WO2022073339A1 - 一种等量吸气仪 - Google Patents

一种等量吸气仪 Download PDF

Info

Publication number
WO2022073339A1
WO2022073339A1 PCT/CN2021/090371 CN2021090371W WO2022073339A1 WO 2022073339 A1 WO2022073339 A1 WO 2022073339A1 CN 2021090371 W CN2021090371 W CN 2021090371W WO 2022073339 A1 WO2022073339 A1 WO 2022073339A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
state
isometric
opening
space
Prior art date
Application number
PCT/CN2021/090371
Other languages
English (en)
French (fr)
Inventor
王洪奎
何建行
李春景
Original Assignee
王洪奎
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 王洪奎 filed Critical 王洪奎
Publication of WO2022073339A1 publication Critical patent/WO2022073339A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/02Devices for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/03Computerised tomographs
    • A61B6/032Transmission computed tomography [CT]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/34Trocars; Puncturing needles
    • A61B17/3403Needle locating or guiding means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/34Trocars; Puncturing needles
    • A61B17/3494Trocars; Puncturing needles with safety means for protection against accidental cutting or pricking, e.g. limiting insertion depth, pressure sensors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/04Positioning of patients; Tiltable beds or the like
    • A61B6/0407Supports, e.g. tables or beds, for the body or parts of the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/0057Pumps therefor
    • A61M16/0078Breathing bags
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/20Valves specially adapted to medical respiratory devices
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/20Valves specially adapted to medical respiratory devices
    • A61M16/201Controlled valves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/0003Accessories therefor, e.g. sensors, vibrators, negative pressure
    • A61M2016/0027Accessories therefor, e.g. sensors, vibrators, negative pressure pressure meter
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/0003Accessories therefor, e.g. sensors, vibrators, negative pressure
    • A61M2016/003Accessories therefor, e.g. sensors, vibrators, negative pressure with a flowmeter

Definitions

  • the invention relates to an auxiliary device for a medical image acquisition process, belonging to the technical field of medical imaging systems.
  • CT intervention is a mature and effective percutaneous non-vascular intervention technology, including CT-guided percutaneous biopsy and interventional therapy, which can be used in various parts of the body, including the brain, chest, abdomen and musculoskeletal systems.
  • CT has high density resolution and spatial resolution, and can clearly display the size, shape, location of lesions and the adjacent relationship between lesions and surrounding tissues and organs. It can accurately locate the lesion, and can clearly understand the situation of the soft tissue inside and around the lesion, so as to avoid the important tissue structure or the necrotic area of the lesion, and can accurately determine the needle insertion point, angle and depth, and can be adjusted at any time under scanning monitoring. Achieving the piercing target.
  • ultrasound-guided puncture has limitations. In lung and bone biopsy, due to the high attenuation coefficient of the lung and the presence of acoustic impedance at the gas-soft tissue, gas-liquid level, and bone interface, the ultrasound energy is attenuated, so CT is selected. Better, and for obese, where the lesions are located deep in the skin, CT-guided puncture can better evaluate the targeted area.
  • the doctor asks the patient to inhale and hold the breath, and then the scan is performed. If the patient's inspiratory volume is different each time, the position of the patient's internal organs will change, so the CT films obtained will be different, which is very troublesome for interventional therapy and needle biopsy. Therefore, there is a need in the art to provide a device that enables a patient to inhale an equal amount of air into the lungs before each CT scan, thereby reducing or eliminating breathing errors, which is of great significance for CT-guided interventional therapy and needle biopsy.
  • the purpose of the present invention is to provide an equal volume inhalation instrument, so as to eliminate the puncture error caused by breathing when performing interventional therapy or puncture biopsy under the guidance of CT.
  • a first aspect of the present invention provides an isometric aspirator, including: an oxygen source, a throttle valve, a valve group, a flexible air bag, a rigid container, an air pump, a mask assembly, and a system controller; it is characterized in that:
  • the rigid container has a first opening and a second opening; the flexible bladder is mounted within the rigid container and its inlet is mounted to the first opening, thereby forming a second opening with the first opening within the flexible bladder. a space, and a second space within the rigid container having a second opening;
  • the first space is connected to the oxygen source and the mask assembly through a first opening, the valve group, and the throttle valve; the second space is connected to the inflation through a second opening, the valve group, and the throttle valve. connected to the pump.
  • the valve group includes a first valve, a second valve, a third valve and a fourth valve;
  • the first opening is connected with the first end of a three-way pipe; the second end of the three-way pipe is connected with the oxygen source through the first valve and the throttle valve; The second end is connected to the mask assembly through the second valve;
  • the second opening is connected with the first end of a four-way pipe; the second end of the four-way pipe is connected with the external environment through the third valve; the third end of the four-way pipe passes through the fourth The valve is connected with the air pump; the fourth end of the four-way pipe is connected with the first pressure gauge.
  • the system controller is capable of controlling each valve of the valve group so that the valve group is in one of the following states
  • the first state the first valve and the third valve are opened, and the second valve and the fourth valve are closed; at this time, the oxygen of the oxygen source is filled into the first space, and the air in the second space discharge;
  • the third state the first valve and the third valve are closed, the second valve is open, and the fourth valve is closed; at this time, the first space outputs oxygen to the outside.
  • the self-calibrator includes a rigid self-calibration bottle and a second pressure gauge; the input port of the self-calibration bottle is connected to the second valve, and also has an opening connected to the second pressure gauge. A second pressure gauge is connected.
  • the mask assembly includes a mask body and a mask synchronization switch
  • the mask body has a contour suitable for air-tight fitting with the user's face, and a gas inlet;
  • the mask synchronization switch includes a coaxial inner tube, a coaxial outer tube and a switch driver; the coaxial inner tube and the coaxial outer tube are respectively provided with corresponding large holes, and the coaxial outer tube is also provided with a A vent pipe is connected to the second valve through the vent pipe.
  • the outer diameter of the coaxial inner tube is substantially equal to the inner diameter of the coaxial outer tube
  • one end of the two tubes is an open end, and communicates with the gas inlet of the mask body, and the other ends of the two tubes are installed There are switch drivers and are sealed from the outside world.
  • the system controller can control the switch driver to drive the coaxial inner tube to rotate relative to the coaxial outer tube, so that the mask assembly is in one of the following states
  • the first valve, the second valve, the third valve and the fourth valve are all normally closed solenoid valves.
  • a second aspect of the present invention provides a method for calibrating an isometric aspirator according to the above technical solution, and the steps of the method are as follows:
  • Step 101 control the valve group to be in the first state, use the oxygen source to inflate the flexible airbag at a certain rate through the throttle valve at a slow rate, and charge a certain amount of air into the flexible airbag by controlling the inflation time.
  • Step 102 controlling the valve group to be in the second state, and using the air pump to inflate the second space so that the pressure in the rigid container is greater than atmospheric pressure;
  • Step 103 connecting the output end of the second valve to the input port of the self-calibration container;
  • Step 104 controlling the valve group to be in the third state; and recording the reading of the second pressure gauge on the self-calibrator;
  • Step 105 Repeat steps 101 to 104 multiple times. If the difference between the readings of the second pressure gauge is within 8% each time, it proves that the first space in the flexible airbag can be inflated by the same amount.
  • a third aspect of the present invention provides a method for assisting CT image acquisition using the isometric aspirator described in one of the above technical solutions, and the steps of the method are as follows:
  • Step 201 install the mask body on the patient's face, control the mask assembly to be in state 1, state 2, and state 1 in sequence, and accordingly make the patient inhale-exhale-re-inhale;
  • Step 202 switch the mask assembly to state 3, carry out CT scan, and switch the mask assembly to state 2 after obtaining the picture, to allow the patient to breathe freely;
  • Step 203 determining points of interest as needed
  • Step 204 moving the CT bed so that the point of interest slice is located in the CT scanning plane
  • Step 205 control the mask assembly to be in state 1, state 2, and state 1 in sequence, and accordingly make the patient inhale-exhale-re-inhale;
  • Step 206 performing a CT single-slice scan.
  • the present invention can achieve the following technical effects.
  • the volume of gas charged into the flexible airbag can be precisely controlled
  • FIG. 1 is a schematic structural diagram of a CT real-time positioning precise puncture system according to the present invention
  • Fig. 2 is the robot structure schematic diagram of the CT real-time positioning precise puncture system in Fig. 1;
  • Fig. 3 is the robot hand structure schematic diagram of the robot in Fig. 2;
  • Fig. 4 is the schematic diagram of the structure of the trocar holder of the robot in Fig. 2;
  • Fig. 5 is the structural schematic diagram of the isometric aspirator of the robot in Fig. 1;
  • FIG. 6 is a schematic diagram of the mask assembly of the isometric aspirator in FIG. 5 .
  • 21-Large bore bearing 22-First connecting piece, 23-Robot arm, 24-Robot hand, 25-Puncture angle controller, 26-Box slider, 27-Inner sleeve driver, 28-Second connecting piece, C1-upper case, C2-lower case, T1-jacket, T2-inner case, U-cantilever structure, M1-first motor, L1-first screw, B1-first nut, G1-external gear, G2 - Internal rack;
  • CT Computer Tomography
  • X-CT X-ray CT
  • ⁇ -CT ⁇ -ray CT
  • proximal end and distal end used in the present invention refer to the positional relationship with respect to the CT machine, that is, the end close to the CT machine is the proximal end, and the end far from the CT machine is the distal end.
  • a CT real-time positioning and precise puncturing system includes: a CT scanning device 10 , a puncturing robot 20 , a control system 30 , an isometric aspirator 40 , and a computer 50 .
  • the puncture robot 20 of the CT real-time positioning precise puncture system in FIG. 1 includes: a chassis, a robotic arm 23 , a robotic hand 24 , and a puncture angle controller 25 .
  • the puncturing robot 20 is suitable for being placed directly behind the CT scanning device 10 .
  • the chassis includes an upper chassis C1 and a lower chassis C2.
  • the system control box is installed on the lower case C2 of the puncture robot 20 .
  • a substantially cylindrical robot hole is provided in the middle of the upper case C1, and a large-diameter bearing 21 is installed at the proximal end of the robot hole.
  • the large bore bearing 21 includes an outer sleeve T1 and an inner sleeve T2.
  • the outer casing T1 is installed on the upper chassis C1.
  • a first connecting piece 22 is disposed on the inner upper proximal end of the inner sleeve T2 , and a box-type sliding block 26 is fixed at the lower end of the first connecting piece 22 .
  • the mechanical arm 23 is connected to the first connecting member 22 through the box-type slider 26 .
  • the distal end of the robot arm 23 is disposed in the robot hole, parallel to the central axis of the robot hole, and can be above the hole in the CT scanning device 10 with the rotation of the inner sleeve T2 of the large-aperture bearing 21 .
  • the outer circle close to the robot hole makes a circular arc motion.
  • the robotic hand 24 is disposed at the proximal end of the robotic arm 23 for performing puncturing.
  • the puncture angle controller 25 is disposed at the distal end of the robotic arm 23, and is used to control the angle of the puncturing action of the robotic arm 24.
  • a cantilever structure U parallel to the axis of the large bore bearing 22 is mounted on the distal end of the first connecting member 22 .
  • the distal end of the cantilever structural member U is provided with a first motor M1 and a first lead screw L1 parallel to the cantilever structural member.
  • the cantilever structure U is a U-shaped channel steel.
  • the shaft of the first motor M1 is connected with the first lead screw L1.
  • the first nut B1 on the first lead screw L1 is fixed to the casing of the piercing angle driver 25 .
  • the first motor M1 can drive the first nut B1 to move on the first lead screw L1, thereby driving the puncture angle driver 25, the robotic arm 23 and the robotic hand 24 to move longitudinally in the CT scanning device hole, thereby making all
  • the trocar holder 245 on the robotic hand 24 is positioned within the X-ray scanning plane of the CT scanning device, or removed from the CT scanning device.
  • a circular arc-shaped rack G2 is disposed under the inner portion of the inner sleeve T2.
  • the upper case C1 also includes an inner sleeve driver 27, and the inner sleeve driver 27 includes a gear G1 meshing with the arc-shaped rack G2, thereby driving the inner sleeve T2 to rotate.
  • the arc-shaped rack G2 can be an inner rack or an outer rack as required.
  • an isometric aspirator 40 is also installed in the robot.
  • the isometric inspirator 40 is capable of delivering an equal amount of oxygen each time the patient inhales. Before each CT scan, the patient inhales the same amount of oxygen, which can basically eliminate the breathing error, so the patient can breathe freely.
  • the system control box 30 is connected with the computer 50 through an interface (eg, RS232).
  • an interface eg, RS232.
  • the puncture robot 20 receives the puncture point and the target point determined by the doctor, it can automatically aim the puncture trocar accurately at the target point, and can automatically, real-time and accurately puncture the target point set in the patient's body.
  • the computer 50 is configured on a dedicated operating table, and is placed adjacent to the control device of the CT scanning equipment, so as to facilitate coordinated operation.
  • the robot hand 24 of the CT real-time positioning precise puncture robot includes: a puncture depth controller 241 , a puncture driver 242 , and a trocar holder 245 .
  • the robotic hand 24 is installed at the proximal end of the robotic arm 23 and is substantially at right angles to the robotic arm 23 .
  • the puncture depth controller 241 includes a second motor M2 , a second lead screw L2 , a second nut B2 , a first linear slide rail 247 , and a depth control slider 243 .
  • the second motor M2 is fixed on the proximal end of the mechanical arm 23, the rotating shaft of the second motor M2 is connected with the second lead screw L2, and the second nut B2 on the second lead screw L2 is connected to the first straight screw.
  • the depth control slider 243 of the wire slide rail 247 is connected, the depth control slider 243 is connected with the puncture driver 242 , and the second motor M2 can drive the puncture driver 25 to move up and down.
  • the rotating shaft of the second motor M2 is set in a horizontal direction
  • the second lead screw L2 is set in a vertical direction
  • the rotating shaft of the second motor M2 is connected with the first bevel gear
  • the upper end of the second lead screw L2 is connected with the second bevel gear
  • the first bevel gear can be meshed with the second bevel gear and the axes are perpendicular to each other.
  • the puncture driver 242 includes a third motor M3 , a third lead screw L3 , a third nut B3 , and a pressing plate 244 .
  • the rotating shaft of the third motor M3 is connected to the third lead screw L3
  • the third nut B3 on the third lead screw L3 is connected to the pressing plate 244 .
  • the pressing plate 244 is in the shape of a "7", and when the pressing plate 244 is pressed to the lowermost end, the trocar is disengaged from the robot hand 24 .
  • the trocar holder 245 of the CT real-time positioning precise puncture robot includes a connecting plate a, a first strip-shaped plate b and a second strip-shaped plate c.
  • the first strip-shaped plate b and the second strip-shaped plate c are parallel to each other and perpendicular to the mechanical arm 6, and the upper end is connected with the connecting plate a.
  • the first strip-shaped plate and the second strip-shaped plate are connected to each other.
  • Triangular grooves are respectively formed on the opposite sides between the two triangular grooves, and the trocar is arranged in the trocar guide hole formed by the two triangular grooves.
  • the trocar holder 245 can also be used to hold the marking device, so as to mark the position to be punctured, so as to confirm whether the set puncturing position is consistent with the actual one.
  • the marking device may be a marker suitable for use in a medical environment.
  • a U-shaped wing is provided on the surface of the second nut B2 facing the first linear slide rail 247, and the U-shaped wing is connected to the depth control slider 243 and the The piercing driver 242 is connected.
  • the isometric aspirator 40 of the CT real-time positioning and precise puncture robot includes: a flexible airbag 401, a rigid container 402, a throttle valve 403, a medical oxygen cylinder 404, an air pump 405, a valve group, Mask assembly, and system controller 415.
  • the rigid container 402 has a first opening and a second opening; the flexible airbag 401 is installed in the rigid container 402 and its inlet is installed in the first opening, so that the flexible airbag 401 has a first opening.
  • the first space is connected with the medical oxygen cylinder and the mask assembly through the first opening, the valve group, and the throttle valve 403 .
  • the second space is connected with the air pump 405 through the second opening and the valve group.
  • the valve group includes a first valve K1, a second valve K2, a third valve K3 and a fourth valve K4.
  • the first valve K1, the second valve K2, the third valve K3, and the fourth valve K4 are all normally closed solenoid valves.
  • the first opening is connected to the first end of a three-way pipe P1; the second end of the three-way pipe P1 is connected to the medical oxygen cylinder 404 through the first valve and the throttle valve 403 .
  • the second end of the three-way pipe P1 is connected to the mask assembly through the second valve K2.
  • a fifth valve K5 is also provided between the second valve K2 and the mask assembly, so as to close the output of oxygen to the mask assembly in a situation such as a self-calibration process.
  • the second opening is connected to the first end of a four-way pipe P2; the second end of the four-way pipe P2 is connected to the external environment through the third valve; the third end of the four-way pipe P2 is connected to the external environment through the third valve.
  • the fourth valve is connected with the air pump; the fourth end of the four-way pipe P2 is connected with the first pressure gauge.
  • system controller 415 can control each valve of the valve group so that the valve group is in one of the following states.
  • the first state the first valve K1 and the third valve K3 are opened, and the second valve K2 and the fourth valve K4 are closed.
  • the oxygen in the medical oxygen cylinder 404 is filled into the first space, the air in the second space is discharged, and the external pressure is maintained in both the first space and the second space.
  • the third state the first valve K1 and the third valve K3 are closed, the second valve K2 is opened, and the fourth valve K4 is closed.
  • the first space outputs oxygen to the outside, and the pressure in the first space and the second space gradually decreases.
  • the isometric aspirator 40 further includes a self-calibrator including a rigid self-calibrating bottle 406 and a second pressure gauge 407 .
  • the input port of the self-calibration bottle 406 is connected with the second valve K2, and also has an opening connected with the second pressure gauge.
  • the mask assembly includes a mask body 409 and a mask synchronization switch.
  • the mask body 409 has a contour suitable for air-tight fitting with the user's face, and an air inlet.
  • the mask synchronization switch includes a coaxial outer tube 410 , a coaxial inner tube 411 and a switch driver 412 .
  • the coaxial inner tube 411 and the coaxial outer tube 410 are respectively provided with corresponding large holes 414 .
  • the coaxial outer tube 410 is also provided with a vent tube 413 , and is connected to the second valve K2 through the vent tube 413 .
  • the outer diameter of the coaxial inner tube 411 is substantially equal to the inner diameter of the coaxial outer tube 410 , one end of the two tubes is an open end, and communicates with the gas inlet of the mask body 409 , and the other ends of the two tubes are installed There is a switch driver 412 and is sealed from the outside world.
  • the system controller 415 can control the switch driver 412 to drive the coaxial inner tube 411 to rotate relative to the coaxial outer tube 410 , so that the mask assembly is in one of the following states.
  • Step 101 control the valve group to be in the first state, use the medical oxygen cylinder to inflate the flexible airbag 401 at a certain rate through the throttle valve 403 at a slow rate, and control the inflation into the flexible airbag by controlling the inflation time. amount of oxygen in.
  • Step 102 controlling the valve group to be in the second state, and using the air pump 405 to inflate the second space to make the pressure in the rigid container 402 higher than atmospheric pressure.
  • Step 103 connect the output end of the second valve K2 to the input port of the self-calibration bottle 408 .
  • Step 104 control the valve group to be in the third state; and record the reading of the second pressure gauge 407 on the self-calibrator.
  • Step 105 repeating steps 101 to 104 multiple times, if the difference between the readings of the second pressure gauge 407 is within 8% each time, it is proved that the first space in the flexible airbag can be inflated to the same amount.
  • each reading of the second pressure gauge 407 differs within 5%.
  • Step 201 install the mask body on the patient's face, control the mask assembly to be in state 1, state 2, and state 1 in sequence, and accordingly make the patient inhale-exhale-re-inhale.
  • Step 202 switch the mask assembly to state 3, perform a CT scan, and switch the mask assembly to state 2 after acquiring a picture to allow the patient to breathe freely.
  • Step 203 Determine points of interest as needed.
  • Step 204 moving the CT bed so that the slice of the point of interest is located in the CT scanning plane.
  • Step 205 control the mask assembly to be in state 1, state 2, and state 1 in sequence, and accordingly make the patient inhale-exhale-re-inhale.
  • Step 206 performing a CT single-slice scan.
  • the following introduces a method for performing medical image acquisition and puncturing using the CT real-time positioning and precise puncturing robot according to the above embodiments, and the steps are as follows.
  • Step 301 Install the mask body on the patient's face, control the mask assembly to be in state 1, state 2, and state 1 in sequence, and accordingly make the patient inhale-exhale-re-inhale.
  • Step 302 switch the mask assembly to state 3, perform a CT scan, and switch the mask assembly to state 2 after acquiring a picture, so as to allow the patient to breathe freely.
  • Step 303 Determine the puncture point and the target point on the tomographic image with the largest (or larger) tumor tomographic image area.
  • Step 304 moving the CT bed so that the slice of the patient's puncture point is located in the CT scanning plane.
  • Step 305 control the mask assembly to be in state 1, state 2, and state 1 in sequence, and accordingly make the patient inhale-exhale-re-inhale.
  • Step 306 switch the mask assembly to state 3, and perform a single-slice CT scan.
  • the doctor can see on the CT computer screen that the cannula needle is aligned with the puncture point and the target point, and can complete the precise puncture by issuing a puncture command.

Abstract

一种等量吸气仪(40),包括氧气源(404)、节流阀(403)、阀门组、柔性气囊(401)、刚性容器(402)、充气泵(405)、面罩组件,以及系统控制器(415)。柔性气囊(401)安装在刚性容器(402)内,氧气源(404)输出的高压氧气通过节流阀(403)和电磁阀能够以固定速率向柔性气囊(401)内充气,系统控制器(415)通过控制充气时间精确地向柔性气囊(401)内充入一定量的氧气;充气泵(405)能够使刚性容器(402)内的气压高于一个大气压。面罩组件包括面罩主体(409)和面罩同步开关。每当进行CT扫描前,使用该等量吸气仪(40)能够让患者吸入等量的气体,从而减少或消除呼吸误差,对用CT引导做介入治疗或穿刺活检具有重要意义。

Description

一种等量吸气仪 技术领域
本发明涉及一种用于医学影像采集过程的辅助装置,属于医学影像系统技术领域。
背景技术
CT介入是一项成熟有效的经皮穿刺非血管的介入技术,包括CT引导经皮穿刺活检和介入性治疗,可用于全身各个部位,包括脑、胸、腹和肌肉骨骼等系统。
CT具有较高的密度分辨率和空间分辨率,可清楚显示病变的大小、形态、位置及病灶与周围组织器官的毗邻关系。对病变定位准确,并能清楚了解病变内部及周围软组织的情况,从而避开重要组织结构或病灶坏死区域,可精确地确定进针点、角度和深度,并可在扫描监视下随时调整,精确达到穿刺目标。相比之下,超声引导的穿刺具有局限性,在对肺、骨穿刺活检时,由于肺具有高衰减系数,气体-软组织、气液平面及骨界面存在声阻抗,致超声能量衰减,选用CT更好,且对于体型肥胖,病灶位于皮肤深面的,CT引导穿刺对靶向区域更好评估。
通常患者在进行CT扫描前,医生会让患者吸口气并屏气,然后进行扫描。如果患每次的吸气量不一样,患者的内脏位置就会改变,因此得到的CT片就有差异,这对介入治疗和穿刺活检都是很麻烦的事。因此,本领域需要提供一种设备,使得患者每次进行CT扫描前,肺内吸入等量的空气,从而减小或消除呼吸误差,这对用CT引导进行介入治疗和穿刺活检意义十分重大。
发明内容
本发明的目的是提供一种等量吸气仪,以便消除用CT引导下做介入治疗或穿刺活检时,由于呼吸引起的穿刺误差。
本发明的技术方案如下。
本发明第一方面提供了一种等量吸气仪,包括:氧气源、节流阀、阀门 组、柔性气囊、刚性容器、充气泵、面罩组件,以及系统控制器;其特征在于,
所述刚性容器具有第一开口和第二开口;所述柔性气囊安装在所述刚性容器内并且其入口安装于所述第一开口,从而形成在所述柔性气囊内的具有第一开口的第一空间,以及在所述刚性容器内的具有第二开口的第二空间;
所述第一空间通过第一开口、所述阀门组、所述节流阀与所述氧气源和所述面罩组件相连;所述第二空间通过第二开口、所述阀门组与所述充气泵相连。
优选地,所述阀门组包括第一阀门、第二阀门、第三阀门和第四阀门;
所述第一开口与一个三通管的第一端相连;所述三通管的第二端通过所述第一阀门、所述节流阀与所述氧气源相连;所述三通管的第二端通过所述第二阀门与所述面罩组件相连;
所述第二开口与一个四通管的第一端相连;所述四通管的第二端通过所述第三阀门与外界环境相连;所述四通管的第三端通过所述第四阀门与充气泵相连;所述四通管的第四端与第一压力表相连。
优选地,所述系统控制器能够控制所述阀门组的每一个阀门,从而使所述阀门组处于以下状态之一
第一状态:所述第一阀门和第三阀门打开,所述第二阀门和第四阀门关闭;此时所述氧气源的氧气充入所述第一空间,所述第二空间内的空气排出;
第二状态:所述第一阀门和第三阀门关闭,所述第二阀门关闭,所述第四阀门打开;此时充气泵向所述第二空间充气;
第三状态:所述第一阀门和第三阀门关闭,所述第二阀门打开,所述第四阀门关闭;此时所述第一空间向外输出氧气。
优选地,还包括自校准器,所述自校准器包括刚性的自校准瓶和第二压力表;所述自校准瓶的输入口与所述第二阀门相连,同时还具有一开口与所述第二压力表相连。
优选地,所述面罩组件包括面罩主体和面罩同步开关;
所述面罩主体具有一适合与使用者面部形成气密性贴合的轮廓,以及一气体入口;
所述面罩同步开关包括同轴内管、同轴外管和开关驱动器;所述同轴内管和同轴外管上分别设置有相对应的大孔,所述同轴外管上还设置有一通气 管,并且通过所述通气管与所述第二阀门相连。
优选地,所述同轴内管的外径与所述同轴外管的内径基本相等,两管的一端均为开口端,并且与所述面罩主体的气体入口连通,两管的另一端安装有开关驱动器,并且与外界密封。
优选地,所述系统控制器能够控制所述开关驱动器带动所述同轴内管相对于所述同轴外管转动,从而使所述面罩组件处于以下状态之一
状态1:所述同轴内管的大孔与同轴外管的大孔对齐;此时外界的空气能够通过所述同轴外管和同轴内管进入所述面罩主体;
状态2:所述同轴内管的大孔与同轴外管的小通气管对准;此时所述第一空间输出的氧气能够通过所述第二阀门进入所述面罩主体;
状态3:所述同轴内管的打孔与同轴外管的无开口管壁对准;此时所述面罩主体与外界隔离。
优选地,所述第一阀门、第二阀门、第三阀门、第四阀门均为常闭型电磁阀。
本发明第二方面提供了一种根据以上技术方案所述的等量吸气仪的校准方法,所述方法的步骤如下:
步骤101,控制所述阀门组处于所述第一状态,用所述氧气源通过节流阀向柔性气囊内以一定的速率慢速充气,并且通过控制充气时间向柔性气囊内充入一定量的氧气;
步骤102,控制所述阀门组处于所述第二状态,用所述充气泵向所述第二空间内充气使所述刚性容器内的压强大于一个大气压;
步骤103,将所述第二阀门的输出端连接到所述自校准容器的输入口;
步骤104,控制所述阀门组处于所述第三状态;并记录自校准器上的第二压力表的读数;
步骤105,重复步骤101-步骤104多次,如果每次第二压力表的读数相差在8%以内,则证明能够向柔性气囊内的第一空间完成等量充气。
本发明第三方面提供了一种使用根据以上技术方案之一所述的等量吸气仪辅助执行CT影像采集的方法,所述方法的步骤如下:
步骤201,将面罩主体安装在患者面部,控制所述面罩组件依次处于状态1、状态2、状态1,相应地令患者吸气-呼气-再吸气;
步骤202,将面罩组件切换到状态3,进行CT扫描,获取图片后将面罩 组件切换到状态2,以允许患者自由呼吸;
步骤203,根据需要确定感兴趣点;
步骤204,移动CT床使所述感兴趣点断层位于CT扫描平面内;
步骤205,控制所述面罩组件依次处于状态1、状态2、状态1,相应地令患者吸气-呼气-再吸气;
步骤206,进行CT单层扫描。
通过以上技术方案,本发明能够取得如下技术效果。
(1)能够精准控制向柔性气囊内充入的气体体积;
(2)患者吸气前必须将肺内的空气尽量呼出(死腔);
(3)柔性气囊内充入的氧气在《吸气》时能全部吸进患者肺内。
附图说明
图1是根据本发明的CT实时定位精准穿刺系统的结构示意图;
图2是图1中的CT实时定位精准穿刺系统的机器人结构示意图;
图3是图2中的机器人的机器手结构示意图;
图4是图2中的机器人的套管针夹持器结构示意图;
图5是图1中的机器人的等量吸气仪结构示意图;
图6是图5中的等量吸气仪的面罩组件示意图。
图中各个附图标记的含义如下:
10-CT扫描设备,20-穿刺机器人,30-系统控制箱,40-等量吸气仪,50-计算机;
21-大孔径轴承,22-第一连接件,23-机械臂,24-机器手,25-穿刺角控制器,26-箱式滑块,27-内套驱动器,28-第二连接件,C1-上机箱,C2-下机箱,T1-外套,T2-内套,U-悬臂结构件,M1-第一电机,L1-第一丝杠,B1-第一螺母,G1-外齿轮,G2-内齿条;
241-穿刺深度控制器,242-穿刺驱动器,243-深度控制滑块,244-压板,245-套管针夹持器,246-第一轴承,247-第一直线滑轨,248-第二轴承,249-第二直线滑轨,M2-第二电机,L2-第二丝杠,B2-第二螺母,M3-第三电机,L3-第三丝杠,B3-第三螺母;
401-柔性气囊,402-刚性容器,403-节流阀,404-医用氧气瓶,405-充气泵,406-第一压力表,407-第二压力表,408-自校准瓶,409-面罩主体,410- 同轴外管,411-同轴内管,412-开关驱动器,413-小通气管,414-大孔,415-系统控制器,K1-第一阀门,K2-第二阀门,K3-第三阀门,K4-第四阀门,K5-第五阀门,P1-三通管,P2-四通管。
具体实施方式
本发明所使用的术语“CT”的含义为CT(Computed Tomography),即电子计算机断层扫描,它是指利用精确准直的X线束、γ射线、超声波等,与灵敏度极高的探测器一同围绕人体的某一部位作一个接一个的断面扫描的图像检查技术。根据所采用的射线不同可分为:X射线CT(X-CT)以及γ射线CT(γ-CT)等。
本发明所使用的术语“近端”、“远端”是指相对于CT机的位置关系,也就是靠近CT机的一端为近端,远离CT机的一端为远端。
如附图1所示,根据本发明的一种CT实时定位精准穿刺系统包括:CT扫描设备10、穿刺机器人20、控制系统30、等量吸气仪40、计算机50。
如附图2所示,图1中的CT实时定位精准穿刺系统的穿刺机器人20包括:机箱、机械臂23、机器手24、穿刺角度控制器25。
所述穿刺机器人20适于安放在CT扫描设备10的正后方。所述机箱包括上机箱C1和下机箱C2。所述系统控制箱安装在所述穿刺机器人20的下机箱C2。
所述上机箱C1中部设有一基本为圆柱形的机器人孔,所述机器人孔的近端安装有一个大孔径轴承21。当所述穿刺机器人20安放在CT扫描设备10正后方时,所述机器人孔的中心轴线与该CT扫描设备10的扫描孔的中心轴线相重合。所述大孔径轴承21包括外套T1和内套T2。所述外套T1安装在所述上机箱C1上。所述内套T2的内部上方近端设置有第一连接件22,所述第一连接件22下端固定一箱式滑块26。所述机械臂23通过所述箱式滑块26与所述第一连接件22相连。
所述机械臂23的远端设置于所述机器人孔内,与所述机器人孔的中心轴线平行,并且能随着大孔径轴承21的内套T2的转动在CT扫描设备10的孔内的上方靠近所述机器人孔的外圆作圆弧形运动。
所述机器手24设置于所述机械臂23的近端,用于执行穿刺动作。
所述穿刺角度控制器25设置于所述机械臂23的远端,用于控制所述机 器手24的穿刺动作的角度。
在一优选的实施方式中,所述第一连接件22的远端安装有一与大孔径轴承22的轴线平行的悬臂结构件U。所述悬臂结构件U的远端设置有第一电机M1,以及平行于悬臂结构件的第一丝杠L1。在一优选的实施方式中,所述悬臂结构件U为U型槽钢。所述第一电机M1的轴与第一丝杠L1连接。所述第一丝杠L1上的第一螺母B1与所述穿刺角驱动器25的外壳固定。所述第一电机M1能够驱动第一螺母B1在第一丝杠L1上移动,从而驱动所述穿刺角驱动器25、机械臂23和机器手24在CT扫描设备孔内纵向移动,由此使所述机器手24上的套管针夹持器245定位到CT扫描设备的X射线扫描平面内,或者从CT扫描设备移出。
在一优选的实施方式中,所述内套T2的内部下方设置有一圆弧形齿条G2。所述上机箱C1上还包括一内套驱动器27,所述内套驱动器27包括一与所述圆弧形齿条G2啮合的齿轮G1,从而驱动所述内套T2转动。本领域技术人员能够理解,所述弧形齿条G2可以根据需要选用内齿条或外齿条。
在一优选的实施方式中,为了消除呼吸误差,机器人内还安装了等量吸气仪40。所述等量吸气仪40能够在患者每次吸气时输出等量的氧气。患者每次进行CT扫描前,吸入等量的氧气,这样就能基本消除呼吸误差,因而患者可自由呼吸。
系统控制箱30通过接口(如RS232)与计算机50连接。所述穿刺机器人20只要收到医生确定的穿刺点和目标点就能自动将穿刺套管针准确地瞄准目标点,并能进行自动、实时、精确地穿刺到患者体内设定的靶点。在一优选的实施方式中,所述计算机50被配置在专用操作台,与CT扫描设备的控制装置相邻摆放,便于协同操作。
如图3所示,根据本发明的CT实时定位精准穿刺机器人的机器手24包括:穿刺深度控制器241、穿刺驱动器242、套管针夹持器245。所述机器手24安装在机械臂23的近端,与机械臂23基本成直角。
在一优选的实施方式中,所述穿刺深度控制器241包括第二电机M2、第二丝杠L2、第二螺母B2、第一直线滑轨247、深度控制滑块243。所述第二电机M2固定在所述机械臂23的近端,所述第二电机M2的转轴与所述第二丝杠L2连接,第二丝杠L2上的第二螺母B2与第一直线滑轨247的深度控制滑块243连接,所述深度控制滑块243与所述穿刺驱动器242相连,所 述第二电机M2能够驱动所述穿刺驱动器25上下移动。在一可选的实施方式中,所述第二电机M2的转轴设置为水平方向,所述第二丝杠L2设置为垂直方向,所述第二电机M2的转轴与第一锥形齿轮连接,第二丝杠L2的上端与第二锥形齿轮连接,所述第一锥形齿轮能够与第二锥形齿轮相啮合并且轴线相互垂直。
在一优选的实施方式中,所述穿刺驱动器242包括第三电机M3、第三丝杠L3、第三螺母B3、压板244。所述第三电机M3的转轴与所述第三丝杠L3连接,所述第三丝杠L3上的第三螺母B3与所述压板244相连。在一更为优选的实施方式中,所述压板244为“7”字形,每当所述压板244压到最下端时,套管针就与所述机器手24脱离。
如图4所示,根据本发明的CT实时定位精准穿刺机器人的套管针夹持器245包括连接板a、第一条形板b和第二条形板c。所述第一条形板b和第二条形板c相互平行地与所述机械臂6垂直,并且上端与所述连接板a连接.所述第一条形板和第二条形板之间相对的侧面上分别形成有三角形沟槽,所述套管针设置于两个三角形沟槽构成的套管针导向孔中。
此外,在执行穿刺动作之前,所述套管针夹持器245还能够用于夹持标记装置,从而在待穿刺位置做出标记,以确认设定的穿刺位置与实际是否相符。在一优选的实施方式中,所述标记装置可以是适合医疗环境中使用的记号笔。
在一优选的实施方式中,所述第二螺母B2的朝向所述第一直线滑轨247的面上设置有U形翼,所述U形翼与所述深度控制滑块243及所述穿刺驱动器242相连接。
如图5所示,根据本发明的CT实时定位精准穿刺机器人的等量吸气仪40包括:柔性气囊401、刚性容器402、节流阀403、医用氧气瓶404、充气泵405、阀门组、面罩组件,以及系统控制器415。
所述刚性容器402具有第一开口和第二开口;所述柔性气囊401安装在所述刚性容器402内并且其入口安装于所述第一开口,从而形成在所述柔性气囊401内的具有第一开口的第一空间,以及在所述刚性容器402内的具有第二开口的第二空间。
所述第一空间通过第一开口、所述阀门组、所述节流阀403与所述医用氧气瓶和所述面罩组件相连。所述第二空间通过第二开口、所述阀门组与所 述充气泵405相连。
在一优选的实施方式中,所述阀门组包括第一阀门K1、第二阀门K2、第三阀门K3和第四阀门K4。
在一优选的实施方式中,所述第一阀门K1、第二阀门K2、第三阀门K3、第四阀门K4均为常闭型电磁阀。
所述第一开口与一个三通管P1的第一端相连;所述三通管P1的第二端通过所述第一阀门、所述节流阀403与所述医用氧气瓶404相连。所述三通管P1的第二端通过所述第二阀门K2与所述面罩组件相连。
在一优选的实施方式中,所述第二阀门K2与面罩组件之间还设置有第五阀门K5,从而在诸如自校准过程的情形中关闭向面罩组件输出氧气。
所述第二开口与一个四通管P2的第一端相连;所述四通管P2的第二端通过所述第三阀门与外界环境相连;所述四通管P2的第三端通过所述第四阀门与充气泵相连;所述四通管P2的第四端与第一压力表相连。
在一优选的实施方式中,所述系统控制器415能够控制所述阀门组的每一个阀门,从而使所述阀门组处于以下状态之一。
第一状态:所述第一阀门K1和第三阀门K3打开,所述第二阀门K2和第四阀门K4关闭。此时所述医用氧气瓶404的氧气充入所述第一空间,所述第二空间内的空气排出,第一空间和第二空间内均保持外界压强。
第二状态:所述第一阀门K1和第三阀门K3关闭,所述第二阀门K2关闭,所述第四阀门K4打开。此时充气泵向所述第二空间充气,所述第二空间内的压强逐渐增大。
第三状态:所述第一阀门K1和第三阀门K3关闭,所述第二阀门K2打开,所述第四阀门K4关闭。此时所述第一空间向外输出氧气,所述第一空间和第二空间内的压强逐渐减小。
在一优选的实施方式中,所述等量吸气仪40还包括自校准器,所述自校准器包括刚性的自校准瓶406和第二压力表407。所述自校准瓶406的输入口与所述第二阀门K2相连,同时还具有一开口与所述第二压力表相连。
如图6所示,所述面罩组件包括面罩主体409和面罩同步开关。
所述面罩主体409具有一适合与使用者面部形成气密性贴合的轮廓,以及一气体入口。
所述面罩同步开关包括同轴外管410、同轴内管411和开关驱动器412。 所述同轴内管411和同轴外管410上分别设置有相对应的大孔414。所述同轴外管410上还设置有一通气管413,并且通过所述通气管413与所述第二阀门K2相连。
所述同轴内管411的外径与所述同轴外管410的内径基本相等,两管的一端均为开口端,并且与所述面罩主体409的气体入口连通,两管的另一端安装有开关驱动器412,并且与外界密封。
所述系统控制器415能够控制所述开关驱动器412带动所述同轴内管411相对于所述同轴外管410转动,从而使所述面罩组件处于以下状态之一。
状态1:所述同轴内管411的大孔与同轴外管410的小通气管413对准;此时所述第一空间输出的氧气能够通过所述第二阀门K2进入所述面罩主体409。
状态2:所述同轴内管411的大孔与同轴外管410的大孔对齐;此时外界的空气能够通过所述同轴外管和同轴内管进入所述面罩主体。
状态3:所述同轴内管411的大孔与同轴外管410的无开口管壁对准;此时所述面罩主体409与外界隔离。
下面说明根据以上实施方式所述的等量吸气仪的校准方法,其步骤如下。
步骤101,控制所述阀门组处于所述第一状态,用所述医用氧气瓶通过节流阀403向柔性气囊401内以一定的速率慢速充气,并且通过控制充气时间控制向柔性气囊内充入的氧气量。
步骤102,控制所述阀门组处于所述第二状态,用所述充气泵405向所述第二空间内充气使所述刚性容器402内的压强大于一个大气压。
步骤103,将所述第二阀门K2的输出端连接到所述自校准瓶408的输入口。
步骤104,控制所述阀门组处于所述第三状态;并记录自校准器上的第二压力表407的读数.
步骤105,重复步骤101-步骤104多次,如果每次第二压力表407的读数相差在8%以内,则证明能够向柔性气囊内的第一空间完成等量充气。在一更为优选的实施方式中,每次第二压力表407的读数相差在5%以内。
下面介绍一种使用根据以上实施方式之一所述的等量吸气仪辅助执行CT影像采集的方法,所述方法的步骤如下:
步骤201,将面罩主体安装在患者面部,控制所述面罩组件依次处于状 态1、状态2、状态1,相应地令患者吸气-呼气-再吸气。
步骤202,将面罩组件切换到状态3,进行CT扫描,获取图片后将面罩组件切换到状态2,以允许患者自由呼吸。
步骤203,根据需要确定感兴趣点。
步骤204,移动CT床使所述感兴趣点断层位于CT扫描平面内。
步骤205,控制所述面罩组件依次处于状态1、状态2、状态1,相应地令患者吸气-呼气-再吸气。
步骤206,进行CT单层扫描。
本领域技术人员能够理解,当面罩组件处于状态1时,需要将一定量的氧气输出到面罩组件,相应地在切换到状态1之前需要将一定量的氧气充入柔性气囊401。具体的输送氧气过程中对阀门组的控制时序与等量吸气仪的校准方法过程相同,在此不再重复。
下面介绍一种使用根据以上实施方式所述的CT实时定位精准穿刺机器人执行医学影像采集及穿刺的方法,步骤如下。
步骤301,将面罩主体安装在患者面部,控制所述面罩组件依次处于状态1、状态2、状态1,相应地令患者吸气-呼气-再吸气。
步骤302,将面罩组件切换到状态3,进行CT扫描,获取图片后将面罩组件切换到状态2,以允许患者自由呼吸。
步骤303,在肿瘤断层图像面积最大(或较大)的断层图像上确定穿刺点和目标点。
步骤304,移动CT床使患者穿刺点断层位于CT扫描平面内。
步骤305,控制所述面罩组件依次处于状态1、状态2、状态1,相应地令患者吸气-呼气-再吸气。
步骤306,将面罩组件切换到状态3,进行CT单层扫描,此时医生可在CT电脑屏幕上看到套管针对准穿刺点和目标点,发出穿刺指令即可完成精准穿刺。
尽管上文对本发明的具体实施方式给予了详细描述和说明,但是应该指明的是,依据本发明专利的构想对上述实施方式进行各种等效改变和修改,其所产生的功能作用仍未超出说明书及附图所涵盖的精神时,均应在本发明的保护范围之内。

Claims (10)

  1. 一种等量吸气仪,包括:氧气源、节流阀、阀门组、柔性气囊、刚性容器、充气泵、面罩组件,以及系统控制器;其特征在于:
    所述刚性容器具有第一开口和第二开口;所述柔性气囊安装在所述刚性容器内并且其入口安装于所述第一开口,从而形成在所述柔性气囊内的具有第一开口的第一空间,以及在所述刚性容器内的具有第二开口的第二空间;
    所述第一空间通过第一开口、所述阀门组、所述节流阀与所述氧气源和所述面罩组件相连;所述第二空间通过第二开口、所述阀门组与所述充气泵相连。
  2. 根据权利要求1所述的一种等量吸气仪,其特征在于,所述阀门组包括第一阀门、第二阀门、第三阀门和第四阀门;
    所述第一开口与一个三通管的第一端相连;所述三通管的第二端通过所述第一阀门、所述节流阀与所述氧气源相连;所述三通管的第二端通过所述第二阀门与所述面罩组件相连;
    所述第二开口与一个四通管的第一端相连;所述四通管的第二端通过所述第三阀门与外界环境相连;所述四通管的第三端通过所述第四阀门与充气泵相连;所述四通管的第四端与第一压力表相连。
  3. 根据权利要求2所述的一种等量吸气仪,其特征在于,所述系统控制器能够控制所述阀门组的每一个阀门,从而使所述阀门组处于以下状态之一
    第一状态:所述第一阀门和第三阀门打开,所述第二阀门和第四阀门关闭;此时所述氧气源的氧气充入所述第一空间,所述第二空间内的空气排出;
    第二状态:所述第一阀门和第三阀门关闭,所述第二阀门关闭,所述第四阀门打开;此时充气泵向所述第二空间充气;
    第三状态:所述第一阀门和第三阀门关闭,所述第二阀门打开,所述第四阀门关闭;此时所述第一空间向外输出氧气。
  4. 根据权利要求3所述的一种等量吸气仪,其特征在于,还包括自校准器,所述自校准器包括刚性的自校准瓶和第二压力表;所述自校准瓶的输入口与所述第二阀门相连,同时还具有一开口与所述第二压力表相连。
  5. 根据权利要求3所述的一种等量吸气仪,其特征在于,所述面罩组件包括面罩主体和面罩同步开关;
    所述面罩主体具有一适合与使用者面部形成气密性贴合的轮廓,以及一 气体入口;
    所述面罩同步开关包括同轴内管、同轴外管和开关驱动器;所述同轴内管和同轴外管上分别设置有相对应的大孔,所述同轴外管上还设置有一通气管,并且通过所述通气管与所述第二阀门相连。
  6. 根据权利要求5所述的一种等量吸气仪,其特征在于,所述同轴内管的外径与所述同轴外管的内径基本相等,两管的一端均为开口端,并且与所述面罩主体的气体入口连通,两管的另一端安装有开关驱动器,并且与外界密封。
  7. 根据权利要求6所述的一种等量吸气仪,其特征在于,所述系统控制器能够控制所述开关驱动器带动所述同轴内管相对于所述同轴外管转动,从而使所述面罩组件处于以下状态之一
    状态1:所述同轴内管的大孔与同轴外管的大孔对齐;此时外界的空气能够通过所述同轴外管和同轴内管进入所述面罩主体;
    状态2:所述同轴内管的大孔与同轴外管的小通气管对准;此时所述第一空间输出的氧气能够通过所述第二阀门进入所述面罩主体;
    状态3:所述同轴内管的大孔与同轴外管的无开口管壁对准;此时所述面罩主体与外界隔离。
  8. 根据权利要求2-7之一所述的等量吸气仪,其特征在于,所述第一阀门、第二阀门、第三阀门、第四阀门均为常闭型电磁阀。
  9. 一种根据权利要求4所述的等量吸气仪的校准方法,其特征在于,所述方法的步骤如下:
    步骤101,控制所述阀门组处于所述第一状态,用所述氧气源通过节流阀向柔性气囊内以一定的速率慢速充气,并且通过控制充气时间向柔性气囊内充入一定量的氧气;
    步骤102,控制所述阀门组处于所述第二状态,用所述充气泵向所述第二空间内充气使所述刚性容器内的压强大于一个大气压;
    步骤103,将所述第二阀门的输出端连接到所述自校准容器的输入口;
    步骤104,控制所述阀门组处于所述第三状态;并记录自校准器上的第二压力表的读数;
    步骤105,重复步骤1-步骤4多次,如果每次第二压力表的读数相差在8%以内,则证明能够向柔性气囊内的第一空间完成等量充气。
  10. 一种使用根据权利要求5-8之一所述的等量吸气仪辅助执行CT影像采集的方法,其特征在于,所述方法的步骤如下:
    步骤201,将面罩主体安装在患者面部,控制所述面罩组件依次处于状态1、状态2、状态1,相应地令患者吸气-呼气-再吸气;
    步骤202,将面罩组件切换到状态3,进行CT扫描,获取图片后将面罩组件切换到状态2,以允许患者自由呼吸;
    步骤203,根据需要确定感兴趣点;
    步骤204,移动CT床使所述感兴趣点断层位于CT扫描平面内;
    步骤205,控制所述面罩组件依次处于状态1、状态2、状态1,相应地令患者吸气-呼气-再吸气;
    步骤206,进行CT单层扫描。
PCT/CN2021/090371 2020-10-08 2021-04-27 一种等量吸气仪 WO2022073339A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011068387.6A CN112370622B (zh) 2020-10-08 2020-10-08 一种等量吸气仪
CN202011068387.6 2020-10-08

Publications (1)

Publication Number Publication Date
WO2022073339A1 true WO2022073339A1 (zh) 2022-04-14

Family

ID=74581058

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/090371 WO2022073339A1 (zh) 2020-10-08 2021-04-27 一种等量吸气仪

Country Status (2)

Country Link
CN (1) CN112370622B (zh)
WO (1) WO2022073339A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022073338A1 (zh) * 2020-10-08 2022-04-14 王洪奎 用于自动穿刺的机器手
CN112370622B (zh) * 2020-10-08 2023-04-28 王洪奎 一种等量吸气仪
CN113288459A (zh) * 2021-07-07 2021-08-24 徐州医科大学附属医院 一种肺结节定位用定量呼吸器

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000022985A1 (en) * 1998-10-22 2000-04-27 Children's Hospital, Inc. Apparatus for controlled ventilation of a patient
CN204601314U (zh) * 2015-05-08 2015-09-02 孙博琳 一种新型肺穿刺辅助控制呼吸装置
CN110124168A (zh) * 2019-06-05 2019-08-16 中国科学院苏州生物医学工程技术研究所 一种辅助呼气器
CN211611210U (zh) * 2018-08-10 2020-10-02 昆明市第三人民医院 一种辅助经皮穿刺的面罩
CN112244953A (zh) * 2020-10-08 2021-01-22 王洪奎 用于自动穿刺的机器手
CN112353461A (zh) * 2020-10-08 2021-02-12 王洪奎 Ct实时定位精准穿刺机器人
CN112370622A (zh) * 2020-10-08 2021-02-19 王洪奎 一种等量吸气仪

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3977432A (en) * 1975-01-13 1976-08-31 American Hospital Supply Corporation Breathing mask and variable concentration oxygen diluting device therefor
EP0808197A4 (en) * 1995-02-10 2001-03-28 Everett D Hougen INDIVIDUAL AND PORTABLE RESPIRATORY APPARATUS
EP1610852B1 (en) * 2003-02-18 2018-12-05 Joseph Fisher Breathing circuit to facilitate the measurement of cardiac output during controlled and spontaneous ventilation
DE102004040740A1 (de) * 2004-08-21 2006-02-23 Viasys Healthcare Gmbh Gasreservoirbeutel, Verteilergehäuse, Beatmungsmaske sowie Beatmungsverfahren
CN202637660U (zh) * 2012-05-22 2013-01-02 湖州师范学院 一种喷雾式呼吸罩
CN105771049B (zh) * 2016-05-25 2018-03-06 戴如春 自动呼吸器
CN208943145U (zh) * 2018-06-08 2019-06-07 百色市人民医院 一种新型鼻塞式吸氧管

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000022985A1 (en) * 1998-10-22 2000-04-27 Children's Hospital, Inc. Apparatus for controlled ventilation of a patient
CN204601314U (zh) * 2015-05-08 2015-09-02 孙博琳 一种新型肺穿刺辅助控制呼吸装置
CN211611210U (zh) * 2018-08-10 2020-10-02 昆明市第三人民医院 一种辅助经皮穿刺的面罩
CN110124168A (zh) * 2019-06-05 2019-08-16 中国科学院苏州生物医学工程技术研究所 一种辅助呼气器
CN112244953A (zh) * 2020-10-08 2021-01-22 王洪奎 用于自动穿刺的机器手
CN112353461A (zh) * 2020-10-08 2021-02-12 王洪奎 Ct实时定位精准穿刺机器人
CN112370622A (zh) * 2020-10-08 2021-02-19 王洪奎 一种等量吸气仪

Also Published As

Publication number Publication date
CN112370622B (zh) 2023-04-28
CN112370622A (zh) 2021-02-19

Similar Documents

Publication Publication Date Title
WO2022073339A1 (zh) 一种等量吸气仪
WO2022073337A1 (zh) Ct实时定位精准穿刺机器人
US6580938B1 (en) Image-guided thoracic therapy and apparatus therefor
US20150201916A1 (en) Mri biopsy device
JPH11313821A (ja) 医用タ―ゲット装置
US20020087065A1 (en) Diagnostic imaging interventional apparatus
EP4171371A1 (en) Systems and methods for defining and modifying range of motion of probe used in patient treatment
CN109077784A (zh) 全方位穿刺机构及医用精准穿刺系统
RU2594100C1 (ru) Способ проведения малоинвазивного хирургического вмешательства и установка "рх-1" для его осуществления
US20140088457A1 (en) Bleeding containment device
CN110786890A (zh) 一种医疗器械
IL126692A (en) Apparatus for image-guided thoracic therapy
Kanoh et al. Endobronchial ultrasonography guidance for transbronchial needle aspiration using a double-channel bronchoscope
CN109620304B (zh) 一种医用活检取样装置
CN110115601A (zh) 一种超声引导下乳腺病灶立体定位活检仪
WO2022073338A1 (zh) 用于自动穿刺的机器手
CN109223053A (zh) 一种前列腺穿刺机器人
CN206603805U (zh) 全角度穿刺导向装置
CN112244953B (zh) 用于自动穿刺的机器手
CN110680471A (zh) 一种穿刺辅助导引支架
CN217938333U (zh) 一种气动变刚度的六自由度ct-mri针穿刺机器人
CN216754563U (zh) 一种用于ct引导下经皮肺跨层面穿刺的激光定位装置
CN114699142A (zh) 气动变刚度的六自由度ct-mri针穿刺机器人
Gumprecht et al. A robotics-based flat-panel ultrasound device for continuous intraoperative transcutaneous imaging
CN112754618A (zh) 一种mri兼容性全自动化乳腺病灶定位活检机器人系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21876862

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 18/07/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 21876862

Country of ref document: EP

Kind code of ref document: A1