WO2022075009A1 - Vibration reducing material - Google Patents

Vibration reducing material Download PDF

Info

Publication number
WO2022075009A1
WO2022075009A1 PCT/JP2021/033497 JP2021033497W WO2022075009A1 WO 2022075009 A1 WO2022075009 A1 WO 2022075009A1 JP 2021033497 W JP2021033497 W JP 2021033497W WO 2022075009 A1 WO2022075009 A1 WO 2022075009A1
Authority
WO
WIPO (PCT)
Prior art keywords
vibration
mesh sheet
sheet
floor plate
reducing material
Prior art date
Application number
PCT/JP2021/033497
Other languages
French (fr)
Japanese (ja)
Inventor
正貴 青山
淳市 弘中
亮太 小川
英基 永谷
一成 佐藤
詩瑶 中本
Original Assignee
三井化学産資株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井化学産資株式会社 filed Critical 三井化学産資株式会社
Publication of WO2022075009A1 publication Critical patent/WO2022075009A1/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G21/00Preparing, conveying, or working-up building materials or building elements in situ; Other devices or measures for constructional work
    • E04G21/24Safety or protective measures preventing damage to building parts or finishing work during construction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/02Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems

Definitions

  • the present invention relates to a vibration reducing material and a vibration reducing method for reducing vibration when a heavy machine such as a crawler crane or a hydraulic excavator travels.
  • Patent Document 1 discloses a vibration reducing material for reducing vibration when a heavy machine travels at a construction site or the like.
  • This vibration reducing material is composed of an open cell polyurethane foam which is a thermosetting resin and a floor plate placed on the open cell polyurethane foam.
  • the vibration when the heavy machine runs on the floor plate is absorbed by the open cell polyurethane foam.
  • the subject of the present invention made in view of the above facts is a vibration reducing material and a vibration reducing method capable of effectively reducing vibration when a heavy machine travels and allowing the heavy machine to travel stably. To provide.
  • the following vibration reducing material that solves the above problems is provided. That is, it is a vibration reducing material for reducing vibration when a heavy machine travels, and includes a floor plate on which the heavy equipment travels on the upper surface and a synthetic resin mesh sheet arranged below the floor plate.
  • the sheet has a plurality of upper contact portions that come into contact with the lower surface of the floor plate and a plurality of lower contact portions that come into contact with the surface on which the mesh sheet is installed.
  • a vibration reducing material is provided in which the lower contact portion does not exist immediately below at least a part of the plurality of upper contact portions.
  • the reticulated sheet includes a plurality of upper streaks and a plurality of lower streaks located below the plurality of upper streaks.
  • the upper muscle and the lower muscle are formed in a sinusoidal shape extending in a predetermined direction in different phases, and it is preferable that each of the upper muscles is connected to three or more of the lower muscles.
  • the net-like sheet has an inclined portion inclined from the upper contact portion toward the lower contact portion. It is convenient that the reticulated sheet is made of an elastomer. It is preferable that the additional floor plate is arranged below the net-like sheet.
  • the following vibration reduction method for solving the above problems is provided. That is, it is a vibration reduction method for reducing vibration when a heavy machine travels, and a process of installing a floor plate on which the heavy equipment travels on the upper surface and a synthetic resin mesh sheet arranged below the floor plate are installed.
  • the mesh sheet has a plurality of upper contact portions in contact with the lower surface of the floor plate and a plurality of lower contact portions in contact with the surface on which the mesh sheet is installed.
  • a vibration reducing method in which the lower contact portion does not exist directly under at least a part of the plurality of upper contact portions in a state where the lower contact portion is not deformed.
  • the load applied to the mesh sheet from the upper contact portion is applied in the horizontal direction.
  • the mesh sheet can be made thin, the amount of deformation of the mesh sheet when the heavy machine travels is small, and the heavy machine can travel stably.
  • the side view of the vibration reducing material configured according to this invention is a sectional view taken along line EE in FIG. 2.
  • a graph showing the vibration level when the crawler crane is running (b) a graph showing the vibration level when the hydraulic excavator is running, and (c) a graph showing the vibration level when the vibration roller is running.
  • the vibration reducing material 2 includes a floor plate 6 on which a heavy machine 4 such as a hydraulic excavator runs on the upper surface, and a synthetic resin mesh sheet 8 arranged below the floor plate 6.
  • a heavy machine 4 such as a hydraulic excavator runs on the upper surface
  • a synthetic resin mesh sheet 8 arranged below the floor plate 6.
  • one mesh sheet 8 is installed on the ground, but an additional floor plate (for example, the same plate as the floor plate 6) may be installed between the mesh sheet 8 and the ground. ..
  • an additional floor plate for example, the same plate as the floor plate 6
  • two or more mesh sheets 8 may be laminated between the floor plate 6 and the ground.
  • the floor plate 6 can be formed of an appropriate metal material such as a rectangular steel plate.
  • the net-like sheet 8 absorbs vibration when the heavy machine 4 travels on the upper surface of the floor plate 6.
  • the dimensions of the mesh sheet 8 that can be formed into a rectangular shape may be, for example, about 1 to 2 m in width, about 10 m in length, and about 10 mm in thickness.
  • the reticulated sheet 8 can be formed from various synthetic resins.
  • the synthetic resin for the mesh sheet 8 may be either a thermoplastic resin (for example, an olefin resin, a silicon resin, etc.) or a thermosetting resin (for example, a urethane resin, an imide resin, etc.).
  • the net-like sheet 8 is formed from an elastomer having rubber elasticity from the viewpoint of the vibration reducing effect. Further, when the net-like sheet 8 is formed from an elastomer having rubber elasticity, it can be easily cut with scissors or the like, so that it can be easily adjusted to a required size and has a strip-like net-like shape.
  • the sheet 8 can be easily wound into a cylindrical shape, and the net-like sheet 8 can be easily transported, installed, removed, and housed.
  • the mesh sheet 8 of the illustrated embodiment has a two-stage structure including a plurality of upper streaks 10 and a plurality of lower streaks 12 located below the plurality of upper streaks 10. Is.
  • the upper streaks 10 and the lower streaks 12 are formed in a sinusoidal shape extending in a predetermined direction in different phases.
  • each upper stage is shown.
  • the maximum waveform value (maximum value in the Y-axis direction) of the streak 10 is located at each point of ..., X 2 , X 4 , ..., And the maximum waveform value (maximum value in the Y-axis direction) of each lower streak 12 is ..., X 1 , X3 , ...,
  • Each upper bar 10 and each lower bar 12 are formed in a sinusoidal shape extending in the X-axis direction in different phases from each other.
  • the amplitude A1 of the upper streak 10 and the amplitude A2 of the lower streak 12 may be the same or different.
  • each of the upper muscles 10 in the illustrated embodiment is connected to three of the lower muscles 12, each upper muscle 10 may be connected to four or more of the lower muscles 12.
  • the mesh sheet 8 has a plurality of upper contact portions that come into contact with the lower surface of the floor plate 6, and a plurality of lower contact portions that come into contact with the installation surface (ground or the upper surface of an appropriate plate) on which the mesh sheet 8 is installed. It is important that the lower contact portion does not exist directly under at least a part of the plurality of upper contact portions in the state where the mesh sheet 8 is not deformed.
  • the upper contact portion and the lower contact portion of the mesh sheet 8 are an upper end portion and a lower end portion of the mesh sheet 8 in a state where the mesh sheet 8 is not deformed, respectively.
  • the mesh sheet 8 is made of synthetic resin, and the mesh sheet 8 may be deformed when a heavy machine runs on the vibration reducing material 2 or when the floor plate 6 is placed on the mesh sheet 8, which is shown in the figure.
  • the lower contact portion does not exist directly under at least a part of the upper contact portion in a state where the mesh sheet 8 is not deformed due to the running of heavy machinery or the like.
  • the net-like sheet 8 When the net-like sheet 8 is deformed, the lower contact portion may be present immediately below the upper contact portion.
  • each upper bar 10 has a plurality of upper contact portions 10a, 10b, 10c, 10d, 10e, which are in contact with the lower surface of the floor plate 6.
  • Each lower bar 12 has a plurality of lower contact portions 12a, 12b, 12c, 12d, 12e, ...
  • the upper contact portions 10a to 10e and the lower contact portions 12a to 12e are a part of the upper contact portion and the lower contact portion of the mesh sheet 8, and the upper contact portion and the lower contact portion of the mesh sheet 8 are these. Not limited to.
  • each upper bar 10 and each lower bar 12 is rectangular, and each upper bar 10 and each lower bar 12 has a rectangular shape. It's twisted.
  • the mesh sheet 8 has a one-sided inclined portion 14 that inclines laterally to one side (left side in FIG. 3) from the upper contact portion 10a toward the lower contact portion 12a, and the upper contact portion 10e toward the lower contact portion 12e. It has another side inclined portion 16 which is inclined to the other side in the lateral direction (right side in FIG. 3).
  • the mesh sheet 8 of the illustrated embodiment has the one-side inclined portion 14 and the other-side inclined portion 16, the lower contact portions 12a and 12e are present immediately below the upper contact portions 10a and 10e. It is designed not to.
  • the lower streak 12 is not located directly under the upper streak 10, and the lower contact portion is directly under the upper contact portions 10b and 10d. 12b and 12d do not exist. Further, in the end surface shown in FIG. 3C, the lower streak 12 is located directly under the upper streak 10, but the position of the upper contact portion 10c and the position of the lower contact portion 12c are slightly deviated. The lower contact portion 12c does not exist directly below the upper contact portion 10c.
  • the lower contact portions 12a to 12e do not exist directly under the upper contact portions 10a to 10e of the mesh sheet 8, so that the upper contact portions 10a to 10e are reticulated.
  • the vibration reducing material 2 since the mesh sheet 8 can be made thin, the amount of deformation of the mesh sheet 8 when the heavy machine 4 travels is small, and the heavy machine 4 can travel stably.
  • the reticulated sheet 8 of the above-described embodiment has a two-stage structure having an upper streak 10 and a lower streak 12, but the reticulated sheet of the present invention may have a single-stage structure.
  • the upper bar 10 and the lower bar 12 of the mesh sheet 8 may have a form other than the sinusoidal shape.
  • the mesh sheet of the present invention for example, the upper and lower bars extending straight may intersect each other to form a mesh, and in this case, the mesh shape of the upper and lower bars is rectangular, rhombic, and hexagonal. Any shape such as can be adopted.
  • Example 1 is a mesh sheet having a thickness of 10 mm manufactured by using an olefin-based thermoplastic elastomer in the shapes as shown in FIGS. 2 and 3, and Comparative Example 1 is manufactured by using the same material as that of Example 1. It is a non-perforated sheet with a thickness of 10 mm.
  • Example 2 is a mesh sheet having a thickness of 10 mm manufactured by using an olefin-based thermoplastic elastomer softer than that of Example 1 and having a shape as shown in FIGS. 2 and 3 (the same shape as that of Example 1), and is compared.
  • Example 2 is a non-perforated sheet having a thickness of 10 mm manufactured using the same material as in Example 2.
  • the loss tangent tan ⁇ was measured by a measuring method based on JIS K 6394: 2007.
  • the loss tangent tan ⁇ is one index showing the vibration reduction effect, and it is considered that the larger the value of the loss tangent tan ⁇ , the higher the vibration reduction effect.
  • the test temperature when the loss tangent tan ⁇ was measured was 23 ° C.
  • the measurement frequency was 1 to 100 Hz
  • the static load was 150 kPa.
  • the loss tangent tan ⁇ of Example 1 is 0.14 to 0.16, and the loss tangent tan ⁇ of Comparative Example 1 is 0.08 to 0.11.
  • the value of the loss tangent tan ⁇ was larger in.
  • the loss tangent tan ⁇ of Example 2 is 0.14 to 0.16, and the loss tangent tan ⁇ of Comparative Example 2 is 0.11 to 0.14, and the loss of Example 2 is higher than that of Comparative Example 2.
  • the value of tangent tan ⁇ was large. Therefore, it can be said that the net-like sheet manufactured with the shapes shown in FIGS. 2 and 3 has a higher vibration reducing effect than the non-perforated sheet manufactured with the same material.
  • Example 1 When the hardness of Examples 1 and 2 was measured, as shown in FIG. 4, the material of Example 1 had a hardness of 90 (durometer A), and the material of Example 2 had a hardness of 53 (durometer A). Met. Moreover, when the strain rate of Examples 1 and 2 when a static load of 150 kPa was applied was measured, it was 16% in Example 1 and 50% in Example 2.
  • Example 1 is laid between the unpaved ground and the steel floor plate, the vibration level when the heavy machine runs on the upper surface of the floor plate is measured, and the mesh sheet is not removed.
  • FIG. 5A shows the vibration level when a 4.9-ton class (lifting capacity) crawler crane with a synthetic rubber pad attached to the crawler travels
  • FIG. 5B shows the vibration level.
  • the vibration level when a 0.25 m 3 class (bucket capacity) hydraulic excavator with a synthetic rubber pad attached to the crawler runs is shown.
  • FIG. 5 (c) shows the 4 ton class (airframe mass).
  • the vibration level when the vibration roller is running is shown.
  • FIGS. 5A to 5C the vibration level when the mesh sheet of Example 1 is laid (with the mesh sheet) is shown by a solid line, and when the mesh sheet is removed (without the mesh sheet). ) Vibration level is shown by the dotted line.
  • FIG. 6 shows the maximum value of the solid line in FIGS. 5A to 5C (the maximum value of the vibration level when the mesh sheet of Example 1 is laid (with the mesh sheet)) and FIG. 5 (a). ) To the maximum value of the dotted line in FIG. 5 (c) (the maximum value of the vibration level when the reticulated sheet of Example 1 is removed (without the reticulated sheet)) and the difference between the respective maximum values are shown.
  • the maximum vibration level of the 4.9-ton class crawler crane during travel is reduced by 6 dB
  • the maximum vibration level of the 0.25 m3 class hydraulic excavator during travel is reduced.
  • the value was reduced by 14 dB
  • the maximum value of the vibration level during running of the 4-ton class vibration roller was reduced by 20 dB.
  • a construction step of creating a ground on which the vibration reducing material 2 is installed is carried out.
  • the ground on which the vibration reducing material 2 is installed is smoothly molded, or crushed stone or the like is spread and leveled.
  • the net-like sheet installation process of installing the net-like sheet 8 on the created ground is carried out.
  • the mesh sheet installation step first, the mesh sheet 8 wound in a cylindrical shape and packed is unloaded to the ground near the installation position. Next, the net-like sheet 8 wound in a cylindrical shape is manually unfolded. In this case, it is preferable to fix the mesh sheet 8 to the ground with an anchor or the like as necessary to prevent the mesh sheet 8 from slipping. Further, in order to prevent the mesh sheets 8 from being displaced from each other, the mesh sheets 8 may be fixed to each other by welding, adhesion or the like, if necessary.
  • the floor plate installation process After carrying out the net-like sheet installation process, carry out the floor plate installation process of installing the floor plate 6 on the net-like sheet 8 installed on the ground.
  • a hook (not shown) is provided on the floor plate 6, the floor plate 6 is suspended by a lifting machine such as a crane, and the floor plate 6 is installed on the mesh sheet 8 installed on the ground.
  • the vibration reducing material 2 can be constructed by these net-like sheet installation steps and floor plate installation steps.
  • the additional floor plate installation process of installing the additional floor plate on the created ground is carried out.
  • a hook is provided on the additional floor plate (the same plate as the floor plate 6 may be used), and the additional floor plate is hung by a lifting machine such as a crane and installed on the ground.
  • the additional floor plates may be mutually fixed by welding or the like, if necessary. Then, after carrying out the additional floor board installation step, the net-like sheet installation step and the floor board installation step are carried out in order.
  • vibration reducing material 2 in which the mesh sheet 8 is sandwiched between the floor plate 6 and the additional floor plate.
  • vibration reducing material 2 constructed by such a method, when a heavy machine 4 such as a hydraulic excavator runs on the upper surface of the vibration reducing material 2, vibration can be effectively reduced as described in the first embodiment. , Stable running is ensured.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Vibration Prevention Devices (AREA)

Abstract

Provided is a vibration reducing material with which it is possible to effectively reduce vibrations associated with the traveling of a heavy machine, and to enable the heavy machine to travel stably. A vibration reducing material 2 comprises a plank 6 on which a heavy machine 4 travels, and a netted sheet 8 made of synthetic resin and disposed under the plank 6. The netted sheet 8 has a plurality of upper contact parts 10a to 10e in contact with the lower surface of the plank 6, and a plurality of lower contact parts 12a to 12e in contact with the surface on which the netted sheet 8 is provided. In a state in which the netted sheet 8 is not deformed, the lower connection parts 12a to 12e are not present immediately under at least some of the plurality of upper connection parts 10a to 10e.

Description

振動低減材Vibration reduction material
 本発明は、クローラクレーンや油圧ショベル等の重機が走行する際の振動を低減するための振動低減材および振動低減方法に関する。 The present invention relates to a vibration reducing material and a vibration reducing method for reducing vibration when a heavy machine such as a crawler crane or a hydraulic excavator travels.
 下記特許文献1には、建設工事現場等において重機が走行する際の振動を低減するための振動低減材が開示されている。この振動低減材は、熱硬化性樹脂である連続気泡ポリウレタンフォームと、その連続気泡ポリウレタンフォームの上に載置される敷板とによって構成されている。そして、この振動低減材においては、敷板上を重機が走行した際の振動を連続気泡ポリウレタンフォームによって吸収するようになっている。 The following Patent Document 1 discloses a vibration reducing material for reducing vibration when a heavy machine travels at a construction site or the like. This vibration reducing material is composed of an open cell polyurethane foam which is a thermosetting resin and a floor plate placed on the open cell polyurethane foam. In this vibration reducing material, the vibration when the heavy machine runs on the floor plate is absorbed by the open cell polyurethane foam.
特許第6030376号公報Japanese Patent No. 6030376
 しかしながら、上述の振動低減材においては、重機が走行する際の振動を効果的に低減するには、ポリウレタンフォームの厚さを比較的厚くする(50~150mm程度)必要があることから、重機の重量によってポリウレタンフォームが変形してしまい、重機の走行が安定しにくいという問題がある。 However, in the above-mentioned vibration reducing material, in order to effectively reduce the vibration when the heavy machine runs, it is necessary to make the thickness of the polyurethane foam relatively thick (about 50 to 150 mm). There is a problem that the polyurethane foam is deformed by the weight and it is difficult to stabilize the running of heavy machinery.
 上記事実に鑑みてなされた本発明の課題は、重機が走行する際の振動を効果的に低減することができ、かつ、重機が安定して走行することができる振動低減材および振動低減方法を提供することである。 The subject of the present invention made in view of the above facts is a vibration reducing material and a vibration reducing method capable of effectively reducing vibration when a heavy machine travels and allowing the heavy machine to travel stably. To provide.
 本発明の第1の局面によれば、上記課題を解決する以下の振動低減材が提供される。すなわち、重機が走行する際の振動を低減するための振動低減材であって、上面を重機が走行する敷板と、前記敷板の下方に配置される合成樹脂製の網状シートとを備え、前記網状シートは、前記敷板の下面と接触する複数の上側接触部と、前記網状シートが設置される面と接触する複数の下側接触部とを有し、前記網状シートが変形していない状態において前記複数の上側接触部の少なくとも一部の直下には前記下側接触部が存在しない振動低減材が提供される。 According to the first aspect of the present invention, the following vibration reducing material that solves the above problems is provided. That is, it is a vibration reducing material for reducing vibration when a heavy machine travels, and includes a floor plate on which the heavy equipment travels on the upper surface and a synthetic resin mesh sheet arranged below the floor plate. The sheet has a plurality of upper contact portions that come into contact with the lower surface of the floor plate and a plurality of lower contact portions that come into contact with the surface on which the mesh sheet is installed. A vibration reducing material is provided in which the lower contact portion does not exist immediately below at least a part of the plurality of upper contact portions.
 好ましくは、前記網状シートは、複数の上段筋と、前記複数の上段筋の下方に位置する複数の下段筋とを含む。前記上段筋および前記下段筋は互いに異なる位相で所定方向に延びる正弦波状に形成されており、前記上段筋のそれぞれは前記下段筋の3本以上に連結されているのが好適である。前記網状シートは、前記上側接触部から前記下側接触部に向かって傾斜する傾斜部を有するのが望ましい。前記網状シートはエラストマー製であるのが好都合である。前記網状シートの下方に付加敷板が配置されるのが好ましい。 Preferably, the reticulated sheet includes a plurality of upper streaks and a plurality of lower streaks located below the plurality of upper streaks. The upper muscle and the lower muscle are formed in a sinusoidal shape extending in a predetermined direction in different phases, and it is preferable that each of the upper muscles is connected to three or more of the lower muscles. It is desirable that the net-like sheet has an inclined portion inclined from the upper contact portion toward the lower contact portion. It is convenient that the reticulated sheet is made of an elastomer. It is preferable that the additional floor plate is arranged below the net-like sheet.
 本発明の第2の局面によれば、上記課題を解決する以下の振動低減方法が提供される。すなわち、重機が走行する際の振動を低減するための振動低減方法であって、上面を重機が走行する敷板を設置する工程と、前記敷板の下方に配置される合成樹脂製の網状シートを設置する工程とを含み、前記網状シートは、前記敷板の下面と接触する複数の上側接触部と、前記網状シートが設置される面と接触する複数の下側接触部とを有し、前記網状シートが変形していない状態において前記複数の上側接触部の少なくとも一部の直下には前記下側接触部が存在しない振動低減方法が提供される。 According to the second aspect of the present invention, the following vibration reduction method for solving the above problems is provided. That is, it is a vibration reduction method for reducing vibration when a heavy machine travels, and a process of installing a floor plate on which the heavy equipment travels on the upper surface and a synthetic resin mesh sheet arranged below the floor plate are installed. The mesh sheet has a plurality of upper contact portions in contact with the lower surface of the floor plate and a plurality of lower contact portions in contact with the surface on which the mesh sheet is installed. Provided is a vibration reducing method in which the lower contact portion does not exist directly under at least a part of the plurality of upper contact portions in a state where the lower contact portion is not deformed.
 本発明によれば、網状シートが変形していない状態において複数の上側接触部の少なくとも一部の直下に下側接触部が存在しないので、上側接触部から網状シートに加えられる荷重を水平方向に分散して吸収することによって、網状シートが比較的薄くても重機が走行する際の振動を効果的に低減することができる。また、本発明によれば、網状シートを薄くすることができるので、重機が走行する際の網状シートの変形量が少なく、重機が安定して走行することができる。 According to the present invention, since the lower contact portion does not exist directly under at least a part of the plurality of upper contact portions in the state where the mesh sheet is not deformed, the load applied to the mesh sheet from the upper contact portion is applied in the horizontal direction. By dispersing and absorbing the reticulated sheet, it is possible to effectively reduce the vibration when the heavy machine runs even if the reticulated sheet is relatively thin. Further, according to the present invention, since the mesh sheet can be made thin, the amount of deformation of the mesh sheet when the heavy machine travels is small, and the heavy machine can travel stably.
本発明に従って構成された振動低減材の側面図。The side view of the vibration reducing material configured according to this invention. 図1に示す網状シートの平面図。The plan view of the net-like sheet shown in FIG. (a)図2におけるA-A線断面図、(b)図2におけるB-B線端面図、(c)図2におけるC-C線端面図、(d)図2におけるD-D線端面図、(e)図2におけるE-E線断面図。(A) AA line sectional view in FIG. 2, (b) BB line end view in FIG. 2, (c) CC line end view in FIG. 2, and (d) DD line end face in FIG. FIG. 2 (e) is a sectional view taken along line EE in FIG. 2. 実施例の網状シートおよび比較例の無孔シートの損失正接等を示す表。The table which shows the loss tangent etc. of the net-like sheet of an Example and the non-perforated sheet of a comparative example. (a)クローラクレーンが走行した際の振動レベルを示すグラフ、(b)油圧ショベルが走行した際の振動レベルを示すグラフ、(c)振動ローラが走行した際の振動レベルを示すグラフ。(A) A graph showing the vibration level when the crawler crane is running, (b) a graph showing the vibration level when the hydraulic excavator is running, and (c) a graph showing the vibration level when the vibration roller is running. 図5(a)~図5(c)における実線および点線の最大値、それぞれの最大値同士の差を示す表。A table showing the maximum values of the solid line and the dotted line in FIGS. 5 (a) to 5 (c), and the difference between the maximum values.
 以下、本発明に従って構成された振動低減材の好適実施形態について図面を参照しつつ説明する。 Hereinafter, a preferred embodiment of the vibration reducing material configured according to the present invention will be described with reference to the drawings.
 図1に示すとおり、振動低減材2は、上面を油圧ショベル等の重機4が走行する敷板6と、敷板6の下方に配置される合成樹脂製の網状シート8とを備える。図示の実施形態では、1枚の網状シート8が地面の上に設置されているが、網状シート8と地面との間に付加敷板(たとえば敷板6と同一の板)が設置されていてもよい。網状シート8の上方および下方に敷板6を配置する(敷板6で網状シート8を挟みこむ)ことにより、網状シート8の劣化を抑制すると共に、振動低減効果を高めることができる。また、敷板6と地面との間において、網状シート8が2枚以上積層されていてもよい。 As shown in FIG. 1, the vibration reducing material 2 includes a floor plate 6 on which a heavy machine 4 such as a hydraulic excavator runs on the upper surface, and a synthetic resin mesh sheet 8 arranged below the floor plate 6. In the illustrated embodiment, one mesh sheet 8 is installed on the ground, but an additional floor plate (for example, the same plate as the floor plate 6) may be installed between the mesh sheet 8 and the ground. .. By arranging the floor plate 6 above and below the net-like sheet 8 (the net-like sheet 8 is sandwiched between the floor plates 6), deterioration of the net-like sheet 8 can be suppressed and the vibration reducing effect can be enhanced. Further, two or more mesh sheets 8 may be laminated between the floor plate 6 and the ground.
 敷板6は、長方形状の鋼板等の適宜の金属材料から形成され得る。網状シート8は、重機4が敷板6の上面を走行する際の振動を吸収するものである。長方形状に形成され得る網状シート8の寸法は、たとえば、幅1~2m程度、長さ10m程度、厚さ10mm程度でよい。 The floor plate 6 can be formed of an appropriate metal material such as a rectangular steel plate. The net-like sheet 8 absorbs vibration when the heavy machine 4 travels on the upper surface of the floor plate 6. The dimensions of the mesh sheet 8 that can be formed into a rectangular shape may be, for example, about 1 to 2 m in width, about 10 m in length, and about 10 mm in thickness.
 網状シート8は、種々の合成樹脂から形成され得る。網状シート8用の合成樹脂としては、熱可塑性樹脂(たとえばオレフィン系樹脂、シリコン樹脂等)または熱硬化性樹脂(たとえばウレタン樹脂、イミド樹脂等)のいずれでもよい。合成樹脂の中でも、ゴム弾性を有するエラストマーから網状シート8が形成されているのが振動低減効果の観点から好適である。また、ゴム弾性を有するエラストマーから網状シート8が形成されている場合には、はさみ等を用いて簡単に裁断することができるので所要の大きさに調整することが容易であると共に、帯状の網状シート8を円筒状に容易に巻くことができ、網状シート8の運搬や設置、撤去、収容等を容易に行うことができる。 The reticulated sheet 8 can be formed from various synthetic resins. The synthetic resin for the mesh sheet 8 may be either a thermoplastic resin (for example, an olefin resin, a silicon resin, etc.) or a thermosetting resin (for example, a urethane resin, an imide resin, etc.). Among the synthetic resins, it is preferable that the net-like sheet 8 is formed from an elastomer having rubber elasticity from the viewpoint of the vibration reducing effect. Further, when the net-like sheet 8 is formed from an elastomer having rubber elasticity, it can be easily cut with scissors or the like, so that it can be easily adjusted to a required size and has a strip-like net-like shape. The sheet 8 can be easily wound into a cylindrical shape, and the net-like sheet 8 can be easily transported, installed, removed, and housed.
 図2および図3を参照して説明すると、図示の実施形態の網状シート8は、複数の上段筋10と、複数の上段筋10の下方に位置する複数の下段筋12とを含む2段構造である。図2を参照することによって理解されるとおり、上段筋10および下段筋12は、互いに異なる位相で所定方向に延びる正弦波状に形成されている。 Explaining with reference to FIGS. 2 and 3, the mesh sheet 8 of the illustrated embodiment has a two-stage structure including a plurality of upper streaks 10 and a plurality of lower streaks 12 located below the plurality of upper streaks 10. Is. As can be understood by referring to FIG. 2, the upper streaks 10 and the lower streaks 12 are formed in a sinusoidal shape extending in a predetermined direction in different phases.
 図2に矢印Xで示す方向をX軸とし、図2に矢印Yで示す方向(X軸に直交する方向)をY軸とし、図2における上方をY軸の正の方向とすると、各上段筋10の波形最大値(Y軸方向最大値)は…、X、X、…の各点に位置し、各下段筋12の波形最大値(Y軸方向最大値)は…、X、X、…の各点に位置しており、各上段筋10および各下段筋12は、互いに異なる位相でX軸方向に延びる正弦波状に形成されている。なお、上段筋10の振幅Aと下段筋12の振幅Aとは、同一であってもよく相違していてもよい。また、図示の実施形態の上段筋10のそれぞれは下段筋12の3本に連結されているが、各上段筋10は下段筋12の4本以上に連結されていてもよい。 Assuming that the direction indicated by the arrow X in FIG. 2 is the X axis, the direction indicated by the arrow Y in FIG. 2 (the direction orthogonal to the X axis) is the Y axis, and the upper direction in FIG. 2 is the positive direction of the Y axis, each upper stage is shown. The maximum waveform value (maximum value in the Y-axis direction) of the streak 10 is located at each point of ..., X 2 , X 4 , ..., And the maximum waveform value (maximum value in the Y-axis direction) of each lower streak 12 is ..., X 1 , X3 , ..., Each upper bar 10 and each lower bar 12 are formed in a sinusoidal shape extending in the X-axis direction in different phases from each other. The amplitude A1 of the upper streak 10 and the amplitude A2 of the lower streak 12 may be the same or different. Further, although each of the upper muscles 10 in the illustrated embodiment is connected to three of the lower muscles 12, each upper muscle 10 may be connected to four or more of the lower muscles 12.
 網状シート8は、敷板6の下面と接触する複数の上側接触部と、網状シート8が設置される設置面(地面または適宜の板の上面)と接触する複数の下側接触部とを有し、網状シート8が変形していない状態において複数の上側接触部の少なくとも一部の直下には下側接触部が存在しないのが重要である。網状シート8の上側接触部および下側接触部は、それぞれ網状シート8が変形していない状態における網状シート8の上端部分および下端部分である。 The mesh sheet 8 has a plurality of upper contact portions that come into contact with the lower surface of the floor plate 6, and a plurality of lower contact portions that come into contact with the installation surface (ground or the upper surface of an appropriate plate) on which the mesh sheet 8 is installed. It is important that the lower contact portion does not exist directly under at least a part of the plurality of upper contact portions in the state where the mesh sheet 8 is not deformed. The upper contact portion and the lower contact portion of the mesh sheet 8 are an upper end portion and a lower end portion of the mesh sheet 8 in a state where the mesh sheet 8 is not deformed, respectively.
 網状シート8は合成樹脂製であり、振動低減材2の上を重機が走行する際や、網状シート8の上に敷板6が載せられた際等には網状シート8が変形し得るところ、図示の実施形態の網状シート8においては、重機の走行等に起因する網状シート8の変形が生じていない状態において、上側接触部の少なくとも一部の直下に下側接触部が存在しないようになっており、網状シート8が変形した時には上側接触部の直下に下側接触部が存在していてもよい。 The mesh sheet 8 is made of synthetic resin, and the mesh sheet 8 may be deformed when a heavy machine runs on the vibration reducing material 2 or when the floor plate 6 is placed on the mesh sheet 8, which is shown in the figure. In the mesh sheet 8 of the embodiment, the lower contact portion does not exist directly under at least a part of the upper contact portion in a state where the mesh sheet 8 is not deformed due to the running of heavy machinery or the like. When the net-like sheet 8 is deformed, the lower contact portion may be present immediately below the upper contact portion.
 図示の実施形態においては、図3(a)~図3(e)に示すとおり、各上段筋10は、敷板6の下面と接触する複数の上側接触部10a、10b、10c、10d、10e、…を有する。各下段筋12は、網状シート8が設置される面(地面または適宜の板の上面)と接触する複数の下側接触部12a、12b、12c、12d、12e、…を有する。なお、上側接触部10a~10e、下側接触部12a~12eは、網状シート8の上側接触部および下側接触部の一部であり、網状シート8の上側接触部および下側接触部がこれらに限定されるものではない。 In the illustrated embodiment, as shown in FIGS. 3A to 3E, each upper bar 10 has a plurality of upper contact portions 10a, 10b, 10c, 10d, 10e, which are in contact with the lower surface of the floor plate 6. Have ... Each lower bar 12 has a plurality of lower contact portions 12a, 12b, 12c, 12d, 12e, ... The upper contact portions 10a to 10e and the lower contact portions 12a to 12e are a part of the upper contact portion and the lower contact portion of the mesh sheet 8, and the upper contact portion and the lower contact portion of the mesh sheet 8 are these. Not limited to.
 図2、図3(a)および図3(e)を参照して説明を続けると、各上段筋10および各下段筋12の断面は矩形状であり、各上段筋10および各下段筋12は捻じれている。そして、網状シート8は、上側接触部10aから下側接触部12aに向かって横方向片側(図3における左側)に傾斜する片側傾斜部14と、上側接触部10eから下側接触部12eに向かって横方向他側(図3における右側)に傾斜する他側傾斜部16とを有する。このように、図示の実施形態の網状シート8は、片側傾斜部14および他側傾斜部16を有していることによって、上側接触部10a、10eの直下に下側接触部12a、12eが存在しないようになっている。 Continuing the description with reference to FIGS. 2, 3 (a) and 3 (e), the cross section of each upper bar 10 and each lower bar 12 is rectangular, and each upper bar 10 and each lower bar 12 has a rectangular shape. It's twisted. Then, the mesh sheet 8 has a one-sided inclined portion 14 that inclines laterally to one side (left side in FIG. 3) from the upper contact portion 10a toward the lower contact portion 12a, and the upper contact portion 10e toward the lower contact portion 12e. It has another side inclined portion 16 which is inclined to the other side in the lateral direction (right side in FIG. 3). As described above, since the mesh sheet 8 of the illustrated embodiment has the one-side inclined portion 14 and the other-side inclined portion 16, the lower contact portions 12a and 12e are present immediately below the upper contact portions 10a and 10e. It is designed not to.
 網状シート8においては、図3(b)および図3(d)に示すとおり、上段筋10の直下に下段筋12が位置しておらず、上側接触部10b、10dの直下に下側接触部12b、12dが存在していない。また、図3(c)に示す端面においては、上段筋10の直下に下段筋12が位置しているが、上側接触部10cの位置と下側接触部12cの位置とが若干ずれており、上側接触部10cの直下に下側接触部12cが存在していない。 In the mesh sheet 8, as shown in FIGS. 3 (b) and 3 (d), the lower streak 12 is not located directly under the upper streak 10, and the lower contact portion is directly under the upper contact portions 10b and 10d. 12b and 12d do not exist. Further, in the end surface shown in FIG. 3C, the lower streak 12 is located directly under the upper streak 10, but the position of the upper contact portion 10c and the position of the lower contact portion 12c are slightly deviated. The lower contact portion 12c does not exist directly below the upper contact portion 10c.
 このように、図示の実施形態の振動低減材2においては、網状シート8の上側接触部10a~10eの直下に下側接触部12a~12eが存在しないことによって、上側接触部10a~10eから網状シート8に加えられる荷重を水平方向に分散して吸収することによって、網状シート8が比較的薄くても重機4が走行する際の振動を効果的に低減することができる。また、振動低減材2においては、網状シート8を薄くすることができるので、重機4が走行する際の網状シート8の変形量が少なく、重機4が安定して走行することができる。 As described above, in the vibration reducing material 2 of the illustrated embodiment, the lower contact portions 12a to 12e do not exist directly under the upper contact portions 10a to 10e of the mesh sheet 8, so that the upper contact portions 10a to 10e are reticulated. By distributing and absorbing the load applied to the sheet 8 in the horizontal direction, it is possible to effectively reduce the vibration when the heavy machine 4 runs even if the mesh sheet 8 is relatively thin. Further, in the vibration reducing material 2, since the mesh sheet 8 can be made thin, the amount of deformation of the mesh sheet 8 when the heavy machine 4 travels is small, and the heavy machine 4 can travel stably.
 上述の実施形態の網状シート8は上段筋10および下段筋12を有する2段構造であるが、本発明の網状シートは単段構造であってもよい。また、網状シート8の上段筋10および下段筋12は正弦波状以外の形態であってもよい。本発明の網状シートは、たとえば、それぞれ真直に延びる上段筋および下段筋が交差して網状をなしていてよく、この場合における上段筋と下段筋との網目形状は矩形状、菱形状、亀甲形状等の任意の形状が採用され得る。 The reticulated sheet 8 of the above-described embodiment has a two-stage structure having an upper streak 10 and a lower streak 12, but the reticulated sheet of the present invention may have a single-stage structure. Further, the upper bar 10 and the lower bar 12 of the mesh sheet 8 may have a form other than the sinusoidal shape. In the mesh sheet of the present invention, for example, the upper and lower bars extending straight may intersect each other to form a mesh, and in this case, the mesh shape of the upper and lower bars is rectangular, rhombic, and hexagonal. Any shape such as can be adopted.
 ここで、本発明の実施例について図4を参照して説明する。実施例1は、オレフィン系熱可塑性エラストマーを用いて図2および図3に示すとおりの形状で製作した厚み10mmの網状シートであり、比較例1は、実施例1と同一の材料を用いて製作した厚み10mmの無孔シートである。実施例2は、実施例1よりも柔らかいオレフィン系熱可塑性エラストマーを用いて図2および図3に示すとおりの形状(実施例1と同一の形状)で製作した厚み10mmの網状シートであり、比較例2は、実施例2と同一の材料を用いて製作した厚み10mmの無孔シートである。 Here, an embodiment of the present invention will be described with reference to FIG. Example 1 is a mesh sheet having a thickness of 10 mm manufactured by using an olefin-based thermoplastic elastomer in the shapes as shown in FIGS. 2 and 3, and Comparative Example 1 is manufactured by using the same material as that of Example 1. It is a non-perforated sheet with a thickness of 10 mm. Example 2 is a mesh sheet having a thickness of 10 mm manufactured by using an olefin-based thermoplastic elastomer softer than that of Example 1 and having a shape as shown in FIGS. 2 and 3 (the same shape as that of Example 1), and is compared. Example 2 is a non-perforated sheet having a thickness of 10 mm manufactured using the same material as in Example 2.
 実施例1および2ならびに比較例1および2のそれぞれについて、JIS K 6394:2007に準拠した測定方法によって損失正接tanδを測定した。損失正接tanδは振動低減効果を示すひとつの指標であり、損失正接tanδの値が大きいほど振動低減効果が高いと考えられる。なお、損失正接tanδを測定した際の試験温度は23℃であり、測定周波数は1~100Hzであり、静的荷重は150kPaである。 For each of Examples 1 and 2 and Comparative Examples 1 and 2, the loss tangent tan δ was measured by a measuring method based on JIS K 6394: 2007. The loss tangent tan δ is one index showing the vibration reduction effect, and it is considered that the larger the value of the loss tangent tan δ, the higher the vibration reduction effect. The test temperature when the loss tangent tan δ was measured was 23 ° C., the measurement frequency was 1 to 100 Hz, and the static load was 150 kPa.
 図4に示すとおり、実施例1の損失正接tanδは0.14~0.16であり、比較例1の損失正接tanδは0.08~0.11であり、比較例1よりも実施例1の方が損失正接tanδの値が大きかった。また、実施例2の損失正接tanδは0.14~0.16であり、比較例2の損失正接tanδは0.11~0.14であり、比較例2よりも実施例2の方が損失正接tanδの値が大きかった。したがって、図2および図3に示す形状で製作した網状シートは、同一の材料で製作した無孔シートよりも振動低減効果が高いといえる。 As shown in FIG. 4, the loss tangent tan δ of Example 1 is 0.14 to 0.16, and the loss tangent tan δ of Comparative Example 1 is 0.08 to 0.11. The value of the loss tangent tan δ was larger in. Further, the loss tangent tan δ of Example 2 is 0.14 to 0.16, and the loss tangent tan δ of Comparative Example 2 is 0.11 to 0.14, and the loss of Example 2 is higher than that of Comparative Example 2. The value of tangent tan δ was large. Therefore, it can be said that the net-like sheet manufactured with the shapes shown in FIGS. 2 and 3 has a higher vibration reducing effect than the non-perforated sheet manufactured with the same material.
 なお、実施例1および2の硬さを測定したところ、図4に示すとおり、実施例1の材料は硬さ90(デュロメーターA)であり、実施例2の材料は硬さ53(デュロメーターA)であった。また、静的荷重150kPaを加えた際の実施例1および2のひずみ率を測定したところ、実施例1は16%であり、実施例2は50%であった。 When the hardness of Examples 1 and 2 was measured, as shown in FIG. 4, the material of Example 1 had a hardness of 90 (durometer A), and the material of Example 2 had a hardness of 53 (durometer A). Met. Moreover, when the strain rate of Examples 1 and 2 when a static load of 150 kPa was applied was measured, it was 16% in Example 1 and 50% in Example 2.
 また、実施例1の網状シートを未舗装の地面と鋼鉄製の敷板との間に敷設して、敷板の上面を重機が走行した際の振動レベルを測定すると共に、網状シートを除去して未舗装の地面に敷設した鋼鉄製の敷板の上面を重機が走行した際の振動レベルを測定した。 Further, the mesh sheet of Example 1 is laid between the unpaved ground and the steel floor plate, the vibration level when the heavy machine runs on the upper surface of the floor plate is measured, and the mesh sheet is not removed. The vibration level when a heavy machine traveled on the upper surface of a steel floor plate laid on the pavement ground was measured.
 図5(a)には、合成ゴム製パッドをクローラに装着した4.9トンクラス(吊上能力)のクローラクレーンが走行した際の振動レベルが示されており、図5(b)には、合成ゴム製パッドをクローラに装着した0.25mクラス(バケット容量)の油圧ショベルが走行した際の振動レベルが示されており、図5(c)には、4トンクラス(機体質量)の振動ローラが走行した際の振動レベルが示されている。図5(a)~図5(c)においては、実施例1の網状シートを敷設した場合(網状シートあり)の振動レベルが実線で示されており、網状シートを除去した場合(網状シートなし)の振動レベルが点線で示されている。 FIG. 5A shows the vibration level when a 4.9-ton class (lifting capacity) crawler crane with a synthetic rubber pad attached to the crawler travels, and FIG. 5B shows the vibration level. , The vibration level when a 0.25 m 3 class (bucket capacity) hydraulic excavator with a synthetic rubber pad attached to the crawler runs is shown. FIG. 5 (c) shows the 4 ton class (airframe mass). The vibration level when the vibration roller is running is shown. In FIGS. 5A to 5C, the vibration level when the mesh sheet of Example 1 is laid (with the mesh sheet) is shown by a solid line, and when the mesh sheet is removed (without the mesh sheet). ) Vibration level is shown by the dotted line.
 図6には、図5(a)~図5(c)における実線の最大値(実施例1の網状シートを敷設した場合(網状シートあり)における振動レベルの最大値)と、図5(a)~図5(c)における点線の最大値(実施例1の網状シートを除去した場合(網状シートなし)における振動レベルの最大値)と、それぞれの最大値同士の差が示されている。図6に示すとおり、網状シートを敷設すると、4.9トンクラスのクローラクレーンの走行時の振動レベルの最大値が6dB低減し、0.25mクラスの油圧ショベルの走行時の振動レベルの最大値が14dB低減し、4トンクラスの振動ローラの走行時の振動レベルの最大値が20dB低減した。 6 shows the maximum value of the solid line in FIGS. 5A to 5C (the maximum value of the vibration level when the mesh sheet of Example 1 is laid (with the mesh sheet)) and FIG. 5 (a). ) To the maximum value of the dotted line in FIG. 5 (c) (the maximum value of the vibration level when the reticulated sheet of Example 1 is removed (without the reticulated sheet)) and the difference between the respective maximum values are shown. As shown in Fig. 6, when the mesh sheet is laid, the maximum vibration level of the 4.9-ton class crawler crane during travel is reduced by 6 dB, and the maximum vibration level of the 0.25 m3 class hydraulic excavator during travel is reduced. The value was reduced by 14 dB, and the maximum value of the vibration level during running of the 4-ton class vibration roller was reduced by 20 dB.
 次に、本発明の振動低減方法の好適実施形態について説明する。本実施形態では、まず、振動低減材2を設置する地面を造成する造成工程を実施する。造成工程では、振動低減材2を設置する地面を平滑に成型し、または、砕石等を敷き詰めて均す。 Next, a preferred embodiment of the vibration reduction method of the present invention will be described. In the present embodiment, first, a construction step of creating a ground on which the vibration reducing material 2 is installed is carried out. In the construction process, the ground on which the vibration reducing material 2 is installed is smoothly molded, or crushed stone or the like is spread and leveled.
 造成工程を実施した後、造成した地面に網状シート8を設置する網状シート設置工程を実施する。網状シート設置工程では、まず、円筒状に巻かれて梱包された網状シート8を設置位置近くの地面に荷下ろしする。次いで、円筒状に巻かれた網状シート8を人力等で展開する。この際は、網状シート8のずれ防止のため必要に応じて地面にアンカー等で網状シート8を固定するのが好ましい。また、網状シート8の相互のずれ防止のため必要に応じて溶着や接着等により網状シート8を相互に固定してもよい。 After carrying out the construction process, the net-like sheet installation process of installing the net-like sheet 8 on the created ground is carried out. In the mesh sheet installation step, first, the mesh sheet 8 wound in a cylindrical shape and packed is unloaded to the ground near the installation position. Next, the net-like sheet 8 wound in a cylindrical shape is manually unfolded. In this case, it is preferable to fix the mesh sheet 8 to the ground with an anchor or the like as necessary to prevent the mesh sheet 8 from slipping. Further, in order to prevent the mesh sheets 8 from being displaced from each other, the mesh sheets 8 may be fixed to each other by welding, adhesion or the like, if necessary.
 網状シート設置工程を実施した後、地面上に設置した網状シート8の上に敷板6を設置する敷板設置工程を実施する。敷板設置工程では、たとえば、敷板6にフック(図示していない。)を設け、クレーン等の揚重機により敷板6を吊り下げ、地面上に設置した網状シート8の上に敷板6を設置する。敷板6の相互のずれ防止のため必要に応じて溶接等により敷板6を相互に固定するのが好適である。これにより、敷板6の上部を走行する重機の安定走行が可能となる。これら網状シート設置工程および敷板設置工程により、振動低減材2を構築することができる。 After carrying out the net-like sheet installation process, carry out the floor plate installation process of installing the floor plate 6 on the net-like sheet 8 installed on the ground. In the floor plate installation step, for example, a hook (not shown) is provided on the floor plate 6, the floor plate 6 is suspended by a lifting machine such as a crane, and the floor plate 6 is installed on the mesh sheet 8 installed on the ground. In order to prevent the floor plates 6 from slipping each other, it is preferable to fix the floor plates 6 to each other by welding or the like as necessary. As a result, stable running of the heavy machine traveling on the upper part of the floor plate 6 becomes possible. The vibration reducing material 2 can be constructed by these net-like sheet installation steps and floor plate installation steps.
 なお、網状シート8の下方に付加敷板を設置する場合には、前記造成工程を実施した後、造成した地面に付加敷板を設置する付加敷板設置工程を実施する。付加敷板設置工程は、付加敷板(敷板6と同一の板でよい。)にフックを設け、クレーン等の揚重機により付加敷板を吊り下げ、地面上に設置する。付加敷板の相互のずれ防止のため必要に応じて溶接等により付加敷板を相互に固定してもよい。そして、付加敷板設置工程を実施した後、前記網状シート設置工程および前記敷板設置工程を順に実施する。これによって、敷板6と付加敷板とで網状シート8を挟みこむ形態の振動低減材を構築することができる。このような方法で構築された振動低減材2により、振動低減材2の上面を油圧ショベル等の重機4が走行する際に、実施例1記載のとおり、振動を効果的に低減させることができ、安定した走行が確保される。 When installing the additional floor plate below the net-like sheet 8, after performing the above-mentioned construction step, the additional floor plate installation process of installing the additional floor plate on the created ground is carried out. In the additional floor plate installation process, a hook is provided on the additional floor plate (the same plate as the floor plate 6 may be used), and the additional floor plate is hung by a lifting machine such as a crane and installed on the ground. In order to prevent the additional floor plates from slipping each other, the additional floor plates may be mutually fixed by welding or the like, if necessary. Then, after carrying out the additional floor board installation step, the net-like sheet installation step and the floor board installation step are carried out in order. As a result, it is possible to construct a vibration reducing material in which the mesh sheet 8 is sandwiched between the floor plate 6 and the additional floor plate. With the vibration reducing material 2 constructed by such a method, when a heavy machine 4 such as a hydraulic excavator runs on the upper surface of the vibration reducing material 2, vibration can be effectively reduced as described in the first embodiment. , Stable running is ensured.
   2:振動低減材
   4:重機
   6:敷板
   8:網状シート
  10:上段筋
  12:下段筋
  10a、10b、10c、10d、10e:上側接触部
  12a、12b、12c、12d、12e:下側接触部
  14:片側傾斜部
  16:他側傾斜部
2: Vibration reducing material 4: Heavy equipment 6: Floor plate 8: Net-like sheet 10: Upper bar 12: Lower bar 10a, 10b, 10c, 10d, 10e: Upper contact part 12a, 12b, 12c, 12d, 12e: Lower contact part 14: Inclined part on one side 16: Inclined part on the other side

Claims (7)

  1.  重機が走行する際の振動を低減するための振動低減材であって、
     上面を重機が走行する敷板と、前記敷板の下方に配置される合成樹脂製の網状シートとを備え、
     前記網状シートは、前記敷板の下面と接触する複数の上側接触部と、前記網状シートが設置される面と接触する複数の下側接触部とを有し、
     前記網状シートが変形していない状態において前記複数の上側接触部の少なくとも一部の直下には前記下側接触部が存在しない振動低減材。
    It is a vibration reducing material for reducing vibration when heavy machinery runs.
    A floor plate on which a heavy machine runs on the upper surface and a synthetic resin net-like sheet arranged below the floor plate are provided.
    The mesh sheet has a plurality of upper contact portions that come into contact with the lower surface of the floor plate, and a plurality of lower contact portions that come into contact with the surface on which the mesh sheet is installed.
    A vibration reducing material in which the lower contact portion does not exist directly under at least a part of the plurality of upper contact portions in a state where the net-like sheet is not deformed.
  2.  前記網状シートは、複数の上段筋と、前記複数の上段筋の下方に位置する複数の下段筋とを含む、請求項1に記載の振動低減材。 The vibration reducing material according to claim 1, wherein the mesh sheet includes a plurality of upper bars and a plurality of lower bars located below the plurality of upper bars.
  3.  前記上段筋および前記下段筋は互いに異なる位相で所定方向に延びる正弦波状に形成されており、前記上段筋のそれぞれは前記下段筋の3本以上に連結されている、請求項2に記載の振動低減材。 The vibration according to claim 2, wherein the upper muscle and the lower muscle are formed in a sinusoidal shape extending in a predetermined direction in different phases, and each of the upper muscles is connected to three or more of the lower muscles. Reduction material.
  4.  前記網状シートは、前記上側接触部から前記下側接触部に向かって傾斜する傾斜部を有する、請求項1から3までのいずれかに記載の振動低減材。 The vibration reducing material according to any one of claims 1 to 3, wherein the mesh sheet has an inclined portion inclined from the upper contact portion toward the lower contact portion.
  5.  前記網状シートはエラストマー製である、請求項1から4までのいずれかに記載の振動低減材。 The vibration reducing material according to any one of claims 1 to 4, wherein the mesh sheet is made of an elastomer.
  6.  前記網状シートの下方に付加敷板が配置される、請求項1から5までのいずれかに記載の振動低減材。 The vibration reducing material according to any one of claims 1 to 5, wherein an additional floor plate is arranged below the mesh sheet.
  7.  重機が走行する際の振動を低減するための振動低減方法であって、
     上面を重機が走行する敷板を設置する工程と、前記敷板の下方に配置される合成樹脂製の網状シートを設置する工程とを含み、
     前記網状シートは、前記敷板の下面と接触する複数の上側接触部と、前記網状シートが設置される面と接触する複数の下側接触部とを有し、
     前記網状シートが変形していない状態において前記複数の上側接触部の少なくとも一部の直下には前記下側接触部が存在しない振動低減方法。
    It is a vibration reduction method for reducing vibration when heavy machinery travels.
    It includes a step of installing a floor plate on which a heavy machine runs on the upper surface and a process of installing a mesh sheet made of synthetic resin arranged below the floor plate.
    The mesh sheet has a plurality of upper contact portions that come into contact with the lower surface of the floor plate, and a plurality of lower contact portions that come into contact with the surface on which the mesh sheet is installed.
    A vibration reduction method in which the lower contact portion does not exist directly under at least a part of the plurality of upper contact portions in a state where the net-like sheet is not deformed.
PCT/JP2021/033497 2020-10-07 2021-09-13 Vibration reducing material WO2022075009A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020169546A JP2022061557A (en) 2020-10-07 2020-10-07 Vibration reducing material
JP2020-169546 2020-10-07

Publications (1)

Publication Number Publication Date
WO2022075009A1 true WO2022075009A1 (en) 2022-04-14

Family

ID=81126448

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/033497 WO2022075009A1 (en) 2020-10-07 2021-09-13 Vibration reducing material

Country Status (2)

Country Link
JP (1) JP2022061557A (en)
WO (1) WO2022075009A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS618130U (en) * 1984-06-19 1986-01-18 トヨタ自動車株式会社 Vibration damping composite steel plate
JPH0479105U (en) * 1990-11-21 1992-07-09
JPH05272588A (en) * 1992-03-30 1993-10-19 Matsushita Electric Works Ltd Vibration damping material
JP3152250U (en) * 2009-05-13 2009-07-23 株式会社ジェイエスピー Anti-vibration mat for heavy machinery
JP2011190653A (en) * 2010-03-16 2011-09-29 Ohbayashi Corp Method of suppressing construction vibration
JP2014034813A (en) * 2012-08-09 2014-02-24 Inoac Corp Vibration isolation structure with heavy machine placed thereon
JP2020118012A (en) * 2019-01-25 2020-08-06 佐藤工業株式会社 Vibration proof mat for heavy machinery work

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS618130U (en) * 1984-06-19 1986-01-18 トヨタ自動車株式会社 Vibration damping composite steel plate
JPH0479105U (en) * 1990-11-21 1992-07-09
JPH05272588A (en) * 1992-03-30 1993-10-19 Matsushita Electric Works Ltd Vibration damping material
JP3152250U (en) * 2009-05-13 2009-07-23 株式会社ジェイエスピー Anti-vibration mat for heavy machinery
JP2011190653A (en) * 2010-03-16 2011-09-29 Ohbayashi Corp Method of suppressing construction vibration
JP2014034813A (en) * 2012-08-09 2014-02-24 Inoac Corp Vibration isolation structure with heavy machine placed thereon
JP2020118012A (en) * 2019-01-25 2020-08-06 佐藤工業株式会社 Vibration proof mat for heavy machinery work

Also Published As

Publication number Publication date
JP2022061557A (en) 2022-04-19

Similar Documents

Publication Publication Date Title
US4964624A (en) Resilient supports with composite cables embedded in elastomeric material
US20140183319A1 (en) Synthetic Laminated Mat
WO2012005849A2 (en) Segmented elastomeric vibration mount with edge control
CA2473000C (en) Rubber access mat
CN112651120A (en) Three-dimensional periodic cushion layer vibration reduction ballast bed vibration isolation frequency band regulation and control design method
WO2022075009A1 (en) Vibration reducing material
CN110055893A (en) A kind of corrugated steel-rubber concrete combined bridge deck
KR100929180B1 (en) Perforated plate
JP6130812B2 (en) Floor structure
KR100647223B1 (en) Deck plate
JP2014098294A (en) Vibration isolation structure for track for truck in shield tunnel construction
KR100608992B1 (en) Deck plate
JP2013166475A (en) Elastic crawler
US1995496A (en) Floor structure
JP5934518B2 (en) Tie plate type rail fastening device
KR100954200B1 (en) Deck plate
JP4320211B2 (en) Conveyor belt design support method and conveyor belt designed and manufactured using the same
JP2019031792A (en) Bar arrangement structure of deck plate
EP1321577A2 (en) Under-ballast damping device for railroads
JP5138518B2 (en) Working laying panel and method of using the working laying panel
JP3137475B2 (en) Pavement of bridge surface and continuous pavement method of bridge surface
JP5215683B2 (en) Reinforcement plate
US8039082B2 (en) Rubber access mat
KR101595012B1 (en) Steel boxed lining board
GB2244784A (en) Elastomeric mounting

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21877312

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21877312

Country of ref document: EP

Kind code of ref document: A1