WO2022071614A1 - Apparatus for producing high-pressure hydrogen and oxygen by using water electrolysis - Google Patents

Apparatus for producing high-pressure hydrogen and oxygen by using water electrolysis Download PDF

Info

Publication number
WO2022071614A1
WO2022071614A1 PCT/KR2020/013306 KR2020013306W WO2022071614A1 WO 2022071614 A1 WO2022071614 A1 WO 2022071614A1 KR 2020013306 W KR2020013306 W KR 2020013306W WO 2022071614 A1 WO2022071614 A1 WO 2022071614A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrogen
oxygen
gas
water
stack
Prior art date
Application number
PCT/KR2020/013306
Other languages
French (fr)
Korean (ko)
Inventor
이웅무
이정남
Original Assignee
이웅무
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이웅무 filed Critical 이웅무
Priority to PCT/KR2020/013306 priority Critical patent/WO2022071614A1/en
Publication of WO2022071614A1 publication Critical patent/WO2022071614A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/50Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/02Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form
    • C25B11/03Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form perforated or foraminous
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B13/00Diaphragms; Spacing elements
    • C25B13/04Diaphragms; Spacing elements characterised by the material
    • C25B13/08Diaphragms; Spacing elements characterised by the material based on organic materials
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • C25B15/08Supplying or removing reactants or electrolytes; Regeneration of electrolytes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/70Assemblies comprising two or more cells
    • C25B9/73Assemblies comprising two or more cells of the filter-press type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C1/00Pressure vessels, e.g. gas cylinder, gas tank, replaceable cartridge
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Definitions

  • the present invention relates to an energy technology for the production of high-pressure hydrogen gas for supplying hydrogen to a device requiring hydrogen fuel, and to an apparatus for producing, compressing and storing hydrogen and oxygen gas by an electrochemical method.
  • the biggest obstacle to the smooth diffusion of hydrogen charging stations is the large scale of the charging stations and high construction and maintenance costs.
  • the construction of the charging station is summarized in the problem of securing a supply source and compression of hydrogen gas.
  • Hydrogen supply to the charging station largely depends on three methods.
  • the first method is the use of by-product hydrogen obtained as a by-product in an oil refinery, such as decomposition of naphtha, or as a by-product in a steel mill. Although it has the advantage of being very cheap, there are problems such as removal of impurities contained in hydrogen, high-purity purification, transportation to charging stations, and securing storage facilities.
  • the second method is a method by reforming fossil fuels such as natural gas.
  • the third method is a method by water electrolysis. Although there is an advantage that the device is small and oxygen is produced together, the economic feasibility is sensitively dependent on the price of electricity.
  • a piston-mechanical method using a diaphragm or ionic liquid is mainly used for hydrogen compression.
  • a multi-stage compression process is required, and the size of the device increases due to the need for cooling.
  • the mechanical compression method has disadvantages such as high noise and low energy efficiency.
  • Patent Documents 1,2,3,4,5,6 Non-Patent Document 1 there is an electrochemical compression method, and many research and development are in progress.
  • the electrochemical compression method does not compress gas by external pressure, but fills a closed space with gas generated by electric power continuously applied to the electrochemical cell. That is, it is an internal pressure increase method.
  • An electrochemical cell is basically composed of two electrodes with a separator inserted therebetween. When a voltage is applied between the electrodes, an electric current flows. Accordingly, gas moves between the electrodes or hydrogen is generated from the electrodes. If the space containing the electrode is a closed system and an electric current continues to flow, the pressure of the gas increases as long as the outer wall is not crushed.
  • the electrochemical compression method can be divided into two types depending on the raw material supplied to the compressor.
  • One is the electrolysis method using water.
  • hydrogen is produced at one electrode and oxygen at the other, and high-pressure hydrogen and oxygen gas are produced together by compression. Since water is supplied in parallel to each unit cell, hydrogen/oxygen production occurs simultaneously in each cell and is discharged through a common conduit.
  • Another electrochemical method is a multi-step oxidation/reduction method using hydrogen as a raw material (Patent Document 3).
  • the system configuration of this method using hydrogen as a raw material is similar to that of a fuel cell, and any source of hydrogen gas can be used.
  • an oxidation/reduction reaction takes place at one electrode of the unit cell, which oxidizes hydrogen ions, a raw material, into hydrogen ions, permeates the membrane membrane, and reduces these ions back to hydrogen molecules at the other electrode. Therefore, in this method, hydrogen gas passes through each unit cell connected in series, and the pressure is gradually increased through overlapping oxidation/reduction.
  • the electrode area of the unit cell, the chemical composition, and the number of accumulated unit cells are the same, the hydrogen production per hour is much lower than that of the electrolysis method.
  • the biggest technical problems of the electrochemical hydrogen production compression method by water electrolysis introduced in the present invention are summarized in two.
  • One is the mechanical and structural strength of the stack, which is a key element of the device, and the other is the purity of the hydrogen produced.
  • Structural stability of a stack which is a stack of electrodes, at high pressure is sensitively dependent on the mechanical strength of the separator inserted between the two electrodes of the unit cell and other components of the unit cell, and the local stress applied to the bonding interface of the stack.
  • a material with a “ring” structure is used for the outer wall to withstand the pressure of the gas generated inside, and a stretchable material such as a “woven sheet” is inserted between the electrode and the bipolar distribution board.
  • Patent Document 5 a composite membrane in which the mechanical strength of the membrane is reinforced is used (Patent Document 6).
  • Patent Document 6 a composite membrane in which the mechanical strength of the membrane is reinforced
  • Patent Document 1 proposes a method in which hydrogen and oxygen are simultaneously produced by water electrolysis, and a part of oxygen serves as an adjuvant to help the compression of hydrogen.
  • This method significantly reduces the size of the high-pressure hydrogen production and compression device and suggests the possibility of lowering the price of the device by using low-cost materials.
  • the key to this method is to place a water electrolysis stack inside a housing or container and fill the inner space of the housing with high-pressure oxygen gas produced by the stack. Accordingly, it is possible to maintain the inside and outside of the stack at equal pressure, and the structural stability of the stack can be increased.
  • the method of using equal pressure inside and outside the stack can be a great advantage of the water electrolysis method.
  • this method did not provide a countermeasure against the explosive reaction that may be caused by the sudden mixing of high-pressure hydrogen and oxygen gas due to damage to the device.
  • Patent Document 1 Ung-Moo Lee and Jeong-Nam Lee, "A device for producing and storing high-pressure hydrogen gas using water electrolysis," applied for a Korean patent (Application No. 10-2018-0029929, Filed on March 14, 2018)
  • Patent Document 2 F. Barber, B. Balasubramanian an M. Stone, US Patent 6,994,929 B2 (2006).
  • Patent Document 3 T. Y. H. Wong, F. Girard, T. P. K. Vanderhoek, US Patent Application Publication 2004/0211679 A1 (2004).
  • Patent Document 4 W. F. Smith and J. F. McElroy, US Patent 5,350,496 (1994).
  • Patent Document 5 H. Vandenborre, US Patent 6,554,978 B1 (2003).
  • Patent Document 6 Daejin Yoon, Sangbong Moon, “Water Electrolysis Reinforced Composite Membrane and Water Electrolysis Membrane Electrode Composite Containing Same," Korean Patent 10-1754122 (2017)
  • Patent Document 7 Ung-Moo Lee and Jong-Hoon Kim, “Nickel Electrode with High Surface Area and Manufacturing Method thereof," Korean Patent 10-1377076 (2014)
  • Non-Patent Document 1 F. Allebrod, C. Chatzichristodoulou, M. B. Mogensen, Journal of Power Sources, 229, pp. 22-31 (2013).
  • Non-Patent Document 2 J. H. Kim, J. N. Lee, C. Y. Yoo, K. B. Lee and W. M. Lee, International Journal of Hydrogen Energy, 40, pp. 10720-10725 (2015).
  • the purpose of this is to provide an oxygen gas production device and at the same time provide a safe device manufacturing method that eliminates the risk of a combustion reaction that may occur during abrupt mixing of hydrogen/oxygen gas.
  • the technical difficulties involved in producing high-pressure hydrogen and oxygen gas by water electrolysis can be summarized as follows.
  • the first problem is the mechanical and structural stability of the module. When the gas pressure rises above 300 atm, stress management in the weak areas of device components and maintaining the stability of the separator become important.
  • the second problem is the stability problem due to the explosion reaction caused by the sudden mixing of the two gases due to the breakage of the dividing wall separating them as the pressure of the hydrogen and oxygen gases increases.
  • the third problem is that the solubility of gases dissolved in the electrolyte liquid (electrolyte) increases according to Henry's law as the pressure increases. Therefore, in order to increase the purity of each gas produced and compressed at high gas pressure, mixing of the hydrogen/electrolyte mixture flowing in contact with the hydrogen electrode and the oxygen/electrolyte mixture flowing in contact with the oxygen electrode should be minimized.
  • pressure equalization in and out of the device components can be taken.
  • One of the great advantages of the water electrolysis method is that hydrogen and oxygen are produced together, so if these gases are in pressure equilibrium, the stack can be placed inside a housing filled with hyperbaric oxygen to achieve equalization of the pressure applied inside and outside the stack. . If the outside of the stack is equalized to the inside and the oxygen and hydrogen gas inside the stack is equalized, the local stress can be effectively offset and the separation membrane can be effectively prevented from being damaged.
  • a stack manufactured by stacking unit cells is the most important component of a water electrolysis device, and when a circular electrode is used, it has a cylindrical shape.
  • the top and bottom covers are attached to the top and bottom of the stacked unit cells of the stack and fixed with bolts and nuts, and the entire stack is bound by this force.
  • the mechanical force applied to the internal structure of the stack by high-pressure hydrogen and oxygen gas produced by water electrolysis can be roughly divided into two types depending on the direction. One force is applied perpendicular to the surface of the unit cell, which is the unit structure of the stack (let's call it a vertical force), and the other force is applied parallel to the surface (let's call it a horizontal force, lateral force). .
  • the structural stability of the stack under the influence of horizontal forces is illustrated by the following example.
  • a conduit through which high-pressure gas and electrolyte flow is perpendicular to the surface of the upper plate/lower plate of the stack, and a lateral radial force is applied to the side of the inner wall.
  • a gasket skeleton is placed between the bipolar power distribution boards that create the boundary above and below the unit cells.
  • two disk-shaped gasket frames are generally used. (However, by modifying the structure of the gasket skeleton, one skeleton can also fulfill its role.)
  • One of these two skeletons is placed in a unit cell in contact with the lower surface of the upper power distribution board, and the other skeleton is the lower power distribution board. It is placed in such a way that it is in contact with the upper surface of And a separation membrane is disposed on the contact surface of the two skeletons.
  • a disk-shaped electrode and a porous metal layer are disposed in contact with the separator and the distribution plate, respectively.
  • an “O”-ring, gasket, protrusion, or epoxy adhesive is used on the contact surface between the distribution board and the gasket skeleton and between the gasket skeleton and the separator to help in sealing.
  • the gasket skeleton in the unit cell contains components such as electrodes and supports a sealing O-ring or gasket that prevents leakage of gas or liquid from the unit cell, as well as providing a flow path. It plays a very important role. In other words, a decisive role of providing a flow path for the electrolyte solution flowing into each unit cell, which is a component of the stack, from outside the stack, and providing a flow path for discharging the mixture of gas and electrolyte solution generated in the unit cell electrode to the outside of the stack carry out
  • the flow path is formed in a direction perpendicular to the flat plate of the skeleton on the outside of the stack, and becomes horizontal when passing through the porous metal layer of the unit cell.
  • a unitary body made of a polymer material is used as the reinforcement body of the stack, and the stack is placed in close contact with the hollow part formed inside the reinforcement body, and at the same time, the stack and the stack are formed.
  • a method of forming a communication channel was chosen.
  • the direction of the vertical flow path (classified as a pair of flow paths for hydrogen gas and oxygen gas type, respectively) formed in the reinforcement body is parallel to the central axis of the inner stack along its central axis, and withstands the radiative force applied to the inner wall of the flow path.
  • the mechanical strength that can be achieved was increased significantly compared to the flow path inner wall of the laminated multiple gasket skeleton. In this configuration, the gasket skeleton of the unit cell provides only a horizontal flow path, and the original vertical flow path is modified to be closed.
  • the connection for communication between the vertical flow path of the reinforcement and the horizontal unit cell flow path appears as an important problem.
  • a plurality of protrusions are made on the side of the gasket skeleton, which is a unit cell component, to help engage and communicate with the stack and the reinforcement.
  • the gasket skeleton is modified to include a bridge connecting each unit cell and the flow path of the reinforcing body without removing the previous vertical flow path, and this protrusion can directly serve as a bridge.
  • the valley-type space serves to horizontally communicate the plurality of conduits and hollow parts inside the reinforcement body.
  • a horizontal flow path is formed inside a pair of protrusions facing each other among the plurality of protrusions to enable communication between the flow path of the reinforcing body and the porous metal layer of the unit cell.
  • This horizontal flow path formed to face each other is rotated by 90 degrees in the adjacent frame, so that the hydrogen gas and oxygen gas generated from the hydrogen electrode and the oxygen electrode of the unit cell, respectively, are alternately converted to the hydrogen flow path or the oxygen flow path of the reinforcement body through independent flow paths. flow becomes possible.
  • the neighboring gasket skeleton it is preferable for the neighboring gasket skeleton to be rotated by 90 degrees with respect to the central axis for convenience of manufacture or stability of the device.
  • the electrolysis unit in order to perform compression and storage of hydrogen/oxygen production by electrolysis, the electrolysis unit is disposed inside the housing filled with oxygen, and the hydrogen gas and oxygen gas produced are stored in a storage container of the gas storage unit disposed outside the housing. A part of the stored and produced oxygen gas fills the empty space inside the housing.
  • the key to this method is to equalize the pressure of hydrogen gas and oxygen gas inside the device, and at the same time, balance the pressure of oxygen gas inside the housing. Since hydrogen-oxygen gas is produced in a quantitative volume ratio from water electrolysis, equalization of gas pressure can be easily achieved by adjusting the volume in the vessel occupied by these gases.
  • the present invention proposes a method of filling most of the space inside the housing with a non-combustible liquid such as water in order to suppress the combustion reaction of hydrogen and oxygen gas, contacting the liquid surface, and filling the upper space of the housing with high-pressure oxygen gas. Therefore, the peripheral components such as the stack and the separator are immersed in a liquid such as water within the housing. Through the incompressible liquid, the pressure of oxygen gas is transferred to the outer wall of the stack as it is, and the pressures applied to the inside and outside of the stack can be equalized.
  • the first case is a small leak. At this time, the power is cut off by the controller, so the production of any more gas is stopped. Therefore, the mixing degree is low, so that electricity cannot be generated by the combustion reaction of hydrogen/oxygen gas.
  • the second case is a case in which the stack structure is momentarily ruptured due to an increase in gas pressure inside the stack, and a large amount of hydrogen/oxygen gas inside the stack is mixed or leaked out of the stack. In this case, a large amount of gas has already flowed out of the stack before the controller operates, and there is a possibility to create a mixture ratio that can generate power through a combustion reaction of hydrogen/oxygen gas.
  • the chemical stability of the electrolysis device is closely dependent on the preparedness for the second case.
  • the hydrogen/oxygen mixed gas leaked from the stack is already mixed with water before being mixed with oxygen in the upper part of the water inside the container. However, it does not develop into an explosive reaction.
  • the next step is to solve the problem of gas purity.
  • the pressure of hydrogen and oxygen gas inside the water electrolysis device increases, the solubility of hydrogen and oxygen gas in the electrolyte solution also increases.
  • the pressure of hydrogen and oxygen gas is 500 atmospheres, 0.78 g and 20 g of hydrogen and oxygen gas are dissolved in 1 liter of water, respectively. Therefore, in high-pressure electrolysis, mixing of the electrolyte/hydrogen gas mixture and the electrolyte/oxygen gas mixture should be minimized, and the use of an ion exchange resin membrane is preferable. If a porous membrane is used as a separation membrane, a method must be devised to remove the impurity gas generated by movement.
  • the water electrolysis device can be divided into an anion exchange resin separator system and a cation exchange resin separator system according to the use of the separator or the acidity of the electrolyte. It does not matter which system is used to explain the principle of the present invention, but alkaline solution electrolysis is selected as an example. In alkaline solution electrolysis, hydrogen and oxygen gas are generated by the following reaction, respectively.
  • Hydroxide ions (OH ⁇ ) generated at the hydrogen electrode diffuse to the oxygen electrode through a separator such as an anion exchange membrane.
  • a removal method through an electrochemical catalyst column was selected. This method is similar to the principle of electrochemical corrosion.
  • the space on the side of the hydrogen electrode will be described as an example in the space on the side of the hydrogen electrode and the oxygen electrode with the separator as a boundary.
  • the hydrogen/electrolyte mixture mixed with a small amount of oxygen that has migrated through the membrane leaves the stack and passes through the catalyst column as it flows to the gas separator.
  • a high surface area nickel electrode coated with platinum or silver may be used as the catalyst column. A trace amount of oxygen and a large amount of hydrogen on the surface of the column electrode are respectively
  • the reaction produces water as a whole and oxygen is removed.
  • the above reaction is the same as the hydrogen/oxygen fuel cell reaction, and since both reactions occur on the same surface, no electromotive force is generated and it can be regarded as a kind of corrosive reaction. Hydrogen is removed by the same reaction even in the space of the oxygen electrode where a small amount of hydrogen has moved. A trace amount of oxygen or hydrogen dissolved in hydrogen/electrolyte or oxygen/electrolyte exists in a molecular state, so it can be easily removed by reaction (4) and (5).
  • the electrolyte level of the hydrogen-oxygen separator depends on the pressure difference between the two gases.
  • the pressure of a gas is determined by the volume allowed for the gas and the output per hour.
  • the water level of the brackish separator depends on the amount of water produced and consumed by the reactions (1) and (2). Therefore, in order to maintain the initial water level, the hydrogen electrode must supply water and the oxygen electrode must properly drain water. However, since a large amount of oxygen is dissolved in the electrolyte of the oxygen water separator under high pressure conditions, it is necessary to pay attention to its drainage.
  • One method of drainage is to join the hydrogen gas/electrolyte mixture that circulates to the hydrogen separator through a discharge path when the water level in the oxygen separator exceeds the upper limit.
  • the combined mixture passes through the electrochemical catalyst column to convert dissolved oxygen into water and enters the hydrogen degassing unit.
  • Another method is to discharge the excess to the outside of the electrolysis section and discard it. In this case, the amount of water supplied to the hydrogen degassing separator should be doubled.
  • the ratio of the volumes occupied by these gases in the stack must also be 2:1.
  • the housing containing the stack and filled with water and high-pressure oxygen gas can act as a volume adjuster by draining the liquid inside if necessary.
  • Supply and drainage of water and circulation of electrolyte liquid in a high-pressure electrolyzer are not as simple as in a normal-pressure electrolyzer.
  • a mechanical means such as a piston with electrical power.
  • the continuous increase in the pressure of hydrogen/oxygen gas as a function of time along with the application of power may be used as a driving force for fluid movement.
  • the actuation of an on-off valve can induce a pressure differential between the fluid moving compartments, and a slight pressure differential before and after a means such as a piston facilitates the movement of the electrolyte.
  • the economics of the in-stack pressure equalization method for high-pressure hydrogen production/compression depends on the simplicity of the housing structure in which the stack is placed and filled with water/high-pressure oxygen gas. Components such as stacks of the device require periodic disassembly and regeneration after a certain period of time, so the housing must be stable to high pressure as well as simple to open and close.
  • the structure of the housing consists of two components that can be opened and closed, for example, an upper and a lower half.
  • the local stress applied to the joint groove of the bolt and the nut is very large because the nut boundary with the bottom of the lower half receives a downward force by the bottom and an upward force through the bolt.
  • the material for making the bolt and nut reaches its limit in overcoming high stress. If the structure is deformed so that the force to lift the upper half of the housing and the force to lower the lower half of the housing push each other at their joint surfaces, the local stress is relieved and the housing can maintain mechanical stability even at high internal pressure.
  • the greatest feature of the high-pressure hydrogen and oxygen gas production and storage device is that the gas production and compression are simultaneously achieved by an electrochemical method. Production is achieved by electrolysis of water and compression is achieved by electrochemical rather than mechanical compression. Therefore, in this method, the size of the entire device is significantly reduced compared to the existing method using by-product hydrogen or hydrogen produced by reforming fossil fuels.
  • the mechanical stability of the gas separation membrane can be increased through pressure equalization of hydrogen gas and oxygen gas produced from water electrolysis, and local stress on the stack can be reduced through pressure equalization inside and outside the stack.
  • the cost of the device can be very low by using a low-cost flexible electrode, a gas escape layer, and a low-cost porous separator. The biggest effect of reducing size and price is that it can accelerate the practical use of hydrogen charging stations.
  • FIG. 1 is a view schematically showing the overall configuration of a hydrogen production compression storage device according to the present invention.
  • Figure 2 is a structural view of the housing containing the stack and auxiliary devices of the water electrolysis device therein.
  • Fig. 3a is a planar view of a tubular stiffener enclosing the stack outwardly;
  • 3B is a perspective view of a reinforcement body
  • 3C is a perspective view of a gasket skeleton as a unit cell component
  • FIG. 3D is a plan view showing a state in which the gasket skeleton of FIG. 3C is inserted into the inner space of the reinforcement body of FIG. 3A, wherein the hydrogen gas flow path is open;
  • FIG. 3E is a plan view showing a state in which the gasket skeleton of FIG. 3C is inserted into the inner space of the reinforcement body of FIG. 3A, and the oxygen gas flow path is open;
  • FIG. 4 is a cross-sectional view of a stack showing a connection between a hydrogen/electrolyte flow path formed in a reinforcement member and a stack unit cell;
  • FIG. 5 is a view comprehensively showing an electrolyte supply to and a gas discharge path from the hydrogen and oxygen separator.
  • 6A is an explanatory view of a pumpless circulator for supplying an electrolyte from a water separator to a stack;
  • 6B is a graph showing the change with time of the gas pressure measured at each point in the fluid circulation path of a pumpless circulator
  • the present invention shows a method of simultaneously producing and compressing hydrogen gas and oxygen gas by water electrolysis.
  • device When the pressure of hydrogen and oxygen gas rises, local stress is applied to the parts or internal parts that bind the high-pressure water electrolysis device (hereinafter referred to as "device"). Pressure balancing is important to reduce stress, and the following method is used.
  • Pressure equalization has two meanings.
  • the first refers to the equilibrium between the hydrogen gas pressure and the oxygen gas pressure applied to both sides of the polymer membrane that separates the two electrodes of the unit cell inside the stack, which is the main component of the device.
  • the second is to make the gas pressure inside the stack and the gas pressure outside the stack have the same value.
  • the first meaning it is possible by adjusting the volume of the two containers according to the pressure measurement (monitoring) of the hydrogen storage container and the oxygen storage container.
  • the stack is placed inside the housing, which is a closed system, and the produced oxygen gas is introduced into the housing, which is mostly filled with water. At this time, as oxygen flows in, it becomes possible to adjust the space occupied by oxygen gas by drainage.
  • Hydrogen gas produced by electrolysis can be captured in a water storage vessel that supplies water to the device.
  • the advantage of such collection is that hydrogen gas naturally occupies the empty space that is created when water is consumed by water electrolysis. Therefore, it is not necessary to separately provide storage containers for hydrogen and oxygen gas.
  • water is consumed at the hydrogen electrode and water is regenerated at the oxygen electrode.
  • Water from the water supply part is supplied to the hydrogen separator through a valve connected to the bottom of the container.
  • the upper empty space of the water supply unit is filled with high-pressure hydrogen gas.
  • the water supply rate is determined by the current value supplied from the power source, and the fine adjustment is determined by the flow cross section of the valve.
  • the water level of the brackish water separator for hydrogen is complexly dependent on the following factors.
  • the water level is determined by the supply of water from the water storage source and the inflow of the electrolyte corresponding to the rise in the water level of the oxygen water separator.
  • the above-mentioned input amount is determined by the electric current and the electrochemical reaction.
  • the initial value of the water level can be maintained by equalization of the hydrogen-oxygen gas pressure. If the production rates of the two gases are constant, the water level can be maintained by adjusting the volume occupied by these gases in the device.
  • FIG. 1 A schematic diagram of a high-pressure hydrogen production compression device based on the above principle has been described in FIG. 1 .
  • an alkaline electrolysis device in which OH - ions move through an anion separator is used as an example, but the same principle is applied to water electrolysis using a noble metal electrode and Nafion.
  • the entire device 10 shown in FIG. 1 includes a housing 110 containing various components for hydrogen/oxygen production and compression, and a container 700 disposed outside the housing to serve as both high-pressure hydrogen storage and water storage. am.
  • the housing 110 is also used as a storage container for high-pressure oxygen.
  • the hydrogen gas and oxygen gas separator 300 and the oxygen separator 400 for separating the stack 200 which are core elements of the water electrolysis unit, and the hydrogen gas and oxygen gas produced in the stack from the electrolyte are disposed.
  • the inside of the housing 110 is filled with water 150 , and the oxygen gas 152 generated by electrolysis fills the empty space generated by drainage through the lower valve 153 . That is, the lower valve 153 can control the pressure of the oxygen gas by adjusting the volume occupied by the oxygen gas as a drain control unit.
  • the hydrogen gas 310 and the oxygen gas 410 separated from the electrolytes 320 and 420 in the water separator are introduced into the hydrogen storage device 700 through the respective discharge paths 303 and 403 and are stored or stored (308) in the housing. It is simultaneously introduced into the interior 152 and the oxygen storage device 800 and stored. Water used for electrolysis is supplied from the storage source 620 to the hydrogen water separator 300 through the valve 121 and the inflow path 122 .
  • the hydrogen electrolyte 320 and the oxygen electrolyte 420 are introduced into the stack 200 through respective circuits 302 and 402 .
  • a mixture of the hydrogen/oxygen gas generated in the stack and the electrolyte solution enters each water separator through the respective flow passages 301 and 401 .
  • the mixture of hydrogen gas/electrolyte and oxygen gas/electrolyte passes through each electrochemical column 201 .
  • the inside of the electrochemical column 201 is filled with a high surface area catalyst coated with platinum-based noble metals (Pt, Pd, Ru, Ir), iron (Fe), cobalt (Co), silver (Ag), and the like.
  • a sintered high surface area nickel electrode or carbon may be used as the catalyst.
  • a small amount of oxygen or hydrogen/electrolyte mixture or oxygen/electrolyte mixture mixed with hydrogen that has moved through the separation membrane inside the stack passes through the catalyst column when it leaves the stack and flows to each degassing separator.
  • a trace amount of hydrogen or oxygen dissolved in the electrolyte is converted into water by an electrochemical reaction as it passes through this catalyst column.
  • FIG. 2 is a schematic cross-sectional view showing an embodiment of the structure of the housing.
  • a stack and other components 202 among various components positioned inside the housing are illustrated in a simplified manner.
  • the housing in which the empty space inside is filled with water/high-pressure oxygen gas includes two elements, an upper housing and a lower housing that can be opened and closed. When the internal pressure increases, these two elements have a structure in which the force acts in the direction of strengthening the bonding force rather than the force in the direction of separation.
  • annular flange 112 extending in a radial direction is formed on the lower side of the upper housing, and a U-shaped annular joint 114 having a radially extended “C”-shaped cross section on the upper side of the lower housing. ) is formed.
  • An "L"-shaped flange is formed on the upper part of the lower housing to form a U-shaped annular joint 114, and an annular pressing part is fixed on the upper part of the "L"-shaped flange using a bolt 116 and a nut 118. method can be used.
  • a force acts in a direction in which the upper housing and the lower housing move away from each other.
  • This force strengthens the joint between the flange upper surface of the upper housing and the lower part of the annular pressing part. direction will work. That is, the structural stability of the housing can be improved by using the pressure of the high-pressure oxygen gas 152 inside the housing to strengthen the airtightness of the bonding surface.
  • a member such as a gasket for sealing may be used between the L-shaped flange and the annular pressing portion and between the annular pressing portion and the annular flange, respectively, and the number, size, and spacing thereof may be adjusted as necessary.
  • Power to the stack is supplied from a DC power supply 205 outside the housing.
  • Hydrogen gas 310 flowing out from the hydrogen container water separator 300 located inside the housing is stored in the high-pressure hydrogen and water storage container 700, and when using the hydrogen gas 308 stored in the high-pressure hydrogen and water storage container It is made to pass through the purification column 312 and the drying column 314 .
  • Oxygen gas 152 inside the housing or oxygen in the oxygen storage 800 outside the housing also passes through the purification column 412 and the drying column 414 when in use.
  • the oxygen storage 800 serves only to help when determining the initial oxygen space, and may be excluded from the device.
  • the vertical force pressing the upper and lower surfaces of the cylindrical stack placed inside the housing filled with high-pressure gas is effective to offset the vertical force generated by the gas generation inside the stack.
  • the radial force (lateral force, radial force in the case of a cylindrical flow path) applied to the inner wall of the flow path formed vertically in the vertical direction of the stack is a horizontal force, and suppressing this force is also important to maintain the structural stability of the stack.
  • a reinforcement unitary body surrounding the stack is used as a means to withstand the force in the horizontal direction.
  • the reinforcing body is made in a tubular shape to adhere to the outside of the stack to support the force acting in the horizontal direction inside the stack.
  • the reinforcing body is a unitary polymer material, and it is preferable to take a form in which the stack is disposed so as to be in close contact with the empty space therein.
  • a reinforcing body flow path 272 is formed in the reinforcing body, so that the flow path passing through the cylindrical axial direction and the unit cells of the stack communicate with each other.
  • the gasket skeleton used in response to each unit cell of the stack plays an important role in making such a connection path.
  • 3A and 3B are respectively a plan view and a perspective view of a tubular reinforcement that surrounds the stack.
  • 3C is a perspective view of a gasket frame
  • FIG. 3D is a plan view showing a state in which the gasket frame is inserted into the inner space of the reinforcement body. is connected to, and a view showing a state in which the oxygen entry channel and the oxygen release channel are closed by the channel closing protrusion is shown
  • FIG. the oxygen entry flow path and the oxygen discharge flow path are respectively connected to the reinforcement flow path, and the hydrogen entry flow path and the hydrogen discharge flow path are closed by the flow path closing protrusion.
  • the internal cylindrical hollow space 242 of the reinforcing body 240 may be disposed in such a way that a cylindrical stack is also pushed.
  • the protrusion of the gasket skeleton which is a component of the stack unit cell, is disposed in a form to be inserted into the valley-shaped spaces 255 and 265 formed parallel to the cylindrical axis on the side of the inner space of the reinforcement body, so that the two elements, that is, the reinforcement body It helps the tight bonding of the stack and the stack.
  • a liquid adhesive is applied to the inner wall of the hollow part of the reinforcing body and the side of the gasket skeleton, it can dry and fill the empty space between the two elements to help adhere.
  • hydrogen passages hydrogen entry passage and hydrogen discharge passage
  • oxygen flow paths oxygen inlet flow path and oxygen discharge flow path
  • connection between the hydrogen flow path of the reinforcement body and the unit cell is performed by maintaining the hydrogen connection path 255 of the valley-type space in an open state by the gasket framework flow path 271 formed in the protrusion of the gasket framework, and oxygen of the reinforcement body
  • the connection between the flow path and the unit cell is achieved by maintaining the oxygen connection path 265 of the valley-shaped space in an open state by the gasket framework flow path 271 formed on the protrusion of the gasket framework.
  • a plurality of bolt fastening holes 243 may be formed and used to bind unit cells of a stack disposed inside the reinforcing body. Accordingly, the inner surfaces of the two covers covering the upper and lower portions of the reinforcing body come into contact with the outer surfaces of the uppermost and lowermost metal plates of the stack, respectively, so that the force applied when the bolts are fastened is transmitted in a form of compressing the unit cells.
  • the gasket skeleton 270 is formed with two passage closing protrusions 273 and two passage connecting protrusions 271 protruding outward.
  • the flow path closing protrusion 273 closes the horizontal connection path (hydrogen connection path or oxygen connection path) 255 or 265 of the reinforcement body 240
  • the flow path connection projection 271 is the horizontal direction of the reinforcement body 240 .
  • the flow paths 251 , 252 , 261 , or 262 formed in the reinforcement body 240 may communicate with each other.
  • connection path 255 or 265 of the reinforcement body 240 to the hydrogen electrode 220 or the oxygen electrode 210 of each unit cell, or from the hydrogen electrode 220 or the oxygen electrode 210 to the reinforcement body 240
  • the gasket skeleton 270 is used to contact the hydrogen electrode or the oxygen electrode of the unit cell, respectively. That is, the shape shown in FIG. 3D is such that the vertical hydrogen entry flow path 251 and the hydrogen discharge flow path 252 formed in the reinforcement body are connected to the unit cell by the gasket skeleton flow path 272, and the shape shown in FIG. 3E (The shape shown in FIG. 3C is rotated by 90 degrees), a method in which the oxygen inlet flow path 261 and the oxygen discharge flow path 262 are connected to the unit cell by the gasket skeleton flow path 272 may be used.
  • the ring thickness (t in FIG. 3A ) is formed to be 10% to 100% of the inner diameter of the hollow portion (d in FIG. 3A ) and a cross-sectional area of the horizontal connection path in the reinforcing body into which the gasket skeleton protrusion is inserted is 2% to 200% of the cross-sectional area of the vertical hydrogen inlet channel, hydrogen outlet channel, oxygen inlet channel, and oxygen outlet channel.
  • the reason that the gasket skeleton is not in close contact with the hollow part of the reinforcing body in FIGS. 3D and 3E is to show that the gasket skeleton is a separate member from the reinforcing body skeleton in the drawing, and the gasket skeleton is the gasket skeleton flow path. Although it is shown as being divided into two parts with the skeletal flow path between It is not designed to be split into two parts.
  • FIG. 4 is a view showing that the hydrogen passages 251 and 252 and the hydrogen connection passage 255 of the reinforcement body and the gasket skeleton flow passage 272 communicate with the unit cell, and is a cross-sectional view of the unit cell coupled to the reinforcement member. is shown. That is, FIG. 4 is a cross-sectional view taken along line IV-IV of FIG. 3D in a state in which the stack is coupled to the reinforcing body.
  • an oxygen electrode 210 is below.
  • a hydrogen electrode 220 is disposed on it, and a porous gas diffusion layer 232 and a bipolar distribution board 234 are stacked in contact with each electrode.
  • Hydrogen gas/electrolyte is introduced into the unit cell through the hydrogen inlet passage 251 formed in the vertical direction formed in the reinforcement body, the hydrogen inlet connection passage 255 formed in the horizontal direction, and the gasket skeleton passage 272, and then in the horizontal direction. It is discharged through the formed gasket skeleton flow path, the hydrogen discharge connection path 255 in the horizontal direction formed in the reinforcing body, and the hydrogen discharge flow path 252 formed in the vertical direction.
  • the flow path connecting protrusion 271 and the flow path closing protrusion 273 formed on the edge of the gasket skeleton 270 of the hydrogen electrode have a shape corresponding to the cross-sectional shape (rectangular in the drawing) of the connecting paths 255 and 265 formed in the reinforcing body. is made That is, the flow path closing protrusion 273 is fitted to the connection path 265 to completely close the connection path 265 , and the flow path connection protrusion 271 is the gasket skeleton flow path 271 except for a portion.
  • the connection path 255 is completely in close contact with the wall.
  • the electrolyte level In order to equalize the hydrogen gas and oxygen gas pressures of the device 10 of the present invention, the electrolyte level must first be adjusted. The drop in the hydrogen brackish water level due to electrolysis is covered by the supply of water from the water storage source and the transfer of excess from the oxygen brackish separator. As shown in FIG. 5 , when the water level of the oxygen water separator 400 exceeds the upper limit, the excess is combined with hydrogen/electrolyte through the discharge path 405 and is moved to the hydrogen water separator 300 . At this time, the combined mixture passes through the electrochemical catalyst column 201 to remove oxygen dissolved in the oxygen electrolyte and then flows into the hydrogen water separator 300 . An excess of the oxygen separator may be discharged to the outside of the housing through the drain 406 .
  • the initial volume to be occupied by hydrogen and oxygen gas should be determined at the start of electrolysis, and the ratio should be such that oxygen is less than 50% of the hydrogen volume.
  • the air inside the device is pumped out, leaving only the initial space for gas to flow when filling with water.
  • the initial spatialization of hydrogen and oxygen determines the final pressures of these gases.
  • the pressure of hydrogen gas and oxygen gas inside the device to be measured (monitor) is different as the electrolysis proceeds, the volume occupied by each gas is adjusted.
  • the electrolyte of the device circulates between the hydrogen separator and the stack and between the oxygen separator and the stack through independent flow paths.
  • 6a shows the principle of circulating the electrolyte between the hydrogen separator and the stack without using a pump.
  • the circulation between the oxygen degasser and the stack follows the same principle.
  • a bypass passage is made so that a part of the hydrogen gas leaving the separator can flow in the stack direction.
  • a high pressure gas chamber 330 (high pressure chamber) is arranged as a small hydrogen gas temporary storage in the passage, and a small electrolyte supply container 335 is arranged.
  • a piston 336 is installed inside the electrolyte supply container, and the upper half of the container in contact with it is filled with the hydrogen electrolyte 320 and the lower half with the high-pressure hydrogen gas 311 supplied through the branch passage.
  • the hydrogen gas pressure inside the high-pressure gas chamber 330 is momentarily higher than the pressure inside the stack, and the piston is moved upward with the gas pressure to supply the electrolyte to the stack. Therefore, it is important to induce a pressure differential between each point in the circulation path, which can be achieved using multiple on-off valves.
  • valve 341 located in the path 303 leading to the main hydrogen storage 700 is closed, and the valve 342 leading to the high-pressure gas chamber 330 is opened to increase the pressure of the high-pressure gas chamber 330 .
  • the valve 341 is opened again.
  • the mixture of hydrogen gas and electrolyte is introduced into the hydrogen water separator 300 after passing through the electrochemical catalyst column 201 along the discharge path 301 .
  • a cycle consists of three phases, each of which is
  • Step 1 Hydrogen Filling of Temporary Hydrogen Reservoir
  • Step 2 Supply of electrolyte to the stack by using a piston
  • Step 3 Recharge the electrolyte in the electrolyte supply container and move the piston downward
  • step 1 c o c o o
  • step 2 o c o c o
  • step 3 o c o o o o
  • FIG. 6B A profile showing the gas pressure measured at two points in the hydrogen gas path as a function of time or as a function of period and step is shown in FIG. 6B .

Abstract

The objective of the present invention is to provide an electrochemical device and method for producing high-pressure hydrogen gas. An apparatus for producing and compressing high-pressure hydrogen gas and oxygen gas by using water electrolysis, according to the present invention, provides a method for improving the structural stability of a stack and a method for removing a trace amount of impurities generated when a porous polymer separator is used. To increase structural stability, the pressures inside and outside the stack are equalized, and the outside of the stack is wrapped with an integrated reinforcing agent. An electrochemical catalytic column is used to remove impurity gas by mixing, through the separator, hydrogen gas and oxygen gas produced by two electrodes inside the stack, and in order to make the pressures of the two gases equivalent, a method for adjusting the volume occupied by oxygen gas in the entire apparatus was adopted.

Description

물 전기분해를 이용한 고압 수소 및 산소 생산 장치High-pressure hydrogen and oxygen production device using water electrolysis
본 발명은 수소연료를 필요로 하는 장치에 수소 공급을 위한 고압 수소가스의 생산에 관한 에너지 기술에 관련된 것으로, 전기화학 방법에 의하여 수소와 산소가스의 생산, 압축 및 저장하는 장치에 관한 것이다.The present invention relates to an energy technology for the production of high-pressure hydrogen gas for supplying hydrogen to a device requiring hydrogen fuel, and to an apparatus for producing, compressing and storing hydrogen and oxygen gas by an electrochemical method.
수소연료전지를 동력원으로 하는 차세대 전기차량 혹은 이동수단의 실용화를 위한 선결조건중 하나는 수소충전소의 원활한 보급이다. 이 문제가 해결되면 배터리 전기차량에 비해서 주행거리, 충전시간 그리고 폐전지 처리 등의 문제에서 큰 우위를 갖고 있는 연료전지 전기차량의 보급은 확대될 것이다.One of the prerequisites for practical use of next-generation electric vehicles or transportation means using hydrogen fuel cells as a power source is the smooth supply of hydrogen charging stations. If this problem is resolved, the supply of fuel cell electric vehicles, which has a great advantage over battery electric vehicles in terms of mileage, charging time, and waste battery disposal, will be expanded.
수소충전소의 원활한 보급을 막는 가장 큰 장애 요소는 충전소의 큰 규모, 높은 건설 및 유지비용이다. 충전소의 건설은 수소가스의 공급원 확보와 압축문제로 요약된다. 충전소로의 수소공급은 크게 세 가지 방법에 의존한다. 첫째 방법은 납사의 분해 등 정유공장에서 부산물로 혹은 제철공장에서 부산물로 얻어지는 부생수소의 이용이다. 가격이 매우 저렴하다는 장점은 있으나 이 수소에 함유돼 있는 불순물의 제거와 고순도 정화, 충전소로의 운송, 그리고 저장시설 확보 등의 문제가 있다. 둘째 방법은 천연가스 등 화석연료의 개질(reforming)에 의한 방법이다. 개질에 의한 수소생산은 이산화탄소 가스가 동반 생산되므로 청정에너지(clean energy)원이라는 수소의 소기 목적에 배치된다. 셋째 방법은 물 전기분해에 의한 방법이다. 장치가 작고 산소가 동반 생산된다는 이점은 있으나 경제성이 전기가격에 민감하게 좌우된다.The biggest obstacle to the smooth diffusion of hydrogen charging stations is the large scale of the charging stations and high construction and maintenance costs. The construction of the charging station is summarized in the problem of securing a supply source and compression of hydrogen gas. Hydrogen supply to the charging station largely depends on three methods. The first method is the use of by-product hydrogen obtained as a by-product in an oil refinery, such as decomposition of naphtha, or as a by-product in a steel mill. Although it has the advantage of being very cheap, there are problems such as removal of impurities contained in hydrogen, high-purity purification, transportation to charging stations, and securing storage facilities. The second method is a method by reforming fossil fuels such as natural gas. Since hydrogen production by reforming is produced together with carbon dioxide gas, it is arranged for the desired purpose of hydrogen as a clean energy source. The third method is a method by water electrolysis. Although there is an advantage that the device is small and oxygen is produced together, the economic feasibility is sensitively dependent on the price of electricity.
수소의 압축에는 다이어프램(diaphragm) 혹은 이온화 액체(ionic liquid)를 사용하는 피스톤 기계식 방법이 주로 사용된다. 수소가스를 고압으로 압축하기 위해서는 다단계(multi-stage) 압축과정이 필요하며 냉각의 필요성 때문에 장치의 규모가 커진다. 이밖에도 기계식 압축방법은 높은 소음과 낮은 에너지 효율 등의 단점이 있다.A piston-mechanical method using a diaphragm or ionic liquid is mainly used for hydrogen compression. In order to compress hydrogen gas to a high pressure, a multi-stage compression process is required, and the size of the device increases due to the need for cooling. In addition, the mechanical compression method has disadvantages such as high noise and low energy efficiency.
이러한 기계식 압축방법을 대체하는 방식으로 전기화학적 압축방법이 있으며 많은 연구 개발이 진행되고 있다(특허문헌 1,2,3,4,5,6 비특허문헌 1). 전기화학적 압축방식은 외부 압력에 의하여 가스를 압축하는 것이 아니라 전기화학 셀에 연속적으로 인가되는 전력에 의해 생성되는 가스로 폐공간(closed space)을 채우는 방식으로 다시 말하면 내부 압력 증가 방식이다. 전기화학 셀은 기본적으로 분리막이 삽입된 두 개의 전극으로 구성되며 이 전극사이에 전압을 인가하면 전류가 흐르고 이에 따라 전극사이로 가스가 이동하거나 전극에서 수소가 생성된다. 전극을 포함하는 공간을 닫힌계로 하고 계속 전류를 흘리면 이 외벽이 분쇄되지 않는 한 가스의 압력은 상승한다. As an alternative to the mechanical compression method, there is an electrochemical compression method, and many research and development are in progress (Patent Documents 1,2,3,4,5,6 Non-Patent Document 1). The electrochemical compression method does not compress gas by external pressure, but fills a closed space with gas generated by electric power continuously applied to the electrochemical cell. That is, it is an internal pressure increase method. An electrochemical cell is basically composed of two electrodes with a separator inserted therebetween. When a voltage is applied between the electrodes, an electric current flows. Accordingly, gas moves between the electrodes or hydrogen is generated from the electrodes. If the space containing the electrode is a closed system and an electric current continues to flow, the pressure of the gas increases as long as the outer wall is not crushed.
전기화학식 압축방법은 압축기에 공급되는 원료에 따라 두 방식으로 나눌 수 있다. 하나는 물을 사용하는 전기분해 방식이다. 물을 원료로 사용하는 이 시스템에 전력을 공급하면 한쪽 전극에서는 수소가 다른 쪽 전극에서는 산소가 생성되며 압축에 따라 고압 수소와 산소가스가 동반 생산된다. 물의 공급은 각 단위 셀에 병렬식으로 공급되므로 수소/산소 생산은 각 셀에서 동시에 일어나며 공동 유로(conduit)를 통하여 배출된다. 다른 하나의 전기화학적 방법은 수소를 원료로 사용하는 다단계 산화/환원 방식이다 (특허문헌 3). 수소를 원료로 사용하는 이 방식의 시스템 구성은 연료전지와 유사하며 어떤 출처의 수소가스라도 사용 가능하다. 이 시스템에서는 단위 셀의 한쪽 전극에서 원료인 수소 분자를 수소이온으로 산화시켜 멤브레인 분리막을 투과하게 만들고 다른 쪽 전극에서 이 이온을 다시 수소 분자로 환원시키는 산화/환원반응이 일어난다. 따라서 이 방식에서는 직렬로 연결된 각 단위 셀을 수소 가스가 지나면서 중복적인 산화/환원을 통하여 그 압력을 점진적으로 상승시킨다. 단위 셀의 전극면적과 화학적 조성 그리고 축적된 단위 셀의 수가 동일할 경우 시간당 수소 생산량이 전기분해 방식에 비하여 훨씬 낮다.The electrochemical compression method can be divided into two types depending on the raw material supplied to the compressor. One is the electrolysis method using water. When power is supplied to this system that uses water as a raw material, hydrogen is produced at one electrode and oxygen at the other, and high-pressure hydrogen and oxygen gas are produced together by compression. Since water is supplied in parallel to each unit cell, hydrogen/oxygen production occurs simultaneously in each cell and is discharged through a common conduit. Another electrochemical method is a multi-step oxidation/reduction method using hydrogen as a raw material (Patent Document 3). The system configuration of this method using hydrogen as a raw material is similar to that of a fuel cell, and any source of hydrogen gas can be used. In this system, an oxidation/reduction reaction takes place at one electrode of the unit cell, which oxidizes hydrogen ions, a raw material, into hydrogen ions, permeates the membrane membrane, and reduces these ions back to hydrogen molecules at the other electrode. Therefore, in this method, hydrogen gas passes through each unit cell connected in series, and the pressure is gradually increased through overlapping oxidation/reduction. When the electrode area of the unit cell, the chemical composition, and the number of accumulated unit cells are the same, the hydrogen production per hour is much lower than that of the electrolysis method.
본 발명에서 소개하는 물 전기분해에 의한 전기화학적 수소 생산 압축방법의 가장 큰 기술적 문제점은 두 가지로 요약된다. 하나는 장치의 핵심요소인 스택의 기계 및 구조적 강도이며 다른 하나는 생산되는 수소의 순도이다. 고압에서 전극의 더미인 스택의 구조적 안정성은 단위 셀 두 전극 간에 삽입하는 분리막과 단위 셀 다른 구성요소의 기계적 강도 그리고 스택의 결속 접합면 등에 걸리는 국부적인 응력(stress) 등에 민감하게 의존된다. 스택을 조립할 때 내부에서 생성되는 가스의 압력을 견뎌 내도록 외벽을 "환상(ring)"구조의 소재를 사용하고 전극과 양극성 배전판 사이에 "짠 직조 판(woven sheet)"과 같은 신축성 소재를 삽입하기도 하여 (특허문헌 5) 혹은 멤브레인의 기계적 강도가 보강된 복합막을 사용하기도 한다 (특허문헌 6). 그러나 내부 가스의 압력이 300 기압 이상으로 상승할 경우 스택 구성요소의 보강만으로는 한계에 부딪친다. 수소충전소가 보편화되기 위해서는 저장용기의 수소가스 압력이 700 기압 이상으로 유지되어야 하며 높은 압력에 견디는 압축장치 내부 구조의 설계가 필수적이다. The biggest technical problems of the electrochemical hydrogen production compression method by water electrolysis introduced in the present invention are summarized in two. One is the mechanical and structural strength of the stack, which is a key element of the device, and the other is the purity of the hydrogen produced. Structural stability of a stack, which is a stack of electrodes, at high pressure is sensitively dependent on the mechanical strength of the separator inserted between the two electrodes of the unit cell and other components of the unit cell, and the local stress applied to the bonding interface of the stack. When assembling the stack, a material with a “ring” structure is used for the outer wall to withstand the pressure of the gas generated inside, and a stretchable material such as a “woven sheet” is inserted between the electrode and the bipolar distribution board. Thus (Patent Document 5) or a composite membrane in which the mechanical strength of the membrane is reinforced is used (Patent Document 6). However, when the pressure of the internal gas rises above 300 atmospheres, the reinforcement of the stack components alone is limited. In order for hydrogen filling stations to become universal, the hydrogen gas pressure in the storage container must be maintained at 700 atm or higher, and the design of the internal structure of the compression device to withstand high pressure is essential.
상기한 조건을 만족시키기 위해서는 아주 새로운 방법과 소재의 선택이 요구된다. 특허문헌 1에서는 물 전기분해에 의해 수소와 산소를 동시 생산하고 산소의 일부는 수소의 압축을 돕는 보조제 역할을 하는 방법을 제시하였다. 이 방법은 고압 수소 생산압축장치의 크기를 현저히 줄이고 저가의 소재를 사용하여 장치의 가격을 낮추는 가능성은 제시하였다. 이 방법의 핵심은 물 전기분해 스택을 하우징(housing or container) 내부에 배치하고 하우징의 내부 공간을 스택에서 생산되는 고압의 산소가스로 채운다. 따라서 스택 안팎을 등압(equal pressure)으로의 유지가 가능하며 스택의 구조적 안정성을 높일 수 있다. 스택 안팎을 등압(equal pressure)으로 하는 방식은 물 전기분해방법의 큰 장점이 될 수 있다. 그러나 이 방법은 장치의 파손으로 인하여 고압의 수소와 산소가스의 돌발적인 섞임이 유발할 수도 있는 폭발반응에 대한 대비책은 제시하지 못 하였다.In order to satisfy the above conditions, it is required to select a brand new method and material. Patent Document 1 proposes a method in which hydrogen and oxygen are simultaneously produced by water electrolysis, and a part of oxygen serves as an adjuvant to help the compression of hydrogen. This method significantly reduces the size of the high-pressure hydrogen production and compression device and suggests the possibility of lowering the price of the device by using low-cost materials. The key to this method is to place a water electrolysis stack inside a housing or container and fill the inner space of the housing with high-pressure oxygen gas produced by the stack. Accordingly, it is possible to maintain the inside and outside of the stack at equal pressure, and the structural stability of the stack can be increased. The method of using equal pressure inside and outside the stack can be a great advantage of the water electrolysis method. However, this method did not provide a countermeasure against the explosive reaction that may be caused by the sudden mixing of high-pressure hydrogen and oxygen gas due to damage to the device.
고압 전기분해장치의 다른 하나의 기술적인 문제점으로는 가스의 순도이다. 물 전기분해에서 가스의 압력이 상승함에 따라 장치 내부를 순환하는 전해질 용액에는 헨리의 법칙 (Henry's law)에 따라 수소와 산소가스의 용해도(solubility)도 증가한다. 따라서 생산되는 가스의 순도를 높이기 위해서는 수소가스/전해질 용액과 산소가스/전해질 용액의 혼합을 최소화해야 한다. 고압 조건에서는 스택 내부의 물 저장소(water reservoir)로의 물의 공급, 수소/산소 가스압력의 등가화(equalizer), 전해질 용액의 순환방식이 상압 전기분해장치에서의 순환방식과는 다르게 설계되어야 한다. 이러한 문제점에 대한 기술적 분석과 구체적인 해결책은 보고된 바가 없다. Another technical problem of the high-pressure electrolyzer is the purity of the gas. In water electrolysis, as the pressure of the gas increases, the solubility of hydrogen and oxygen gas also increases according to Henry's law in the electrolyte solution circulating inside the device. Therefore, in order to increase the purity of the produced gas, it is necessary to minimize the mixing of the hydrogen gas/electrolyte solution and the oxygen gas/electrolyte solution. Under high pressure conditions, the supply of water to the water reservoir inside the stack, the equalizer of hydrogen/oxygen gas pressure, and the circulation method of the electrolyte solution must be designed differently from the circulation method in the atmospheric electrolysis device. Technical analysis and specific solutions for these problems have not been reported.
[선행기술문헌][Prior art literature]
[특허문헌][Patent Literature]
(특허문헌 1) 1. 이웅무, 이정남, "물 전기분해를 이용한 고압 수소가스 생산 및 저장 장치," 대한민국 특허 출원 (출원번호: 10-2018-0029929, 출원일: 2018년 3월 14일)(Patent Document 1) 1. Ung-Moo Lee and Jeong-Nam Lee, "A device for producing and storing high-pressure hydrogen gas using water electrolysis," applied for a Korean patent (Application No. 10-2018-0029929, Filed on March 14, 2018)
(특허문헌 2) 2. F. Barber, B. Balasubramanian an M. Stone, US Patent 6,994,929 B2 (2006).(Patent Document 2) 2. F. Barber, B. Balasubramanian an M. Stone, US Patent 6,994,929 B2 (2006).
(특허문헌 3) 3. T. Y. H. Wong, F. Girard, T. P. K. Vanderhoek, US Patent Application Publication 2004/0211679 A1 (2004).(Patent Document 3) 3. T. Y. H. Wong, F. Girard, T. P. K. Vanderhoek, US Patent Application Publication 2004/0211679 A1 (2004).
(특허문헌 4) 4. W. F. Smith and J. F. McElroy, US Patent 5,350,496 (1994).(Patent Document 4) 4. W. F. Smith and J. F. McElroy, US Patent 5,350,496 (1994).
(특허문헌 5) 5. H. Vandenborre, US Patent 6,554,978 B1 (2003).(Patent Document 5) 5. H. Vandenborre, US Patent 6,554,978 B1 (2003).
(특허문헌 6) 6. 윤대진, 문상봉, "수전해용 강화 복합막 및 이를 포함하는 수전해용 막전극 복합체," 대한민국 특허 10-1754122 (2017)(Patent Document 6) 6. Daejin Yoon, Sangbong Moon, "Water Electrolysis Reinforced Composite Membrane and Water Electrolysis Membrane Electrode Composite Containing Same," Korean Patent 10-1754122 (2017)
(특허문헌 7) 7. 이웅무, 김종훈, "고표면적을 갖는 니켈전극 및 이의 제조방법," 대한민국 특허 10-1377076 (2014)(Patent Document 7) 7. Ung-Moo Lee and Jong-Hoon Kim, "Nickel Electrode with High Surface Area and Manufacturing Method thereof," Korean Patent 10-1377076 (2014)
[비특허문헌][Non-patent literature]
(비특허문헌 1)1. F. Allebrod, C. Chatzichristodoulou, M. B. Mogensen, Journal of Power Sources, 229, pp. 22-31 (2013).(Non-Patent Document 1)1. F. Allebrod, C. Chatzichristodoulou, M. B. Mogensen, Journal of Power Sources, 229, pp. 22-31 (2013).
(비특허문헌 2)2. J. H. Kim, J. N. Lee, C. Y. Yoo, K. B. Lee and W. M. Lee, International Journal of Hydrogen Energy, 40, pp. 10720-10725 (2015).(Non-Patent Document 2)2. J. H. Kim, J. N. Lee, C. Y. Yoo, K. B. Lee and W. M. Lee, International Journal of Hydrogen Energy, 40, pp. 10720-10725 (2015).
본 발명의 목적은 수소충전을 위한 고압 수소가스와 부산물인 산소가스를 물 전기분해 방식에 의하여 독립적으로 생산 압축하며 높은 가스 압력에도 장치의 구조적 안정을 유지하면서 높은 순도의 가스를 생산할 수 있는 고압 수소/산소가스 생산 장치를 제공함과 동시에 수소/산소가스의 돌발적인 혼합 시 발생할 수 있는 연소반응의 위험을 배제하는 안전한 장치의 제작 방법을 제공함을 목적으로 한다.It is an object of the present invention to independently produce and compress high-pressure hydrogen gas and by-product oxygen gas for hydrogen charging by water electrolysis, and high-pressure hydrogen capable of producing high-purity gas while maintaining structural stability of the device even at high gas pressure / The purpose of this is to provide an oxygen gas production device and at the same time provide a safe device manufacturing method that eliminates the risk of a combustion reaction that may occur during abrupt mixing of hydrogen/oxygen gas.
물 전기분해에 의해 고압의 수소와 산소가스를 생산하는 데 따르는 기술적인 난제는 다음과 같이 요약될 수 있다. 첫째 문제가 장치(module)의 기계적 구조적 안정성이다. 가스 압력이 300기압 이상으로 상승할 때는 장치 구성요소 취약부의 응력 관리와 분리막의 안정성 유지가 중요해진다. 둘째 문제점으로는 수소와 산소가스의 압력이 증가함에 따라 그들을 분리하는 분리벽의 파손으로 인하여 두 가스의 돌발적인 혼합에 따른 폭발반응에 따른 안정성 문제이다. 셋째 문제점은 압력이 증가함에 따라 전해질 액체(전해액)에 용해되는 가스의 용해도가 헨리의 법칙에 따라 증가하는 것이다. 따라서 높은 가스 압력에서 생산 압축되는 각 가스의 순도를 높이기 위해서는 수소전극을 접촉하며 흐르는 수소/전해액 혼합물과 산소전극을 접촉하며 흐르는 산소/전해액 혼합물과의 섞임을 최소화해야 한다.The technical difficulties involved in producing high-pressure hydrogen and oxygen gas by water electrolysis can be summarized as follows. The first problem is the mechanical and structural stability of the module. When the gas pressure rises above 300 atm, stress management in the weak areas of device components and maintaining the stability of the separator become important. The second problem is the stability problem due to the explosion reaction caused by the sudden mixing of the two gases due to the breakage of the dividing wall separating them as the pressure of the hydrogen and oxygen gases increases. The third problem is that the solubility of gases dissolved in the electrolyte liquid (electrolyte) increases according to Henry's law as the pressure increases. Therefore, in order to increase the purity of each gas produced and compressed at high gas pressure, mixing of the hydrogen/electrolyte mixture flowing in contact with the hydrogen electrode and the oxygen/electrolyte mixture flowing in contact with the oxygen electrode should be minimized.
먼저 기계적 안정성을 도모하기 위해서는 장치 구성요소 안팎의 압력 등가화(pressure equalization)를 취할 수 있다. 물 전기분해방법의 큰 장점중의 하나는 수소와 산소가 동반 생산되므로 이들 가스가 압력 평형을 이룬다면 스택을 고압 산소로 채워진 하우징 내부에 배치하여 스택 안팎에 걸리는 압력의 등가화를 달성할 수 있다. 스택외부를 내부와 등압으로 하고 스택 내부의 산소 수소가스를 등압으로 하면 국부적인 응력을 효과적으로 상쇄할 수 있고 분리막의 파손 등을 효과적으로 방지할 수 있다.First, to achieve mechanical stability, pressure equalization in and out of the device components can be taken. One of the great advantages of the water electrolysis method is that hydrogen and oxygen are produced together, so if these gases are in pressure equilibrium, the stack can be placed inside a housing filled with hyperbaric oxygen to achieve equalization of the pressure applied inside and outside the stack. . If the outside of the stack is equalized to the inside and the oxygen and hydrogen gas inside the stack is equalized, the local stress can be effectively offset and the separation membrane can be effectively prevented from being damaged.
단위 셀을 적층시켜 제작되는 스택은 물 전기분해 장치의 가장 중요한 구성요소이며 원형 전극을 사용하는 경우 원통 형태를 갖게 된다. 스택의 적층된 단위 셀의 상단과 하단에는 상부 덮개와 하부 덮개를 부착하여 볼트와 너트로 고정시키며 이 힘에 의하여 스택 전체가 결속된다. 물 전기분해에 의해 생산되는 고압의 수소와 산소가스가 스택의 내부 구조에 인가하는 기계적 힘은 그 방향에 따라 크게 두 가지로 나눌 수 있다. 하나의 힘은 스택의 단위구조인 단위 셀 표면에 수직으로 (수직방향의 힘이라 칭하자. Vertical force), 다른 하나의 힘은 표면에 평행으로 (수평방향의 힘이라 칭하자. Lateral force) 걸린다. 이들 힘은 스택의 상판과 하판 그리고 내부 구조에도 수직으로 혹은 평행하게 걸린다. 상기한 볼트와 너트의 접합면에 걸리는 국부적인 응력과 분리막 상하에 인가되는 힘은 수직방향의 힘의 대표적인 예이다. 상판/하판의 표면에 수직으로 형성된 유로의 내벽에 걸리는 방사성 힘은 수평방향의 힘의 좋은 예이다.A stack manufactured by stacking unit cells is the most important component of a water electrolysis device, and when a circular electrode is used, it has a cylindrical shape. The top and bottom covers are attached to the top and bottom of the stacked unit cells of the stack and fixed with bolts and nuts, and the entire stack is bound by this force. The mechanical force applied to the internal structure of the stack by high-pressure hydrogen and oxygen gas produced by water electrolysis can be roughly divided into two types depending on the direction. One force is applied perpendicular to the surface of the unit cell, which is the unit structure of the stack (let's call it a vertical force), and the other force is applied parallel to the surface (let's call it a horizontal force, lateral force). . These forces are applied vertically or parallel to the upper and lower plates of the stack and also to the internal structure. The local stress applied to the joint surface of the bolt and the nut and the force applied to the top and bottom of the separator are representative examples of the force in the vertical direction. The radial force applied to the inner wall of the flow path formed perpendicular to the surface of the upper plate/lower plate is a good example of the force in the horizontal direction.
수평방향의 힘에 영향을 받는 스택의 구조적 안정성은 다음의 예로 설명된다. 단위 셀의 더미로 구성된 스택에서 고압가스와 전해액이 흐르는 유로(conduit)는 스택의 상판/하판의 표면과는 수직 방향이며 그 내벽 측면으로는 방사성 힘(lateral radial force)이 작동한다. 단위 셀을 적층할 때 단위 셀 위아래 경계를 만드는 양극성(bipolar) 배전판 사이에는 개스킷 골격이 배치된다.The structural stability of the stack under the influence of horizontal forces is illustrated by the following example. In a stack composed of a stack of unit cells, a conduit through which high-pressure gas and electrolyte flow is perpendicular to the surface of the upper plate/lower plate of the stack, and a lateral radial force is applied to the side of the inner wall. When the unit cells are stacked, a gasket skeleton is placed between the bipolar power distribution boards that create the boundary above and below the unit cells.
단위 셀을 구성할 때 일반적으로 두 개의 원판형 개스킷 골격(gasket frame)을 사용한다. (그러나 개스킷 골격의 구조를 변형시켜 하나의 골격으로도 그 역할을 수행할 수 있다.) 이 두 개의 골격 중 하나의 골격은 상부 배전판 아랫면에 접촉하여 단위 셀에 배치되고 다른 하나의 골격은 하부 배전판의 윗면에 접촉하는 식으로 배치된다. 그리고 두 골격의 접촉면에는 분리막이 배치된다. 개스킷 골격의 내부에는 원판형 전극과 다공성 금속층이 각각 분리막과 배전판과 접촉하여 배치된다. 단위셀을 적층하여 스택을 만들 때 배전판과 개스킷 골격의 접촉면 그리고 개스킷 골격과 분리막의 접촉면에는 오-링("O"-ring), 개스킷, 돌출부 혹은 에폭시 접착제를 사용하여 밀봉(sealing)을 돕는다.When constructing a unit cell, two disk-shaped gasket frames are generally used. (However, by modifying the structure of the gasket skeleton, one skeleton can also fulfill its role.) One of these two skeletons is placed in a unit cell in contact with the lower surface of the upper power distribution board, and the other skeleton is the lower power distribution board. It is placed in such a way that it is in contact with the upper surface of And a separation membrane is disposed on the contact surface of the two skeletons. Inside the gasket skeleton, a disk-shaped electrode and a porous metal layer are disposed in contact with the separator and the distribution plate, respectively. When making a stack by stacking unit cells, an “O”-ring, gasket, protrusion, or epoxy adhesive is used on the contact surface between the distribution board and the gasket skeleton and between the gasket skeleton and the separator to help in sealing.
단위 셀에서 개스킷 골격은 위에서 기술된 바와 같이 전극 같은 구성요소를 내장(containment)하고 단위 셀로부터 가스나 액체의 누출을 막는 밀폐(sealing)용 오-링이나 개스킷 등을 지지하는 역할 이외에도 유로 제공이라는 매우 중요한 역할을 수행한다. 다시 말하여 스택 외부로부터 그 구성 요소인 각 단위 셀로 유입되는 전해질 용액의 유로(conduit)를 제공하고, 단위 셀 전극에서 생성된 가스와 전해질 용액의 혼합물을 스택외부로 방출하는 유로를 제공하는 결정적인 역할을 수행한다. 이러한 유로는 스택 외측에서는 골격의 평판에 수직한 방향으로 형성되고, 단위 셀의 다공성 금속층을 통과할 경우에는 수평방향이 된다. 그러나 단위 셀을 적층하여 스택을 조립할 때 상기한 유로를 두께 1-2 mm 이하의 얇은 복수의 원판형 개스킷 골격을 수직 방향으로 스택의 중심축에 평행하게 꿰뚫는 방식에 의하여 만들게 되면 이러한 구조에서는 적층된 수직성 유로의 내벽에 걸리는 방사성 힘이 상승할 때 개스킷 골격이 파괴(breakage)될 가능성이 높아진다.As described above, the gasket skeleton in the unit cell contains components such as electrodes and supports a sealing O-ring or gasket that prevents leakage of gas or liquid from the unit cell, as well as providing a flow path. It plays a very important role. In other words, a decisive role of providing a flow path for the electrolyte solution flowing into each unit cell, which is a component of the stack, from outside the stack, and providing a flow path for discharging the mixture of gas and electrolyte solution generated in the unit cell electrode to the outside of the stack carry out The flow path is formed in a direction perpendicular to the flat plate of the skeleton on the outside of the stack, and becomes horizontal when passing through the porous metal layer of the unit cell. However, when assembling a stack by stacking unit cells, if the above-described flow path is made by penetrating a plurality of thin disk-shaped gasket skeletons with a thickness of 1-2 mm or less in a vertical direction and parallel to the central axis of the stack, in this structure, the stacked When the radiative force applied to the inner wall of the vertical flow path rises, the probability that the gasket skeleton will breakage increases.
따라서 본 발명에서는 스택의 구조적 안정성을 높이기 위해 고분자 소재의 일체형 본체(unitary body)를 스택의 보강체(reinforcement body)로 사용하고 이 보강체 내부에 형성된 중공부에 스택을 밀착 배치함과 동시에 스택과 교신하는 유로를 형성시키는 방식을 택하였다. 보강체에 형성된 수직성 유로(수소가스용과 산소가스형 각각 한 쌍의 유로로 분류된다.)의 방향은 그 중심축을 따라서 내부 스택의 충심축에 평행하며, 그 유로 내벽에 인가되는 방사성 힘을 견딜 수 있는 기계적 강도가 적층된 복수 개스킷 골격의 유로 내벽에 비하여 훨씬 증가하도록 하였다. 이러한 구성에서는 단위 셀의 개스킷 골격은 수평성 유로만을 제공하고 원래 가졌던 수직성 유로는 폐쇄되는 형식으로 수정된다.Therefore, in the present invention, in order to increase the structural stability of the stack, a unitary body made of a polymer material is used as the reinforcement body of the stack, and the stack is placed in close contact with the hollow part formed inside the reinforcement body, and at the same time, the stack and the stack are formed. A method of forming a communication channel was chosen. The direction of the vertical flow path (classified as a pair of flow paths for hydrogen gas and oxygen gas type, respectively) formed in the reinforcement body is parallel to the central axis of the inner stack along its central axis, and withstands the radiative force applied to the inner wall of the flow path. The mechanical strength that can be achieved was increased significantly compared to the flow path inner wall of the laminated multiple gasket skeleton. In this configuration, the gasket skeleton of the unit cell provides only a horizontal flow path, and the original vertical flow path is modified to be closed.
이와 같이 두 요소를 결합시키는 복합 구조에서는 보강체의 수직성 유로와 단위셀 수평성 유로와의 소통을 위한 연결이 중요 문제로 등장한다. 이 문제를 해결하기 위해서 단위 셀 구성요소인 개스킷 골격의 측면(side)에 복수의 돌출부를 만들어 스택과 보강체와의 결합(engaging)과 소통(communication)을 돕게 한다. 개스킷 골격은 종전의 수직성 유로는 없애고 각 단위 셀과 보강체의 유로를 이어주는 다리(bridge)를 포함 하도록 변형하고 이 돌출부가 바로 다리 역할을 할 수 있다. 스택을 보강체 내부의 중공부로 밀어 넣을 때 이 돌출부는 보강체 중공부 내면 벽에 연결로의 기능을 갖도록 형성된 수직방향의 계곡(valley)에 삽입되며 밀착 안주하여 보강체와 스택의 결합을 돕는다. 계곡형 공간은 보강체 내부 복수의 유로(conduit)와 중공부를 수평방향으로 소통시키는 역할을 한다. 복수의 돌출부 중 서로 마주 보는 한 쌍의 돌출부 내부에는 수평성 유로를 만들어 보강체의 유로와 단위 셀의 다공성 금속층 사이로 유체의 흐름(communication)을 가능하게 한다. 마주보게 형성된 이 수평성 유로는 이웃하는 골격에서는 90도 회전시켜 단위 셀의 수소전극과 산소전극에서 각각 생성된 수소가스와 산소가스가 독립된 유로를 통하여 교차적으로 보강체의 수소유로 또는 산소유로로 흐르게 함이 가능해진다. 물론 이웃하는 개스킷 골격이 중심축에 대해 90도 회전된 형태로 제작하는 것이 제작의 편의나 장치의 안정성을 위해 바람직하지만, 이 각도가 90도가 아닌 경우도 본 발명의 범위에 포함된다. In the complex structure that combines the two elements as described above, the connection for communication between the vertical flow path of the reinforcement and the horizontal unit cell flow path appears as an important problem. In order to solve this problem, a plurality of protrusions are made on the side of the gasket skeleton, which is a unit cell component, to help engage and communicate with the stack and the reinforcement. The gasket skeleton is modified to include a bridge connecting each unit cell and the flow path of the reinforcing body without removing the previous vertical flow path, and this protrusion can directly serve as a bridge. When the stack is pushed into the hollow inside the reinforcing body, this protrusion is inserted into a vertical valley formed to function as a connecting path on the inner wall of the hollow of the reinforcing body. The valley-type space serves to horizontally communicate the plurality of conduits and hollow parts inside the reinforcement body. A horizontal flow path is formed inside a pair of protrusions facing each other among the plurality of protrusions to enable communication between the flow path of the reinforcing body and the porous metal layer of the unit cell. This horizontal flow path formed to face each other is rotated by 90 degrees in the adjacent frame, so that the hydrogen gas and oxygen gas generated from the hydrogen electrode and the oxygen electrode of the unit cell, respectively, are alternately converted to the hydrogen flow path or the oxygen flow path of the reinforcement body through independent flow paths. flow becomes possible. Of course, it is preferable for the neighboring gasket skeleton to be rotated by 90 degrees with respect to the central axis for convenience of manufacture or stability of the device.
특허문헌 1에 의하면 전기분해에 의한 수소/산소생산 압축 및 저장을 수행하기 위해서 전기분해부는 산소로 채워진 하우징 내부에 배치하고 생산되는 수소가스와 산소가스는 하우징 외부에 배치된 가스 저장부의 저장용기에 저장되며 생산되는 산소가스의 일부는 하우징 내부의 빈 공간을 채운다. 이 방법의 핵심은 장치 내부 수소가스와 산소가스 압력이 평형을 이루며 동시에 하우징 내부 산소가스 압력과도 평형을 이루도록 하는 것이다. 물 전기분해로부터 수소 산소가스가 정량적인 부피비로 생산되므로 이들 가스가 차지하는 용기 내 부피의 조정으로 가스 압력의 등가화는 용이하게 달성할 수 있다.According to Patent Document 1, in order to perform compression and storage of hydrogen/oxygen production by electrolysis, the electrolysis unit is disposed inside the housing filled with oxygen, and the hydrogen gas and oxygen gas produced are stored in a storage container of the gas storage unit disposed outside the housing. A part of the stored and produced oxygen gas fills the empty space inside the housing. The key to this method is to equalize the pressure of hydrogen gas and oxygen gas inside the device, and at the same time, balance the pressure of oxygen gas inside the housing. Since hydrogen-oxygen gas is produced in a quantitative volume ratio from water electrolysis, equalization of gas pressure can be easily achieved by adjusting the volume in the vessel occupied by these gases.
그러나 이 방법에서는 돌발적인 누출로 인해 물 전기분해부 내부의 수소와 산소가스가 혼합되거나 전기분해부 내부의 수소가스가 하우징 내부 빈공간의 산소가스와 혼합될 경우 연소반응이 발생할 가능성이 존재한다. 본 발명에서는 수소와 산소가스의 연소반응을 억제하기 위해서 하우징 내부의 대부분 공간을 물과 같은 불연성 액체로 채우고 이 액체 면과 접촉하며 하우징의 위쪽 공간을 고압 산소가스로 채우는 방법을 제시한다. 따라서 스택과 기수분리기 등 주변 구성요소는 (peripheral components) 하우징 내에서 물과 같은 액체에 잠기게 된다. 비압축성 액체를 통하여 산소가스의 압력은 스택 외벽에 그대로 전달되며 스택 안쪽과 바깥쪽에 인가되는 압력을 등가로 할 수 있다.However, in this method, there is a possibility that a combustion reaction may occur when hydrogen and oxygen gas inside the water electrolysis unit are mixed due to a sudden leakage or when hydrogen gas inside the electrolysis unit is mixed with oxygen gas in the empty space inside the housing. The present invention proposes a method of filling most of the space inside the housing with a non-combustible liquid such as water in order to suppress the combustion reaction of hydrogen and oxygen gas, contacting the liquid surface, and filling the upper space of the housing with high-pressure oxygen gas. Therefore, the peripheral components such as the stack and the separator are immersed in a liquid such as water within the housing. Through the incompressible liquid, the pressure of oxygen gas is transferred to the outer wall of the stack as it is, and the pressures applied to the inside and outside of the stack can be equalized.
스택 내부에서 구성요소의 파열 등의 이유로 수소/산소가스의 혼합이 일어날 경우의 여파는 두 가지로 나누어 생각할 수 있다. 첫째 경우는 소량의 누출이 일어날 경우이다. 이 때는 제어기에 의하여 전원이 차단되므로 더 이상의 가스 생산은 중단되며 따라서 혼합정도가 낮아 수소/산소 가스의 연소반응으로는 발전하지 못한다. 둘째 경우는 스택 내부 가스 압력의 상승으로 인해 순간적으로 스택 구조에 파열이 생기고 스택 내부의 수소/산소가스가 다량 혼합되거나 스택 밖으로 유출되는 경우이다. 이 때는 제어기가 작동하기 전에 이미 대량의 가스가 스택 외부로 유출되며 수소/산소가스의 연소반응으로 발전할 수 있는 혼합비를 만들 가능성이 존재한다. 따라서 전기분해 장치의 화학적 안정성은 둘째 경우에 대한 대비책에 밀접하게 의존된다. 스택과 기수분리기가 물속에 배치되는 경우 스택으로부터 누출된 수소/산소 혼합가스는 용기 내부 물 상층부에 있는 산소와 혼합되기 전 이미 물과 섞이며 이 상태에서 수소/산소가스의 연소반응은 일어나기 어려우며 일어난다 하여도 폭발반응으로 발전하지 못한다.When hydrogen/oxygen gas is mixed due to rupture of components inside the stack, the aftereffect can be divided into two categories. The first case is a small leak. At this time, the power is cut off by the controller, so the production of any more gas is stopped. Therefore, the mixing degree is low, so that electricity cannot be generated by the combustion reaction of hydrogen/oxygen gas. The second case is a case in which the stack structure is momentarily ruptured due to an increase in gas pressure inside the stack, and a large amount of hydrogen/oxygen gas inside the stack is mixed or leaked out of the stack. In this case, a large amount of gas has already flowed out of the stack before the controller operates, and there is a possibility to create a mixture ratio that can generate power through a combustion reaction of hydrogen/oxygen gas. Therefore, the chemical stability of the electrolysis device is closely dependent on the preparedness for the second case. When the stack and the separator are placed in water, the hydrogen/oxygen mixed gas leaked from the stack is already mixed with water before being mixed with oxygen in the upper part of the water inside the container. However, it does not develop into an explosive reaction.
다음으로는 가스 순도에 관한 문제의 해결이다. 물 전기분해 장치 내부의 수소와 산소가스 압력이 상승하면 전해질 용액에의 수소와 산소가스의 용해도(solubility) 역시 증가한다. 예를 들어 수소와 산소가스의 압력이 500 기압이라 하면 1 리터의 물에 수소와 산소가스가 각각 0.78g과 20g이 용해된다. 따라서 고압 전기분해에서는 전해액/수소가스 혼합물과 전해액/산소가스 혼합물의 섞임을 최소화해야 하며 이온 교환수지 분리막(ion exchange membrane)의 사용이 바람직하다. 만약 분리막으로 다공성 막을 사용할 경우에는 이동으로 인해 발생한 불순 가스를 제거하는 방법이 강구돼야 한다.The next step is to solve the problem of gas purity. When the pressure of hydrogen and oxygen gas inside the water electrolysis device increases, the solubility of hydrogen and oxygen gas in the electrolyte solution also increases. For example, if the pressure of hydrogen and oxygen gas is 500 atmospheres, 0.78 g and 20 g of hydrogen and oxygen gas are dissolved in 1 liter of water, respectively. Therefore, in high-pressure electrolysis, mixing of the electrolyte/hydrogen gas mixture and the electrolyte/oxygen gas mixture should be minimized, and the use of an ion exchange resin membrane is preferable. If a porous membrane is used as a separation membrane, a method must be devised to remove the impurity gas generated by movement.
물 전기분해 장치는 분리막의 사용에 따라 혹은 전해질의 산도(acidity)에 따라 음이온 교환수지 분리막 시스템과 양이온 교환수지 분리막 시스템으로 양분할 수 있다. 본 발명의 원리를 설명하는 데는 어느 시스템이고 상관없지만 알칼리 용액 전기분해를 실시예로 선택하였다. 알칼리 용액 전기분해에서는 수소와 산소가스가 각각 다음의 반응에 의하여 생성된다. The water electrolysis device can be divided into an anion exchange resin separator system and a cation exchange resin separator system according to the use of the separator or the acidity of the electrolyte. It does not matter which system is used to explain the principle of the present invention, but alkaline solution electrolysis is selected as an example. In alkaline solution electrolysis, hydrogen and oxygen gas are generated by the following reaction, respectively.
수소전극에서는 4 H2O + 4 e- → 2 H2 + 4 OH- (1)At the hydrogen electrode, 4 H 2 O + 4 e - → 2 H 2 + 4 OH - (1)
산소전극에서는 4 OH- → 2 H2O + O2 + 4 e- (2)At the oxygen electrode, 4 OH - → 2 H 2 O + O 2 + 4 e - (2)
전체 반응은 2 H2O → 2 H2 + O2 (3)The overall reaction is 2 H 2 O → 2 H 2 + O 2 (3)
전기분해가 진행되면서 수소전극에서는 물이 소모되고 그 소모된 양의 절반은 산소전극에서 재생된다. 수소전극에서 생성된 수산화 이온(OH-)은 음이온 교환수지 분리막(anion exchange membrane)과 같은 분리막을 통하여 산소전극으로 확산된다.As the electrolysis proceeds, water is consumed in the hydrogen electrode, and half of the consumed amount is regenerated in the oxygen electrode. Hydroxide ions (OH ) generated at the hydrogen electrode diffuse to the oxygen electrode through a separator such as an anion exchange membrane.
알칼리 분해에서 음이온 교환수지막 대신 다공성 막을 분리막으로 사용할 경우는 막을 통한 수소나 산소가스 이동(transfer)의 완전한 차단은 불가능 하다. 따라서 어느 정도의 이동은 감수하고 이동된 수소나 산소가스를 제거하는 방법이 모색 되어야 한다. 본 발명에서는 전기화학 촉매칼럼을 통한 제거 방법을 택하였다. 이 방법은 전기화학적 부식현상(corrosion)의 원리와 유사하다. 분리막을 경계로 하는 수소전극과 산소전극측 공간에서 수소전극 측 공간을 예로 들어 설명하겠다. 분리막을 통해 이동해온 미량의 산소가 섞인 수소/전해액 혼합물은 스택을 떠나 기수분리기로 흐를 때 촉매칼럼을 통과하게 만든다. 촉매칼럼은 백금계열이나 은 등이 코팅된 고 표면적 니켈전극 등을 사용할 수 있다. 칼럼 전극 표면에서 미량의 산소와 다량의 수소는 각각 When a porous membrane is used as a separator instead of an anion exchange resin membrane in alkaline decomposition, it is impossible to completely block the transfer of hydrogen or oxygen gas through the membrane. Therefore, a method of removing the moved hydrogen or oxygen gas should be searched for with a certain degree of movement. In the present invention, a removal method through an electrochemical catalyst column was selected. This method is similar to the principle of electrochemical corrosion. The space on the side of the hydrogen electrode will be described as an example in the space on the side of the hydrogen electrode and the oxygen electrode with the separator as a boundary. The hydrogen/electrolyte mixture mixed with a small amount of oxygen that has migrated through the membrane leaves the stack and passes through the catalyst column as it flows to the gas separator. As the catalyst column, a high surface area nickel electrode coated with platinum or silver may be used. A trace amount of oxygen and a large amount of hydrogen on the surface of the column electrode are respectively
2 H2 + 4 OH- → 4 H2O + 4 e- (4)2 H 2 + 4 OH - → 4 H 2 O + 4 e - (4)
2 H2O + O2 + 4 e- → 4 OH- (5)2 H 2 O + O 2 + 4 e - → 4 OH - (5)
반응에 의하여 전체적으로 물을 생성하며 산소는 제거된다.The reaction produces water as a whole and oxygen is removed.
전체 반응은 2 H2 + O2 → 2 H2O (6)The overall reaction is 2 H 2 + O 2 → 2 H 2 O (6)
위의 반응은 수소/산소 연료전지 반응과 동일하며 두 반응이 동일 표면에서 일어나므로 기전력은 발생하지 않으며 일종의 부식성 반응으로 간주될 수 있다. 미량의 수소가 이동해온 산소전극 공간에서도 동일한 반응에 의하여 수소가 제거된다. 수소/전해액이나 산소/전해액에 녹아들어간 미량의 산소나 수소는 거의 분자상태로 존재하기 때문에 (4)과 (5) 반응에 의해 쉽게 제거가 가능하다. The above reaction is the same as the hydrogen/oxygen fuel cell reaction, and since both reactions occur on the same surface, no electromotive force is generated and it can be regarded as a kind of corrosive reaction. Hydrogen is removed by the same reaction even in the space of the oxygen electrode where a small amount of hydrogen has moved. A trace amount of oxygen or hydrogen dissolved in hydrogen/electrolyte or oxygen/electrolyte exists in a molecular state, so it can be easily removed by reaction (4) and (5).
물 전기분해장치에서 고려해야할 다른 사항으로는 물의 공급, 기수분리기 수위조정 그리고 전해액의 순환에 관한 문제이다. 물 전기분해에서는 각각의 기수분리기에서 수소가스와 산소가스가 그들의 전해액으로부터 분리된 후 각각의 경로를 통하여 정화 건조 등의 과정을 거친 뒤 저장용기로 주입되거나 일단 저장 후에 정화 와 건조 과정을 밟을 수도 있다. 가스가 분리된 두 전해액은 고압 물 분해에서는 반드시 독립경로를 통하여 스택으로 재공급된다. 전해액을 기수분리기와 스택 사이로 순환시키는 이유는 스택 내부 온도의 균일화를 도우며 전극에서 생성되는 가스방울이 신속하게 제거되어 전기저항을 줄이는 것 등이 있다. Other issues to be considered in the water electrolysis system are the water supply, the water level adjustment of the brackish water separator, and the circulation of the electrolyte. In water electrolysis, hydrogen gas and oxygen gas are separated from their electrolytes in each brackish water separator, and after purification and drying through each path, they are injected into a storage container, or purified and dried after storage. . In the case of high-pressure water cracking, the two electrolytes in which the gases are separated are always re-supplied to the stack through independent paths. The reason for circulating the electrolyte between the separator and the stack is to help equalize the internal temperature of the stack and to reduce the electrical resistance by rapidly removing gas bubbles generated from the electrode.
물 전기분해에서 수소 산소 기수분리기의 전해액 수위는 두 가스의 압력차에 의존한다. 가스의 압력은 해당 가스에게 허용된 부피와 시간당 생산량에 의하여 정해진다. 또한 기수분리기의 수위는 (1)과 (2) 반응에 의해 생산 소모되는 물의 양에 의존한다. 따라서 초기의 수위를 유지하기 위해서 수소 전극으로는 물의 공급 그리고 산소 전극에서는 물의 배수가 적절하게 이루어져야 한다. 그러나 산소 기수분리기의 전해액에는 고압 조건에서는 다량의 산소가 용해되어 있으므로 그 배수에는 주의가 필요하다. 배수의 한 방법은 산소 기수분리기의 수위가 상한선을 초과할 때 그 초과분을 배출로를 통하여 수소 기수분리기로 순환하는 수소가스/전해액의 혼합물에 합류시키는 것이다. 합쳐진 혼합물은 전기화학 촉매칼럼을 통과하며 용해된 산소를 물로 변환시키고 수소 기수분리기로 진입한다. 다른 방법은 초과분을 전기분해부 외부로 방출 폐기하는 것이다. 이 경우는 수소 기수분리기로 공급되는 물의 양을 두 배 늘려야 한다.In water electrolysis, the electrolyte level of the hydrogen-oxygen separator depends on the pressure difference between the two gases. The pressure of a gas is determined by the volume allowed for the gas and the output per hour. Also, the water level of the brackish separator depends on the amount of water produced and consumed by the reactions (1) and (2). Therefore, in order to maintain the initial water level, the hydrogen electrode must supply water and the oxygen electrode must properly drain water. However, since a large amount of oxygen is dissolved in the electrolyte of the oxygen water separator under high pressure conditions, it is necessary to pay attention to its drainage. One method of drainage is to join the hydrogen gas/electrolyte mixture that circulates to the hydrogen separator through a discharge path when the water level in the oxygen separator exceeds the upper limit. The combined mixture passes through the electrochemical catalyst column to convert dissolved oxygen into water and enters the hydrogen degassing unit. Another method is to discharge the excess to the outside of the electrolysis section and discard it. In this case, the amount of water supplied to the hydrogen degassing separator should be doubled.
수소와 산소가 전기분해 정량비인 2:1로 생산된다면 두 가스의 압력을 등가로 하기 위해서는 그들 가스가 스택에서 차지하는 부피의 비도 2;1이 되어야 한다. 그러나 스택 내부에서 정확한 부피비를 유지하는 것은 쉽지 않다. 따라서 스택 내부에 수소가스 영역과 산소가스 영역에 물을 더하거나 배수하며 부피 조절을 할 수 있다. 스택을 담고 있고 물과 고압 산소가스로 채워져 있는 하우징은 내부의 액체를 필요시 배수하여 체적 조정장치(volume adjuster)로서의 역할을 할 수 있다. If hydrogen and oxygen are produced in an electrolysis quantitative ratio of 2:1, then in order to make the pressures of the two gases equivalent, the ratio of the volumes occupied by these gases in the stack must also be 2:1. However, it is not easy to maintain an accurate volume ratio inside the stack. Therefore, it is possible to adjust the volume by adding or draining water to the hydrogen gas area and the oxygen gas area inside the stack. The housing containing the stack and filled with water and high-pressure oxygen gas can act as a volume adjuster by draining the liquid inside if necessary.
고압 전기분해장치에서 물의 공급과 배수, 전해질 액체의 순환 등은 상압 전기분해 장치에서처럼 단순하지 않다. 수백기압 유체의 압력이 존재하는 환경에서 전기적인 힘으로는 피스톤 같은 기계적 수단을 움직여 유체를 순환하는데 한계에 부딪친다. 고압 전기분해장치에서는 전력인가와 함께 수소/산소 가스의 압력이 시간의 함수로 계속 증가하는 것을 유체 이동의 원동력으로 이용할 수 있다. 개폐식 밸브의 작동으로 유체 이동 구획 간에 압력 차이를 유도할 수 있으며 피스톤 같은 수단의 앞뒤에 약간의 압력 차이를 부여하면 전해액을 쉽게 이동시킬 수 있다.Supply and drainage of water and circulation of electrolyte liquid in a high-pressure electrolyzer are not as simple as in a normal-pressure electrolyzer. In an environment where the pressure of a fluid of several hundred atmospheres exists, there is a limit to circulating the fluid by moving a mechanical means such as a piston with electrical power. In the high-pressure electrolysis device, the continuous increase in the pressure of hydrogen/oxygen gas as a function of time along with the application of power may be used as a driving force for fluid movement. The actuation of an on-off valve can induce a pressure differential between the fluid moving compartments, and a slight pressure differential before and after a means such as a piston facilitates the movement of the electrolyte.
고압 수소생산/압축을 위한 스택 안팎 압력평형 방법의 경제성은 그 내부에 스택이 배치되고 물/고압 산소가스로 채워지는 하우징 구조의 단순성에 달려있다. 장치의 스택 같은 구성요소는 일정시간이 지나면 정기적인 분해를 통한 재생 작업이 필요하므로 하우징은 고압에 안정해야 함은 물론 단순하게 개폐가 가능해야 한다.The economics of the in-stack pressure equalization method for high-pressure hydrogen production/compression depends on the simplicity of the housing structure in which the stack is placed and filled with water/high-pressure oxygen gas. Components such as stacks of the device require periodic disassembly and regeneration after a certain period of time, so the housing must be stable to high pressure as well as simple to open and close.
하우징의 구조는 개폐가 가능한 두 개의 구성요소로, 예를 들어 상반부와 하반부, 구성함이 바람직하며 두 요소를 결속할 때 사용되는 볼트와 너트의 접합면에 높은 국부적인 응력이 작동하지 않아야 한다. 예를 들어 하반부의 밑면과 경계하는 너트는 밑면에 의해 하향성 힘을 그리고 볼트를 통해 상향성 힘을 받기 때문에 볼트와 너트의 접합 홈(groove)에 걸리는 국부적 응력은 매우 크다. 볼트와 너트를 만드는 소재는 하우징 내부 기체와 액체의 압력이 증가할수록 높은 응력을 이겨내는데 한계에 도달한다. 만약 하우징의 상반부를 위로 올리려는 힘과 하반부를 내리려는 힘이 그들의 접합면에서 서로를 밀어내도록 구조를 변형한다면 국부성 응력을 완화시키고 하우징은 내부의 높은 압력에서도 기계적 안정성을 유지할 수 있게 된다.The structure of the housing consists of two components that can be opened and closed, for example, an upper and a lower half. For example, the local stress applied to the joint groove of the bolt and the nut is very large because the nut boundary with the bottom of the lower half receives a downward force by the bottom and an upward force through the bolt. As the pressure of the gas and liquid inside the housing increases, the material for making the bolt and nut reaches its limit in overcoming high stress. If the structure is deformed so that the force to lift the upper half of the housing and the force to lower the lower half of the housing push each other at their joint surfaces, the local stress is relieved and the housing can maintain mechanical stability even at high internal pressure.
본 발명에 따른 고압 수소 및 산소가스 생산 및 저장 장치의 가장 큰 특징은 가스의 생산과 압축이 전기화학적 방법에 의해서 동시에 달성된다는 것이다. 생산은 물의 전기분해로 그리고 압축은 기계식 압축이 아닌 전기화학적 압축으로 달성된다. 따라서 이 방법은 전체장치의 크기가 부생수소나 화석연료의 개질에 의해 생산된 수소를 사용하는 기존 방식에 비해서 현저하게 줄어든다. 또한 물 전기분해로부터 생산되는 수소가스와 산소가스의 압력평형을 통하여 가스 분리막의 기계적 안정도를 높일 수 있고 스택 안팎의 압력평형을 통하여 스택에 걸리는 국부적 스트레스를 줄일 수 있는 큰 장점을 갖는다. 또한 저가의 신축성 있는 전극과 가스 탈출층 그리고 저가의 다공성 분리막을 사용하여 장치의 가격을 매우 낮게 할 수 있는 장점이 있다. 크기와 가격을 절감한 가장 큰 효과는 수소충전소 보급의 실용화를 앞당길 수 있다는 것이다. The greatest feature of the high-pressure hydrogen and oxygen gas production and storage device according to the present invention is that the gas production and compression are simultaneously achieved by an electrochemical method. Production is achieved by electrolysis of water and compression is achieved by electrochemical rather than mechanical compression. Therefore, in this method, the size of the entire device is significantly reduced compared to the existing method using by-product hydrogen or hydrogen produced by reforming fossil fuels. In addition, the mechanical stability of the gas separation membrane can be increased through pressure equalization of hydrogen gas and oxygen gas produced from water electrolysis, and local stress on the stack can be reduced through pressure equalization inside and outside the stack. In addition, there is an advantage in that the cost of the device can be very low by using a low-cost flexible electrode, a gas escape layer, and a low-cost porous separator. The biggest effect of reducing size and price is that it can accelerate the practical use of hydrogen charging stations.
도 1은 본 발명에 따른 수소생산 압축 저장장치의 전체적인 구성을 개략적으로 보여주는 도면.1 is a view schematically showing the overall configuration of a hydrogen production compression storage device according to the present invention.
도 2는 물 전기분해장치의 스택과 보조장치를 내부에 담고 있는 하우징의 구조도.Figure 2 is a structural view of the housing containing the stack and auxiliary devices of the water electrolysis device therein.
도 3a는 스택을 외각으로 감싸는 튜브형 보강체를 위에서 보는 평면도(planar view).Fig. 3a is a planar view of a tubular stiffener enclosing the stack outwardly;
도 3b는 보강체의 사시도.3B is a perspective view of a reinforcement body;
도 3c는 단위셀 구성요소인 개스킷 골격의 사시도.3C is a perspective view of a gasket skeleton as a unit cell component;
도 3d는 도 3a의 보강체의 내부 공간에 도 3c의 개스킷 골격이 삽입된 상태를 보여주는 평면도로 수소가스 유로는 열려있음.FIG. 3D is a plan view showing a state in which the gasket skeleton of FIG. 3C is inserted into the inner space of the reinforcement body of FIG. 3A, wherein the hydrogen gas flow path is open;
도 3e는 도 3a의 보강체의 내부 공간에 도 3c의 개스킷 골격이 삽입된 상태를 보여주는 평면도로 산소가스 유로는 열려있음. FIG. 3E is a plan view showing a state in which the gasket skeleton of FIG. 3C is inserted into the inner space of the reinforcement body of FIG. 3A, and the oxygen gas flow path is open;
도 4는 보강체에 형성된 수소/전해액 유로와 스택 단위 셀과의 연결을 보여주는 스택의 단면도(cross-sectional view).FIG. 4 is a cross-sectional view of a stack showing a connection between a hydrogen/electrolyte flow path formed in a reinforcement member and a stack unit cell; FIG.
도 5는 수소와 산소 기수분리기로의 전해액 공급 및 분리기로부터 가스 배출로를 종합적으로 보여주는 도면.5 is a view comprehensively showing an electrolyte supply to and a gas discharge path from the hydrogen and oxygen separator.
도 6a는 전해액을 기수분리기로부터 스택으로 공급하는 비펌프식 순환장치(pumpless circulator)의 설명도.6A is an explanatory view of a pumpless circulator for supplying an electrolyte from a water separator to a stack;
도 6b는 비펌프식 순환장치(pumpless circulator)의 유체 순환경로의 각 지점에서 측정되는 가스 압력의 시간에 따른 변화를 보여주는 그래프.6B is a graph showing the change with time of the gas pressure measured at each point in the fluid circulation path of a pumpless circulator;
이하에서 본 발명을 설명하면서 수직이나 수평, 평형과 같은 용어를 사용하고 있으나, 이는 수학적으로 완전한 수직이나 수평, 평형인 경우만으로 본 발명의 내용을 제한하기 위해 사용한 것은 아니다. Hereinafter, terms such as vertical, horizontal, and equilibrium are used while describing the present invention, but this is not used to limit the content of the present invention to only the case of mathematically perfect vertical, horizontal, and equilibrium.
상기 과제를 해결하기 위하여 본 발명에서는 물 전기분해로 수소가스와 산소가스를 동반 생산하고 동시에 압축하는 방법을 보여준다. 수소와 산소가스의 압력이 상승하면 고압 물 전기분해 장치(앞으로"장치"라 칭함)를 결속하는 부품이나 내부 부품에 국부적인 스트레스가 걸린다. 스트레스를 줄이기 위해 압력 평형이 중요하며 다음의 방법을 사용한다. In order to solve the above problems, the present invention shows a method of simultaneously producing and compressing hydrogen gas and oxygen gas by water electrolysis. When the pressure of hydrogen and oxygen gas rises, local stress is applied to the parts or internal parts that bind the high-pressure water electrolysis device (hereinafter referred to as "device"). Pressure balancing is important to reduce stress, and the following method is used.
압력평형은 두 가지 의미를 가지고 있다. 첫째는 장치의 주요 구성요소인 스택 내부 단위 셀의 두 전극을 분리하는 고분자 분리막의 양쪽에 인가되는 수소가스 압력과 산소가스 압력의 평형을 뜻한다. 둘째는 스택내부의 가스압력과 스택외부의 가스압력이 동일 값을 갖게 하는 것이다. 첫째 의미의 평형을 유지하기 위해서는 수소저장 용기와 산소저장 용기의 압력 측정(monitoring)에 따른 두 용기의 부피조정에 의해 가능하다. 둘째 의미의 평형을 유지하기 위해서는 스택을 닫힌계인 하우징 내부에 배치하고 생산되는 산소가스를 물로 대부분 차있는 하우징 내부로 유입시키는 것이다. 이 때 산소가 유입되면서 배수에 의해 산소가스가 차지하는 공간의 조정이 가능해진다. Pressure equalization has two meanings. The first refers to the equilibrium between the hydrogen gas pressure and the oxygen gas pressure applied to both sides of the polymer membrane that separates the two electrodes of the unit cell inside the stack, which is the main component of the device. The second is to make the gas pressure inside the stack and the gas pressure outside the stack have the same value. In order to maintain the equilibrium of the first meaning, it is possible by adjusting the volume of the two containers according to the pressure measurement (monitoring) of the hydrogen storage container and the oxygen storage container. In order to maintain the equilibrium of the second meaning, the stack is placed inside the housing, which is a closed system, and the produced oxygen gas is introduced into the housing, which is mostly filled with water. At this time, as oxygen flows in, it becomes possible to adjust the space occupied by oxygen gas by drainage.
전기분해에 의해 생산된 수소가스는 장치에 물을 공급하는 물 저장 용기에 포집할 수 있다. 이러한 포집의 장점은 물 전기분해에 의해 물이 소모되면서 생기는 빈 공간을 수소가스가 자연스럽게 차지하는 것이다. 따라서 수소와 산소가스의 저장용기는 별도로 마련하지 않아도 무방하다.Hydrogen gas produced by electrolysis can be captured in a water storage vessel that supplies water to the device. The advantage of such collection is that hydrogen gas naturally occupies the empty space that is created when water is consumed by water electrolysis. Therefore, it is not necessary to separately provide storage containers for hydrogen and oxygen gas.
하우징 내부의 대부분 공간은 물과 같은 비 가연성 액체로 채우고 전체 부피의 10% 정도만 산소가스로 채운다. 하우징 내부에 배치된 스택과 다른 구성요소에서 고압가스로 인한 파열이 일어나는 경우라도 수소/산소 가스는 일단 물과 섞이기 때문에 폭발의 위험성은 배제된다. 그리고 하우징 내부의 물은 수소가스와 산소가스의 압력을 등가화 하는데 중요한 역할을 한다. 물 전기분해로부터 생산되는 두 가스의 부피 비는 정량비를 유지하므로 그 들 가스의 압력은 각 가스가 차지하는 부피에 의해서 결정된다. 따라서 하우징 내부의 물을 일부 방출 하던가 외부 물 저장원으로부터 공급 받아 하우징 내부 산소가스의 부피 조정이 가능하다. 수소가스와 산소가스의 압력이 등가화 되면 자연히 스택내부와 외부의 압력도 등가화 된다. Most of the space inside the housing is filled with a non-flammable liquid such as water, and only about 10% of the total volume is filled with oxygen gas. Even if the stack and other components arranged inside the housing rupture due to the high-pressure gas, the risk of explosion is excluded because the hydrogen/oxygen gas is mixed with water once. And the water inside the housing plays an important role in equalizing the pressures of hydrogen gas and oxygen gas. Since the volume ratio of the two gases produced from water electrolysis maintains a quantitative ratio, the pressure of these gases is determined by the volume occupied by each gas. Therefore, it is possible to adjust the volume of oxygen gas inside the housing by discharging some of the water inside the housing or receiving it from an external water storage source. When the pressures of hydrogen gas and oxygen gas are equalized, naturally the pressures inside and outside the stack are also equalized.
물 전기분해 시 수소나 산소가스의 압력이 상승할 때는 전해액에 용해되는 이들 가스의 농도 역시 증가한다. 따라서 알칼리 물 전기분해에서는 수소 전극과 산소전극은 음이온 교환수지 분리막으로 차단하여 수소가스/전해액과 산소가스/전해액의 섞임을 최소화해야 한다. 다공성 분리막을 사용할 경우에는 이동된 수소나 산소가스를 제거해야 한다. 스택에서 방출된 수소가스/전해액과 산소가스/전해액은 각각 수소용 기수분리기 및 산소용 기수분리기에서 수소와 산소가스가 분리된 후 남은 전해액은 독립된 유로를 통하여 스택으로 재 유입된다. 분리된 산소가스는 하우징 내부의 빈 공간을 채운다.When the pressure of hydrogen or oxygen gas increases during water electrolysis, the concentration of these gases dissolved in the electrolyte also increases. Therefore, in alkaline water electrolysis, the hydrogen electrode and oxygen electrode must be blocked with an anion exchange resin separator to minimize mixing of hydrogen gas/electrolyte and oxygen gas/electrolyte. In the case of using a porous membrane, it is necessary to remove the moved hydrogen or oxygen gas. Hydrogen gas/electrolyte and oxygen gas/electrolyte discharged from the stack are separated from hydrogen and oxygen gas in the hydrogen and oxygen separator, respectively, and the remaining electrolyte is re-introduced into the stack through an independent flow path. The separated oxygen gas fills the empty space inside the housing.
알칼리 물 전기분해에서는 수소전극에서 물이 소모되고 산소전극에서는 물이 재생된다. 물 공급부의 물은 용기의 밑면에 연결된 밸브를 통하여 수소용 기수분리기로 공급된다. 또한 물 공급부의 상층 빈 공간은 고압의 수소가스로 채워진다. 물의 공급 속도는 전원에서 공급되는 전류 값에 의해서 결정되며 세부 조정은 밸브의 유통 단면적(flow cross section)에 의해 결정된다. 수소용 기수분리기의 수위는 다음의 인자에 복합적으로 의존된다. 그 수위는 물 저장원으로부터 물의 공급과 산소 기수분리기 수위의 상승분에 해당되는 전해액의 유입에 의해 결정된다. 상기한 유입량은 전류와 전기화학 반응에 의해 결정된다. 기수분리기 수위를 결정하는 다른 인자는 가스 압력이다. 수위의 초기 값은 수소 산소가스 압력의 등가화에 의해 유지 가능하다. 두 가스의 생성 속도가 일정하다면 이들 가스가 장치 내에서 차지하는 부피의 조정에 의해 수위 유지가 가능해진다.In alkaline water electrolysis, water is consumed at the hydrogen electrode and water is regenerated at the oxygen electrode. Water from the water supply part is supplied to the hydrogen separator through a valve connected to the bottom of the container. In addition, the upper empty space of the water supply unit is filled with high-pressure hydrogen gas. The water supply rate is determined by the current value supplied from the power source, and the fine adjustment is determined by the flow cross section of the valve. The water level of the brackish water separator for hydrogen is complexly dependent on the following factors. The water level is determined by the supply of water from the water storage source and the inflow of the electrolyte corresponding to the rise in the water level of the oxygen water separator. The above-mentioned input amount is determined by the electric current and the electrochemical reaction. Another factor that determines the separator water level is the gas pressure. The initial value of the water level can be maintained by equalization of the hydrogen-oxygen gas pressure. If the production rates of the two gases are constant, the water level can be maintained by adjusting the volume occupied by these gases in the device.
상기한 원리에 근거한 고압 수소 생산 압축장치의 개략도를 도 1에 설명하였다. 이하 그림 설명에서는 OH- 이온이 음이온 분리막을 통해 이동하는 알칼리 전기분해장치를 예로 들었지만 귀금속 전극과 나피온을 사용하는 물 전기분해에도 동일한 원리가 적용된다. 도 1에서 보여주는 전체장치(10)는 수소/산소 생산 및 압축을 수행하는 여러 구성요소를 내장하는 하우징(110)과 그 외부에 배치되어 고압 수소 저장과 물 저장의 동시 역할을 하는 용기(700)이다. 하우징(110)은 고압 산소의 저장용기로도 사용된다. 하우징 내부에는 물 전기분해부의 핵심요소인 스택(200)과 스택에서 생산된 수소가스와 산소가스가 전해액으로부터 분리되는 수소용 기수분리기(300)와 산소용 기수분리기(400)가 배치된다.A schematic diagram of a high-pressure hydrogen production compression device based on the above principle has been described in FIG. 1 . In the illustration below, an alkaline electrolysis device in which OH - ions move through an anion separator is used as an example, but the same principle is applied to water electrolysis using a noble metal electrode and Nafion. The entire device 10 shown in FIG. 1 includes a housing 110 containing various components for hydrogen/oxygen production and compression, and a container 700 disposed outside the housing to serve as both high-pressure hydrogen storage and water storage. am. The housing 110 is also used as a storage container for high-pressure oxygen. Inside the housing, the hydrogen gas and oxygen gas separator 300 and the oxygen separator 400 for separating the stack 200, which are core elements of the water electrolysis unit, and the hydrogen gas and oxygen gas produced in the stack from the electrolyte are disposed.
하우징(110) 내부는 물(150)로 채우며 하부 밸브(153)를 통한 배수에 의해 생기는 빈 공간을 전기분해로 생성되는 산소가스(152)가 채운다. 즉, 하부 밸브(153)가 배수 조절부로서 산소가스가 차지하는 부피를 조절하여 산소가스의 압력을 조절할 수 있다. 기수분리기에서 전해액(320, 420)으로부터 분리된 수소가스(310)와 산소가스(410)는 각각의 배출로(303, 403)를 통해 수소저장장치(700)로 유입되어 저장되거나(308) 하우징 내부(152)와 산소저장장치(800)로 동시에 유입되어 저장된다. 전기분해에 사용되는 물은 저장원(620)으로부터 밸브(121)와 유입로(122)를 통해 수소 기수분리기(300)로 공급된다. 분리기에서 가스가 배출된 후에 수소 전해액(320)과 산소 전해액(420)은 각각의 순환로(302, 402)를 통해 스택(200)으로 유입된다. 스택에서 생성된 수소/산소가스와 그들 전해액과의 혼합물은 각각의 유로(301, 401)를 통해 각각의 기수분리기로 진입한다. 이 때 분리기로 유입되기 전에 수소가스/전해액의 혼합물과 산소가스/전해액의 혼합물은 각각의 전기화학 칼럼(201)을 통한다.The inside of the housing 110 is filled with water 150 , and the oxygen gas 152 generated by electrolysis fills the empty space generated by drainage through the lower valve 153 . That is, the lower valve 153 can control the pressure of the oxygen gas by adjusting the volume occupied by the oxygen gas as a drain control unit. The hydrogen gas 310 and the oxygen gas 410 separated from the electrolytes 320 and 420 in the water separator are introduced into the hydrogen storage device 700 through the respective discharge paths 303 and 403 and are stored or stored (308) in the housing. It is simultaneously introduced into the interior 152 and the oxygen storage device 800 and stored. Water used for electrolysis is supplied from the storage source 620 to the hydrogen water separator 300 through the valve 121 and the inflow path 122 . After the gas is discharged from the separator, the hydrogen electrolyte 320 and the oxygen electrolyte 420 are introduced into the stack 200 through respective circuits 302 and 402 . A mixture of the hydrogen/oxygen gas generated in the stack and the electrolyte solution enters each water separator through the respective flow passages 301 and 401 . At this time, before flowing into the separator, the mixture of hydrogen gas/electrolyte and oxygen gas/electrolyte passes through each electrochemical column 201 .
전기화학 칼럼(201)의 내부는 백금계통 귀금속(Pt, Pd, Ru, Ir), 철(Fe), 코발트(Co), 은(Ag) 등이 코팅된 고 표면적 촉매로 채운다. 촉매로는 소결된 고 표면적 니켈 전극 혹은 탄소 등을 사용할 수 있다. 스택 내부의 분리막을 통해 이동해온 미량의 산소나 수소가 섞인 수소/전해액 혼합물 혹은 산소/전해액 혼합물은 스택을 떠나 각각의 기수분리기로 흐를 때 촉매칼럼을 통과한다. 전해액에 용해된 미량의 수소나 산소는 이 촉매칼럼을 지나면서 전기화학 반응에 의하여 물로 변환 된다. The inside of the electrochemical column 201 is filled with a high surface area catalyst coated with platinum-based noble metals (Pt, Pd, Ru, Ir), iron (Fe), cobalt (Co), silver (Ag), and the like. A sintered high surface area nickel electrode or carbon may be used as the catalyst. A small amount of oxygen or hydrogen/electrolyte mixture or oxygen/electrolyte mixture mixed with hydrogen that has moved through the separation membrane inside the stack passes through the catalyst column when it leaves the stack and flows to each degassing separator. A trace amount of hydrogen or oxygen dissolved in the electrolyte is converted into water by an electrochemical reaction as it passes through this catalyst column.
도 2에는 하우징의 구조의 일 실시예를 보여주는 단면도가 개략적으로 도시되어 있다. 도 2에서는 하우징 내부에 위치하는 여러 구성 요소 중 스택과 다른 구성요소(202)로 간략화하여 도시하고 있다. 다른 구성요소로는 도 1을 참조하여 설명한 것과 같이 기수분리기나 전화화학칼럼 등이 있을 수 있다. 2 is a schematic cross-sectional view showing an embodiment of the structure of the housing. In FIG. 2 , a stack and other components 202 among various components positioned inside the housing are illustrated in a simplified manner. As other components, there may be a water separator or an inversion chemical column as described with reference to FIG. 1 .
내부의 빈 공간이 물/고압 산소가스로 채워지는 하우징은 개폐가 가능한 상부 하우징과 하부 하우징의 두 개 요소를 포함한다. 내부 압력이 증가할 때 이 두 요소는 분리되는 방향의 힘 보다는 오히려 결속력이 강해지는 방향으로 힘이 작용하는 구조로 만들어졌다. The housing in which the empty space inside is filled with water/high-pressure oxygen gas includes two elements, an upper housing and a lower housing that can be opened and closed. When the internal pressure increases, these two elements have a structure in which the force acts in the direction of strengthening the bonding force rather than the force in the direction of separation.
즉, 상부 하우징의 하측에는 방사상(radial direction)으로 연장된 환상형 플랜지(112)가 형성되어 있고, 하부 하우징의 상측에는 방사상으로 연장된 "ㄷ"형태의 단면을 가지는 ㄷ자형 환상형 접합부(114)가 형성되어 있다. ㄷ자형 환상형 접합부(114)를 형성하기 위해 하부 하우징의 상부에 "L"자형 플랜지를 형성하고 "L"자형 플랜지의 상부에 환상형 가압부를 볼트(116)와 너트(118)를 사용하여 고정하는 방식이 사용될 수 있다. That is, an annular flange 112 extending in a radial direction is formed on the lower side of the upper housing, and a U-shaped annular joint 114 having a radially extended “C”-shaped cross section on the upper side of the lower housing. ) is formed. An "L"-shaped flange is formed on the upper part of the lower housing to form a U-shaped annular joint 114, and an annular pressing part is fixed on the upper part of the "L"-shaped flange using a bolt 116 and a nut 118. method can be used.
이와 같이 형성하는 경우에는 하우징 내부의 압력이 증가할 때 상부 하우징과 하부 하우징이 서로 멀어지는 방향으로 힘이 작용하게 되는데, 이러한 힘은 상부 하우징의 플랜지 상면과 환상형 가압부의 하부 사이의 접합이 강화되는 방향으로 작용하게 된다. 즉, 하우징 내부의 고압 산소가스(152)의 압력을 접합면의 기밀성을 강화하는데 이용하여 하우징의 구조적 안정도를 높일 수 있다. 여기서, ㄴ자형 플랜지와 환상형 가압부 사이, 환상형 가압부와 환상형 플랜지 사이에 각각 밀폐를 위한 개스킷 등의 부재가 사용될 수 있는데, 그 개수, 사이즈, 간격은 필요에 의해 조절될 수 있다. In this case, when the pressure inside the housing increases, a force acts in a direction in which the upper housing and the lower housing move away from each other. This force strengthens the joint between the flange upper surface of the upper housing and the lower part of the annular pressing part. direction will work. That is, the structural stability of the housing can be improved by using the pressure of the high-pressure oxygen gas 152 inside the housing to strengthen the airtightness of the bonding surface. Here, a member such as a gasket for sealing may be used between the L-shaped flange and the annular pressing portion and between the annular pressing portion and the annular flange, respectively, and the number, size, and spacing thereof may be adjusted as necessary.
스택으로의 전력은 하우징 외부의 직류전원(205)으로부터 공급된다.Power to the stack is supplied from a DC power supply 205 outside the housing.
하우징 내부에 위치하는 수소용기수분리기(300)에서 유출되는 수소가스(310)는 고압 수소 및 물 저장용기(700)에 저장되고, 고압 수소 및 물 저장용기에 저장된 수소 가스(308)를 사용할 때에는 정화칼럼(312)과 건조칼럼(314)을 통과하게 만든다. 하우징 내부의 산소가스(152) 혹은 하우징 외부의 산소저장소(800)의 산소 역시 사용 시에는 정화칼럼(412)과 건조칼럼(414)을 통과하게 만든다. 산소저장소(800)는 초기 산소공간을 책정할 때 도움을 주는 역할만 하며 장치에서 제외하여도 무방하다. Hydrogen gas 310 flowing out from the hydrogen container water separator 300 located inside the housing is stored in the high-pressure hydrogen and water storage container 700, and when using the hydrogen gas 308 stored in the high-pressure hydrogen and water storage container It is made to pass through the purification column 312 and the drying column 314 . Oxygen gas 152 inside the housing or oxygen in the oxygen storage 800 outside the housing also passes through the purification column 412 and the drying column 414 when in use. The oxygen storage 800 serves only to help when determining the initial oxygen space, and may be excluded from the device.
고압가스로 채워진 하우징 내부에 놓인 원통형 스택의 상하 표면을 누르는 수직방향의 힘은 스택 내부에서 가스의 생성으로 발생하는 수직방향의 힘을 상쇄하는데 효과적이다. 그러나 스택 상하방향으로 수직으로 형성된 유로의 내벽에 걸리는 방사성 힘(lateral force, 원통형의 유로인 경우의 반경방향의 힘)은 수평방향의 힘이며 이 힘을 억제하는 것도 스택의 구조적 안정을 유지하는데 중요하다.The vertical force pressing the upper and lower surfaces of the cylindrical stack placed inside the housing filled with high-pressure gas is effective to offset the vertical force generated by the gas generation inside the stack. However, the radial force (lateral force, radial force in the case of a cylindrical flow path) applied to the inner wall of the flow path formed vertically in the vertical direction of the stack is a horizontal force, and suppressing this force is also important to maintain the structural stability of the stack. Do.
본 발명에서는 상기한 수평방향의 힘을 견디는 수단으로 스택을 감싸는 일체형 보강체(reinforcement unitary body)를 사용하였다. 보강체는 스택이 원통형인 경우 튜브형으로 만들어져서 스택의 외곽에 밀착하여 스택 내부에서 수평방향으로 작용하는 힘을 지지하게 된다. 보강체는 고분자 소재의 일체형(unitary)으로 그 내부 빈 공간에 스택이 밀착되도록 배치되는 형태를 취하는 것이 바람직하다. 보강체에는 보강체 유로(272)가 형성되어서 원통 축 방향으로 관통하는 유로와 스택의 단위 셀이 서로 소통하게 한다. 스택의 단위 셀 마다 대응하여 사용되는 개스킷 골격은 이러한 연결로를 만드는데 중요한 역할을 한다. In the present invention, a reinforcement unitary body surrounding the stack is used as a means to withstand the force in the horizontal direction. When the stack is cylindrical, the reinforcing body is made in a tubular shape to adhere to the outside of the stack to support the force acting in the horizontal direction inside the stack. The reinforcing body is a unitary polymer material, and it is preferable to take a form in which the stack is disposed so as to be in close contact with the empty space therein. A reinforcing body flow path 272 is formed in the reinforcing body, so that the flow path passing through the cylindrical axial direction and the unit cells of the stack communicate with each other. The gasket skeleton used in response to each unit cell of the stack plays an important role in making such a connection path.
도 3a와 도 3b에는 스택을 외곽으로 감싸는 튜브형 보강체의 평면도와 사시도가 각각 도시되어 있다. 도 3c에는 개스킷 골격(gasket frame)의 사시도가 도시되어 있으며, 도 3d에는 보강체의 내부 공간에 개스킷 골격이 삽입된 상태의 평면도를 보여주는 도면으로, 수소 진입 유로와 수소 방출 유로가 각각 보강체 유로와 연결되고, 산소 진입 유로와 산소 방출 유로는 유로 폐쇄 돌출부에 의해 폐쇄된 상태를 보여주는 도면이 도시되어 있고, 도 3e에는 역시 보강체의 내부 공간에 개스킷 골격이 삽입된 상태의 평면도를 보여주는 도면으로, 산소 진입 유로와 산소 방출 유로가 각각 보강체 유로와 연결되고, 수소 진입 유로와 수소 방출 유로는 유로 폐쇄 돌출부에 의해 폐쇄된 상태를 보여주는 도면이 도시되어 있다. 3A and 3B are respectively a plan view and a perspective view of a tubular reinforcement that surrounds the stack. 3C is a perspective view of a gasket frame, and FIG. 3D is a plan view showing a state in which the gasket frame is inserted into the inner space of the reinforcement body. is connected to, and a view showing a state in which the oxygen entry channel and the oxygen release channel are closed by the channel closing protrusion is shown, and FIG. , the oxygen entry flow path and the oxygen discharge flow path are respectively connected to the reinforcement flow path, and the hydrogen entry flow path and the hydrogen discharge flow path are closed by the flow path closing protrusion.
보강체(240)의 내부 원통형 빈 공간(242)으로는 역시 원통형의 스택을 밀어 넣는 식으로 배치가 가능하다. 이 때 스택 단위셀의 한 구성 요소인 개스킷 골격의 돌출부가 보강체 내부 공간의 측면에 원통 축에 평행되게 형성된 계곡형 공간(255, 265)에 삽입되는 형식으로 배치되어 두 요소의, 즉 보강체와 스택의, 밀착 결합을 돕는다. 이 때 보강체의 중공부 내벽과 가스킷 골격 측면에 액상 접착제를 도포하면 건조와 함께 두 요소 사이의 빈공간을 채우며 밀착을 돕게 할 수 있다. 보강체의 원통 축 방향으로 관통된 4개의 유로 중 마주보는 두 개의 유로는 수소 유로(수소 진입 유로 및 수소 방출 유로)(251, 252)로서 수소/전해액의 단위 셀로의 유출입, 나머지 두 개의 유로는 산소 유로(산소 진입 유로 및 산소 방출 유로)(261, 262)로서 산소/전해액의 단위 셀로의 유출입 통로로 사용된다. The internal cylindrical hollow space 242 of the reinforcing body 240 may be disposed in such a way that a cylindrical stack is also pushed. At this time, the protrusion of the gasket skeleton, which is a component of the stack unit cell, is disposed in a form to be inserted into the valley-shaped spaces 255 and 265 formed parallel to the cylindrical axis on the side of the inner space of the reinforcement body, so that the two elements, that is, the reinforcement body It helps the tight bonding of the stack and the stack. At this time, if a liquid adhesive is applied to the inner wall of the hollow part of the reinforcing body and the side of the gasket skeleton, it can dry and fill the empty space between the two elements to help adhere. Of the four flow passages penetrating in the cylindrical axial direction of the reinforcement body, two opposite flow passages are hydrogen passages (hydrogen entry passage and hydrogen discharge passage) 251 and 252, the inflow and outflow of hydrogen/electrolyte into the unit cell, and the remaining two flow passages are As oxygen flow paths (oxygen inlet flow path and oxygen discharge flow path) 261 and 262, they are used as inflow and outflow passages of oxygen/electrolyte to the unit cell.
한편 보강체의 수소 유로와 단위 셀의 연결은 개스킷 골격의 돌출부에 형성된 개스킷 골격 유로(271)에 의해 계곡형 공간의 수소 연결로(255)가 개방된 상태로 유지되도록 함으로써, 그리고 보강체의 산소 유로와 단위 셀의 연결은 개스킷 골격의 돌출부에 형성된 개스킷 골격 유로(271)에 의해 계곡형 공간의 산소 연결로(265)가 개방된 상태로 유지되도록 함으로써 각각 달성된다. (보강체에 형성된 계곡형 공간 전체를 지칭하는 경우에도 부재번호를 255와 265를 사용하고, 그 일부분인 수소 연결로나 산소 연결로를 지칭하는 경우에도 부재번호 255와 265를 사용하였다.) 보강체에는 복수의 볼트 체결공(243)을 형성하여 보강체 내부에 배치된 스택의 단위 셀들을 결속하는데 사용할 수 있다. 따라서 보강체 상부와 하부를 덮는 두 개의 덮개 내부 표면은 스택의 최상부와 최하부 금속판의 외부 표면과 각각 접촉하여 볼트를 체결할 때 인가되는 힘이 단위 셀들을 압착하는 형식으로 전달되도록 한다. On the other hand, the connection between the hydrogen flow path of the reinforcement body and the unit cell is performed by maintaining the hydrogen connection path 255 of the valley-type space in an open state by the gasket framework flow path 271 formed in the protrusion of the gasket framework, and oxygen of the reinforcement body The connection between the flow path and the unit cell is achieved by maintaining the oxygen connection path 265 of the valley-shaped space in an open state by the gasket framework flow path 271 formed on the protrusion of the gasket framework. (The reference numbers 255 and 265 are used to refer to the entire valley-shaped space formed in the reinforcement, and the reference numbers 255 and 265 are used to refer to the hydrogen or oxygen connection passages that are part of it.) A plurality of bolt fastening holes 243 may be formed and used to bind unit cells of a stack disposed inside the reinforcing body. Accordingly, the inner surfaces of the two covers covering the upper and lower portions of the reinforcing body come into contact with the outer surfaces of the uppermost and lowermost metal plates of the stack, respectively, so that the force applied when the bolts are fastened is transmitted in a form of compressing the unit cells.
개스킷 골격(270)은 외측으로 돌출된 두 개의 유로 폐쇄 돌출부(273)와 두 개의 유로 연결 돌출부(271)가 형성되어 있다. 유로 폐쇄 돌출부(273)는 보강체(240)의 수평방향 연결로(수소 연결로 또는 산소 연결로)(255 또는 265)를 폐쇄하고, 유로 연결 돌출부(271)는 보강체(240)의 수평방향 연결로(수소 연결로 또는 산소 연결로)(255 또는 265)의 단면 형상에 대응하는 외곽 형상을 가지면서 개스킷 골격 유로(272)가 형성되어 있어서 보강체 중공부에 배치되는 스택의 각 단위 셀과 보강체(240)에 형성된 유로(251, 252, 261 또는 262)가 소통되도록 할 수 있다. 보강체(240)의 연결로(255 또는 265)를 통하여 각 단위 셀의 수소전극(220) 또는 산소전극(210)으로 혹은 수소전극(220) 또는 산소전극(210)으로부터 보강체(240)의 연결로(255 또는 265)로 가스/전해액의 흐름을 만들기 위해서 개스킷 골격(270)은 단위 셀의 수소전극 또는 산소전극에 접촉되게 각각 하나씩 사용된다. 즉, 도 3d에 도시된 형태는 보강체에 형성된 수직성 수소 진입 유로(251) 및 수소 방출 유로(252)가 개스킷 골격 유로(272)에 의해 단위 셀과 연결되도록 하고, 도 3e에 도시된 형태(도 3c의 형태가 90도 회전한 것과 같은 형태)는 산소 진입 유로(261) 및 산소 방출 유로(262)가 개스킷 골격 유로(272)에 의해 단위 셀과 연결되도록 하는 방식이 사용될 수 있다. The gasket skeleton 270 is formed with two passage closing protrusions 273 and two passage connecting protrusions 271 protruding outward. The flow path closing protrusion 273 closes the horizontal connection path (hydrogen connection path or oxygen connection path) 255 or 265 of the reinforcement body 240 , and the flow path connection projection 271 is the horizontal direction of the reinforcement body 240 . Each unit cell of the stack disposed in the hollow part of the reinforcing body by forming a gasket skeleton flow path 272 while having an outer shape corresponding to the cross-sectional shape of the connection path (hydrogen connection path or oxygen connection path) 255 or 265; The flow paths 251 , 252 , 261 , or 262 formed in the reinforcement body 240 may communicate with each other. Through the connection path 255 or 265 of the reinforcement body 240 to the hydrogen electrode 220 or the oxygen electrode 210 of each unit cell, or from the hydrogen electrode 220 or the oxygen electrode 210 to the reinforcement body 240 In order to make the gas/electrolyte flow to the connection path 255 or 265 , the gasket skeleton 270 is used to contact the hydrogen electrode or the oxygen electrode of the unit cell, respectively. That is, the shape shown in FIG. 3D is such that the vertical hydrogen entry flow path 251 and the hydrogen discharge flow path 252 formed in the reinforcement body are connected to the unit cell by the gasket skeleton flow path 272, and the shape shown in FIG. 3E (The shape shown in FIG. 3C is rotated by 90 degrees), a method in which the oxygen inlet flow path 261 and the oxygen discharge flow path 262 are connected to the unit cell by the gasket skeleton flow path 272 may be used.
한편, 내부 중공부를 갖는 상기 보강체의 환상(ring-shaped) 형태의 단면에서 그 환상(ring) 두께(도 3a의 t)는 중공부 내경(도 3a의 d)의 10% 내지 100% 되게 형성되고, 상기 개스킷 골격 돌출부가 삽입되는 상기 보강체에서 수평방향 연결로의 단면적은 상기 수직성 수소 진입 유로, 수소 방출 유로, 산소 유입 유로 및 산소 방출 유로의 단면적의 2% 내지 200%이다. On the other hand, in the ring-shaped cross section of the reinforcing body having an inner hollow portion, the ring thickness (t in FIG. 3A ) is formed to be 10% to 100% of the inner diameter of the hollow portion (d in FIG. 3A ) and a cross-sectional area of the horizontal connection path in the reinforcing body into which the gasket skeleton protrusion is inserted is 2% to 200% of the cross-sectional area of the vertical hydrogen inlet channel, hydrogen outlet channel, oxygen inlet channel, and oxygen outlet channel.
도 3d 및 도 3e에서 개스킷 골격이 보강체의 중공부에 밀착되지 않은 상태로 도시된 것은 개스킷 골격이 보강체 골격과 별개의 부재하는 것이 도면상에 드러나도록 하기 위한 것이고, 개스킷 골격이 개스킷 골격 유로를 사이에 두고 두 부분으로 나뉜 것처럼 도시하였지만, 개스킷 골격 유로에 의해 중공부가 수소 유로나 산소 유로와 연결되는 것이 잘 드러나도록 하기 위해 이와 같이 도시한 것일 뿐, 개스킷 골격이 개스킷 골격 유로를 사이에 두고 두 부분으로 나뉘도록 만들어지는 것은 아니다. The reason that the gasket skeleton is not in close contact with the hollow part of the reinforcing body in FIGS. 3D and 3E is to show that the gasket skeleton is a separate member from the reinforcing body skeleton in the drawing, and the gasket skeleton is the gasket skeleton flow path. Although it is shown as being divided into two parts with the skeletal flow path between It is not designed to be split into two parts.
도 4에는 보강체의 수소 유로(251, 252) 및 수소 연결로(255)와 개스킷 골격 유로(272)가 단위 셀과의 소통되는 것을 보여주는 도면으로, 단위 셀이 보강체에 결합된 상태의 단면도가 도시되어 있다. 즉, 도 4는 스택이 보강체에 결합된 상태에서 도 3d에 도시된 IV-IV 선을 따라 자른 단면도이다. 도 4에 도시된 것과 같이, 단위 셀 내에는 도 3d에 도시된 형태의 개스킷 골격과 도 3c에 도시된 형태의 개스킷 골격 사이에 배치된 분리막(230)을 사이에 두고 아래에는 산소 전극(210), 위에는 수소전극(220)이 배치되고 각 전극에 접촉하여 다공성 기체 확산층(232)과 양극(bipolar)성 배전판(234)이 적층된다. 수소가스/전해액은 보강체에 형성된 수직방향으로 형성된 수소 진입 유로(251) 그리고 수평방향으로 형성된 수소 진입 연결로(255)와 개스킷 골격 유로(272)를 통하여 단위 셀로 유입된 후, 역시 수평방향으로 형성된 개스킷 골격 유로, 보강체에 형성된 수평방향의 수소 방출 연결로(255) 및 수직방향으로 형성된 수소 방출 유로(252)를 통하여 방출된다. 수소 전극의 개스킷 골격(270) 가장자리에 형성된 유로 연결 돌출부(271)와 유로 폐쇄 돌출부(273)는 보강체에 형성된 연결로(255, 265)의 단면 형상(도면의 경우 사각형)에 대응하는 형상으로 만들어진다. 즉, 유로 폐쇄돌출부(273)는 상기 연결로(265)에 끼워 맞춰져서 상기 연결로(265)를 완전히 폐쇄하고, 상기 유로 연결 돌출부(271)는 상기 개스킷 골격 유로(271) 부분을 제외하고는 상기 연결로(255) 벽면에 완전히 밀착한다. 4 is a view showing that the hydrogen passages 251 and 252 and the hydrogen connection passage 255 of the reinforcement body and the gasket skeleton flow passage 272 communicate with the unit cell, and is a cross-sectional view of the unit cell coupled to the reinforcement member. is shown. That is, FIG. 4 is a cross-sectional view taken along line IV-IV of FIG. 3D in a state in which the stack is coupled to the reinforcing body. As shown in FIG. 4 , in the unit cell, with a separator 230 disposed between the gasket skeleton of the form shown in FIG. 3d and the gasket skeleton of the form shown in FIG. 3c therebetween, an oxygen electrode 210 is below. , a hydrogen electrode 220 is disposed on it, and a porous gas diffusion layer 232 and a bipolar distribution board 234 are stacked in contact with each electrode. Hydrogen gas/electrolyte is introduced into the unit cell through the hydrogen inlet passage 251 formed in the vertical direction formed in the reinforcement body, the hydrogen inlet connection passage 255 formed in the horizontal direction, and the gasket skeleton passage 272, and then in the horizontal direction. It is discharged through the formed gasket skeleton flow path, the hydrogen discharge connection path 255 in the horizontal direction formed in the reinforcing body, and the hydrogen discharge flow path 252 formed in the vertical direction. The flow path connecting protrusion 271 and the flow path closing protrusion 273 formed on the edge of the gasket skeleton 270 of the hydrogen electrode have a shape corresponding to the cross-sectional shape (rectangular in the drawing) of the connecting paths 255 and 265 formed in the reinforcing body. is made That is, the flow path closing protrusion 273 is fitted to the connection path 265 to completely close the connection path 265 , and the flow path connection protrusion 271 is the gasket skeleton flow path 271 except for a portion. The connection path 255 is completely in close contact with the wall.
본 발명의 장치(10)의 수소가스와 산소가스 압력의 등가화(equalization)를 위해서는 먼저 전해액 수위의 조정이 선행되어야 한다. 전기분해로 인한 수소 기수분리기 수위의 강하는 물 저장원으로부터의 물 공급과 산소 기수분리기로부터의 초과분 이동으로 충당된다. 도 5에서 보는 바와 같이 산소 기수분리기(400)의 수위가 상한선을 초과하면 그 초과분은 배출로(405)를 통하여 수소/전해액과 합류하여 수소 기수분리기(300)로 이동된다. 이 때 합류된 혼합물은 전기화학 촉매칼럼(201)을 통과하여 산소 전해액에 용해된 산소를 제거한 후 수소 기수분리기(300)로 유입하게 만든다. 산소 기수분리기의 초과분은 배수로(406)를 통하여 하우징 외부로 방출시킬 수 있다. In order to equalize the hydrogen gas and oxygen gas pressures of the device 10 of the present invention, the electrolyte level must first be adjusted. The drop in the hydrogen brackish water level due to electrolysis is covered by the supply of water from the water storage source and the transfer of excess from the oxygen brackish separator. As shown in FIG. 5 , when the water level of the oxygen water separator 400 exceeds the upper limit, the excess is combined with hydrogen/electrolyte through the discharge path 405 and is moved to the hydrogen water separator 300 . At this time, the combined mixture passes through the electrochemical catalyst column 201 to remove oxygen dissolved in the oxygen electrolyte and then flows into the hydrogen water separator 300 . An excess of the oxygen separator may be discharged to the outside of the housing through the drain 406 .
압력의 등가화를 위해서는 기수분리기 수위와 함께 가스가 장치 내에서 차지하는 부피의 조정이 필요하다. 이를 위해서는 먼저 전기분해 시작 시에 수소와 산소가스가 차지할 초기 부피를 정해야 하며 그 비율은 산소가 수소부피의 50% 이하가 되도록 한다. 이를 위해서 물 저장소와 하우징 내부로 물을 채우기 전에 일단 장치 내부의 공기를 펌프로 뽑아낸 후 물을 채울 때 가스가 유입될 초기 공간만 남겨 놓는다. 수소와 산소의 초기 공간 책정에 의해 이들 가스의 최종 압력이 결정된다. 전기분해가 진행되면서 측정(monitor)되는 장치내부의 수소가스와 산소가스 압력이 차이를 보일 때는 각 가스가 차지하는 부피를 조정한다. 이를 위해서 본 장치에서는 수소가스 보다는 산소가스 부피 조작이 용이하다. 그 이유는 산소가스가 유입되며 차지하는 하우징 내부의 부피가 물(150)의 배수로 조정 가능하기 때문이다.In order to equalize the pressure, it is necessary to adjust the volume occupied by the gas in the device along with the water level in the separator. To do this, first, the initial volume to be occupied by hydrogen and oxygen gas should be determined at the start of electrolysis, and the ratio should be such that oxygen is less than 50% of the hydrogen volume. For this purpose, before filling the water reservoir and housing with water, the air inside the device is pumped out, leaving only the initial space for gas to flow when filling with water. The initial spatialization of hydrogen and oxygen determines the final pressures of these gases. When the pressure of hydrogen gas and oxygen gas inside the device to be measured (monitor) is different as the electrolysis proceeds, the volume occupied by each gas is adjusted. For this purpose, in this device, it is easier to manipulate the volume of oxygen gas than hydrogen gas. The reason is that oxygen gas flows in and the volume inside the housing occupied is adjustable by a multiple of water 150 .
장치의 전해액은 각각 독립된 유로를 통하여 수소 기수분리기와 스택 그리고 산소 기수분리기와 스택 사이를 순환한다. 도 6a에서는 펌프를 사용하지 않으면서 전해액을 수소 기수분리기와 스택 사이를 순환시키는 원리를 보여준다. 산소 기수분리기와 스택 사이의 순환도 동일한 원리를 따른다. 순환시키는 힘을 얻기 위해서 기수분리기를 떠난 수소가스의 일부가 스택 방향으로 흐를 수 있도록 가지(bypass) 통로를 만든다. 그 통로에 소형의 수소가스 임시 저장소로 고압가스 챔버(330)(high pressure chamber)를 배치하고 소형의 전해액 공급용기(335)를 배치한다. 전해액 공급용기 내부에는 피스톤(336)을 설치하여 이와 접촉하는 용기의 상반부는 수소 전해액(320)으로 그리고 하반부는 가지 통로로 공급된 고압의 수소가스(311)로 채운다. 통로에 설치된 복수 밸브의 개폐를 통하여 고압가스 챔버(330) 내부의 수소가스 압력을 순간적으로 스택 내부의 압력보다 높게 만들고 그 가스 압력으로 피스톤을 상향 이동시켜 전해액을 스택으로 공급하는 것이다. 따라서 순환 경로 각 지점 간의 압력 차이를 유도함이 중요하며 이것은 복수의 개폐식 밸브를 사용하여 달성할 수 있다. 먼저 주 수소 저장소(700)로 통하는 경로(303)에 위치한 밸브(341)를 닫고 고압가스 챔버(330)로 통하는 밸브(342)를 열어 고압가스 챔버(330)의 압력을 높인다. 전해액을 밀어 낼 때는 밸브(341)를 다시 연다. 이 때 수소가스와 전해액의 혼합물은 배출로(301)를 따라 전기화학 촉매칼럼(201)을 통과한 후 수소 기수분리기(300)로 유입된다. 순환의 한 주기는 세 단계로 구성돼 있으며 이들은 각각, The electrolyte of the device circulates between the hydrogen separator and the stack and between the oxygen separator and the stack through independent flow paths. 6a shows the principle of circulating the electrolyte between the hydrogen separator and the stack without using a pump. The circulation between the oxygen degasser and the stack follows the same principle. In order to obtain a circulating force, a bypass passage is made so that a part of the hydrogen gas leaving the separator can flow in the stack direction. A high pressure gas chamber 330 (high pressure chamber) is arranged as a small hydrogen gas temporary storage in the passage, and a small electrolyte supply container 335 is arranged. A piston 336 is installed inside the electrolyte supply container, and the upper half of the container in contact with it is filled with the hydrogen electrolyte 320 and the lower half with the high-pressure hydrogen gas 311 supplied through the branch passage. Through the opening and closing of a plurality of valves installed in the passage, the hydrogen gas pressure inside the high-pressure gas chamber 330 is momentarily higher than the pressure inside the stack, and the piston is moved upward with the gas pressure to supply the electrolyte to the stack. Therefore, it is important to induce a pressure differential between each point in the circulation path, which can be achieved using multiple on-off valves. First, the valve 341 located in the path 303 leading to the main hydrogen storage 700 is closed, and the valve 342 leading to the high-pressure gas chamber 330 is opened to increase the pressure of the high-pressure gas chamber 330 . When the electrolyte is pushed out, the valve 341 is opened again. At this time, the mixture of hydrogen gas and electrolyte is introduced into the hydrogen water separator 300 after passing through the electrochemical catalyst column 201 along the discharge path 301 . A cycle consists of three phases, each of which is
Step 1: 임시 수소 저장소의 수소 충진Step 1: Hydrogen Filling of Temporary Hydrogen Reservoir
Step 2: 피스톤 사용에 의한 스택으로의 전해액 공급Step 2: Supply of electrolyte to the stack by using a piston
Step 3: 전해액 공급용기의 전해액 재충전과 피스톤의 하향 이동Step 3: Recharge the electrolyte in the electrolyte supply container and move the piston downward
이며 이 스탭에 따른 복수 밸브의 개폐를 표 1에 요약하였다.and the opening and closing of multiple valves according to this step are summarized in Table 1.
[표 1][Table 1]
밸브 valve 341341 342342 343343 344344 345345
step 1 c o c o ostep 1 c o c o o
step 2 o c o c ostep 2 o c o c o
step 3step 3 oo cc oo oo o o
o: open c: closeo: open c: close
수소 가스 경로의 두 지점에서 측정되는 가스의 압력을 시간의 함수로, 혹은 주기와 스텝의 함수로 나타낸 프로화일을 도 6b에 표시하였다.A profile showing the gas pressure measured at two points in the hydrogen gas path as a function of time or as a function of period and step is shown in FIG. 6B .
지금까지 본 발명을 설명함에 있어, 도면에 도시된 실시예를 참고로 설명하였으나 이는 예시적인 것에 불과하며, 본 기술분야의 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 다른 실시예가 가능하다는 점을 이해할 것이다. 따라서, 본 발명의 진정한 기술적 보호 범위는 첨부된 특허청구범위의 기술적 사상에 의하여 정해짐이 자명하다.In describing the present invention so far, the embodiment shown in the drawings has been described with reference to, but this is merely an example, and that various modifications and equivalent other embodiments are possible therefrom by those of ordinary skill in the art. will understand the point. Accordingly, it is obvious that the true technical protection scope of the present invention is determined by the technical spirit of the appended claims.

Claims (10)

  1. 산소 전극과 수소 전극을 포함하는 복수 개의 단위 셀이 적층된 스택이 내부에 배치되어 전기분해에 의해 사용처의 수소 충전에 필요한 수소를 생산하고 압축하는 물 전기분해부; a water electrolysis unit in which a stack in which a plurality of unit cells including an oxygen electrode and a hydrogen electrode are stacked is disposed therein to produce and compress hydrogen required for hydrogen charging at a place of use by electrolysis;
    상기 물 전기분해부에서 생산된 수소가스를 저장하는 수소가스 저장용기; 및a hydrogen gas storage container for storing the hydrogen gas produced by the water electrolysis unit; and
    내부 공간에 상기 물 전기분해부가 설치된 것으로 외부와 내부 공간을 차단하는 하우징을 포함하고,It includes a housing that blocks the external and internal space as the water electrolysis unit is installed in the internal space,
    상기 물 전기분해부는 상기 하우징 내에서 불연성 액체에 잠긴 상태로 배치되고, The water electrolysis unit is disposed in the housing in a state submerged in a non-combustible liquid,
    상기 물 전기분해부에서 생산된 산소가스의 일부는 상기 하우징 내부 상부의 공간을 채워서 그 압력은 수소가스 저장용기의 수소가스 압력과 평형을 유지하면서수소와 산소가스를 생산, 압축, 저장하는 물 전기분해를 이용한 고압 수소 및 산소가스 생산 및 저장 장치.A part of the oxygen gas produced by the water electrolysis unit fills the space inside the housing, and the pressure maintains equilibrium with the hydrogen gas pressure of the hydrogen gas storage container while producing, compressing, and storing hydrogen and oxygen gas. High-pressure hydrogen and oxygen gas production and storage device using cracking.
  2. 제1항에 있어서, The method of claim 1,
    상기 물 전기분해부의 스택을 고분자 소재의 튜브형 보강체 내부의 중공부에 배치하여 외곽을 구조적으로 보강한 후 상기 하우징 내에 배치하고,The stack of the water electrolysis unit is placed in the hollow part inside the tubular reinforcement made of a polymer material to structurally reinforce the outer periphery, and then placed in the housing,
    상기 보강체는 튜브 형태의 본체로 형성되어서 내측 중공부는 상기 스택을 수용하고 상기 중공부의 둘레에 서로 이격되고 상기 중공부와 연결되며 수직방향으로 연장된 수소 진입 유로, 수소 방출 유로, 산소 유입 유로 및 산소 방출 유로가 형성되어 있고, 상기 수소 진입 유로, 수소 방출 유로, 산소 유입 유로 및 산소 방출 유로가 각각 스택과 연결될 수 있는 수평방향 연결로가 형성되어 있으며,The reinforcing body is formed as a tube-shaped body so that the inner hollow part accommodates the stack, is spaced apart from each other around the hollow part, is connected to the hollow part, and extends in a vertical direction: a hydrogen inlet channel, a hydrogen discharge channel, an oxygen inlet channel, and An oxygen discharge flow path is formed, and a horizontal connection path through which the hydrogen entry flow path, the hydrogen discharge flow path, the oxygen inlet flow path and the oxygen discharge flow path can be connected to the stack is formed,
    상기 스택에 포함되는 복수 개의 단위 셀은 각각 그 중앙부에 배치된 분리막을 사이에 두고 아래에는 산소 전극, 위에는 수소 전극이 배치되고 각 전극에 접촉하여 다공성 기체 확산층과 양극성 배전판이 배치되며, 수소 전극, 산소 전극, 다공성 기체 확산층들을 외측에서 감싸는 동시에 배전판에 밀착하는 링 형태의 개스킷 골격을 포함하고, In each of the plurality of unit cells included in the stack, an oxygen electrode and a hydrogen electrode are disposed below, and a porous gas diffusion layer and a bipolar distribution board are disposed in contact with each electrode with a separator disposed in the central portion therebetween, a hydrogen electrode; It includes a ring-shaped gasket skeleton that surrounds the oxygen electrode and the porous gas diffusion layers from the outside and is in close contact with the distribution board,
    상기 링 형태의 개스킷 골격은 상기 분리막 일측에 위치한 수소전극, 다공성 기체 확산층을 감싸고 양극성 배전판과 밀착하는 부분과 분리막 다른 일측에 위치한 산소전극, 다공성 기체 확산층을 감싸고 양극성 배전판과 밀착하는 부분을 포함하고, 그 외측으로 돌출되어서 상기 보강체의 수평방향으로 형성된 수평방향 연결로에 삽입 되는 4개의 돌출부들을 구비하며, 상기 돌출부들 중 2개는 상기 수평방향 연결로를 폐쇄하고, 나머지 돌출부 2개에는 개스킷 골격 유로가 형성되어 상기 수평방향 연결로를 통한 유체 이동이 가능하도록 하며, 산소 전극을 감싸는 개스킷 골격과 수소 전극을 감싸는 개스킷 골격에서 개스킷 골격 유로가 형성된 돌출부가 서로 상이하여서 일측의 개스킷 골격 유로는 수소전극과 연통되고, 타측의 개스킷 골격은 산소 전극과 연통되며, The ring-shaped gasket skeleton surrounds the hydrogen electrode located on one side of the separator and the porous gas diffusion layer and is in close contact with the bipolar distribution board, and the oxygen electrode located on the other side of the separator, the porous gas diffusion layer, and a portion in close contact with the bipolar distribution board, It has four protrusions that protrude outward and are inserted into the horizontal connection path formed in the horizontal direction of the reinforcing body, two of the protrusions close the horizontal connection path, and the remaining two protrusions have a gasket frame flow path. is formed to enable fluid movement through the horizontal connection path, and the gasket skeleton enclosing the oxygen electrode and the gasket skeleton enclosing the hydrogen electrode have different protrusions on which the gasket skeleton passage is formed, so that the gasket skeleton passage on one side communicates with the hydrogen electrode, , the gasket skeleton on the other side communicates with the oxygen electrode,
    상기 보강체의 중공부를 형성하는 내벽과, 상기 보강체의 중공부에 배치되는 스택의 구성 요소인 상기 개스킷 골격의 측 방향 외벽이 서로 밀착된 것을 특징으로 하는 물 전기분해를 이용한 고압 수소 및 산소가스 생산 및 저장 장치.High-pressure hydrogen and oxygen gas using water electrolysis, characterized in that the inner wall forming the hollow portion of the reinforcing body and the lateral outer wall of the gasket skeleton, which is a component of the stack disposed in the hollow portion of the reinforcing body, are in close contact with each other production and storage devices.
  3. 제2항에 있어서, 3. The method of claim 2,
    수소 전극을 감싸는 개스킷 골격(수소 전극용 개스킷 골격)의 돌출부 4개 중 2개에는 개스킷 골격 유로가 형성되어 각각 수소 진입 유로 및 수소 방출 유로와 연결되고, 산소 전극을 감싸는 개스킷 골격(산소 전극용 개스킷 골격)의 돌출부 4개 중 2개에는 개스킷 골격 유로가 형성되어 각각 산소 진입 유로 및 산소 방출 유로와 연결되며, 수소 전극용 개스킷 골격과 산소 전극용 개스킷 골격은 중공부 연장 방향과 나란한 중심축에 대해 서로 90도 회전된 형태로 만들어진 것을 특징으로 하는 물 전기분해를 이용한 고압 수소 및 산소가스 생산 및 저장 장치.A gasket skeleton flow path is formed in two of the four protrusions of the gasket skeleton (gasket skeleton for hydrogen electrode) surrounding the hydrogen electrode, and is connected to the hydrogen entry passage and hydrogen emission passage, respectively, and the gasket skeleton (gasket for oxygen electrode) surrounding the oxygen electrode. In two of the four protrusions of the skeleton), a gasket skeleton flow path is formed and is connected to the oxygen inlet passage and oxygen release passage, respectively. High-pressure hydrogen and oxygen gas production and storage device using water electrolysis, characterized in that it is rotated 90 degrees to each other.
  4. 제2항에 있어서, 3. The method of claim 2,
    내부 중공부를 갖는 상기 보강체의 환상(ring-shaped) 형태의 단면에서 그 환상(ring) 두께는 중공부 내경의 10% 내지 100% 되게 형성되고, In the cross section of the ring-shaped shape of the reinforcing body having an inner hollow portion, the ring thickness is formed to be 10% to 100% of the inner diameter of the hollow portion,
    상기 개스킷 골격 돌출부가 삽입되는 상기 보강체의 수평방향 연결로의 단면적은 상기 수직성 수소 진입 유로, 수소 방출 유로, 산소 유입 유로 및 산소 방출 유로의 단면적의 2% 내지 200% 이며, The cross-sectional area of the horizontal connection path of the reinforcing body into which the gasket skeleton protrusion is inserted is 2% to 200% of the cross-sectional area of the vertical hydrogen entry flow path, hydrogen discharge flow path, oxygen inlet flow path, and oxygen discharge flow path,
    상기 돌출부의 외곽형상은 상기 수평성 연결 유로의 단면형상에 대응하여서 보강체 유로 부분을 제외하고는 상기 돌출부가 상기 연결 유로를 밀착하면서 폐쇄하고, The outer shape of the protrusion corresponds to the cross-sectional shape of the horizontal connection flow path and closes the protrusion while closely adhering to the connection flow path, except for the reinforcing body flow path portion,
    상기 보강체 내벽과 상기 단위 셀 측면 외벽과의 접촉면에는 액상 접촉제를 사용하여 밀착하며,A liquid contacting agent is used to adhere to the contact surface between the inner wall of the reinforcing body and the outer wall of the side of the unit cell,
    상기 보강체의 중공부에 평행하게 관통하도록 형성된 볼트 체결공을 통해 볼트에 의해 상하 방향으로 인접한 단위 셀 구성 요소 사이가 밀착된 것을 특징으로 하는 물 전기분해를 이용한 고압 수소 및 산소가스 생산 및 저장 장치.High-pressure hydrogen and oxygen gas production and storage device using water electrolysis, characterized in that the vertical adjacent unit cell components are closely contacted by a bolt through a bolt fastening hole formed to penetrate parallel to the hollow part of the reinforcement body .
  5. 제2항에 있어서, 3. The method of claim 2,
    상기 복수의 단위 셀들 사이에 배치되어 인접한 단위 셀의 수소 전극과 산소 전극을 분리하는 분리막은 양이온 교환수지 분리막, 음이온 교환수지 분리막 또는 다공성 분리막을 포함하는 분리막의 그룹에서 선택된 분리막인 것을 특징으로 하는 물 전기분해를 이용한 고압 수소 및 산소가스 생산 및 저장 장치.The separator disposed between the plurality of unit cells to separate the hydrogen electrode and the oxygen electrode of an adjacent unit cell is a separator selected from the group consisting of a cation exchange resin separator, an anion exchange resin separator, or a porous separator. Water, characterized in that High-pressure hydrogen and oxygen gas production and storage device using electrolysis.
  6. 제2항에 있어서, 3. The method of claim 2,
    상기 분리막은 다공성 고분자 분리막이고, The separator is a porous polymer separator,
    상기 수소 전극에서 생산된 수소 가스와 전해액의 혼합물과 산소 전극에서 생산된 산소가스와 전해액의 혼합물이 각각의 기수분리기로 이동하는 경로에 전기화학 촉매 칼럼이 배치되어 상기 분리막을 통해 이동하는 미량의 산소나 수소를 제거하며,An electrochemical catalyst column is disposed on the path in which the mixture of hydrogen gas and electrolyte produced in the hydrogen electrode and the mixture of oxygen gas and electrolyte produced in the oxygen electrode move to each water separator, and a trace amount of oxygen moving through the separation membrane I remove hydrogen,
    상기 전기화학 촉매 칼럼 내부에는 고표면적 촉매 전극이 배치되고, 상기 고표면적 촉매 전극은 니켈(Ni), 티타늄(Ti) 및 탄소를 포함하는 소재의 그룹에서 선택된 하나 이상의 소재로 만들어지고, 고표면적 촉매 전극 표면에는 백금계열 귀금속(Pt, Pd, Ir, Ru), 철(Fe), 코발트(Co) 및 은(Ag)을 포함하는 금속의 그룹에서 선택된 하나 이상의 금속이 코팅되어 있으며, A high surface area catalyst electrode is disposed inside the electrochemical catalyst column, and the high surface area catalyst electrode is made of one or more materials selected from the group consisting of nickel (Ni), titanium (Ti) and carbon, and the high surface area catalyst At least one metal selected from the group of metals including platinum-based noble metals (Pt, Pd, Ir, Ru), iron (Fe), cobalt (Co) and silver (Ag) is coated on the electrode surface,
    상기 고표면적 촉매 전극 표면에서는 수소의 산화반응과 산소의 환원반응이 동시에 일어나 물이 생성되면서 불순물인 산소 또는 수소가 제거되는 것을 특징으로 하는 물 전기분해를 이용한 고압 수소가스 생산 및 저장 장치.High-pressure hydrogen gas production and storage device using water electrolysis, characterized in that the oxidation reaction of hydrogen and the reduction reaction of oxygen occur simultaneously on the surface of the high surface area catalyst electrode to produce water, and oxygen or hydrogen, which is an impurity, is removed.
  7. 제6항에 있어서, 7. The method of claim 6,
    상기 물 전기분해부에서 전기분해 진행과 함께 상기 수소 전극에서 소모되는 물을 공급하는 물 공급부를 더 포함하고, Further comprising a water supply unit for supplying water consumed in the hydrogen electrode together with the progress of electrolysis in the water electrolysis unit,
    상기 물 공급부에서 배수로 인해 생기는 빈 공간은 전기분해로부터 생산되는 수소가스로 채우고, The empty space caused by the drainage in the water supply part is filled with hydrogen gas produced from electrolysis,
    상기 물 전기분해부에서 전기분해 진행과 함께 산소전극에서 생성되는 물로 인해 산소 기수분리기 수위가 상한선을 초과하면 그 초과분은 물 전기분해부 외부로 방출 시키거나 혹은 수소 기수분리기로 이동시키며,When the water level in the oxygen separator exceeds the upper limit due to the water generated at the oxygen electrode along with the progress of electrolysis in the water electrolysis section, the excess is discharged to the outside of the water electrolysis section or moved to the hydrogen water separator,
    산소 기수분리기로부터 방출된 초과분은 단위 셀들이 적층되어 형성된 스택으로부터 배출된 수소가스와 전해액의 혼합물과 합류시킨 후 전기화학 촉매칼럼을 통과시켜 수소 기수분리기로 유입시키는 방식을 특징으로 하는 물 전기분해를 이용한 고압 수소가스 생산 및 저장 장치. The excess discharged from the oxygen water separator is mixed with a mixture of hydrogen gas and electrolyte discharged from the stack formed by stacking unit cells, and then passes through an electrochemical catalyst column and flows into the hydrogen water separator. Water electrolysis characterized in that High-pressure hydrogen gas production and storage device using
  8. 제6항 또는 제7항에 있어서, 8. The method of claim 6 or 7,
    상기 스택으로부터 생성되어 상기 수소 방출 유로로 배출된 수소/전해액은 수소용 전기화학 촉매 칼럼과 수소용 기수분리기를 거치게 되고, 수소용 기수분리기의 출구에서 수소 가스가 유입될 수 있도록 연결된 수소 고압가스 챔버; The hydrogen/electrolyte solution generated from the stack and discharged to the hydrogen discharge passage passes through an electrochemical catalyst column for hydrogen and a hydrogen water separator, and a hydrogen high pressure gas chamber connected so that hydrogen gas can be introduced at the outlet of the hydrogen water separator ;
    상기 스택으로부터 생성되어 상기 산소 방출 유로로 배출된 산소/전해액은 산소용 전기화학 촉매 칼럼과 산소용 기수분리기를 거치게 되고, 산소용 기수분리기의 출구에서 산소 가스가 유입될 수 있도록 연결된 산소 고압가스 챔버; 및 The oxygen/electrolyte solution generated from the stack and discharged to the oxygen discharge passage passes through an electrochemical catalyst column for oxygen and a gas-water separator for oxygen, and is connected to an oxygen high-pressure gas chamber through which oxygen gas can be introduced at the outlet of the oxygen separator. ; and
    내부가 피스톤에 의해 두 개의 공간으로 분리되고, 일측의 공간은 상기 수소 고압가스 챔버 또는 상기 산소 고압가스 챔버와 연결되고, 타측은 상기 수소용 기수분리기 또는 상기 산소용 기수분리기로부터 전해액이 공급되도록 연결되며, 상기 수소 또는 산소 고압가스 챔버에서 공급되는 압력에 의해 상기 수소용 기수분리기 또는 산소용 기수분리기로부터 공급된 전해액이 상기 보강체의 수소 진입 유로 또는 산소 진입 유로를 통해 상기 스택 내부로 공급되도록 하는 전해액 공급용기를 더 포함하는 것을 특징으로 하는 물 전기분해를 이용한 고압 수소 및 산소가스 생산 및 저장 장치. The interior is separated into two spaces by a piston, one side of the space is connected to the hydrogen high-pressure gas chamber or the oxygen high-pressure gas chamber, and the other side is connected so that the electrolyte is supplied from the hydrogen gas-water separator or the oxygen gas-water separator. and the electrolyte supplied from the hydrogen or oxygen gas-water separator by the pressure supplied from the hydrogen or oxygen high-pressure gas chamber is supplied into the stack through the hydrogen ingress passage or oxygen ingress passage of the reinforcement body. High-pressure hydrogen and oxygen gas production and storage device using water electrolysis, characterized in that it further comprises an electrolyte supply container.
  9. 제1항에 있어서, The method of claim 1,
    장치 전체에서 전기분해 시작 후에 생성되는 수소가스와 산소가스가 유입될 공간은, 산소가스가 유입될 공간이 수소가스가 유입될 공간의 50% 이하이고, The space into which the hydrogen gas and oxygen gas generated after the start of electrolysis in the entire device will be introduced is less than 50% of the space where the oxygen gas will be introduced,
    수소가스가 유입되는 공간에는 물 저장소의 물이 배수되어 생기는 공간이 포함되고, The space where hydrogen gas flows includes a space where water from the water storage is drained,
    산소가스가 유입되는 공간에는 상기 하우징 내부를 채운 물의 배수되어 생기는 공간이 포함되며, The space into which the oxygen gas is introduced includes a space formed by draining the water filling the inside of the housing,
    산소가스와 수소가스의 압력을 동등하게 조절할 수 있도록 상기 하우징에는 하우징 내부의 물을 배수하여 산소가스 공간의 부피를 조정하는 배수 조절부를 더 포함하는 것을 특징으로 하는 물 전기분해를 이용한 고압 수소 및 산소가스 생산 및 저장 장치.High-pressure hydrogen and oxygen using water electrolysis, characterized in that the housing further comprises a drainage control unit for adjusting the volume of the oxygen gas space by draining the water inside the housing so as to equally control the pressures of the oxygen gas and the hydrogen gas Gas production and storage devices.
  10. 제1항에 있어서, The method of claim 1,
    단위 셀들이 적층되어 형성되는 스택을 수용하는 상기 하우징은 하부 하우징과 상부 하우징을 포함하고, The housing for accommodating the stack formed by stacking unit cells includes a lower housing and an upper housing,
    상기 상부 하우징에는 일측만 개방된 중공부가 형성되어 있고, 그 개방된 부분의 둘레를 따라 외측으로 연장된 플랜지가 형성되어 있으며, The upper housing has a hollow part open only on one side, and a flange extending outwardly along the periphery of the open part is formed,
    상기 하부 하우징에는 일측만 개방된 중공부가 형성되어 있고, 그 개방된 부분의 둘레를 따라 외측으로 연장된 것으로 상기 상부 하우징의 플랜지를 수용하는 'L'자형 플랜지가 형성되어 있으며, The lower housing is formed with a hollow part with only one side open, and an 'L'-shaped flange for accommodating the flange of the upper housing as extending outward along the periphery of the open part is formed,
    상기 플랜지를 상기 'L'자형 플랜지를 향하여 누르면서 고정되는 가압부를 더 구비하고, Further comprising a pressing part fixed while pressing the flange toward the 'L'-shaped flange,
    상기 'L'자형 플랜지와 상기 가압부를 볼트로 체결함으로써 하우징 내부의 중공부에서의 압력이 증가하는 경우 상기 가압부와 상기 플랜지 사이의 기밀성이 강화되는 것을 특징으로 하는 물 전기분해에 의한 고압 수소 및 산소가스 생산 및 저장 장치.High-pressure hydrogen by water electrolysis, characterized in that airtightness between the pressing part and the flange is strengthened when the pressure in the hollow part inside the housing is increased by fastening the 'L'-shaped flange and the pressing part with a bolt Oxygen gas production and storage devices.
PCT/KR2020/013306 2020-09-29 2020-09-29 Apparatus for producing high-pressure hydrogen and oxygen by using water electrolysis WO2022071614A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/KR2020/013306 WO2022071614A1 (en) 2020-09-29 2020-09-29 Apparatus for producing high-pressure hydrogen and oxygen by using water electrolysis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2020/013306 WO2022071614A1 (en) 2020-09-29 2020-09-29 Apparatus for producing high-pressure hydrogen and oxygen by using water electrolysis

Publications (1)

Publication Number Publication Date
WO2022071614A1 true WO2022071614A1 (en) 2022-04-07

Family

ID=80950682

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/013306 WO2022071614A1 (en) 2020-09-29 2020-09-29 Apparatus for producing high-pressure hydrogen and oxygen by using water electrolysis

Country Status (1)

Country Link
WO (1) WO2022071614A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020072193A (en) * 2001-03-08 2002-09-14 조통래 Water electrolysis cell and electrolysis system using it
KR20040080332A (en) * 2002-01-29 2004-09-18 미쓰비시 쇼지 가부시키가이샤 High-pressure hydrogen producing apparatus and producing method
KR100603747B1 (en) * 2000-07-26 2006-07-24 가부시키가이샤 신꼬간꾜우솔루션 Hydrogen/oxygen supply system
KR20140036436A (en) * 2012-09-14 2014-03-26 손지현 Automatic oxygen generator by water electrolysis and hydrogen fuel cell
KR20190140014A (en) * 2017-04-24 2019-12-18 횔러 엘렉트로리제르 게엠베하 How water electrolysis device works
KR20200117731A (en) * 2019-04-05 2020-10-14 (주) 팝스 Apparatus for producing high pressure hydrogen and oxygen gas by water electrolysis

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100603747B1 (en) * 2000-07-26 2006-07-24 가부시키가이샤 신꼬간꾜우솔루션 Hydrogen/oxygen supply system
KR20020072193A (en) * 2001-03-08 2002-09-14 조통래 Water electrolysis cell and electrolysis system using it
KR20040080332A (en) * 2002-01-29 2004-09-18 미쓰비시 쇼지 가부시키가이샤 High-pressure hydrogen producing apparatus and producing method
KR20140036436A (en) * 2012-09-14 2014-03-26 손지현 Automatic oxygen generator by water electrolysis and hydrogen fuel cell
KR20190140014A (en) * 2017-04-24 2019-12-18 횔러 엘렉트로리제르 게엠베하 How water electrolysis device works
KR20200117731A (en) * 2019-04-05 2020-10-14 (주) 팝스 Apparatus for producing high pressure hydrogen and oxygen gas by water electrolysis

Similar Documents

Publication Publication Date Title
KR102277912B1 (en) Apparatus for producing high pressure hydrogen and oxygen gas by water electrolysis
EP2467515B1 (en) Proton exchange membrane water electrolyser module design
EP2300640B1 (en) Electrolyser module
US6569298B2 (en) Apparatus for integrated water deionization, electrolytic hydrogen production, and electrochemical power generation
JP3607718B2 (en) Water and inert gas discharge method and apparatus for fuel cell equipment
EP2895644B1 (en) Internally-reinforced water electrolyser module
CN112534085B (en) Electrolytic cell and method for operating an electrolytic cell
US11108061B2 (en) Water electrolysis or co-electrolysis reactor (SOEC) or fuel cell (SOFC) for pressurized operation and with a clamping system suitable for such operation
US20130140171A1 (en) Electrolyser module
EP2895643B1 (en) Externally-reinforced water electrolyser module
US8864962B2 (en) Electrolyser module
EP1378957B1 (en) Dual fuel cell stacks connected in series electrically and in parallel for gas flow
US11063268B2 (en) Reversible individual unit for electrolysis or co-electrolysis of water (SOEC) or for fuel cell (SOFC) with operation under pressure and decoupled compressive force
WO2022071614A1 (en) Apparatus for producing high-pressure hydrogen and oxygen by using water electrolysis
US20050211567A1 (en) Apparatus and method for integrated hypochlorite and hydrogen fuel production and electrochemical power generation
CN115821300A (en) Electrolytic cell device for water electrolysis hydrogen production by proton exchange membrane
JPH11121023A (en) Electric power storage device
KR101028650B1 (en) Hybrid type molten carbonate fuel cell and unit cell used the same
CN114746580A (en) Electrolysis system and method for operating an electrolysis system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20956379

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20956379

Country of ref document: EP

Kind code of ref document: A1