) of the flat plate portion adjacent to the flat plate portion with the corner portion interposed therebetween. That is, the average side length H is the average value of the side lengths of the cross sections perpendicular to the pipe axis direction in the two flat plate portions 11 adjacent to each other with the corner portion interposed therebetween.
 また、本発明の角形鋼管10は、特に、高さ20mを超える中層建築物や、工場、倉庫などの大型建築物の建築部材に好適に用いることができる観点から、平均肉厚tが20mm以上40mm以下であることが好ましい。中層建築物および大型建築物の建築部材に好適に用いることができる観点から、平板部11の降伏強度が295MPa以上であり、平板部11の引張強度が400MPa以上であることが好ましく、耐震性により一層優れることから、角部12の降伏比が90%以下であることが好ましい。
より好ましくは、平板部11の降伏強度が320MPa以上であり、平板部11の引張強度が410MPa以上であり、角部12の降伏比が89.5%以下である。また好ましくは、平板部11の降伏強度が500MPa以下であり、平板部11の引張強度が600MPa以下であり、角部12の降伏比が80.0%以上である。
Further, the square steel pipe 10 of the present invention has an average wall thickness t of 20 mm or more, particularly from the viewpoint that it can be suitably used for a medium-rise building having a height of more than 20 m and a building member of a large building such as a factory or a warehouse. It is preferably 40 mm or less. From the viewpoint that it can be suitably used for building members of medium-rise buildings and large buildings, the yield strength of the flat plate portion 11 is preferably 295 MPa or more, and the tensile strength of the flat plate portion 11 is preferably 400 MPa or more, depending on the seismic resistance. It is preferable that the yield ratio of the corner portion 12 is 90% or less because it is more excellent.
More preferably, the yield strength of the flat plate portion 11 is 320 MPa or more, the tensile strength of the flat plate portion 11 is 410 MPa or more, and the yield ratio of the corner portion 12 is 89.5% or less. Further, preferably, the yield strength of the flat plate portion 11 is 500 MPa or less, the tensile strength of the flat plate portion 11 is 600 MPa or less, and the yield ratio of the corner portion 12 is 80.0% or more.
 上記の降伏強度、引張強度、降伏比は、後述する実施例に記載するように、JIS Z 2241の規定に準拠して引張試験を実施することで得られる。シャルピー吸収エネルギーは、後述する実施例に記載するように、JIS Z 2242の規定に準拠して、Vノッチ標準試験片を用い、試験温度:-10℃でシャルピー衝撃試験を実施することで得られる。 The above-mentioned yield strength, tensile strength, and yield ratio can be obtained by carrying out a tensile test in accordance with the provisions of JIS Z 2241 as described in Examples described later. Charpy absorption energy can be obtained by conducting a Charpy impact test at a test temperature of -10 ° C using a V-notch standard test piece in accordance with JIS Z 2242, as described in Examples described later. ..
 次に、上記した機械的特性や溶接性を確保する観点から、本発明の角形鋼管10における成分組成および鋼組織の好ましい範囲とその限定理由について説明する。 Next, from the viewpoint of ensuring the above-mentioned mechanical properties and weldability, the component composition and the preferable range of the steel structure in the square steel pipe 10 of the present invention and the reasons for their limitation will be described.
 まず、成分組成について説明する。本発明の角形鋼管10は、質量%で、C:0.020~0.45%、Si:0.01~1.0%、Mn:0.30~3.0%、P:0.10%以下、S:0.050%以下、Al:0.005~0.10%、N:0.010%以下、Ti:0.001~0.15%を含有し、残部がFeおよび不可避的不純物からなる成分組成を有することが好ましい。
なお、本明細書において、特に断りがない限り、鋼組成を示す「%」は「質量%」である。以下の成分組成は、角形鋼管の溶接部を除いた平板部および角部の成分組成である。
First, the component composition will be described. The square steel pipe 10 of the present invention has a mass% of C: 0.020 to 0.45%, Si: 0.01 to 1.0%, Mn: 0.30 to 3.0%, P: 0.10. % Or less, S: 0.050% or less, Al: 0.005 to 0.10%, N: 0.010% or less, Ti: 0.001 to 0.15%, and the balance is Fe and unavoidable. It is preferable to have a component composition composed of impurities.
In the present specification, unless otherwise specified, "%" indicating the steel composition is "mass%". The following composition is the composition of the flat plate portion and the corner portion excluding the welded portion of the square steel pipe.
 C:0.020~0.45%
 Cは、固溶強化により鋼の強度を上昇させる元素である。また、Cはフェライト変態開始温度を低下させることで組織の微細化に寄与する元素である。このような効果を得るために、0.020%以上のCを含有する。また、Cは、パーライトの生成を促進し、焼入れ性を高めてマルテンサイトの生成に寄与し、オーステナイトの安定化に寄与することから、硬質相の形成にも寄与する元素である。C含有量が0.45%を超えると、硬質相の割合が高くなり靱性が低下し、また溶接性も悪化する。このため、C含有量は0.020~0.45%とする。C含有量は、好ましくは0.040%以上であり、より好ましくは0.050%以上である。また、C含有量は、好ましくは0.40%以下であり、より好ましくは0.30%以下である。
C: 0.020 to 0.45%
C is an element that increases the strength of steel by solid solution strengthening. Further, C is an element that contributes to the miniaturization of the structure by lowering the ferrite transformation start temperature. In order to obtain such an effect, it contains 0.020% or more of C. In addition, C is an element that promotes the formation of pearlite, enhances hardenability, contributes to the formation of martensite, and contributes to the stabilization of austenite, and thus contributes to the formation of a hard phase. When the C content exceeds 0.45%, the proportion of the hard phase becomes high, the toughness decreases, and the weldability also deteriorates. Therefore, the C content is set to 0.020 to 0.45%. The C content is preferably 0.040% or more, more preferably 0.050% or more. The C content is preferably 0.40% or less, more preferably 0.30% or less.
 Si:0.01~1.0%
 Siは、固溶強化により鋼の強度を上昇させる元素である。このような効果を得るためには、0.01%以上のSiを含有する。しかし、Si含有量が1.0%を超えると、電縫溶接部に酸化物が生成しやすくなり、溶接部の特性が低下する。また、電縫溶接部以外の母材部の降伏比が高くなり、靱性が低下する。このため、Si含有量は0.01~1.0%とする。Si含有量は、好ましくは0.02%以上であり、より好ましくは0.05%以上である。また、Si含有量は、好ましくは0.50%以下であり、より好ましくは0.40%以下である。
Si: 0.01-1.0%
Si is an element that increases the strength of steel by solid solution strengthening. In order to obtain such an effect, it contains 0.01% or more of Si. However, when the Si content exceeds 1.0%, oxides are likely to be generated in the electrosewn welded portion, and the characteristics of the welded portion deteriorate. In addition, the yield ratio of the base metal portion other than the electric stitch welded portion becomes high, and the toughness decreases. Therefore, the Si content is set to 0.01 to 1.0%. The Si content is preferably 0.02% or more, more preferably 0.05% or more. The Si content is preferably 0.50% or less, more preferably 0.40% or less.
 Mn:0.30~3.0%
 Mnは、固溶強化により鋼の強度を上昇させる元素である。また、Mnはフェライト変態開始温度を低下させることで組織の微細化に寄与する元素である。このような効果を得るためには、0.30%以上のMnを含有する。しかしながら、Mn含有量が3.0%を超えると、電縫溶接部に酸化物が生成しやすくなり、溶接部の特性が低下する。また、固溶強化および組織の微細化のため、降伏応力が高くなり、所望の降伏比が得られなくなる。このため、Mn含有量は0.30~3.0%とする。Mn含有量は、好ましくは0.40%以上であり、より好ましくは0.50%以上である。また、Mn含有量は、好ましくは2.5%以下であり、より好ましくは2.0%以下である。
Mn: 0.30 to 3.0%
Mn is an element that increases the strength of steel by solid solution strengthening. Mn is an element that contributes to the miniaturization of the structure by lowering the ferrite transformation start temperature. In order to obtain such an effect, Mn of 0.30% or more is contained. However, when the Mn content exceeds 3.0%, oxides are likely to be generated in the electrosewn welded portion, and the characteristics of the welded portion deteriorate. In addition, the yield stress becomes high due to the solid solution strengthening and the miniaturization of the structure, and the desired yield ratio cannot be obtained. Therefore, the Mn content is set to 0.30 to 3.0%. The Mn content is preferably 0.40% or more, more preferably 0.50% or more. The Mn content is preferably 2.5% or less, more preferably 2.0% or less.
 P:0.10%以下
 Pは、粒界に偏析し材料の不均質を招くため、不可避的不純物としてできるだけ低減することが好ましいが、0.10%までは許容できる。このため、P含有量は0.10%以下とする。P含有量は、好ましくは0.050%以下であり、より好ましくは0.030%以下である。なお、特にPの下限は規定しないが、過度の低減は製錬コストの高騰を招くため、P含有量は0.002%以上とすることが好ましい。
P: 0.10% or less Since P segregates at the grain boundaries and causes inhomogeneity of the material, it is preferable to reduce it as an unavoidable impurity as much as possible, but up to 0.10% is acceptable. Therefore, the P content is set to 0.10% or less. The P content is preferably 0.050% or less, more preferably 0.030% or less. Although the lower limit of P is not specified, the P content is preferably 0.002% or more because excessive reduction causes an increase in smelting cost.
 S:0.050%以下
 Sは、鋼中では通常、MnSとして存在するが、MnSは、熱間圧延工程で薄く延伸され、延性に悪影響を及ぼす。このため、本発明ではSをできるだけ低減することが好ましいが、0.050%までは許容できる。このため、S含有量は0.050%以下とする。S含有量は、好ましくは0.030%以下であり、より好ましくは0.010%以下である。なお、特にSの下限は規定しないが、過度の低減は製錬コストの高騰を招くため、Sは0.0002%以上とすることが好ましい。
S: 0.050% or less S usually exists as MnS in steel, but MnS is thinly stretched in the hot rolling process and adversely affects ductility. Therefore, in the present invention, it is preferable to reduce S as much as possible, but up to 0.050% is acceptable. Therefore, the S content is set to 0.050% or less. The S content is preferably 0.030% or less, more preferably 0.010% or less. Although the lower limit of S is not specified, it is preferable that S is 0.0002% or more because excessive reduction causes an increase in smelting cost.
 Al:0.005~0.10%
 Alは、強力な脱酸剤として作用する元素である。このような効果を得るためには、0.005%以上のAlを含有することが必要である。しかし、Al含有量が0.10%を超えると溶接性が悪化するとともに、アルミナ系介在物が多くなり、表面性状が悪化する。また溶接部の靱性も低下する。このため、Al含有量は0.005~0.10%とする。Al含有量は、好ましくは0.010%以上であり、より好ましくは0.015%以上である。Al含有量は、好ましくは0.080%以下であり、より好ましくは0.070%以下である。
Al: 0.005 to 0.10%
Al is an element that acts as a powerful deoxidizer. In order to obtain such an effect, it is necessary to contain 0.005% or more of Al. However, when the Al content exceeds 0.10%, the weldability deteriorates, the amount of alumina-based inclusions increases, and the surface texture deteriorates. In addition, the toughness of the weld is reduced. Therefore, the Al content is set to 0.005 to 0.10%. The Al content is preferably 0.010% or more, more preferably 0.015% or more. The Al content is preferably 0.080% or less, more preferably 0.070% or less.
 N:0.010%以下
 Nは、不可避的不純物であり、転位の運動を強固に固着することで靭性を低下させる作用を有する元素である。本発明では、Nは不純物としてできるだけ低減することが望ましいが、Nの含有量は0.010%までは許容できる。このため、N含有量は0.010%以下とする。N含有量は、好ましくは0.0080%以下である。精錬コストの観点から、N含有量は好ましくは0.0008%以上である。
N: 0.010% or less N is an unavoidable impurity and is an element having an action of lowering toughness by firmly fixing the motion of dislocations. In the present invention, it is desirable to reduce N as an impurity as much as possible, but the content of N is acceptable up to 0.010%. Therefore, the N content is 0.010% or less. The N content is preferably 0.0080% or less. From the viewpoint of refining cost, the N content is preferably 0.0008% or more.
 Ti:0.001~0.15%
 Tiは、鋼中で微細な炭化物、窒化物を形成することで鋼の強度向上に寄与する元素である。また、Nとの親和性が高いため鋼中のNを窒化物として無害化し、鋼の靭性向上にも寄与する元素である。上記した効果を得るため、0.001%以上のTiを含有することが好ましい。しかし、Ti含有量が0.15%を超えると降伏比が高くなり靱性が低下する。このため、Ti含有量は0.15%以下とする。Ti含有量は、より好ましくは0.002%以上であり、さらに好ましくは0.005%以上である。Ti含有量は、より好ましくは0.10%以下であり、さらに好ましくは0.08%以下である。
Ti: 0.001 to 0.15%
Ti is an element that contributes to improving the strength of steel by forming fine carbides and nitrides in the steel. Further, since it has a high affinity with N, it is an element that detoxifies N in steel as a nitride and contributes to improvement of toughness of steel. In order to obtain the above-mentioned effects, it is preferable to contain 0.001% or more of Ti. However, when the Ti content exceeds 0.15%, the yield ratio becomes high and the toughness decreases. Therefore, the Ti content is set to 0.15% or less. The Ti content is more preferably 0.002% or more, still more preferably 0.005% or more. The Ti content is more preferably 0.10% or less, still more preferably 0.08% or less.
 上記した成分以外の残部は、Feおよび不可避的不純物である。ただし、不可避的不純物として、Oを0.0050%以下含有してもよい。ここでのOは、酸化物としてのOを含むトータル酸素のことを指す。Nb:0~0.001%未満、V:0~0.001%未満、Cr:0~0.01%未満、Mo:0~0.01%未満、Cu:0~0.01%未満、Ni:0~0.01%未満、Ca:0~0.0002%未満、B:0~0.0001%未満を不可避的不純物として扱う。 The rest other than the above components are Fe and unavoidable impurities. However, as an unavoidable impurity, O may be contained in an amount of 0.0050% or less. Here, O refers to total oxygen including O as an oxide. Nb: 0 to less than 0.001%, V: 0 to less than 0.001%, Cr: 0 to less than 0.01%, Mo: 0 to less than 0.01%, Cu: 0 to less than 0.01%, Ni: 0 to less than 0.01%, Ca: 0 to less than 0.0002%, B: less than 0 to 0.0001% are treated as unavoidable impurities.
 本発明では、上記した成分を基本の成分組成とすることが好ましい。上記した好適元素で本発明で目的とする特性は得られるが、更なる特性の向上を目的として、さらに、必要に応じて、Nb:0.001~0.15%、V:0.001~0.15%、Cr:0.01~1.0%、Mo:0.01~1.0%、Cu:0.01~1.0%、Ni:0.01~1.0%、Ca:0.0002~0.010%、B:0.0001~0.010%のうちから選ばれた1種または2種以上を含有することができる。 In the present invention, it is preferable to use the above-mentioned components as the basic component composition. Although the above-mentioned suitable elements can obtain the characteristics desired in the present invention, further, for the purpose of further improving the characteristics, Nb: 0.001 to 0.15%, V: 0.001 to, if necessary. 0.15%, Cr: 0.01-1.0%, Mo: 0.01-1.0%, Cu: 0.01-1.0%, Ni: 0.01-1.0%, Ca It can contain one or more selected from: 0.0002 to 0.010% and B: 0.0001 to 0.010%.
 Nb:0.001~0.15%
 Nbは、鋼中で微細な炭化物、窒化物を形成することで鋼の強度向上に寄与し、また、熱間圧延中のオーステナイトの粗大化を抑制することで組織の微細化にも寄与する元素であり、必要に応じて含有できる。上記した効果を得るため、Nbを含有する場合は、0.001%以上のNbを含有することが好ましい。しかし、Nb含有量が0.15%を超えると降伏比が高くなり、靱性が低下する。このため、Nbを含有する場合は、Nb含有量は0.15%以下とすることが好ましい。Nb含有量は、より好ましくは0.002%以上であり、さらに好ましくは0.005%以上である。Nb含有量は、より好ましくは0.10%以下であり、さらに好ましくは0.08%以下である。
Nb: 0.001 to 0.15%
Nb is an element that contributes to improving the strength of steel by forming fine carbides and nitrides in steel, and also contributes to the miniaturization of structure by suppressing the coarsening of austenite during hot rolling. And can be contained as needed. In order to obtain the above-mentioned effects, when Nb is contained, it is preferable to contain 0.001% or more of Nb. However, when the Nb content exceeds 0.15%, the yield ratio becomes high and the toughness decreases. Therefore, when Nb is contained, the Nb content is preferably 0.15% or less. The Nb content is more preferably 0.002% or more, still more preferably 0.005% or more. The Nb content is more preferably 0.10% or less, still more preferably 0.08% or less.
 V:0.001~0.15%
 Vは、鋼中で微細な炭化物、窒化物を形成することで鋼の強度向上に寄与する元素であり、必要に応じて含有できる。上記した効果を得るため、Vを含有する場合は、0.001%以上のVを含有することが好ましい。しかし、V含有量が0.15%を超えると降伏比が高くなり靱性が低下する。このため、Vを含有する場合は、V含有量は0.15%以下とすることが好ましい。V含有量は、より好ましくは0.002%以上であり、さらに好ましくは0.005%以上である。V含有量は、より好ましくは0.10%以下であり、さらに好ましくは0.08%以下である。
V: 0.001 to 0.15%
V is an element that contributes to improving the strength of steel by forming fine carbides and nitrides in the steel, and can be contained as needed. In order to obtain the above-mentioned effect, when V is contained, it is preferable to contain 0.001% or more of V. However, when the V content exceeds 0.15%, the yield ratio becomes high and the toughness decreases. Therefore, when V is contained, the V content is preferably 0.15% or less. The V content is more preferably 0.002% or more, still more preferably 0.005% or more. The V content is more preferably 0.10% or less, still more preferably 0.08% or less.
 Cr:0.01~1.0%
 Crは、鋼の焼入れ性を高め、鋼の強度を上昇させる元素であり、必要に応じて含有することができる。上記した効果を得るため、Crを含有する場合には、Cr含有量は0.01%以上とすることが好ましい。一方、1.0%を超えるCrの含有は、靱性の低下および溶接性の悪化を招く恐れがある。よって、Crを含有する場合には、Cr含有量は1.0%以下とすることが好ましい。Cr含有量は、より好ましくは0.02%以上であり、さらに好ましくは、0.05%以上である。また、Cr含有量は、より好ましくは0.90%以下であり、さらに好ましくは0.80%以下である。
Cr: 0.01-1.0%
Cr is an element that enhances the hardenability of steel and increases the strength of steel, and can be contained as needed. In order to obtain the above-mentioned effect, when Cr is contained, the Cr content is preferably 0.01% or more. On the other hand, if the content of Cr exceeds 1.0%, the toughness may be lowered and the weldability may be deteriorated. Therefore, when Cr is contained, the Cr content is preferably 1.0% or less. The Cr content is more preferably 0.02% or more, still more preferably 0.05% or more. The Cr content is more preferably 0.90% or less, still more preferably 0.80% or less.
 Mo:0.01~1.0%
 Moは、鋼の焼入れ性を高め、鋼の強度を上昇させる元素であり、必要に応じて含有することができる。上記した効果を得るため、Moを含有する場合には、Mo含有量は0.01%以上とすることが好ましい。一方、1.0%を超えるMoの含有は、靱性の低下および溶接性の悪化を招く恐れがある。よって、Moを含有する場合には、Mo含有量は1.0%以下とすることが好ましい。Mo含有量は、より好ましくは0.02%以上であり、さらに好ましくは0.05%以上である。また、Mo含有量は、より好ましくは0.90%以下であり、さらに好ましくは0.80%以下である。
Mo: 0.01-1.0%
Mo is an element that enhances the hardenability of steel and increases the strength of steel, and can be contained as needed. In order to obtain the above-mentioned effects, when Mo is contained, the Mo content is preferably 0.01% or more. On the other hand, if the content of Mo exceeds 1.0%, the toughness may be lowered and the weldability may be deteriorated. Therefore, when Mo is contained, the Mo content is preferably 1.0% or less. The Mo content is more preferably 0.02% or more, still more preferably 0.05% or more. The Mo content is more preferably 0.90% or less, still more preferably 0.80% or less.
 Cu:0.01~1.0%
 Cuは、固溶強化により鋼の強度を上昇させる元素であり、必要に応じて含有することができる。上記した効果を得るため、Cuを含有する場合には、Cu含有量は0.01%以上とすることが好ましい。一方、1.0%を超えるCuの含有は、靱性の低下および溶接性の悪化を招く恐れがある。よって、Cuを含有する場合には、Cu含有量は1.0%以下とすることが好ましい。Cu含有量は、より好ましくは、0.02%以上であり、さらに好ましくは、0.05%以上である。また、Cu含有量は、より好ましくは0.80%以下であり、さらに好ましくは0.60%以下である。
Cu: 0.01-1.0%
Cu is an element that increases the strength of steel by solid solution strengthening, and can be contained as needed. In order to obtain the above-mentioned effects, when Cu is contained, the Cu content is preferably 0.01% or more. On the other hand, if the content of Cu exceeds 1.0%, the toughness may be lowered and the weldability may be deteriorated. Therefore, when Cu is contained, the Cu content is preferably 1.0% or less. The Cu content is more preferably 0.02% or more, still more preferably 0.05% or more. The Cu content is more preferably 0.80% or less, still more preferably 0.60% or less.
 Ni:0.01~1.0%
 Niは、固溶強化により鋼の強度を上昇させる元素であり、必要に応じて含有することができる。上記した効果を得るため、Niを含有する場合には、Ni含有量は0.01%以上とすることが好ましい。一方、1.0%を超えるNiの含有は、靱性の低下および溶接性の悪化を招く恐れがある。よって、Niを含有する場合には、Ni含有量は1.0%以下とすることが好ましい。Ni含有量は、より好ましくは、0.02%以上であり、さらに好ましくは、0.05%以上である。また、Ni含有量は、より好ましくは0.80%以下であり、さらに好ましくは、0.60%以下である。
Ni: 0.01-1.0%
Ni is an element that increases the strength of steel by solid solution strengthening, and can be contained as needed. In order to obtain the above-mentioned effects, when Ni is contained, the Ni content is preferably 0.01% or more. On the other hand, if the content of Ni exceeds 1.0%, the toughness may be lowered and the weldability may be deteriorated. Therefore, when Ni is contained, the Ni content is preferably 1.0% or less. The Ni content is more preferably 0.02% or more, still more preferably 0.05% or more. The Ni content is more preferably 0.80% or less, still more preferably 0.60% or less.
 Ca:0.0002~0.010%
 Caは、素材鋼板の製造における熱間圧延工程で薄く延伸されるMnS等の硫化物を球状化することで鋼の靱性向上に寄与する元素であり、必要に応じて含有できる。上記した効果を得るため、Caを含有する場合は、0.0002%以上のCaを含有することが好ましい。しかし、Ca含有量が0.010%を超えると鋼中にCa酸化物クラスターが形成され、靱性が悪化する。このため、Caを含有する場合は、Ca含有量は0.010%以下とすることが好ましい。Ca含有量は、より好ましくは0.0005%以上であり、さらに好ましくは0.0010%以上である。また、Ca含有量は、より好ましくは0.008%以下であり、さらに好ましくは0.0060%以下である。
Ca: 0.0002 to 0.010%
Ca is an element that contributes to improving the toughness of steel by spheroidizing sulfides such as MnS that are thinly stretched in the hot rolling process in the production of raw steel sheets, and can be contained as needed. In order to obtain the above-mentioned effects, when Ca is contained, it is preferable to contain 0.0002% or more of Ca. However, when the Ca content exceeds 0.010%, Ca oxide clusters are formed in the steel and the toughness deteriorates. Therefore, when Ca is contained, the Ca content is preferably 0.010% or less. The Ca content is more preferably 0.0005% or more, still more preferably 0.0010% or more. The Ca content is more preferably 0.008% or less, still more preferably 0.0060% or less.
 B:0.0001~0.010%
 Bは、フェライト変態開始温度を低下させることで組織の微細化に寄与する元素であり、必要に応じて含有できる。上記した効果を得るため、Bを含有する場合は、0.0001%以上のBを含有することが好ましい。しかし、B含有量が0.010%を超えると降伏比が上昇し、靱性が悪化する。このため、Bを含有する場合は、B含有量は0.010%以下とすることが好ましい。B含有量は、より好ましくは0.0005%以上であり、さらに好ましくは0.0008%以上である。B含有量は、より好ましくは0.0050%以下であり、さらに好ましくは0.0030%以下であり、さらにより好ましくは0.0020%以下である。
B: 0.0001 to 0.010%
B is an element that contributes to the miniaturization of the structure by lowering the ferrite transformation start temperature, and can be contained as needed. In order to obtain the above-mentioned effect, when B is contained, it is preferable to contain 0.0001% or more of B. However, when the B content exceeds 0.010%, the yield ratio increases and the toughness deteriorates. Therefore, when B is contained, the B content is preferably 0.010% or less. The B content is more preferably 0.0005% or more, still more preferably 0.0008% or more. The B content is more preferably 0.0050% or less, further preferably 0.0030% or less, and even more preferably 0.0020% or less.
 続いて、鋼組織について説明する。本発明の角形鋼管10の平板部の肉厚中央における鋼組織は、フェライトとベイナイトの体積率の合計が、平板部の肉厚中央における鋼組織全体に対して70%以上95%以下であり、残部がパーライト、マルテンサイト、オーステナイトから選択される1種または2種以上からなり、隣り合う結晶の方位差が15°以上の境界で囲まれた領域を結晶粒としたとき、該結晶粒の平均結晶粒径が15.0μm以下であり、結晶粒径で40μm以上の該結晶粒の合計が、平板部の肉厚中央における鋼組織全体に対して体積率で40%以下であることが好ましい。 Next, the steel structure will be explained. In the steel structure at the center of the flat plate portion of the square steel pipe 10 of the present invention, the total volume ratio of ferrite and bainite is 70% or more and 95% or less of the entire steel structure at the center of the flat plate portion. When the balance consists of one or more types selected from pearlite, martensite, and austenite, and the region surrounded by the boundary where the orientation difference between adjacent crystals is 15 ° or more is defined as the crystal grains, the average of the crystal grains is used. It is preferable that the crystal grain size is 15.0 μm or less, and the total of the crystal grains having a crystal grain size of 40 μm or more is 40% or less in terms of volume ratio with respect to the entire steel structure at the center of the wall thickness of the flat plate portion.
 フェライトとベイナイトの体積率の合計:70%以上95%以下
 フェライトは軟質な組織である。また、ベイナイトはフェライトと比べて硬質であり、パーライト、マルテンサイトおよびオーステナイトと比べて軟質であり、靱性に優れた組織である。フェライトおよびベイナイトに硬質な組織(パーライト、マルテンサイトおよびオーステナイト)を混合させた場合、降伏比が低下するが、一方で、硬度差に起因する応力集中により界面が破壊の起点となりやすく、靱性が低下する。そのため、上記した降伏比および靭性を得るためには、平板部の肉厚中央におけるフェライトとベイナイトの体積率の合計は、平板部の肉厚中央における鋼組織全体に対して70%以上95%以下であることが好ましい。フェライトとベイナイトの体積率の合計が70%未満の場合、硬質な組織の割合が高く、降伏応力が上昇するため、降伏比が上昇し、靭性が低下する。また、フェライトとベイナイトの体積率の合計が95%超の場合、引張強度が低下するため、降伏比が上昇する。より好ましくは、73%以上であり、93%以下である。さらに好ましくは、75%以上であり、92%以下である。
Total volume fraction of ferrite and bainite: 70% or more and 95% or less Ferrite has a soft structure. In addition, bainite is harder than ferrite, softer than pearlite, martensite and austenite, and has an excellent toughness structure. When a hard structure (pearlite, martensite and austenite) is mixed with ferrite and bainite, the yield ratio decreases, but on the other hand, the stress concentration caused by the difference in hardness tends to cause the interface to become the starting point of fracture and the toughness decreases. do. Therefore, in order to obtain the above-mentioned yield ratio and toughness, the total volume fraction of ferrite and bainite at the center of the plate thickness is 70% or more and 95% or less of the entire steel structure at the center of the plate portion. Is preferable. When the total volume fraction of ferrite and bainite is less than 70%, the proportion of hard structure is high and the yield stress increases, so that the yield ratio increases and the toughness decreases. Further, when the total volume fraction of ferrite and bainite exceeds 95%, the tensile strength decreases and the yield ratio increases. More preferably, it is 73% or more and 93% or less. More preferably, it is 75% or more and 92% or less.
 なお、フェライトおよびベイナイトを除く残部の組織(残部組織)は、パーライト、マルテンサイト、オーステナイトから選択される1種または2種以上である。残部組織の体積率の合計が5%未満の場合、引張強度が低下するため、降伏比が上昇する。また、残部組織の体積率の合計が30%超の場合、硬質な組織の割合が高く、降伏応力が上昇するため、降伏比が上昇し、靭性が低下する。そのため、残部組織の体積率の合計は、平板部の肉厚中央における鋼板組織全体に対して5%以上30%以下であることが好ましい。より好ましくは7%以上であり27%以下である。さらに好ましくは、8%以上であり、25%以下である。 The remaining structure (residual structure) excluding ferrite and bainite is one or more selected from pearlite, martensite, and austenite. When the total volume fraction of the residual structure is less than 5%, the tensile strength decreases and the yield ratio increases. Further, when the total volume fraction of the residual structure exceeds 30%, the proportion of the hard structure is high and the yield stress increases, so that the yield ratio increases and the toughness decreases. Therefore, the total volume fraction of the remaining structure is preferably 5% or more and 30% or less with respect to the entire steel plate structure at the center of the wall thickness of the flat plate portion. More preferably, it is 7% or more and 27% or less. More preferably, it is 8% or more and 25% or less.
 オーステナイトを除く上記の各種組織(フェライト、ベイナイト、パーライト、マルテンサイト)は、オーステナイト粒界またはオーステナイト粒内の変形帯を核生成サイトとする。角形鋼管の製造に用いる電縫鋼管(素管)の素材鋼板の製造過程における熱間圧延において、オーステナイトの再結晶が生じにくい低温での圧下量を大きくすることで、オーステナイトに多量の転位を導入してオーステナイトを微細化し、かつ粒内に多量の変形帯を導入することができる。これにより、核生成サイトの面積が増加して核生成頻度が高くなり、鋼組織を微細化することができる。 For the above-mentioned various structures (ferrite, bainite, pearlite, martensite) except austenite, the austenite grain boundary or the deformation zone in the austenite grain is the nucleation site. A large amount of dislocations are introduced into austenite by increasing the amount of reduction at low temperatures where recrystallization of austenite is unlikely to occur in hot rolling in the process of manufacturing steel sheets made of electric resistance steel pipes (bare pipes) used in the manufacture of square steel pipes. As a result, austenite can be refined and a large amount of deformation zone can be introduced into the grain. As a result, the area of the nucleation site increases, the frequency of nucleation increases, and the steel structure can be miniaturized.
 本発明では、肉厚中央を中心として肉厚方向に±1.0mmの範囲内に、上述の鋼組織が存在していても同様に上述の効果は得られる。そのため、本発明において「肉厚中央における鋼組織」とは、肉厚中央を中心として肉厚方向に±1.0mmの範囲のいずれかにおいて、上述の鋼組織が存在していることを意味する。 In the present invention, the above-mentioned effect can be similarly obtained even if the above-mentioned steel structure exists within a range of ± 1.0 mm in the wall-thickness direction centering on the center of the wall-thickness. Therefore, in the present invention, the "steel structure at the center of the wall thickness" means that the above-mentioned steel structure exists in any of the range of ± 1.0 mm in the wall thickness direction centering on the center of the wall thickness. ..
 鋼組織の観察としては、まず、組織観察用の試験片を、観察面が角形鋼管の長手方向と肉厚方向の両方に平行な断面かつ平板部の肉厚中央となるように採取し、鏡面研磨した後、ナイタール腐食して作製する。組織観察は、光学顕微鏡(倍率:1000倍)または走査型電子顕微鏡(SEM、倍率:1000倍)を用いて、肉厚中央における組織を観察し、撮像する。得られた光学顕微鏡像およびSEM像から、フェライト、ベイナイトおよび残部(パーライト、マルテンサイト、オーステナイト)の面積率を求める。各組織の面積率は、5視野以上で観察を行い、各視野で得られた値の平均値として算出する。組織観察により得られる面積率を、各組織の体積率とする。 To observe the steel structure, first, a test piece for structure observation is collected so that the observation surface has a cross section parallel to both the longitudinal direction and the wall thickness direction of the square steel pipe and the wall thickness center of the flat plate portion, and a mirror surface is used. After polishing, it is produced by nital corrosion. For tissue observation, an optical microscope (magnification: 1000 times) or a scanning electron microscope (SEM, magnification: 1000 times) is used to observe and image the tissue at the center of the wall thickness. From the obtained optical microscope image and SEM image, the area ratio of ferrite, bainite and the balance (pearlite, martensite, austenite) is determined. The area ratio of each tissue is calculated as the average value of the values obtained in each visual field by observing in 5 or more visual fields. The area ratio obtained by observing the tissue is defined as the volume fraction of each tissue.
 ここで、フェライトは拡散変態による生成物のことであり、転位密度が低くほぼ回復した組織を呈する。ポリゴナルフェライトおよび擬ポリゴナルフェライトがこれに含まれる。 Here, ferrite is a product of diffusion transformation, and exhibits a structure with low dislocation density and almost recovery. This includes polygonal ferrite and pseudopolygonal ferrite.
 ベイナイトは転位密度が高いラス状のフェライトとセメンタイトの複相組織である。 Bainite is a double-phase structure of lath-like ferrite and cementite with high dislocation density.
 パーライトは、鉄と鉄炭化物の共析組織(フェライト+セメンタイト)であり、線状のフェライトとセメンタイトが交互に並んだラメラ状の組織を呈する。 Pearlite is an eutectoid structure of iron and iron carbide (ferrite + cementite), and exhibits a lamellar structure in which linear ferrite and cementite are alternately arranged.
 マルテンサイトは、転位密度が非常に高いラス状の低温変態組織である。SEM像では、フェライトやベイナイトと比較して明るいコントラストを示す。なお、光学顕微鏡像およびSEM像ではマルテンサイトとオーステナイトの識別が難しいため、得られるSEM像からマルテンサイトあるいはオーステナイトとして観察された組織の面積率を測定し、それから後述する方法で測定するオーステナイトの体積率を差し引いた値をマルテンサイトの体積率とする。 Martensite is a lath-like low-temperature transformation structure with a very high dislocation density. The SEM image shows a bright contrast as compared with ferrite and bainite. Since it is difficult to distinguish between martensite and austenite in the optical microscope image and the SEM image, the area ratio of the tissue observed as martensite or austenite is measured from the obtained SEM image, and then the volume of austenite measured by the method described later. The value obtained by subtracting the rate is taken as the volume ratio of martensite.
 オーステナイトの体積率の測定は、転位密度の測定に用いた試験片と同様の方法で作製した試験片を用いて、X線回折により行う。得られたfcc鉄の(200)、(220)、(311)面とbcc鉄の(200)、(211)面の積分強度からオーステナイトの体積率を求める。 The volume fraction of austenite is measured by X-ray diffraction using a test piece prepared by the same method as the test piece used for measuring the dislocation density. The volume fraction of austenite is obtained from the integrated intensities of the (200), (220) and (311) planes of the obtained fcc iron and the (200) and (211) planes of the bcc iron.
 結晶粒の平均結晶粒径:15.0μm以下
 本発明において平均結晶粒径とは、隣り合う結晶の方位差が15°以上の境界で囲まれた領域を結晶粒(結晶粒界)としたときの、該結晶粒の平均円相当径とする。また、円相当径(結晶粒径)とは、対象となる結晶粒と面積が等しい円の直径とする。
Average crystal grain size of crystal grains: 15.0 μm or less In the present invention, the average crystal grain size is defined as the crystal grain (grain boundary) in the region surrounded by the boundary where the orientation difference between adjacent crystals is 15 ° or more. The diameter corresponding to the average circle of the crystal grains. The circle equivalent diameter (crystal grain size) is the diameter of a circle having the same area as the target crystal grain.
 結晶粒の平均結晶粒径が15.0μm超の場合、亀裂伝播の障害となる結晶粒界の総面積が小さいため、所望の靱性が得られない。よって、本発明では、結晶粒の平均結晶粒径は、15.0μm以下とする。結晶粒の平均結晶粒径は、好ましくは13.0μm以下であり、より好ましくは10.0μm以下である。なお、平均結晶粒径が小さいほど降伏比が上昇するため、平均結晶粒径は2.0μm以上であることが好ましい。 When the average crystal grain size of the crystal grains exceeds 15.0 μm, the desired toughness cannot be obtained because the total area of the crystal grain boundaries that hinder crack propagation is small. Therefore, in the present invention, the average crystal grain size of the crystal grains is 15.0 μm or less. The average crystal grain size of the crystal grains is preferably 13.0 μm or less, more preferably 10.0 μm or less. The smaller the average crystal grain size, the higher the yield ratio. Therefore, the average crystal grain size is preferably 2.0 μm or more.
 結晶粒径で40μm以上の結晶粒の体積率の合計:40%以下
 最大結晶粒径の上限を規定しても、一定量の粗大な結晶粒が存在すると、亀裂伝播の障害となる結晶粒界の総面積が小さい領域が存在することになるため、靭性が大きく低下する。そのため、良好な靱性を得るためには、粗大な結晶粒が存在する割合の上限も規定する必要がある。よって、本発明では、結晶粒径で40μm以上の結晶粒の体積率の合計を40%以下とする。より好ましくは30%以下である。上述の理由より粗大な結晶粒は少ないほうが望ましく、上記結晶粒の体積率の合計は0%が好ましい。
Total volume ratio of crystal grains with a crystal grain size of 40 μm or more: 40% or less Even if the upper limit of the maximum crystal grain size is specified, if a certain amount of coarse crystal grains are present, grain boundaries that hinder crack propagation Since there is a region where the total area of the crystal is small, the toughness is greatly reduced. Therefore, in order to obtain good toughness, it is necessary to specify the upper limit of the proportion of coarse crystal grains present. Therefore, in the present invention, the total volume fraction of crystal grains having a crystal grain size of 40 μm or more is set to 40% or less. More preferably, it is 30% or less. For the above reasons, it is desirable that the number of coarse crystal grains is small, and the total volume fraction of the crystal grains is preferably 0%.
 ここで、結晶粒の平均結晶粒径および結晶粒径で40μm以上の結晶粒の体積率の合計の測定は、次の通りである。まず、組織観察用の試験片を、観察面が角形鋼管の長手方向と肉厚方向の両方に平行な断面かつ平板部の肉厚中央となるように採取し、鏡面研磨した後、肉厚中央において、SEM/EBSD法を用いて、粒径分布のヒストグラム(横軸:粒径、縦軸:各粒径での存在割合(面積率)としたグラフ)を算出する。平均結晶粒径は、上記ヒストグラムから粒径の算術平均として求める。40μm以上の結晶粒の体積率の合計は、上記ヒストグラムから粒径が40μm以上の結晶粒の存在割合の合計として求める。測定条件として、加速電圧は15kV、測定領域は500μm×500μm、測定ステップサイズ(測定分解能)は0.5μmとする。なお、結晶粒径解析においては、結晶粒径が2.0μm未満のものは測定ノイズとして解析対象から除外する。 Here, the measurement of the average crystal grain size of the crystal grains and the total volume ratio of the crystal grains having a crystal grain size of 40 μm or more is as follows. First, a test piece for microstructure observation was collected so that the observation surface had a cross section parallel to both the longitudinal direction and the wall thickness direction of the square steel tube and the wall thickness center of the flat plate portion, and after mirror polishing, the wall thickness center. In, a histogram of the particle size distribution (horizontal axis: particle size, vertical axis: graph with abundance ratio (area ratio) at each particle size) is calculated using the SEM / EBSD method. The average crystal grain size is obtained from the above histogram as an arithmetic mean of the grain size. The total volume fraction of crystal grains having a particle size of 40 μm or more is obtained as the total abundance ratio of crystal grains having a particle size of 40 μm or more from the above histogram. The measurement conditions are an acceleration voltage of 15 kV, a measurement area of 500 μm × 500 μm, and a measurement step size (measurement resolution) of 0.5 μm. In the crystal grain size analysis, those having a crystal grain size of less than 2.0 μm are excluded from the analysis target as measurement noise.
 <角形鋼管の製造方法>
 次に、本発明の角形鋼管10の製造方法について説明する。
<Manufacturing method of square steel pipe>
Next, a method for manufacturing the square steel pipe 10 of the present invention will be described.
 本発明の角形鋼管10の製造方法は、素材である鋼板を冷間ロール成形し、次いで冷間ロール成形した鋼板の幅方向両端部を電縫溶接して電縫鋼管とした後、電縫鋼管をサイジングスタンドによって縮径し、次いで角成形スタンドによって角成形して角形鋼管を製造する方法である。この際、角成形スタンドの出側における角形鋼管の周長COUTに対する鋼板の板幅Wの比が式(1)を満たし、かつ、角成形スタンドの出側における角形鋼管の周長COUTに対する角成形スタンドの入側における電縫鋼管の周長CINの比が式(2)を満たすように、角成形直前のサイジングスタンドのロールのギャップおよび角成形スタンドのロールのギャップを制御する。
1.000+0.050×t/H<W/COUT<1.000+0.50×t/H・・・式(1)
0.30×t/H+0.99≦CIN/COUT<0.50×t/H+0.99・・・式(2)
ここで、式(1)および式(2)において、
 W:素材である鋼板の板幅(mm)、
 CIN:第一段目の角成形スタンドの入側における電縫鋼管の周長(mm)、
 COUT:最終段の角成形スタンドの出側における角形鋼管の周長(mm)、
 t:角成形後の平板部の平均肉厚(mm)、
 H:角成形後の平板部の平均辺長(mm)、
である。
但し、1段の角成形スタンドにより角成形を行う場合には、第一段目の角成形スタンドと最終段の角成形スタンドとは、同一の角成形スタンドを指すものとする。
In the method for manufacturing a square steel pipe 10 of the present invention, a steel plate as a material is cold-roll-formed, and then both ends of the cold-roll-formed steel plate in the width direction are welded to form an electric-sewn steel pipe, and then the electric-sewn steel pipe is obtained. Is reduced in diameter by a sizing stand, and then squarely formed by a square forming stand to manufacture a square steel pipe. At this time, the ratio of the plate width W of the steel plate to the peripheral length C OUT of the square steel pipe on the exit side of the square forming stand satisfies the formula (1), and the circumference C OUT of the square steel pipe on the exit side of the square forming stand is satisfied. The gap between the rolls of the sizing stand immediately before square forming and the gap between the rolls of the square forming stand are controlled so that the ratio of the peripheral length CIN of the electric resistance pipe on the entrance side of the square forming stand satisfies the equation (2).
1.000 + 0.050 × t / H <W / C OUT <1.000 + 0.50 × t / H ... Equation (1)
0.30 × t / H + 0.99 ≦ C IN / C OUT <0.50 × t / H + 0.99 ... Equation (2)
Here, in equations (1) and (2),
W: Plate width (mm) of the steel plate that is the material,
C IN : Perimeter (mm) of the electric resistance sewn steel pipe on the entrance side of the first stage square forming stand,
C OUT : Perimeter (mm) of the square steel pipe on the exit side of the square forming stand in the final stage,
t: Average wall thickness (mm) of the flat plate portion after square forming,
H: Average side length (mm) of the flat plate portion after square forming,
Is.
However, when square forming is performed by the one-stage square forming stand, the first-stage square forming stand and the final stage square forming stand refer to the same square forming stand.
 なお、平均肉厚tは上述の式(3)、平均辺長Hは上述の式(4)で算出される。 The average wall thickness t is calculated by the above formula (3), and the average side length H is calculated by the above formula (4).
 図2および図3を用いて、本発明の角形鋼管10の製造方法について詳細に説明する。図2には、本発明の角形鋼管の素管(電縫鋼管)の造管工程を説明する図を示す。図3には、本発明の角形鋼管の成形工程を説明する図を示す。 The method for manufacturing the square steel pipe 10 of the present invention will be described in detail with reference to FIGS. 2 and 3. FIG. 2 shows a diagram illustrating a pipe making process of a raw pipe (electric pipe) of a square steel pipe of the present invention. FIG. 3 shows a diagram illustrating a forming process of the square steel pipe of the present invention.
 まず、鋼板(鋼帯)を素材とし、電縫鋼管7を製造する(造管工程)。 First, the electric pipe 7 is manufactured using a steel plate (steel strip) as a material (pipe making process).
 図2に示すように、コイルに巻き取られた上記した成分組成を有する鋼板1(熱延鋼板、熱延鋼帯)は払い出され、レベラー2によって矯正され、複数のロールからなるケージロール群3で中間成形されて円筒状のオープン管となる。その後、複数のロールからなるフィンパスロール群4で仕上げ成形される。上記のオープン管は、冷間ロール成形により円筒状に成形される。 As shown in FIG. 2, the steel sheet 1 (hot-rolled steel sheet, hot-rolled steel strip) having the above-mentioned composition, which is wound around the coil, is dispensed, straightened by the leveler 2, and is a cage roll group composed of a plurality of rolls. It is intermediately molded in step 3 to form a cylindrical open tube. After that, it is finish-molded by the finpass roll group 4 composed of a plurality of rolls. The above open tube is formed into a cylindrical shape by cold roll forming.
 なお、本発明の角形鋼管は、上記した鋼組織を有することが好ましい。上述のように、本発明の角形鋼管は、素材鋼板を冷間ロール成形した電縫鋼管(素管)を更に角成形して製造されるため、素材鋼板(鋼板1)も上記した成分組成および鋼組織を有することが好ましい。鋼板1の好ましい製造条件は、後述するため、ここでの説明は省略する。 The square steel pipe of the present invention preferably has the above-mentioned steel structure. As described above, since the square steel pipe of the present invention is manufactured by further square-forming an electrosewn steel pipe (bare pipe) obtained by cold-rolling a material steel plate, the material steel plate (steel plate 1) also has the above-mentioned composition and composition. It is preferable to have a steel structure. Since the preferable manufacturing conditions for the steel sheet 1 will be described later, the description thereof is omitted here.
 仕上げ成形されたオープン管は、スクイズロール5で圧接しながら、鋼板1の周方向に向かい合った一対の突合せ部(幅方向両端部)同士を溶接機6で電気抵抗溶接(電縫溶接)し、電縫鋼管7とする。上記の電縫溶接では、例えば高周波誘導加熱または高周波抵抗加熱により、突合せ部が加熱されて溶融し、圧接されて凝固することで接合が完了する。これにより、溶接部(電縫溶接部)13が管軸方向に延設される。電縫鋼管7の製造に用いる製造設備は、図2に示す造管工程を有する製造設備に限定されない。 The finish-formed open pipe is pressure-welded with a squeeze roll 5 and a pair of butt portions (both ends in the width direction) facing each other in the circumferential direction of the steel plate 1 are electrically resistance welded (electrically welded) with a welding machine 6. It is a welded steel pipe 7. In the above-mentioned electric sewing welding, for example, by high frequency induction heating or high frequency resistance heating, the butt portion is heated and melted, and the butt portion is pressed and solidified to complete the joining. As a result, the welded portion (electrically sewn welded portion) 13 is extended in the pipe axis direction. The manufacturing equipment used for manufacturing the electric resistance pipe 7 is not limited to the manufacturing equipment having the pipe making process shown in FIG.
 なお、本発明では、電縫鋼管を製造する過程において、スクイズロール5によるアプセット量は、電縫鋼管7の肉厚に対して20%以上100%以下の範囲とすることが好ましい。アプセット量が肉厚の20%未満である場合、溶鋼の排出が不十分となり溶接部の靱性が悪化する。一方、アプセット量が肉厚の100%超である場合、スクイズロールへの負荷が大きくなる上に、溶接部(電縫溶接部)13の加工硬化量が大きくなり、硬度が過度に高くなる。 In the present invention, in the process of manufacturing the electric resistance pipe, the amount of upset by the squeeze roll 5 is preferably in the range of 20% or more and 100% or less with respect to the wall thickness of the electric resistance pipe 7. When the amount of upset is less than 20% of the wall thickness, the discharge of molten steel becomes insufficient and the toughness of the welded portion deteriorates. On the other hand, when the amount of upset is more than 100% of the wall thickness, the load on the squeeze roll becomes large, the work hardening amount of the welded portion (electrically sewn welded portion) 13 becomes large, and the hardness becomes excessively high.
 次に、得られた電縫鋼管7を素管とし、角形鋼管を製造する(成形工程)。成形工程は、サイジング工程と角成形工程を有する。 Next, the obtained electric resistance pipe 7 is used as a bare pipe to manufacture a square steel pipe (molding process). The molding step includes a sizing step and a square molding step.
 図3に示すように、電縫鋼管7は、電縫鋼管7に対して上下左右に配置された複数のロールからなるサイジングロール群(サイジングスタンド)8によって円筒形状のまま縮径される(サイジング工程)。その後、電縫鋼管7に対して上下左右に配置された複数のロールからなる角成形ロール群(角成形スタンド)9によって、順次R1、R2、R3に示す形状に角成形され、角形鋼管10となる(角成形工程)。角成形スタンド9を構成する各ロールは、カリバー曲率をもった孔型ロール(カリバーロール)であり、後段スタンドになるに従ってカリバー曲率が大きくなる。これにより、角形鋼管の平板部と角部を形成する。 As shown in FIG. 3, the electric resistance pipe 7 is reduced in diameter (sizing) in a cylindrical shape by a sizing roll group (sizing stand) 8 composed of a plurality of rolls arranged vertically and horizontally with respect to the electric resistance pipe 7. Process). After that, it is squarely formed into the shapes shown in R1, R2, and R3 by a square forming roll group (square forming stand) 9 composed of a plurality of rolls arranged vertically and horizontally with respect to the electrosewn steel pipe 7. (Square forming process). Each roll constituting the square forming stand 9 is a hole-shaped roll (caliber roll) having a caliber curvature, and the caliber curvature increases as the stand becomes a subsequent stand. As a result, a flat plate portion and a square portion of the square steel pipe are formed.
 なお、サイジングロール群8および角成形ロール群9を構成するスタンド数は、特に限定されない。複数段のスタンドで構成される場合もあるし、1段のスタンドで構成される場合もある。また、サイジングロール群8または角成形ロール群9における各ロールのカリバー曲率が一定でない(複数の曲率を有する)場合、成形中の電縫鋼管7が周方向にねじれた際に形状不整が生じる原因となるため、各ロールのカリバー曲率は一定であることが好ましい。 The number of stands constituting the sizing roll group 8 and the square forming roll group 9 is not particularly limited. It may be composed of a multi-stage stand, or it may be composed of a single-stage stand. Further, when the caliber curvature of each roll in the sizing roll group 8 or the square forming roll group 9 is not constant (has a plurality of curvatures), the shape irregularity occurs when the electric resistance pipe 7 being formed is twisted in the circumferential direction. Therefore, it is preferable that the caliber curvature of each roll is constant.
 本発明では、上述のように、角成形スタンドの出側における角形鋼管の周長COUTに対する鋼板の板幅Wの比が式(1)を満たし、かつ、角成形スタンドの出側における角形鋼管の周長COUTに対する角成形スタンドの入側における電縫鋼管の周長CINの比が式(2)を満たすように、角成形直前のサイジングスタンドのロールのギャップおよび角成形スタンドのロールのギャップを制御することが重要である。これにより、平均辺長Hに対する平均肉厚tの比(t/H)が大きく、かつ、角部の曲率半径Rが小さいロール成形角形鋼管であっても、角部の外面の延性および靭性を向上できる。 In the present invention, as described above, the ratio of the plate width W of the steel plate to the peripheral length C OUT of the square steel pipe on the outlet side of the square forming stand satisfies the formula (1), and the square steel pipe on the exit side of the square forming stand. The gap between the rolls of the sizing stand immediately before square forming and the roll of the square forming stand so that the ratio of the circumferential length C IN of the electric resistance pipe on the entrance side of the square forming stand to the circumferential length C OUT satisfies the formula (2). It is important to control the gap. As a result, even in a roll-formed square steel pipe in which the ratio (t / H) of the average wall thickness t to the average side length H is large and the radius of curvature R of the corner portion is small, the ductility and toughness of the outer surface of the corner portion can be improved. Can be improved.
 まず、素材鋼板(鋼板)1の板幅W(mm)と角成形直後の角形鋼管10の周長(最終段の角成形スタンドの出側における鋼管の周長(mm)、以下「COUT」と称する。)の比(W/COUT)、および角成形直後の平均肉厚tと角成形直後の平均辺長Hの比(t/H)が、上記の式(1)を満足するように制御する理由について説明する。 First, the plate width W (mm) of the material steel plate (steel plate) 1 and the peripheral length of the square steel pipe 10 immediately after square forming (the peripheral length of the steel pipe (mm) on the outlet side of the square forming stand in the final stage, hereinafter "C OUT ". The ratio (W / C OUT ) of (referred to as) and the ratio (t / H) of the average wall thickness t immediately after square forming and the average side length H immediately after square forming satisfy the above formula (1). The reason for controlling is explained.
 図2および図3に示すように、平板状の鋼板1(素材鋼板)を冷間ロール成形して円筒状の電縫鋼管7(素管)にした後、円筒状の電縫鋼管を角成形して角形鋼管10を製造する場合、製造過程(造管工程、成形工程)の間、鋼板1および電縫鋼管7には、管周方向の曲げ変形に加えて、管周方向の絞りに起因する管長手方向の伸び変形が加わる。製造過程における管周方向絞り量を低減するため、上記した2つの比「t/H」および「W/COUT」を適切に制御することが有効である。 As shown in FIGS. 2 and 3, a flat plate-shaped steel plate 1 (material steel plate) is cold-rolled to form a cylindrical electric resistance pipe 7 (bare pipe), and then a cylindrical electric pipe is squarely formed. In the case of manufacturing a square steel pipe 10, during the manufacturing process (pipe making process, forming process), the steel plate 1 and the electrosewn steel pipe 7 are caused by bending deformation in the pipe circumferential direction and drawing in the pipe circumferential direction. Extension deformation in the longitudinal direction of the pipe is added. In order to reduce the amount of drawing in the tube circumferential direction in the manufacturing process, it is effective to appropriately control the above-mentioned two ratios "t / H" and "W / C OUT ".
 上記した比の「W/COUT」が式(1)の左辺の値以下の場合、造管工程における鋼板1の周方向曲げひずみ量、成形工程における電縫鋼管7の周方向曲げひずみ量、および曲げ戻しひずみ量が小さくなる。その結果、鋼板1および電縫鋼管7の加工が不十分となり、平坦な平板部が得られず、角部の外側の曲率半径Rが平均肉厚tの3.0倍(3.0t)超になる。 When the "W / C OUT " of the above ratio is equal to or less than the value on the left side of the formula (1), the circumferential bending strain amount of the steel plate 1 in the pipe making process, the circumferential bending strain amount of the wrought steel pipe 7 in the forming process, And the amount of bending back strain becomes small. As a result, the processing of the steel plate 1 and the electric resistance pipe 7 becomes insufficient, a flat flat plate portion cannot be obtained, and the radius of curvature R on the outside of the corner portion exceeds 3.0 times (3.0 t) the average wall thickness t. become.
 一方、上記した比の「W/COUT」が式(1)の右辺の値以上の場合、造管工程および成形工程の前後の管(またはオープン管)周長差がそれぞれ大きくなる。その結果、管周方向の絞り量が大きいため、角部が大きく加工硬化し、所望の角部の外面の延性および靱性が得られない。 On the other hand, when the “W / C OUT ” of the above ratio is equal to or greater than the value on the right side of the equation (1), the difference in the circumference of the pipe (or open pipe) before and after the pipe making step and the molding step becomes large. As a result, since the amount of drawing in the circumferential direction of the pipe is large, the corners are largely work-hardened, and the desired ductility and toughness of the outer surface of the corners cannot be obtained.
 上記した比の「W/COUT」は、好ましくは(1.000+0.080×t/H)以上(1.000+0.48×t/H)以下であり、より好ましくは(1.000+0.10×t/H)以上(1.000+0.45×t/H)以下である。 The “W / C OUT ” of the above ratio is preferably (1.000 + 0.080 × t / H) or more and (1.000 + 0.48 × t / H) or less, and more preferably (1.000 + 0.10). × t / H) or more (1.000 + 0.45 × t / H) or less.
 続いて、角成形直前の電縫鋼管7の周長(第一段目の角成形スタンドの入側における電縫鋼管7の周長(mm)、以下、「CIN」と称する。)と角成形直後の角形鋼管10の周長(COUT)の比(CIN/COUT)、および角成形直後の平均肉厚tと角成形直後の平均辺長Hの比(t/H)が、上記の式(2)を満足するように制御する理由について説明する。 Subsequently, the circumference of the electric resistance pipe 7 immediately before square forming (the circumference (mm) of the electric resistance pipe 7 on the entrance side of the first stage square forming stand, hereinafter referred to as "C IN ") and the corner. The ratio of the circumference (C OUT ) of the square steel pipe 10 immediately after forming (C IN / C OUT ) and the ratio of the average wall thickness t immediately after square forming to the average side length H immediately after square forming (t / H) are as follows. The reason for controlling the above equation (2) to be satisfied will be described.
 図3に示すように、円筒状の電縫鋼管7を角形鋼管10に角成形する場合、上述のとおり、角成形ロール群9に鋼管を通すことで、徐々に円筒形から角形に成形を施す。このような角成形では、辺の直線部(平板部11)の曲げ戻し、角部12の曲げ、および電縫鋼管7に周方向の絞り変形が発生する。 As shown in FIG. 3, when the cylindrical electric resistance pipe 7 is squarely formed into a square steel pipe 10, as described above, the steel pipe is passed through the square forming roll group 9 to gradually form from a cylindrical shape to a square shape. .. In such square forming, bending back of the straight side portion (flat plate portion 11), bending of the corner portion 12, and drawing deformation in the circumferential direction occur in the electrosewn steel pipe 7.
 特に、角部12の周辺では、角成形ロール群9のロールがほぼ接触することなく、角成形が完了する。角成形において、角部12は自由変形により張り出すことで形成される。このとき角部12の剛性が高く、かつ周方向絞り量が小さいほど、角部12の曲げ変形量は小さくなり、角部の外側の曲率半径は大きくなる。一方、角部12の剛性が低く、かつ周方向絞りが大きいほど、角部12の曲げ変形は大きくなり、角部の外側の曲率半径は小さくなる。 In particular, around the corner portion 12, the corner forming is completed with almost no contact between the rolls of the square forming roll group 9. In square forming, the corner portion 12 is formed by projecting by free deformation. At this time, the higher the rigidity of the corner portion 12 and the smaller the amount of throttle in the circumferential direction, the smaller the bending deformation amount of the corner portion 12, and the larger the radius of curvature on the outside of the corner portion. On the other hand, the lower the rigidity of the corner portion 12 and the larger the circumferential diaphragm, the larger the bending deformation of the corner portion 12 and the smaller the radius of curvature on the outside of the corner portion.
 そして、角部12の曲げ変形に対する剛性は、平均肉厚tと平均辺長Hとの比(t/H)が大きいほど高くなる。また、角成形における周方向絞り量は、周長比(CIN/COUT)により求められ、これが大きいほど周方向絞り量は大きくなる。 The rigidity of the corner portion 12 against bending deformation increases as the ratio (t / H) of the average wall thickness t and the average side length H increases. Further, the circumferential drawing amount in square forming is obtained by the peripheral length ratio (C IN / C OUT ), and the larger this is, the larger the circumferential drawing amount is.
 よって、t/Hが大きくなると、曲げ変形により角部12を形成することが難しくなる。このため、所望の角部曲率半径を得るためには、周長比(CIN/COUT)を大きくして周方向絞り量を大きくする必要がある。このような理由から、上記した2つの比「t/H」および「CIN/COUT」を適切に制御することが有効である。 Therefore, when t / H becomes large, it becomes difficult to form the corner portion 12 due to bending deformation. Therefore, in order to obtain a desired angular radius of curvature, it is necessary to increase the peripheral length ratio (C IN / C OUT ) to increase the amount of peripheral aperture. For this reason, it is effective to appropriately control the above-mentioned two ratios "t / H" and "C IN / C OUT ".
 周長比(CIN/COUT)が式(2)の左辺の値より小さい場合、成形工程の前後の管周長差が小さくなり、電縫鋼管7の周方向絞り量が小さくなる。その結果、平板部11および角部12の加工が不十分となり、平坦な平板部が得られず、角部外側の曲率半径Rが平均肉厚tの3.0倍(3.0t)超になる。 When the peripheral length ratio (C IN / C OUT ) is smaller than the value on the left side of the equation (2), the difference in the peripheral length of the pipe before and after the forming process becomes small, and the amount of drawing in the circumferential direction of the wrought steel pipe 7 becomes small. As a result, the processing of the flat plate portion 11 and the corner portion 12 becomes insufficient, a flat flat plate portion cannot be obtained, and the radius of curvature R on the outside of the corner portion becomes more than 3.0 times (3.0 t) the average wall thickness t. Become.
 一方、周長比(CIN/COUT)が式(2)の右辺の値以上の場合、成形工程の前後の管周長差が大きくなる。その結果、管周方向絞り量が大きいため、角部が大きく加工硬化し、所望の角部の延性および靱性が得られない。また、角部外側の曲率半径Rが平均肉厚tの2.0倍(2.0t)未満になる。 On the other hand, when the circumference ratio (C IN / C OUT ) is equal to or greater than the value on the right side of the equation (2), the difference in the circumference of the pipe before and after the molding process becomes large. As a result, since the amount of drawing in the circumferential direction of the tube is large, the corners are largely work-hardened, and the desired ductility and toughness of the corners cannot be obtained. Further, the radius of curvature R on the outside of the corner is less than 2.0 times (2.0 t) the average wall thickness t.
 周長比(CIN/COUT)は、好ましくは(0.33×t/H+0.99)以上(0.47×t/H+0.99)以下であり、より好ましくは(0.35×t/H+0.99)以上(0.45×t/H+0.99)以下である。 The circumference ratio (C IN / C OUT ) is preferably (0.33 × t / H + 0.99) or more and (0.47 × t / H + 0.99) or less, and more preferably (0.35 × t). / H + 0.99) or more (0.45 × t / H + 0.99) or less.
 なお、本発明では、耐震性をより向上させる観点から、上記の式(1)および式(2)の条件に加えて、次の条件で制御することが好ましい。 In the present invention, from the viewpoint of further improving the seismic resistance, it is preferable to control under the following conditions in addition to the conditions of the above equations (1) and (2).
 角形鋼管10の平板部の平均肉厚をt(mm)、平板部の平均辺長をH(mm)とするとき、上記平均肉厚tが上記平均辺長Hに対して0.030倍超とすることが好ましい。これにより柱材としての耐力および剛性が高くなり、その結果、耐震性が向上する。この平均肉厚tと平均辺長Hとの比(t/H)は、より好ましくは0.035倍以上である。また、角部の延性および靭性の確保のため、好ましくは0.10倍以下であり、より好ましくは0.080倍以下である。 When the average wall thickness of the flat plate portion of the square steel pipe 10 is t (mm) and the average side length of the flat plate portion is H (mm), the average wall thickness t is more than 0.030 times the average side length H. Is preferable. As a result, the strength and rigidity of the pillar material are increased, and as a result, the seismic resistance is improved. The ratio (t / H) of the average wall thickness t and the average side length H is more preferably 0.035 times or more. Further, in order to secure the ductility and toughness of the corner portion, it is preferably 0.10 times or less, and more preferably 0.080 times or less.
 また、平均肉厚tが20mm以上40mm以下とすることが好ましい。なお、その理由は、上記の角形鋼管の平均肉厚tを制御する理由と同様のため、省略する。 Further, it is preferable that the average wall thickness t is 20 mm or more and 40 mm or less. The reason is the same as the reason for controlling the average wall thickness t of the square steel pipe, and is therefore omitted.
 さらに、サイジングロールおよび角成形ロールのギャップを制御することが好ましい。 Further, it is preferable to control the gap between the sizing roll and the square forming roll.
 また、CINおよびCOUTの制御は、カリバーロールの凹部間ギャップの制御により行う。角成形直前のサイジングスタンドのロールの凹部間最大ギャップ(以下、「サイジングスタンドのギャップ」とも呼ぶ)と角成形スタンドのロールの凹部間最大ギャップ(以下、「角成形スタンドのギャップ」とも呼ぶ)の差を△gとするとき、△gを(t/H)で除した値であるG(=△g/(t/H))が、70以上180以下となるように角成形直前のサイジングスタンドのギャップを調整することが好ましい。 Further, C IN and C OUT are controlled by controlling the gap between the recesses of the caliber roll. The maximum gap between the recesses of the roll of the sizing stand immediately before square forming (hereinafter, also referred to as "sizing stand gap") and the maximum gap between the recesses of the roll of the square forming stand (hereinafter, also referred to as "gap of the square forming stand"). When the difference is Δg, the sizing stand immediately before square forming so that G (= Δg / (t / H)), which is the value obtained by dividing Δg by (t / H), is 70 or more and 180 or less. It is preferable to adjust the gap of.
 Gが70未満の場合、上記の式(2)において、(CIN/COUT)が左辺の値より小さくなり、上述したように、本発明で目的とする平坦な平板部および角部の外側の曲率半径を得られない。一方、Gが180超の場合、上記の式(2)において、(CIN/COUT)が右辺の値以上となり、上述したように、本発明で目的とする角部の延性および靱性が得られない。好ましくは、Gは、80以上であり、170未満である。 When G is less than 70, in the above equation (2), (C IN / C OUT ) becomes smaller than the value on the left side, and as described above, the outside of the flat flat plate portion and the corner portion intended in the present invention. The radius of curvature of is not obtained. On the other hand, when G is more than 180, (C IN / C OUT ) is equal to or greater than the value on the right side in the above equation (2), and as described above, the ductility and toughness of the corner portion targeted by the present invention are obtained. I can't. Preferably, G is 80 or more and less than 170.
 なお、サイジングスタンドが複数段存在する場合には、上記の角成形直前のサイジングスタンドのギャップとその他のサイジングスタンドのギャップは同じでもよい。また、角成形スタンドが複数段存在する場合には、上記の角成形スタンドのギャップは、第一段目の角成形スタンドのギャップとすることが好ましい。第一段目とその他の角成形スタンドのギャップは、全て同じでもよい。 If there are multiple stages of sizing stands, the gap of the sizing stand immediately before the above-mentioned square forming and the gap of other sizing stands may be the same. When there are a plurality of stages of the square forming stand, it is preferable that the gap of the above-mentioned square forming stand is the gap of the first stage of the square forming stand. The gaps between the first stage and the other square forming stands may all be the same.
 ここで、上記のCINとは、第一段目の角成形スタンドの入側における電縫鋼管7の周長(管周方向の外周の長さ)(mm)である。図3に示すように、CINは、造管方向をX軸の正方向とし、角成形直前のサイジングロール群8のいずれか1つの回転軸のX座標をXa(m)とし、第一段目の角成形ロール群9のいずれか1つの回転軸のX座標をXb(m)としたとき、X軸に垂直な平面X=(Xa+Xb)/2(m)における管の周断面の外周長を巻尺で測定することで得られる。 Here, the above-mentioned C IN is the peripheral length (length of the outer circumference in the peripheral direction of the pipe) (mm) of the electric resistance sewn steel pipe 7 on the entrance side of the square forming stand of the first stage. As shown in FIG. 3, in C IN , the pipe forming direction is the positive direction of the X axis, the X coordinate of any one of the rotation axes of the sizing roll group 8 immediately before the square forming is Xa (m), and the first stage. When the X coordinate of any one of the rotation axes of the square forming roll group 9 of the eyes is Xb (m), the outer peripheral length of the peripheral cross section of the tube in the plane X = (Xa + Xb) / 2 (m) perpendicular to the X axis. Is obtained by measuring with a scale.
 上記のCOUTは、最終段の角成形スタンドの出側における角形鋼管10の周長(管周方向の外周の長さ)(mm)である。図3に示すように、COUTは、ロール群の最終段の角成形スタンドのいずれか1つの回転軸のX座標をXc(m)とし、X軸に垂直な平面X=Xc+1(m)における管の周断面の外周長を巻尺で測定することで得られる。 The above C OUT is the peripheral length (the length of the outer circumference in the peripheral direction of the pipe) (mm) of the square steel pipe 10 on the exit side of the square forming stand in the final stage. As shown in FIG. 3, C OUT is in a plane X = Xc + 1 (m) perpendicular to the X axis, where the X coordinate of the rotation axis of any one of the square forming stands in the final stage of the roll group is Xc (m). It is obtained by measuring the outer peripheral length of the peripheral cross section of the tube with a tape measure.
 本発明の角形鋼管の製造方法では、電縫鋼管(素管)から角形鋼管へ成形する過程において、各平板部の平坦度および各角部の曲率半径のばらつきを低減することを目的として、上記の条件に加えて、さらに次の条件で制御することができる。 The above-mentioned method for manufacturing a square steel pipe of the present invention aims to reduce variations in the flatness of each flat plate portion and the radius of curvature of each corner portion in the process of forming a square steel pipe from an electrosewn steel pipe (bare pipe). In addition to the conditions of, it can be further controlled by the following conditions.
 電縫溶接後のサイジング工程では、好ましい真円度を満足するために、鋼管周長が合計で0.30%以上の割合で減少するように鋼管を縮径してもよい。これにより、後の角成形工程で各平板部および各角部が均一(対称)に成形され、平坦度および曲率半径のばらつきが小さくなる。上記の「好ましい真円度」とは、管の鉛直方向外径D1と水平方向外径D2が、|D1-D2|/((D1+D2)/2)≦0.020であることを指す。 In the sizing step after electric stitch welding, the diameter of the steel pipe may be reduced so that the circumference of the steel pipe is reduced at a rate of 0.30% or more in total in order to satisfy the preferable roundness. As a result, each flat plate portion and each corner portion are uniformly (symmetrically) formed in the subsequent corner forming step, and the variation in flatness and radius of curvature is reduced. The above-mentioned "preferable roundness" means that the vertical outer diameter D1 and the horizontal outer diameter D2 of the pipe are | D1-D2 | / ((D1 + D2) / 2) ≦ 0.020.
 ただし、鋼管周長が合計で2.0%超の割合で減少するように縮径した場合、ロール通過時の管軸方向の曲げ量が大きくなり、降伏比が上昇してしまう。このため、鋼管周長が0.30%以上2.0%以下の割合で減少するように縮径することが好ましい。 However, if the diameter is reduced so that the circumference of the steel pipe decreases at a rate of more than 2.0% in total, the amount of bending in the pipe axis direction when passing through the roll becomes large, and the yield ratio increases. Therefore, it is preferable to reduce the diameter so that the circumference of the steel pipe decreases at a rate of 0.30% or more and 2.0% or less.
 サイジング工程において、ロール通過時の管軸方向の曲げ量を極力小さくし、かつ管軸方向の残留応力の発生を抑制するため、複数スタンドによる多段階の縮径を行うことが好ましい。この場合、各スタンドにおける縮径は、そのスタンドの1つ前に設置されるスタンドの縮径と比べて、鋼管周長が1.0%以下の割合で減少するように行うことが好ましい。 In the sizing step, it is preferable to perform multi-step diameter reduction with a plurality of stands in order to minimize the bending amount in the pipe axis direction when passing through the roll and to suppress the generation of residual stress in the pipe axis direction. In this case, the diameter reduction of each stand is preferably performed so that the circumference of the steel pipe is reduced by 1.0% or less as compared with the diameter reduction of the stand installed immediately before the stand.
 上述のように、本発明の角形鋼管は、電縫鋼管を素管に用いる。角形鋼管10が電縫鋼管7から得られたかどうかの判断は、角形鋼管10を管軸方向に垂直に切断し、溶接部(電縫溶接部)13を含む切断面を研磨後、腐食し、光学顕微鏡で観察することにより判断できる。溶接部(電縫溶接部)13の溶融凝固部の管周方向の幅が管全厚にわたり1.0μm以上1000μm以下であれば、電縫鋼管7である。なお、腐食液は、鋼成分、鋼管の種類に応じて適切なものを選択すればよい。 As described above, the square steel pipe of the present invention uses an electric resistance sewn steel pipe as a raw pipe. To determine whether the square steel pipe 10 was obtained from the electric resistance pipe 7, the square steel pipe 10 was cut perpendicularly in the pipe axis direction, the cut surface including the welded portion (electrosewn welded portion) 13 was polished, and then corroded. It can be judged by observing with an optical microscope. If the width of the melt-solidified portion of the welded portion (electrically sewn welded portion) 13 in the pipe circumferential direction is 1.0 μm or more and 1000 μm or less over the entire thickness of the pipe, the electric resistance pipe 7 is used. The corrosive liquid may be appropriately selected according to the steel composition and the type of steel pipe.
 ここで、図4を用いて溶接部(電縫溶接部)について説明する。図4には、溶接部13における溶融凝固部16の概略図を示す。図4は、溶接部を含む切断面を研磨、腐食した後の状態である。溶融凝固部16は、図4において母材部14および熱影響部15と異なる組織形態やコントラストを有する領域として視認できる。例えば、炭素鋼および低合金鋼の電縫鋼管の溶融凝固部16は、ナイタールで腐食した上記断面において、光学顕微鏡で白く観察される領域として特定できる。 Here, the welded portion (electrically sewn welded portion) will be described with reference to FIG. FIG. 4 shows a schematic view of the melt-solidified portion 16 in the welded portion 13. FIG. 4 shows a state after the cut surface including the welded portion is polished and corroded. The melt-solidified portion 16 can be visually recognized as a region having a structure shape and contrast different from those of the base metal portion 14 and the heat-affected zone 15 in FIG. For example, the melt-solidified portion 16 of the electrosewn steel pipe of carbon steel and low alloy steel can be identified as a region observed white by an optical microscope in the above cross section corroded by nital.
 次に、本発明の角形鋼管の製造に用いる電縫鋼管の素材鋼板の好ましい製造方法について説明する。 Next, a preferable manufacturing method of the material steel plate of the electrosewn steel pipe used for manufacturing the square steel pipe of the present invention will be described.
 例えば、上記した成分組成を有する鋼素材を、加熱温度:1100℃以上1300℃以下に加熱した後、粗圧延終了温度:850℃以上1150℃以下、仕上圧延終了温度:750℃以上900℃以下、かつ、950℃以下での合計圧下率:50%以上である熱延処理を施し(熱延工程)、次いで、肉厚中心温度で平均冷却速度:5℃/s以上30℃/s以下、冷却停止温度:400℃以上650℃以下で冷却を施し(冷却工程)、次いで、400℃以上650℃以下で巻取り(巻取工程)、熱延鋼板(鋼板1)とすることが好ましい。 For example, after heating a steel material having the above-mentioned composition to a heating temperature of 1100 ° C. or higher and 1300 ° C. or lower, rough rolling end temperature: 850 ° C. or higher and 1150 ° C. or lower, finish rolling end temperature: 750 ° C. or higher and 900 ° C. or lower, In addition, a hot rolling treatment with a total rolling reduction at 950 ° C or lower: 50% or more is performed (hot rolling step), and then the average cooling rate at the wall thickness center temperature: 5 ° C / s or more and 30 ° C / s or less, cooling. Stopping temperature: It is preferable to cool the product at 400 ° C. or higher and 650 ° C. or lower (cooling step), and then wind it at 400 ° C. or higher and 650 ° C. or lower (winding step) to obtain a hot-rolled steel plate (steel plate 1).
 なお、以下の製造方法の説明において、温度に関する「℃」表示は、特に断らない限り、鋼素材および鋼板(熱延鋼板)の表面温度とする。これらの表面温度は、放射温度計等で測定することができる。また、鋼板肉厚中心の温度は、鋼板断面内の温度分布を伝熱解析により計算し、その結果を鋼板の表面温度によって補正することで求めることができる。また、「熱延鋼板」には、熱延板、熱延鋼帯も含むものとする。 In the following description of the manufacturing method, the "℃" indication regarding the temperature shall be the surface temperature of the steel material and the steel plate (hot-rolled steel plate) unless otherwise specified. These surface temperatures can be measured with a radiation thermometer or the like. Further, the temperature at the center of the thickness of the steel sheet can be obtained by calculating the temperature distribution in the cross section of the steel sheet by heat transfer analysis and correcting the result by the surface temperature of the steel sheet. In addition, the "hot-rolled steel plate" includes hot-rolled plates and hot-rolled steel strips.
 本発明において、鋼素材(鋼スラブ)の溶製方法は特に限定されず、転炉、電気炉、真空溶解炉等の公知の溶製方法のいずれもが適合する。鋳造方法も特に限定されないが、連続鋳造法等の公知の鋳造方法により、所望寸法に製造される。なお、連続鋳造法に代えて、造塊-分塊圧延法を適用しても何ら問題はない。溶鋼にはさらに、取鍋精錬等の二次精錬を施してもよい。 In the present invention, the melting method of the steel material (steel slab) is not particularly limited, and any known melting method such as a converter, an electric furnace, or a vacuum melting furnace is suitable. The casting method is also not particularly limited, but it is manufactured to a desired size by a known casting method such as a continuous casting method. It should be noted that there is no problem even if the ingot-breaking rolling method is applied instead of the continuous casting method. The molten steel may be further subjected to secondary refining such as ladle refining.
 熱間圧延工程
 加熱温度:1100℃以上1300℃以下
 加熱温度が1100℃未満である場合、被圧延材の変形抵抗が大きくなり圧延が困難となる。一方、加熱温度が1300℃を超えると、オーステナイト粒が粗大化し、後の圧延(粗圧延、仕上圧延)において微細なオーステナイト粒が得られず、本発明で目的とする電縫鋼管の鋼組織の平均結晶粒径を確保することが困難となる。このため、熱間圧延工程における加熱温度は、1100℃以上1300℃以下とする。この加熱温度は、より好ましくは1120℃以上である。また、この加熱温度は、より好ましくは1280℃以下である。
Hot rolling process Heating temperature: 1100 ° C or more and 1300 ° C or less When the heating temperature is less than 1100 ° C, the deformation resistance of the material to be rolled increases and rolling becomes difficult. On the other hand, when the heating temperature exceeds 1300 ° C., the austenite grains become coarse and fine austenite grains cannot be obtained in the subsequent rolling (rough rolling, finish rolling). It becomes difficult to secure the average crystal grain size. Therefore, the heating temperature in the hot rolling step is set to 1100 ° C. or higher and 1300 ° C. or lower. This heating temperature is more preferably 1120 ° C. or higher. Further, this heating temperature is more preferably 1280 ° C. or lower.
 なお、本発明では、鋼スラブ(スラブ)を製造した後、一旦室温まで冷却し、その後再度加熱する従来法に加え、室温まで冷却しないで、温片のままで加熱炉に装入する、あるいは、わずかの保熱を行った後に直ちに圧延する、これらの直送圧延の省エネルギープロセスも問題なく適用できる。 In the present invention, in addition to the conventional method in which a steel slab (slab) is manufactured, cooled to room temperature, and then heated again, the steel slab is not cooled to room temperature and is charged into a heating furnace as a hot piece. These direct rolling energy-saving processes, which roll immediately after a small amount of heat retention, can also be applied without problems.
 粗圧延終了温度:850℃以上1150℃以下
 粗圧延終了温度が850℃未満である場合、後の仕上圧延中に鋼板表面温度がフェライト変態開始温度以下になり、多量の加工フェライトが生成し、降伏比が上昇する。一方、粗圧延終了温度が1150℃を超えると、オーステナイト未再結晶温度域での圧下量が不足し、微細なオーステナイト粒が得られない。その結果、上記した角形鋼管の鋼組織の平均結晶粒径を確保することが困難となり、靱性が低下する。粗圧延終了温度は、より好ましくは860℃以上である。また、粗圧延終了温度は、より好ましくは1000℃以下である。
Rough rolling end temperature: 850 ° C or higher and 1150 ° C or less When the rough rolling end temperature is less than 850 ° C, the surface temperature of the steel sheet becomes lower than the ferrite transformation start temperature during the subsequent finish rolling, a large amount of processed ferrite is generated, and yielding occurs. The ratio goes up. On the other hand, when the rough rolling end temperature exceeds 1150 ° C., the amount of rolling in the austenite unrecrystallized temperature range is insufficient, and fine austenite grains cannot be obtained. As a result, it becomes difficult to secure the average crystal grain size of the steel structure of the above-mentioned square steel pipe, and the toughness is lowered. The rough rolling end temperature is more preferably 860 ° C. or higher. The rough rolling end temperature is more preferably 1000 ° C. or lower.
 仕上圧延開始温度は、800℃以上980℃以下であることが好ましい。仕上圧延開始温度が800℃未満である場合、仕上圧延中に鋼板表面温度がフェライト変態開始温度以下になり、多量の加工フェライトが生成し、降伏比が上昇する。一方、仕上圧延開始温度が980℃を超えると、オーステナイトが粗大化し、かつオーステナイト中に十分な変形帯が導入されないため、上記した角形鋼管の鋼組織の平均結晶粒径を確保することが困難となり、靱性が低下する。仕上圧延開始温度は、より好ましくは820℃以上である。また、仕上圧延開始温度は、より好ましくは950℃以下である。 The finish rolling start temperature is preferably 800 ° C. or higher and 980 ° C. or lower. When the finish rolling start temperature is less than 800 ° C., the steel sheet surface temperature becomes lower than the ferrite transformation start temperature during finish rolling, a large amount of processed ferrite is generated, and the yield ratio increases. On the other hand, when the finish rolling start temperature exceeds 980 ° C., the austenite becomes coarse and a sufficient deformation zone is not introduced into the austenite, so that it becomes difficult to secure the average crystal grain size of the steel structure of the above-mentioned square steel pipe. , The toughness decreases. The finish rolling start temperature is more preferably 820 ° C. or higher. The finish rolling start temperature is more preferably 950 ° C. or lower.
 仕上圧延終了温度:750℃以上900℃以下
 仕上圧延終了温度が750℃未満である場合、仕上圧延中に鋼板表面温度がフェライト変態開始温度以下になり、多量の加工フェライトが生成し、降伏比が上昇する。一方、仕上圧延終了温度が900℃を超えると、オーステナイト未再結晶温度域での圧下量が不足し、微細なオーステナイト粒が得られない。その結果、上記した角形鋼管の鋼組織の平均結晶粒径を確保することが困難となり、靱性が低下する。仕上圧延終了温度は、より好ましくは770℃以上である。また、仕上圧延終了温度は、より好ましくは880℃以下である。
Finish rolling end temperature: 750 ° C or more and 900 ° C or less When the finish rolling end temperature is less than 750 ° C, the steel sheet surface temperature becomes below the ferrite transformation start temperature during finish rolling, a large amount of processed ferrite is generated, and the yield ratio is high. Rise. On the other hand, when the finish rolling end temperature exceeds 900 ° C., the amount of rolling in the austenite unrecrystallized temperature range is insufficient, and fine austenite grains cannot be obtained. As a result, it becomes difficult to secure the average crystal grain size of the steel structure of the above-mentioned square steel pipe, and the toughness is lowered. The finish rolling end temperature is more preferably 770 ° C. or higher. The finish rolling end temperature is more preferably 880 ° C. or lower.
 950℃以下における合計圧下率:50%以上
 本発明では、熱間圧延工程においてオーステナイト中のサブグレインを微細化することで、続く冷却工程、巻取工程で生成するフェライト、ベイナイトおよび残部組織を微細化し、上記した強度および靱性を有する角形鋼管の鋼組織が得られる。熱間圧延工程においてオーステナイト中のサブグレインを微細化するためには、オーステナイト未再結晶温度域での圧下率を高くし、十分な加工ひずみを導入する必要がある。これを達成するため、本発明では、950℃以下の合計圧下率を50%以上とする。
Total reduction rate at 950 ° C or lower: 50% or more In the present invention, by refining the subgrain in austenite in the hot rolling process, the ferrite, bainite and the residual structure produced in the subsequent cooling process and winding process are made fine. The steel structure of the square steel pipe having the above-mentioned strength and toughness can be obtained. In order to miniaturize the subgrains in austenite in the hot rolling process, it is necessary to increase the rolling reduction in the austenite unrecrystallized temperature range and introduce sufficient machining strain. In order to achieve this, in the present invention, the total reduction rate of 950 ° C. or lower is set to 50% or more.
 950℃以下における合計圧下率が50%未満である場合、熱間圧延工程において十分な加工ひずみを導入することができないため、上記した角形鋼管の平均結晶粒径を有する組織が得られない。950℃以下における合計圧下率は、より好ましくは55%以上であり、さらに好ましくは57%以上である。特に上限は規定しないが、80%を超えると圧下率の上昇に対する靱性向上の効果が小さくなり、設備負荷が増大するのみとなる。このため、950℃以下における合計圧下率は80%以下が好ましい。より好ましくは70%以下である。 When the total reduction rate at 950 ° C. or lower is less than 50%, sufficient machining strain cannot be introduced in the hot rolling process, so that a structure having the average crystal grain size of the above-mentioned square steel pipe cannot be obtained. The total reduction rate at 950 ° C. or lower is more preferably 55% or more, still more preferably 57% or more. Although the upper limit is not specified, if it exceeds 80%, the effect of improving the toughness on the increase in the reduction rate becomes small, and the equipment load only increases. Therefore, the total reduction rate at 950 ° C. or lower is preferably 80% or less. More preferably, it is 70% or less.
 上記した950℃以下における合計圧下率とは、950℃以下の温度域における各圧延パスの圧下率の合計をさす。 The above-mentioned total rolling reduction rate at 950 ° C. or lower refers to the total rolling reduction rate of each rolling path in the temperature range of 950 ° C. or lower.
 冷却工程
 熱間圧延工程後、冷却工程で、熱延板に冷却処理を施す。冷却工程では、冷却停止温度までの平均冷却速度:5℃/s以上30℃/s以下、冷却停止温度:400℃以上650℃以下で冷却する。
Cooling process After the hot rolling process, the hot rolled plate is cooled in the cooling process. In the cooling step, cooling is performed at an average cooling rate up to the cooling stop temperature: 5 ° C./s or more and 30 ° C./s or less, and a cooling stop temperature: 400 ° C. or more and 650 ° C. or less.
 冷却開始から冷却停止(冷却終了)までの平均冷却速度:5℃/s以上30℃/s以下
 熱延板の肉厚中心温度で、冷却開始から後述する冷却停止までの温度域における平均冷却速度が5℃/s未満では、フェライトまたはベイナイトの核生成頻度が減少し、これらが粗大化するため、上記した角形鋼管の平均結晶粒径を有する組織が得られない。一方で、平均冷却速度が30℃/sを超えると、多量のマルテンサイトが生成し、靱性が低下する。平均冷却速度は、好ましくは10℃/s以上である。また、平均冷却速度は、好ましくは25℃/s以下である。
Average cooling rate from the start of cooling to the stop of cooling (end of cooling): 5 ° C / s or more and 30 ° C / s or less At the center temperature of the wall thickness of the hot-rolled plate, the average cooling rate in the temperature range from the start of cooling to the stop of cooling described later. If the temperature is less than 5 ° C./s, the frequency of nucleation of ferrite or bainite decreases and these become coarse, so that a structure having the average crystal grain size of the above-mentioned square steel tube cannot be obtained. On the other hand, when the average cooling rate exceeds 30 ° C./s, a large amount of martensite is generated and the toughness is lowered. The average cooling rate is preferably 10 ° C./s or higher. The average cooling rate is preferably 25 ° C./s or less.
 なお、本発明では、冷却前の鋼板表面におけるフェライト生成抑制の観点より、仕上圧延終了後直ちに冷却を開始することが好ましい。 In the present invention, it is preferable to start cooling immediately after the finish rolling from the viewpoint of suppressing the formation of ferrite on the surface of the steel sheet before cooling.
 冷却停止温度:400℃以上650℃以下
 熱延板の肉厚中心温度で、冷却停止温度が400℃未満では、多量のマルテンサイトが生成し、靱性が低下する。一方で、冷却停止温度が650℃を超えると、フェライトまたはベイナイトの核生成頻度が減少し、これらが粗大化するため、上記した角形鋼管の平均結晶粒径を有する組織が得られない。冷却停止温度は、好ましくは430℃以上である。また、冷却停止温度は、好ましくは620℃以下である。
Cooling stop temperature: 400 ° C. or higher and 650 ° C. or lower When the cooling stop temperature is less than 400 ° C. at the center temperature of the wall thickness of the hot-rolled sheet, a large amount of martensite is generated and the toughness is lowered. On the other hand, when the cooling stop temperature exceeds 650 ° C., the frequency of nucleation of ferrite or bainite decreases and these become coarse, so that a structure having the average crystal grain size of the above-mentioned square steel pipe cannot be obtained. The cooling shutdown temperature is preferably 430 ° C. or higher. The cooling shutdown temperature is preferably 620 ° C. or lower.
 なお、本発明において、平均冷却速度は、特に断らない限り、((冷却前の熱延板の肉厚中心温度-冷却後の熱延板の肉厚中心温度)/冷却時間)で求められる値(冷却速度)とする。冷却方法は、ノズルからの水の噴射等の水冷や、冷却ガスの噴射による冷却等が挙げられる。本発明では、熱延板の両面が同条件で冷却されるように、熱延板両面に冷却操作(処理)を施すことが好ましい。 In the present invention, the average cooling rate is a value obtained by ((the center temperature of the wall thickness of the hot-rolled plate before cooling-the center temperature of the wall thickness of the hot-rolled plate after cooling) / cooling time) unless otherwise specified. (Cooling rate). Examples of the cooling method include water cooling such as injection of water from a nozzle, cooling by injection of cooling gas, and the like. In the present invention, it is preferable to perform a cooling operation (treatment) on both sides of the hot-rolled plate so that both sides of the hot-rolled plate are cooled under the same conditions.
 巻取工程
 冷却工程後、巻取工程で、熱延鋼板をコイル状に巻取り、その後放冷する。巻取工程では、上記した鋼板組織を得るため、巻取温度:400℃以上650℃以下で巻取ることが好ましい。巻取温度が400℃未満では、多量のマルテンサイトが生成し、靱性が低下する。巻取温度が650℃超えると、フェライトまたはベイナイトの核生成頻度が減少し、これらが粗大化するため、上記した角形鋼管の平均結晶粒径を有する組織が得られない。巻取温度は、好ましくは430℃以上である。また、巻取温度は、好ましくは620℃以下である。
Winding process After the cooling process, the hot-rolled steel sheet is wound into a coil in the winding process and then allowed to cool. In the winding step, in order to obtain the above-mentioned steel sheet structure, it is preferable to wind at a winding temperature of 400 ° C. or higher and 650 ° C. or lower. If the take-up temperature is less than 400 ° C., a large amount of martensite is generated and the toughness is lowered. When the winding temperature exceeds 650 ° C., the frequency of nucleation of ferrite or bainite decreases, and these become coarse, so that a structure having the average crystal grain size of the above-mentioned square steel pipe cannot be obtained. The take-up temperature is preferably 430 ° C. or higher. The winding temperature is preferably 620 ° C. or lower.
 <建築構造物>
 次に、図5を用いて、本発明の角形鋼管10を使用した建築構造物の一実施形態について説明する。図5には、本発明の角形鋼管10を建築構造物の部材(例えば柱材)に使用した建築構造物100の一例を示す。
<Building structure>
Next, an embodiment of a building structure using the square steel pipe 10 of the present invention will be described with reference to FIG. FIG. 5 shows an example of a building structure 100 in which the square steel pipe 10 of the present invention is used as a member (for example, a pillar material) of a building structure.
 図5に示すように、本発明の建築構造物100は、ダイアフラム17を介して複数設立された角形鋼管10(柱材)同士が溶接接合される。隣り合う角形鋼管10の間には大梁18が架設され、隣り合う大梁18の間には小梁19が架設される。また、壁等の取り付けるために、適宜、間柱20も設けられる。その他、公知の部材を建築構造物100に用いることができる。 As shown in FIG. 5, in the building structure 100 of the present invention, a plurality of square steel pipes 10 (pillars) established via a diaphragm 17 are welded together. A girder 18 is erected between the adjacent square steel pipes 10, and a girder 19 is erected between the adjacent girders 18. In addition, studs 20 are appropriately provided for mounting the wall or the like. In addition, known members can be used for the building structure 100.
 上述したように、本発明の角形鋼管10は、角部12の曲率半径が小さく、かつ、平板部11が平坦であり、形状特性に優れる。さらに、本発明の角形鋼管10は、角部12の外面の延性および靭性に優れる。そのため、この角形鋼管10を柱材として使用した本発明の建築構造物100は、構造物全体の塑性変形能を確保できるため、従来の角形鋼管を使用した建築構造物と比べて、優れた耐震性能を発揮する。 As described above, in the square steel pipe 10 of the present invention, the radius of curvature of the square portion 12 is small, the flat plate portion 11 is flat, and the shape characteristics are excellent. Further, the square steel pipe 10 of the present invention is excellent in ductility and toughness on the outer surface of the square portion 12. Therefore, the building structure 100 of the present invention using the square steel pipe 10 as a pillar material can secure the plastic deformability of the entire structure, and therefore has excellent earthquake resistance as compared with the conventional building structure using the square steel pipe. Demonstrate performance.
 以下、実施例に基づいて、本発明をさらに詳細に説明する。なお、本発明は以下の実施例に限定されない。 Hereinafter, the present invention will be described in more detail based on Examples. The present invention is not limited to the following examples.
 本発明の角形鋼管を次の条件で製造した。 The square steel pipe of the present invention was manufactured under the following conditions.
 表1に示す成分組成を有する溶鋼を溶製し、スラブ(鋼素材)とした。得られたスラブを表2-1に示す条件の熱間圧延工程、冷却工程、巻取工程を施して、熱延鋼板とした。 The molten steel having the composition shown in Table 1 was melted and used as a slab (steel material). The obtained slab was subjected to a hot rolling step, a cooling step, and a winding step under the conditions shown in Table 2-1 to obtain a hot-rolled steel sheet.
 得られた熱延鋼板(素材鋼板)を、ケージロール群およびフィンパスロール群を用いて楕円形断面のオープン管に冷間で連続成形した。次いで、オープン管の相対する端面(幅方向両端部)を高周波誘導加熱または高周波抵抗加熱で融点以上に加熱し、スクイズロールで圧接し、電縫鋼管とした。 The obtained hot-rolled steel sheet (material steel sheet) was continuously cold-formed into an open pipe having an elliptical cross section using a cage roll group and a fin pass roll group. Next, the opposite end faces (both ends in the width direction) of the open pipe were heated above the melting point by high frequency induction heating or high frequency resistance heating, and pressed with a squeeze roll to obtain an electrosewn steel pipe.
 得られた電縫鋼管(素管)に対して、2スタンド(2段)のサイジングロール群で縮径した後、4スタンド(4段)の角成形ロール群で角成形を行い、表2-2に示す寸法の角形鋼管をそれぞれ得た。角成形工程では、表2-2に示す条件で、角成形直前のサイジングロールのギャップおよび角成形ロールのギャップを制御した。得られた角形鋼管は、管軸方向垂直断面視で略長方形であった。 The obtained electric resistance pipe (bare pipe) was reduced in diameter with a 2-stand (2-stage) sizing roll group, and then square-formed with a 4-stand (4 stage) square forming roll group. Square steel pipes with the dimensions shown in 2 were obtained respectively. In the square forming step, the gap of the sizing roll and the gap of the square forming roll immediately before the square forming were controlled under the conditions shown in Table 2-2. The obtained square steel pipe was substantially rectangular in the vertical cross-sectional view in the pipe axis direction.
 なお、表2-2に示す、角形鋼管の平均肉厚t(mm)は上記の式(3)を用いて算出し、角形鋼管の平均辺長H(mm)は上記の式(4)を用いて算出した。角形鋼管の辺長HおよびH(mm)は、図1に示した箇所の平板部の辺長を測定した。素材鋼板の幅W(mm)は、レベラーを通過した直後の鋼板の幅を測定した。第一段目の角成形スタンドの入側における電縫鋼管の周長CIN(mm)、最終段の角成形スタンドの出側における角形鋼管の周長COUT(mm)、および角成形直前のサイジングスタンドのカリバーロールと第一段目の角成形スタンドのカリバーロールの凹部間最大ギャップの差(△g)は、上述の方法でそれぞれ測定した。そして、上記した差(△g)、平均肉厚tおよび平均辺長Hを用いて、G(=△g/(t/H))を算出した。 The average wall thickness t (mm) of the square steel pipe shown in Table 2-2 is calculated by using the above formula (3), and the average side length H (mm) of the square steel pipe is calculated by using the above formula (4). Calculated using. For the side lengths H 1 and H 2 (mm) of the square steel pipe, the side lengths of the flat plate portions at the locations shown in FIG. 1 were measured. For the width W (mm) of the material steel sheet, the width of the steel sheet immediately after passing through the leveler was measured. Circumferential length C IN (mm) of the electric resistance pipe on the entrance side of the first stage square forming stand, circumference C OUT (mm) of the square steel pipe on the exit side of the square forming stand of the final stage, and immediately before square forming. The difference (Δg) between the recesses of the caliber roll of the sizing stand and the caliber roll of the first-stage square forming stand was measured by the above method. Then, G (= Δg / (t / H)) was calculated using the above-mentioned difference (Δg), average wall thickness t, and average side length H.
 また、得られた角形鋼管は、各角形鋼管を管軸方向に対して垂直に切断し、電縫溶接部を含む切断面を研磨後、ナイタール腐食し、光学顕微鏡で観察した。電縫溶接部の溶融凝固部の管周方向の幅が、管全厚にわたり1.0μm以上1000μm以下であることも確認した。溶融凝固部は、ナイタールで腐食した上記断面において、光学顕微鏡で白く観察される領域として特定した。 In the obtained square steel pipe, each square steel pipe was cut perpendicular to the pipe axis direction, the cut surface including the electrosewn weld was polished, and then nital corroded and observed with an optical microscope. It was also confirmed that the width of the melt-solidified portion of the electric stitch welded portion in the pipe circumferential direction was 1.0 μm or more and 1000 μm or less over the entire thickness of the pipe. The melt-solidified portion was identified as a region observed white with an optical microscope in the above cross section corroded by nital.
 以下に示す方法で、得られた角形鋼管の鋼組織の定量、試験および評価を行った。 The steel structure of the obtained square steel pipe was quantified, tested and evaluated by the method shown below.
 (1)角形鋼管の鋼組織
 角形鋼管の鋼組織の定量は、上述した方法で行った。得られた結果を表3に示した。
(1) Steel structure of square steel pipe The steel structure of square steel pipe was quantified by the method described above. The results obtained are shown in Table 3.
 (2)角形鋼管の角部の外面の曲率半径
 得られた角形鋼管の角部の曲率半径は、管軸方向の任意の位置10箇所において、4つの角部の外面(角部の外側)の曲率半径(mm)をそれぞれ測定した。計40箇所の測定値から最大値Rmaxおよび最小値Rminをそれぞれ求めた。その値を表4に示した。ここでは、曲率半径の最大値Rmaxおよび最小値Rminが、2.0t以上3.0t以下の範囲にある場合に、角部の外面の曲率半径が小さいと評価した。
(2) Radius of curvature of the outer surface of the corner of the square steel pipe The radius of curvature of the corner of the obtained square steel pipe is the radius of curvature of the outer surface of the four corners (outside of the corner) at 10 arbitrary positions in the pipe axis direction. The radius of curvature (mm) was measured respectively. The maximum value Rmax and the minimum value Rmin were obtained from the measured values at a total of 40 points. The values are shown in Table 4. Here, when the maximum value Rmax and the minimum value Rmin of the radius of curvature are in the range of 2.0t or more and 3.0t or less, it is evaluated that the radius of curvature of the outer surface of the corner portion is small.
 なお、角部の外側の曲率半径の測定に、ラジアルゲージを使用した。曲率半径の測定方法は、図1を用いて説明した上述の方法で計測した。 A radial gauge was used to measure the radius of curvature on the outside of the corner. The method of measuring the radius of curvature was measured by the above-mentioned method described with reference to FIG.
 (3)角形鋼管の平板部の平坦度
 図10を用いて、平坦度の測定方法を説明する。平坦度の測定は、角形鋼管の管軸方向の任意の位置10箇所において、4つの平板部をそれぞれ測定対象とし、計40箇所で測定を行った。図10に示すように、各平板部の外面の周方向両端の2点を通る直線に対する最大膨らみ量および最大凹み量をそれぞれ測定した。膨らみ量は正の値、凹み量は負の値とし、表4に測定値を示した。そして、各測定箇所における最大膨らみ量および最大凹み量の絶対値を求め、その最大値を平板部の平坦度とし、表4に示した。ただし、膨らみまたは凹みが存在しなかった場合は、膨らみ量または凹み量の値を0とした。
(3) Flatness of a flat plate portion of a square steel pipe A method of measuring flatness will be described with reference to FIG. The flatness was measured at 10 points at arbitrary positions in the pipe axis direction of the square steel pipe, with 4 flat plate portions as measurement targets, respectively, at a total of 40 points. As shown in FIG. 10, the maximum bulge amount and the maximum dent amount with respect to the straight line passing through the two points at both ends in the circumferential direction of the outer surface of each flat plate portion were measured. The amount of swelling was a positive value, the amount of dent was a negative value, and the measured values are shown in Table 4. Then, the absolute values of the maximum bulge amount and the maximum dent amount at each measurement point were obtained, and the maximum values were defined as the flatness of the flat plate portion and are shown in Table 4. However, when there was no bulge or dent, the value of the bulge amount or dent amount was set to 0.
 ここでは、平板部の平坦度(mm)が2.5mm以下である場合に、平板部が平坦であると評価した。 Here, when the flatness (mm) of the flat plate portion is 2.5 mm or less, it is evaluated that the flat plate portion is flat.
 (4)角形鋼管の平板部および角部の引張試験
 得られた角形鋼管を用いて、次の方法で引張試験を行った。図6には、平板部および角部の引張試験片の採取位置をそれぞれ示し、図7には、角部の引張試験片の詳細な採取位置を示す。
(4) Tensile test of flat plate and corner of square steel pipe Using the obtained square steel pipe, a tensile test was conducted by the following method. FIG. 6 shows the sampling positions of the flat plate portion and the corner tensile test piece, respectively, and FIG. 7 shows the detailed sampling positions of the corner tensile test pieces.
 図6に示すように、引張方向が管軸方向と平行になるように、角形鋼管の平板部および角部から破線で示すJIS5号引張試験片およびJIS12B号引張試験片をそれぞれ採取した。それらの厚さが5mm且つ厚さの中心が管外面から肉厚tの1/4t位置になるようにそれぞれ研削し、引張試験片を採取した。なお、角部の引張試験片は、図7に示すように、該角部に隣接する両側の平板部の外面をそれぞれ延長した交点を通り、かつ平板部の外面と45°をなす線上から採取した。 As shown in FIG. 6, JIS No. 5 tensile test pieces and JIS No. 12B tensile test pieces shown by broken lines were taken from the flat plate portion and the corner portion of the square steel pipe so that the tensile direction was parallel to the pipe axis direction, respectively. The tensile test pieces were collected by grinding them so that the thickness was 5 mm and the center of the thickness was 1/4 t of the wall thickness t from the outer surface of the pipe. As shown in FIG. 7, the tensile test piece at the corner is collected from an intersection that extends the outer surfaces of the flat plates on both sides adjacent to the corner, and from a line forming 45 ° with the outer surface of the flat plate. bottom.
 これらの引張試験片を用いてJIS Z 2241の規定に準拠して引張試験を実施し、平板部および角部の降伏強度YS、引張強度TS、均一伸び(平板部:E1、角部:E2)を測定した。均一伸びは、最大荷重時の全伸びの値とした。角部は、得られた降伏強度および引張強度を用いて、(降伏強度)/(引張強度)×100(%)で定義される降伏比を算出した。また、平板部の均一伸びE1に対する角部の均一伸びE2の値を算出した。 Tensile tests were carried out using these tensile test pieces in accordance with JIS Z 2241 regulations, and the yield strength YS, tensile strength TS, and uniform elongation of the flat plate and corners (flat plate: E1, corners: E2). Was measured. The uniform elongation is the value of the total elongation at the maximum load. For the corners, the yield strength and tensile strength obtained were used to calculate the yield ratio defined by (yield strength) / (tensile strength) × 100 (%). Further, the value of the uniform elongation E2 of the corner portion with respect to the uniform elongation E1 of the flat plate portion was calculated.
 引張試験片の本数は各2本とし、それらの平均値を算出して降伏強度YS(MPa)、引張強度TS(MPa)、降伏比(%)、均一伸び(%)を求めた。それらの値を表4に示した。 The number of tensile test pieces was two each, and the average value thereof was calculated to obtain the yield strength YS (MPa), the tensile strength TS (MPa), the yield ratio (%), and the uniform elongation (%). These values are shown in Table 4.
 ここでは、平板部の均一伸びE1に対する角部の均一伸びE2の値が0.60以上である場合に、角部の外面の延性に優れると評価した。角部の降伏比は90%以下の場合に良好、平板部の降伏強度YSは295MPa以上の場合に良好、平板部の引張強度TSは400MPa以上の場合に良好、とそれぞれ評価した。 Here, when the value of the uniform elongation E2 of the corner portion with respect to the uniform elongation E1 of the flat plate portion is 0.60 or more, it is evaluated that the ductility of the outer surface of the corner portion is excellent. It was evaluated that the yield ratio of the corner portion was good when it was 90% or less, the yield strength YS of the flat plate portion was good when it was 295 MPa or more, and the tensile strength TS of the flat plate portion was good when it was 400 MPa or more.
 なお、図6に示すように、平板部の引張試験片は、角形鋼管の電縫溶接部13を含む平板部11aの隣に位置する平板部11bの幅中央の位置から採取した。角部の引張試験片は、電縫溶接部13を含む平板部11aに隣接する角部12aから採取した。 As shown in FIG. 6, the tensile test piece of the flat plate portion was taken from the position at the center of the width of the flat plate portion 11b located next to the flat plate portion 11a including the electric resistance welded portion 13 of the square steel pipe. The tensile test piece at the corner was taken from the corner 12a adjacent to the flat plate portion 11a including the electric stitch welded portion 13.
 (5)角形鋼管の角部のシャルピー衝撃試験
 得られた角形鋼管を用いて、次の方法でシャルピー衝撃試験を行った。図8には、角部のシャルピー試験片の採取位置を示し、図9には、角部のシャルピー試験片の詳細な採取位置を示す。
(5) Charpy Impact Test of Corners of Square Steel Pipe Using the obtained square steel pipe, a Charpy impact test was conducted by the following method. FIG. 8 shows the collection position of the Charpy test piece at the corner, and FIG. 9 shows the detailed collection position of the Charpy test piece at the corner.
 図8および図9に示すように、シャルピー衝撃試験には、角形鋼管の管外面から肉厚tの1/4t位置において、試験片長手方向が管軸方向と平行となるように採取した、JIS Z 2242の規定に準拠したVノッチ標準試験片を用いた。角部のシャルピー試験片は、電縫溶接部13を含む平板部11aに隣接する角部12aから採取した。より詳細には、図9に示すように、角部12aに隣接する両側の平板部の外面をそれぞれ延長した交点を通り、かつ平板部の外面と45°の角をなす線上から採取した。JIS Z 2242の規定に準拠して、試験温度:-10℃でシャルピー衝撃試験を実施し、シャルピー吸収エネルギー(J)を求めた。なお、試験片の本数は各3本とし、それらの平均値を算出してシャルピー吸収エネルギー(J)を求めた。その値を表4に示した。 As shown in FIGS. 8 and 9, in the Charpy impact test, JIS was taken so that the longitudinal direction of the test piece was parallel to the axial direction of the pipe at a position 1/4 t of the wall thickness t from the outer surface of the pipe of the square steel pipe. A V-notch standard test piece conforming to the provisions of Z 2242 was used. The Charpy test piece at the corner was taken from the corner 12a adjacent to the flat plate portion 11a including the electric stitch welded portion 13. More specifically, as shown in FIG. 9, the samples were taken from the intersections extending the outer surfaces of the flat plate portions on both sides adjacent to the corner portion 12a, and from the line forming an angle of 45 ° with the outer surface of the flat plate portion. A Charpy impact test was carried out at a test temperature of -10 ° C in accordance with JIS Z 2242 to determine the Charpy absorption energy (J). The number of test pieces was 3 each, and the average value of them was calculated to obtain the Charpy absorption energy (J). The values are shown in Table 4.
 ここでは、角部の-10℃におけるシャルピー吸収エネルギーが100J以上の場合に、角部の外面の靭性に優れると評価した。 Here, it was evaluated that the toughness of the outer surface of the corner is excellent when the Charpy absorption energy of the corner at -10 ° C is 100 J or more.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 表2-1~表4中、No.1~3、8~13は本発明例、No.4~7は比較例である。 No. in Tables 2-1 to 4 1 to 3 and 8 to 13 are examples of the present invention, No. 4 to 7 are comparative examples.
 本発明例の角形鋼管は、いずれも角部の外側の曲率半径Rが2.0t以上3.0t以下であり、平板部の外面の管軸方向における平坦度が2.5mm以下であり、角部の外面から1/4t位置における均一伸びE2が、平板部の外面から1/4t位置における均一伸びE1に対して0.60倍以上であり、-10℃における角部のシャルピー吸収エネルギーが100J以上であった。 In each of the square steel pipes of the present invention, the radius of curvature R on the outside of the corner portion is 2.0 t or more and 3.0 t or less, the flatness of the outer surface of the flat plate portion in the pipe axis direction is 2.5 mm or less, and the angle is square. The uniform elongation E2 at the 1 / 4t position from the outer surface of the flat plate portion is 0.60 times or more the uniform elongation E1 at the 1 / 4t position from the outer surface of the flat plate portion, and the charmy absorption energy of the corner portion at −10 ° C. is 100J. That was all.
 これに対し、比較例のNo.4は、「W/COUT」の値が式(1)の範囲を下回ったため、角部の外側の曲率半径が本発明の範囲を上回ってしまい、平坦な平板部が得られなかった。 On the other hand, No. of Comparative Example. In No. 4, since the value of "W / C OUT " was below the range of the equation (1), the radius of curvature outside the corner portion was above the range of the present invention, and a flat flat plate portion could not be obtained.
 比較例のNo.5は、「W/COUT」の値が式(1)の範囲を上回ったため、平板部と角部の均一伸びの比(E2/E1)、および角部の-10℃におけるシャルピー吸収エネルギーが所望の値に達しなかった。また、角部の降伏比も90%以上の値を示した。 Comparative example No. In No. 5, since the value of "W / C OUT " exceeded the range of the formula (1), the ratio of uniform elongation between the flat plate portion and the corner portion (E2 / E1) and the Charpy absorption energy of the corner portion at −10 ° C. The desired value was not reached. In addition, the yield ratio of the corners also showed a value of 90% or more.
 比較例のNo.6は、「CIN/COUT」の値が式(2)の範囲を下回ったため、角部の外側の曲率半径が本発明の範囲を上回ってしまい、平坦な平板部が得られなかった。 Comparative example No. In No. 6, since the value of "C IN / C OUT " was below the range of the equation (2), the radius of curvature on the outside of the corner portion exceeded the range of the present invention, and a flat flat plate portion could not be obtained.
 比較例のNo.7は、「CIN/COUT」の値が式(2)の範囲を上回ったため、角部の外側の曲率半径が本発明の範囲を下回ってしまい、平板部と角部の均一伸びの比(E2/E1)、および角部の-10℃におけるシャルピー吸収エネルギーが所望の値に達しなかった。また、角部の降伏比も90%以上の値を示した。 Comparative example No. In No. 7, since the value of "C IN / C OUT " exceeded the range of the equation (2), the radius of curvature outside the corner portion fell below the range of the present invention, and the ratio of the uniform elongation of the flat plate portion to the corner portion. (E2 / E1), and the Charpy absorption energy at −10 ° C. at the corners did not reach the desired value. In addition, the yield ratio of the corners also showed a value of 90% or more.
 1  鋼板(鋼帯)
 2  レベラー
 3  ケージロール群
 4  フィンパスロール群
 5  スクイズロール
 6  溶接機
 7  電縫鋼管
 8  サイジングロール群
 9  角成形ロール群
 10 角形鋼管
 11 平板部
 12 角部
 13 溶接部(電縫溶接部)
 14 母材部
 15 溶接熱影響部
 16 溶融凝固部
 17 ダイアフラム
 18 大梁
 19 小梁
 20 間柱
 100 建築構造物
1 Steel plate (steel strip)
2 Leveler 3 Cage roll group 4 Finpass roll group 5 Squeeze roll 6 Welder 7 Electric sewn steel pipe 8 Sizing roll group 9 Square forming roll group 10 Square steel pipe 11 Flat plate part 12 Square part 13 Welded part (electric sewn welded part)
14 Base metal part 15 Welding heat-affected zone 16 Melt solidification part 17 Diaphragm 18 Large beam 19 Small beam 20 Stud 100 Building structure

Claims (11)

  1.  平板部と角部を有する角形鋼管であって、
     前記角部の外側の曲率半径Rが、前記平板部の平均肉厚をt(mm)とするとき、2.0t以上3.0t以下であり、
     前記平板部の外面の平坦度が、2.5mm以下であり、
     前記角部の外面から肉厚方向で1/4tの位置における均一伸びE2が、前記平板部の外面から肉厚方向で1/4tの位置における均一伸びE1に対して0.60倍以上であり、
     前記角部の外面から肉厚方向で1/4tの位置における-10℃でのシャルピー吸収エネルギーが100J以上である、角形鋼管。
    A square steel pipe with a flat plate and corners,
    The radius of curvature R on the outside of the corner portion is 2.0 t or more and 3.0 t or less when the average wall thickness of the flat plate portion is t (mm).
    The flatness of the outer surface of the flat plate portion is 2.5 mm or less.
    The uniform elongation E2 at the position of 1 / 4t in the wall thickness direction from the outer surface of the corner portion is 0.60 times or more the uniform elongation E1 at the position of 1 / 4t in the wall thickness direction from the outer surface of the flat plate portion. ,
    A square steel pipe having a Charpy absorption energy of 100 J or more at −10 ° C. at a position 1/4 t in the wall thickness direction from the outer surface of the corner portion.
  2.  前記平均肉厚tが、前記平板部の平均辺長H(mm)に対して0.030倍超である、請求項1に記載の角形鋼管。 The square steel pipe according to claim 1, wherein the average wall thickness t is more than 0.030 times the average side length H (mm) of the flat plate portion.
  3.  前記平均肉厚tが20mm以上40mm以下である、請求項1または2に記載の角形鋼管。 The square steel pipe according to claim 1 or 2, wherein the average wall thickness t is 20 mm or more and 40 mm or less.
  4.  前記平板部の降伏強度が295MPa以上であり、
     前記平板部の引張強度が400MPa以上であり、
     前記角部の降伏比が90%以下である、請求項1~3のいずれかに記載の角形鋼管。
    The yield strength of the flat plate portion is 295 MPa or more, and the yield strength is 295 MPa or more.
    The tensile strength of the flat plate portion is 400 MPa or more, and the plate portion has a tensile strength of 400 MPa or more.
    The square steel pipe according to any one of claims 1 to 3, wherein the yield ratio of the corner portion is 90% or less.
  5.  前記角形鋼管の成分組成は、質量%で、
    C:0.020~0.45%、
    Si:0.01~1.0%、
    Mn:0.30~3.0%、
    P:0.10%以下、
    S:0.050%以下、
    Al:0.005~0.10%、
    N:0.010%以下、
    Ti:0.001~0.15%を含み、残部がFeおよび不可避的不純物からなり、
     前記平板部の肉厚中央における鋼組織は、
    フェライトとベイナイトの体積率の合計が、平板部の肉厚中央における鋼組織全体に対して70%以上95%以下であり、残部がパーライト、マルテンサイト、オーステナイトから選択される1種または2種以上からなり、
    隣り合う結晶の方位差が15°以上の境界で囲まれた領域を結晶粒としたとき、
    前記結晶粒の平均結晶粒径が15.0μm以下であり、
    結晶粒径で40μm以上の前記結晶粒の体積率の合計が、平板部の肉厚中央における鋼組織全体に対して40%以下である、請求項1~4のいずれかに記載の角形鋼管。
    The composition of the square steel pipe is mass%.
    C: 0.020 to 0.45%,
    Si: 0.01-1.0%,
    Mn: 0.30 to 3.0%,
    P: 0.10% or less,
    S: 0.050% or less,
    Al: 0.005 to 0.10%,
    N: 0.010% or less,
    Ti: contains 0.001 to 0.15%, the balance consists of Fe and unavoidable impurities.
    The steel structure at the center of the wall thickness of the flat plate portion is
    The total volume fraction of ferrite and bainite is 70% or more and 95% or less of the total steel structure at the center of the thickness of the flat plate, and the balance is one or more selected from pearlite, martensite, and austenite. Consists of
    When a region surrounded by a boundary with an orientation difference of 15 ° or more between adjacent crystals is used as a crystal grain.
    The average crystal grain size of the crystal grains is 15.0 μm or less, and the average crystal grain size is 15.0 μm or less.
    The square steel pipe according to any one of claims 1 to 4, wherein the total volume fraction of the crystal grains having a crystal grain size of 40 μm or more is 40% or less with respect to the entire steel structure at the center of the wall thickness of the flat plate portion.
  6.  前記成分組成に加えてさらに、質量%で、
    Nb:0.001~0.15%、
    V:0.001~0.15%、
    Cr:0.01~1.0%、
    Mo:0.01~1.0%、
    Cu:0.01~1.0%、
    Ni:0.01~1.0%、
    Ca:0.0002~0.010%、
    B:0.0001~0.010%
    から選ばれる1種又は2種以上を含む、請求項1~5のいずれかに記載の角形鋼管。
    In addition to the composition of the above components, by mass%,
    Nb: 0.001 to 0.15%,
    V: 0.001 to 0.15%,
    Cr: 0.01-1.0%,
    Mo: 0.01-1.0%,
    Cu: 0.01-1.0%,
    Ni: 0.01-1.0%,
    Ca: 0.0002 to 0.010%,
    B: 0.0001 to 0.010%
    The square steel pipe according to any one of claims 1 to 5, which comprises one kind or two or more kinds selected from.
  7.  請求項1~6のいずれかに記載の角形鋼管の製造方法であって、
     鋼板を冷間ロール成形し、前記鋼板の幅方向両端部を電縫溶接して電縫鋼管とした後、前記電縫鋼管をサイジングスタンドによって縮径し、次いで角成形スタンドによって角成形して角形鋼管を製造する際に、
     前記角成形スタンドの出側における角形鋼管の周長COUTに対する前記鋼板の板幅Wの比が式(1)を満たし、かつ、前記角成形スタンドの出側における角形鋼管の周長COUTに対する前記角成形スタンドの入側における電縫鋼管の周長CINの比が式(2)を満たすように、角成形直前の前記サイジングスタンドのロールのギャップおよび前記角成形スタンドのロールのギャップを制御する、角形鋼管の製造方法。
    1.000+0.050×t/H<W/COUT<1.000+0.50×t/H・・・式(1)
    0.30×t/H+0.99≦CIN/COUT<0.50×t/H+0.99・・・式(2)
    ここで、式(1)および式(2)において、
     W:素材である鋼板の板幅(mm)、
     CIN:第一段目の角成形スタンドの入側における電縫鋼管の周長(mm)、
     COUT:最終段の角成形スタンドの出側における角形鋼管の周長(mm)、
     t:角成形後の平板部の平均肉厚(mm)、
     H:角成形後の平板部の平均辺長(mm)、
    である。
    但し、1段の角成形スタンドにより角成形を行う場合には、前記第一段目の角成形スタンドと前記最終段の角成形スタンドとは、同一の角成形スタンドを指すものとする。
    The method for manufacturing a square steel pipe according to any one of claims 1 to 6.
    A steel plate is cold-rolled, and both ends of the steel plate in the width direction are welded and welded to form an electric resistance pipe. When manufacturing steel pipes
    The ratio of the plate width W of the steel plate to the peripheral length C OUT of the square steel pipe on the outlet side of the square forming stand satisfies the formula (1), and the peripheral length C OUT of the square steel pipe on the exit side of the square forming stand. The gap between the rolls of the sizing stand and the gap between the rolls of the square forming stand immediately before square forming are controlled so that the ratio of the peripheral length CIN of the electric resistance pipe on the entrance side of the square forming stand satisfies the formula (2). How to manufacture a square steel pipe.
    1.000 + 0.050 × t / H <W / C OUT <1.000 + 0.50 × t / H ... Equation (1)
    0.30 × t / H + 0.99 ≦ C IN / C OUT <0.50 × t / H + 0.99 ... Equation (2)
    Here, in equations (1) and (2),
    W: Plate width (mm) of the steel plate that is the material,
    C IN : Perimeter (mm) of the electric resistance sewn steel pipe on the entrance side of the first stage square forming stand,
    C OUT : Perimeter (mm) of the square steel pipe on the exit side of the square forming stand in the final stage,
    t: Average wall thickness (mm) of the flat plate portion after square forming,
    H: Average side length (mm) of the flat plate portion after square forming,
    Is.
    However, when square forming is performed by a one-stage square forming stand, the first-stage square forming stand and the final stage square forming stand refer to the same square forming stand.
  8.  前記鋼板は、鋼素材を、加熱温度:1100℃以上1300℃以下に加熱した後、粗圧延終了温度:850℃以上1150℃以下、仕上圧延終了温度:750℃以上900℃以下、かつ、950℃以下での合計圧下率:50%以上である熱延処理を施し、
    次いで、肉厚中心温度で平均冷却速度:5℃/s以上30℃/s以下、冷却停止温度:400℃以上650℃以下で冷却を施し、
    次いで、400℃以上650℃以下で巻取る、請求項7に記載の角形鋼管の製造方法。
    In the steel sheet, after the steel material is heated to a heating temperature of 1100 ° C. or higher and 1300 ° C. or lower, the rough rolling end temperature: 850 ° C. or higher and 1150 ° C. or lower, the finish rolling end temperature: 750 ° C. or higher and 900 ° C. or lower, and 950 ° C. Total reduction rate in the following: After hot rolling treatment of 50% or more,
    Next, cooling was performed at the center temperature of the wall thickness at an average cooling rate of 5 ° C./s or more and 30 ° C./s or less, and a cooling shutdown temperature: 400 ° C. or more and 650 ° C. or less.
    The method for manufacturing a square steel pipe according to claim 7, wherein the steel pipe is then wound at 400 ° C. or higher and 650 ° C. or lower.
  9.  前記平均肉厚tが、前記平板部の平均辺長Hに対して0.030倍超である、請求項7または8に記載の角形鋼管の製造方法。 The method for manufacturing a square steel pipe according to claim 7 or 8, wherein the average wall thickness t is more than 0.030 times the average side length H of the flat plate portion.
  10.  前記平均肉厚tが20mm以上40mm以下である、請求項7~9のいずれかに記載の角形鋼管の製造方法。 The method for manufacturing a square steel pipe according to any one of claims 7 to 9, wherein the average wall thickness t is 20 mm or more and 40 mm or less.
  11.  請求項1~6のいずれかに記載の角形鋼管を柱材に用いた建築構造物。 A building structure using the square steel pipe according to any one of claims 1 to 6 as a column material.
PCT/JP2021/034008 2020-10-05 2021-09-15 Rectangular steel pipe and production method therefor, and building structure WO2022075026A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202180066462.1A CN116323065A (en) 2020-10-05 2021-09-15 Square steel pipe, method for manufacturing same, and building structure
KR1020237010699A KR20230059820A (en) 2020-10-05 2021-09-15 Rectangular steel pipe, its manufacturing method and building structure
JP2021575382A JP7306494B2 (en) 2020-10-05 2021-09-15 Rectangular steel pipe, manufacturing method thereof, and building structure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-168163 2020-10-05
JP2020168163 2020-10-05

Publications (1)

Publication Number Publication Date
WO2022075026A1 true WO2022075026A1 (en) 2022-04-14

Family

ID=81126790

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/034008 WO2022075026A1 (en) 2020-10-05 2021-09-15 Rectangular steel pipe and production method therefor, and building structure

Country Status (5)

Country Link
JP (1) JP7306494B2 (en)
KR (1) KR20230059820A (en)
CN (1) CN116323065A (en)
TW (1) TWI795923B (en)
WO (1) WO2022075026A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024100939A1 (en) * 2022-11-08 2024-05-16 Jfeスチール株式会社 Hot-rolled steel sheet, electric resistance welded steel pipe, rectangular steel pipe, line pipe, and building structure

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0523736A (en) * 1991-07-22 1993-02-02 Nkk Corp Manufacture of large diameter stainless clad square steel tube
JPH0976011A (en) * 1995-09-11 1997-03-25 Daiwa House Ind Co Ltd Method for heat treatment for thickening work of metallic tube and device therefor
JP2002212640A (en) * 2001-01-11 2002-07-31 Nakajima Steel Pipe Co Ltd Method for producing angular steel tube
WO2020170775A1 (en) * 2019-02-20 2020-08-27 Jfeスチール株式会社 Square steel pipe, method for manufacturing same, and building structure
WO2020170774A1 (en) * 2019-02-20 2020-08-27 Jfeスチール株式会社 Rectangular steel tube and method for manufacturing same, and building structure
WO2021039484A1 (en) * 2019-08-30 2021-03-04 Jfeスチール株式会社 Rectangular steel pipe and method for manufacturing same, and building structure

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04224023A (en) 1990-12-27 1992-08-13 Nippon Steel Corp Formation of square steel tube
JP3197661B2 (en) 1993-03-11 2001-08-13 日新製鋼株式会社 Method for manufacturing square tube with excellent shape characteristics
JPH1060580A (en) 1996-08-23 1998-03-03 Nippon Steel Corp Cold formed square steel tube minimal in difference of material in cold formed part and having refractoriness as well as high weldability, and its production
JP2004330222A (en) 2003-05-02 2004-11-25 Nakajima Steel Pipe Co Ltd Square steel pipe and manufacturing method for square steel pipe
JP5385760B2 (en) 2009-10-30 2014-01-08 株式会社神戸製鋼所 Cold-formed square steel pipe with excellent earthquake resistance
JP6807690B2 (en) 2016-09-27 2021-01-06 日本製鉄株式会社 Square steel pipe
MX2019002073A (en) * 2016-10-24 2019-07-01 Jfe Steel Corp Electric resistance welded steel pipe for high-strength thin hollow stabilizer and manufacturing method therefor.

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0523736A (en) * 1991-07-22 1993-02-02 Nkk Corp Manufacture of large diameter stainless clad square steel tube
JPH0976011A (en) * 1995-09-11 1997-03-25 Daiwa House Ind Co Ltd Method for heat treatment for thickening work of metallic tube and device therefor
JP2002212640A (en) * 2001-01-11 2002-07-31 Nakajima Steel Pipe Co Ltd Method for producing angular steel tube
WO2020170775A1 (en) * 2019-02-20 2020-08-27 Jfeスチール株式会社 Square steel pipe, method for manufacturing same, and building structure
WO2020170774A1 (en) * 2019-02-20 2020-08-27 Jfeスチール株式会社 Rectangular steel tube and method for manufacturing same, and building structure
WO2021039484A1 (en) * 2019-08-30 2021-03-04 Jfeスチール株式会社 Rectangular steel pipe and method for manufacturing same, and building structure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024100939A1 (en) * 2022-11-08 2024-05-16 Jfeスチール株式会社 Hot-rolled steel sheet, electric resistance welded steel pipe, rectangular steel pipe, line pipe, and building structure

Also Published As

Publication number Publication date
JPWO2022075026A1 (en) 2022-04-14
TW202219280A (en) 2022-05-16
KR20230059820A (en) 2023-05-03
CN116323065A (en) 2023-06-23
JP7306494B2 (en) 2023-07-11
TWI795923B (en) 2023-03-11

Similar Documents

Publication Publication Date Title
JP6874913B2 (en) Square steel pipe and its manufacturing method and building structure
JP5910400B2 (en) Non-tempered low-yield ratio high-tensile steel plate and method for producing the same
JP5928374B2 (en) Non-tempered low-yield ratio high-tensile steel plate and method for producing the same
JP6693606B1 (en) Square steel pipe, manufacturing method thereof, and building structure
JP7088417B2 (en) Electric pipe and its manufacturing method
JP6947333B2 (en) Electric resistance steel pipe and its manufacturing method, line pipe and building structure
JP6813140B1 (en) Square steel pipe and its manufacturing method, and building structures
WO2020202334A1 (en) Electric resistance welded steel pipe and method for manufacturing same, and steel pipe pile
JP2022033802A (en) Square steel tube and building structure
WO2022075026A1 (en) Rectangular steel pipe and production method therefor, and building structure
WO2020202333A1 (en) Electric resistance welded steel pipe and method for manufacturing same, and steel pipe pile
JP6813141B1 (en) Square steel pipe and its manufacturing method and building structure
JP7396552B1 (en) Hot-rolled steel plates, square steel pipes, their manufacturing methods, and architectural structures
JP7424551B1 (en) Hot-rolled steel plates, square steel pipes, their manufacturing methods and architectural structures
WO2023053837A1 (en) Rectangular steel pipe and method for manufacturing same, hot-rolled steel sheet and method for manufacturing same, and building structure
JP7314863B2 (en) Rectangular steel pipe, manufacturing method thereof, and building structure
WO2024100939A1 (en) Hot-rolled steel sheet, electric resistance welded steel pipe, rectangular steel pipe, line pipe, and building structure
WO2023214472A1 (en) Hot-rolled steel sheet and method for manufacturing same, and electric resistance welded steel pipe and method for manufacturing same
JP2021188104A (en) Rectangular steel tube and its manufacturing method, as well as building structure

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021575382

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21877328

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20237010699

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21877328

Country of ref document: EP

Kind code of ref document: A1