WO2022074800A1 - 空調制御装置及び空調制御方法 - Google Patents
空調制御装置及び空調制御方法 Download PDFInfo
- Publication number
- WO2022074800A1 WO2022074800A1 PCT/JP2020/038185 JP2020038185W WO2022074800A1 WO 2022074800 A1 WO2022074800 A1 WO 2022074800A1 JP 2020038185 W JP2020038185 W JP 2020038185W WO 2022074800 A1 WO2022074800 A1 WO 2022074800A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- observation
- value
- temperature
- estimated
- locus
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/62—Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
- F24F11/63—Electronic processing
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F2120/00—Control inputs relating to users or occupants
- F24F2120/10—Occupancy
- F24F2120/14—Activity of occupants
Definitions
- This disclosure relates to an air conditioning control device and an air conditioning control method.
- Patent Document 1 discloses an air conditioner that controls air conditioning according to the movement locus of a human body estimated by the movement locus estimation unit.
- the movement trajectory estimation unit is a human body calculated based on the observation values of a plurality of human bodies detected this time by the human body detection unit (hereinafter referred to as “this observation value”) and the observation values past the current observation value. (Hereinafter referred to as "past estimated locus”) and the movement locus of.
- This observation value the observation values past the current observation value.
- past estimated locus the observation values past the current observation value
- Each current observation contains information indicating the position of the human body detected this time.
- each estimated locus in the past contains information indicating the position and moving speed of the human body detected in the past than this time.
- the movement locus estimation unit is included in each of the two past estimated trajectories.
- the movement speeds indicated by the information are compared with each other, and the past estimated trajectory containing the information of the slower movement speed is specified.
- the movement locus estimation unit calculates the distance between the position indicated by the information contained in the specified past estimated locus and the position indicated by the information contained in each of the current observation values, and the two current observation values. Among them, the one with the shorter distance from the position indicated by the information contained in the specified past estimated locus is specified this time.
- the movement locus estimation unit is a movement locus of one human body that connects the position indicated by the information contained in the specified past estimated locus and the position indicated by the information contained in the identified current observation value. Estimate as. In addition, the movement locus estimation unit is included in the position indicated by the information included in the past estimated locus of the unspecified one of the two past estimated trajectories and the current observation value of the unspecified one. The locus connecting the position indicated by the information is estimated as the movement locus of one human body.
- the difference between the moving speeds of a plurality of human bodies is smaller than the speed error estimated by connecting the observed values caused by the error of the observed values at the positions.
- the movement locus estimation unit may erroneously identify the observed value of the one whose distance is not short. There is a problem that the movement locus estimation unit may cause an error in the movement locus estimation due to the erroneous identification of the observed value this time.
- This disclosure was made in order to solve the above-mentioned problems, and the difference between the moving velocities in a plurality of observation targets was estimated by connecting the observation values caused by the error of the observation value of the position. It is an object of the present invention to obtain an air conditioning control device and an air conditioning control method that can prevent an error in estimating a locus even when the error is smaller than the error in speed.
- the air conditioning control device is one or more observation values including the temperature observation value of the observation target as the observation values of the observation target up to the (k-1) (k is an integer of 1 or more) th observation time.
- the estimated locus and the temperature observation value of the observation target are acquired as the observation values of the observation target at the kth observation time, and are included in each estimation locus at the (k-1) th observation time.
- all calculated by the observation value difference calculation unit that calculates the difference between the temperature observation values and the observation value difference calculation unit.
- a mapping unit that selects an estimated locus including the temperature observed value of the observation target at the kth observation time from one or more estimated trajectories based on the difference of the temperature observed values for the combination of the kth and the kth. It is provided with an estimation locus calculation unit that includes the temperature observation value of the observation target at the observation time of the above in the estimation locus selected by the mapping unit.
- the trajectory is estimated even when the difference between the moving velocities in a plurality of observation targets is smaller than the speed error estimated by connecting the observed values caused by the error of the observed values at the positions. You can prevent mistakes.
- FIG. It is a block diagram which shows the air-conditioning control device 3 which concerns on Embodiment 1.
- FIG. It is a hardware block diagram which shows the hardware of the air-conditioning control device 3 which concerns on Embodiment 1.
- FIG. It is a hardware block diagram of the computer when the air-conditioning control device 3 is realized by software, firmware and the like.
- It is a flowchart which shows the air-conditioning control method which is the processing procedure of an air-conditioning control device 3. Included in the position observation values P k (m) of M observation targets m at the observation time k, N estimated loci X k-1 (n) and the estimated loci X k-1 (n) at the observation time k-1.
- FIG. 6A is an explanatory diagram showing each of the estimated locus X k (1) including the position observed value P k (2) and the estimated locus X k ( 2 ) including the position observed value P k (1)
- FIG. 6B is an explanatory diagram. It is explanatory drawing which shows each of the estimated locus X k (1) including the position observed value P k (1) and the estimated locus X k ( 2) including the position observed value P k (2). It is a block diagram which shows the other air-conditioning control device 3 which concerns on Embodiment 1.
- FIG. 6A is an explanatory diagram showing each of the estimated locus X k (1) including the position observed value P k (2) and the estimated locus X k ( 2 ) including the position observed value P k (1)
- FIG. 6B is an explanatory diagram. It is explanatory drawing which shows each of the estimated locus X k (1) including the position observed value P k (1) and the estimated locus X k ( 2) including the position observed value P
- Embodiment 1 In the air conditioner disclosed in Patent Document 1, the difference between the moving speeds of a plurality of human bodies is smaller than the speed error estimated by connecting the observed values caused by the error of the observed values at the positions.
- the movement locus estimation unit may erroneously identify the observed value of the one whose distance is not short. If the observed value is erroneously specified by the movement locus estimation unit this time, an error may occur in the estimation of the movement locus. For example, at an observation time earlier than the observation time k (k is an integer), two adjacent human bodies are stationary, and at the observation time k, one of the two adjacent human bodies is present. Imagine a situation where only starts to move.
- the observed values of the positions of the two adjacent human bodies are acquired by the sensor, and the estimated trajectories ⁇ and ⁇ , which are the estimated values of the movement trajectories of the respective human bodies, are acquired. And.
- Each of the estimated locus ⁇ and the estimated locus ⁇ includes the position of the human body at the observation time k-1 and the moving speed of the human body.
- the order in which the air conditioner disclosed in Patent Document 1 calculates the estimated trajectories ⁇ and ⁇ is determined by the difference in the moving speed caused by the observation error up to the observation time k-1.
- the moving speed is included in each of the estimated locus ⁇ and the estimated locus ⁇ . Further, since only one human body starts to move at the observation time k, both the observed values of the positions of the two human bodies at the observation time k are biased to the side of the estimated locus ⁇ or the estimated locus ⁇ .
- the observation time is set because “the closest observation value is connected from the position at the previous time to form a movement locus”.
- the estimated loci ⁇ and ⁇ in k are the results depending on the order in which the estimated loci are calculated. That is, at the observation time k, when the position included in the estimated locus ⁇ is calculated before the position included in the estimated locus ⁇ , the estimated loci ⁇ , ⁇ at the observation time k (hereinafter referred to as “trajectory pattern P1””.
- the trajectory is estimated even when the difference between the moving speeds of the plurality of observation targets is smaller than the speed error estimated by connecting the observed values caused by the error of the observed values at the positions.
- FIG. 1 is a configuration diagram showing an air conditioning control device 3 according to the first embodiment.
- FIG. 2 is a hardware configuration diagram showing the hardware of the air conditioning control device 3 according to the first embodiment.
- the sensor 1 is realized by, for example, an infrared camera or a visible light camera.
- the sensor 1 observes the temperature of the observation region at the kth observation time k (k is an integer of 1 or more), and outputs temperature data indicating the temperature of each pixel of the observation region to the detection unit 2.
- the observation target m a human being, a pet, a robot, or the like can be considered. That is, the sensor 1 acquires an image captured in the observation area by imaging the observation area, and outputs each pixel value included in the image to the detection unit 2.
- the pixel value indicates the temperature at the position where the pixel corresponds.
- the sensor 1 outputs position data indicating the position of the captured image in the observation area to the detection unit 2.
- the position of each pixel in the captured image is represented by, for example, two-dimensional coordinates (x-coordinate, y-coordinate), and the position data includes data indicating the position of each pixel.
- the sensor 1 is not limited to that realized by either an infrared camera or a visible light camera, and may be realized by both an infrared camera and a visible light camera. Further, the sensor 1 may acquire the temperature of the observation region from a thermometer that measures the temperature of each observation region via a communication network.
- the detection unit 2 Based on the temperature data and position data for each pixel in the observation area output from the sensor 1, the detection unit 2 sets the observation values of the M observation targets m as the temperature of the observation target m at the kth observation time k.
- the observed value T k (m) is detected.
- m is an integer of 1 or more and M or less representing the serial number of the observed values
- the number M of the observed values at time k is an integer of 0 or more.
- M 0, it represents the case where no observation target is detected in the observation area. That is, the detection unit 2 acquires each pixel value included in the captured image from the sensor 1, and among the acquired pixel values, a pixel that is a collection of a plurality of pixels having a pixel value larger than the threshold value.
- the threshold value may be stored in the internal memory of the detection unit 2 or may be given from the outside of the detection unit 2.
- the detection unit 2 is, for example, the average value of the pixel values of the plurality of pixels included in the detected pixel group, or the maximum value among the pixel values of the plurality of pixels included in the detected pixel group. Is detected as the temperature observed value T k (m) of each observation target m. Further, the detection unit 2 detects the position observation value P k (m) of the observation target m at the kth observation time k as the observation value of the M observation targets m observed at the kth observation time k. ..
- the detection unit 2 determines the position of the pixel having the largest pixel value among the center position of the detected pixel group or the plurality of pixels included in the pixel group, and the position observation value PK of the observation target m. Detect as (m) .
- the detection unit 2 outputs each of the temperature observed values T k (m) and the position observed values P k (m) of the M observation targets m at the kth observation time k to the air conditioning control device 3. Further, the detection unit 2 outputs the temperature data and the position data for each pixel in the captured image of the observation region to the air conditioning control device 3.
- the air conditioning control device 3 includes an observation error calculation unit 4, an observation value difference calculation unit 7, an association unit 8, an estimation trajectory calculation unit 9, and a control unit 10.
- the observation error calculation unit 4 is realized by, for example, the observation error calculation circuit 21 shown in FIG.
- the observation error calculation processing unit 5 calculates the observation error ⁇ T (m) for the temperature observation value T k (m) of the observation target m from the temperature observation value T k ( m) of the observation target m and the temperature data. ..
- the observation error calculation processing unit 5 outputs the observation error ⁇ T (m) for the temperature observation value T k (m ) to the observation value difference calculation unit 7.
- the observation error calculation processing unit 6 includes the position observation value PK (m) of each observation target m at the kth observation time k and the position data for each pixel in the captured image of the observation area. To get.
- the observation error calculation processing unit 6 calculates the observation error ⁇ P (m) for the position observation value P k (m) of the observation target m from the position observation value P k ( m) of the observation target m and the position data. ..
- the observation error calculation processing unit 6 outputs the observation error ⁇ P (m) for the position observation value P k (m ) to the observation value difference calculation unit 7.
- the observed value difference calculation unit 7 is realized by, for example, the observed value difference calculation circuit 22 shown in FIG. From the detection unit 2, the observation value difference calculation unit 7 determines the temperature observation value Tk (m) of each observation target m at the kth observation time k and the position of each observation target m at the kth observation time k. The observed value P k (m) is acquired. The observation value difference calculation unit 7 obtains one or more estimated loci including the temperature observation value of the observation target as the observation value of the observation target from the estimation locus calculation unit 9 to the (k-1) th observation time. get.
- the observed value difference calculation unit 7 changes the temperature and the position of each of the plurality of observation target m from the estimated locus calculation unit 9 to the (k-1) th observation time.
- the observation value difference calculation unit 7 includes the observation value at the (k-1) th observation time and a plurality of observations at the kth observation time included in each estimated locus X k-1 (n) .
- the difference between the observed values is calculated for all the combinations with the observed values in the target m. That is, the observed value difference calculation unit 7 is included in each estimated locus X k-1 (n) using the observation error ⁇ T (m) calculated by the observation error calculation processing unit 5 (k).
- the difference ⁇ T k (n, m) of the observed temperature values is calculated. Further, the observed value difference calculation unit 7 is included in each estimated locus X k-1 (n) using the observation error ⁇ P (m) calculated by the observation error calculation processing unit 6 (k). -1) For all combinations of the position observation value P k (n) at the th-th observation time and each position observation value P k (m) at the M observation target m at the k-th observation time. The difference ⁇ P k (n, m) of the position observation values is calculated. The observed value difference calculation unit 7 outputs each of the temperature observed value difference ⁇ T k (n, m) and the position observed value difference ⁇ P k (n, m) to the corresponding unit 8.
- the mapping unit 8 is realized by, for example, the mapping circuit 23 shown in FIG.
- the association unit 8 is based on both the temperature observation value difference ⁇ T k (n, m) and the position observation value difference ⁇ P k (n, m) for all the combinations calculated by the observation value difference calculation unit 7. Then, from the N estimated loci X k-1 (n) , an estimated locus including the temperature observed value T k (m) and the position observed value P k (m) at the kth observation time is selected. ..
- the association unit 8 outputs the selection result of the estimated locus to the estimated locus calculation unit 9.
- the estimation locus calculation unit 9 is realized by, for example, the estimation locus calculation circuit 24 shown in FIG. From the detection unit 2, the estimation locus calculation unit 9 observes the temperature observation value Tk (m) of each observation target m at the kth observation time k and the position observation of each observation target m at the kth observation time k. Get the value P k (m) . The estimation locus calculation unit 9 acquires the selection result of the estimation locus from the association unit 8. The estimation locus calculation unit 9 includes each of the temperature observation value T k (m) and the position observation value P k (m) in the estimation locus selected by the association unit 8.
- the estimated locus calculation unit 9 outputs an estimated locus X k (n) including each of the temperature observed value T k (m) and the position observed value P k (m) to the control unit 10. Further, the estimated locus calculation unit 9 includes an estimated locus X k including each of the temperature observed value T k (m) and the position observed value P k (m) so that the estimated locus can be selected at the next observation time. (N) is output as an estimated locus X k-1 (n) to each of the observed value difference calculation unit 7 and the association unit 8.
- the control unit 10 is realized by, for example, the control circuit 25 shown in FIG.
- the control unit 10 acquires an estimated locus X k (n) including each of the temperature observed value T k (m) and the position observed value P k (m) from the estimated locus calculation unit 9.
- the control unit 10 controls the air conditioner according to each estimated locus X k (n) .
- the air conditioner an air conditioner, an air conditioner, a ventilation device, a dehumidifying device, a humidifying device, an air purifier, a fan, or the like can be considered.
- each of the observation error calculation unit 4, the observation value difference calculation unit 7, the association unit 8, the estimation locus calculation unit 9, and the control unit 10, which are the components of the air conditioning control device 3, is as shown in FIG. It is supposed to be realized by dedicated hardware. That is, it is assumed that the air conditioning control device 3 is realized by the observation error calculation circuit 21, the observation value difference calculation circuit 22, the association circuit 23, the estimation locus calculation circuit 24, and the control circuit 25.
- Each of the observation error calculation circuit 21, the observation value difference calculation circuit 22, the association circuit 23, the estimation trajectory calculation circuit 24, and the control circuit 25 is, for example, a single circuit, a composite circuit, a programmed processor, or a parallel programmed processor. , ASIC (Application Specific Integrated Circuit), FPGA (Field-Programmable Gate Array), or a combination thereof.
- the components of the air conditioning control device 3 are not limited to those realized by dedicated hardware, but the air conditioning control device 3 is realized by software, firmware, or a combination of software and firmware. It is also good.
- the software or firmware is stored as a program in the memory of the computer.
- a computer means hardware that executes a program, and corresponds to, for example, a CPU (Central Processing Unit), a central processing unit, a processing unit, a computing device, a microprocessor, a microcomputer, a processor, or a DSP (Digital Signal Processor). do.
- FIG. 3 is a hardware configuration diagram of a computer when the air conditioning control device 3 is realized by software, firmware, or the like.
- the air conditioning control device 3 is realized by software, firmware, or the like
- each processing procedure in the observation error calculation unit 4, the observation value difference calculation unit 7, the mapping unit 8, the estimation trajectory calculation unit 9, and the control unit 10 is performed by a computer.
- the program to be executed by the memory 31 is stored in the memory 31.
- the processor 32 of the computer executes the program stored in the memory 31.
- FIG. 2 shows an example in which each of the components of the air conditioning control device 3 is realized by dedicated hardware
- FIG. 3 shows an example in which the air conditioning control device 3 is realized by software, firmware, or the like. ..
- this is only an example, and some components in the air conditioning control device 3 may be realized by dedicated hardware, and the remaining components may be realized by software, firmware, or the like.
- FIG. 4 is a flowchart showing an air conditioning control method which is a processing procedure of the air conditioning control device 3.
- the sensor 1 observes the temperature of the observation region at the kth observation time k, and outputs the temperature data obtained by measuring the temperature of each pixel of the observation region to the detection unit 2. That is, the sensor 1 acquires an image captured in the observation area by imaging the observation area, and outputs each pixel value included in the image to the detection unit 2. Further, the sensor 1 detects the position of the captured image in the observation region, and outputs the position data indicating the position of the captured image to the detection unit 2.
- the position of each pixel in the captured image is represented by, for example, two-dimensional coordinates (x-coordinate, y-coordinate).
- the detection unit 2 acquires temperature data and position data for each pixel in the observation region from the sensor 1.
- the detection unit 2 detects the temperature observation value T k (m) of each observation target m at the kth observation time k based on the temperature data for each pixel in the observation region. That is, the detection unit 2 acquires each pixel value included in the captured image from the sensor 1, and among the acquired pixel values, a pixel group which is a group of pixels having a pixel value larger than the threshold value is obtained. To detect. At the observation time k, the detection unit 2 sets the average value of the pixel values in each pixel included in the detected pixel group as the temperature observation value T k (m) of the observation target m existing in the observation region. calculate.
- the detection unit 2 calculates the average value of the pixel values as the temperature observation value Tk (m) of the observation target m.
- Tk (m) the temperature observation value of the observation target m.
- the detection unit 2 sets the temperature observation value T k (m) of the observation target m as, for example, among the pixel values of the plurality of pixels included in the detected pixel group.
- the maximum value may be calculated.
- the detection unit 2 detects the position observation value P k (m) of the observation target m at the kth observation time k as the observation values of the M observation targets observed at the kth observation time k. For example, the detection unit 2 determines the position of the pixel having the largest pixel value among the center position of the detected pixel group or the plurality of pixels included in the pixel group, and the position observation value PK of the observation target m. Detect as (m) . The detection unit 2 outputs each of the temperature observation values T k (m) and the position observation values P k (m) of the M observation targets m at the kth observation time k to the air conditioning control device 3. Further, the detection unit 2 outputs the temperature data and the position data for each pixel in the captured image of the observation region to the air conditioning control device 3.
- FIG. 5 shows the position observation values P k (m) of M observation targets m at the observation time k, N estimated trajectories X k-1 (n) and the estimated loci X k-1 ( estimated loci X k-1) at the observation time k-1. It is explanatory drawing which shows the position observation values P k-1 (n) , P k-2 (n) included in n).
- the temperature observation values of the two observation targets are represented at each observation time
- the two estimated loci X k-1 (n) are represented.
- M N.
- M ⁇ N may be satisfied.
- the PK (m) and the temperature data for each pixel in the observation area are acquired.
- the observation error calculation processing unit 5 is based on the temperature observation value T k (m) of the observation target m, the position observation value P k (m) , and the temperature data for each pixel of the observation area, and the temperature observation value of the observation target m.
- the observation error ⁇ T (m) for T k (m ) is calculated (step ST1 in FIG. 4).
- the observation error calculation processing unit 5 sets the observation error ⁇ T ( m) for the temperature observed value T k (m) .
- the standard deviation of the temperature observation value T k (m) of the observation target m with respect to the temperature of the peripheral pixels of the position observation value P k (m) . Conceivable.
- the peripheral pixels of the position observation value P k ( m ) are, for example, pixels in a region having a certain size centered on the pixel at the position represented by the position observation value P k (m) , or position observation.
- the distance from the pixel representing the position observed value P k (m) exists at a position larger than the threshold value. It is a pixel that is
- the observation error calculation processing unit 5 outputs the observation error ⁇ T (m) for the temperature observation value T k (m) of each observation target m to the observation value difference calculation unit 7.
- the observation error calculation processing unit 5 sets the observation error ⁇ T (m) for the temperature observation value T k (m ) as the temperature of the peripheral pixels of the position observation value P k (m) .
- An example of calculating the standard deviation of is conceivable. However, this is only an example, and the observation error calculation processing unit 5 calculates the difference between the maximum temperature and the minimum temperature in the peripheral pixels of the position observation value P k (m) , and a predetermined coefficient is used for the difference.
- the observation error ⁇ T (m) may be calculated by multiplying by.
- the observation error calculation processing unit 5 refers to a table based on the characteristics of the sensor 1, that is, a table showing the correspondence between the position observation value P k (m) and the observation error ⁇ T (m) .
- the observation error ⁇ T (m) corresponding to the observed value T k (m) may be obtained.
- the observation error calculation processing unit 6 includes the position observation value PK (m) of each observation target m at the kth observation time k and the position data for each pixel in the captured image of the observation area. To get.
- the observation error calculation processing unit 6 calculates the observation error ⁇ P (m) for the position observation value P k (m) of the observation target m from the position observation value P k ( m ) of the observation target m and the position data. (Step ST2 in FIG. 4). In the process of calculating the observation error ⁇ P (m) for the position observation value P k ( m) , the positions of the peripheral pixels of the position observation value P k (m) and the peripheral pixels of the position observation value P k (m) .
- the observation error calculation processing unit 6 outputs the observation error ⁇ P (m) for the position observation value P k (m) of each observation target m to the observation value difference calculation unit 7.
- the observation error calculation processing unit 5 sets the observation error ⁇ P (m) for the position observation value P k ( m) as the peripheral pixels and the position of the position observation value P k (m).
- An example of calculating the standard deviation with respect to the difference from the observed value P k (m) can be considered.
- the observation error calculation processing unit 5 uses a table based on the characteristics of the sensor 1, that is, a table showing the correspondence between the position observation value P k (m) and the observation error ⁇ P (m) .
- the observation error ⁇ P (m) corresponding to the position observation value P k (m) may be obtained by referring to.
- the observation value difference calculation unit 7 From the detection unit 2, the observation value difference calculation unit 7 has a temperature observation value T k (m) of each observation target m at the kth observation time k and a position observation value P k at the kth observation time k. (M) and is acquired. Further, the observed value difference calculation unit 7 acquires N estimated loci X k-1 (n) at the k-1th observation time k-1 from the estimated locus calculation unit 9. Further, the observed value difference calculation unit 7 acquires the observation error ⁇ T (m) for the temperature observation value T k (m) from the observation error calculation processing unit 5, and the position observation value from the observation error calculation processing unit 6. Obtain the observation error ⁇ P (m) for P k (m) .
- the observed value difference calculation unit 7 uses the observation error ⁇ T (m) to record the temperatures included in each of the N estimated loci X k-1 (n) . For all combinations of the observed values T k-1 (n) and the M temperature observed values T k (m) at the kth observation time, the difference ⁇ T k (n, m) of the temperature observed values is calculated. (Step ST3 in FIG. 4). The observed value difference calculation unit 7 outputs the difference ⁇ T k (n, m) of the temperature observed values to the mapping unit 8.
- the difference between the temperature observed value T k -1 (2) and the temperature observed value T k (2) included in k-1 (2) ⁇ T k (2, 2) is determined by the observed value difference calculation unit 7. It is calculated. Under the assumption that the fluctuation of the temperature observation value T k (m) at the observation time k with respect to the temperature observation value T k-1 (n) at the observation time k-1 is sufficiently smaller than the observation error ⁇ T (m) . Then, the smaller the difference ⁇ T k (n, m) of the temperature observation values, the more “the temperature observation value T k (m) and the temperature observation value T k-1 (n) are derived from the same observation target. The "hypothesis" shows that it is plausible.
- the observed value difference calculation unit 7 uses the observation error ⁇ P (m) calculated by the observation error calculation processing unit 6 as shown in the following equation (2), and the k-1th observation time.
- the difference ⁇ P k (n, m) of the position observation values is calculated (step ST4 in FIG. 4).
- tr in the upper right of the parentheses is a symbol representing a transposed vector
- -1 in the upper right of the parentheses is a symbol representing an inverse matrix.
- the observation value difference calculation unit 7 outputs each of the position observation value differences ⁇ P k (n, m) to the association unit 8.
- the difference between the position observation value P k-1 (1) and the position observation value P k (1) included in the estimated locus X k-1 (1) ⁇ P k ( 1, 1) and the difference ⁇ P k (1, 2) between the position observation value P k-1 (1) and the position observation value P k (2) included in the estimated locus X k-1 (1) .
- the difference ⁇ P k (2, 2) between the position observation value P k - 1 (2) and the position observation value P k (2) included in k-1 (2) is determined by the observation value difference calculation unit 7. It is calculated. Under the assumption that the fluctuation of the position observation value P k (m) of the observation time k with respect to the position observation value P k (n) of the observation time k-1 is sufficiently smaller than the observation error ⁇ P (m) . The smaller the difference ⁇ P k (n, m) of the position observation values, the more “the hypothesis that the position observation value P k (m) and the position observation value P k-1 (n) are derived from the same observation target”. Represents a plausible thing.
- the observation value difference calculation unit 7 uses the observation error ⁇ T (m) calculated by the observation error calculation processing unit 5, and the temperature observation value difference ⁇ T is used for all combinations. k (n, m) is calculated. Further, the observed value difference calculation unit 7 calculates the difference ⁇ P k (n, m) of the position observed values for all combinations using the observation error ⁇ P (m) calculated by the observation error calculation processing unit 6. are doing. Therefore, in the air conditioning control device 3, when the observation error ⁇ T (m) is included in the temperature observation value T k (m) of the observation target m, or the position observation value P k (m) of the observation target m is set.
- the mapping unit 8 described later provides a temperature observation value T k ( n, m) based on both the temperature observation value difference ⁇ T k (n, m) and the position observation value difference ⁇ P k (n, m) for all combinations. It is effective when the observation error ⁇ T (m) is too large to ignore in selecting the estimated locus including m) and the position observation value P k (m) .
- the observed value difference calculation unit 7 does not use the observation error ⁇ T (m) calculated by the observation error calculation processing unit 5, and the temperature observation value difference ⁇ T is used for all combinations. You may try to calculate k (n, m). Further, the observed value difference calculation unit 7 calculates the difference ⁇ P k (n, m) of the position observed values for all combinations without using the observation error ⁇ P (m) calculated by the observation error calculation processing unit 6. You may try to calculate.
- the denominator on the right side of the equation (1) is, for example, 1. It should be.
- the observation value difference calculation unit 7 calculates the temperature observation value difference ⁇ T k (n, m) by using the observation error ⁇ T ( m) without using the observation error ⁇ T (m).
- the selection accuracy of the estimated locus in the matching unit 8 is higher than the calculation of the difference ⁇ T k (n, m) of the observed values.
- the observed value difference calculation unit 7 calculates the difference ⁇ T k (n, m) of the temperature observed values without using the observation error ⁇ T (m) , the difference between the moving speeds of a plurality of observation targets.
- the observation value difference calculation unit 7 calculates the difference ⁇ P k (n, m) of the position observation values by using the observation error ⁇ P ( m ) without using the observation error ⁇ P (m).
- the selection accuracy of the estimated locus in the matching unit 8 is higher than the calculation of the difference ⁇ P k (n, m) of the observed values.
- the observed value difference calculation unit 7 calculates the difference ⁇ P k (n, m) of the position observed values without using the observation error ⁇ P (m) , the difference between the moving speeds of a plurality of observation targets.
- the associating unit 8 From the observed value difference calculation unit 7, the associating unit 8 has a temperature observed value difference ⁇ T k (n, m) for all combinations and a position observed value difference ⁇ P k (n, m) for all combinations. And get.
- the association unit 8 acquires N estimated loci X k-1 (n) from the estimated locus calculation unit 9.
- the association unit 8 has N estimated loci X k- based on both the temperature observation value difference ⁇ T k (n, m) and the position observation value difference ⁇ P k (n, m) for all combinations. From 1 (n) , an estimated locus including the temperature observed value T k (m) and the position observed value P k (m) at the kth observation time is selected (step ST5 in FIG. 4).
- the association unit 8 outputs the selection result of the estimated locus to the estimated locus calculation unit 9.
- the process of selecting the estimated locus by the mapping unit 8 will be specifically described.
- the association unit 8 calculates the cost matrix C of N rows (N + M) columns as shown in the following equation (3).
- the elements c i and j of the cost matrix C are "the plausibility of the hypothesis that the i-th estimated locus X k-1 (i) and the j-th observed value Z k (j) are derived from the same observation target". Has a value that has a negative correlation with.
- the elements c i and j are "all of the 1st to Mth observed values Z k (1) to Z k (M) are the i-th estimated loci X k-1 (i) . ) Has a value that has a negative correlation with the "probability of the hypothesis that it does not come from the same observation target". Further, an extremely large value is set in advance for the elements c i and j when j> M and i ⁇ j.
- the association unit 8 has a cost matrix C as shown in the following equation (4) based on the difference ⁇ T k (n, m) of the temperature observed values and the difference ⁇ P k (n, m) of the position observed values.
- the elements c i and j of are calculated.
- w T is a weighting coefficient with respect to the difference ⁇ T k (n, m) of the temperature observed values
- w p is a weighting coefficient with respect to the difference ⁇ P k (n, m) of the position observed values.
- ⁇ T k, max is the maximum value that the difference ⁇ T k (n, m) of the temperature observation value can take
- ⁇ P k, max is the maximum value that the difference ⁇ P k (n, m) of the position observation value can take.
- c max is a parameter representing a cost that cannot be selected, and an extremely large value is set in advance.
- the mapping unit 8 selects one column for each row from the cost matrix C. However, the plurality of columns selected for each row are selected so as to be different columns from each other. Further, the mapping unit 8 selects one column for each row so that the total of the elements cn and m of the columns selected for each row is minimized.
- the selection is a kind of "assignment problem", and a known technique such as the Hungarian algorithm can be used.
- the solution of the allocation problem is information indicating whether any of the observed values Z k (m) is associated with each estimated locus X k-1 (n) , or any of the observed values Z k (m). It is information indicating that they cannot be associated.
- the information representing the correspondence can be expressed by the correspondence matrix B of N rows (N + M) columns as shown in the following equation (5).
- the elements bi and j of the correspondence matrix B are 0 or 1, and in each row, there is only one element having a value of 1.
- the elements bi and j are 1, the elements bi and j "the i-th estimated locus X k-1 (i) is associated with the j-th observed value Z k (j) ".
- j> M the elements bi and j are "the nth estimated locus X k-1 (i) is any of the 1st to Mth observed values Z k (1) to Z k (M) . It was not associated with ".
- the association unit 8 outputs the association matrix B to the estimation locus calculation unit 9 as the selection result of the estimation locus.
- the estimation locus calculation unit 9 observes the temperature observation value Tk (m) of each observation target m at the kth observation time k and the position observation of each observation target m at the kth observation time k. Get the value P k (m) .
- the estimation locus calculation unit 9 acquires the association matrix B from the association unit 8.
- the estimation locus calculation unit 9 performs a process of including each of the temperature observation value T k (m) and the position observation value P k (m) in the estimation locus selected by the association unit 8 (step ST6 in FIG. 4). ..
- the estimated locus calculation unit 9 If there is an observed value that is not associated with any estimated locus, the estimated locus calculation unit 9 considers that a new observation target has appeared in the observation area at time k, and calculates an estimated locus containing only the observed value. Generate. Hereinafter, the processing of the estimation locus calculation unit 9 will be specifically described.
- the association unit 8 calculates the cost matrix C as shown in the following equation (6). For example, the total when the estimated locus X k-1 (1) and the observed value Z k (1) are associated with each other, and the estimated locus X k-1 (2) and the observed value Z k (2) are associated with each other.
- the cost is c 1,1 + c 2,2 .
- the estimated locus X k-1 (1) and the observed value Z k (2) are associated, and the estimated locus X k-1 (2) is not associated with any observed value Z k (j) .
- the total cost is c 1 , 2, + c 2 , 4. At this time, if c 1, 1 + c 2, 2 ⁇ c 1 , 2, + c 2, 4 , the former association is considered to be more plausible than the latter association.
- the association matrix B is expressed by the following equation (7).
- the observed value Z k (1) includes the temperature observed value T k (1) and the position observed value P k (1)
- the observed value Z k (2) includes the temperature observed value T k (2) and the position.
- the observed value P k (2) is included.
- the estimated locus calculation unit 9 has the estimated locus X k-1 (1) including the observed value Z k (1) based on the correspondence matrix B shown in the equation (7). It is determined that the estimated locus including the observed value Z k (2) is the estimated locus X k-1 (2) . That is, as shown in the following equation (8), the observed value Z k (1) is associated with the estimated locus X k-1 (1) , and the observed value Z k (2) is associated with the estimated locus X k -1 ( 1). It is associated with 2) . Therefore, the estimated locus calculation unit 9 includes the observed value Z k (1) in the estimated locus X k (1) and the observed value Z k (2) in the estimated locus X k (2) . In FIG.
- FIG. 6B is an explanatory diagram showing each of the estimated locus X k ( 1 ) including the position observed value P k (1) and the estimated locus X k (2) including the position observed value P k (1).
- the estimated trajectory X k-1 (1) and observed value Z k (2) are associated with each other, and the estimated trajectory X k-1 (2) is any observed value Z k ( 2). If it is determined that the total cost of "when not associated with 1) " is the minimum, the association matrix B is expressed by the following equation (9). In this case, the estimated locus calculation unit 9 has the estimated locus X k-1 (2) including the observed value Z k (1) based on the correspondence matrix B shown in the equation (9). It is determined that there is no estimated locus containing the observed value Z k (2) .
- the observed value Z k (2) is associated with the estimated locus X k (1) at time k, and the observed value Z k (2) is the estimated locus X k ( 2). Included in 1) . Further, since the observed value Z k (1) was not associated with any estimated locus at time k-1, it is considered that a new observation target appeared in the observation region at time k, and the estimated locus X of the new observation target. As shown in the following equation (11), k (3) is calculated as an estimated locus including only the observed value Z k (1) . Further, since the estimated locus X k-1 (2) was not associated with any of the observed values, it is deleted at time k.
- the same value as the observation value at time k-1 is regarded as the observation value at time k
- the estimated locus X k-1 (2) is the estimated locus X k (2). May be included in.
- FIG. 6A is an explanatory diagram showing each of the estimated locus X k (1) including the position observed value P k (2) and the estimated locus X k ( 2) including the position observed value P k (1) .
- the observed value Z k (2) is associated with the estimated locus X k-1 (1) by the estimated locus calculation unit 9, and the observed value Z k ( 1) is associated with the estimated locus X k -1 ( 1). Since it is associated with 2) , the position observed value P k (1) is included in the estimated locus X k (2) , and the position observed value P k (2) is included in the estimated locus X k (1) . ing.
- the mapping unit 8 has a maximum of one observed value Z k (m) associated with one estimated locus X k-1 (n) ".
- the estimated locus X k-1 (n) corresponding to the observed value Z k (m) is being searched for.
- the association unit 8 may associate a plurality of observed values Z k (m) with one estimated locus X k-1 (n) .
- the association unit 8 may associate one observed value Z k (m) with a plurality of estimated loci X k-1 (n) .
- the plausibility of the observed values is set in the cost matrix C.
- the correspondence may be obtained by reflecting it.
- the calculation of the association by the cost matrix C is regarded as the "shortest path problem", and the association is calculated by using a known technique for solving the shortest path problem such as Dijkstra's algorithm. Can be done.
- the estimated locus calculation unit 9 outputs an estimated locus X k (n) including each of the temperature observed value T k (m) and the position observed value P k (m) to the control unit 10. Further, the estimated locus calculation unit 9 includes an estimated locus X k including each of the temperature observed value T k (m) and the position observed value P k (m) so that the estimated locus can be selected at the next observation time. (N) is output as an estimated locus X k-1 (n) to each of the observed value difference calculation unit 7 and the association unit 8.
- the control unit 10 acquires N estimated loci X k (n) from the estimated locus calculation unit 9.
- the control unit 10 controls the air conditioner according to each of the N estimated loci X k (n) . Since the estimated locus X k (n) indicates the frequency of movement of the temperature observed value, an example in which the control unit 10 controls the air conditioning equipment so that the temperature observed value T k (m) approaches the set temperature. Can be considered. Further, it is conceivable that the control unit 10 controls the air conditioning equipment so that the fluctuation of the observed temperature value becomes constant.
- the control unit 10 may, for example, surround the position where the observation target exists. Control the air conditioning equipment so that the air is regulated. If the frequency of movement of the position observation value is high, the control unit 10 controls the air conditioning device so that, for example, the entire air in the air-conditioned range is adjusted. In the air-conditioning control device 3 shown in FIG. 1, the control unit 10 controls the air-conditioning device according to each estimated locus X k (n) . However, this is only an example, and a display device (not shown) may display each estimated locus X k (n) .
- one or more estimations including the temperature observation value of the observation target as the observation value of the observation target up to the (k-1) (k is an integer of 1 or more) th observation time.
- the locus and the temperature observation value of the observation target as the observation value of the observation target at the kth observation time are acquired, and the temperature at the (k-1) th observation time included in each estimated locus.
- the observed value difference calculation unit 7 For all combinations of the observed value and the temperature observed value of the observation target at the kth observation time, it was calculated by the observed value difference calculation unit 7 for calculating the difference between the temperature observed values and the observed value difference calculation unit 7.
- a mapping unit 8 that selects an estimated locus including the temperature observed value of the observation target at the kth observation time from one or more estimated trajectories based on the difference of the temperature observed values for all combinations.
- the air conditioning control device 3 is configured to include an estimation locus calculation unit 9 that includes the temperature observation value of the observation target at the kth observation time in the estimation locus selected by the association unit 8. Therefore, the air conditioning control device 3 has a locus even when the difference between the moving speeds of the plurality of observation targets is smaller than the speed error estimated by connecting the observed values caused by the error of the observed values at the positions. It is possible to prevent the estimation error of.
- the detection unit 2 detects the temperature observation value T k (m) of the observation target m as the observation value of the observation target m, and observes the M observation target m. As a value, the position observation value P k (m) of the observation target m is detected. However, this is only an example, and the detection unit 2 may detect only the temperature observation value T k (m) of the observation target m as the observation value of the observation target m. When the detection unit 2 detects only the temperature observation value Tk (m) of the observation target m as the observation value of the M observation target m, the observation error calculation processing unit 6 is unnecessary as shown in FIG. be. FIG.
- the observation value difference calculation unit 7 uses the observation error ⁇ T (m) calculated by the observation error calculation processing unit 5, and for all combinations, only the temperature observation value difference ⁇ T k (n, m). Is calculated, and the difference ⁇ P k (n, m) of the position observation values is not calculated.
- the mapping unit 8 is the kth observation time from the N estimated loci X k-1 (n) based only on the difference ⁇ T k (n, m) of the temperature observation values for all combinations. Select an estimated trajectory that includes the observed temperature of T k (m) .
- the mapping unit 8 compares the difference ⁇ T k (n, m) of the temperature observation values for all the combinations with each other, and N pieces are based on the comparison result of the difference ⁇ T k (n, m).
- Estimated locus X From k-1 (n) an estimated locus including the temperature observation value T k (m) at the kth observation time is selected.
- the mapping unit 8 specifies the minimum difference ⁇ T k (n, m) among the differences ⁇ T k (n, m) of the temperature observed values for all combinations.
- the matching unit 8 selects an estimated locus related to the minimum difference ⁇ T k (n, m) from the N estimated loci X k-1 (n) .
- the association unit 8 uses a cost matrix from the difference ⁇ T k (n, m) of the temperature observed values and the difference ⁇ P k (n, m) of the position observed values for all combinations. C is calculated. Then, the mapping unit 8 determines the temperature observed value T k (m) and the position observed value at the kth observation time from the N estimated loci X k-1 (n) based on the cost matrix C. The estimated trajectory including PK (m) is selected. However, this is only an example, and the mapping unit 8 sums up the difference ⁇ T k (n, m) of the temperature observation value and the difference ⁇ P k (n, m) of the position observation value for all combinations, for example. Is calculated. Then, the matching unit 8 may compare the sums of all the combinations with each other and select the estimated locus related to the smallest sum.
- This disclosure is suitable for air conditioning control devices and air conditioning control methods.
Landscapes
- Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- Physics & Mathematics (AREA)
- Fuzzy Systems (AREA)
- Mathematical Physics (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Air Conditioning Control Device (AREA)
Abstract
(k-1)(kは、1以上の整数)番目の観測時刻に至るまでの観測対象の観測値として、観測対象の温度観測値を含む1つ以上の推定軌跡と、k番目の観測時刻での観測対象の観測値として、観測対象の温度観測値とを取得し、それぞれの推定軌跡に含まれている、(k-1)番目の観測時刻での温度観測値と、k番目の観測時刻での観測対象の温度観測値との全ての組み合わせについて、温度観測値の差分を算出する観測値差分算出部(7)と、観測値差分算出部(7)により算出された全ての組み合わせについての温度観測値の差分に基づいて、1つ以上の推定軌跡の中から、k番目の観測時刻での観測対象の温度観測値を含める推定軌跡を選択する対応付け部(8)と、k番目の観測時刻での観測対象の温度観測値を対応付け部(8)により選択された推定軌跡に含める推定軌跡算出部(9)とを備えるように、空調制御装置(3)を構成した。
Description
本開示は、空調制御装置及び空調制御方法に関するものである。
以下の特許文献1には、移動軌跡推定部により推定された人体の移動軌跡に応じて空調制御を行う空気調和機が開示されている。
当該移動軌跡推定部は、人体検出部によって今回検出された複数の人体におけるそれぞれの観測値(以下「今回観測値」という)と、今回観測値よりも過去の観測値によって算出されたそれぞれの人体の移動軌跡(以下「過去の推定軌跡」という)とを取得する。それぞれの今回観測値は、今回検出された人体の位置を示す情報を含んでいる。また、それぞれの過去の推定軌跡は、今回よりも過去に検出された人体の位置と移動速度とを示す情報を含んでいる。
例えば、人体の数が2つであり、過去の推定軌跡の数が2つ、今回観測値の数が2つである場合、当該移動軌跡推定部は、2つの過去の推定軌跡のそれぞれに含まれている情報が示す移動速度を互いに比較し、遅い方の移動速度の情報を含んでいる過去の推定軌跡を特定する。当該移動軌跡推定部は、特定した過去の推定軌跡に含まれている情報が示す位置と、それぞれの今回観測値に含まれている情報が示す位置との距離を算出し、2つの今回観測値の中で、特定した過去の推定軌跡に含まれている情報が示す位置との距離が短い方の今回観測値を特定する。当該移動軌跡推定部は、特定した過去の推定軌跡に含まれている情報が示す位置と、特定した今回観測値に含まれている情報が示す位置とを繋ぐ軌跡を、1つの人体の移動軌跡として推定する。また、当該移動軌跡推定部は、2つの過去の推定軌跡のうち、特定していない方の過去の推定軌跡に含まれている情報が示す位置と、特定していない方の今回観測値に含まれている情報が示す位置とを繋ぐ軌跡を、1つの人体の移動軌跡として推定する。
当該移動軌跡推定部は、人体検出部によって今回検出された複数の人体におけるそれぞれの観測値(以下「今回観測値」という)と、今回観測値よりも過去の観測値によって算出されたそれぞれの人体の移動軌跡(以下「過去の推定軌跡」という)とを取得する。それぞれの今回観測値は、今回検出された人体の位置を示す情報を含んでいる。また、それぞれの過去の推定軌跡は、今回よりも過去に検出された人体の位置と移動速度とを示す情報を含んでいる。
例えば、人体の数が2つであり、過去の推定軌跡の数が2つ、今回観測値の数が2つである場合、当該移動軌跡推定部は、2つの過去の推定軌跡のそれぞれに含まれている情報が示す移動速度を互いに比較し、遅い方の移動速度の情報を含んでいる過去の推定軌跡を特定する。当該移動軌跡推定部は、特定した過去の推定軌跡に含まれている情報が示す位置と、それぞれの今回観測値に含まれている情報が示す位置との距離を算出し、2つの今回観測値の中で、特定した過去の推定軌跡に含まれている情報が示す位置との距離が短い方の今回観測値を特定する。当該移動軌跡推定部は、特定した過去の推定軌跡に含まれている情報が示す位置と、特定した今回観測値に含まれている情報が示す位置とを繋ぐ軌跡を、1つの人体の移動軌跡として推定する。また、当該移動軌跡推定部は、2つの過去の推定軌跡のうち、特定していない方の過去の推定軌跡に含まれている情報が示す位置と、特定していない方の今回観測値に含まれている情報が示す位置とを繋ぐ軌跡を、1つの人体の移動軌跡として推定する。
特許文献1に開示されている空気調和機では、複数の人体におけるそれぞれの移動速度同士の差分が、位置の観測値の誤差によって生じる、観測値を繋ぐことで推定した速度の誤差と比べて小さい場合、移動軌跡推定部によって、距離が短くない方の今回観測値が誤って特定されてしまうことがある。移動軌跡推定部によって、今回観測値が誤って特定されることにより、移動軌跡の推定に誤りが生じてしまうことがあるという課題があった。
本開示は、上記のような課題を解決するためになされたもので、複数の観測対象におけるそれぞれの移動速度同士の差分が、位置の観測値の誤差によって生じる、観測値を繋ぐことで推定した速度の誤差と比べて小さい場合でも、軌跡の推定誤りを防ぐことができる空調制御装置及び空調制御方法を得ることを目的とする。
本開示に係る空調制御装置は、(k-1)(kは、1以上の整数)番目の観測時刻に至るまでの観測対象の観測値として、観測対象の温度観測値を含む1つ以上の推定軌跡と、k番目の観測時刻での観測対象の観測値として、観測対象の温度観測値とを取得し、それぞれの推定軌跡に含まれている、(k-1)番目の観測時刻での温度観測値と、k番目の観測時刻での観測対象の温度観測値との全ての組み合わせについて、温度観測値の差分を算出する観測値差分算出部と、観測値差分算出部により算出された全ての組み合わせについての温度観測値の差分に基づいて、1つ以上の推定軌跡の中から、k番目の観測時刻での観測対象の温度観測値を含める推定軌跡を選択する対応付け部と、k番目の観測時刻での観測対象の温度観測値を対応付け部により選択された推定軌跡に含める推定軌跡算出部とを備えるものである。
本開示によれば、複数の観測対象におけるそれぞれの移動速度同士の差分が、位置の観測値の誤差によって生じる、観測値を繋ぐことで推定した速度の誤差と比べて小さい場合でも、軌跡の推定誤りを防ぐことができる。
以下、本開示をより詳細に説明するために、本開示を実施するための形態について、添付の図面に従って説明する。
実施の形態1.
特許文献1に開示されている空気調和機では、複数の人体におけるそれぞれの移動速度同士の差分が、位置の観測値の誤差によって生じる、観測値を繋ぐことで推定した速度の誤差と比べて小さい場合、移動軌跡推定部によって、距離が短くない方の今回観測値が誤って特定されてしまうことがある。移動軌跡推定部によって、今回観測値が誤って特定されることにより、移動軌跡の推定に誤りが生じてしまうことがある。
例えば、観測時刻k(kは、整数)よりも過去の観測時刻では、2つの近接している人体が静止しており、観測時刻kにおいて、2つの近接している人体のうち、一方の人体のみが動き出す状況を想定する。このとき、観測時刻kにおいて、2つの近接している人体のそれぞれの位置の観測値がセンサによって取得され、それぞれの人体の移動軌跡の推定値である推定軌跡α,βが取得されているものとする。推定軌跡α及び推定軌跡βのそれぞれには、観測時刻k-1での人体の位置と人体の移動速度とが含まれている。
特許文献1に開示されている空気調和機では、複数の人体におけるそれぞれの移動速度同士の差分が、位置の観測値の誤差によって生じる、観測値を繋ぐことで推定した速度の誤差と比べて小さい場合、移動軌跡推定部によって、距離が短くない方の今回観測値が誤って特定されてしまうことがある。移動軌跡推定部によって、今回観測値が誤って特定されることにより、移動軌跡の推定に誤りが生じてしまうことがある。
例えば、観測時刻k(kは、整数)よりも過去の観測時刻では、2つの近接している人体が静止しており、観測時刻kにおいて、2つの近接している人体のうち、一方の人体のみが動き出す状況を想定する。このとき、観測時刻kにおいて、2つの近接している人体のそれぞれの位置の観測値がセンサによって取得され、それぞれの人体の移動軌跡の推定値である推定軌跡α,βが取得されているものとする。推定軌跡α及び推定軌跡βのそれぞれには、観測時刻k-1での人体の位置と人体の移動速度とが含まれている。
上記の状況では、観測時刻k-1において、2つの人体におけるそれぞれの真の移動速度は0である。このため、観測時刻kにおいて、特許文献1に開示されている空気調和機が推定軌跡α,βを算出する順番は、観測時刻k-1までの観測誤差によって生じた移動速度の差異によって決まる。移動速度は、上述したように、推定軌跡α及び推定軌跡βのそれぞれに含まれている。
また、観測時刻kにおいて、一方の人体のみが動き出すため、観測時刻kにおける2つの人体の位置の観測値の双方が、推定軌跡α又は推定軌跡βのうち、一方の推定軌跡の側に偏る。
また、観測時刻kにおいて、一方の人体のみが動き出すため、観測時刻kにおける2つの人体の位置の観測値の双方が、推定軌跡α又は推定軌跡βのうち、一方の推定軌跡の側に偏る。
特許文献1に開示されている空気調和機では、推定軌跡α,βを算出する順番を決めたのち、「前の時刻の位置から最も近い観測値を繋いで移動軌跡とする」ため、観測時刻kにおける推定軌跡α,βは、推定軌跡を算出する順番に依存した結果となる。即ち、観測時刻kにおいて、推定軌跡αに含まれる位置が、推定軌跡βに含まれる位置よりも先に算出された場合の観測時刻kでの推定軌跡α,β(以下「軌跡パターンP1」という)と、観測時刻kにおいて、推定軌跡βに含まれる位置が、推定軌跡αに含まれる位置よりも先に算出された場合の観測時刻kでの推定軌跡α,β(以下「軌跡パターンP2」という)とは異なる。観測時刻kでの推定軌跡α,βと、2つの人体におけるそれぞれの位置の観測値との正しい対応関係は、当然のことながら1通りのみである。
以上より、特許文献1に開示されている空気調和機では、移動軌跡の推定誤差が、観測誤差によって生じた過去の移動速度の値次第で、著しく増大する。移動軌跡の推定誤差が増大することによって、例えば、観測時刻kにおける真の推定軌跡α,βが軌跡パターンP1であるのにもかかわらず、軌跡パターンP2が推定される事態が起こり得る。逆に、観測時刻kにおける真の推定軌跡α,βが軌跡パターンP2であるのにもかかわらず、軌跡パターンP1が推定される事態が起こり得る。
実施の形態1では、複数の観測対象におけるそれぞれの移動速度同士の差分が、位置の観測値の誤差によって生じる、観測値を繋ぐことで推定した速度の誤差と比べて小さい場合でも、軌跡の推定誤りを防ぐことができる空調制御装置について説明する。
以上より、特許文献1に開示されている空気調和機では、移動軌跡の推定誤差が、観測誤差によって生じた過去の移動速度の値次第で、著しく増大する。移動軌跡の推定誤差が増大することによって、例えば、観測時刻kにおける真の推定軌跡α,βが軌跡パターンP1であるのにもかかわらず、軌跡パターンP2が推定される事態が起こり得る。逆に、観測時刻kにおける真の推定軌跡α,βが軌跡パターンP2であるのにもかかわらず、軌跡パターンP1が推定される事態が起こり得る。
実施の形態1では、複数の観測対象におけるそれぞれの移動速度同士の差分が、位置の観測値の誤差によって生じる、観測値を繋ぐことで推定した速度の誤差と比べて小さい場合でも、軌跡の推定誤りを防ぐことができる空調制御装置について説明する。
図1は、実施の形態1に係る空調制御装置3を示す構成図である。
図2は、実施の形態1に係る空調制御装置3のハードウェアを示すハードウェア構成図である。
センサ1は、例えば、赤外線カメラ、又は、可視光カメラによって実現される。
センサ1は、k(kは、1以上の整数)番目の観測時刻kでの観測領域の温度を観測し、観測領域の画素ごとの温度を示す温度データを検出部2に出力する。観測対象mとしては、人間、ペット、又は、ロボット等が考えられる。
即ち、センサ1は、観測領域を撮像することによって、観測領域の撮像画像を取得し、撮像画像に含まれているそれぞれの画素値を検出部2に出力する。画素値は、画素が対応する位置の温度を示すものである。
また、センサ1は、観測領域の撮像画像の位置を示す位置データを検出部2に出力する。撮像画像におけるそれぞれの画素の位置は、例えば、2次元座標(x座標、y座標)によって表されており、それぞれの画素の位置を示すデータが当該位置データに含まれている。
センサ1は、赤外線カメラ、又は、可視光カメラのいずれか一方によって実現されるものに限るものではなく、赤外線カメラと可視光カメラとの双方によって実現されるものであってもよい。
また、センサ1は、それぞれの観測領域の温度を計測する温度計から、通信ネットワークを介して、観測領域の温度を取得するものであってもよい。
図2は、実施の形態1に係る空調制御装置3のハードウェアを示すハードウェア構成図である。
センサ1は、例えば、赤外線カメラ、又は、可視光カメラによって実現される。
センサ1は、k(kは、1以上の整数)番目の観測時刻kでの観測領域の温度を観測し、観測領域の画素ごとの温度を示す温度データを検出部2に出力する。観測対象mとしては、人間、ペット、又は、ロボット等が考えられる。
即ち、センサ1は、観測領域を撮像することによって、観測領域の撮像画像を取得し、撮像画像に含まれているそれぞれの画素値を検出部2に出力する。画素値は、画素が対応する位置の温度を示すものである。
また、センサ1は、観測領域の撮像画像の位置を示す位置データを検出部2に出力する。撮像画像におけるそれぞれの画素の位置は、例えば、2次元座標(x座標、y座標)によって表されており、それぞれの画素の位置を示すデータが当該位置データに含まれている。
センサ1は、赤外線カメラ、又は、可視光カメラのいずれか一方によって実現されるものに限るものではなく、赤外線カメラと可視光カメラとの双方によって実現されるものであってもよい。
また、センサ1は、それぞれの観測領域の温度を計測する温度計から、通信ネットワークを介して、観測領域の温度を取得するものであってもよい。
検出部2は、センサ1から出力された観測領域の画素ごとの温度データと位置データとに基づいて、M個の観測対象mの観測値として、k番目の観測時刻kにおける観測対象mの温度観測値Tk
(m)を検出する。mは、観測値の通し番号を表す1以上M以下の整数であり、時刻kにおける観測値の個数Mは、0以上の整数である。M=0の場合は、観測領域内に観測対象が1個も検出されなかった場合を表すものである。
即ち、検出部2は、センサ1から、撮像画像に含まれているそれぞれの画素値を取得し、取得した画素値の中で、閾値よりも大きな画素値を有する複数の画素の集まりである画素群を検出する。閾値は、検出部2の内部メモリに格納されていてもよいし、検出部2の外部から与えられるものであってもよい。
検出部2は、例えば、検出した画素群に含まれている複数の画素における画素値の平均値、又は、検出した画素群に含まれている複数の画素におけるそれぞれの画素値の中の最大値を、それぞれの観測対象mの温度観測値Tk (m)として検出する。
また、検出部2は、k番目の観測時刻kに観測されたM個の観測対象mの観測値として、k番目の観測時刻kにおける観測対象mの位置観測値Pk (m)を検出する。
検出部2は、例えば、検出した画素群の中央位置、又は、画素群に含まれている複数の画素の中で、画素値が最大の画素の位置を、観測対象mの位置観測値Pk (m)として検出する。
検出部2は、k番目の観測時刻kにおけるM個の観測対象mの温度観測値Tk (m)及び位置観測値Pk (m)のそれぞれを空調制御装置3に出力する。
また、検出部2は、観測領域の撮像画像におけるそれぞれの画素ごとの温度データ及び位置データのそれぞれを空調制御装置3に出力する。
即ち、検出部2は、センサ1から、撮像画像に含まれているそれぞれの画素値を取得し、取得した画素値の中で、閾値よりも大きな画素値を有する複数の画素の集まりである画素群を検出する。閾値は、検出部2の内部メモリに格納されていてもよいし、検出部2の外部から与えられるものであってもよい。
検出部2は、例えば、検出した画素群に含まれている複数の画素における画素値の平均値、又は、検出した画素群に含まれている複数の画素におけるそれぞれの画素値の中の最大値を、それぞれの観測対象mの温度観測値Tk (m)として検出する。
また、検出部2は、k番目の観測時刻kに観測されたM個の観測対象mの観測値として、k番目の観測時刻kにおける観測対象mの位置観測値Pk (m)を検出する。
検出部2は、例えば、検出した画素群の中央位置、又は、画素群に含まれている複数の画素の中で、画素値が最大の画素の位置を、観測対象mの位置観測値Pk (m)として検出する。
検出部2は、k番目の観測時刻kにおけるM個の観測対象mの温度観測値Tk (m)及び位置観測値Pk (m)のそれぞれを空調制御装置3に出力する。
また、検出部2は、観測領域の撮像画像におけるそれぞれの画素ごとの温度データ及び位置データのそれぞれを空調制御装置3に出力する。
空調制御装置3は、観測誤差算出部4、観測値差分算出部7、対応付け部8、推定軌跡算出部9及び制御部10を備えている。
観測誤差算出部4は、例えば、図2に示す観測誤差算出回路21によって実現される。
観測誤差算出部4は、観測誤差算出処理部5及び観測誤差算出処理部6を備えている。
観測誤差算出処理部5は、検出部2から、k番目の観測時刻kにおけるそれぞれの観測対象mの温度観測値Tk (m)(m=1,・・・,M)と、観測領域の撮像画像におけるそれぞれの画素ごとの温度データとを取得する。
観測誤差算出処理部5は、観測対象mの温度観測値Tk (m)と温度データとから、観測対象mの温度観測値Tk (m)についての観測誤差σT (m)を算出する。
観測誤差算出処理部5は、温度観測値Tk (m)についての観測誤差σT (m)を観測値差分算出部7に出力する。
観測誤差算出部4は、例えば、図2に示す観測誤差算出回路21によって実現される。
観測誤差算出部4は、観測誤差算出処理部5及び観測誤差算出処理部6を備えている。
観測誤差算出処理部5は、検出部2から、k番目の観測時刻kにおけるそれぞれの観測対象mの温度観測値Tk (m)(m=1,・・・,M)と、観測領域の撮像画像におけるそれぞれの画素ごとの温度データとを取得する。
観測誤差算出処理部5は、観測対象mの温度観測値Tk (m)と温度データとから、観測対象mの温度観測値Tk (m)についての観測誤差σT (m)を算出する。
観測誤差算出処理部5は、温度観測値Tk (m)についての観測誤差σT (m)を観測値差分算出部7に出力する。
観測誤差算出処理部6は、検出部2から、k番目の観測時刻kにおけるそれぞれの観測対象mの位置観測値Pk
(m)と、観測領域の撮像画像におけるそれぞれの画素ごとの位置データとを取得する。
観測誤差算出処理部6は、観測対象mの位置観測値Pk (m)と位置データとから、観測対象mの位置観測値Pk (m)についての観測誤差σP (m)を算出する。
観測誤差算出処理部6は、位置観測値Pk (m)についての観測誤差σP (m)を観測値差分算出部7に出力する。
観測誤差算出処理部6は、観測対象mの位置観測値Pk (m)と位置データとから、観測対象mの位置観測値Pk (m)についての観測誤差σP (m)を算出する。
観測誤差算出処理部6は、位置観測値Pk (m)についての観測誤差σP (m)を観測値差分算出部7に出力する。
観測値差分算出部7は、例えば、図2に示す観測値差分算出回路22によって実現される。
観測値差分算出部7は、検出部2から、k番目の観測時刻kにおけるそれぞれの観測対象mの温度観測値Tk (m)と、k番目の観測時刻kにおけるそれぞれの観測対象mの位置観測値Pk (m)とを取得する。
観測値差分算出部7は、推定軌跡算出部9から、(k-1)番目の観測時刻に至るまでの観測対象の観測値として、観測対象の温度観測値を含む1つ以上の推定軌跡を取得する。
具体的には、観測値差分算出部7は、推定軌跡算出部9から、(k-1)番目の観測時刻に至るまでの複数の観測対象mにおけるそれぞれの温度の推移と位置の推移とを示すN個の推定軌跡Xk-1 (n)を取得する。n=1,・・・,Nであり、Nは、1以上の整数である。Nは、時刻k-1番目の観測時刻における観測対象の個数の推定値を表している。また、k=1の場合、推定軌跡X0 (n)は、初期時刻における観測対象の温度及び位置のそれぞれを表している。初期時刻における観測対象の温度及び位置が不明な場合は、N=0である。即ち、k=0における「k-1番目の観測時刻」は、観測を開始する前の初期時刻を表している。
観測値差分算出部7は、検出部2から、k番目の観測時刻kにおけるそれぞれの観測対象mの温度観測値Tk (m)と、k番目の観測時刻kにおけるそれぞれの観測対象mの位置観測値Pk (m)とを取得する。
観測値差分算出部7は、推定軌跡算出部9から、(k-1)番目の観測時刻に至るまでの観測対象の観測値として、観測対象の温度観測値を含む1つ以上の推定軌跡を取得する。
具体的には、観測値差分算出部7は、推定軌跡算出部9から、(k-1)番目の観測時刻に至るまでの複数の観測対象mにおけるそれぞれの温度の推移と位置の推移とを示すN個の推定軌跡Xk-1 (n)を取得する。n=1,・・・,Nであり、Nは、1以上の整数である。Nは、時刻k-1番目の観測時刻における観測対象の個数の推定値を表している。また、k=1の場合、推定軌跡X0 (n)は、初期時刻における観測対象の温度及び位置のそれぞれを表している。初期時刻における観測対象の温度及び位置が不明な場合は、N=0である。即ち、k=0における「k-1番目の観測時刻」は、観測を開始する前の初期時刻を表している。
観測値差分算出部7は、それぞれの推定軌跡Xk-1
(n)に含まれている、(k-1)番目の観測時刻での観測値と、k番目の観測時刻での複数の観測対象mにおけるそれぞれの観測値との全ての組み合わせについて、観測値の差分を算出する。
即ち、観測値差分算出部7は、観測誤差算出処理部5により算出された観測誤差σT (m)を用いて、それぞれの推定軌跡Xk-1 (n)に含まれている、(k-1)番目の観測時刻での温度観測値Tk-1 (n)と、k番目の観測時刻でのM個の観測対象mにおけるそれぞれの温度観測値Tk (m)との全ての組み合わせについて、温度観測値の差分ΔTk(n、m)を算出する。
また、観測値差分算出部7は、観測誤差算出処理部6により算出された観測誤差σP (m)を用いて、それぞれの推定軌跡Xk-1 (n)に含まれている、(k-1)番目の観測時刻での位置観測値Pk (n)と、k番目の観測時刻でのM個の観測対象mにおけるそれぞれの位置観測値Pk (m)との全ての組み合わせについて、位置観測値の差分ΔPk(n、m)を算出する。
観測値差分算出部7は、温度観測値の差分ΔTk(n、m)及び位置観測値の差分ΔPk(n、m)のそれぞれを対応付け部8に出力する。
即ち、観測値差分算出部7は、観測誤差算出処理部5により算出された観測誤差σT (m)を用いて、それぞれの推定軌跡Xk-1 (n)に含まれている、(k-1)番目の観測時刻での温度観測値Tk-1 (n)と、k番目の観測時刻でのM個の観測対象mにおけるそれぞれの温度観測値Tk (m)との全ての組み合わせについて、温度観測値の差分ΔTk(n、m)を算出する。
また、観測値差分算出部7は、観測誤差算出処理部6により算出された観測誤差σP (m)を用いて、それぞれの推定軌跡Xk-1 (n)に含まれている、(k-1)番目の観測時刻での位置観測値Pk (n)と、k番目の観測時刻でのM個の観測対象mにおけるそれぞれの位置観測値Pk (m)との全ての組み合わせについて、位置観測値の差分ΔPk(n、m)を算出する。
観測値差分算出部7は、温度観測値の差分ΔTk(n、m)及び位置観測値の差分ΔPk(n、m)のそれぞれを対応付け部8に出力する。
対応付け部8は、例えば、図2に示す対応付け回路23によって実現される。
対応付け部8は、観測値差分算出部7により算出された全ての組み合わせについての温度観測値の差分ΔTk(n、m)及び位置観測値の差分ΔPk(n、m)の双方に基づいて、N個の推定軌跡Xk-1 (n)の中から、k番目の観測時刻での温度観測値Tk (m)と位置観測値Pk (m)とを含める推定軌跡を選択する。
対応付け部8は、推定軌跡の選択結果を推定軌跡算出部9に出力する。
対応付け部8は、観測値差分算出部7により算出された全ての組み合わせについての温度観測値の差分ΔTk(n、m)及び位置観測値の差分ΔPk(n、m)の双方に基づいて、N個の推定軌跡Xk-1 (n)の中から、k番目の観測時刻での温度観測値Tk (m)と位置観測値Pk (m)とを含める推定軌跡を選択する。
対応付け部8は、推定軌跡の選択結果を推定軌跡算出部9に出力する。
推定軌跡算出部9は、例えば、図2に示す推定軌跡算出回路24によって実現される。
推定軌跡算出部9は、検出部2から、k番目の観測時刻kにおけるそれぞれの観測対象mの温度観測値Tk (m)と、k番目の観測時刻kにおけるそれぞれの観測対象mの位置観測値Pk (m)とを取得する。
推定軌跡算出部9は、対応付け部8から、推定軌跡の選択結果を取得する。
推定軌跡算出部9は、温度観測値Tk (m)及び位置観測値Pk (m)のそれぞれを、対応付け部8により選択された推定軌跡に含める。
推定軌跡算出部9は、温度観測値Tk (m)及び位置観測値Pk (m)のそれぞれを含む推定軌跡Xk (n)を制御部10に出力する。
また、推定軌跡算出部9は、次の観測時刻における推定軌跡の選択を行えるようにするため、温度観測値Tk (m)及び位置観測値Pk (m)のそれぞれを含む推定軌跡Xk (n)を、推定軌跡Xk-1 (n)として、観測値差分算出部7及び対応付け部8のそれぞれに出力する。
推定軌跡算出部9は、検出部2から、k番目の観測時刻kにおけるそれぞれの観測対象mの温度観測値Tk (m)と、k番目の観測時刻kにおけるそれぞれの観測対象mの位置観測値Pk (m)とを取得する。
推定軌跡算出部9は、対応付け部8から、推定軌跡の選択結果を取得する。
推定軌跡算出部9は、温度観測値Tk (m)及び位置観測値Pk (m)のそれぞれを、対応付け部8により選択された推定軌跡に含める。
推定軌跡算出部9は、温度観測値Tk (m)及び位置観測値Pk (m)のそれぞれを含む推定軌跡Xk (n)を制御部10に出力する。
また、推定軌跡算出部9は、次の観測時刻における推定軌跡の選択を行えるようにするため、温度観測値Tk (m)及び位置観測値Pk (m)のそれぞれを含む推定軌跡Xk (n)を、推定軌跡Xk-1 (n)として、観測値差分算出部7及び対応付け部8のそれぞれに出力する。
制御部10は、例えば、図2に示す制御回路25によって実現される。
制御部10は、推定軌跡算出部9から、温度観測値Tk (m)及び位置観測値Pk (m)のそれぞれを含む推定軌跡Xk (n)を取得する。
制御部10は、それぞれの推定軌跡Xk (n)に従って空調機器を制御する。
空調機器としては、冷暖房機、空気調和機、換気機器、除湿機器、加湿機器、空気清浄機、又は、扇風機等が考えられる。
制御部10は、推定軌跡算出部9から、温度観測値Tk (m)及び位置観測値Pk (m)のそれぞれを含む推定軌跡Xk (n)を取得する。
制御部10は、それぞれの推定軌跡Xk (n)に従って空調機器を制御する。
空調機器としては、冷暖房機、空気調和機、換気機器、除湿機器、加湿機器、空気清浄機、又は、扇風機等が考えられる。
図1では、空調制御装置3の構成要素である観測誤差算出部4、観測値差分算出部7、対応付け部8、推定軌跡算出部9及び制御部10のそれぞれが、図2に示すような専用のハードウェアによって実現されるものを想定している。即ち、空調制御装置3が、観測誤差算出回路21、観測値差分算出回路22、対応付け回路23、推定軌跡算出回路24及び制御回路25によって実現されるものを想定している。
観測誤差算出回路21、観測値差分算出回路22、対応付け回路23、推定軌跡算出回路24及び制御回路25のそれぞれは、例えば、単一回路、複合回路、プログラム化したプロセッサ、並列プログラム化したプロセッサ、ASIC(Application Specific Integrated Circuit)、FPGA(Field-Programmable Gate Array)、又は、これらを組み合わせたものが該当する。
観測誤差算出回路21、観測値差分算出回路22、対応付け回路23、推定軌跡算出回路24及び制御回路25のそれぞれは、例えば、単一回路、複合回路、プログラム化したプロセッサ、並列プログラム化したプロセッサ、ASIC(Application Specific Integrated Circuit)、FPGA(Field-Programmable Gate Array)、又は、これらを組み合わせたものが該当する。
空調制御装置3の構成要素は、専用のハードウェアによって実現されるものに限るものではなく、空調制御装置3が、ソフトウェア、ファームウェア、又は、ソフトウェアとファームウェアとの組み合わせによって実現されるものであってもよい。
ソフトウェア又はファームウェアは、プログラムとして、コンピュータのメモリに格納される。コンピュータは、プログラムを実行するハードウェアを意味し、例えば、CPU(Central Processing Unit)、中央処理装置、処理装置、演算装置、マイクロプロセッサ、マイクロコンピュータ、プロセッサ、あるいは、DSP(Digital Signal Processor)が該当する。
ソフトウェア又はファームウェアは、プログラムとして、コンピュータのメモリに格納される。コンピュータは、プログラムを実行するハードウェアを意味し、例えば、CPU(Central Processing Unit)、中央処理装置、処理装置、演算装置、マイクロプロセッサ、マイクロコンピュータ、プロセッサ、あるいは、DSP(Digital Signal Processor)が該当する。
図3は、空調制御装置3が、ソフトウェア又はファームウェア等によって実現される場合のコンピュータのハードウェア構成図である。
空調制御装置3が、ソフトウェア又はファームウェア等によって実現される場合、観測誤差算出部4、観測値差分算出部7、対応付け部8、推定軌跡算出部9及び制御部10におけるそれぞれの処理手順をコンピュータに実行させるためのプログラムがメモリ31に格納される。そして、コンピュータのプロセッサ32がメモリ31に格納されているプログラムを実行する。
空調制御装置3が、ソフトウェア又はファームウェア等によって実現される場合、観測誤差算出部4、観測値差分算出部7、対応付け部8、推定軌跡算出部9及び制御部10におけるそれぞれの処理手順をコンピュータに実行させるためのプログラムがメモリ31に格納される。そして、コンピュータのプロセッサ32がメモリ31に格納されているプログラムを実行する。
また、図2では、空調制御装置3の構成要素のそれぞれが専用のハードウェアによって実現される例を示し、図3では、空調制御装置3がソフトウェア又はファームウェア等によって実現される例を示している。しかし、これは一例に過ぎず、空調制御装置3における一部の構成要素が専用のハードウェアによって実現され、残りの構成要素がソフトウェア又はファームウェア等によって実現されるものであってもよい。
次に、図1に示す空調制御装置3の動作について説明する。
図4は、空調制御装置3の処理手順である空調制御方法を示すフローチャートである。
センサ1は、k番目の観測時刻kでの観測領域の温度を観測し、観測領域の画素ごとの温度を計測した温度データを検出部2に出力する。
即ち、センサ1は、観測領域を撮像することによって、観測領域の撮像画像を取得し、撮像画像に含まれているそれぞれの画素値を検出部2に出力する。
また、センサ1は、観測領域の撮像画像の位置を検出し、撮像画像の位置を示す位置データを検出部2に出力する。撮像画像におけるそれぞれの画素の位置は、例えば、2次元座標(x座標、y座標)によって表されている。
図4は、空調制御装置3の処理手順である空調制御方法を示すフローチャートである。
センサ1は、k番目の観測時刻kでの観測領域の温度を観測し、観測領域の画素ごとの温度を計測した温度データを検出部2に出力する。
即ち、センサ1は、観測領域を撮像することによって、観測領域の撮像画像を取得し、撮像画像に含まれているそれぞれの画素値を検出部2に出力する。
また、センサ1は、観測領域の撮像画像の位置を検出し、撮像画像の位置を示す位置データを検出部2に出力する。撮像画像におけるそれぞれの画素の位置は、例えば、2次元座標(x座標、y座標)によって表されている。
検出部2は、センサ1から、観測領域の画素ごとの温度データと位置データとを取得する。
検出部2は、観測領域の画素ごとの温度データに基づいて、k番目の観測時刻kにおけるそれぞれの観測対象mの温度観測値Tk (m)を検出する。
即ち、検出部2は、センサ1から、撮像画像に含まれているそれぞれの画素値を取得し、取得した画素値の中で、閾値よりも大きな画素値を有する画素の集まりである画素群を検出する。
検出部2は、観測時刻kにおいて、観測領域に存在している観測対象mの温度観測値Tk (m)として、検出した画素群に含まれているそれぞれの画素における画素値の平均値を算出する。
図1に示す空調制御装置3では、検出部2が、観測対象mの温度観測値Tk (m)として、画素値の平均値を算出している。しかし、これは一例に過ぎず、検出部2が、観測対象mの温度観測値Tk (m)として、例えば、検出した画素群に含まれている複数の画素におけるそれぞれの画素値の中の最大値を算出するようにしてもよい。
検出部2は、観測領域の画素ごとの温度データに基づいて、k番目の観測時刻kにおけるそれぞれの観測対象mの温度観測値Tk (m)を検出する。
即ち、検出部2は、センサ1から、撮像画像に含まれているそれぞれの画素値を取得し、取得した画素値の中で、閾値よりも大きな画素値を有する画素の集まりである画素群を検出する。
検出部2は、観測時刻kにおいて、観測領域に存在している観測対象mの温度観測値Tk (m)として、検出した画素群に含まれているそれぞれの画素における画素値の平均値を算出する。
図1に示す空調制御装置3では、検出部2が、観測対象mの温度観測値Tk (m)として、画素値の平均値を算出している。しかし、これは一例に過ぎず、検出部2が、観測対象mの温度観測値Tk (m)として、例えば、検出した画素群に含まれている複数の画素におけるそれぞれの画素値の中の最大値を算出するようにしてもよい。
また、検出部2は、k番目の観測時刻kに観測されたM個の観測対象の観測値として、k番目の観測時刻kにおける観測対象mの位置観測値Pk
(m)を検出する。
検出部2は、例えば、検出した画素群の中央位置、又は、画素群に含まれている複数の画素の中で、画素値が最大の画素の位置を、観測対象mの位置観測値Pk (m)として検出する。
検出部2は、k番目の観測時刻kにおけるM個の観測対象mの温度観測値Tk (m)及び位置観測値Pk (m)のそれぞれを空調制御装置3に出力する。
また、検出部2は、観測領域の撮像画像におけるそれぞれの画素ごとの温度データ及び位置データのそれぞれを空調制御装置3に出力する。
検出部2は、例えば、検出した画素群の中央位置、又は、画素群に含まれている複数の画素の中で、画素値が最大の画素の位置を、観測対象mの位置観測値Pk (m)として検出する。
検出部2は、k番目の観測時刻kにおけるM個の観測対象mの温度観測値Tk (m)及び位置観測値Pk (m)のそれぞれを空調制御装置3に出力する。
また、検出部2は、観測領域の撮像画像におけるそれぞれの画素ごとの温度データ及び位置データのそれぞれを空調制御装置3に出力する。
図5は、観測時刻kにおけるM個の観測対象mの位置観測値Pk
(m)、観測時刻k-1におけるN個の推定軌跡Xk-1
(n)及び推定軌跡Xk-1
(n)に含まれている位置観測値Pk-1
(n),Pk-2
(n)を示す説明図である。
図5の例では、M=N=2であり、それぞれの観測時刻において、2つの観測対象の温度観測値が表され、2つの推定軌跡Xk-1 (n)が表されている。図5の例では、M=Nである。しかし、これは一例に過ぎず、M≠Nであってもよい。
図5の例では、M=N=2であり、それぞれの観測時刻において、2つの観測対象の温度観測値が表され、2つの推定軌跡Xk-1 (n)が表されている。図5の例では、M=Nである。しかし、これは一例に過ぎず、M≠Nであってもよい。
観測誤差算出処理部5は、検出部2から、k番目の観測時刻kにおけるそれぞれの観測対象mの温度観測値Tk
(m)(m=1,・・・,M)と、位置観測値Pk
(m)と、観測領域の画素ごとの温度データとを取得する。
観測誤差算出処理部5は、観測対象mの温度観測値Tk (m)と、位置観測値Pk (m)と、観測領域の画素ごとの温度データとから、観測対象mの温度観測値Tk (m)についての観測誤差σT (m)を算出する(図4のステップST1)。
温度観測値Tk (m)についての観測誤差σT (m)を算出する処理としては、観測誤差算出処理部5が、温度観測値Tk (m)についての観測誤差σT (m)として、観測領域の画素ごとの温度を計測した温度データのうち、位置観測値Pk (m)の周辺画素の温度に対する観測対象mの温度観測値Tk (m)の標準偏差を算出する例が考えられる。ここで、位置観測値Pk (m)の周辺画素は、例えば、位置観測値Pk (m)が表す位置の画素を中心として、一定の大きさを持つ領域内の画素、又は、位置観測値Pk (m)が表す画素を中心として、一定の大きさを持つ領域内の画素のうち、位置観測値Pk (m)を表す画素との距離がしきい値よりも大きい位置に存在している画素である。
観測誤差算出処理部5は、それぞれの観測対象mの温度観測値Tk (m)についての観測誤差σT (m)を観測値差分算出部7に出力する。
観測誤差算出処理部5は、観測対象mの温度観測値Tk (m)と、位置観測値Pk (m)と、観測領域の画素ごとの温度データとから、観測対象mの温度観測値Tk (m)についての観測誤差σT (m)を算出する(図4のステップST1)。
温度観測値Tk (m)についての観測誤差σT (m)を算出する処理としては、観測誤差算出処理部5が、温度観測値Tk (m)についての観測誤差σT (m)として、観測領域の画素ごとの温度を計測した温度データのうち、位置観測値Pk (m)の周辺画素の温度に対する観測対象mの温度観測値Tk (m)の標準偏差を算出する例が考えられる。ここで、位置観測値Pk (m)の周辺画素は、例えば、位置観測値Pk (m)が表す位置の画素を中心として、一定の大きさを持つ領域内の画素、又は、位置観測値Pk (m)が表す画素を中心として、一定の大きさを持つ領域内の画素のうち、位置観測値Pk (m)を表す画素との距離がしきい値よりも大きい位置に存在している画素である。
観測誤差算出処理部5は、それぞれの観測対象mの温度観測値Tk (m)についての観測誤差σT (m)を観測値差分算出部7に出力する。
図1に示す空調制御装置3では、観測誤差算出処理部5が、温度観測値Tk
(m)についての観測誤差σT
(m)として、位置観測値Pk
(m)の周辺画素の温度の標準偏差を算出する例が考えられる。しかし、これは一例に過ぎず、観測誤差算出処理部5が、位置観測値Pk
(m)の周辺画素の中の、最大温度と最小温度との差分を算出し、当該差分に所定の係数を乗算することによって、観測誤差σT
(m)を算出するようにしてもよい。
また、観測誤差算出処理部5が、センサ1の特性に基づくテーブル、即ち、位置観測値Pk (m)と観測誤差σT (m)との対応関係を示すテーブルを参照することによって、温度観測値Tk (m)に対応する観測誤差σT (m)を求めるようにしてもよい。
また、観測誤差算出処理部5が、センサ1の特性に基づくテーブル、即ち、位置観測値Pk (m)と観測誤差σT (m)との対応関係を示すテーブルを参照することによって、温度観測値Tk (m)に対応する観測誤差σT (m)を求めるようにしてもよい。
観測誤差算出処理部6は、検出部2から、k番目の観測時刻kにおけるそれぞれの観測対象mの位置観測値Pk
(m)と、観測領域の撮像画像におけるそれぞれの画素ごとの位置データとを取得する。
観測誤差算出処理部6は、観測対象mの位置観測値Pk (m)と、位置データとから、観測対象mの位置観測値Pk (m)についての観測誤差σP (m)を算出する(図4のステップST2)。
位置観測値Pk (m)についての観測誤差σP (m)を算出する処理としては、位置観測値Pk (m)の周辺画素の位置と、位置観測値Pk (m)の周辺画素との差分の標準偏差を算出する例が考えられる。
観測誤差算出処理部6は、それぞれの観測対象mの位置観測値Pk (m)についての観測誤差σP (m)を観測値差分算出部7に出力する。
図1に示す空調制御装置3では、観測誤差算出処理部5が、位置観測値Pk (m)についての観測誤差σP (m)として、位置観測値Pk (m)の周辺画素と位置観測値Pk (m)との差分に対する標準偏差を算出する例が考えられる。しかし、これは一例に過ぎず、観測誤差算出処理部5が、センサ1の特性に基づくテーブル、即ち、位置観測値Pk (m)と観測誤差σP (m)との対応関係を示すテーブルを参照することによって、位置観測値Pk (m)に対応する観測誤差σP (m)を求めるようにしてもよい。
観測誤差算出処理部6は、観測対象mの位置観測値Pk (m)と、位置データとから、観測対象mの位置観測値Pk (m)についての観測誤差σP (m)を算出する(図4のステップST2)。
位置観測値Pk (m)についての観測誤差σP (m)を算出する処理としては、位置観測値Pk (m)の周辺画素の位置と、位置観測値Pk (m)の周辺画素との差分の標準偏差を算出する例が考えられる。
観測誤差算出処理部6は、それぞれの観測対象mの位置観測値Pk (m)についての観測誤差σP (m)を観測値差分算出部7に出力する。
図1に示す空調制御装置3では、観測誤差算出処理部5が、位置観測値Pk (m)についての観測誤差σP (m)として、位置観測値Pk (m)の周辺画素と位置観測値Pk (m)との差分に対する標準偏差を算出する例が考えられる。しかし、これは一例に過ぎず、観測誤差算出処理部5が、センサ1の特性に基づくテーブル、即ち、位置観測値Pk (m)と観測誤差σP (m)との対応関係を示すテーブルを参照することによって、位置観測値Pk (m)に対応する観測誤差σP (m)を求めるようにしてもよい。
観測値差分算出部7は、検出部2から、k番目の観測時刻kにおけるそれぞれの観測対象mの温度観測値Tk
(m)と、k番目の観測時刻kにおけるそれぞれの位置観測値Pk
(m)とを取得する。
また、観測値差分算出部7は、推定軌跡算出部9から、k-1番目の観測時刻k-1におけるN個の推定軌跡Xk-1 (n)を取得する。
また、観測値差分算出部7は、観測誤差算出処理部5から、温度観測値Tk (m)についての観測誤差σT (m)を取得し、観測誤差算出処理部6から、位置観測値Pk (m)についての観測誤差σP (m)を取得する。
また、観測値差分算出部7は、推定軌跡算出部9から、k-1番目の観測時刻k-1におけるN個の推定軌跡Xk-1 (n)を取得する。
また、観測値差分算出部7は、観測誤差算出処理部5から、温度観測値Tk (m)についての観測誤差σT (m)を取得し、観測誤差算出処理部6から、位置観測値Pk (m)についての観測誤差σP (m)を取得する。
観測値差分算出部7は、以下の式(1)に示すように、観測誤差σT
(m)を用いて、N個の推定軌跡Xk-1
(n)のそれぞれに含まれている温度観測値Tk-1
(n)と、k番目の観測時刻でのM個の温度観測値Tk
(m)との全ての組み合わせについて、温度観測値の差分ΔTk(n、m)を算出する(図4のステップST3)。
観測値差分算出部7は、温度観測値の差分ΔTk(n、m)を対応付け部8に出力する。
観測値差分算出部7は、温度観測値の差分ΔTk(n、m)を対応付け部8に出力する。
例えば、M=N=2であれば、推定軌跡Xk-1
(1)に含まれている温度観測値Tk-1
(1)と温度観測値Tk
(1)との差分ΔTk(1、1)と、推定軌跡Xk-1
(1)に含まれている温度観測値Tk-1
(1)と温度観測値Tk
(2)との差分ΔTk(1、2)とが、観測値差分算出部7によって算出される。また、推定軌跡Xk-1
(2)に含まれている温度観測値Tk-1
(2)と温度観測値Tk
(1)との差分ΔTk(2、1)と、推定軌跡Xk-1
(2)に含まれている温度観測値Tk-1
(2)と温度観測値Tk
(2)との差分ΔTk(2、2)とが、観測値差分算出部7によって算出される。
観測時刻k-1の温度観測値Tk-1 (n)に対する観測時刻kの温度観測値Tk (m)の変動が、観測誤差σT (m)と比べて十分に小さいという前提の下では、温度観測値の差分ΔTk(n、m)は、小さいほど、「温度観測値Tk (m)と温度観測値Tk-1 (n)とが同じ観測対象に由来しているという仮説」が尤もらしいことを表している。
観測時刻k-1の温度観測値Tk-1 (n)に対する観測時刻kの温度観測値Tk (m)の変動が、観測誤差σT (m)と比べて十分に小さいという前提の下では、温度観測値の差分ΔTk(n、m)は、小さいほど、「温度観測値Tk (m)と温度観測値Tk-1 (n)とが同じ観測対象に由来しているという仮説」が尤もらしいことを表している。
次に、観測値差分算出部7は、以下の式(2)に示すように、観測誤差算出処理部6により算出された観測誤差σP
(m)を用いて、k-1番目の観測時刻k-1におけるN個の推定軌跡Xk-1
(n)のそれぞれに含まれている位置観測値Pk-1
(n)と、k番目の観測時刻でのM個の位置観測値Pk
(m)との全ての組み合わせについて、位置観測値の差分ΔPk(n、m)を算出する(図4のステップST4)。
式(2)において、括弧右上のtrは、転置ベクトルを表す記号であり、括弧右上の-1は、逆行列を表す記号である。
観測値差分算出部7は、位置観測値の差分ΔPk(n、m)のそれぞれを対応付け部8に出力する。
式(2)において、括弧右上のtrは、転置ベクトルを表す記号であり、括弧右上の-1は、逆行列を表す記号である。
観測値差分算出部7は、位置観測値の差分ΔPk(n、m)のそれぞれを対応付け部8に出力する。
例えば、M=N=2であれば、推定軌跡Xk-1
(1)に含まれている位置観測値Pk-1
(1)と位置観測値Pk
(1)との差分ΔPk(1、1)と、推定軌跡Xk-1
(1)に含まれている位置観測値Pk-1
(1)と位置観測値Pk
(2)との差分ΔPk(1、2)とが、観測値差分算出部7によって算出される。また、推定軌跡Xk-1
(2)に含まれている位置観測値Pk-1
(2)と位置観測値Pk
(1)との差分ΔPk(2、1)と、推定軌跡Xk-1
(2)に含まれている位置観測値Pk-1
(2)と位置観測値Pk
(2)との差分ΔPk(2、2)とが、観測値差分算出部7によって算出される。
観測時刻k-1の位置観測値Pk (n)に対する観測時刻kの位置観測値Pk (m)の変動が、観測誤差σP (m)と比べて十分に小さいという前提の下では、位置観測値の差分ΔPk(n、m)は、小さいほど、「位置観測値Pk (m)と位置観測値Pk-1 (n)とが同じ観測対象に由来しているという仮説」が尤もらしいことを表している。
式(2)では、或る組み合わせについての位置差分と、或る組み合わせについての位置差分とが同じ値であっても、観測誤差σP (m)が大きいほど、位置観測値の差分ΔPk(n、m)が小さい値になる。このため、式(2)が示す位置観測値の差分ΔPk(n、m)は、観測誤差σP (m)によって規格化された尤もらしさを表している。
観測時刻k-1の位置観測値Pk (n)に対する観測時刻kの位置観測値Pk (m)の変動が、観測誤差σP (m)と比べて十分に小さいという前提の下では、位置観測値の差分ΔPk(n、m)は、小さいほど、「位置観測値Pk (m)と位置観測値Pk-1 (n)とが同じ観測対象に由来しているという仮説」が尤もらしいことを表している。
式(2)では、或る組み合わせについての位置差分と、或る組み合わせについての位置差分とが同じ値であっても、観測誤差σP (m)が大きいほど、位置観測値の差分ΔPk(n、m)が小さい値になる。このため、式(2)が示す位置観測値の差分ΔPk(n、m)は、観測誤差σP (m)によって規格化された尤もらしさを表している。
図1に示す空調制御装置3では、観測値差分算出部7が、観測誤差算出処理部5により算出された観測誤差σT
(m)を用いて、全ての組み合わせについて、温度観測値の差分ΔTk(n、m)を算出している。また、観測値差分算出部7が、観測誤差算出処理部6により算出された観測誤差σP
(m)を用いて、全ての組み合わせについて、位置観測値の差分ΔPk(n、m)を算出している。
したがって、空調制御装置3は、観測対象mの温度観測値Tk (m)に観測誤差σT (m)が含まれている場合、又は、観測対象mの位置観測値Pk (m)に観測誤差σP (m)が含まれている場合でも、軌跡の推定誤りを防ぐことができる。後述する対応付け部8が、全ての組み合わせについての温度観測値の差分ΔTk(n、m)及び位置観測値の差分ΔPk(n、m)の双方に基づいて、温度観測値Tk (m)と位置観測値Pk (m)とを含める推定軌跡を選択する上で、観測誤差σT (m)が無視できないほど大きい場合には有効である。
したがって、空調制御装置3は、観測対象mの温度観測値Tk (m)に観測誤差σT (m)が含まれている場合、又は、観測対象mの位置観測値Pk (m)に観測誤差σP (m)が含まれている場合でも、軌跡の推定誤りを防ぐことができる。後述する対応付け部8が、全ての組み合わせについての温度観測値の差分ΔTk(n、m)及び位置観測値の差分ΔPk(n、m)の双方に基づいて、温度観測値Tk (m)と位置観測値Pk (m)とを含める推定軌跡を選択する上で、観測誤差σT (m)が無視できないほど大きい場合には有効である。
しかし、これは一例に過ぎず、観測値差分算出部7が、観測誤差算出処理部5により算出された観測誤差σT
(m)を用いずに、全ての組み合わせについて、温度観測値の差分ΔTk(n、m)を算出するようにしてもよい。また、観測値差分算出部7が、観測誤差算出処理部6により算出された観測誤差σP
(m)を用いずに、全ての組み合わせについて、位置観測値の差分ΔPk(n、m)を算出ようにしてもよい。
観測値差分算出部7が、観測誤差σT (m)を用いずに、温度観測値の差分ΔTk(n、m)を算出する場合、式(1)の右辺の分母を、例えば、1にすればよい。
観測値差分算出部7が、観測誤差σT (m)を用いて、温度観測値の差分ΔTk(n、m)を算出する方が、観測誤差σT (m)を用いずに、温度観測値の差分ΔTk(n、m)を算出するよりも、対応付け部8における推定軌跡の選択精度が高くなる。しかし、観測値差分算出部7が、観測誤差σT (m)を用いずに、温度観測値の差分ΔTk(n、m)を算出する場合でも、複数の観測対象の移動速度同士の差分が、移動速度の観測誤差と比べて小さいときの軌跡の推定誤りを防ぐことができる。
観測値差分算出部7が、観測誤差σP (m)を用いて、位置観測値の差分ΔPk(n、m)を算出する方が、観測誤差σP (m)を用いずに、位置観測値の差分ΔPk(n、m)を算出するよりも、対応付け部8における推定軌跡の選択精度が高くなる。しかし、観測値差分算出部7が、観測誤差σP (m)を用いずに、位置観測値の差分ΔPk(n、m)を算出する場合でも、複数の観測対象の移動速度同士の差分が、移動速度の観測誤差と比べて小さいときの軌跡の推定誤りを防ぐことができる。
観測値差分算出部7が、観測誤差σT (m)を用いずに、温度観測値の差分ΔTk(n、m)を算出する場合、式(1)の右辺の分母を、例えば、1にすればよい。
観測値差分算出部7が、観測誤差σT (m)を用いて、温度観測値の差分ΔTk(n、m)を算出する方が、観測誤差σT (m)を用いずに、温度観測値の差分ΔTk(n、m)を算出するよりも、対応付け部8における推定軌跡の選択精度が高くなる。しかし、観測値差分算出部7が、観測誤差σT (m)を用いずに、温度観測値の差分ΔTk(n、m)を算出する場合でも、複数の観測対象の移動速度同士の差分が、移動速度の観測誤差と比べて小さいときの軌跡の推定誤りを防ぐことができる。
観測値差分算出部7が、観測誤差σP (m)を用いて、位置観測値の差分ΔPk(n、m)を算出する方が、観測誤差σP (m)を用いずに、位置観測値の差分ΔPk(n、m)を算出するよりも、対応付け部8における推定軌跡の選択精度が高くなる。しかし、観測値差分算出部7が、観測誤差σP (m)を用いずに、位置観測値の差分ΔPk(n、m)を算出する場合でも、複数の観測対象の移動速度同士の差分が、移動速度の観測誤差と比べて小さいときの軌跡の推定誤りを防ぐことができる。
対応付け部8は、観測値差分算出部7から、全ての組み合わせについての温度観測値の差分ΔTk(n、m)と、全ての組み合わせについての位置観測値の差分ΔPk(n、m)とを取得する。
対応付け部8は、推定軌跡算出部9から、N個の推定軌跡Xk-1 (n)を取得する。
対応付け部8は、全ての組み合わせについての温度観測値の差分ΔTk(n、m)及び位置観測値の差分ΔPk(n、m)の双方に基づいて、N個の推定軌跡Xk-1 (n)の中から、k番目の観測時刻での温度観測値Tk (m)と位置観測値Pk (m)とを含める推定軌跡を選択する(図4のステップST5)。
対応付け部8は、推定軌跡の選択結果を推定軌跡算出部9に出力する。
以下、対応付け部8による推定軌跡の選択処理を具体的に説明する。
対応付け部8は、推定軌跡算出部9から、N個の推定軌跡Xk-1 (n)を取得する。
対応付け部8は、全ての組み合わせについての温度観測値の差分ΔTk(n、m)及び位置観測値の差分ΔPk(n、m)の双方に基づいて、N個の推定軌跡Xk-1 (n)の中から、k番目の観測時刻での温度観測値Tk (m)と位置観測値Pk (m)とを含める推定軌跡を選択する(図4のステップST5)。
対応付け部8は、推定軌跡の選択結果を推定軌跡算出部9に出力する。
以下、対応付け部8による推定軌跡の選択処理を具体的に説明する。
対応付け部8は、以下の式(3)に示すように、N行(N+M)列のコスト行列Cを算出する。
コスト行列Cの要素ci,jは、「i番目の推定軌跡Xk-1 (i)と、j番目の観測値Zk (j)とが同じ観測対象に由来するという仮説の尤もらしさ」に対して負の相関を持つ値を有している。観測値Zk (j)は、温度観測値Tk (j)及び位置観測値Pk (j)の双方を含んでいる。i=1,・・・,Nであり、j=1,・・・,M,・・・,N+Mである。
ただし、j>Mであるときの要素ci,jは、「1~M番目の観測値Zk (1)~Zk (M)のいずれも、i番目の推定軌跡Xk-1 (i)と同じ観測対象に由来しないという仮説の尤もらしさ」に対して負の相関を持つ値を有している。また、j>Mであり、かつ、i≠jであるときの要素ci,jには、予め極めて大きな値が設定されている。
コスト行列Cの要素ci,jは、「i番目の推定軌跡Xk-1 (i)と、j番目の観測値Zk (j)とが同じ観測対象に由来するという仮説の尤もらしさ」に対して負の相関を持つ値を有している。観測値Zk (j)は、温度観測値Tk (j)及び位置観測値Pk (j)の双方を含んでいる。i=1,・・・,Nであり、j=1,・・・,M,・・・,N+Mである。
ただし、j>Mであるときの要素ci,jは、「1~M番目の観測値Zk (1)~Zk (M)のいずれも、i番目の推定軌跡Xk-1 (i)と同じ観測対象に由来しないという仮説の尤もらしさ」に対して負の相関を持つ値を有している。また、j>Mであり、かつ、i≠jであるときの要素ci,jには、予め極めて大きな値が設定されている。
対応付け部8は、温度観測値の差分ΔTk(n、m)と位置観測値の差分ΔPk(n、m)とに基づいて、以下の式(4)に示すように、コスト行列Cの要素ci,jを算出する。
式(4)において、wTは、温度観測値の差分ΔTk(n、m)に対する重み係数であり、wpは、位置観測値の差分ΔPk(n、m)に対する重み係数である。
ΔTk,maxは、温度観測値の差分ΔTk(n、m)が取り得る最大値であり、ΔPk,maxは、位置観測値の差分ΔPk(n、m)が取り得る最大値である。
cmaxは、選択され得ないコストを表すパラメタであり、予め極めて大きな値が設定されている。
式(4)において、wTは、温度観測値の差分ΔTk(n、m)に対する重み係数であり、wpは、位置観測値の差分ΔPk(n、m)に対する重み係数である。
ΔTk,maxは、温度観測値の差分ΔTk(n、m)が取り得る最大値であり、ΔPk,maxは、位置観測値の差分ΔPk(n、m)が取り得る最大値である。
cmaxは、選択され得ないコストを表すパラメタであり、予め極めて大きな値が設定されている。
次に、対応付け部8は、コスト行列Cから、行毎に1つの列を選択する。ただし、行毎に選択する複数の列は、互いに異なる列となるように選択する。また、対応付け部8は、行毎に選択した列の要素cn,mの合計が最小になるように、行毎に1つの列を選択する。
当該選択は、「割り当て問題(assignment problem)」の一種であり、ハンガリアン法(Hangarian algorithm)等の公知技術を用いることができる。割り当て問題の解は、それぞれの推定軌跡Xk-1 (n)に、いずれかの観測値Zk (m)が対応付けられたかを表す情報、又は、いずれの観測値Zk (m)も対応付けられないことを表す情報となる。
当該選択は、「割り当て問題(assignment problem)」の一種であり、ハンガリアン法(Hangarian algorithm)等の公知技術を用いることができる。割り当て問題の解は、それぞれの推定軌跡Xk-1 (n)に、いずれかの観測値Zk (m)が対応付けられたかを表す情報、又は、いずれの観測値Zk (m)も対応付けられないことを表す情報となる。
対応付けを表す情報は、以下の式(5)に示すようなN行(N+M)列の対応付け行列Bによって表現することが可能である。
対応付け行列Bの要素bi,jは、0又は1であり、それぞれの行において、値が1の要素は、1つだけである。要素bi,jが1である場合、要素bi,jは、「i番目の推定軌跡Xk-1 (i)が、j番目の観測値Zk (j)と対応付けられた」ことを表している。ただし、j>Mのときの要素bi,jは、「n番目の推定軌跡Xk-1 (i)は、1~M番目の観測値Zk (1)~Zk (M)のいずれとも対応付けられなかった」ことを表している。
対応付け部8は、推定軌跡の選択結果として、対応付け行列Bを推定軌跡算出部9に出力する。
対応付け行列Bの要素bi,jは、0又は1であり、それぞれの行において、値が1の要素は、1つだけである。要素bi,jが1である場合、要素bi,jは、「i番目の推定軌跡Xk-1 (i)が、j番目の観測値Zk (j)と対応付けられた」ことを表している。ただし、j>Mのときの要素bi,jは、「n番目の推定軌跡Xk-1 (i)は、1~M番目の観測値Zk (1)~Zk (M)のいずれとも対応付けられなかった」ことを表している。
対応付け部8は、推定軌跡の選択結果として、対応付け行列Bを推定軌跡算出部9に出力する。
推定軌跡算出部9は、検出部2から、k番目の観測時刻kにおけるそれぞれの観測対象mの温度観測値Tk
(m)と、k番目の観測時刻kにおけるそれぞれの観測対象mの位置観測値Pk
(m)とを取得する。
推定軌跡算出部9は、対応付け部8から、対応付け行列Bを取得する。
推定軌跡算出部9は、温度観測値Tk (m)及び位置観測値Pk (m)のそれぞれを、対応付け部8により選択された推定軌跡に含める処理を行う(図4のステップST6)。
なお、いずれの推定軌跡とも対応付けられなかった観測値が存在した場合、推定軌跡算出部9は、時刻kに新しい観測対象が観測領域内に現れたとみなし、その観測値のみを含む推定軌跡を生成する。
以下、推定軌跡算出部9の処理を具体的に説明する。
推定軌跡算出部9は、対応付け部8から、対応付け行列Bを取得する。
推定軌跡算出部9は、温度観測値Tk (m)及び位置観測値Pk (m)のそれぞれを、対応付け部8により選択された推定軌跡に含める処理を行う(図4のステップST6)。
なお、いずれの推定軌跡とも対応付けられなかった観測値が存在した場合、推定軌跡算出部9は、時刻kに新しい観測対象が観測領域内に現れたとみなし、その観測値のみを含む推定軌跡を生成する。
以下、推定軌跡算出部9の処理を具体的に説明する。
例えば、M=2、N+M=4の場合、対応付け部8によって、以下の式(6)に示すようなコスト行列Cが算出される。
例えば、推定軌跡Xk-1 (1)と観測値Zk (1)とが対応付けられ、推定軌跡Xk-1 (2)と観測値Zk (2)とが対応付けられる場合の合計コストは、c1,1+c2,2となる。
例えば、推定軌跡Xk-1 (1)と観測値Zk (2)とが対応付けられ、推定軌跡Xk-1 (2)は、いずれの観測値Zk (j)とも対応付けられない場合の合計コストは、c1,2+c2,4となる。
このとき、c1,1+c2,2<c1,2+c2,4であれば、前者の対応付けが、後者の対応付けよりも尤もらしいとみなされる。
例えば、推定軌跡Xk-1 (1)と観測値Zk (1)とが対応付けられ、推定軌跡Xk-1 (2)と観測値Zk (2)とが対応付けられる場合の合計コストは、c1,1+c2,2となる。
例えば、推定軌跡Xk-1 (1)と観測値Zk (2)とが対応付けられ、推定軌跡Xk-1 (2)は、いずれの観測値Zk (j)とも対応付けられない場合の合計コストは、c1,2+c2,4となる。
このとき、c1,1+c2,2<c1,2+c2,4であれば、前者の対応付けが、後者の対応付けよりも尤もらしいとみなされる。
例えば、ハンガリアン法のアルゴリズムによって、「推定軌跡Xk-1
(1)と観測値Zk
(1)とが対応付けられ、推定軌跡Xk-1
(2)と観測値Zk
(2)とが対応付けられる場合」の合計コストが最小であると判定されたならば、対応付け行列Bは、以下の式(7)のように表される。観測値Zk
(1)は、温度観測値Tk
(1)及び位置観測値Pk
(1)を含んでおり、観測値Zk
(2)は、温度観測値Tk
(2)及び位置観測値Pk
(2)を含んでいる。
この場合、推定軌跡算出部9は、式(7)に示す対応付け行列Bに基づいて、観測値Zk (1)が含まれる推定軌跡が、推定軌跡Xk-1 (1)であり、観測値Zk (2)が含まれる推定軌跡が、推定軌跡Xk-1 (2)であると判定する。即ち、以下の式(8)に示すように、観測値Zk (1)が推定軌跡Xk-1 (1)に対応付けられ、観測値Zk (2)が推定軌跡Xk-1 (2)に対応付けられる。したがって、推定軌跡算出部9によって、観測値Zk (1)が推定軌跡Xk (1)に含められ、観測値Zk (2)が推定軌跡Xk (2)に含められる。
図6Bでは、観測値Zk (1)のうちの位置観測値Pk (1)が推定軌跡Xk (1)に含められ、観測値Zk (2)のうちの位置観測値Pk (2)が推定軌跡Xk (2)に含められている例を示している。
図6Bは、位置観測値Pk (1)を含む推定軌跡Xk (1)及び位置観測値Pk (1)を含む推定軌跡Xk (2)のそれぞれを示す説明図である。
この場合、推定軌跡算出部9は、式(7)に示す対応付け行列Bに基づいて、観測値Zk (1)が含まれる推定軌跡が、推定軌跡Xk-1 (1)であり、観測値Zk (2)が含まれる推定軌跡が、推定軌跡Xk-1 (2)であると判定する。即ち、以下の式(8)に示すように、観測値Zk (1)が推定軌跡Xk-1 (1)に対応付けられ、観測値Zk (2)が推定軌跡Xk-1 (2)に対応付けられる。したがって、推定軌跡算出部9によって、観測値Zk (1)が推定軌跡Xk (1)に含められ、観測値Zk (2)が推定軌跡Xk (2)に含められる。
図6Bでは、観測値Zk (1)のうちの位置観測値Pk (1)が推定軌跡Xk (1)に含められ、観測値Zk (2)のうちの位置観測値Pk (2)が推定軌跡Xk (2)に含められている例を示している。
図6Bは、位置観測値Pk (1)を含む推定軌跡Xk (1)及び位置観測値Pk (1)を含む推定軌跡Xk (2)のそれぞれを示す説明図である。
例えば、ハンガリアン法のアルゴリズムによって、「推定軌跡Xk-1
(1)と観測値Zk
(2)とが対応付けられ、推定軌跡Xk-1
(2)は、いずれの観測値Zk
(1)とも対応付けられない場合」の合計コストが最小であると判定されたならば、対応付け行列Bは、以下の式(9)のように表される。
この場合、推定軌跡算出部9は、式(9)に示す対応付け行列Bに基づいて、観測値Zk (1)が含まれる推定軌跡が、推定軌跡Xk-1 (2)であり、観測値Zk (2)が含まれる推定軌跡が存在しないと判定する。したがって、以下の式(10)に示すように、観測値Zk (2)は、時刻kの推定軌跡Xk (1)に対応付けられ、観測値Zk (2)が推定軌跡Xk (1)に含められる。
また、観測値Zk (1)は、時刻k-1におけるいずれの推定軌跡とも対応付けられなかったため、新しい観測対象が時刻kに観測領域内に現れたとみなし、その新しい観測対象の推定軌跡Xk (3)は、以下の式(11)に示すように、観測値Zk (1)のみを含む推定軌跡として算出される。
また、推定軌跡Xk-1 (2)は、いずれの観測値とも対応付けられなかったため、時刻kにおいて消去される。または、時刻kにおいては一時的に観測されなかったとみなし、時刻k-1の観測値と同じ値を時刻kの観測値として、推定軌跡Xk-1 (2)を推定軌跡Xk (2)に含めてもよい。
この場合、推定軌跡算出部9は、式(9)に示す対応付け行列Bに基づいて、観測値Zk (1)が含まれる推定軌跡が、推定軌跡Xk-1 (2)であり、観測値Zk (2)が含まれる推定軌跡が存在しないと判定する。したがって、以下の式(10)に示すように、観測値Zk (2)は、時刻kの推定軌跡Xk (1)に対応付けられ、観測値Zk (2)が推定軌跡Xk (1)に含められる。
また、観測値Zk (1)は、時刻k-1におけるいずれの推定軌跡とも対応付けられなかったため、新しい観測対象が時刻kに観測領域内に現れたとみなし、その新しい観測対象の推定軌跡Xk (3)は、以下の式(11)に示すように、観測値Zk (1)のみを含む推定軌跡として算出される。
また、推定軌跡Xk-1 (2)は、いずれの観測値とも対応付けられなかったため、時刻kにおいて消去される。または、時刻kにおいては一時的に観測されなかったとみなし、時刻k-1の観測値と同じ値を時刻kの観測値として、推定軌跡Xk-1 (2)を推定軌跡Xk (2)に含めてもよい。
図6Aは、位置観測値Pk
(2)を含む推定軌跡Xk
(1)及び位置観測値Pk
(1)を含む推定軌跡Xk
(2)のそれぞれを示す説明図である。
図6Aの例では、推定軌跡算出部9によって、観測値Zk (2)が推定軌跡Xk-1 (1)に対応付けられ、観測値Zk (1)が推定軌跡Xk-1 (2)に対応付けられているために、位置観測値Pk (1)が推定軌跡Xk (2)に含められ、位置観測値Pk (2)が推定軌跡Xk (1)に含められている。
図6Aの例では、推定軌跡算出部9によって、観測値Zk (2)が推定軌跡Xk-1 (1)に対応付けられ、観測値Zk (1)が推定軌跡Xk-1 (2)に対応付けられているために、位置観測値Pk (1)が推定軌跡Xk (2)に含められ、位置観測値Pk (2)が推定軌跡Xk (1)に含められている。
図1に示す空調制御装置3では、対応付け部8が、「1つの推定軌跡Xk-1
(n)に対応付けられる観測値Zk
(m)は、最大で1つである」という前提で、観測値Zk
(m)に対応する推定軌跡Xk-1
(n)を探索している。しかし、これは一例に過ぎず、対応付け部8が、複数の観測値Zk
(m)を1つの推定軌跡Xk-1
(n)に対応付けるようにしてもよい。
また、対応付け部8が、1つの観測値Zk (m)を複数の推定軌跡Xk-1 (n)に対応付けるようにしてもよい。例えば、観測対象が互いに近い位置に存在する場合、複数の観測対象の観測値が1つの観測値Zk (m)として検出されることが既知であるならば、その尤もらしさをコスト行列Cに反映させて対応付けを求めてもよい。コスト行列Cによる対応付けの算出を「最短経路問題(shortest path problem)」とみなし、ダイクストラ法(Dijkstra’s algorithm)等の最短経路問題を解く公知技術を用いることで、対応付けを算出することができる。
また、対応付け部8が、1つの観測値Zk (m)を複数の推定軌跡Xk-1 (n)に対応付けるようにしてもよい。例えば、観測対象が互いに近い位置に存在する場合、複数の観測対象の観測値が1つの観測値Zk (m)として検出されることが既知であるならば、その尤もらしさをコスト行列Cに反映させて対応付けを求めてもよい。コスト行列Cによる対応付けの算出を「最短経路問題(shortest path problem)」とみなし、ダイクストラ法(Dijkstra’s algorithm)等の最短経路問題を解く公知技術を用いることで、対応付けを算出することができる。
推定軌跡算出部9は、温度観測値Tk
(m)及び位置観測値Pk
(m)のそれぞれを含む推定軌跡Xk
(n)を制御部10に出力する。
また、推定軌跡算出部9は、次の観測時刻における推定軌跡の選択を行えるようにするため、温度観測値Tk (m)及び位置観測値Pk (m)のそれぞれを含む推定軌跡Xk (n)を、推定軌跡Xk-1 (n)として、観測値差分算出部7及び対応付け部8のそれぞれに出力する。
また、推定軌跡算出部9は、次の観測時刻における推定軌跡の選択を行えるようにするため、温度観測値Tk (m)及び位置観測値Pk (m)のそれぞれを含む推定軌跡Xk (n)を、推定軌跡Xk-1 (n)として、観測値差分算出部7及び対応付け部8のそれぞれに出力する。
制御部10は、推定軌跡算出部9から、N個の推定軌跡Xk
(n)を取得する。
制御部10は、N個の推定軌跡Xk (n)のそれぞれに従って空調機器を制御する。
推定軌跡Xk (n)は、温度観測値の移動の頻度を示しているので、温度観測値Tk (m)が、設定温度に近づくように、制御部10が、空調機器を制御する例が考えられる。また、温度観測値の変動が一定になるように、制御部10が、空調機器を制御する例が考えられる。
また、推定軌跡Xk (n)は、位置観測値の移動の頻度を示しているので、位置観測値の移動の頻度が少なければ、制御部10が、例えば、観測対象が存在する位置の周辺の空気が調整されるように、空調機器を制御する。位置観測値の移動の頻度が多ければ、制御部10が、例えば、空調可能な範囲の全体の空気が調整されるように、空調機器を制御する。
図1に示す空調制御装置3では、制御部10が、それぞれの推定軌跡Xk (n)に従って空調機器を制御している。しかし、これは一例に過ぎず、図示せぬ表示装置が、それぞれの推定軌跡Xk (n)を表示するようにしてもよい。
制御部10は、N個の推定軌跡Xk (n)のそれぞれに従って空調機器を制御する。
推定軌跡Xk (n)は、温度観測値の移動の頻度を示しているので、温度観測値Tk (m)が、設定温度に近づくように、制御部10が、空調機器を制御する例が考えられる。また、温度観測値の変動が一定になるように、制御部10が、空調機器を制御する例が考えられる。
また、推定軌跡Xk (n)は、位置観測値の移動の頻度を示しているので、位置観測値の移動の頻度が少なければ、制御部10が、例えば、観測対象が存在する位置の周辺の空気が調整されるように、空調機器を制御する。位置観測値の移動の頻度が多ければ、制御部10が、例えば、空調可能な範囲の全体の空気が調整されるように、空調機器を制御する。
図1に示す空調制御装置3では、制御部10が、それぞれの推定軌跡Xk (n)に従って空調機器を制御している。しかし、これは一例に過ぎず、図示せぬ表示装置が、それぞれの推定軌跡Xk (n)を表示するようにしてもよい。
以上の実施の形態1では、(k-1)(kは、1以上の整数)番目の観測時刻に至るまでの観測対象の観測値として、観測対象の温度観測値を含む1つ以上の推定軌跡と、k番目の観測時刻での観測対象の観測値として、観測対象の温度観測値とを取得し、それぞれの推定軌跡に含まれている、(k-1)番目の観測時刻での温度観測値と、k番目の観測時刻での観測対象の温度観測値との全ての組み合わせについて、温度観測値の差分を算出する観測値差分算出部7と、観測値差分算出部7により算出された全ての組み合わせについての温度観測値の差分に基づいて、1つ以上の推定軌跡の中から、k番目の観測時刻での観測対象の温度観測値を含める推定軌跡を選択する対応付け部8と、k番目の観測時刻での観測対象の温度観測値を対応付け部8により選択された推定軌跡に含める推定軌跡算出部9とを備えるように、空調制御装置3を構成した。したがって、空調制御装置3は、複数の観測対象におけるそれぞれの移動速度同士の差分が、位置の観測値の誤差によって生じる、観測値を繋ぐことで推定した速度の誤差と比べて小さい場合でも、軌跡の推定誤りを防ぐことができる。
図1に示す空調制御装置3では、検出部2が、M個の観測対象mの観測値として、観測対象mの温度観測値Tk
(m)を検出し、M個の観測対象mの観測値として、観測対象mの位置観測値Pk
(m)を検出している。
しかし、これは一例に過ぎず、検出部2が、M個の観測対象mの観測値として、観測対象mの温度観測値Tk (m)のみを検出するようにしてもよい。
検出部2が、M個の観測対象mの観測値として、観測対象mの温度観測値Tk (m)のみを検出する場合、図7に示すように、観測誤差算出処理部6が不要である。図7は、実施の形態1に係る他の空調制御装置3を示す構成図である。
この場合、観測値差分算出部7は、観測誤差算出処理部5により算出された観測誤差σT (m)を用いて、全ての組み合わせについて、温度観測値の差分ΔTk(n、m)のみを算出し、位置観測値の差分ΔPk(n、m)を算出しない。
対応付け部8は、全ての組み合わせについての温度観測値の差分ΔTk(n、m)のみに基づいて、N個の推定軌跡Xk-1 (n)の中から、k番目の観測時刻での温度観測値Tk (m)を含める推定軌跡を選択する。
具体的には、対応付け部8は、全ての組み合わせについての温度観測値の差分ΔTk(n、m)を互いに比較し、差分ΔTk(n、m)の比較結果に基づいて、N個の推定軌跡Xk-1 (n)の中から、k番目の観測時刻での温度観測値Tk (m)を含める推定軌跡を選択する。例えば、対応付け部8は、全ての組み合わせについての温度観測値の差分ΔTk(n、m)の中で、最小の差分ΔTk(n、m)を特定する。そして、対応付け部8は、N個の推定軌跡Xk-1 (n)の中から、最小の差分ΔTk(n、m)に係る推定軌跡を選択する。
しかし、これは一例に過ぎず、検出部2が、M個の観測対象mの観測値として、観測対象mの温度観測値Tk (m)のみを検出するようにしてもよい。
検出部2が、M個の観測対象mの観測値として、観測対象mの温度観測値Tk (m)のみを検出する場合、図7に示すように、観測誤差算出処理部6が不要である。図7は、実施の形態1に係る他の空調制御装置3を示す構成図である。
この場合、観測値差分算出部7は、観測誤差算出処理部5により算出された観測誤差σT (m)を用いて、全ての組み合わせについて、温度観測値の差分ΔTk(n、m)のみを算出し、位置観測値の差分ΔPk(n、m)を算出しない。
対応付け部8は、全ての組み合わせについての温度観測値の差分ΔTk(n、m)のみに基づいて、N個の推定軌跡Xk-1 (n)の中から、k番目の観測時刻での温度観測値Tk (m)を含める推定軌跡を選択する。
具体的には、対応付け部8は、全ての組み合わせについての温度観測値の差分ΔTk(n、m)を互いに比較し、差分ΔTk(n、m)の比較結果に基づいて、N個の推定軌跡Xk-1 (n)の中から、k番目の観測時刻での温度観測値Tk (m)を含める推定軌跡を選択する。例えば、対応付け部8は、全ての組み合わせについての温度観測値の差分ΔTk(n、m)の中で、最小の差分ΔTk(n、m)を特定する。そして、対応付け部8は、N個の推定軌跡Xk-1 (n)の中から、最小の差分ΔTk(n、m)に係る推定軌跡を選択する。
図1に示す空調制御装置3では、対応付け部8が、全ての組み合わせについての温度観測値の差分ΔTk(n、m)及び位置観測値の差分ΔPk(n、m)から、コスト行列Cを算出している。そして、対応付け部8が、コスト行列Cに基づいて、N個の推定軌跡Xk-1
(n)の中から、k番目の観測時刻での温度観測値Tk
(m)と位置観測値Pk
(m)とを含める推定軌跡を選択している。しかし、これは一例に過ぎず、対応付け部8が、例えば、全ての組み合わせについて、温度観測値の差分ΔTk(n、m)と位置観測値の差分ΔPk(n、m)との総和を算出する。そして、対応付け部8が、全ての組み合わせについての総和を互いに比較し、最も小さい総和に係る推定軌跡を選択するようにしてもよい。
なお、本開示は、実施の形態の任意の構成要素の変形、もしくは実施の形態の任意の構成要素の省略が可能である。
本開示は、空調制御装置及び空調制御方法に適している。
1 センサ、2 検出部、3 空調制御装置、4 観測誤差算出部、5,6 観測誤差算出処理部、7 観測値差分算出部、8 対応付け部、9 推定軌跡算出部、10 制御部、21 観測誤差算出回路、22 観測値差分算出回路、23 対応付け回路、24 推定軌跡算出回路、25 制御回路、31 メモリ、32 プロセッサ。
Claims (5)
- (k-1)(kは、1以上の整数)番目の観測時刻に至るまでの観測対象の観測値として、観測対象の温度観測値を含む1つ以上の推定軌跡と、k番目の観測時刻での観測対象の観測値として、観測対象の温度観測値とを取得し、それぞれの推定軌跡に含まれている、(k-1)番目の観測時刻での温度観測値と、前記k番目の観測時刻での観測対象の温度観測値との全ての組み合わせについて、温度観測値の差分を算出する観測値差分算出部と、
前記観測値差分算出部により算出された全ての組み合わせについての温度観測値の差分に基づいて、前記1つ以上の推定軌跡の中から、前記k番目の観測時刻での観測対象の温度観測値を含める推定軌跡を選択する対応付け部と、
前記k番目の観測時刻での観測対象の温度観測値を前記対応付け部により選択された推定軌跡に含める推定軌跡算出部と
を備えた空調制御装置。 - k番目の観測時刻での観測対象の温度観測値と、観測対象が存在している領域を含む観測領域の温度観測値とから、前記観測対象の温度観測値についての観測誤差を算出する観測誤差算出部を備え、
前記観測値差分算出部は、前記観測誤差算出部により算出された観測誤差を用いて、それぞれの推定軌跡に含まれている、(k-1)番目の観測時刻での温度観測値と、前記k番目の観測時刻での観測対象の温度観測値との全ての組み合わせについて、温度観測値の差分を算出することを特徴とする請求項1記載の空調制御装置。 - それぞれの推定軌跡には、観測対象の温度観測値のほかに、観測対象の位置観測値が含まれており、
前記観測値差分算出部は、
それぞれの推定軌跡に含まれている、(k-1)番目の観測時刻での温度観測値と、前記k番目の観測時刻での観測対象の温度観測値との全ての組み合わせについて、温度観測値の差分を算出するほかに、それぞれの推定軌跡に含まれている、(k-1)番目の観測時刻での位置観測値と、前記k番目の観測時刻での観測対象の位置観測値との全ての組み合わせについて、位置観測値の差分を算出し、
前記対応付け部は、
前記観測値差分算出部により算出された全ての組み合わせについての温度観測値の差分及び位置観測値の差分の双方に基づいて、前記1つ以上の推定軌跡の中から、前記k番目の観測時刻での観測対象の温度観測値を含める推定軌跡を選択することを特徴とする請求項1記載の空調制御装置。 - 前記推定軌跡算出部によって、前記k番目の観測時刻での観測対象の温度観測値が含められている推定軌跡に従って空調機器を制御する制御部を備えたことを特徴とする請求項1記載の空調制御装置。
- 観測値差分算出部が、(k-1)(kは、1以上の整数)番目の観測時刻に至るまでの観測対象の観測値として、観測対象の温度観測値を含む1つ以上の推定軌跡と、k番目の観測時刻での観測対象の観測値として、観測対象の温度観測値とを取得し、それぞれの推定軌跡に含まれている、(k-1)番目の観測時刻での温度観測値と、前記k番目の観測時刻での観測対象の温度観測値との全ての組み合わせについて、温度観測値の差分を算出し、
対応付け部が、前記観測値差分算出部により算出された全ての組み合わせについての温度観測値の差分に基づいて、前記1つ以上の推定軌跡の中から、前記k番目の観測時刻での観測対象の温度観測値を含める推定軌跡を選択し、
推定軌跡算出部が、前記k番目の観測時刻での観測対象の温度観測値を前記対応付け部により選択された推定軌跡に含める
空調制御方法。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2020/038185 WO2022074800A1 (ja) | 2020-10-08 | 2020-10-08 | 空調制御装置及び空調制御方法 |
JP2021509930A JP6952933B1 (ja) | 2020-10-08 | 2020-10-08 | 空調制御装置及び空調制御方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2020/038185 WO2022074800A1 (ja) | 2020-10-08 | 2020-10-08 | 空調制御装置及び空調制御方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022074800A1 true WO2022074800A1 (ja) | 2022-04-14 |
Family
ID=78150252
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/038185 WO2022074800A1 (ja) | 2020-10-08 | 2020-10-08 | 空調制御装置及び空調制御方法 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6952933B1 (ja) |
WO (1) | WO2022074800A1 (ja) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008309379A (ja) * | 2007-06-13 | 2008-12-25 | Mitsubishi Electric Corp | 空調用リモートコントローラおよび空気調和機並びに空気調和システム |
JP2013124833A (ja) * | 2011-12-15 | 2013-06-24 | Samsung Yokohama Research Institute Co Ltd | 空気調和装置 |
JP2014047998A (ja) * | 2012-09-03 | 2014-03-17 | Hitachi Appliances Inc | 空気調和機 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6351917B2 (ja) * | 2016-07-15 | 2018-07-04 | 三菱電機株式会社 | 移動物体検出装置 |
-
2020
- 2020-10-08 WO PCT/JP2020/038185 patent/WO2022074800A1/ja active Application Filing
- 2020-10-08 JP JP2021509930A patent/JP6952933B1/ja active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008309379A (ja) * | 2007-06-13 | 2008-12-25 | Mitsubishi Electric Corp | 空調用リモートコントローラおよび空気調和機並びに空気調和システム |
JP2013124833A (ja) * | 2011-12-15 | 2013-06-24 | Samsung Yokohama Research Institute Co Ltd | 空気調和装置 |
JP2014047998A (ja) * | 2012-09-03 | 2014-03-17 | Hitachi Appliances Inc | 空気調和機 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2022074800A1 (ja) | 2022-04-14 |
JP6952933B1 (ja) | 2021-10-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10572736B2 (en) | Image processing apparatus, image processing system, method for image processing, and computer program | |
JP6734940B2 (ja) | 三次元計測装置 | |
CN104424648B (zh) | 对象跟踪方法和设备 | |
JP4880805B2 (ja) | 物体位置推定装置、物体位置推定方法、及び、物体位置推定プログラム | |
EP2579210A1 (en) | Face feature-point position correction device, face feature-point position correction method, and face feature-point position correction program | |
JP7217058B2 (ja) | 1つまたは複数のサーモグラフィカメラおよび1つまたは複数のrgb-dセンサを使用して構築空間内の1人または複数の人間の居住者の存在をリアルタイムで検出し、熱的快適性を推定すること | |
JP2017103602A (ja) | 位置検出装置、位置検出方法及びプログラム | |
JP6684475B2 (ja) | 画像処理装置、画像処理方法及びプログラム | |
CN108109169B (zh) | 一种基于矩形标识的位姿估计方法、装置及机器人 | |
CN112446917B (zh) | 一种姿态确定方法及装置 | |
JP5507334B2 (ja) | 登録装置、登録方法及びコンピュータプログラム | |
WO2022074800A1 (ja) | 空調制御装置及び空調制御方法 | |
JP2017174305A (ja) | オブジェクト追跡装置、方法およびプログラム | |
CN104471436B (zh) | 用于计算对象的成像比例的变化的方法和设备 | |
JP7498404B2 (ja) | 被写体の3次元姿勢推定装置、3次元姿勢推定方法、及びプログラム | |
US20230326251A1 (en) | Work estimation device, work estimation method, and non-transitory computer readable medium | |
CN117197245A (zh) | 一种位姿修复方法及装置 | |
CN114578341A (zh) | 雷达追踪方法、噪声消除方法、装置和设备 | |
JPWO2021130978A1 (ja) | 動作分析システムおよび動作分析プログラム | |
CN102087711A (zh) | 闭环的图像比较系统 | |
CN113916213A (zh) | 定位方法、装置、电子设备和计算机可读存储介质 | |
JPWO2020175085A1 (ja) | 画像処理装置、及び画像処理方法 | |
JP2019020360A (ja) | 物体認識装置、物体認識方法、及びプログラム | |
JP2021012043A (ja) | 機械学習用情報処理装置、機械学習用情報処理方法、および機械学習用情報処理プログラム | |
CN111639777A (zh) | 估计目标体重的方法和装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2021509930 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20956747 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20956747 Country of ref document: EP Kind code of ref document: A1 |