WO2022073168A1 - Autonomous boresight beam adjustment small cell deployment - Google Patents

Autonomous boresight beam adjustment small cell deployment Download PDF

Info

Publication number
WO2022073168A1
WO2022073168A1 PCT/CN2020/119876 CN2020119876W WO2022073168A1 WO 2022073168 A1 WO2022073168 A1 WO 2022073168A1 CN 2020119876 W CN2020119876 W CN 2020119876W WO 2022073168 A1 WO2022073168 A1 WO 2022073168A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna panel
beams
tracking
adjusting
base station
Prior art date
Application number
PCT/CN2020/119876
Other languages
French (fr)
Inventor
Li Tan
Chaofeng HUI
Meng Liu
Ying Wang
Xuesong Chen
Haichao SONG
Liang Xue
Original Assignee
Qualcomm Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Incorporated filed Critical Qualcomm Incorporated
Priority to PCT/CN2020/119876 priority Critical patent/WO2022073168A1/en
Publication of WO2022073168A1 publication Critical patent/WO2022073168A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0691Hybrid systems, i.e. switching and simultaneous transmission using subgroups of transmit antennas

Definitions

  • aspects of the present disclosure generally relate to wireless communications, and more particularly to techniques and apparatuses for 5G new radio (NR) autonomous boresight beam adjustment for small cell deployments, such as millimeter wave (mmW) systems.
  • NR new radio
  • mmW millimeter wave
  • Wireless communications systems are widely deployed to provide various telecommunications services such as telephony, video, data, messaging, and broadcasts.
  • Typical wireless communications systems may employ multiple-access technologies capable of supporting communications with multiple users by sharing available system resources (e.g., bandwidth, transmit power, and/or the like) .
  • multiple-access technologies include code division multiple access (CDMA) systems, time division multiple access (TDMA) systems, frequency-division multiple access (FDMA) systems, orthogonal frequency-division multiple access (OFDMA) systems, single-carrier frequency-division multiple access (SC-FDMA) systems, time division synchronous code division multiple access (TD-SCDMA) systems, and long term evolution (LTE) .
  • LTE/LTE-Advanced is a set of enhancements to the universal mobile telecommunications system (UMTS) mobile standard promulgated by the Third Generation Partnership Project (3GPP) .
  • UMTS universal mobile telecommunications system
  • a wireless communications network may include a number of base stations (BSs) that can support communications for a number of user equipment (UEs) .
  • a user equipment (UE) may communicate with a base station (BS) via the downlink and uplink.
  • the downlink (or forward link) refers to the communications link from the BS to the UE
  • the uplink (or reverse link) refers to the communications link from the UE to the BS.
  • a BS may be referred to as a Node B, a gNB, an access point (AP) , a radio head, a transmit and receive point (TRP) , a new radio (NR) BS, a 5G Node B, and/or the like.
  • New radio which may also be referred to as 5G, is a set of enhancements to the LTE mobile standard promulgated by the Third Generation Partnership Project (3GPP) .
  • NR is designed to better support mobile broadband Internet access by improving spectral efficiency, lowering costs, improving services, making use of new spectrum, and better integrating with other open standards using orthogonal frequency division multiplexing (OFDM) with a cyclic prefix (CP) (CP-OFDM) on the downlink (DL) , using CP-OFDM and/or SC-FDM (e.g., also known as discrete Fourier transform spread OFDM (DFT-s-OFDM) ) on the uplink (UL) , as well as supporting beamforming, multiple-input multiple-output (MIMO) antenna technology, and carrier aggregation.
  • OFDM orthogonal frequency division multiplexing
  • CP-OFDM with a cyclic prefix
  • SC-FDM e.g., also known as discrete Fourier transform spread OFDM (DFT-s-OFDM)
  • DFT-s-OFDM discrete Fourier transform spread OFDM
  • MIMO multiple-input multiple-output
  • a method of wireless communication by a network device, includes tracking a traffic level for each beam of multiple beams of a first antenna panel. The method also includes determining a statistical traffic center of the plurality of beams based on the tracking. The method further includes adjusting the first antenna panel to align a boresight beam direction of the first antenna panel with the statistical traffic center of the multiple beams.
  • An apparatus for wireless communication, by a network device includes means for tracking a traffic level for each beam of a plurality of beams of a first antenna panel.
  • the apparatus also includes means for determining a statistical traffic center of the plurality of beams based on the tracking.
  • the apparatus further includes means for adjusting the first antenna panel to align a boresight beam direction of the first antenna panel with the statistical traffic center of the plurality of beams.
  • a non-transitory computer-readable medium having program code recorded thereon is executed by a processor.
  • the non-transitory computer-readable medium includes program code to track a traffic level for each beam of a plurality of beams of a first antenna panel.
  • the non-transitory computer-readable medium also includes program code to determine a statistical traffic center of the plurality of beams based on the tracking.
  • the non-transitory computer-readable medium further includes program code to adjust the first antenna panel to align a boresight beam direction of the first antenna panel with the statistical traffic center of the plurality of beams.
  • FIGURE 1 is a block diagram conceptually illustrating an example of a wireless communications network, in accordance with various aspects of the present disclosure.
  • FIGURE 2 is a block diagram conceptually illustrating an example of a base station in communication with a user equipment (UE) in a wireless communications network, in accordance with various aspects of the present disclosure.
  • UE user equipment
  • FIGURE 4 is a diagram further illustrating narrow beams generated by a small cell antenna panel, according to aspects of the present disclosure.
  • FIGURE 5 is a diagram illustrating a traffic pattern on narrow beams generated by a small cell antenna panel, according to aspects of the present disclosure.
  • FIGURE 6 is a diagram illustrating an example process performed, for example, by a base station, in accordance with various aspects of the present disclosure.
  • a base station provides communications coverage for a macro cell, a pico cell, a femto cell, and/or another type of cell.
  • a macro cell may cover a relatively large geographic area (e.g., several kilometers in radius) and may allow unrestricted access by UEs with service subscription.
  • a pico cell may cover a relatively small geographic area (e.g., within a building) and may allow unrestricted access by UEs with a service subscription.
  • a femto cell may cover a relatively small geographic area (e.g., a home) and may allow restricted access by UEs having association with the femto cell (e.g., UEs in a closed subscriber group (CSG) ) .
  • the femto cell or pico cell are examples of small cells.
  • 5G new radio (NR) wireless communications systems the small cell is playing a more important role in the network.
  • Supporting 5G NR wireless communications systems involves operators deploying many small cells, to enhance capacity on top of the macrocell coverage.
  • successful operation of 5G NR wireless communications systems frequently involves the use of millimeter wave (mmW) small cell antennas within base stations to support a millimeter wave cell and/or a sub-6 GHz cell.
  • mmW millimeter wave
  • FR2 frequency range 2
  • mmW abbreviation
  • a mmW cell may be referred to as an FR2 cell.
  • mmW enables massive multiple input multiple output (MIMO) antennas, which are a desired communication feature of 5G NR communications system.
  • MIMO massive multiple input multiple output
  • mmW provides an extended method of implementing massive MIMO antennas.
  • a massive MIMO antenna is implemented by assembling multiple antenna elements (e.g. a large number, 128 or 256 or even more) on a small antenna panel. From a far field view, this small antenna panel generate a set of narrow beams that spatially split the coverage of a small cell.
  • mmW antenna panels are manufactured with a beam on a panel normal vector of the mmW antenna.
  • the beam on the panel normal vector of the mmW antenna panel is referred to as a boresight beam.
  • the boresight beam of mmW antenna panels exhibits a maximum gain (e.g., a maximum transmit power) .
  • the maximum gain significantly improves signal resistance to noise effects (e.g., a significantly improved signal-to-noise ratio (SNR) ) .
  • SNR signal-to-noise ratio
  • other beams e.g., side beams
  • a panel normal vector of the antenna panel (e.g., a spatial view) is pointed to an end user traffic distribution center.
  • This configuration attempts to cover end users using a boresight beam and central beams proximate the boresight beam.
  • the operator or network owner is unable to tune each small cell antenna panel.
  • an end user traffic distribution center may change (e.g. in a smart factory) .
  • an augmented reality (AR) capable assembly station may change position because of a production specification.
  • a method of utilizing small cell antenna panels is desired.
  • a boresight adjustment method is described. For example, this boresight adjustment method periodically tracks a statistical traffic center of a small cell antenna panel, and adjusts a boresight beam direction to point to the statistical traffic center.
  • FIGURE 1 is a diagram illustrating a wireless network 100 in which aspects of the present disclosure may be practiced.
  • the wireless network 100 may be a 5G or NR network or some other wireless network, such as an LTE network.
  • the wireless network 100 may include a number of BSs 110 (shown as BS 110a, BS 110b, BS 110c, and BS 110d) and other network entities.
  • a BS is an entity that communicates with user equipment (UEs) and may also be referred to as a base station, an NR BS, a Node B, a gNB, a 5G node B (NB) , an access point, a transmit and receive point (TRP) , and/or the like.
  • Each BS may provide communications coverage for a particular geographic area.
  • the term “cell” can refer to a coverage area of a BS and/or a BS subsystem serving this coverage area, depending on the context in which the term is used.
  • a BS for a pico cell may be referred to as a pico BS.
  • a BS for a femto cell may be referred to as a femto BS or a home BS.
  • a BS 110a may be a macro BS for a macro cell 102a
  • a BS 110b may be a pico BS for a pico cell 102b
  • a BS 110c may be a femto BS for a femto cell 102c.
  • a BS may support one or multiple (e.g., three) cells.
  • eNB base station, ” “NR BS, ” “gNB, ” “TRP, ” “AP, ” “node B, ” “5G NB, ” and “cell” may be used interchangeably.
  • a cell may not necessarily be stationary, and the geographic area of the cell may move according to the location of a mobile BS.
  • the BSs may be interconnected to one another and/or to one or more other BSs or network nodes (not shown) in the wireless network 100 through various types of backhaul interfaces such as a direct physical connection, a virtual network, and/or the like using any suitable transport network.
  • the wireless network 100 may also include relay stations.
  • a relay station is an entity that can receive a transmission of data from an upstream station (e.g., a BS or a UE) and send a transmission of the data to a downstream station (e.g., a UE or a BS) .
  • a relay station may also be a UE that can relay transmissions for other UEs.
  • a relay station 110d may communicate with macro BS 110a and a UE 120d in order to facilitate communications between the BS 110a and UE 120d.
  • a relay station may also be referred to as a relay BS, a relay base station, a relay, and/or the like.
  • the wireless network 100 may be a heterogeneous network that includes BSs of different types, e.g., macro BSs, pico BSs, femto BSs, relay BSs, and/or the like. These different types of BSs may have different transmit power levels, different coverage areas, and different impact on interference in the wireless network 100.
  • macro BSs may have a high transmit power level (e.g., 5 to 40 Watts) whereas pico BSs, femto BSs, and relay BSs may have lower transmit power levels (e.g., 0.1 to 2 Watts) .
  • the core network 130 may be an evolved packet core (EPC) , which may include at least one mobility management entity (MME) , at least one serving gateway (S-GW) , and at least one packet data network (PDN) gateway (P-GW) .
  • the MME may be the control node that processes the signaling between the UEs 120 and the EPC. All user IP packets may be transferred through the S-GW, which itself may be connected to the P-GW.
  • the P-GW may provide IP address allocation as well as other functions.
  • the P-GW may be connected to the network operator's IP services.
  • the operator's IP services may include the Internet, the Intranet, an IP multimedia subsystem (IMS) , and a packet-switched (PS) streaming service.
  • IMS IP multimedia subsystem
  • PS packet-switched
  • the core network 130 may provide user authentication, access authorization, tracking, IP connectivity, and other access, routing, or mobility functions.
  • One or more of the base stations 110 or access node controllers (ANCs) may interface with the core network 130 through backhaul links 132 (e.g., S1, S2, etc. ) and may perform radio configuration and scheduling for communications with the UEs 120.
  • backhaul links 132 e.g., S1, S2, etc.
  • various functions of each access network entity or base station 110 may be distributed across various network devices (e.g., radio heads and access network controllers) or consolidated into a single network device (e.g., a base station 110) .
  • UEs 120 may be dispersed throughout the wireless network 100, and each UE may be stationary or mobile.
  • a UE may also be referred to as an access terminal, a terminal, a mobile station, a subscriber unit, a station, and/or the like.
  • a UE may be a cellular phone (e.g., a smart phone) , a personal digital assistant (PDA) , a wireless modem, a wireless communications device, a handheld device, a laptop computer, a cordless phone, a wireless local loop (WLL) station, a tablet, a camera, a gaming device, a netbook, a smartbook, an ultrabook, a medical device or equipment, biometric sensors/devices, wearable devices (smart watches, smart clothing, smart glasses, smart wrist bands, smart jewelry (e.g., smart ring, smart bracelet) ) , an entertainment device (e.g., a music or video device, or a satellite radio) , a vehicular component or sensor, smart meters/sensors, industrial manufacturing equipment, a global positioning system device, or any other suitable device that is configured to communicate via a wireless or wired medium.
  • PDA personal digital assistant
  • WLL wireless local loop
  • One or more UEs 120 may establish a protocol data unit (PDU) session for a network slice.
  • the UE 120 may select a network slice based on an application or subscription service. By having different network slices serving different applications or subscriptions, the UE 120 may improve its resource utilization in the wireless network 100, while also satisfying performance specifications of individual applications of the UE 120.
  • the network slices used by UE 120 may be served by an AMF (not shown in FIGURE 1) associated with one or both of the base station 110 or core network 130.
  • AMF access and mobility management function
  • the core network 130 or the base stations 110 may include a boresight adjustment module 140 for adjusting a first antenna panel to align a boresight beam direction of the first antenna panel with a statistical traffic center of multiple beams of the first antenna panel.
  • Some UEs may be considered machine-type communications (MTC) or evolved or enhanced machine-type communications (eMTC) UEs.
  • MTC and eMTC UEs include, for example, robots, drones, remote devices, sensors, meters, monitors, location tags, and/or the like, that may communicate with a base station, another device (e.g., remote device) , or some other entity.
  • a wireless node may provide, for example, connectivity for or to a network (e.g., a wide area network such as Internet or a cellular network) via a wired or wireless communications link.
  • Some UEs may be considered Internet-of-Things (IoT) devices, and/or may be implemented as NB-IoT (narrowband internet of things) devices.
  • Some UEs may be considered a customer premises equipment (CPE) .
  • UE 120 may be included inside a housing that houses components of UE 120, such as processor components, memory components, and/or the like.
  • any number of wireless networks may be deployed in a given geographic area.
  • Each wireless network may support a particular radio access technology (RAT) and may operate on one or more frequencies.
  • a RAT may also be referred to as a radio technology, an air interface, and/or the like.
  • a frequency may also be referred to as a carrier, a frequency channel, and/or the like.
  • Each frequency may support a single RAT in a given geographic area in order to avoid interference between wireless networks of different RATs.
  • NR or 5G RAT networks may be deployed.
  • two or more UEs 120 may communicate directly using one or more sidelink channels (e.g., without using a base station 110 as an intermediary to communicate with one another) .
  • the UEs 120 may communicate using peer-to-peer (P2P) communications, device-to-device (D2D) communications, a vehicle-to-everything (V2X) protocol (e.g., which may include a vehicle-to-vehicle (V2V) protocol, a vehicle-to-infrastructure (V2I) protocol, and/or the like) , a mesh network, and/or the like.
  • P2P peer-to-peer
  • D2D device-to-device
  • V2X vehicle-to-everything
  • V2V vehicle-to-everything
  • the UE 120 may perform scheduling operations, resource selection operations, and/or other operations described elsewhere as being performed by the base station 110.
  • the base station 110 may configure a UE 120 via downlink control information (DCI) , radio resource control (RRC) signaling, a media access control-control element (MAC-CE) or via system information (e.g., a system information block (SIB) .
  • DCI downlink control information
  • RRC radio resource control
  • MAC-CE media access control-control element
  • SIB system information block
  • FIGURE 1 is provided merely as an example. Other examples may differ from what is described with regard to FIGURE 1.
  • FIGURE 2 shows a block diagram of a design 200 of the base station 110 and UE 120, which may be one of the base stations and one of the UEs in FIGURE 1.
  • the base station 110 may be equipped with T antennas 234a through 234t
  • UE 120 may be equipped with R antennas 252a through 252r, where in general T ⁇ 1 and R ⁇ 1.
  • a transmit processor 220 may receive data from a data source 212 for one or more UEs, select one or more modulation and coding schemes (MCS) for each UE based at least in part on channel quality indicators (CQIs) received from the UE, process (e.g., encode and modulate) the data for each UE based at least in part on the MCS (s) selected for the UE, and provide data symbols for all UEs. Decreasing the MCS lowers throughput but increases reliability of the transmission.
  • MCS modulation and coding schemes
  • the transmit processor 220 may also process system information (e.g., for semi-static resource partitioning information (SRPI) and/or the like) and control information (e.g., CQI requests, grants, upper layer signaling, and/or the like) and provide overhead symbols and control symbols.
  • the transmit processor 220 may also generate reference symbols for reference signals (e.g., the cell-specific reference signal (CRS) ) and synchronization signals (e.g., the primary synchronization signal (PSS) and secondary synchronization signal (SSS) ) .
  • reference signals e.g., the cell-specific reference signal (CRS)
  • synchronization signals e.g., the primary synchronization signal (PSS) and secondary synchronization signal (SSS)
  • a transmit (TX) multiple-input multiple-output (MIMO) processor 230 may perform spatial processing (e.g., precoding) on the data symbols, the control symbols, the overhead symbols, and/or the reference symbols, if applicable, and may provide T output symbol streams to T modulators (MODs) 232a through 232t.
  • Each modulator 232 may process a respective output symbol stream (e.g., for OFDM and/or the like) to obtain an output sample stream.
  • Each modulator 232 may further process (e.g., convert to analog, amplify, filter, and upconvert) the output sample stream to obtain a downlink signal.
  • T downlink signals from modulators 232a through 232t may be transmitted via T antennas 234a through 234t, respectively.
  • the synchronization signals can be generated with location encoding to convey additional information.
  • antennas 252a through 252r may receive the downlink signals from the base station 110 and/or other base stations and may provide received signals to demodulators (DEMODs) 254a through 254r, respectively.
  • Each demodulator 254 may condition (e.g., filter, amplify, downconvert, and digitize) a received signal to obtain input samples.
  • Each demodulator 254 may further process the input samples (e.g., for OFDM and/or the like) to obtain received symbols.
  • a MIMO detector 256 may obtain received symbols from all R demodulators 254a through 254r, perform MIMO detection on the received symbols if applicable, and provide detected symbols.
  • a receive processor 258 may process (e.g., demodulate and decode) the detected symbols, provide decoded data for the UE 120 to a data sink 260, and provide decoded control information and system information to a controller/processor 280.
  • a channel processor may determine reference signal received power (RSRP) , received signal strength indicator (RSSI) , reference signal received quality (RSRQ) , channel quality indicator (CQI) , and/or the like.
  • RSRP reference signal received power
  • RSSI received signal strength indicator
  • RSRQ reference signal received quality
  • CQI channel quality indicator
  • one or more components of the UE 120 may be included in a housing.
  • the uplink signals from the UE 120 and other UEs may be received by the antennas 234, processed by the demodulators 254, detected by a MIMO detector 236 if applicable, and further processed by a receive processor 238 to obtain decoded data and control information sent by the UE 120.
  • the receive processor 238 may provide the decoded data to a data sink 239 and the decoded control information to a controller/processor 240.
  • the base station 110 may include communications unit 244 and communicate to the core network 130 via the communications unit 244.
  • the core network 130 may include a communications unit 294, a controller/processor 290, and a memory 292.
  • the controller/processor 240 of the base station 110 and/or any other component (s) of FIGURE 2 may perform one or more techniques associated with boresight adjustment of an antenna panel, as described in more detail elsewhere.
  • the controller/processor 240 of the base station 110, and/or any other component (s) of FIGURE 2 may perform or direct operations of, for example, the process of FIGURE 6 and/or other processes as described.
  • Memories 242 and 282 may store data and program codes for the base station 110 and UE 120, respectively.
  • a scheduler 246 may schedule UEs for data transmission on the downlink and/or uplink.
  • the base station 110 may include means for tracking, means for determining, means for adjusting, means for mechanically adjusting, means for electrically adjusting, means for periodically tracking, means for periodically determining, and/or means for repeating.
  • Such means may include one or more components of the base station 110 described in connection with FIGURE 2.
  • FIGURE 2 is provided merely as an example. Other examples may differ from what is described with regard to FIGURE 2.
  • FIGURE 3 is a diagram 300 illustrating narrow beams generated by a small cell antenna panel, according to aspect of the present disclosure.
  • a small cell antenna panel 310 From a far field view, a small cell antenna panel 310 generates a set of narrow beams.
  • the set of narrow beams including a first narrow beam 312 a second narrow beam 314, and a boresight beam 320, spatially split the coverage of the small cell antenna panel 310.
  • direction is an important physical characteristic of the small cell antenna panel 310.
  • the small cell antenna panel 310 is manufactured with a beam on a panel normal vector of a mmW antenna. As described, the beam on the panel normal vector of the small cell antenna panel 310 is referred to as the boresight beam 320, as further illustrated in FIGURE 4.
  • the boresight beam 420 of the small cell antenna panel 410 exhibits a maximum gain (e.g., a maximum transmit power) and, therefore, provides a significantly improved signal resistance to noise effects (e.g., a significantly improved signal to noise ratio (SNR) ) .
  • the side beam 412 exhibits a gradually lower gain according to its distance from the boresight beam 420 (e.g., a center of the small cell antenna panel 410) .
  • a boresight adjustment method initially tracks traffic on the antenna beams of the small cell antenna panel 510.
  • a statistic period e.g., eight hours
  • all traffic levels e.g., mb/sec
  • KPI routine per cell traffic key performance indication
  • the example of FIGURE 5 depicts the traffic pattern 500 as a sample traffic distribution on the 128 beams of the small cell antenna panel 510, shown for one-hundred-twenty (120) degrees of azimuth by one-hundred-twenty (120) degrees of elevation.
  • a beam 10 is shown, having an elevation of sixty (60) degrees and an elevation of fifteen (15) degrees.
  • the traffic pattern 500 includes a high traffic level shown by a first pattern (e.g., a vertical pattern) , a middle traffic level shown by a second pattern (e.g., a grid pattern) , and a low traffic level shown by a third pattern (e.g., a diagonal pattern) .
  • beams without a pattern indicate no traffic.
  • a boresight adjustment method adjusts a direction of the small cell antenna panel 510 to align a boresight beam direction with the statistic traffic center 530.
  • a new boresight beam direction of the small cell antenna panel 510 is aligned with a direction of the beam #53 direction (e.g., an El: 0, Az: 30 direction) .
  • Calculation of the statistic traffic center 530 e.g., a weighted traffic center
  • the boresight adjustment may mechanically and/or electrically adjust a panel angle remotely.
  • the boresight adjustment method improves performance of the small cell antenna panel 510 by periodically tracking an end user traffic center and focusing the boresight beams 520 of the small cell antenna panel 510 on a new end user traffic center.
  • a typical deployment of the small cell antenna panel 510 may be a mmW small cell installed indoors. Although described with reference to mmW, it should be recognized that aspects of the present disclosure are also applicable to other systems, such as sub-6 GHz antenna panels , or macro cell antenna panels. Furthermore, although described with reference to a single small cell antenna panel, aspects of the present disclosure can applied to base stations including multiple antenna panels (e.g., a first antenna panel and a second antenna panel) .
  • FIGURES 3-5 are provided as examples. Other examples may differ from what is described with respect to FIGURES 3-5.
  • FIGURE 6 is a diagram illustrating an example process 600 performed, for example, by a base station, in accordance with various aspects of the present disclosure.
  • the example process 600 is an example of a 5G new radio (NR) base station enhancement with boresight adjustment.
  • NR new radio
  • the process 600 includes tracking a traffic level for each beam of a plurality of beams of a first antenna panel (block 602) .
  • the base station e.g., using the antenna 234, the DEMOD/MOD 232, the MIMO detector 236, the receive processor 238, the TX MIMO processor 230, the transmit processor 220, the controller/processor 240, and/or the memory 242 can track the traffic level for each beam the first antenna panel.
  • the process 600 further includes determining a statistical traffic center of the plurality of beams based on the tracking (block 604) .
  • the base station e.g., using the antenna 234, the DEMOD/MOD 232, the MIMO detector 236, the receive processor 238, the TX MIMO processor 230, the transmit processor 220, the controller/processor 240, and/or the memory 242 can determine the statistical traffic center of the beams.
  • the process 600 further includes adjusting the first antenna panel to align a boresight beam direction of the first antenna panel with the statistical traffic center of the plurality of beams (block 606) .
  • the base station (e.g., using the antenna 234, the DEMOD/MOD 232, the MIMO detector 236, the receive processor 238, the TX MIMO processor 230, the transmit processor 220, the controller/processor 240, and/or the memory 242) can align the boresight beam direction of the first antenna panel with the statistical traffic center of the beams.
  • ком ⁇ онент is intended to be broadly construed as hardware, firmware, and/or a combination of hardware and software.
  • a processor is implemented in hardware, firmware, and/or a combination of hardware and software.
  • satisfying a threshold may, depending on the context, refer to a value being greater than the threshold, greater than or equal to the threshold, less than the threshold, less than or equal to the threshold, equal to the threshold, not equal to the threshold, and/or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

A method of wireless communication, by a network device, includes tracking a traffic level for each beam of multiple beams of a first antenna panel. The method also includes determining a statistical traffic center of the plurality of beams based on the tracking. The method further includes adjusting the first antenna panel to align a boresight beam direction of the first antenna panel with the statistical traffic center of the multiple beams.

Description

AUTONOMOUS BORESIGHT BEAM ADJUSTMENT SMALL CELL DEPLOYMENT
FIELD OF THE DISCLOSURE
Aspects of the present disclosure generally relate to wireless communications, and more particularly to techniques and apparatuses for 5G new radio (NR) autonomous boresight beam adjustment for small cell deployments, such as millimeter wave (mmW) systems.
BACKGROUND
Wireless communications systems are widely deployed to provide various telecommunications services such as telephony, video, data, messaging, and broadcasts. Typical wireless communications systems may employ multiple-access technologies capable of supporting communications with multiple users by sharing available system resources (e.g., bandwidth, transmit power, and/or the like) . Examples of such multiple-access technologies include code division multiple access (CDMA) systems, time division multiple access (TDMA) systems, frequency-division multiple access (FDMA) systems, orthogonal frequency-division multiple access (OFDMA) systems, single-carrier frequency-division multiple access (SC-FDMA) systems, time division synchronous code division multiple access (TD-SCDMA) systems, and long term evolution (LTE) . LTE/LTE-Advanced is a set of enhancements to the universal mobile telecommunications system (UMTS) mobile standard promulgated by the Third Generation Partnership Project (3GPP) .
A wireless communications network may include a number of base stations (BSs) that can support communications for a number of user equipment (UEs) . A user equipment (UE) may communicate with a base station (BS) via the downlink and uplink. The downlink (or forward link) refers to the communications link from the BS to the UE, and the uplink (or reverse link) refers to the communications link from the UE to the BS. As will be described in more detail, a BS may be referred to as a Node B, a gNB, an access point (AP) , a radio head, a transmit and receive point (TRP) , a new radio (NR) BS, a 5G Node B, and/or the like.
The above multiple access technologies have been adopted in various telecommunications standards to provide a common protocol that enables different user equipment to communicate on a municipal, national, regional, and even global level. New radio (NR) , which may also be referred to as 5G, is a set of enhancements to the LTE mobile standard promulgated by the Third Generation Partnership Project (3GPP) . NR is designed to better support mobile broadband Internet access by improving spectral efficiency, lowering costs, improving services, making use of new spectrum, and better integrating with other open standards using orthogonal frequency division multiplexing (OFDM) with a cyclic prefix (CP) (CP-OFDM) on the downlink (DL) , using CP-OFDM and/or SC-FDM (e.g., also known as discrete Fourier transform spread OFDM (DFT-s-OFDM) ) on the uplink (UL) , as well as supporting beamforming, multiple-input multiple-output (MIMO) antenna technology, and carrier aggregation.
SUMMARY
A method of wireless communication, by a network device, includes tracking a traffic level for each beam of multiple beams of a first antenna panel. The method also includes determining a statistical traffic center of the plurality of beams based on the tracking. The method further includes adjusting the first antenna panel to align a boresight beam direction of the first antenna panel with the statistical traffic center of the multiple beams.
An apparatus for wireless communication, by a network device includes means for tracking a traffic level for each beam of a plurality of beams of a first antenna panel. The apparatus also includes means for determining a statistical traffic center of the plurality of beams based on the tracking. The apparatus further includes means for adjusting the first antenna panel to align a boresight beam direction of the first antenna panel with the statistical traffic center of the plurality of beams.
A base station includes a processor and a memory coupled with the processor. The UE also includes instructions stored in the memory. When the instructions are executed by the processor the base station is operable to track a traffic level for each beam of a plurality of beams of a first antenna panel. The base station is also operable to determine a statistical traffic center of the plurality of beams based on the tracking. The base station is further operable to adjust the first antenna panel to  align a boresight beam direction of the first antenna panel with the statistical traffic center of the plurality of beams.
A non-transitory computer-readable medium having program code recorded thereon is executed by a processor. The non-transitory computer-readable medium includes program code to track a traffic level for each beam of a plurality of beams of a first antenna panel. The non-transitory computer-readable medium also includes program code to determine a statistical traffic center of the plurality of beams based on the tracking. The non-transitory computer-readable medium further includes program code to adjust the first antenna panel to align a boresight beam direction of the first antenna panel with the statistical traffic center of the plurality of beams.
Aspects generally include a method, apparatus, system, computer program product, non-transitory computer-readable medium, user equipment, base station, wireless communications device, and processing system as substantially described with reference to and as illustrated by the accompanying drawings and specification.
The foregoing has outlined rather broadly the features and technical advantages of examples according to the disclosure in order that the detailed description that follows may be better understood. Additional features and advantages will be described. The conception and specific examples disclosed may be readily utilized as a basis for modifying or designing other structures for carrying out the same purposes of the present disclosure. Such equivalent constructions do not depart from the scope of the appended claims. Characteristics of the concepts disclosed, both their organization and method of operation, together with associated advantages will be better understood from the following description when considered in connection with the accompanying figures. Each of the figures is provided for the purposes of illustration and description, and not as a definition of the limits of the claims.
BRIEF DESCRIPTION OF THE DRAWINGS
So that features of the present disclosure can be understood in detail, a particular description may be had by reference to aspects, some of which are illustrated in the appended drawings. It is to be noted, however, that the appended drawings illustrate only certain aspects of this disclosure and are therefore not to be considered limiting of its scope, for the description may admit to other equally effective aspects.  The same reference numbers in different drawings may identify the same or similar elements.
FIGURE 1 is a block diagram conceptually illustrating an example of a wireless communications network, in accordance with various aspects of the present disclosure.
FIGURE 2 is a block diagram conceptually illustrating an example of a base station in communication with a user equipment (UE) in a wireless communications network, in accordance with various aspects of the present disclosure.
FIGURE 3 is a diagram illustrating narrow beams generated by a small cell antenna panel, according to aspects of the present disclosure.
FIGURE 4 is a diagram further illustrating narrow beams generated by a small cell antenna panel, according to aspects of the present disclosure.
FIGURE 5 is a diagram illustrating a traffic pattern on narrow beams generated by a small cell antenna panel, according to aspects of the present disclosure.
FIGURE 6 is a diagram illustrating an example process performed, for example, by a base station, in accordance with various aspects of the present disclosure.
DETAILED DESCRIPTION
Various aspects of the disclosure are described more fully below with reference to the accompanying drawings. This disclosure may, however, be embodied in many different forms and should not be construed as limited to any specific structure or function presented throughout this disclosure. Rather, these aspects are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the disclosure to those skilled in the art. Based on the teachings, one skilled in the art should appreciate that the scope of the disclosure is intended to cover any aspect of the disclosure, whether implemented independently of or combined with any other aspect of the disclosure. For example, an apparatus may be implemented or a method may be practiced using any number of the aspects set forth. In addition, the scope of the disclosure is intended to cover such an apparatus or method, which is practiced using other structure, functionality, or structure and functionality in addition to or other than  the various aspects of the disclosure set forth. It should be understood that any aspect of the disclosure disclosed may be embodied by one or more elements of a claim.
Several aspects of telecommunications systems will now be presented with reference to various apparatuses and techniques. These apparatuses and techniques will be described in the following detailed description and illustrated in the accompanying drawings by various blocks, modules, components, circuits, steps, processes, algorithms, and/or the like (collectively referred to as “elements” ) . These elements may be implemented using hardware, software, or combinations thereof. Whether such elements are implemented as hardware or software depends upon the particular application and design constraints imposed on the overall system.
It should be noted that while aspects may be described using terminology commonly associated with 5G and later wireless technologies, aspects of the present disclosure can be applied in other generation-based communications systems, such as and including 3G and/or 4G technologies.
In wireless communications systems, a base station provides communications coverage for a macro cell, a pico cell, a femto cell, and/or another type of cell. A macro cell may cover a relatively large geographic area (e.g., several kilometers in radius) and may allow unrestricted access by UEs with service subscription. A pico cell may cover a relatively small geographic area (e.g., within a building) and may allow unrestricted access by UEs with a service subscription. A femto cell may cover a relatively small geographic area (e.g., a home) and may allow restricted access by UEs having association with the femto cell (e.g., UEs in a closed subscriber group (CSG) ) . As described, the femto cell or pico cell are examples of small cells.
In fifth generation (5G) new radio (NR) wireless communications systems, the small cell is playing a more important role in the network. Supporting 5G NR wireless communications systems involves operators deploying many small cells, to enhance capacity on top of the macrocell coverage. In particular, successful operation of 5G NR wireless communications systems frequently involves the use of millimeter wave (mmW) small cell antennas within base stations to support a millimeter wave cell and/or a sub-6 GHz cell. According to the Third Generation Partnership Project (3GPP)  standard, millimeter wave is referred to as a frequency range 2 (FR2) and is commonly referred to using the abbreviation “mmW” . In addition, a mmW cell may be referred to as an FR2 cell.
The rollout of 5G NR wireless communications is predicted to expand a worldwide footprint of small cells. The worldwide expansion is predicted because mmW can provide much more spectrum width, while exhibiting a reduced air interface latency. In addition, mmW enables massive multiple input multiple output (MIMO) antennas, which are a desired communication feature of 5G NR communications system. In particular, mmW provides an extended method of implementing massive MIMO antennas. In one configuration, a massive MIMO antenna is implemented by assembling multiple antenna elements (e.g. a large number, 128 or 256 or even more) on a small antenna panel. From a far field view, this small antenna panel generate a set of narrow beams that spatially split the coverage of a small cell.
Direction is an important physical character of mmW antenna panels. In particular, mmW antenna panels are manufactured with a beam on a panel normal vector of the mmW antenna. As described, the beam on the panel normal vector of the mmW antenna panel is referred to as a boresight beam. The boresight beam of mmW antenna panels exhibits a maximum gain (e.g., a maximum transmit power) . The maximum gain significantly improves signal resistance to noise effects (e.g., a significantly improved signal-to-noise ratio (SNR) ) . By contrast, other beams (e.g., side beams) , according to their distance from the boresight beam (e.g., center of the mmW antenna panel) , exhibit gradually lower gain.
In an ideal deployment, a panel normal vector of the antenna panel (e.g., a spatial view) is pointed to an end user traffic distribution center. This configuration attempts to cover end users using a boresight beam and central beams proximate the boresight beam. In most cases, the operator or network owner is unable to tune each small cell antenna panel. Moreover, an end user traffic distribution center may change (e.g. in a smart factory) . In addition, an augmented reality (AR) capable assembly station may change position because of a production specification. A method of utilizing small cell antenna panels is desired. According to one aspect of the present disclosure, a boresight adjustment method is described. For example, this boresight  adjustment method periodically tracks a statistical traffic center of a small cell antenna panel, and adjusts a boresight beam direction to point to the statistical traffic center.
FIGURE 1 is a diagram illustrating a wireless network 100 in which aspects of the present disclosure may be practiced. The wireless network 100 may be a 5G or NR network or some other wireless network, such as an LTE network. The wireless network 100 may include a number of BSs 110 (shown as BS 110a, BS 110b, BS 110c, and BS 110d) and other network entities. A BS is an entity that communicates with user equipment (UEs) and may also be referred to as a base station, an NR BS, a Node B, a gNB, a 5G node B (NB) , an access point, a transmit and receive point (TRP) , and/or the like. Each BS may provide communications coverage for a particular geographic area. In 3GPP, the term “cell” can refer to a coverage area of a BS and/or a BS subsystem serving this coverage area, depending on the context in which the term is used.
A BS may provide communications coverage for a macro cell, a pico cell, a femto cell, and/or another type of cell. A macro cell may cover a relatively large geographic area (e.g., several kilometers in radius) and may allow unrestricted access by UEs with service subscription. A pico cell may cover a relatively small geographic area and may allow unrestricted access by UEs with service subscription. A femto cell may cover a relatively small geographic area (e.g., a home) and may allow restricted access by UEs having association with the femto cell (e.g., UEs in a closed subscriber group (CSG) ) . A BS for a macro cell may be referred to as a macro BS. A BS for a pico cell may be referred to as a pico BS. A BS for a femto cell may be referred to as a femto BS or a home BS. In the example shown in FIGURE 1, a BS 110a may be a macro BS for a macro cell 102a, a BS 110b may be a pico BS for a pico cell 102b, and a BS 110c may be a femto BS for a femto cell 102c. A BS may support one or multiple (e.g., three) cells. The terms “eNB, ” “base station, ” “NR BS, ” “gNB, ” “TRP, ” “AP, ” “node B, ” “5G NB, ” and “cell” may be used interchangeably.
In some aspects, a cell may not necessarily be stationary, and the geographic area of the cell may move according to the location of a mobile BS. In some aspects, the BSs may be interconnected to one another and/or to one or more other BSs or network nodes (not shown) in the wireless network 100 through various types of  backhaul interfaces such as a direct physical connection, a virtual network, and/or the like using any suitable transport network.
The wireless network 100 may also include relay stations. A relay station is an entity that can receive a transmission of data from an upstream station (e.g., a BS or a UE) and send a transmission of the data to a downstream station (e.g., a UE or a BS) . A relay station may also be a UE that can relay transmissions for other UEs. In the example shown in FIGURE 1, a relay station 110d may communicate with macro BS 110a and a UE 120d in order to facilitate communications between the BS 110a and UE 120d. A relay station may also be referred to as a relay BS, a relay base station, a relay, and/or the like.
The wireless network 100 may be a heterogeneous network that includes BSs of different types, e.g., macro BSs, pico BSs, femto BSs, relay BSs, and/or the like. These different types of BSs may have different transmit power levels, different coverage areas, and different impact on interference in the wireless network 100. For example, macro BSs may have a high transmit power level (e.g., 5 to 40 Watts) whereas pico BSs, femto BSs, and relay BSs may have lower transmit power levels (e.g., 0.1 to 2 Watts) .
As an example, the BSs 110 (shown as BS 110a, BS 110b, BS 110c, and BS 110d) and the core network 130 may exchange communications via backhaul links 132 (e.g., S1, etc. ) . Base stations 110 may communicate with one another over other backhaul links (e.g., X2, etc. ) either directly or indirectly (e.g., through core network 130) .
The core network 130 may be an evolved packet core (EPC) , which may include at least one mobility management entity (MME) , at least one serving gateway (S-GW) , and at least one packet data network (PDN) gateway (P-GW) . The MME may be the control node that processes the signaling between the UEs 120 and the EPC. All user IP packets may be transferred through the S-GW, which itself may be connected to the P-GW. The P-GW may provide IP address allocation as well as other functions. The P-GW may be connected to the network operator's IP services. The operator's IP services may include the Internet, the Intranet, an IP multimedia subsystem (IMS) , and a packet-switched (PS) streaming service.
The core network 130 may provide user authentication, access authorization, tracking, IP connectivity, and other access, routing, or mobility functions. One or more of the base stations 110 or access node controllers (ANCs) may interface with the core network 130 through backhaul links 132 (e.g., S1, S2, etc. ) and may perform radio configuration and scheduling for communications with the UEs 120. In some configurations, various functions of each access network entity or base station 110 may be distributed across various network devices (e.g., radio heads and access network controllers) or consolidated into a single network device (e.g., a base station 110) .
UEs 120 (e.g., 120a, 120b, 120c) may be dispersed throughout the wireless network 100, and each UE may be stationary or mobile. A UE may also be referred to as an access terminal, a terminal, a mobile station, a subscriber unit, a station, and/or the like. A UE may be a cellular phone (e.g., a smart phone) , a personal digital assistant (PDA) , a wireless modem, a wireless communications device, a handheld device, a laptop computer, a cordless phone, a wireless local loop (WLL) station, a tablet, a camera, a gaming device, a netbook, a smartbook, an ultrabook, a medical device or equipment, biometric sensors/devices, wearable devices (smart watches, smart clothing, smart glasses, smart wrist bands, smart jewelry (e.g., smart ring, smart bracelet) ) , an entertainment device (e.g., a music or video device, or a satellite radio) , a vehicular component or sensor, smart meters/sensors, industrial manufacturing equipment, a global positioning system device, or any other suitable device that is configured to communicate via a wireless or wired medium.
One or more UEs 120 may establish a protocol data unit (PDU) session for a network slice. In some cases, the UE 120 may select a network slice based on an application or subscription service. By having different network slices serving different applications or subscriptions, the UE 120 may improve its resource utilization in the wireless network 100, while also satisfying performance specifications of individual applications of the UE 120. In some cases, the network slices used by UE 120 may be served by an AMF (not shown in FIGURE 1) associated with one or both of the base station 110 or core network 130. In addition, session management of the network slices may be performed by an access and mobility management function (AMF) .
The core network 130 or the base stations 110 may include a boresight adjustment module 140 for adjusting a first antenna panel to align a boresight beam  direction of the first antenna panel with a statistical traffic center of multiple beams of the first antenna panel.
Some UEs may be considered machine-type communications (MTC) or evolved or enhanced machine-type communications (eMTC) UEs. MTC and eMTC UEs include, for example, robots, drones, remote devices, sensors, meters, monitors, location tags, and/or the like, that may communicate with a base station, another device (e.g., remote device) , or some other entity. A wireless node may provide, for example, connectivity for or to a network (e.g., a wide area network such as Internet or a cellular network) via a wired or wireless communications link. Some UEs may be considered Internet-of-Things (IoT) devices, and/or may be implemented as NB-IoT (narrowband internet of things) devices. Some UEs may be considered a customer premises equipment (CPE) . UE 120 may be included inside a housing that houses components of UE 120, such as processor components, memory components, and/or the like.
In general, any number of wireless networks may be deployed in a given geographic area. Each wireless network may support a particular radio access technology (RAT) and may operate on one or more frequencies. A RAT may also be referred to as a radio technology, an air interface, and/or the like. A frequency may also be referred to as a carrier, a frequency channel, and/or the like. Each frequency may support a single RAT in a given geographic area in order to avoid interference between wireless networks of different RATs. In some cases, NR or 5G RAT networks may be deployed.
In some aspects, two or more UEs 120 (e.g., shown as UE 120a and UE 120e) may communicate directly using one or more sidelink channels (e.g., without using a base station 110 as an intermediary to communicate with one another) . For example, the UEs 120 may communicate using peer-to-peer (P2P) communications, device-to-device (D2D) communications, a vehicle-to-everything (V2X) protocol (e.g., which may include a vehicle-to-vehicle (V2V) protocol, a vehicle-to-infrastructure (V2I) protocol, and/or the like) , a mesh network, and/or the like. In this case, the UE 120 may perform scheduling operations, resource selection operations, and/or other operations described elsewhere as being performed by the base station 110. For example, the base station 110 may configure a UE 120 via downlink control information  (DCI) , radio resource control (RRC) signaling, a media access control-control element (MAC-CE) or via system information (e.g., a system information block (SIB) .
As indicated above, FIGURE 1 is provided merely as an example. Other examples may differ from what is described with regard to FIGURE 1.
FIGURE 2 shows a block diagram of a design 200 of the base station 110 and UE 120, which may be one of the base stations and one of the UEs in FIGURE 1. The base station 110 may be equipped with T antennas 234a through 234t, and UE 120 may be equipped with R antennas 252a through 252r, where in general T ≥ 1 and R ≥ 1.
At the base station 110, a transmit processor 220 may receive data from a data source 212 for one or more UEs, select one or more modulation and coding schemes (MCS) for each UE based at least in part on channel quality indicators (CQIs) received from the UE, process (e.g., encode and modulate) the data for each UE based at least in part on the MCS (s) selected for the UE, and provide data symbols for all UEs. Decreasing the MCS lowers throughput but increases reliability of the transmission. The transmit processor 220 may also process system information (e.g., for semi-static resource partitioning information (SRPI) and/or the like) and control information (e.g., CQI requests, grants, upper layer signaling, and/or the like) and provide overhead symbols and control symbols. The transmit processor 220 may also generate reference symbols for reference signals (e.g., the cell-specific reference signal (CRS) ) and synchronization signals (e.g., the primary synchronization signal (PSS) and secondary synchronization signal (SSS) ) . A transmit (TX) multiple-input multiple-output (MIMO) processor 230 may perform spatial processing (e.g., precoding) on the data symbols, the control symbols, the overhead symbols, and/or the reference symbols, if applicable, and may provide T output symbol streams to T modulators (MODs) 232a through 232t. Each modulator 232 may process a respective output symbol stream (e.g., for OFDM and/or the like) to obtain an output sample stream. Each modulator 232 may further process (e.g., convert to analog, amplify, filter, and upconvert) the output sample stream to obtain a downlink signal. T downlink signals from modulators 232a through 232t may be transmitted via T antennas 234a through 234t, respectively. According to various aspects described in more detail below, the synchronization signals can be generated with location encoding to convey additional information.
At the UE 120, antennas 252a through 252r may receive the downlink signals from the base station 110 and/or other base stations and may provide received signals to demodulators (DEMODs) 254a through 254r, respectively. Each demodulator 254 may condition (e.g., filter, amplify, downconvert, and digitize) a received signal to obtain input samples. Each demodulator 254 may further process the input samples (e.g., for OFDM and/or the like) to obtain received symbols. A MIMO detector 256 may obtain received symbols from all R demodulators 254a through 254r, perform MIMO detection on the received symbols if applicable, and provide detected symbols. A receive processor 258 may process (e.g., demodulate and decode) the detected symbols, provide decoded data for the UE 120 to a data sink 260, and provide decoded control information and system information to a controller/processor 280. A channel processor may determine reference signal received power (RSRP) , received signal strength indicator (RSSI) , reference signal received quality (RSRQ) , channel quality indicator (CQI) , and/or the like. In some aspects, one or more components of the UE 120 may be included in a housing.
On the uplink, at the UE 120, a transmit processor 264 may receive and process data from a data source 262 and control information (e.g., for reports comprising RSRP, RSSI, RSRQ, CQI, and/or the like) from the controller/processor 280. Transmit processor 264 may also generate reference symbols for one or more reference signals. The symbols from the transmit processor 264 may be precoded by a TX MIMO processor 266 if applicable, further processed by modulators 254a through 254r (e.g., for DFT-s-OFDM, CP-OFDM, and/or the like) , and transmitted to the base station 110. At the base station 110, the uplink signals from the UE 120 and other UEs may be received by the antennas 234, processed by the demodulators 254, detected by a MIMO detector 236 if applicable, and further processed by a receive processor 238 to obtain decoded data and control information sent by the UE 120. The receive processor 238 may provide the decoded data to a data sink 239 and the decoded control information to a controller/processor 240. The base station 110 may include communications unit 244 and communicate to the core network 130 via the communications unit 244. The core network 130 may include a communications unit 294, a controller/processor 290, and a memory 292.
The controller/processor 240 of the base station 110 and/or any other component (s) of FIGURE 2 may perform one or more techniques associated with boresight adjustment of an antenna panel, as described in more detail elsewhere. For example, the controller/processor 240 of the base station 110, and/or any other component (s) of FIGURE 2 may perform or direct operations of, for example, the process of FIGURE 6 and/or other processes as described.  Memories  242 and 282 may store data and program codes for the base station 110 and UE 120, respectively. A scheduler 246 may schedule UEs for data transmission on the downlink and/or uplink.
In some aspects, the base station 110 may include means for tracking, means for determining, means for adjusting, means for mechanically adjusting, means for electrically adjusting, means for periodically tracking, means for periodically determining, and/or means for repeating. Such means may include one or more components of the base station 110 described in connection with FIGURE 2.
As indicated above, FIGURE 2 is provided merely as an example. Other examples may differ from what is described with regard to FIGURE 2.
As shown in FIGURE 1, base stations (e.g., 110) provides communications coverage for a macro cell, a pico cell, a femto cell, and/or another type of cell. A macro cell may cover a relatively large geographic area (e.g., several kilometers in radius) and may allow unrestricted access by UEs with a service subscription. A pico cell may cover a relatively small geographic area (e.g., within a building) and may allow unrestricted access by UEs with a service subscription. A femto cell may cover a relatively small geographic area (e.g., a home) and may allow restricted access by UEs having an association with the femto cell. As described, the femto cell and pico cell are examples of a small cell.
In fifth generation (5G) new radio (NR) wireless communications systems, the small cell is playing a more important role in the network. Supporting 5G NR wireless communications systems involves operators deploying many small cells, to enhance capacity on top of the noted macrocell coverage. In particular, successful operation of 5G NR wireless communications systems frequently involves the use of millimeter wave (mmW) small cell antennas within base stations. According to the  Third Generation Partnership Project (3GPP) standard, millimeter wave is referred to as a frequency range 2 (FR2) and is commonly referred to using the abbreviation “mmW” .
The rollout of 5G NR wireless communications is predicted to expand a worldwide footprint of small cells. The worldwide expansion is predicted because mmW can provide much more spectrum width, while exhibiting a reduced air interface latency. In addition, mmW enables massive multiple input multiple output (MIMO) antennas, which are a desired communication feature of 5G NR communications systems. In particular, mmW provides a method of implementing massive MIMO antennas. In one configuration, a massive MIMO antenna is implemented by assembling multiple antenna elements (e.g. 128, 256, etc. ) on a small antenna panel, for example, as shown in FIGURE 3.
FIGURE 3 is a diagram 300 illustrating narrow beams generated by a small cell antenna panel, according to aspect of the present disclosure. From a far field view, a small cell antenna panel 310 generates a set of narrow beams. In this example, the set of narrow beams, including a first narrow beam 312 a second narrow beam 314, and a boresight beam 320, spatially split the coverage of the small cell antenna panel 310. In practice, direction is an important physical characteristic of the small cell antenna panel 310. In particular, the small cell antenna panel 310 is manufactured with a beam on a panel normal vector of a mmW antenna. As described, the beam on the panel normal vector of the small cell antenna panel 310 is referred to as the boresight beam 320, as further illustrated in FIGURE 4.
FIGURE 4 is a diagram 400 further illustrating narrow beams generated by a small cell antenna panel, according to aspect of the present disclosure. For example, the generated narrow beams include a side beam 412 and a boresight beam 420 that spatially split the coverage of a small cell antenna panel 410. In this example, azimuth (AZ) refers to an angle between a beam projection over an XY-plane 402 and a positive z-axis 404. In addition, elevation (EL) refers to an angle between a beam (e.g., the side beam 412) and a projection of the beam on the XY-plane 402.
According to the terms elevation and azimuth, boresight transmissions are along the positive Z-axis 404, in which the elevation and azimuth are equal to zero (e.g., [AZ, EL] = [0, 0] ) . In operation, the boresight beam 420 of the small cell antenna panel  410 exhibits a maximum gain (e.g., a maximum transmit power) and, therefore, provides a significantly improved signal resistance to noise effects (e.g., a significantly improved signal to noise ratio (SNR) ) . By contrast, the side beam 412 exhibits a gradually lower gain according to its distance from the boresight beam 420 (e.g., a center of the small cell antenna panel 410) .
In an ideal deployment, a panel normal vector (e.g., the boresight beam 420) of the small cell antenna panel 410 (e.g., a spatial view) is pointed to an end user traffic distribution center. This configuration attempts to cover end users using the boresight beam 420 and central beams proximate the boresight beam 420. In most cases, the operator or network owner is unable to tune the small cell antenna panel 410. A method for improving performance of the small cell antenna panel 410 is desired. According to one aspect of the present disclosure, a boresight adjustment method is described. For example, this boresight adjustment method periodically tracks a statistical traffic center of the small cell antenna panel. In one aspect of the present disclosure, a boresight beam direction of the small cell antenna panel is periodically adjusted to point to the statistical traffic center, for example, as shown in FIGURE 5.
FIGURE 5 is a diagram illustrating a traffic pattern 500 on narrow beams generated by a small cell antenna panel 510, according to aspects of the present disclosure. In this example, the small cell antenna panel 510 is shown with one-hundred twenty-eight (128) beams, including boresight beams 520 (e.g., #57, #58, #73, and #74) .
In this aspect of the present disclosure, a boresight adjustment method initially tracks traffic on the antenna beams of the small cell antenna panel 510. During a tracking stage of the boresight adjustment method, a statistic period (e.g., eight hours) is selected. During the selected statistic period (e.g., a predetermined period of time) , all traffic levels (e.g., mb/sec) on each beam of the small cell antenna panel 510 are recorded. Both transmission and reception beams are considered. This tracking differs from routine per cell traffic key performance indication (KPI) because the tracking stage collects traffic statistics on every beam of the small cell antenna panel 510. In some aspects, a spatial weighted traffic center is computed, and the beam closest to the weighted traffic center is identified.
The example of FIGURE 5 depicts the traffic pattern 500 as a sample traffic distribution on the 128 beams of the small cell antenna panel 510, shown for one-hundred-twenty (120) degrees of azimuth by one-hundred-twenty (120) degrees of elevation. A beam 10 is shown, having an elevation of sixty (60) degrees and an elevation of fifteen (15) degrees. The traffic pattern 500 includes a high traffic level shown by a first pattern (e.g., a vertical pattern) , a middle traffic level shown by a second pattern (e.g., a grid pattern) , and a low traffic level shown by a third pattern (e.g., a diagonal pattern) . In addition, beams without a pattern indicate no traffic.
According to the traffic pattern 500, antenna beams #36, #52-#54, #68-#70, and #85 exhibit high traffic. In this example, after calculation, antenna beam #53 (El: 0, Az: 30) is the beam closest to a statistic traffic center 530 of the high traffic. Unfortunately, the antenna beam #53 is a side beam of the small cell antenna panel 510 relative to the boresight beams 520. That is, a majority of the traffic over the small cell antenna panel 510 is carried by side beams (e.g., the antenna beam #53) .
According to aspects of the present disclosure, a boresight adjustment method adjusts a direction of the small cell antenna panel 510 to align a boresight beam direction with the statistic traffic center 530. In this example, a new boresight beam direction of the small cell antenna panel 510 is aligned with a direction of the beam #53 direction (e.g., an El: 0, Az: 30 direction) . Calculation of the statistic traffic center 530 (e.g., a weighted traffic center) can occur in accordance with well-known techniques. The boresight adjustment may mechanically and/or electrically adjust a panel angle remotely. In some aspects, the boresight adjustment method improves performance of the small cell antenna panel 510 by periodically tracking an end user traffic center and focusing the boresight beams 520 of the small cell antenna panel 510 on a new end user traffic center.
A typical deployment of the small cell antenna panel 510 may be a mmW small cell installed indoors. Although described with reference to mmW, it should be recognized that aspects of the present disclosure are also applicable to other systems, such as sub-6 GHz antenna panels , or macro cell antenna panels. Furthermore, although described with reference to a single small cell antenna panel, aspects of the present disclosure can applied to base stations including multiple antenna panels (e.g., a first antenna panel and a second antenna panel) .
As indicated above, FIGURES 3-5 are provided as examples. Other examples may differ from what is described with respect to FIGURES 3-5.
FIGURE 6 is a diagram illustrating an example process 600 performed, for example, by a base station, in accordance with various aspects of the present disclosure. The example process 600 is an example of a 5G new radio (NR) base station enhancement with boresight adjustment.
As shown in FIGURE 6, in some aspects, the process 600 includes tracking a traffic level for each beam of a plurality of beams of a first antenna panel (block 602) . For example, the base station (e.g., using the antenna 234, the DEMOD/MOD 232, the MIMO detector 236, the receive processor 238, the TX MIMO processor 230, the transmit processor 220, the controller/processor 240, and/or the memory 242) can track the traffic level for each beam the first antenna panel.
In some aspects, the process 600 further includes determining a statistical traffic center of the plurality of beams based on the tracking (block 604) . For example, the base station (e.g., using the antenna 234, the DEMOD/MOD 232, the MIMO detector 236, the receive processor 238, the TX MIMO processor 230, the transmit processor 220, the controller/processor 240, and/or the memory 242) can determine the statistical traffic center of the beams. In some aspects, the process 600 further includes adjusting the first antenna panel to align a boresight beam direction of the first antenna panel with the statistical traffic center of the plurality of beams (block 606) . For example, the base station (e.g., using the antenna 234, the DEMOD/MOD 232, the MIMO detector 236, the receive processor 238, the TX MIMO processor 230, the transmit processor 220, the controller/processor 240, and/or the memory 242) can align the boresight beam direction of the first antenna panel with the statistical traffic center of the beams.
The foregoing disclosure provides illustration and description, but is not intended to be exhaustive or to limit the aspects to the precise form disclosed. Modifications and variations may be made in light of the above disclosure or may be acquired from practice of the aspects.
As used, the term “component” is intended to be broadly construed as hardware, firmware, and/or a combination of hardware and software. As used, a  processor is implemented in hardware, firmware, and/or a combination of hardware and software.
Some aspects are described in connection with thresholds. As used, satisfying a threshold may, depending on the context, refer to a value being greater than the threshold, greater than or equal to the threshold, less than the threshold, less than or equal to the threshold, equal to the threshold, not equal to the threshold, and/or the like.
It will be apparent that systems and/or methods described may be implemented in different forms of hardware, firmware, and/or a combination of hardware and software. The actual specialized control hardware or software code used to implement these systems and/or methods is not limiting of the aspects. Thus, the operation and behavior of the systems and/or methods were described without reference to specific software code-it being understood that software and hardware can be designed to implement the systems and/or methods based, at least in part, on the description.
Even though particular combinations of features are recited in the claims and/or disclosed in the specification, these combinations are not intended to limit the disclosure of various aspects. In fact, many of these features may be combined in ways not specifically recited in the claims and/or disclosed in the specification. Although each dependent claim listed below may directly depend on only one claim, the disclosure of various aspects includes each dependent claim in combination with every other claim in the claim set. A phrase referring to “at least one of” a list of items refers to any combination of those items, including single members. As an example, “at least one of: a, b, or c” is intended to cover a, b, c, a-b, a-c, b-c, and a-b-c, as well as any combination with multiples of the same element (e.g., a-a, a-a-a, a-a-b, a-a-c, a-b-b, a-c-c, b-b, b-b-b, b-b-c, c-c, and c-c-c or any other ordering of a, b, and c) .
No element, act, or instruction used should be construed as critical or essential unless explicitly described as such. Also, as used, the articles “a” and “an” are intended to include one or more items, and may be used interchangeably with “one or more. ” Furthermore, as used, the terms “set” and “group” are intended to include one or more items (e.g., related items, unrelated items, a combination of related and unrelated items, and/or the like) , and may be used interchangeably with “one or more. ” Where  only one item is intended, the phrase “only one” or similar language is used. Also, as used, the terms “has, ” “have, ” “having, ” and/or the like are intended to be open-ended terms. Further, the phrase “based on” is intended to mean “based, at least in part, on” unless explicitly stated otherwise.

Claims (31)

  1. A method of wireless communication, by a network device, comprising:
    tracking a traffic level for each beam of a plurality of beams of a first antenna panel;
    determining a statistical traffic center of the plurality of beams based on the tracking; and
    adjusting the first antenna panel to align a boresight beam direction of the first antenna panel with the statistical traffic center of the plurality of beams.
  2. The method of claim 1, in which the network device comprises a small cell.
  3. The method of claim 2, in which the small cell comprises a millimeter wave cell.
  4. The method of claim 2, in which the small cell comprises a sub-6 GHz cell.
  5. The method of claim 1, in which adjusting comprises mechanically adjusting the first antenna panel to align the boresight beam direction.
  6. The method of claim 1, in which adjusting comprises electrically adjusting the first antenna panel to align the boresight beam direction.
  7. The method of claim 1, in which tracking comprises periodically tracking the traffic level for each beam of the plurality of beams of the first antenna panel during a predetermined period of time.
  8. The method of claim 1, in which determining comprises periodically determining the statistical traffic center of the plurality of beams based on the tracking over a predetermined period of time.
  9. The method of claim 1, in which adjusting the first antenna panel to align the boresight beam direction of the first antenna panel with the statistical traffic center of the plurality of beams is performed after a predetermined period of time.
  10. The method of claim 1, further comprises repeating of the tracking, determining, and adjusting for a second antenna panel.
  11. An apparatus for wireless communication, by a network device, comprising:
    means for tracking a traffic level for each beam of a plurality of beams of a first antenna panel;
    means for determining a statistical traffic center of the plurality of beams based on the tracking; and
    means for adjusting the first antenna panel to align a boresight beam direction of the first antenna panel with the statistical traffic center of the plurality of beams.
  12. The apparatus of claim 11, in which the network device comprises a small cell.
  13. The apparatus of claim 12, in which the small cell comprises a millimeter wave cell.
  14. The apparatus of claim 12, in which the small cell comprises a sub-6 GHz cell.
  15. The apparatus of claim 11, in which the means for adjusting comprises means for mechanically adjusting the first antenna panel to align the boresight beam direction.
  16. The apparatus of claim 11, in which the means for adjusting comprises means for electrically adjusting the first antenna panel to align the boresight beam direction.
  17. The apparatus of claim 11, in which the means for tracking comprises means for periodically tracking the traffic level for each beam of the plurality of beams of the first antenna panel during a predetermined period of time.
  18. The apparatus of claim 11, in which the means for determining comprises means for periodically determining the statistical traffic center of the plurality of beams based on the tracking over a predetermined period of time.
  19. The apparatus of claim 11, in which the means for adjusting the first antenna panel to align the boresight beam direction of the first antenna panel with the statistical traffic center of the plurality of beams is performed after a predetermined period of time.
  20. The apparatus of claim 11, further comprises means for repeating the means for tracking, the means for determining, and the means for adjusting for a second antenna panel.
  21. A base station, comprising:
    a processor;
    a memory coupled with the processor; and
    instructions stored in the memory and operable, when executed by the processor, to cause the base station:
    to track a traffic level for each beam of a plurality of beams of a first antenna panel;
    to determine a statistical traffic center of the plurality of beams based on the tracking; and
    to adjust the first antenna panel to align a boresight beam direction of the first antenna panel with the statistical traffic center of the plurality of beams.
  22. The base station of claim 21, in which the base station comprises a small cell.
  23. The base station of claim 22, in which the small cell comprises a millimeter wave cell.
  24. The base station of claim 22, in which the small cell comprises a sub-6 GHz cell.
  25. The base station of claim 21, in which adjusting comprises mechanically adjusting the first antenna panel to align the boresight beam direction.
  26. The base station of claim 21, in which adjusting comprises electrically adjusting the first antenna panel to align the boresight beam direction.
  27. The base station of claim 21, in which tracking comprises periodically tracking the traffic level for each beam of the plurality of beams of the first antenna panel during a predetermined period of time.
  28. The base station of claim 21, in which determining comprises periodically determining the statistical traffic center of the plurality of beams based on the tracking over a predetermined period of time.
  29. The base station of claim 21, in which adjusting the first antenna panel to align the boresight beam direction of the first antenna panel with the statistical traffic center of the plurality of beams is performed after a predetermined period of time.
  30. The base station of claim 21, further comprises repeating of the tracking, determining, and adjusting for a second antenna panel.
  31. A non-transitory computer-readable medium having program code recorded thereon, the program code executed by a processor and comprising:
    program code to track a traffic level for each beam of a plurality of beams of a first antenna panel;
    program code to determine a statistical traffic center of the plurality of beams based on the tracking; and
    program code to adjust the first antenna panel to align a boresight beam direction of the first antenna panel with the statistical traffic center of the plurality of beams.
PCT/CN2020/119876 2020-10-08 2020-10-08 Autonomous boresight beam adjustment small cell deployment WO2022073168A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/119876 WO2022073168A1 (en) 2020-10-08 2020-10-08 Autonomous boresight beam adjustment small cell deployment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/119876 WO2022073168A1 (en) 2020-10-08 2020-10-08 Autonomous boresight beam adjustment small cell deployment

Publications (1)

Publication Number Publication Date
WO2022073168A1 true WO2022073168A1 (en) 2022-04-14

Family

ID=81125693

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/119876 WO2022073168A1 (en) 2020-10-08 2020-10-08 Autonomous boresight beam adjustment small cell deployment

Country Status (1)

Country Link
WO (1) WO2022073168A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190124640A1 (en) * 2017-02-10 2019-04-25 Qualcomm Incorporated Uplink resources for beam recovery
US20190131703A1 (en) * 2016-05-04 2019-05-02 Commscope Technologies Llc System and method of adjusting antenna beam on antenna tower
WO2019161733A1 (en) * 2018-02-23 2019-08-29 Huawei Technologies Co., Ltd. A method and apparatus for adjusting a reception beam
CN111246497A (en) * 2020-04-10 2020-06-05 卓望信息技术(北京)有限公司 Antenna adjustment method based on reinforcement learning

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190131703A1 (en) * 2016-05-04 2019-05-02 Commscope Technologies Llc System and method of adjusting antenna beam on antenna tower
US20190124640A1 (en) * 2017-02-10 2019-04-25 Qualcomm Incorporated Uplink resources for beam recovery
WO2019161733A1 (en) * 2018-02-23 2019-08-29 Huawei Technologies Co., Ltd. A method and apparatus for adjusting a reception beam
CN111246497A (en) * 2020-04-10 2020-06-05 卓望信息技术(北京)有限公司 Antenna adjustment method based on reinforcement learning

Similar Documents

Publication Publication Date Title
EP3984145A1 (en) Triggered sidelink quasi-colocation parameter update
US11457350B2 (en) Signaling user equipment multi-panel capability
US11910203B2 (en) Radio (NR) adaptation of cellular network configuration in response to machine learning based weather prediction
US11342976B1 (en) Orbital angular momentum (OAM) antenna for generating OAM beams
WO2020232291A1 (en) Capability-based bandwidth part switching
CN114208374A (en) Techniques for cell selection for dual connectivity
EP4186263A1 (en) Cell identity for earth-fixed area with a moving cell
WO2021194681A1 (en) Ue beam switching capability reporting and associated scheduling
US11785590B2 (en) Measuring primary synchronization signal (PSS) symbol to speed up user equipment (UE) beam refinement
US20220248218A1 (en) Physical layer secured message segmentation and transmission over different beams
WO2022006881A1 (en) Guard bandwidth detection for cellular wireless wide area network (wwan) and wireless local area network (wlan) concurrency
WO2022051976A1 (en) Cell selection, cell reselection, and public land mobile network (plmn) selection for shared network deployment
US20220190990A1 (en) Network-configured training procedure
WO2022073168A1 (en) Autonomous boresight beam adjustment small cell deployment
EP4115537A1 (en) Switching reference signals for beam or link failure detection
EP4082243A1 (en) Multiple selected/deselected cells for layer 1/layer 2 based mobility
WO2023019383A1 (en) Pathloss computation for power control in the presence of reconfigurable interactive surfaces
US20240129782A1 (en) Techniques for excluding signal measurements from a measurement report
WO2023283797A1 (en) Orbital angular momentum (oam) antenna for generating oam beams
US11696236B2 (en) Techniques for selecting an uplink beam
WO2022027544A1 (en) Sounding reference signal (srs) antenna switching for multiple transceiver user equipment (ue)
WO2021232327A1 (en) Uplink management for uplink split data radio bearer configuration
WO2022073169A1 (en) Techniques for optimized new radio cell acquisition in a multi-subscriber identity module mode
WO2021134781A1 (en) Multichannel multicasting or broadcasting of multizone video
EP3997951A1 (en) Bidirectional listen-before-talk operation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20956483

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20956483

Country of ref document: EP

Kind code of ref document: A1