WO2022073495A1 - Elevator car damping arrangement and elevator system - Google Patents

Elevator car damping arrangement and elevator system Download PDF

Info

Publication number
WO2022073495A1
WO2022073495A1 PCT/CN2021/122750 CN2021122750W WO2022073495A1 WO 2022073495 A1 WO2022073495 A1 WO 2022073495A1 CN 2021122750 W CN2021122750 W CN 2021122750W WO 2022073495 A1 WO2022073495 A1 WO 2022073495A1
Authority
WO
WIPO (PCT)
Prior art keywords
car
moving member
elevator
predetermined
floor
Prior art date
Application number
PCT/CN2021/122750
Other languages
French (fr)
Inventor
Shuanglin ZHOU
Original Assignee
Schindler (China) Elevator Co. Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202011072194.8A external-priority patent/CN114314250B/en
Priority claimed from CN202110923969.6A external-priority patent/CN115703613A/en
Priority claimed from CN202110923472.4A external-priority patent/CN115893156A/en
Application filed by Schindler (China) Elevator Co. Ltd. filed Critical Schindler (China) Elevator Co. Ltd.
Publication of WO2022073495A1 publication Critical patent/WO2022073495A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B11/00Main component parts of lifts in, or associated with, buildings or other structures
    • B66B11/02Cages, i.e. cars
    • B66B11/026Attenuation system for shocks, vibrations, imbalance, e.g. passengers on the same side
    • B66B11/0293Suspension locking or inhibiting means to avoid movement when car is stopped at a floor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B17/00Hoistway equipment
    • B66B17/34Safe lift clips; Keps

Definitions

  • the invention relates to an elevator car damping arrangement and an elevator system in-cluding such an elevator car damping arrangement.
  • the device applies a clamping force to the fixing member on the car guide rail or in the well (hoistway) at the level of the car, so that the vibration of the car can be quickly attenuated, and the comfort of passengers can be improved.
  • the existing CDD will act when passengers on each floor get in and out of the stopped car.
  • the friction force generated by the clamping force of the CDD is generally small, which is not enough to overcome the weight of passengers when they get in and out of the car. Therefore, when the CDD moves, the car will still move up and down as a result of passengers to get in and out of the car, and the surface of the CDD in contact with the guide rail is in repeated friction, which will reduce the service life.
  • the CDD is provided with a damping member which is frictionally engaged with the fixing member in the car guide rail or the well, and the damping member needs to be frictionally engaged with the fixing member in the car guide rail or the well once every time the car stops, so that the frictional engagement of the damping member is too frequent, thereby greatly reducing the service life of the damping member and needing frequent re-placement.
  • the purpose of the invention is to solve at least one aspect of the above problems and defects existing in the existing technologies.
  • an elevator car damping arrangement which comprises at least one moving member movably installed on a car of an elevator; and more than one fixing member arranged at a plurality of floors of the elevator and fixedly installed in an elevator well respectively.
  • At least one of the said moving member and the said fixing members may serve as a damping member that can be elastically deformed, such that when the car stops in a predetermined stopping position on a certain floor, the moving member is moved to an expansion position of this moving member, wherein the moving member is frictionally engaged with the fixing member so as to reduce a vertical shaking movement of the stopped car due to passengers getting in and out of the car, when the ver-tical movement distance of the car is within a predetermined distance to the predetermined stopping position.
  • the elevator system may stop the car on different floors. For each of these floors there is a predetermined stopping position. At the predetermined stopping position the car floor is on the same level of the landing floor. The car can move with shaking upward and downward because persons or load enters or exits the car. The advantage of this is that the elevator gives passengers a better and more qualitative impression to the passenger, because the potential vibration is quickly attenuated or damped away.
  • the predetermined distance is preferably greater than 0mm and less than 40mm.
  • the predetermined distance can be greater than 1mm and less than 10mm.
  • the moving member is frictionally engaged with the fixing member so that all oscillations or shaking movements of the car with amplitudes smaller than the pre-determined distance are damped away. Since a distance is predetermined only within a certain zone, in comparison to the above-introduced prior art, the moving member and the fixed member will not always stay in the frictional engagement so that the damping ar-rangement has a longer life.
  • the predetermined distance begins from 0mm, for ex-ample, from 0mm to 40mm, this means that after the car has stopped in the predetermined stopping position, the moving member has got already in frictional engagement with the fixing member.
  • the moving member is not in contact with the fixing member, thus no damping effect will be generated on the car when the vertical movement distance of the stopped car is not within the predetermined distance to the predetermined stopping position.
  • the expansion position consists of a non-engagement position and an engagement-position, wherein in the engagement-position the moving member is frictionally engaged with the fixing member, and in the non-engagement-position the moving member is not in contact with the fixing member.
  • the arrangement of the non-engagement-and the engage-ment-position is certainly corresponding to the position of the predetermination distance. For example, when the car stops in the predetermined stopping position, the moving member is moved to the non-engagement-position.
  • the moving member When the car is shaken vertically due to passengers getting in and out of the car, and the occurrence of the shaking movement is within the predetermined distance, the moving member accordingly gets into the engagement-position so that the moving member will be in frictional engagement with the fixing member to reduce the shaking movement of the car.
  • the moving member is a damping member that can be elastically deformed
  • the fixing member is a rigid member that can not be elastically deformed
  • the moving member is a rigid member that cannot be elastically deformed
  • the fixing member is a damping member that can be elastically deformed
  • both the moving member and the fixing member are damping members which can be elastically deformed.
  • each moving member and/or fixing members may include a rigid main part and an elastic contact layer wrapped outside the rigid main part, which together constitute a damping member having a composite structure.
  • the car damping arrangement further includes an electric driving device installed on the car; when the car stops on the certain floor, the electric driving device drives the moving member to the expansion position.
  • the door of the car is opened, and the moving member is driven to the expansion position through the opened door.
  • the moving member can be fixed, for example, directly or indirectly on or at the door of the car.
  • the car damping arrangement also includes a base which is fixedly installed on the car, and the moving member is movably installed on the base.
  • the base can be installed on the sill, frame, roof or door operator of the car.
  • the car damping arrangement also includes the elastic resetting device which is connected between the base and the moving member; when the car door is closed and the car is ready to leave a floor, the elastic resetting device pushes the moving member to the retract position separated from the fixing member.
  • the fixing member can be fixedly installed on the well wall, the car guide rail, the counterweight guide rail or the landing door device of the elevator.
  • the elastic resetting or restoring device is equipped with a spring, which is compressed between the base and the moving member.
  • the fixing member is sheet-shaped, and is vertically attached to a well wall of the elevator; and the moving member is columnar and horizontally installed in the through hole of the base and can hor-izontally move relative to the base.
  • the moving member can be installed at the door of the car in this manner that the moving member may cross horizontally through the through hole with the door closing and opening.
  • the fixing member may have a predeter-mined length in the vertical direction, and the predetermined length is within the range of 10mm to 50mm. Therefore, the moving member can frictionally engage with the fixing member only when the car is at the car leveling.
  • an elevator system which may comprise a car, and an elevator car damping arrangement mentioned or described before.
  • the fixing members of the elevator car damping arrangement are only arranged on each floor lower than or equal to the predetermined floor N, and no fixing member is arranged on any floor higher than the predetermined floor N, so that when the car stops on a floor higher than the predetermined floor N, the elevator car damping arrangement does not generate damping effect on the car.
  • the elongation dL of the car-side traction rope under the predetermined tension F is not greater than the predetermined elongation ⁇ L; and when the car is located on a floor higher than the predetermined floor N, the elongation dL of the car-side traction rope under the predetermined tension F is greater than the predetermined elongation ⁇ L.
  • E the elastic modulus of the traction rope
  • L the original length of the car-side traction rope when the car is located on the certain floor
  • n the number of traction ropes
  • the predetermined elongation ⁇ L may be set to any value from 1mm to 5mm.
  • the predetermined elongation ⁇ L may be set to 1mm, 1.5mm, 2mm, 2.5mm, 3mm, 3.5mm, 4mm, 4.5mm or 5mm when the predetermined tension (F) is 75Kg.
  • the elastic modulus E of the car-side traction rope and the area S of the metal cross section of the car-side traction rope are known parameters; the original length L of the car-side traction rope is estimated as the distance between the car and the traction sheave of the elevator.
  • the structure of the car damping arrangement is simple, thereby reducing the cost of the elevator.
  • a fixing member is respectively arranged on a plurality of floors of the elevator. Therefore, the frequency of frictional engagement between each fixing member and the moving member is reduced, so that the service life of the fixing member is improved, instead of frequent re-placements.
  • the fixing member is only arranged on each floor lower than or equal to the pre- determined floor N, and no fixing member is arranged on any floor higher than the prede-termined floor N. Therefore, the invention can also reduce the frequency of frictional en-gagement between the moving member and the fixing member, thereby further improving the service life of the moving member.
  • Fig. 1 shows the schematic diagram of a car damping arrangement according to an exem-plary embodiment of the present invention, wherein the car door is closed,
  • Fig. 2 shows the schematic diagram of a car damping arrangement according to an exem-plary embodiment of the present invention, wherein the car door is open,
  • Fig. 3 shows the schematic diagram of a car damping arrangement according to an exem-plary embodiment of the present invention, wherein an expansion and a non-engagement position are defined
  • Fig. 4 shows the schematic diagram of a CAR DAMPING ARRANGEMENT according to an exemplary embodiment of the present invention, wherein the moving member is installed on a door.
  • Figure 1 shows the schematic diagram of an elevator car damping arrangement according to an exemplary embodiment of the present invention, wherein the car door 120 is closed;
  • Figure 2 shows a schematic diagram of the car damping arrangement according to an ex-emplary embodiment of the invention, wherein the car door 120 is opened.
  • the car damping arrangement mainly includes, for example, two bases 10, two moving members 11 and two fixing members 12.
  • a car damping arrangement includes a moving member 11 movably installed on the elevator car 100, and more than one fixing member 12 arranged on a plurality of floors of the elevator and fixedly installed in the elevator shaft (well) respectively.
  • the said moving member 11 and/or the said fixing members 12 may serve as a damping member that can be elastically deformed.
  • the moving member 11 When the car 100 stops at a predetermined stopping position on a certain floor, the moving member 11 is moved to its expansion position. After that, the car 100 may still be swayed up or down with respect to the predetermined stopping position due to passengers getting in and out of the car 100.
  • the moving member 11 When the vertical movement distance of the car 100 is within a predetermined distance to the predetermined stopping position, the moving member 11 may get frictionally en-gagement with the fixing member 12, thereby reducing the vertical shaking movement of the car 100.
  • the base 10 is installed on the car 100 of the elevator.
  • the base 10 is installed on the sill 110 of the car 100.
  • the invention is not limited thereto.
  • the base 10 may also be installed on the frame, roof or door operator of the car 100.
  • the base 10 may be fixedly installed on the sill 110 of the car 100 by welding or bolting.
  • the moving member 11 accordingly may be installed movably on the base 10.
  • the moving member 11 is columnar and horizontally installed in the through hole of base 10 and can move horizontally relative to base 10.
  • the invention is not limited to the illustrated embodiment.
  • the moving member 11 may be block-shaped, and may be movably installed in a chute on the base 10.
  • the base 10 can be simplified so that the moving member 11, for example, is installed directly or indirectly on or at the door 120 of the car 100.
  • the moving member 11 should be installed at or on the door 120 in this manner that the moving member 11 may cross horizontally through the through hole of the base 10 with the door opening and closing. This embodiment is shown in Fig. 4.
  • the fixing members 12 are arranged on a plurality of floors of the elevator and are installed fixedly in the elevator well respectively.
  • Figures 1 and 2 only show the fixing members 12 located on the same floor, and the situation of other floors is similar to that of Figures 1 and 2, so they are not be repeated.
  • the fixing member 12 is sheet-shaped and vertically attached to a well wall 200 of the elevator.
  • the invention is not limited to the illustrated em-bodiment.
  • the fixing member 12 may be fixedly installed on the car guide rail, the counterweight guide rail or the landing door device of the elevator.
  • the moving member 11 and/or the fixing members 12 may serve as a damping member respectively that can be elastically deformed. Therefore, as shown in Figure 2, when the door 120 is opened, the moving member 11 is frictionally engaged with the fixing member 12 and generates damping effect on the car 100, so that the damping of the car 100 for upward or downward movement may be increased, and the shaking movement can be reduced when passengers get in and out of the car 100.
  • the predetermined distance can be greater than zero.
  • it may be designed to be greater than 0 and less than 40mm, or greater than 1mm and less than 10mm.
  • the predetermined distance is 0, when the car 100, for example, stopped accurately in the predetermined stopping position, the moving member 11 in the expansion position has frictionally engaged with the fixing member 12 for preventing or reducing the up and down shaking movement of the car 100.
  • the car damping arrangement may include an electric driving device installed on the car 100.
  • the electric driving device drives the moving member 11 to an expansion position.
  • the moving member is driven by the door itself, so that it not only saves cost but also saves energy.
  • the said expansion position includes a non-engagement position 14a and an engagement-position 14b, wherein in the engagement-position the moving member 11 is frictionally engaged with the fixing member 12, while in the non-engagement-position the moving member 11 does not contact the fixing member 12.
  • the arrangement of the non-engagement-and the engagement-position is certainly corre-sponding to the position of the predetermination distance.
  • the fixing member 12 may consist of two parts corresponding to the engagement-position 14b or only one part but with a recessed part which is not contact with the moving member 11 moved in the non-engagement-position 14a.
  • the moving member 11 is a rigid member that cannot be elastically deformed
  • the fixing member 12 is a damping member that can be elastically deformed
  • the invention is not limited thereto.
  • the moving member 11 may also be a damping member that can be elastically deformed
  • the fixing member 12 is a rigid member that cannot be elastically deformed; or both the moving member 11 and fixing member 12 are damping members that can be elastically deformed.
  • the moving member 11 and/or the fixing members 12 may be a damping member with a composite structure.
  • each of the moving member 11 and/or the fixing members 12 may include a rigid main part and an elastic contact layer wrapped outside the rigid main part, which together constitute a damping member having a composite structure.
  • the structure of the moving member 11 and/or of the fixing members 12 is not limited to the afore-mentioned embodiments.
  • an elastic contact layer or sleeve may be arranged on the contact end of the moving member 11 in contact with the fixing member 12, and the moving member 11 is frictionally engaged with the fixing member 12 through the elastic contact layer or sleeve.
  • the car damping arrangement also includes the elastic resetting device 13 connected between the base 10 and the moving member 11. As shown in Figure 1, when the door 120 of the car 100 is closed and the car 100 is ready to leave the certain floor, the elastic resetting device 13 will push the moving member 11 to the retract position separated from the fixing member 12.
  • one end of the moving member 11 that is relatively far away from the fixing member 12 is formed with a positioning flange 11a.
  • the elastic resetting device 13 is compressed between the positioning flange 11a of the moving member 11 and the surface of the base 10.
  • the invention is not limited to the illustrated embodiment, and the elastic resetting device 13 may also be accommodated and positioned in an accommodating cavity on the base 10.
  • the elastic resetting device 13 is equipped for example with a spring, which may be a helical spring and is sleeved on the rod-shaped body of the moving member 11. Both ends of the helical spring abut against the positioning flange 11a of the moving member 11 and the surface of the base 10 respectively, so that the helical spring is compressed between the positioning flange 11a of the moving member 11 and the surface of the base 10.
  • a spring which may be a helical spring and is sleeved on the rod-shaped body of the moving member 11. Both ends of the helical spring abut against the positioning flange 11a of the moving member 11 and the surface of the base 10 respectively, so that the helical spring is compressed between the positioning flange 11a of the moving member 11 and the surface of the base 10.
  • the elastic resetting device 13 may also include an elastic block made of elastic material.
  • the fixing member 12 has a predetermined length in the vertical direction and the predetermined length is within the range of 10mm to 50mm. Therefore, only when the car 100 is at the car leveling, the moving member 11 can be frictionally engaged with the fixing member 12, and the fixing member 12 can generate damping effect on the moving member 11. When the moving member 11 ex-ceeds a certain range, the fixing member 12 will separated from the moving member 11 and the damping effect will disappear.
  • another elevator system which includes the car 100 and the aforementioned car damping arrangement.
  • the fixing members 12 of the aforementioned car damping arrangement are only arranged on each floor lower than or equal to the predetermined floor N (N is an integer greater than 1) , and no fixing member 12 is arranged on any floor higher than the prede-termined floor N, so that when the car stops on a floor higher than the predetermined floor N, the car damping arrangement will not generate damping effect on the car 100.
  • the reason for this arrangement is that when the car 100 is located on a high floor (higher than the prede-termined floor N) , the extent of up and down shaking of the car 100 when passengers get in and out of the car is small, which will not cause discomfort to the passengers, and it is not necessary to reduce the up and down shaking of the car 100.
  • the elongation dL of the car-side traction rope 300 under the predetermined tension F is not greater than the predetermined elongation ⁇ L.
  • the elongation dL of the car-side traction rope 300 under the predetermined tension F is greater than the predeter-mined elongation ⁇ L.
  • an appropriate predetermined floor N may be selected according to the elongation dL of the car-side traction rope 300, so as to reduce the number of fixing members 12.
  • the predetermined elongation ⁇ L may be set to any value from 1mm to 5mm when the predetermined tension F is 75Kg.
  • the predetermined elongation ⁇ L is set to 1mm, 1.5mm, 2mm, 2.5mm, 3mm, 3.5mm, 4mm, 4.5mm or 5mm when the prede-termined tension F is 75Kg.

Landscapes

  • Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Civil Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Cage And Drive Apparatuses For Elevators (AREA)

Abstract

An elevator car damping arrangement comprising: at least one moving member (11) movably installed on the elevator car (100); more than one fixing member (12) arranged at a plurality of floors of the elevator and fixedly installed in the elevator well respectively, at least one of the said moving member (11) and the said fixing members (12) serving as a damping member that can be elastically deformed, such that when the car (100) stops in a predetermined stopping position on a certain floor, the moving member (11) is moved to an expansion position of this moving member, wherein the moving member (11) is frictionally engaged with the fixing member (12) so as to reduce a vertical shaking movement of the car (100) due to passengers getting in and out of the car, when the vertical movement distance of the car (100) reaches a predetermined distance to the predetermined stopping position.

Description

Elevator Car damping arrangement and Elevator System
The invention relates to an elevator car damping arrangement and an elevator system in-cluding such an elevator car damping arrangement.
Because of the elasticity of the elevator traction suspension device, when passengers enter and exit a car of the elevator there will be an elastic elongation that causing the subsidence of the elevator car. Especially, when the lifting height is large, the elastic elongation could be relatively large, resulting in a large amount of subsidence of the elevator car. If the elevator is located on the lower floor, the car will obviously shake up and down when passengers get in and out of the car. This up and down shaking brings some worries to passengers and thus makes them feel that there is something wrong with the elevator. In order to suppress this vibration, a car damping device (CDD) is usually arranged to the car. The device applies a clamping force to the fixing member on the car guide rail or in the well (hoistway) at the level of the car, so that the vibration of the car can be quickly attenuated, and the comfort of passengers can be improved. The existing CDD will act when passengers on each floor get in and out of the stopped car. The friction force generated by the clamping force of the CDD is generally small, which is not enough to overcome the weight of passengers when they get in and out of the car. Therefore, when the CDD moves, the car will still move up and down as a result of passengers to get in and out of the car, and the surface of the CDD in contact with the guide rail is in repeated friction, which will reduce the service life.
In the prior art, the CDD is provided with a damping member which is frictionally engaged with the fixing member in the car guide rail or the well, and the damping member needs to be frictionally engaged with the fixing member in the car guide rail or the well once every time the car stops, so that the frictional engagement of the damping member is too frequent, thereby greatly reducing the service life of the damping member and needing frequent re-placement.
The purpose of the invention is to solve at least one aspect of the above problems and defects existing in the existing technologies.
According to an aspect of the invention, an elevator car damping arrangement is provided, which comprises at least one moving member movably installed on a car of an elevator; and more than one fixing member arranged at a plurality of floors of the elevator and fixedly  installed in an elevator well respectively. At least one of the said moving member and the said fixing members may serve as a damping member that can be elastically deformed, such that when the car stops in a predetermined stopping position on a certain floor, the moving member is moved to an expansion position of this moving member, wherein the moving member is frictionally engaged with the fixing member so as to reduce a vertical shaking movement of the stopped car due to passengers getting in and out of the car, when the ver-tical movement distance of the car is within a predetermined distance to the predetermined stopping position.
The elevator system may stop the car on different floors. For each of these floors there is a predetermined stopping position. At the predetermined stopping position the car floor is on the same level of the landing floor. The car can move with shaking upward and downward because persons or load enters or exits the car. The advantage of this is that the elevator gives passengers a better and more qualitative impression to the passenger, because the potential vibration is quickly attenuated or damped away.
The predetermined distance is preferably greater than 0mm and less than 40mm. Alternative, the predetermined distance can be greater than 1mm and less than 10mm. Out of the pre-determined distance, the moving member is frictionally engaged with the fixing member so that all oscillations or shaking movements of the car with amplitudes smaller than the pre-determined distance are damped away. Since a distance is predetermined only within a certain zone, in comparison to the above-introduced prior art, the moving member and the fixed member will not always stay in the frictional engagement so that the damping ar-rangement has a longer life. In case the predetermined distance begins from 0mm, for ex-ample, from 0mm to 40mm, this means that after the car has stopped in the predetermined stopping position, the moving member has got already in frictional engagement with the fixing member.
According to an exemplary embodiment of the elevator car damping arrangement, the moving member is not in contact with the fixing member, thus no damping effect will be generated on the car when the vertical movement distance of the stopped car is not within the predetermined distance to the predetermined stopping position.
According to another exemplary embodiment of the elevator car damping arrangement, the expansion position consists of a non-engagement position and an engagement-position,  wherein in the engagement-position the moving member is frictionally engaged with the fixing member, and in the non-engagement-position the moving member is not in contact with the fixing member. The arrangement of the non-engagement-and the engage-ment-position is certainly corresponding to the position of the predetermination distance. For example, when the car stops in the predetermined stopping position, the moving member is moved to the non-engagement-position. When the car is shaken vertically due to passengers getting in and out of the car, and the occurrence of the shaking movement is within the predetermined distance, the moving member accordingly gets into the engagement-position so that the moving member will be in frictional engagement with the fixing member to reduce the shaking movement of the car.
According to another exemplary embodiment of the invention, the moving member is a damping member that can be elastically deformed, and the fixing member is a rigid member that can not be elastically deformed; or the moving member is a rigid member that cannot be elastically deformed, and the fixing member is a damping member that can be elastically deformed; or both the moving member and the fixing member are damping members which can be elastically deformed.
According to another exemplary embodiment of the invention, each moving member and/or fixing members may include a rigid main part and an elastic contact layer wrapped outside the rigid main part, which together constitute a damping member having a composite structure.
According to another exemplary embodiment of the invention, the car damping arrangement further includes an electric driving device installed on the car; when the car stops on the certain floor, the electric driving device drives the moving member to the expansion position.
According to an exemplary embodiment of the invention, when the car stops on the certain floor, the door of the car is opened, and the moving member is driven to the expansion position through the opened door.
Advantageously, the moving member can be fixed, for example, directly or indirectly on or at the door of the car. According to another exemplary embodiment of the invention, the car damping arrangement also includes a base which is fixedly installed on the car, and the moving member is movably installed on the base. The base can be installed on the sill, frame,  roof or door operator of the car.
According to another exemplary embodiment of the present invention, the car damping arrangement also includes the elastic resetting device which is connected between the base and the moving member; when the car door is closed and the car is ready to leave a floor, the elastic resetting device pushes the moving member to the retract position separated from the fixing member. Hence, the fixing member can be fixedly installed on the well wall, the car guide rail, the counterweight guide rail or the landing door device of the elevator.
According to an exemplary embodiment of the present invention, the elastic resetting or restoring device is equipped with a spring, which is compressed between the base and the moving member.
According to another exemplary embodiment of the present invention, the fixing member is sheet-shaped, and is vertically attached to a well wall of the elevator; and the moving member is columnar and horizontally installed in the through hole of the base and can hor-izontally move relative to the base. Alternatively, the moving member can be installed at the door of the car in this manner that the moving member may cross horizontally through the through hole with the door closing and opening. The fixing member may have a predeter-mined length in the vertical direction, and the predetermined length is within the range of 10mm to 50mm. Therefore, the moving member can frictionally engage with the fixing member only when the car is at the car leveling.
According to another aspect of the present invention, an elevator system is provided which may comprise a car, and an elevator car damping arrangement mentioned or described before. The fixing members of the elevator car damping arrangement are only arranged on each floor lower than or equal to the predetermined floor N, and no fixing member is arranged on any floor higher than the predetermined floor N, so that when the car stops on a floor higher than the predetermined floor N, the elevator car damping arrangement does not generate damping effect on the car.
According to an exemplary embodiment of the present invention, when the car is located on or below the predetermined floor N, the elongation dL of the car-side traction rope under the predetermined tension F is not greater than the predetermined elongation ΔL; and when the car is located on a floor higher than the predetermined floor N, the elongation dL of the  car-side traction rope under the predetermined tension F is greater than the predetermined elongation ΔL.
According to a further exemplary embodiment of the invention, when the car is located on a certain floor, the elongation (dL) of the car-side traction rope under a predetermined tension (F) is calculated using the following equation: dL= (LF) / (knES) , wherein,
E——the elastic modulus of the traction rope;
S——the area of the metal cross section of the traction rope;
L——the original length of the car-side traction rope when the car is located on the certain floor;
n——the number of traction ropes; and
k——the traction ratio.
When the predetermined tension F is 75Kg, the predetermined elongation ΔL may be set to any value from 1mm to 5mm. Optionally, the predetermined elongation ΔL may be set to 1mm, 1.5mm, 2mm, 2.5mm, 3mm, 3.5mm, 4mm, 4.5mm or 5mm when the predetermined tension (F) is 75Kg.
According to another exemplary embodiment of the present invention, the elastic modulus E of the car-side traction rope and the area S of the metal cross section of the car-side traction rope are known parameters; the original length L of the car-side traction rope is estimated as the distance between the car and the traction sheave of the elevator.
In each of the aforementioned exemplary embodiments according to the present invention, the structure of the car damping arrangement is simple, thereby reducing the cost of the elevator.
In each of the aforementioned exemplary embodiments according to the present invention, a fixing member is respectively arranged on a plurality of floors of the elevator. Therefore, the frequency of frictional engagement between each fixing member and the moving member is reduced, so that the service life of the fixing member is improved, instead of frequent re-placements.
In addition, in some of the aforementioned exemplary embodiments according to the present invention, the fixing member is only arranged on each floor lower than or equal to the pre- determined floor N, and no fixing member is arranged on any floor higher than the prede-termined floor N. Therefore, the invention can also reduce the frequency of frictional en-gagement between the moving member and the fixing member, thereby further improving the service life of the moving member.
Other purposes and advantages of the invention are apparent from the following descriptions with reference to the drawings, and the descriptions are conductive to the comprehensive understanding of the invention.
Fig. 1 shows the schematic diagram of a car damping arrangement according to an exem-plary embodiment of the present invention, wherein the car door is closed,
Fig. 2 shows the schematic diagram of a car damping arrangement according to an exem-plary embodiment of the present invention, wherein the car door is open,
Fig. 3 shows the schematic diagram of a car damping arrangement according to an exem-plary embodiment of the present invention, wherein an expansion and a non-engagement position are defined,
Fig. 4 shows the schematic diagram of a CAR DAMPING ARRANGEMENT according to an exemplary embodiment of the present invention, wherein the moving member is installed on a door.
The technical scheme of the invention is further explained in detail with reference to the embodiments and the drawings. In the instructions, the same or similar drawing labels in-dicate the same or similar components. The following description of embodiments of the invention with reference to the drawings is intended to explain the general inventive concept of the invention and shall not be construed as a limitation of the invention.
Additionally, in the following detailed description, numerous specific details are set forth to provide a comprehensive understanding of the embodiments of the disclosure for ease of explanation. It will be apparent, however, that one or more embodiments may also be prac-ticed without these specific details. In other cases, well-known structures and devices are embodied diagrammatically to simplify the drawings.
Figure 1 shows the schematic diagram of an elevator car damping arrangement according to an exemplary embodiment of the present invention, wherein the car door 120 is closed;
Figure 2 shows a schematic diagram of the car damping arrangement according to an ex-emplary embodiment of the invention, wherein the car door 120 is opened. In the illustrated embodiments, the car damping arrangement mainly includes, for example, two bases 10, two moving members 11 and two fixing members 12.
According to the general technical concept of this invention, a car damping arrangement includes a moving member 11 movably installed on the elevator car 100, and more than one fixing member 12 arranged on a plurality of floors of the elevator and fixedly installed in the elevator shaft (well) respectively. The said moving member 11 and/or the said fixing members 12 may serve as a damping member that can be elastically deformed. When the car 100 stops at a predetermined stopping position on a certain floor, the moving member 11 is moved to its expansion position. After that, the car 100 may still be swayed up or down with respect to the predetermined stopping position due to passengers getting in and out of the car 100. When the vertical movement distance of the car 100 is within a predetermined distance to the predetermined stopping position, the moving member 11 may get frictionally en-gagement with the fixing member 12, thereby reducing the vertical shaking movement of the car 100.
As shown in Figures 1 and 2, the base 10 is installed on the car 100 of the elevator. In the illustrated embodiment, the base 10 is installed on the sill 110 of the car 100. However, the invention is not limited thereto. For example, the base 10 may also be installed on the frame, roof or door operator of the car 100. Although not illustrated, the base 10 may be fixedly installed on the sill 110 of the car 100 by welding or bolting.
As shown in Figures 1 and 2, the moving member 11 accordingly may be installed movably on the base 10. In these illustrated embodiments, the moving member 11 is columnar and horizontally installed in the through hole of base 10 and can move horizontally relative to base 10. However, the invention is not limited to the illustrated embodiment. For example, the moving member 11 may be block-shaped, and may be movably installed in a chute on the base 10.
Alternatively, the base 10 can be simplified so that the moving member 11, for example, is installed directly or indirectly on or at the door 120 of the car 100. In this case, the moving  member 11 should be installed at or on the door 120 in this manner that the moving member 11 may cross horizontally through the through hole of the base 10 with the door opening and closing. This embodiment is shown in Fig. 4.
In an exemplary embodiment of the invention, the fixing members 12 are arranged on a plurality of floors of the elevator and are installed fixedly in the elevator well respectively. Figures 1 and 2 only show the fixing members 12 located on the same floor, and the situation of other floors is similar to that of Figures 1 and 2, so they are not be repeated.
As shown in Figures 1 and 2, the fixing member 12 is sheet-shaped and vertically attached to a well wall 200 of the elevator. However, the invention is not limited to the illustrated em-bodiment. For example, the fixing member 12 may be fixedly installed on the car guide rail, the counterweight guide rail or the landing door device of the elevator.
As shown in Figure 2, in this illustrated embodiment, when the car 100 stops at a predeter-mined stopping position on a certain floor, the door 120 of the car 100 is opened, and the moving member 11 will be driven to its expansion position by the open door 120. At this time, the moving member 11 and the fixing member 12 are not in contact at first, and a small gap still exists between them.
As shown in Figures 1 and 2, in these illustrated embodiments, under the state that the moving member 11 is moved to an expansion position when the car 100 stopped on the certain floor moves with shaking upward or downward with respect to the predetermined stopping position (movement due to passengers’ getting in and out of the car) . If the vertical shaking movement is within the predetermined stopping point, the moving member 11 is frictionally engaged with the fixing members so as to reduce the up and down shaking of the car 100 when passengers get in and out of the car. That is to say, when the car 100 stopped on the certain floor does not move relative to the predetermined stopping position or the upward or downward movement distance relative to the predetermined stopping position is not within the predetermined distance, the moving member 11 is not in contact with the fixing member 12, thus no damping effect will be generated to the car 100.
The moving member 11 and/or the fixing members 12 may serve as a damping member respectively that can be elastically deformed. Therefore, as shown in Figure 2, when the door 120 is opened, the moving member 11 is frictionally engaged with the fixing member 12 and  generates damping effect on the car 100, so that the damping of the car 100 for upward or downward movement may be increased, and the shaking movement can be reduced when passengers get in and out of the car 100.
Specifically, the predetermined distance can be greater than zero. For example, it may be designed to be greater than 0 and less than 40mm, or greater than 1mm and less than 10mm. In the case where the predetermined distance is 0, when the car 100, for example, stopped accurately in the predetermined stopping position, the moving member 11 in the expansion position has frictionally engaged with the fixing member 12 for preventing or reducing the up and down shaking movement of the car 100.
Please note that the invention is not limited to the illustrated embodiment, and the moving member 11 may also be driven to the expansion position instead of using door 120. For example, in an exemplary embodiment of this invention, the car damping arrangement may include an electric driving device installed on the car 100. When the car 100 is stopped on the certain floor, the electric driving device drives the moving member 11 to an expansion position. Instead of the electric driving device, the moving member is driven by the door itself, so that it not only saves cost but also saves energy.
Furthermore, as shown in Fig. 3, the said expansion position includes a non-engagement position 14a and an engagement-position 14b, wherein in the engagement-position the moving member 11 is frictionally engaged with the fixing member 12, while in the non-engagement-position the moving member 11 does not contact the fixing member 12. The arrangement of the non-engagement-and the engagement-position is certainly corre-sponding to the position of the predetermination distance. When the car is stopping in the predetermined stopping position, the moving member 11 is moved in the non-engagement-position 14a. When the car 100 moves vertically due to passengers getting in and out of the car, and the shaking movement of the car 100 is within the predetermined distance, the moving member 11 then gets into the engagement-position 14b so that the moving member 11 will get in frictional engagement with the fixing member to reduce the shaking movement of the car 100. Accordingly, in this embodiment the fixing member 12 may consist of two parts corresponding to the engagement-position 14b or only one part but with a recessed part which is not contact with the moving member 11 moved in the non-engagement-position 14a.
As shown in Figures 1 and 2, in the illustrated embodiments, the moving member 11 is a rigid member that cannot be elastically deformed, while the fixing member 12 is a damping member that can be elastically deformed. However, the invention is not limited thereto. For example, the moving member 11 may also be a damping member that can be elastically deformed, and the fixing member 12 is a rigid member that cannot be elastically deformed; or both the moving member 11 and fixing member 12 are damping members that can be elastically deformed.
Although not illustrated, in another embodiment of the invention, the moving member 11 and/or the fixing members 12 may be a damping member with a composite structure. For example, each of the moving member 11 and/or the fixing members 12 may include a rigid main part and an elastic contact layer wrapped outside the rigid main part, which together constitute a damping member having a composite structure.
Please note that the structure of the moving member 11 and/or of the fixing members 12 is not limited to the afore-mentioned embodiments. For example, an elastic contact layer or sleeve may be arranged on the contact end of the moving member 11 in contact with the fixing member 12, and the moving member 11 is frictionally engaged with the fixing member 12 through the elastic contact layer or sleeve.
As shown in Figures 1 and 2, in the illustrated embodiments, the car damping arrangement also includes the elastic resetting device 13 connected between the base 10 and the moving member 11. As shown in Figure 1, when the door 120 of the car 100 is closed and the car 100 is ready to leave the certain floor, the elastic resetting device 13 will push the moving member 11 to the retract position separated from the fixing member 12.
As shown in Figures 1 and 2, in the illustrated embodiments, one end of the moving member 11 that is relatively far away from the fixing member 12 is formed with a positioning flange 11a. The elastic resetting device 13 is compressed between the positioning flange 11a of the moving member 11 and the surface of the base 10. However, the invention is not limited to the illustrated embodiment, and the elastic resetting device 13 may also be accommodated and positioned in an accommodating cavity on the base 10.
The elastic resetting device 13 is equipped for example with a spring, which may be a helical spring and is sleeved on the rod-shaped body of the moving member 11. Both ends of the  helical spring abut against the positioning flange 11a of the moving member 11 and the surface of the base 10 respectively, so that the helical spring is compressed between the positioning flange 11a of the moving member 11 and the surface of the base 10. However, the invention is not limited to the illustrated embodiment, and the elastic resetting device 13 may also include an elastic block made of elastic material.
As shown in Figures 1 and 2, in the illustrated embodiments, the fixing member 12 has a predetermined length in the vertical direction and the predetermined length is within the range of 10mm to 50mm. Therefore, only when the car 100 is at the car leveling, the moving member 11 can be frictionally engaged with the fixing member 12, and the fixing member 12 can generate damping effect on the moving member 11. When the moving member 11 ex-ceeds a certain range, the fixing member 12 will separated from the moving member 11 and the damping effect will disappear.
As shown in Figures 1 and 2, in another exemplary embodiment of the invention, another elevator system is disclosed, which includes the car 100 and the aforementioned car damping arrangement. The fixing members 12 of the aforementioned car damping arrangement are only arranged on each floor lower than or equal to the predetermined floor N (N is an integer greater than 1) , and no fixing member 12 is arranged on any floor higher than the prede-termined floor N, so that when the car stops on a floor higher than the predetermined floor N, the car damping arrangement will not generate damping effect on the car 100. The reason for this arrangement is that when the car 100 is located on a high floor (higher than the prede-termined floor N) , the extent of up and down shaking of the car 100 when passengers get in and out of the car is small, which will not cause discomfort to the passengers, and it is not necessary to reduce the up and down shaking of the car 100.
As shown in Figures 1 and 2, in the illustrated embodiment, when the car 100 is located on or below the predetermined floor N, the elongation dL of the car-side traction rope 300 under the predetermined tension F is not greater than the predetermined elongation ΔL. When the car 100 is located on a floor higher than the predetermined floor N, the elongation dL of the car-side traction rope 300 under the predetermined tension F is greater than the predeter-mined elongation ΔL. In this way, an appropriate predetermined floor N may be selected according to the elongation dL of the car-side traction rope 300, so as to reduce the number of fixing members 12.
As shown in Figures 1 and 2, in the illustrated embodiments, when the car 100 is located on the certain floor, the elongation dL of the car-side traction rope 300 under a predetermined tension F is calculated using the above introduced equation: dL= (LF) / (knES) , wherein the elastic modulus E and the area S of the metal cross section of the car-side traction rope 300 are known parameters, the original length L of the car-side traction rope 300 is estimated as the distance between the car 100 and the traction sheave of the elevator.
As shown in Figures 1 and 2, in the illustrated embodiment, the predetermined elongation ΔL may be set to any value from 1mm to 5mm when the predetermined tension F is 75Kg.
As shown in Figures 1 and 2, in the illustrated embodiment, the predetermined elongation ΔL is set to 1mm, 1.5mm, 2mm, 2.5mm, 3mm, 3.5mm, 4mm, 4.5mm or 5mm when the prede-termined tension F is 75Kg.
Those skilled in the art can understand that the embodiments described above are all exem-plary and can improve them, and the structures described in various embodiments may be freely combined on premise of no conflicts in structure or principle.
Although the invention has been described with refcrence to the drawings, the embodiments disclosed in the drawings are intended to illustrate the preferred embodiments of the inven-tion by way of example and shall not be construed as a limitation of the invention.
Although some embodiments of the general inventive concept have been shown and de-scribed, which may be understood by those of ordinary skill in the art, changes may be made to these embodiments without departing from the principles and spirit of the general in-ventive concept, and the scope of the invention is defined by the claims and their equivalents.
It shall be noted that the word "include" does not exclude other elements or steps, and the word "a" or "an" does not exclude plural ones. In addition, any element label of the claim shall not be construed as limiting the scope of the invention.

Claims (15)

  1. An elevator car damping arrangement, comprising:
    at least one moving member (11) movably installed on a car (100) of an elevator; more than one fixing member (12) arranged at a plurality of floors of the elevator and fixedly installed in an elevator well respectively,
    at least one of the said moving member (11) and the said fixing members (12) serving as a damping member that can be elastically deformed, such that when the car (100) stops in a predetermined stopping position on a certain floor, the moving member (11) is moved to an expansion position of this moving member, characterized in that
    the moving member (11) is frictionally engaged with the fixing member (12) so as to reduce a vertical shaking movement of the stopped car (100) due to passengers get-ting in and out of the car, when the vertical movement distance of the car (100) is within a predetermined distance to the predetermined stopping position.
  2. The elevator car damping arrangement according to claim 1, wherein the moving member (11) is not in contact with the fixing member (12) , thus no damping effect will be generated to the car (100) , when the vertical movement distance of the stopped car (100) is out of the predetermined distance to the predetermined stopping position.
  3. The elevator car damping arrangement according to claim 1 or 2, wherein the ex-pansion position consists of a non-engagement position (14a) and an engage-ment-position (14b) , wherein in the engagement-position the moving member (11) is frictionally engaged with the fixing member (12) , while in the non-engagement-position the moving member (11) is not in contact with the fixing member (12) .
  4. The elevator car damping arrangement according to claim 1, wherein the moving member (11) is a damping member that can be elastically deformed, and the fixing member (12) is a rigid member that cannot be elastically deformed; or
    the moving member (11) is a rigid member that cannot be elastically deformed and
    the fixing member (12) is a damping member that can be elastically deformed; or
    both the moving member (11) and the fixing member (12) are damping members that can be elastically deformed.
  5. The elevator car damping arrangement according to claim 1, wherein at least one of the said moving member (11) and the said fixing members (12) includes a rigid main part and an elastic contact layer wrapped outside the rigid main part, which together constitute a damping member with a composite structure.
  6. The elevator car damping arrangement according to claim 1, wherein
    the elevator car damping arrangement includes an electric driving device which is installed on the car (100) in this manner that the electric driving device drives the moving member (11) to the expansion position, when the car (100) stops on the certain floor.
  7. The elevator car damping arrangement according to claim 1, wherein, when the car (100) stops on the certain floor, a door (120) of the car (100) is opened, and the moving member (11) is driven to the expansion position through the opened door (120) .
  8. The elevator car damping arrangement according to Claim 7, wherein
    the moving member (11) is installed directly or indirectly at the door (120) of the car (100) , or
    the elevator car damping arrangement includes a base (10) which is fixedly installed on the car (100) , and the moving member (11) is movably installed on the base (10) .
  9. The elevator car damping arrangement according to Claim 8, wherein
    the elevator car damping arrangement includes an elastic resetting device (13) which is connected between the base (10) and the moving member (11) , such that when the door (120) of the car (100) is closed and the car (100) is ready to leave a floor, the elastic resetting device (13) pushes the moving member (11) to a retract position separated from the fixing member (12) .
  10. The elevator car damping arrangement according to Claim 9, wherein
    the elastic resetting device (13) is equipped with a spring which is compressed be-tween the base (10) and the moving member (11) .
  11. The elevator car damping arrangement according to Claim 8, wherein
    the fixing member (12) is sheet-shaped and vertically attached to the well wall (200) of the elevator;
    the moving member (11) is columnar and horizontally installed in the through hole of the base (10) or is installed at the door (120) for crossing horizontally through the through hole; and
    the moving member (11) can horizontally move relative to the base (10) .
  12. An elevator system comprising,
    a car (100) , and
    an elevator car damping arrangement, as specified in any item of Claims 1 to 11, characterized in that
    the fixing member (12) of the elevator car damping arrangement are only arranged on each floor lower than or equal to the predetermined floor N, and no fixing member (12) is arranged on any floor higher than the predetermined floor N, so that when the car stops on a floor higher than the predetermined floor N, the elevator car damping arrangement does not generate damping effect on the car (100) .
  13. The elevator system according to Claim 12, wherein, when the car (100) is located on or below the predetermined floor N, the elongation (dL) of the car-side traction rope (300) under the predetermined tension (F) is not greater than the predetermined elongation (ΔL) , and
    when the car (100) is located on a floor higher than the predetermined floor N, the elongation (dL) of the car-side traction rope (300) under the predetermined tension (F) is greater than the predetermined elongation (ΔL) .
  14. The elevator system according to Claim 13, wherein,
    when the car (100) is located on a certain floor, the elongation (dL) of the car-side traction rope (300) under a predetermined tension (F) is calculated using the fol-lowing equation: dL= (LF) / (knES) ,
    where,
    E--the elastic modulus of the traction rope (300) ;
    S--the area of the metal cross section of the traction rope (300) ;
    L--the original length of the car-side traction rope (300) when the car (10) is located on the certain floor;
    n--the number of traction ropes;
    k--the traction ratio.
  15. The elevator system according to Claim 14, characterized in that,
    the elastic modulus (E) of the car-side traction rope (300) and the area (S) of the metal cross section of the car-side traction rope (300) are known parameters;
    the original length (L) of the car-side traction rope (300) is estimated as the distance between the car (100) and the traction sheave of the elevator.
PCT/CN2021/122750 2020-10-09 2021-10-09 Elevator car damping arrangement and elevator system WO2022073495A1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN202011072194.8A CN114314250B (en) 2020-10-09 2020-10-09 Elevator car damping device and elevator system
CN202011072194.8 2020-10-09
CN202110923969.6A CN115703613A (en) 2021-08-12 2021-08-12 Damping device for elevator car and elevator system with damping device
CN202110923472.4A CN115893156A (en) 2021-08-12 2021-08-12 Damping device for elevator car and elevator system with damping device
CN202110923969.6 2021-08-12
CN202110923472.4 2021-08-12

Publications (1)

Publication Number Publication Date
WO2022073495A1 true WO2022073495A1 (en) 2022-04-14

Family

ID=78401979

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/122750 WO2022073495A1 (en) 2020-10-09 2021-10-09 Elevator car damping arrangement and elevator system

Country Status (1)

Country Link
WO (1) WO2022073495A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012218897A (en) * 2011-04-11 2012-11-12 Toshiba Elevator Co Ltd Elevator
US20190210840A1 (en) * 2018-01-10 2019-07-11 Otis Elevator Company Elevator car dynamic sag damping system
KR102009349B1 (en) * 2019-03-21 2019-08-12 그린엘리베이터(주) Positional clamping and emergency braking devices for elevators

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012218897A (en) * 2011-04-11 2012-11-12 Toshiba Elevator Co Ltd Elevator
US20190210840A1 (en) * 2018-01-10 2019-07-11 Otis Elevator Company Elevator car dynamic sag damping system
KR102009349B1 (en) * 2019-03-21 2019-08-12 그린엘리베이터(주) Positional clamping and emergency braking devices for elevators

Similar Documents

Publication Publication Date Title
US9914619B2 (en) Elevator rope sway mitigation
WO2011142763A1 (en) Elevator system with rope sway mitigation
JP5411931B2 (en) Hanging elevator car structure
CN110116954B (en) Double-deck elevator system
CN108778973B (en) Elevator system and control method thereof
JP2011140374A (en) Double-deck elevator
KR100641307B1 (en) Elevator apparatus
JP4887026B2 (en) Elevator device and its safety device
JP5329031B2 (en) Elevator equipment
WO2022073495A1 (en) Elevator car damping arrangement and elevator system
WO2018173268A1 (en) Oscillation prevention device for elevator main rope
CN114314250B (en) Elevator car damping device and elevator system
JP2007197138A (en) Buffer device for elevator
JP4946034B2 (en) Compensation chain guide device for elevator
JP2004262602A (en) Car for elevator
JP2006315796A (en) Multi-car elevator device
JP6222864B1 (en) Elevator buffer equipment
KR100295889B1 (en) Guide roller apparatus for elevator
KR100455502B1 (en) Installation structure of elevator traction machine
JP6988876B2 (en) Main rope runout suppression device
JP3647647B2 (en) Elevator rope steady rest
JP2004168450A (en) Elevator device
JP2004010245A (en) Spring buffer for elevator
WO2011125206A1 (en) Amplitude suppressing apparatus for elevator rope and controller operating apparatus
KR200288349Y1 (en) Traction achine damping device for elevator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21798550

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21798550

Country of ref document: EP

Kind code of ref document: A1