WO2022073230A1 - 半导体结构的衬底剥离方法 - Google Patents

半导体结构的衬底剥离方法 Download PDF

Info

Publication number
WO2022073230A1
WO2022073230A1 PCT/CN2020/120174 CN2020120174W WO2022073230A1 WO 2022073230 A1 WO2022073230 A1 WO 2022073230A1 CN 2020120174 W CN2020120174 W CN 2020120174W WO 2022073230 A1 WO2022073230 A1 WO 2022073230A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
substrate
algan
aln
algan layer
Prior art date
Application number
PCT/CN2020/120174
Other languages
English (en)
French (fr)
Inventor
程凯
Original Assignee
苏州晶湛半导体有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州晶湛半导体有限公司 filed Critical 苏州晶湛半导体有限公司
Priority to PCT/CN2020/120174 priority Critical patent/WO2022073230A1/zh
Priority to US18/024,627 priority patent/US20230317873A1/en
Priority to CN202080105796.0A priority patent/CN116325112A/zh
Publication of WO2022073230A1 publication Critical patent/WO2022073230A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0093Wafer bonding; Removal of the growth substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02318Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
    • H01L21/02345Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment by exposure to radiation, e.g. visible light
    • H01L21/02354Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment by exposure to radiation, e.g. visible light using a coherent radiation, e.g. a laser
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02494Structure
    • H01L21/02496Layer structure
    • H01L21/02505Layer structure consisting of more than two layers
    • H01L21/02507Alternating layers, e.g. superlattice
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/20Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy
    • H01L21/2003Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy characterised by the substrate
    • H01L21/2011Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy characterised by the substrate the substrate being of crystalline insulating material, e.g. sapphire
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76841Barrier, adhesion or liner layers
    • H01L21/76871Layers specifically deposited to enhance or enable the nucleation of further layers, i.e. seed layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/7806Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices involving the separation of the active layers from a substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/0004Devices characterised by their operation
    • H01L33/002Devices characterised by their operation having heterojunctions or graded gap
    • H01L33/0025Devices characterised by their operation having heterojunctions or graded gap comprising only AIIIBV compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/10Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a light reflecting structure, e.g. semiconductor Bragg reflector
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/54Filters comprising resonators of piezoelectric or electrostrictive material
    • H03H9/56Monolithic crystal filters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0066Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound

Definitions

  • the present application relates to the field of semiconductor technology, and in particular, to a method for stripping a substrate of a semiconductor structure.
  • Wide-bandgap semiconductor material GaN-based materials as a typical representative of the third-generation semiconductor materials, have the excellent characteristics of large bandgap, high voltage resistance, high temperature resistance, high electron saturation speed and drift speed, and easy formation of high-quality heterostructures. Suitable for manufacturing high temperature, high frequency, high power electronic devices.
  • GaN-based devices are commonly fabricated on foreign substrates, such as sapphire, silicon carbide, and silicon.
  • the object of the present invention is to provide a method for stripping a substrate of a semiconductor structure, which can improve the stripping quality and reduce the stripping cost.
  • the present invention provides a method for stripping a substrate of a semiconductor structure, comprising:
  • the first AlGaN layer is irradiated from the substrate with a laser to decompose the first AlGaN layer, so that the functional layer is separated from the substrate and the first AlN layer.
  • the functional layer and the second AlGaN layer are separated from each other.
  • the AlN layer is separated from the substrate and the first AlN layer.
  • the Al composition in the second AlGaN layer is larger than the Al composition in the first AlGaN layer, and the laser is self-contained.
  • the functional layer and the second AlGaN layer are separated from the substrate and the first AlN layer.
  • the Al composition in the AlGaN layer in this application refers to the percentage of the amount of Al element in the sum of the amount of Al element and the amount of Ga element, that is, the number of Al atoms accounts for the percentage of Al atoms The percentage of the sum of the number and the number of Ga atoms.
  • the Al composition is less than 70%.
  • the first AlGaN layer has a single-layer structure or a stacked-layer structure.
  • the stacked structure includes multiple layers of first AlGaN sublayers, and Al compositions in the first AlGaN sublayers of each layer are different.
  • the stacked structure includes: AlGaN/AlN alternating multilayer superlattice structure.
  • the material of the substrate is sapphire.
  • the functional layer includes: a light wave filtering structure or an LED structure.
  • the functional layer includes: an LED structure, and the light emission wavelength of the LED structure is less than 350 nm.
  • the substrate has a flat sheet structure, and the first AlN layer has a patterned structure; or both the substrate and the first AlN layer have a patterned structure.
  • the present invention utilizes the first AlN layer and the first AlGaN layer respectively corresponding to the nucleation layer and the buffer layer when the functional layer is grown epitaxially, which can improve the quality of the functional layer;
  • the first AlN layer is transparent to the light of the above-mentioned waveband, but the first AlGaN layer will decompose nitrogen after absorbing the light of the above-mentioned waveband, causing the first AlGaN layer to be loose and porous and easy to separate, so that the substrate can be easily peeled off without The functional layer will be damaged.
  • the first AlGaN layer is a stacked structure, and the stacked structure includes multiple first AlGaN sub-layers, and the Al composition in each of the first AlGaN sub-layers is different.
  • the advantage of lamination is that the applicable laser wavelength range for peeling is large, or when the laser wavelength drifts, there is still a good peeling effect.
  • FIG. 1 is a flow chart of a method for stripping a substrate of a semiconductor structure according to a first embodiment of the present invention
  • FIG. 2 and FIG. 3 are schematic diagrams of intermediate structures corresponding to the process in FIG. 1;
  • FIG. 4 is a schematic diagram of an intermediate structure corresponding to a substrate stripping method of a semiconductor structure according to a second embodiment of the present invention.
  • FIG. 5 is a schematic diagram of an intermediate structure corresponding to a substrate stripping method for a semiconductor structure according to a third embodiment of the present invention.
  • FIG. 6 is a schematic diagram of an intermediate structure corresponding to a substrate lift-off method for a semiconductor structure according to a fourth embodiment of the present invention.
  • the first AlGaN layer 12' after the reaction of the first AlGaN layer 12 is the first AlGaN layer 12' after the reaction of the first AlGaN layer 12
  • Second AlGaN layer 14 Second AlN layer 15
  • FIG. 1 is a flow chart of a method for stripping a substrate of a semiconductor structure according to a first embodiment of the present invention
  • FIG. 2 and FIG. 3 are schematic diagrams of intermediate structures corresponding to the flow in FIG. 1 .
  • the substrate 10 referring to step S1 in FIG. 1 and as shown in FIG. 2 , the substrate 10 , the first AlN layer 11 , the first AlGaN layer 12 and the functional layer 13 distributed from bottom to top are provided.
  • the material of the substrate 10 may be a material such as sapphire, silicon carbide, silicon or diamond, preferably a material with high laser transmittance in the subsequent step S2.
  • the material of the functional layer 13 may be a group III nitride-based material, such as at least one of GaN, AlGaN, InGaN, and AlInGaN.
  • the functional layer 13 may correspond to a heterojunction structure in the HMET device, that is, include: a barrier layer and a buffer layer; or may correspond to an LED structure in an LED device, that is, include: a P-type semiconductor layer, an N-type semiconductor layer, and a P-type semiconductor layer.
  • the emission wavelength of the LED structure may be less than 350 nm.
  • the LED structure can be used with a pair of Bragg mirrors as a light wave filtering structure.
  • a certain material is represented by a chemical element, but the molar ratio of each chemical element in the material is not limited.
  • the GaN material contains Ga element and N element, but the molar ratio of Ga element and N element is not limited.
  • the first AlN layer 11 can serve as a nucleation layer when the functional layer 13 is epitaxially grown.
  • the nucleation layer can alleviate the problems of lattice mismatch and thermal mismatch between the epitaxially grown functional layer 13 and the substrate 10 .
  • the first AlGaN layer 12 can serve as a buffer layer when the functional layer 13 is epitaxially grown.
  • the buffer layer can reduce the dislocation density and defect density of the epitaxially grown functional layer 13 and improve the crystal quality.
  • the first AlGaN layer 12 has a single-layer structure, and the material of the single-layer structure can be expressed as: AlGaN.
  • the first AlGaN layer 12 is irradiated from the substrate 10 with a laser to decompose the first AlGaN layer 12 , so that the functional layer 13 is separated from the substrate 10 and the first AlGaN layer 12 .
  • AlN layer 11 AlN layer 11 .
  • the first AlN layer 11 When the substrate 10 is irradiated by laser light of certain wavelength bands, the first AlN layer 11 is transparent to the light of the above wavelength band, but the first AlGaN layer 12 will decompose nitrogen after absorbing the light of the above wavelength band, and the reacted first AlGaN layer 12' is loose The pores are easily separated, so that the substrate 10 can be easily peeled off without damaging the functional layer 13 .
  • the Al composition is less than 70%, that is, when the content of the Al element in the first AlGaN layer 12 accounts for the sum of the content of the Al and Ga elements is less than 70%, the corresponding The wavelength range of the laser with better decomposition degree is 200nm-300nm. Further, when the percentage of Al composition in the first AlGaN layer 12 is less than 40%, the decomposition degree is better when the wavelength of the laser is in the range of 250 nm to 280 nm.
  • Sapphire has a relatively high transmittance in the above-mentioned 200 nm-300 nm band, and can be used as a preferred material for the substrate 10 .
  • the range includes endpoint values.
  • FIG. 4 is a schematic diagram of an intermediate structure corresponding to the substrate lift-off method of the semiconductor structure according to the second embodiment of the present invention.
  • the substrate lift-off method of the second embodiment is substantially the same as the substrate lift-off method of the first embodiment, the only difference being that the first AlGaN layer 12 is a stacked structure, and the stacked structure includes multiple layers of the first AlGaN In the sub-layers 121, the Al composition in the first AlGaN sub-layer 121 is different for each layer.
  • the advantage of lamination is that the applicable laser wavelength range for peeling is large, or when the laser wavelength drifts, there is still a good peeling effect.
  • the first AlGaN layer 12 has a laminated structure, which can also protect the upper functional layer 13 .
  • the stacked structure may further include: AlGaN/AlN alternating multilayer superlattice structure.
  • the Al composition in each layer of AlGaN is different or the same.
  • FIG. 5 is a schematic diagram of an intermediate structure corresponding to a substrate lift-off method for a semiconductor structure according to a third embodiment of the present invention.
  • the substrate lift-off method of the third embodiment is substantially the same as the substrate lift-off method of the first and second embodiments, the only difference being that there is a second AlGaN layer between the first AlGaN layer 12 and the functional layer 13 14.
  • the Al composition in the second AlGaN layer 14 is higher than the Al composition in the first AlGaN layer 12.
  • the laser is transparent to the first AlN layer 11 and opaque to the first AlGaN layer 12; preferably, the laser is transparent to both the first AlN layer 11 and the second AlGaN layer 14, and is transparent to the first AlGaN layer 12 It is not transparent, so that the damage of the second AlGaN layer 14 by the laser can be avoided.
  • FIG. 6 is a schematic diagram of an intermediate structure corresponding to a substrate lift-off method for a semiconductor structure according to a fourth embodiment of the present invention.
  • the substrate lift-off method of the fourth embodiment is substantially the same as the substrate lift-off method of the third embodiment, the only difference being that there is a second AlN layer 15 between the first AlGaN layer 12 and the functional layer 13, and the laser After the first AlGaN layer 12 is irradiated from the substrate 10 , the functional layer 13 and the second AlN layer 15 are separated from the substrate 10 and the first AlN layer 11 . In other words, the second AlN layer 15 replaces the second AlGaN layer 14 .
  • this solution reduces the thickness of the AlGaN layer, so under the same laser power, the decomposition degree of the first AlGaN layer 12 can be improved, and the peeling effect is better.
  • the substrate lift-off methods of the above-mentioned Embodiments 1 to 4 can also be applied to a patterned substrate.
  • the substrate 10 has a flat wafer structure
  • the first AlN layer 11 has a patterned structure.
  • both the substrate 10 and the first AlN layer 11 have a patterned structure.
  • the substrate 10 and the first AlN layer 11 are patterned in the same process; or the substrate 10 is patterned first, and the first AlN layer 11 is epitaxially grown on the patterned substrate 10 .
  • the size of the opening in the substrate 10 is slightly different from the size of the opening in the substrate 10 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Toxicology (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Acoustics & Sound (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Semiconductor Lasers (AREA)
  • Led Devices (AREA)

Abstract

提供了一种半导体结构的衬底剥离方法,包括:提供自下而上分布的衬底(10)、第一AlN层(11)、第一AlGaN层(12)以及功能层(13);采用激光自衬底(10)照射第一AlGaN层(12),使第一AlGaN层(12)分解,从而功能层(13)脱离衬底(10)与第一AlN层(11)。所述方法利用第一AlN层(11)、第一AlGaN层(12)分别对应作为外延生长功能层(13)时的成核层与缓冲层,可提高功能层(13)的质量;另一方面,某些波段的激光照射衬底(10)时,第一AlN层(11)对上述波段的光透明,但第一AlGaN层(12)吸收上述波段的光后会分解出氮气,造成第一AlGaN层(12)疏松多孔易分离,从而可方便地剥离衬底(10),且不会损伤功能层(13)。

Description

半导体结构的衬底剥离方法 技术领域
本申请涉及半导体技术领域,尤其涉及一种半导体结构的衬底剥离方法。
背景技术
宽禁带半导体材料GaN基材料作为第三代半导体材料的典型代表,具有禁带宽带大、耐高压、耐高温、电子饱和速度和漂移速度高、容易形成高质量异质结构的优异特性,非常适合制造高温、高频、大功率电子器件。
由于本征衬底的缺乏,GaN基器件普遍制备在异质衬底上,比如蓝宝石、碳化硅和硅。
近年来,随着器件轻薄化的市场需求,如何剥离GaN基器件的衬底以及如何提高剥离质量是行业内急需解决的技术问题。
发明内容
本发明的发明目的是提供一种半导体结构的衬底剥离方法,提高剥离质量以及降低剥离成本。
为实现上述目的,本发明提供一种半导体结构的衬底剥离方法,包括:
提供自下而上分布的衬底、第一AlN层、第一AlGaN层以及功能层;
采用激光自所述衬底照射所述第一AlGaN层,使所述第一AlGaN层分解,从而所述功能层脱离所述衬底与所述第一AlN层。
可选地,所述第一AlGaN层与所述功能层之间还具有第二AlN层,所述激光自所述衬底照射所述第一AlGaN层后,所述功能层与所述第二AlN层脱离所述衬底与所述第一AlN层。
可选地,所述第一AlGaN层与所述功能层之间还具有第二AlGaN层,所述第二AlGaN层中Al组分大于所述第一AlGaN层中Al组分,所述激光自所述衬底照射所述第一AlGaN层后,所述功能层与所述第二AlGaN层脱离所述衬底与所述第一AlN层。
需要说明的是,本申请中AlGaN层中的Al组分是指:Al元素的物质的量占Al元素物质的量和Ga元素物质的量之和的百分比,即Al原子的个数占Al原子个数和Ga原子个数之和的百分比。
可选地,所述第一AlGaN层中,Al组分小于70%。
可选地,所述第一AlGaN层为单层结构或叠层结构。
可选地,所述叠层结构包括多层第一AlGaN子层,各层所述第一AlGaN子层中的Al组分不同。
可选地,所述叠层结构包括:AlGaN/AlN交替多层超晶格结构。
可选地,所述衬底的材料为蓝宝石。
可选地,所述功能层包括:光波滤波结构或LED结构。
可选地,所述功能层包括:LED结构,所述LED结构的发光波长小于350nm。
可选地,所述衬底为平片结构,所述第一AlN层具有图形化的结构;或所述衬底和所述第一AlN层均具有图形化的结构。
与现有技术相比,本发明的有益效果在于:
1)本发明一方面利用第一AlN层、第一AlGaN层分别对应作为外延生长功能层时的成核层与缓冲层,可提高功能层的质量;另一方面,某些波 段的激光照射衬底时,第一AlN层对上述波段的光透明,但第一AlGaN层吸收上述波段的光后会分解出氮气,造成第一AlGaN层疏松多孔易分离,从而可方便地剥离衬底,且不会损伤功能层。
2)可选方案中,第一AlGaN层与功能层之间还具有a)第二AlN层或b)第二AlGaN层,第二AlGaN层中Al组分大于第一AlGaN层中Al组分。相对于b)方案,a)方案可提高第一AlGaN层的分解程度,剥离效果更佳。相对于a)方案,b)方案可提高功能层的质量。
3)可选方案中,第一AlGaN层为叠层结构,叠层结构包括多层第一AlGaN子层,各层第一AlGaN子层中的Al组分不同。相对于第一AlGaN层为单层结构,Al的组分固定的方案,叠层的好处在于:剥离可适用的激光波长范围大,或在激光波长出现漂移时,仍有好的剥离效果。
附图说明
图1是本发明第一实施例的半导体结构的衬底剥离方法的流程图;
图2与图3是图1中的流程对应的中间结构示意图;
图4是本发明第二实施例的半导体结构的衬底剥离方法对应的中间结构示意图;
图5是本发明第三实施例的半导体结构的衬底剥离方法对应的中间结构示意图;
图6是本发明第四实施例的半导体结构的衬底剥离方法对应的中间结构示意图。
为方便理解本发明,以下列出本发明中出现的所有附图标记:
衬底10        第一AlN层11
第一AlGaN层12      反应后的第一AlGaN层12'
功能层13           第一AlGaN子层121
第二AlGaN层14      第二AlN层15
具体实施方式
为使本发明的上述目的、特征和优点能够更为明显易懂,下面结合附图对本发明的具体实施例做详细的说明。
图1是本发明第一实施例的半导体结构的衬底剥离方法的流程图;图2与图3是图1中的流程对应的中间结构示意图。
首先,参照图1中的步骤S1以及图2所示,提供自下而上分布的衬底10、第一AlN层11、第一AlGaN层12以及功能层13。
衬底10的材料可以为蓝宝石、碳化硅、硅或金刚石等材料,优选对后续步骤S2的激光透过率高的材料。
功能层13的材料可以为Ⅲ族氮化物基材料,例如为GaN、AlGaN、InGaN、AlInGaN中的至少一种。功能层13可对应为HMET器件中的异质结结构,即包括:势垒层和缓冲层;也可对应为LED器件中的LED结构,即包括:P型半导体层、N型半导体层以及P型半导体层与N型半导体层之间的单量子阱层/多量子阱层/量子点/量子线。
一个实施例中,LED结构的发光波长可以小于350nm。
再一个实施例中,LED结构可配合一对布拉格反射镜,作为光波滤波结构使用。
需要说明的是,本实施例中,以化学元素代表某种材料,但不限定该材料中各化学元素的摩尔占比。例如GaN材料中,包含Ga元素与N元素,但不限定Ga元素与N元素的摩尔占比。
第一AlN层11可作为外延生长功能层13时的成核层。成核层可缓解外延生长的功能层13与衬底10之间的晶格失配和热失配的问题。
第一AlGaN层12可作为外延生长功能层13时的缓冲层。缓冲层可降低外延生长的功能层13的位错密度和缺陷密度,提升晶体质量。
本实施例中,第一AlGaN层12为单层结构,该单层结构的材料可表示为:AlGaN。
接着,参照图1中的步骤S2、图2以及图3所示,采用激光自衬底10照射第一AlGaN层12,使第一AlGaN层12分解,从而功能层13脱离衬底10与第一AlN层11。
某些波段的激光照射衬底10时,第一AlN层11对上述波段的光透明,但第一AlGaN层12吸收上述波段的光后会分解出氮气,反应后的第一AlGaN层12'疏松多孔易分离,从而可方便地剥离衬底10,且不会损伤功能层13。
研究表明,第一AlGaN层12中,Al组分小于70%,即第一AlGaN层12中Al元素的物质的量占Al元素和Ga元素物质的量之和的百分比小于70%时,对应的分解程度较佳的激光的波长范围在200nm~300nm。进一步地,第一AlGaN层12中,Al组分的百分比小于40%时,激光的波长范围在250nm~280nm时,分解程度更佳。
蓝宝石在上述200nm~300nm波段的透光率较高,可作为衬底10的优选材料。
需要说明的是,本实施例中,范围包括端点值。
图4是本发明第二实施例的半导体结构的衬底剥离方法对应的中间结构示意图。
参照图4所示,本实施例二的衬底剥离方法与实施例一的衬底剥离方法大致相同,区别仅在于:第一AlGaN层12为叠层结构,叠层结构包括多层第一AlGaN子层121,各层第一AlGaN子层121中的Al组分不同。
相对于第一AlGaN层12为单层结构,Al组分固定的方案,叠层的好处在于:剥离可适用的激光波长范围大,或在激光波长出现漂移时,仍有好的剥离效果。另外,第一AlGaN层12为叠层结构还可以对上层的功能层13起到保护作用。
一些实施例中,叠层结构还可以包括:AlGaN/AlN交替多层超晶格结构。超晶格结构中,各层AlGaN中的Al组分不同或相同。
图5是本发明第三实施例的半导体结构的衬底剥离方法对应的中间结构示意图。
参照图5所示,本实施例三的衬底剥离方法与实施例一、二的衬底剥离方法大致相同,区别仅在于:第一AlGaN层12与功能层13之间还具有第二AlGaN层14,第二AlGaN层14中Al组分高于第一AlGaN层12中Al组分,激光自衬底10照射第一AlGaN层12后,功能层13与第二AlGaN层14脱离衬底10与第一AlN层11。
激光对于第一AlN层11来说是透明的、对于第一AlGaN层12不透明;优选地,激光对于第一AlN层11和第二AlGaN层14来说都是透明的,对于第一AlGaN层12来说不透明,这样可以避免激光对第二AlGaN层14的损伤。
AlGaN层的含Al量越高,功能层13的质量越好,因而本实施例的方案可提高功能层13的质量。
图6是本发明第四实施例的半导体结构的衬底剥离方法对应的中间结构示意图。
参照图6所示,本实施例四的衬底剥离方法与实施例三的衬底剥离方法大致相同,区别仅在于:第一AlGaN层12与功能层13之间具有第二AlN层15,激光自衬底10照射第一AlGaN层12后,功能层13与第二AlN层15脱离衬底10与第一AlN层11。换言之,第二AlN层15替换第二AlGaN层14。
相对于实施例三的方案,本方案由于减小了AlGaN层的厚度,因而在同等激光功率下,可提高第一AlGaN层12的分解程度,剥离效果更佳。
在一些实施例中,上述的实施例一至实施例四的衬底剥离方法还可以运用在图形化衬底上。
例如,一实施例中,衬底10为平片结构,第一AlN层11具有图形化的结构。
另一实施例中,衬底10和第一AlN层11均具有图形化的结构。例如衬底10和第一AlN层11在同一工序中进行图形化;或先对衬底10进行图形化,在图形化的衬底10上外延生长第一AlN层11,第一AlN层11中的开口尺寸和衬底10中的开口尺寸略有差异。
虽然本发明披露如上,但本发明并非限定于此。任何本领域技术人员,在不脱离本发明的精神和范围内,均可作各种更动与修改,因此本发明的保护范围应当以权利要求所限定的范围为准。

Claims (11)

  1. 一种半导体结构的衬底剥离方法,其特征在于,包括:
    提供自下而上分布的衬底(10)、第一AlN层(11)、第一AlGaN层(12)以及功能层(13);
    采用激光自所述衬底(10)照射所述第一AlGaN层(12),使所述第一AlGaN层(12)分解,从而所述功能层(13)脱离所述衬底(10)与所述第一AlN层(11)。
  2. 根据权利要求1所述的半导体结构的衬底剥离方法,其特征在于,所述第一AlGaN层(12)与所述功能层(13)之间还具有第二AlN层(15),所述激光自所述衬底(10)照射所述第一AlGaN层(12)后,所述功能层(13)与所述第二AlN层(15)脱离所述衬底(10)与所述第一AlN层(11)。
  3. 根据权利要求1所述的半导体结构的衬底剥离方法,其特征在于,所述第一AlGaN层(12)与所述功能层(13)之间还具有第二AlGaN层(14),所述第二AlGaN层(14)中Al组分高于所述第一AlGaN层(12)中Al组分,所述激光自所述衬底(10)照射所述第一AlGaN层(12)后,所述功能层(13)与所述第二AlGaN层(14)脱离所述衬底(10)与所述第一AlN层(11)。
  4. 根据权利要求1至3任一项所述的半导体结构的衬底剥离方法,其特征在于,所述第一AlGaN层(12)中,Al组分小于70%。
  5. 根据权利要求1所述的半导体结构的衬底剥离方法,其特征在于,所述第一AlGaN层(12)为单层结构或叠层结构。
  6. 根据权利要求5所述的半导体结构的衬底剥离方法,其特征在于,所述叠层结构包括多层第一AlGaN子层(121),各层所述第一AlGaN子层(121)中的Al组分不同。
  7. 根据权利要求5所述的半导体结构的衬底剥离方法,其特征在于,所述叠层结构包括:AlGaN/AlN交替多层超晶格结构。
  8. 根据权利要求1所述的半导体结构的衬底剥离方法,其特征在于,所 述衬底(10)的材料为蓝宝石。
  9. 根据权利要求1所述的半导体结构的衬底剥离方法,其特征在于,所述功能层(13)包括:光波滤波结构或LED结构。
  10. 根据权利要求1所述的半导体结构的衬底剥离方法,其特征在于,所述功能层(13)包括:LED结构,所述LED结构的发光波长小于350nm。
  11. 根据权利要求1所述的半导体结构的衬底剥离方法,其特征在于,所述衬底(10)为平片结构,所述第一AlN层(11)具有图形化的结构;或所述衬底(10)和所述第一AlN层(11)均具有图形化的结构。
PCT/CN2020/120174 2020-10-10 2020-10-10 半导体结构的衬底剥离方法 WO2022073230A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2020/120174 WO2022073230A1 (zh) 2020-10-10 2020-10-10 半导体结构的衬底剥离方法
US18/024,627 US20230317873A1 (en) 2020-10-10 2020-10-10 Substrate stripping method for semiconductor structure
CN202080105796.0A CN116325112A (zh) 2020-10-10 2020-10-10 半导体结构的衬底剥离方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/120174 WO2022073230A1 (zh) 2020-10-10 2020-10-10 半导体结构的衬底剥离方法

Publications (1)

Publication Number Publication Date
WO2022073230A1 true WO2022073230A1 (zh) 2022-04-14

Family

ID=81125709

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/120174 WO2022073230A1 (zh) 2020-10-10 2020-10-10 半导体结构的衬底剥离方法

Country Status (3)

Country Link
US (1) US20230317873A1 (zh)
CN (1) CN116325112A (zh)
WO (1) WO2022073230A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1943044A (zh) * 2004-04-29 2007-04-04 奥斯兰姆奥普托半导体有限责任公司 用于制造辐射发射的半导体芯片的方法
US20070139141A1 (en) * 2005-12-20 2007-06-21 Palo Alto Research Center Incorporated. Acoustic devices using an AIGaN piezoelectric region
CN107123589A (zh) * 2017-06-26 2017-09-01 镓特半导体科技(上海)有限公司 半导体结构、自支撑氮化镓层及其制备方法
CN107863426A (zh) * 2016-09-21 2018-03-30 夏普株式会社 氮化铝系半导体深紫外发光元件
CN110459659A (zh) * 2019-06-20 2019-11-15 华灿光电(浙江)有限公司 发光二极管外延片及其制造方法、制造芯片的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1943044A (zh) * 2004-04-29 2007-04-04 奥斯兰姆奥普托半导体有限责任公司 用于制造辐射发射的半导体芯片的方法
US20070139141A1 (en) * 2005-12-20 2007-06-21 Palo Alto Research Center Incorporated. Acoustic devices using an AIGaN piezoelectric region
CN107863426A (zh) * 2016-09-21 2018-03-30 夏普株式会社 氮化铝系半导体深紫外发光元件
CN107123589A (zh) * 2017-06-26 2017-09-01 镓特半导体科技(上海)有限公司 半导体结构、自支撑氮化镓层及其制备方法
CN110459659A (zh) * 2019-06-20 2019-11-15 华灿光电(浙江)有限公司 发光二极管外延片及其制造方法、制造芯片的方法

Also Published As

Publication number Publication date
US20230317873A1 (en) 2023-10-05
CN116325112A (zh) 2023-06-23

Similar Documents

Publication Publication Date Title
US7273798B2 (en) Gallium nitride device substrate containing a lattice parameter altering element
US8334155B2 (en) Substrate for growing a III-V light emitting device
CN105428482B (zh) 一种led外延结构及制作方法
US8803189B2 (en) III-V compound semiconductor epitaxy using lateral overgrowth
RU2470412C2 (ru) Способ изготовления светоизлучающих устройств на основе нитридов iii группы, выращенных на шаблонах для уменьшения напряжения
CN103843161B (zh) 用于制造光电子半导体芯片的方法和光电子半导体芯片
US8823055B2 (en) REO/ALO/A1N template for III-N material growth on silicon
KR20140043460A (ko) 질화물 반도체 구조 및 그 제작방법
WO2022062974A1 (zh) 氮化物外延结构和半导体器件
JP6867180B2 (ja) 半導体発光素子の製造方法
KR20080046743A (ko) 질화물 반도체 소자 및 그 제법
JP5073624B2 (ja) 酸化亜鉛系半導体の成長方法及び半導体発光素子の製造方法
TW201421543A (zh) 磊晶晶圓及其製造方法
JP6512669B2 (ja) 半導体積層構造およびこれを用いた半導体素子
JP2015026770A (ja) 半導体積層構造およびこれを用いた半導体素子
US8994032B2 (en) III-N material grown on ErAIN buffer on Si substrate
CN210120150U (zh) 采用2d材料磊晶去疵单晶基板
KR102147587B1 (ko) 완화 층 상에 성장된 ⅲ-질화물 발광 디바이스
KR100583163B1 (ko) 질화물 반도체 및 그 제조방법
WO2022073230A1 (zh) 半导体结构的衬底剥离方法
JP4700464B2 (ja) 化合物半導体素子
CN213150800U (zh) 一种具有纳米夹层的氮化铝成核层结构
US9231053B2 (en) Light emitting diodes having zinc oxide fibers over silicon substrates
JP7424841B2 (ja) 窒化物半導体積層構造、窒化物半導体発光素子および窒化物半導体積層構造の製造方法
JP3642199B2 (ja) 窒化ガリウム系化合物半導体発光素子の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20956545

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20956545

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20956545

Country of ref document: EP

Kind code of ref document: A1