WO2022071476A1 - Working machine - Google Patents

Working machine Download PDF

Info

Publication number
WO2022071476A1
WO2022071476A1 PCT/JP2021/036065 JP2021036065W WO2022071476A1 WO 2022071476 A1 WO2022071476 A1 WO 2022071476A1 JP 2021036065 W JP2021036065 W JP 2021036065W WO 2022071476 A1 WO2022071476 A1 WO 2022071476A1
Authority
WO
WIPO (PCT)
Prior art keywords
work
monitor
work machine
stress
image
Prior art date
Application number
PCT/JP2021/036065
Other languages
French (fr)
Japanese (ja)
Inventor
健 椎名
寛 兼澤
Original Assignee
日立建機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立建機株式会社 filed Critical 日立建機株式会社
Priority to CN202180019404.3A priority Critical patent/CN115244255B/en
Priority to US17/909,550 priority patent/US20230115070A1/en
Priority to JP2022554089A priority patent/JP7344398B2/en
Priority to EP21875772.2A priority patent/EP4098813A4/en
Publication of WO2022071476A1 publication Critical patent/WO2022071476A1/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/26Indicating devices
    • E02F9/267Diagnosing or detecting failure of vehicles
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/26Indicating devices
    • E02F9/264Sensors and their calibration for indicating the position of the work tool
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/36Component parts
    • E02F3/42Drives for dippers, buckets, dipper-arms or bucket-arms
    • E02F3/43Control of dipper or bucket position; Control of sequence of drive operations
    • E02F3/435Control of dipper or bucket position; Control of sequence of drive operations for dipper-arms, backhoes or the like
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/2025Particular purposes of control systems not otherwise provided for
    • E02F9/2054Fleet management

Definitions

  • the present invention relates to a work machine, and particularly relates to a technique for reducing damage to the work device.
  • Patent Document 1 Although it is possible to predict that the working device will break down earlier than expected and take measures such as replacing the working device, the fatigue itself accumulated in the working device itself. Can not be alleviated. Therefore, in order to reduce the fatigue of the work equipment, it is necessary to reduce the stress applied to the work equipment by improving the skill of the operator and homogenizing the skill.
  • the present invention has been made in view of such a problem, and an object of the present invention is to provide a work machine capable of specifically recognizing the relationship between the stress applied to the work device and the operation of the machine body. There is something in it.
  • the work machine of the present invention is a work machine provided with a work device extending outward of the machine body, in which a physical quantity detection sensor for detecting a physical quantity related to the work machine and a monitor for displaying predetermined information are displayed.
  • a controller that controls the monitor the controller includes a stress calculation unit that calculates the distribution of stress applied to the work device based on the physical quantity of the work machine detected by the physical quantity detection sensor, and the controller.
  • the display control unit has a display control unit that controls the display of the predetermined information on the monitor, and the display control unit sets the distribution of the stress applied to the work device calculated by the stress calculation unit to the operation of the work device. It is characterized in that the display of the monitor is controlled as shown in conjunction with.
  • the display of the predetermined information controlled by the display control unit includes a simulated drawing imitating the working device, and the simulated drawing includes the work calculated by the stress calculation unit. It is preferable that the distribution of stress applied to the device is shown in conjunction with the operation of the working device.
  • the posture calculation unit that calculates the posture of the work device based on the physical quantity related to the work device detected by the physical quantity detection sensor is provided, and the simulated figure is calculated by the posture calculation unit. It is preferable that the posture of the work device is a pseudo image linked to the operation of the work device.
  • the posture and stress distribution of the working device can be visually recognized at the same time. It is said that.
  • the image pickup device for imaging the work device is provided, and the display of the predetermined information includes an image of the work device imaged by the image pickup device, and the stress distribution shown in the simulated diagram. And, it is preferable that the image of the working device is linked with the operation of the working device.
  • the simulated image and the captured image of the working device captured by the imaging device are displayed on the monitor in conjunction with the operation of the working device, so that the work can be performed while comparing the captured image of the existing working device with the simulated image. It is possible to recognize the distribution of stress applied to the device.
  • the airframe is provided with a cockpit on which an operator who operates the airframe is boarded, and the monitor is arranged in the cockpit.
  • the monitor in the cockpit where the operator who operates the aircraft is on board, the operator visually recognizes the monitor while operating the aircraft, and the operator's operation causes fatigue to accumulate in the work equipment. It is possible to intuitively understand whether or not it is.
  • a communication device that performs wireless communication between the airframe and the monitor it is preferable to have a communication device that performs wireless communication between the airframe and the monitor, and the monitor is provided separately from the airframe.
  • the work machine of the present invention by showing the monitor the distribution of stress applied to the work device calculated by the stress calculation unit so as to be interlocked with the operation of the work device, for example, the operation of the machine by the operator can be performed by the work device.
  • the distribution of stress applied to the working device operated by the operation of the machine by the operator is displayed in conjunction with the operation of the working device, so that the operator can perform the operation. It is possible to intuitively understand that the operation is such that stress accumulates in the work equipment. This makes it possible to specifically recognize the relationship between the stress applied to the working device and the operation of the machine.
  • the hydraulic excavator 1 is a large hydraulic excavator that operates at a site such as a mine, and is, for example, a machine having a maximum front-rear length of 25 m, a left-right length of 7 m, and a ground clearance of 15 m. Further, the hydraulic excavator 1 is normally operated 24 hours a day with 3 to 4 operators taking turns.
  • the hydraulic excavator 1 includes a lower traveling body 2, an upper turning body 3, and a turning device 4.
  • the lower traveling body 2 is a traveling device of the hydraulic excavator 1, and here, the crawler type lower traveling body 2 is exemplified.
  • the upper swivel body 3 is connected to the lower traveling body 2 via a swivel frame 3a and a swivel device 4 forming a skeleton below the upper swivel body 3.
  • the turning device 4 is a device capable of turning the upper turning body 3 relative to the lower traveling body 2.
  • the swivel device 4 is provided with a swivel bearing (not shown) inside, and by driving a swivel hydraulic motor (not shown), the swivel body 3 can be swiveled around the swivel bearing.
  • the upper swivel body 3 has a cockpit 5, a front attachment (working device) 7, a building 6, and the like mounted on the swivel frame 3a.
  • the cockpit 5 is provided with various operating devices for operating the hydraulic excavator 1. Therefore, by boarding the cockpit 5, the operator can perform various operations of the hydraulic excavator 1, such as a turning operation for operating the turning device 4 and a work operation for operating the front attachment 7.
  • the building 6 accommodates machines such as an engine and a hydraulic pump (not shown), and is arranged behind the cockpit 5.
  • the front attachment 7 is provided at the center of the front portion of the upper swing body 3, and includes a boom 10, an arm 11, and a bucket 12.
  • the boom 10 has a base end portion pivotally supported by a connecting pin (not shown) on the swivel frame 3a. As a result, the boom 10 can swing relative to the swivel frame 3a.
  • An arm 11 is rotatably connected to the tip of the boom 10 in the vertical direction
  • a bucket 12 is rotatably connected to the tip of the arm 11 in the vertical direction.
  • the boom 10 can be rotated by adjusting the boom cylinder 10a hydraulically and expanding and contracting.
  • the arm 11 can rotate the arm cylinder 11a
  • the bucket 12 can rotate by hydraulically adjusting the bucket cylinder 12a to expand and contract. Therefore, the front attachment 7 appropriately adjusts the boom cylinder 10a, the arm cylinder 11a, and the bucket cylinder 12a to expand and contract, thereby appropriately rotating the boom 10, the arm 11, and the bucket 12, and performing operations such as excavation, which will be described later. It is possible to do the work.
  • the front attachment 7 is provided with a plurality of sensors that detect various physical quantities.
  • the boom cylinder 10a is provided with a boom pressure sensor 10b
  • the arm cylinder 11a is provided with an arm pressure sensor 11b
  • the bucket cylinder 12a is provided with a bucket pressure sensor 12b.
  • These pressure sensors can detect the pressure in each cylinder.
  • the boom pressure sensor 10b, the arm pressure sensor 11b, and the bucket pressure sensor 12b are also collectively referred to as a cylinder pressure sensor 15.
  • a first angle meter 21, a second angle meter 22, and a third angle meter 23 are provided at each connecting portion of the swivel frame 3a, the boom 10, the arm 11, and the bucket 12, respectively.
  • the first goniometer 21 is a sensor that detects the relative angle between the swivel frame 3a and the boom 10.
  • the second angle meter 22 is a sensor that detects the relative angle between the boom 10 and the arm 11.
  • the third goniometer 23 is a sensor that detects the relative angle between the arm 11 and the bucket 12.
  • the first angle meter 21, the second angle meter 22, and the third angle meter 23 are also collectively referred to as a front angle meter 25.
  • the upper swivel body 3, the swivel device 4, and the building 6 have a vehicle body tilt angle meter 31, a swivel angle meter 33, a hydraulic oil temperature gauge 35, an engine tachometer 36, a hydraulic pump discharge pressure gauge 37, and a hydraulic motor inlet pressure gauge. 38 and an accelerometer 39 are provided.
  • the vehicle body tilt angle meter 31 is a sensor that detects an inclination angle indicating the inclination of the hydraulic excavator 1 in the front-rear and left-right directions.
  • the turning angle meter 33 is a sensor that detects the relative angle between the upper turning body 3 and the lower traveling body 2.
  • the hydraulic oil thermometer 35 is a sensor that detects the temperature of hydraulic oil supplied to a hydraulic motor, a hydraulic cylinder, or the like by a hydraulic pump (not shown).
  • the engine tachometer 36 is a rotation sensor that detects the rotation speed of an engine (not shown).
  • the hydraulic pump discharge pressure gauge 37 is a pressure sensor that detects the pressure of hydraulic oil supplied from a hydraulic pump (not shown) to a hydraulic motor, a hydraulic cylinder, or the like.
  • the hydraulic motor inlet pressure gauge 38 is a pressure sensor that detects the pressure of hydraulic oil supplied to a swing hydraulic motor or the like (not shown).
  • the accelerometer 39 is an acceleration sensor that detects the vibration acceleration generated in the upper swivel body 3 and the lower traveling body 2.
  • the cockpit 5 is provided with a camera 41 and a monitor 43.
  • the camera 41 is installed in the cockpit 5, for example, and is an image pickup device that images the front of the cockpit 5.
  • Various information related to the hydraulic excavator 1, such as the state and posture of the hydraulic excavator 1, is displayed on the monitor 43. The information displayed on the monitor 43 will be described later.
  • the controller 51 is a control device for comprehensively controlling the hydraulic excavator 1 including engine operation control, and is an input / output device, a storage device (ROM, RAM, non-volatile RAM, etc.), and a central processing unit (CPU). ) And the like, for example, arranged in the control room 5 of the upper swivel body 3.
  • a sensor (physical quantity detection sensor) for detecting a physical quantity related to the machine body 1 such as an inlet pressure gauge 38 and an accelerometer 39, and a camera (imaging device) 41 are electrically connected.
  • information on the tilt angle of the hydraulic excavator 1 is input from the vehicle body tilt angle meter 31, and information on the relative angle between the upper swing body 3 and the lower traveling body 2 is input from the turn angle meter 33. It is input, and information about the temperature of the hydraulic oil is input from the hydraulic oil thermometer 35. Further, information on the engine rotation speed is input from the engine rotation meter 36, information on the pressure of hydraulic oil supplied from the hydraulic pump to the hydraulic motor, the hydraulic cylinder, etc.
  • a monitor 43 is electrically connected to the output side of the controller 51, and by controlling the monitor 43, it is possible to notify the operator boarding the cockpit 5 of various information regarding the hydraulic excavator 1. can.
  • Information input / output between each sensor or the like and the controller 51 may be performed via a network such as a control area network (CAN) or a local area network (LAN).
  • CAN control area network
  • LAN local area network
  • the controller 51 has a stress calculation unit 53, a posture calculation unit 55, and a display control unit 57.
  • the stress calculation unit 53 is a calculation unit capable of calculating the stress distribution applied to the front attachment 7.
  • the stress calculation unit 53 includes a cylinder pressure sensor 15, a front angle meter 25, a vehicle body tilt angle meter 31, a turning angle meter 33, a hydraulic oil temperature meter 35, an engine rotation meter 36, a hydraulic pump discharge pressure meter 37, and the like.
  • the posture calculation unit 55 can calculate the posture of the front attachment 7 based on the information regarding the relative angles at the connecting portions of the swivel frame 3a, the boom 10, the arm 11 and the bucket 12 input from the front angle meter 25. It is a calculation unit.
  • the posture calculation unit 55 calculates the posture of the front attachment 7 each time the information regarding the relative angle in each connecting portion input from the front angle meter 25 changes.
  • the display control unit 57 shifts to the monitor 43 based on the stress distribution calculated by the stress calculation unit 53, the attitude of the front attachment 7 calculated by the attitude calculation unit 55, and the image in front of the cockpit 5 captured by the camera 41. It is a control unit that controls the display of.
  • the monitor 43 has an image in front of the cockpit 5 (hereinafter referred to as a front image 61) and a perspective view of the front attachment 7 (hereinafter referred to as a pseudo image 63) captured by the camera 41 under the control of the display control unit 57. ) Is displayed side by side on the left and right.
  • the simulated image 63 is a diagram simulating a three-dimensional perspective view of the front attachment 7 so that the posture of the front attachment 7 is calculated by, for example, the posture calculation unit 55.
  • This pseudo image 63 is a perspective view when the camera 41 is viewed from a direction corresponding to the direction in which the front attachment 7 is imaged. Further, the simulated image 63 shows that the stress distribution 63a calculated by the stress calculation unit 53 is, for example, in four stages, and the higher the stress, the darker the color. The color may be changed according to the degree of stress.
  • the posture calculation unit 55 calculates the posture of the front attachment 7 every time the information regarding the relative angle in each connecting portion input from the front angle meter 25 changes, and the pressure sensor 15, the front angle meter 25, and the vehicle body tilt angle are calculated. Stress calculation every time the information about the physical quantity input from the total 31, swivel angle meter 33, hydraulic oil temperature meter 35, engine rotation meter 36, hydraulic pump discharge pressure meter 37, hydraulic motor inlet pressure meter 38 and acceleration meter 39 changes. Since the unit 53 calculates the stress distribution 63a, the operator can recognize the stress distribution 63a of the front attachment 7, which changes according to the operation of the hydraulic excavator 1, at the same time as the operation, so-called real time. Further, the operator can easily recognize the stress distribution 63a in the front attachment 7 by comparing the front image 61 and the simulated image 63.
  • the cylinder pressure sensor 15 in the work machine provided with the front attachment 7 extending outward of the hydraulic excavator 1, the cylinder pressure sensor 15, the front angle meter 25, the vehicle body inclination angle meter 31, Sensors that detect physical quantities such as turning angle meter 33, hydraulic oil temperature gauge 35, engine rotation meter 36, hydraulic pump discharge pressure gauge 37, hydraulic motor inlet pressure gauge 38, accelerator 39, etc., front image 61, simulated image 63, etc.
  • a monitor 43 for displaying predetermined information and a controller 51 for controlling the monitor 43 are provided.
  • the controller 51 includes a cylinder pressure sensor 15, a front angle meter 25, a vehicle body tilt angle meter 31, a turning angle meter 33, a hydraulic oil temperature meter 35, an engine rotation meter 36, a hydraulic pump discharge pressure meter 37, and a hydraulic motor inlet pressure meter. 38, the stress calculation unit 53 that calculates the stress distribution 63a, which is the distribution of the stress applied to the front attachment 7 based on the physical quantity detected by the sensor such as the accelerometer 39, and the display of predetermined information to be displayed on the monitor 43. It has a display control unit 57 to be controlled.
  • the display control unit 57 controls the display of the monitor 43 so as to show the stress distribution 63a in the front attachment 7 calculated by the stress calculation unit 53 in conjunction with the operation of the front attachment 7.
  • the monitor 43 shows the stress distribution 63a in the front attachment 7 calculated by the stress calculation unit 53 so as to be interlocked with the operation of the front attachment 7, the operation of the hydraulic excavator 1 by the operator causes fatigue in the front attachment 7.
  • the operation is such that the stress is accumulated, the operator can sensibly understand that the operation is an operation in which the fatigue is accumulated in the front attachment 7.
  • the front is used. Since the hydraulic excavator 1 can be operated and the operation is instructed while observing the stress distribution 63a of the attachment 7, the operation skill of the hydraulic excavator 1 of a developing person can be satisfactorily improved by the guidance of a skilled person.
  • the display of predetermined information controlled by the display control unit 57 and displayed on the monitor 43 includes a simulated diagram imitating the front attachment 7, and the simulated diagram includes the stress calculated by the stress calculation unit 53. Since the distribution 63a is shown on the monitor 43 in conjunction with the operation of the front attachment 7, for example, it is visually easy to visually determine whether or not the operation of the hydraulic excavator 1 by the operator is an operation in which stress accumulates in the front attachment 7. Can be understood.
  • It has a posture calculation unit 55 that calculates the posture of the front attachment 7 based on a physical quantity detected by a sensor such as 39, and the posture of the front attachment 7 calculated by the posture calculation unit 55 is linked to the operation of the front attachment 7. Since the simulated image 63 is displayed as a simulated diagram, the posture of the front attachment 7 and the stress distribution 63a can be visually recognized at the same time.
  • the camera 41 that captures the front attachment 7 is included, and the display of predetermined information includes the front image 61 captured by the camera 41, and the stress distribution 63a and the front image 61 of the pseudo image 63 are front attachments. Since it is linked with the operation of 7, the stress distribution 63a of the front attachment 7 can be recognized while comparing the front image 61, which is an image of the existing front attachment 7, with the simulated image 63, which is a simulated diagram.
  • the hydraulic excavator 1 is provided with a control room 5 on which the operator who operates the hydraulic excavator 1 is boarded, and the monitor 43 is arranged in the control room 5. Therefore, the operator operates the hydraulic excavator 1. While visually observing the monitor 43, it is possible to sensibly understand whether or not the operation is such that fatigue accumulates in the front attachment 7.
  • connection configuration of the controller 151 according to the control of the second embodiment is shown in the block diagram.
  • the controller 151 according to the second embodiment is different in that the communication device 160 is connected instead of the monitor 43 electrically connected to the output side of the controller 51 according to the first embodiment.
  • the communication device 160 includes a first communication device 161 and a second communication device 162, and is a device capable of wirelessly transmitting and receiving information between the first communication device 161 and the second communication device 162.
  • the first communication device 161 is arranged in the hydraulic excavator 1
  • the second communication device 162 is arranged in, for example, a management center (remote place) 100 that manages the hydraulic excavator 1.
  • the management center 100 is provided with a PC (Personal Computer) 143 that manages the operation of the hydraulic excavator 1 and the state of the hydraulic excavator 1, and the PC 143 can input and output information to the second communication device 162. It is connected to the computer.
  • PC Personal Computer
  • the controller 151 according to the second embodiment corresponds to the controller 51 according to the first embodiment, and the display control unit 57 forms the same images as the front image 61 and the pseudo image 63. Further, the controller 151 transmits the front image 61 and the pseudo image 63 to the PC 143 via the communication device 160. Then, the PC 143 projects the front image 61 and the pseudo image 63 on the screen.
  • the image projected on the PC 143 in this way can be viewed, for example, by a skilled person located in the management center 100 or an operator who remotely controls the hydraulic excavator 1 from the management center 100. Therefore, based on the image projected on the PC 143, an expert may instruct the operator who rides on the hydraulic excavator 1 to operate the hydraulic excavator 1 from the management center 100, or the hydraulic excavator 1 may be operated. The operator who operates remotely can improve the operation technique of the hydraulic excavator 1 by himself / herself.
  • the work machine according to the second embodiment has a communication device 160 that performs wireless communication between the hydraulic excavator 1 and the PC 143, and the PC 143 is provided separately from the hydraulic excavator 1. Therefore, the stress distribution 63a of the front attachment 7 can be recognized at a place away from the hydraulic excavator 1 such as the management center 100. Further, based on the stress distribution 63a of the front attachment 7 recognized in this way, the operator can improve the operation technique of the hydraulic excavator 1.
  • the hydraulic excavator 1 has been described, but a working machine having a working device such as a wheel loader may be used.
  • the stress calculation unit 53 includes a cylinder pressure sensor 15, a front angle meter 25, a vehicle body tilt angle meter 31, a turning angle meter 33, a hydraulic oil temperature meter 35, an engine rotation meter 36, and a hydraulic pump discharge pressure meter. 37, It was decided to calculate the stress distribution 63a of the front attachment 7 based on the information input from the hydraulic motor inlet pressure gauge 38 and the accelerometer 39, but sensors other than these sensors may be used. It is not necessary to use some of these sensors, and it is sufficient that the stress distribution 63a can be calculated based on the physical quantity applied to the front attachment 7.
  • the calculation method of the stress distribution 63a by the stress calculation unit 53 uses a numerical analysis method such as a finite element method or a statistical method such as regression analysis, but other calculation methods are used. The calculation may be performed, and it is sufficient that the stress distribution 63a of the front attachment 7 can be calculated.
  • the installation location of the image pickup device for photographing the front of the cockpit 5 is illustrated in the cockpit 5, but it may be installed in the upper swivel body 3 outside the cockpit, and the position away from the aircraft. It may be installed in.
  • the simulated image 63 of the three-dimensional perspective view is used as the simulated view, but other types of simulated views such as a developed view and a hexagonal view may be used.
  • the stress distribution 63a may be displayed so as to be superimposed on the front image 61.
  • the front image 61 and the pseudo image 63 are displayed side by side on the monitor 43, but only the pseudo image 63 may be displayed, and the operator may operate the hydraulic excavator 1.
  • one set is the stress distribution 63a overlaid with the front image 61, and two or more sets of the past set and the current set are arranged at the same time and displayed on the monitor 43 for comparison. May be good.
  • the PC 143 disposed in the management center 100 has been described, but the tablet terminal is displayed in the front image 61 and the pseudo image 63, and the hydraulic excavator 1 can be visually observed in the tablet at the corner of the work site. You may use a terminal.
  • the display control unit 57 of the controller 151 arranged on the hydraulic excavator 1 forms the same images as the front image 61 and the pseudo image 63, but the display control unit 57 and the stress calculation are performed.
  • the unit 53 and the posture calculation unit 55 may be arranged on the PC 143 to form an image on the management center 100 side. In this case, the information from each sensor or camera 41 may be transmitted to the PC 143 via the communication device 160.
  • the front image 61 and the simulated image 63 are displayed on the PC 143, but a microphone is arranged on the hydraulic excavator 1 to acquire sound information, and the vehicle is mounted on the hydraulic excavator 1.
  • the operator who remotely operates the hydraulic excavator 1 may be made to recognize the same sound as that acquired when the excavator is in the control center 100.
  • Hydraulic excavator (machine, work machine) 7 Front attachment (working equipment) 15 Cylinder pressure sensor (physical quantity detection sensor) 25 Front protractor (physical quantity detection sensor) 31 Tilting train (physical quantity detection sensor) 33 Swing angle meter (physical quantity detection sensor) 35 Hydraulic oil thermometer (physical quantity detection sensor) 36 Engine tachometer (physical quantity detection sensor) 37 Hydraulic pump discharge pressure gauge (physical quantity detection sensor) 38 Hydraulic motor inlet pressure gauge (physical quantity detection sensor) 39 Accelerometer (physical quantity detection sensor) 41 Camera (imaging device) 43 Monitor 51, 151 Controller 53 Stress calculation unit 55 Posture calculation unit 57 Display control unit 63 Pseudo video 63a Stress distribution 143 PC (monitor) 160 communication device

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Component Parts Of Construction Machinery (AREA)
  • Operation Control Of Excavators (AREA)

Abstract

This working machine equipped with a working device (7) that extends outwardly of a machine body (1), is provided with: physical quantity detection sensors (15, 25, 31, 33, 35, 36, 37, 38, 39) that respectively detect physical quantities regarding the working machine; a monitor (43) that displays predetermined information (61, 63); and a controller (51) that controls the monitor. The controller has: a stress calculation unit (53) that calculates a distribution (63a) of stress applied to the working device on the basis of the physical quantities regarding the working machine, detected by the physical quantity detection sensors; and a display control unit (57) that controls the display of the predetermined information on the monitor. The display control unit controls the display of the monitor such that the distribution of stress applied to the working device, calculated by the stress calculation unit, is displayed in conjunction with operation of the working device.

Description

作業機械Work machine
 本発明は作業機械に係り、特に作業装置の損傷を軽減させる技術に関する。 The present invention relates to a work machine, and particularly relates to a technique for reducing damage to the work device.
 建設機械をはじめとする作業機械は、掘削等の作業により、ブームやアーム等の構造物を有する作業装置に多大な応力が発生することがある。特に応力が集中する箇所は、疲労が蓄積して故障することが考えられる。このような作業装置の故障などによって作業機械を停止せざるを得ない場合、生産性等への影響が生じるため、未然に故障を予知する必要がある。 For work machines such as construction machines, a large amount of stress may be generated in work equipment having structures such as booms and arms due to work such as excavation. Especially in places where stress is concentrated, it is conceivable that fatigue will accumulate and failure will occur. If the work machine has to be stopped due to such a failure of the work device, it will affect the productivity and the like, so it is necessary to predict the failure in advance.
 そこで、複数の運転状況の下において作業機械の部品に蓄積された損傷度(疲労)の分布を表すデータに基づいて、作業機械の部品に蓄積された疲労の分布を、運転状況ごとに、相互に対比可能な状態で、表示画面に画像として表示させることで、油圧ショベルの適切な作業計画やメンテナンス計画を行うことができる技術が開発されている(特許文献1)。 Therefore, based on the data representing the distribution of the degree of damage (fatigue) accumulated in the parts of the work machine under multiple operating conditions, the distribution of the fatigue accumulated in the parts of the work machine is mutually distributed for each operating condition. A technique has been developed that enables an appropriate work plan and maintenance plan for a hydraulic excavator to be displayed as an image on a display screen in a state that can be compared with the above (Patent Document 1).
特開2014-222003号公報Japanese Unexamined Patent Publication No. 2014-222003
 しかしながら、上記特許文献1に開示される技術では、想定よりも早く作業装置が故障することを予知し、作業装置の交換を行う等の措置を講ずることができるものの、作業装置に蓄積する疲労そのものを軽減することができるわけではない。したがって、作業装置の疲労を軽減させるためには、オペレータのスキルを向上させたり、スキルの均質化を図ることで、作業装置に加わる応力を軽減する必要があった。 However, in the technique disclosed in Patent Document 1, although it is possible to predict that the working device will break down earlier than expected and take measures such as replacing the working device, the fatigue itself accumulated in the working device itself. Can not be alleviated. Therefore, in order to reduce the fatigue of the work equipment, it is necessary to reduce the stress applied to the work equipment by improving the skill of the operator and homogenizing the skill.
 このようにオペレータのスキルを向上させたりスキルの均質化を図るためには、スキルの高いオペレータ(熟練者)がスキルの低いオペレータ(途上者)を指導することが有効である。しかしながら、当該指導の際に、エンジンや油圧機器の音、振動の変化など、熟練者が経験的に認識している掘削イメージや感覚といった抽象的な情報を途上者に伝えることでは、作業装置の損傷と機体の動作との関係性を途上者に認識させることが良好にはできず、更なる改善の余地があった。 In order to improve the skills of operators and homogenize the skills in this way, it is effective for operators with high skills (experts) to instruct operators with low skills (developed). However, at the time of the instruction, it is possible to convey abstract information such as the excavation image and sensation that the expert has empirically recognized, such as changes in the sound and vibration of the engine and hydraulic equipment, to the developing person. It was not possible to make the developing person aware of the relationship between the damage and the movement of the aircraft, and there was room for further improvement.
 本発明はこのような課題に鑑みてなされたものであり、その目的とするところは、作業装置に加わる応力と機体の動作との関係性を具体的に認識することができる作業機械を提供することにある。 The present invention has been made in view of such a problem, and an object of the present invention is to provide a work machine capable of specifically recognizing the relationship between the stress applied to the work device and the operation of the machine body. There is something in it.
 上記の目的を達成するため、本発明の作業機械は、機体の外方に延びる作業装置を備えた作業機械において、前記作業機械に関する物理量を検出する物理量検出センサと、所定の情報を表示するモニタと、前記モニタを制御するコントローラと、を備え、前記コントローラは、前記物理量検出センサによって検出される前記作業機械に関する物理量に基づいて該作業装置に加わる応力の分布を演算する応力演算部と、前記モニタへの前記所定の情報の表示を制御する表示制御部と、を有し、前記表示制御部は、前記応力演算部によって演算される前記作業装置に加わる応力の分布を、該作業装置の動作と連動して示すように前記モニタの表示を制御することを特徴とする。 In order to achieve the above object, the work machine of the present invention is a work machine provided with a work device extending outward of the machine body, in which a physical quantity detection sensor for detecting a physical quantity related to the work machine and a monitor for displaying predetermined information are displayed. A controller that controls the monitor, the controller includes a stress calculation unit that calculates the distribution of stress applied to the work device based on the physical quantity of the work machine detected by the physical quantity detection sensor, and the controller. The display control unit has a display control unit that controls the display of the predetermined information on the monitor, and the display control unit sets the distribution of the stress applied to the work device calculated by the stress calculation unit to the operation of the work device. It is characterized in that the display of the monitor is controlled as shown in conjunction with.
 これにより、応力演算部によって演算される作業装置に加わる応力の分布を、該作業装置の動作と連動するようにモニタに示すことで、例えばオペレータによる機体の操作が作業装置に疲労が蓄積するような操作である場合に、オペレータによる機体の操作によって動作する作業装置に加わる応力の分布が、該作業装置の動作と連動してモニタに表示されるので、オペレータは、当該操作が作業装置に疲労が蓄積するような操作であることを体感的に理解することが可能とされる。 As a result, by showing the monitor the distribution of stress applied to the work device calculated by the stress calculation unit so as to be linked with the operation of the work device, for example, the operation of the machine by the operator causes fatigue to accumulate in the work device. Since the distribution of stress applied to the work device operated by the operator's operation of the machine is displayed on the monitor in conjunction with the operation of the work device, the operator is tired of the operation. It is possible to intuitively understand that it is an operation that accumulates.
 その他の態様として、前記表示制御部によって制御される前記所定の情報の表示には、前記作業装置を模した模擬図が含まれ、前記模擬図には、前記応力演算部によって演算される前記作業装置に加わる応力の分布が、該作業装置の動作と連動して示されてなるのが好ましい。 As another aspect, the display of the predetermined information controlled by the display control unit includes a simulated drawing imitating the working device, and the simulated drawing includes the work calculated by the stress calculation unit. It is preferable that the distribution of stress applied to the device is shown in conjunction with the operation of the working device.
 これにより、作業装置を模した模擬図に作業装置に加わる応力の分布を、該作業装置の動作と連動してモニタに表示することで、例えばオペレータによる機体の操作が、作業装置に疲労が蓄積するような操作であるか否かを視覚的に容易に理解することが可能とされる。 As a result, by displaying the distribution of stress applied to the work device on the monitor in conjunction with the operation of the work device on a simulated diagram imitating the work device, for example, the operation of the machine by the operator causes fatigue to accumulate in the work device. It is possible to easily visually understand whether or not the operation is such that the operation is performed.
 その他の態様として、前記物理量検出センサによって検出される前記作業装置に関する物理量に基づいて前記作業装置の姿勢を演算する姿勢演算部を有し、前記模擬図は、前記姿勢演算部によって演算される前記作業装置の姿勢が該作業装置の動作と連動する擬似映像であるのが好ましい。 As another embodiment, the posture calculation unit that calculates the posture of the work device based on the physical quantity related to the work device detected by the physical quantity detection sensor is provided, and the simulated figure is calculated by the posture calculation unit. It is preferable that the posture of the work device is a pseudo image linked to the operation of the work device.
 これにより、姿勢演算部によって演算される作業装置の姿勢と連動する擬似映像に、作業装置の動作と連動する応力分布を表示することで、作業装置の姿勢及び応力分布を同時に視認することが可能とされる。 As a result, by displaying the stress distribution linked to the operation of the working device on the simulated image linked to the posture of the working device calculated by the posture calculation unit, the posture and stress distribution of the working device can be visually recognized at the same time. It is said that.
 その他の態様として、前記作業装置を撮像する撮像装置を有し、前記所定の情報の表示には、前記撮像装置によって撮像される前記作業装置の映像が含まれ、前記模擬図に示される応力分布及び前記作業装置の映像は、前記作業装置の動作と連動してなるのが好ましい。 As another embodiment, the image pickup device for imaging the work device is provided, and the display of the predetermined information includes an image of the work device imaged by the image pickup device, and the stress distribution shown in the simulated diagram. And, it is preferable that the image of the working device is linked with the operation of the working device.
 これにより、模擬図と撮像装置によって撮像される作業装置の撮像映像とを作業装置の動作と連動してモニタに表示することで、実在する作業装置の撮像映像と模擬図とを見比べながら、作業装置に加わる応力の分布を認識することが可能とされる。 As a result, the simulated image and the captured image of the working device captured by the imaging device are displayed on the monitor in conjunction with the operation of the working device, so that the work can be performed while comparing the captured image of the existing working device with the simulated image. It is possible to recognize the distribution of stress applied to the device.
 その他の態様として、前記機体には、該機体を操作するオペレータが搭乗する操縦室が設けられており、前記モニタは、前記操縦室に配設されてなるのが好ましい。 As another aspect, it is preferable that the airframe is provided with a cockpit on which an operator who operates the airframe is boarded, and the monitor is arranged in the cockpit.
 これにより、機体を操作するオペレータが搭乗する操縦室にモニタを配設することで、オペレータは、機体を操作しつつモニタを視認して、自己の操作が作業装置に疲労が蓄積するような操作であるか否かを体感的に理解することが可能とされる。 As a result, by arranging the monitor in the cockpit where the operator who operates the aircraft is on board, the operator visually recognizes the monitor while operating the aircraft, and the operator's operation causes fatigue to accumulate in the work equipment. It is possible to intuitively understand whether or not it is.
 その他の態様として、前記機体と前記モニタとの間で無線通信を行う通信装置を有し、前記モニタは、前記機体とは別体で備えられてなるのが好ましい。
 これにより、機体とは別体で備えられるモニタと機体とで無線通信を行う通信装置を有することで、遠隔地等の機体から離れた場所で作業装置に加わる応力の分布を認識することが可能とされる。
As another aspect, it is preferable to have a communication device that performs wireless communication between the airframe and the monitor, and the monitor is provided separately from the airframe.
As a result, by having a monitor provided separately from the machine and a communication device that performs wireless communication between the machine, it is possible to recognize the distribution of stress applied to the work device at a place away from the machine such as a remote place. It is said that.
 本発明の作業機械によれば、応力演算部によって演算される作業装置に加わる応力の分布を、該作業装置の動作と連動するようにモニタに示すことにより、例えばオペレータによる機体の操作が作業装置に疲労が蓄積するような操作である場合に、オペレータによる機体の操作によって動作する作業装置に加わる応力の分布が、該作業装置の動作と連動して表示されるので、オペレータは、当該操作が作業装置に疲労が蓄積するような操作であることを体感的に理解することができる。これにより、作業装置に加わる応力と機体の動作との関係性を具体的に認識することができる。 According to the work machine of the present invention, by showing the monitor the distribution of stress applied to the work device calculated by the stress calculation unit so as to be interlocked with the operation of the work device, for example, the operation of the machine by the operator can be performed by the work device. In the case of an operation in which fatigue accumulates, the distribution of stress applied to the working device operated by the operation of the machine by the operator is displayed in conjunction with the operation of the working device, so that the operator can perform the operation. It is possible to intuitively understand that the operation is such that stress accumulates in the work equipment. This makes it possible to specifically recognize the relationship between the stress applied to the working device and the operation of the machine.
第1実施形態に係る油圧ショベルの側面図である。It is a side view of the hydraulic excavator which concerns on 1st Embodiment. 第1実施形態の制御に係るコントローラの接続構成が示されたブロック図である。It is a block diagram which showed the connection structure of the controller which concerns on the control of 1st Embodiment. 第1実施形態に係るモニタに表示される情報を説明する説明図である。It is explanatory drawing explaining the information displayed on the monitor which concerns on 1st Embodiment. 第2実施形態の制御に係るコントローラの接続構成が示されたブロック図である。It is a block diagram which showed the connection structure of the controller which concerns on the control of 2nd Embodiment.
<第1実施形態>
 以下、図面に基づき本発明の第1実施形態について説明する。
<First Embodiment>
Hereinafter, the first embodiment of the present invention will be described with reference to the drawings.
 図1を参照すると、第1実施形態に係る油圧ショベル(機体、作業機械)1の側面図が示されている。油圧ショベル1は、鉱山などの現場で稼働する大型の油圧ショベルであり、例えば最大で前後長25m、左右長7m、地上高15mの大きさの機械である。また、油圧ショベル1は、通常、オペレータが1日で3~4人、入れ替わりながら24時間稼働している。この油圧ショベル1は、下部走行体2と上部旋回体3と旋回装置4とを備えている。 With reference to FIG. 1, a side view of the hydraulic excavator (machine, work machine) 1 according to the first embodiment is shown. The hydraulic excavator 1 is a large hydraulic excavator that operates at a site such as a mine, and is, for example, a machine having a maximum front-rear length of 25 m, a left-right length of 7 m, and a ground clearance of 15 m. Further, the hydraulic excavator 1 is normally operated 24 hours a day with 3 to 4 operators taking turns. The hydraulic excavator 1 includes a lower traveling body 2, an upper turning body 3, and a turning device 4.
 下部走行体2は油圧ショベル1の走行装置であり、ここではクローラ式の下部走行体2を例示している。上部旋回体3は、上部旋回体3の下側の骨格を形成する旋回フレーム3a及び旋回装置4を介して下部走行体2に連結されている。旋回装置4は、下部走行体2に対して上部旋回体3を相対的に旋回することが可能な装置である。この旋回装置4は、内部に図示しない旋回軸受が設けられており、図示しない旋回油圧モータを駆動することで該旋回軸受を軸にして上部旋回体3を旋回させる旋回動作を行うことができる。 The lower traveling body 2 is a traveling device of the hydraulic excavator 1, and here, the crawler type lower traveling body 2 is exemplified. The upper swivel body 3 is connected to the lower traveling body 2 via a swivel frame 3a and a swivel device 4 forming a skeleton below the upper swivel body 3. The turning device 4 is a device capable of turning the upper turning body 3 relative to the lower traveling body 2. The swivel device 4 is provided with a swivel bearing (not shown) inside, and by driving a swivel hydraulic motor (not shown), the swivel body 3 can be swiveled around the swivel bearing.
 上部旋回体3には、旋回フレーム3a上に操縦室5、フロントアタッチメント(作業装置)7及び建屋6等が搭載されている。操縦室5には、油圧ショベル1を操作する各種の操作装置が設けられている。したがって、オペレータは、操縦室5に搭乗することで、旋回装置4を操作する旋回操作やフロントアタッチメント7を操作する作業操作等の油圧ショベル1の各種操作を行うことが可能である。 The upper swivel body 3 has a cockpit 5, a front attachment (working device) 7, a building 6, and the like mounted on the swivel frame 3a. The cockpit 5 is provided with various operating devices for operating the hydraulic excavator 1. Therefore, by boarding the cockpit 5, the operator can perform various operations of the hydraulic excavator 1, such as a turning operation for operating the turning device 4 and a work operation for operating the front attachment 7.
 建屋6は、図示しないエンジンや油圧ポンプ等の機械を収容するものであり、操縦室5の後方に配置している。フロントアタッチメント7は、上部旋回体3の前部中央に位置して設けられており、ブーム10、アーム11及びバケット12を備えている。ブーム10は、基端部が旋回フレーム3aに図示しない連結ピンにより軸支されている。これにより、ブーム10は、旋回フレーム3aに対して相対的に揺動可能である。このブーム10の先端には、アーム11が上下方向に回動可能に連結され、アーム11の先端には、バケット12が上下方向に回動可能に連結されている。 The building 6 accommodates machines such as an engine and a hydraulic pump (not shown), and is arranged behind the cockpit 5. The front attachment 7 is provided at the center of the front portion of the upper swing body 3, and includes a boom 10, an arm 11, and a bucket 12. The boom 10 has a base end portion pivotally supported by a connecting pin (not shown) on the swivel frame 3a. As a result, the boom 10 can swing relative to the swivel frame 3a. An arm 11 is rotatably connected to the tip of the boom 10 in the vertical direction, and a bucket 12 is rotatably connected to the tip of the arm 11 in the vertical direction.
 ここで、ブーム10は、ブームシリンダ10aを油圧により調整して伸縮することにより回動することが可能である。同様に、アーム11は、アームシリンダ11aを、バケット12は、バケットシリンダ12aを油圧により調整して伸縮することにより回動することが可能である。したがって、フロントアタッチメント7は、ブームシリンダ10a、アームシリンダ11a及びバケットシリンダ12aを適宜調整して伸縮することにより、ブーム10、アーム11及びバケット12を適宜回動し、後述する掘削動作等の動作及び作業を行うことが可能である。 Here, the boom 10 can be rotated by adjusting the boom cylinder 10a hydraulically and expanding and contracting. Similarly, the arm 11 can rotate the arm cylinder 11a, and the bucket 12 can rotate by hydraulically adjusting the bucket cylinder 12a to expand and contract. Therefore, the front attachment 7 appropriately adjusts the boom cylinder 10a, the arm cylinder 11a, and the bucket cylinder 12a to expand and contract, thereby appropriately rotating the boom 10, the arm 11, and the bucket 12, and performing operations such as excavation, which will be described later. It is possible to do the work.
 このフロントアタッチメント7には、各種物理量を検出する複数のセンサが設けられている。具体的には、ブームシリンダ10aにはブーム圧力センサ10bが、アームシリンダ11aにはアーム圧力センサ11bが、バケットシリンダ12aにはバケット圧力センサ12bがそれぞれ設けられている。これら圧力センサは、各シリンダ内の圧力を検出することが可能である。以下、ブーム圧力センサ10b、アーム圧力センサ11b及びバケット圧力センサ12bを総じてシリンダ圧力センサ15ともいう。 The front attachment 7 is provided with a plurality of sensors that detect various physical quantities. Specifically, the boom cylinder 10a is provided with a boom pressure sensor 10b, the arm cylinder 11a is provided with an arm pressure sensor 11b, and the bucket cylinder 12a is provided with a bucket pressure sensor 12b. These pressure sensors can detect the pressure in each cylinder. Hereinafter, the boom pressure sensor 10b, the arm pressure sensor 11b, and the bucket pressure sensor 12b are also collectively referred to as a cylinder pressure sensor 15.
 また、旋回フレーム3a、ブーム10、アーム11及びバケット12の各連結部分には、それぞれ第1角度計21、第2角度計22及び第3角度計23が設けられている。第1角度計21は、旋回フレーム3aとブーム10との相対角度を検出するセンサである。第2角度計22は、ブーム10とアーム11との相対角度を検出するセンサである。第3角度計23は、アーム11とバケット12との相対角度を検出するセンサである。以下、第1角度計21、第2角度計22及び第3角度計23を総じてフロント角度計25ともいう。 Further, a first angle meter 21, a second angle meter 22, and a third angle meter 23 are provided at each connecting portion of the swivel frame 3a, the boom 10, the arm 11, and the bucket 12, respectively. The first goniometer 21 is a sensor that detects the relative angle between the swivel frame 3a and the boom 10. The second angle meter 22 is a sensor that detects the relative angle between the boom 10 and the arm 11. The third goniometer 23 is a sensor that detects the relative angle between the arm 11 and the bucket 12. Hereinafter, the first angle meter 21, the second angle meter 22, and the third angle meter 23 are also collectively referred to as a front angle meter 25.
 さらに、上部旋回体3、旋回装置4及び建屋6には、車体傾斜角度計31、旋回角度計33、作動油温度計35、エンジン回転計36、油圧ポンプ吐出圧力計37、油圧モータ入口圧力計38及び加速度計39が設けられている。車体傾斜角度計31は、油圧ショベル1の前後左右方向の傾きを示す傾斜角度を検出するセンサである。旋回角度計33は、上部旋回体3と下部走行体2の相対角度を検出するセンサである。作動油温度計35は、図示しない油圧ポンプによって油圧モータや油圧シリンダ等に供給される作動油の温度を検出するセンサである。 Further, the upper swivel body 3, the swivel device 4, and the building 6 have a vehicle body tilt angle meter 31, a swivel angle meter 33, a hydraulic oil temperature gauge 35, an engine tachometer 36, a hydraulic pump discharge pressure gauge 37, and a hydraulic motor inlet pressure gauge. 38 and an accelerometer 39 are provided. The vehicle body tilt angle meter 31 is a sensor that detects an inclination angle indicating the inclination of the hydraulic excavator 1 in the front-rear and left-right directions. The turning angle meter 33 is a sensor that detects the relative angle between the upper turning body 3 and the lower traveling body 2. The hydraulic oil thermometer 35 is a sensor that detects the temperature of hydraulic oil supplied to a hydraulic motor, a hydraulic cylinder, or the like by a hydraulic pump (not shown).
 エンジン回転計36は、図示しないエンジンの回転速度を検出する回転センサである。
油圧ポンプ吐出圧力計37は、図示しない油圧ポンプから油圧モータや油圧シリンダ等に供給される作動油の圧力を検出する圧力センサである。油圧モータ入口圧力計38は、図示しない旋回油圧モータ等へ供給される作動油の圧力を検出する圧力センサである。加速度計39は、上部旋回体3や下部走行体2に生じる振動加速度を検出する加速度センサである。
The engine tachometer 36 is a rotation sensor that detects the rotation speed of an engine (not shown).
The hydraulic pump discharge pressure gauge 37 is a pressure sensor that detects the pressure of hydraulic oil supplied from a hydraulic pump (not shown) to a hydraulic motor, a hydraulic cylinder, or the like. The hydraulic motor inlet pressure gauge 38 is a pressure sensor that detects the pressure of hydraulic oil supplied to a swing hydraulic motor or the like (not shown). The accelerometer 39 is an acceleration sensor that detects the vibration acceleration generated in the upper swivel body 3 and the lower traveling body 2.
 そして、操縦室5には、カメラ41及びモニタ43が設けられている。カメラ41は、例えば操縦室5内に設置されており、操縦室5の前方を撮像する撮像装置である。モニタ43には、油圧ショベル1の状態や姿勢等、油圧ショベル1に関する各種の情報が表示される。なお、モニタ43に表示される情報については、後述する。 The cockpit 5 is provided with a camera 41 and a monitor 43. The camera 41 is installed in the cockpit 5, for example, and is an image pickup device that images the front of the cockpit 5. Various information related to the hydraulic excavator 1, such as the state and posture of the hydraulic excavator 1, is displayed on the monitor 43. The information displayed on the monitor 43 will be described later.
 図2を参照すると、第1実施形態の制御に係るコントローラ51の接続構成がブロック図で示されている。コントローラ51は、エンジンの運転制御をはじめとして油圧ショベル1の総合的な制御を行うための制御装置であり、入出力装置、記憶装置(ROM、RAM、不揮発性RAM等)、中央処理装置(CPU)等を含んで構成され、例えば上部旋回体3の操縦室5内に配設されている。 With reference to FIG. 2, the connection configuration of the controller 51 according to the control of the first embodiment is shown in the block diagram. The controller 51 is a control device for comprehensively controlling the hydraulic excavator 1 including engine operation control, and is an input / output device, a storage device (ROM, RAM, non-volatile RAM, etc.), and a central processing unit (CPU). ) And the like, for example, arranged in the control room 5 of the upper swivel body 3.
 このコントローラ51の入力側には、シリンダ圧力センサ15、フロント角度計25、車体傾斜角度計31、旋回角度計33、作動油温度計35、エンジン回転計36、油圧ポンプ吐出圧力計37、油圧モータ入口圧力計38及び加速度計39等の機体1に関する物理量を検出するセンサ(物理量検出センサ)並びにカメラ(撮像装置)41が電気的に接続されている。これにより、シリンダ圧力センサ15からはブームシリンダ10a、アームシリンダ11a及びバケットシリンダ12a内の圧力に関する情報が入力され、フロント角度計25からは旋回フレーム3a、ブーム10、アーム11及びバケット12の各連結部分における相対角度に関する情報が入力される。 On the input side of the controller 51, a cylinder pressure sensor 15, a front angle meter 25, a vehicle body tilt angle meter 31, a turning angle meter 33, a hydraulic oil temperature meter 35, an engine rotation meter 36, a hydraulic pump discharge pressure meter 37, and a hydraulic motor A sensor (physical quantity detection sensor) for detecting a physical quantity related to the machine body 1 such as an inlet pressure gauge 38 and an accelerometer 39, and a camera (imaging device) 41 are electrically connected. As a result, information regarding the pressure in the boom cylinder 10a, the arm cylinder 11a and the bucket cylinder 12a is input from the cylinder pressure sensor 15, and the swivel frame 3a, the boom 10, the arm 11 and the bucket 12 are connected from the front angle meter 25. Information about the relative angle in the part is entered.
 また、コントローラ51の入力側には、車体傾斜角度計31からは油圧ショベル1の傾斜角度に関する情報が入力され、旋回角度計33からは上部旋回体3と下部走行体2の相対角度に関する情報が入力され、作動油温度計35からは作動油の温度に関する情報が入力される。さらに、エンジン回転計36からはエンジン回転速度に関する情報が入力され、油圧ポンプ吐出圧力計37からは油圧ポンプから油圧モータや油圧シリンダ等に供給される作動油の圧力に関する情報が入力され、油圧モータ入口圧力計38からは旋回油圧モータ等へ供給される作動油の圧力に関する情報が入力され、加速度計39からは、上部旋回体3や下部走行体2に生じる振動加速度に関する情報が入力され、カメラ41からは操縦室5の前方の映像に関する情報が入力される。 Further, on the input side of the controller 51, information on the tilt angle of the hydraulic excavator 1 is input from the vehicle body tilt angle meter 31, and information on the relative angle between the upper swing body 3 and the lower traveling body 2 is input from the turn angle meter 33. It is input, and information about the temperature of the hydraulic oil is input from the hydraulic oil thermometer 35. Further, information on the engine rotation speed is input from the engine rotation meter 36, information on the pressure of hydraulic oil supplied from the hydraulic pump to the hydraulic motor, the hydraulic cylinder, etc. is input from the hydraulic pump discharge pressure gauge 37, and the hydraulic motor Information on the pressure of the hydraulic oil supplied to the swivel hydraulic motor and the like is input from the inlet pressure gauge 38, and information on the vibration acceleration generated in the upper swivel body 3 and the lower traveling body 2 is input from the accelerometer 39. Information about the image in front of the cockpit 5 is input from 41.
 そして、コントローラ51の出力側には、モニタ43が電気的に接続されており、モニタ43を制御することで、操縦室5に搭乗するオペレータに油圧ショベル1に関する各種の情報を報知等することができる。なお、各センサ等とコントローラ51との情報の入出力は、コントロールエリアネットワーク(CAN)やローカルエリアネットワーク(LAN)などのネットワークを介して行うようにしてもよい。 A monitor 43 is electrically connected to the output side of the controller 51, and by controlling the monitor 43, it is possible to notify the operator boarding the cockpit 5 of various information regarding the hydraulic excavator 1. can. Information input / output between each sensor or the like and the controller 51 may be performed via a network such as a control area network (CAN) or a local area network (LAN).
 ここで、コントローラ51は、応力演算部53、姿勢演算部55及び表示制御部57を有している。応力演算部53は、フロントアタッチメント7に加わる応力分布を演算することが可能な演算部である。具体的には,応力演算部53は、シリンダ圧力センサ15、フロント角度計25、車体傾斜角度計31、旋回角度計33、作動油温度計35、エンジン回転計36、油圧ポンプ吐出圧力計37、油圧モータ入口圧力計38及び加速度計39から入力される、物理量に関する情報に基づき、有限要素法等の数値解析手法や回帰分析等の統計学的手法などを用いて、フロントアタッチメント7の各箇所ごとに生じる応力分布を演算する。また、応力演算部53は、少なくとも物理量に関する情報が変化する度に応力分布を演算する。 Here, the controller 51 has a stress calculation unit 53, a posture calculation unit 55, and a display control unit 57. The stress calculation unit 53 is a calculation unit capable of calculating the stress distribution applied to the front attachment 7. Specifically, the stress calculation unit 53 includes a cylinder pressure sensor 15, a front angle meter 25, a vehicle body tilt angle meter 31, a turning angle meter 33, a hydraulic oil temperature meter 35, an engine rotation meter 36, a hydraulic pump discharge pressure meter 37, and the like. Based on the information about physical quantities input from the hydraulic motor inlet pressure gauge 38 and the accelerometer 39, using numerical analysis methods such as the finite element method and statistical methods such as regression analysis, for each part of the front attachment 7. Calculate the stress distribution that occurs in. Further, the stress calculation unit 53 calculates the stress distribution at least every time the information regarding the physical quantity changes.
 姿勢演算部55は、フロント角度計25から入力される旋回フレーム3a、ブーム10、アーム11及びバケット12の各連結部分における相対角度に関する情報に基づき、フロントアタッチメント7の姿勢を演算することが可能な演算部である。この姿勢演算部55は、フロント角度計25から入力される各連結部分における相対角度に関する情報が変化する度にフロントアタッチメント7の姿勢を演算する。表示制御部57は、応力演算部53によって演算される応力分布、姿勢演算部55によって演算されるフロントアタッチメント7の姿勢及びカメラ41によって撮像される操縦室5の前方の映像に基づき、モニタ43への表示を制御する制御部である。 The posture calculation unit 55 can calculate the posture of the front attachment 7 based on the information regarding the relative angles at the connecting portions of the swivel frame 3a, the boom 10, the arm 11 and the bucket 12 input from the front angle meter 25. It is a calculation unit. The posture calculation unit 55 calculates the posture of the front attachment 7 each time the information regarding the relative angle in each connecting portion input from the front angle meter 25 changes. The display control unit 57 shifts to the monitor 43 based on the stress distribution calculated by the stress calculation unit 53, the attitude of the front attachment 7 calculated by the attitude calculation unit 55, and the image in front of the cockpit 5 captured by the camera 41. It is a control unit that controls the display of.
 図3を参照すると、第1実施形態に係るモニタ43に表示される情報を説明する説明図が示されている。モニタ43には、表示制御部57に制御されることで、カメラ41によって撮像される操縦室5の前方の映像(以下、フロント映像61という)及びフロントアタッチメント7の斜視図(以下、擬似映像63という)が左右に横並びに表示される。擬似映像63は、例えば姿勢演算部55によって演算されたフロントアタッチメント7の姿勢となるようにフロントアタッチメント7の立体的な斜視図を模擬的に表した図である。 With reference to FIG. 3, an explanatory diagram illustrating information displayed on the monitor 43 according to the first embodiment is shown. The monitor 43 has an image in front of the cockpit 5 (hereinafter referred to as a front image 61) and a perspective view of the front attachment 7 (hereinafter referred to as a pseudo image 63) captured by the camera 41 under the control of the display control unit 57. ) Is displayed side by side on the left and right. The simulated image 63 is a diagram simulating a three-dimensional perspective view of the front attachment 7 so that the posture of the front attachment 7 is calculated by, for example, the posture calculation unit 55.
 この擬似映像63は、カメラ41がフロントアタッチメント7を撮像する方向に相当する方向から視た場合の斜視図である。また、擬似映像63には、応力演算部53によって演算される応力分布63aが例えば4段階で、応力が高いほど色が黒く染まるよう示されている。なお、応力の度合に応じて色彩を変えるようにしてもよい。 This pseudo image 63 is a perspective view when the camera 41 is viewed from a direction corresponding to the direction in which the front attachment 7 is imaged. Further, the simulated image 63 shows that the stress distribution 63a calculated by the stress calculation unit 53 is, for example, in four stages, and the higher the stress, the darker the color. The color may be changed according to the degree of stress.
 これにより、フロント角度計25から入力される各連結部分における相対角度に関する情報が変化する度に姿勢演算部55がフロントアタッチメント7の姿勢を演算し、圧力センサ15、フロント角度計25、車体傾斜角度計31、旋回角度計33、作動油温度計35、エンジン回転計36、油圧ポンプ吐出圧力計37、油圧モータ入口圧力計38及び加速度計39から入力される物理量に関する情報が変化する度に応力演算部53が応力分布63aを演算するため、オペレータは、油圧ショベル1の操作に応じて変化するフロントアタッチメント7の応力分布63aを操作と同時に、所謂リアルタイムに認識することができる。また、オペレータは、フロント映像61と擬似映像63とを見比べることで、容易にフロントアタッチメント7における応力分布63aを認識することができる。 As a result, the posture calculation unit 55 calculates the posture of the front attachment 7 every time the information regarding the relative angle in each connecting portion input from the front angle meter 25 changes, and the pressure sensor 15, the front angle meter 25, and the vehicle body tilt angle are calculated. Stress calculation every time the information about the physical quantity input from the total 31, swivel angle meter 33, hydraulic oil temperature meter 35, engine rotation meter 36, hydraulic pump discharge pressure meter 37, hydraulic motor inlet pressure meter 38 and acceleration meter 39 changes. Since the unit 53 calculates the stress distribution 63a, the operator can recognize the stress distribution 63a of the front attachment 7, which changes according to the operation of the hydraulic excavator 1, at the same time as the operation, so-called real time. Further, the operator can easily recognize the stress distribution 63a in the front attachment 7 by comparing the front image 61 and the simulated image 63.
 以上説明したように、第1実施形態に係る作業機械では、油圧ショベル1の外方に延びるフロントアタッチメント7を備えた作業機械において、シリンダ圧力センサ15、フロント角度計25、車体傾斜角度計31、旋回角度計33、作動油温度計35、エンジン回転計36、油圧ポンプ吐出圧力計37、油圧モータ入口圧力計38、加速度計39等の物理量を検出するセンサと、フロント映像61や擬似映像63等の所定の情報を表示するモニタ43と、モニタ43を制御するコントローラ51と、を備える。 As described above, in the work machine according to the first embodiment, in the work machine provided with the front attachment 7 extending outward of the hydraulic excavator 1, the cylinder pressure sensor 15, the front angle meter 25, the vehicle body inclination angle meter 31, Sensors that detect physical quantities such as turning angle meter 33, hydraulic oil temperature gauge 35, engine rotation meter 36, hydraulic pump discharge pressure gauge 37, hydraulic motor inlet pressure gauge 38, accelerator 39, etc., front image 61, simulated image 63, etc. A monitor 43 for displaying predetermined information and a controller 51 for controlling the monitor 43 are provided.
 また、コントローラ51は、シリンダ圧力センサ15、フロント角度計25、車体傾斜角度計31、旋回角度計33、作動油温度計35、エンジン回転計36、油圧ポンプ吐出圧力計37、油圧モータ入口圧力計38、加速度計39等のセンサによって検出される物理量に基づいて該フロントアタッチメント7に加わる応力の分布である応力分布63aを演算する応力演算部53と、モニタ43に表示する所定の情報の表示を制御する表示制御部57と、を有する。 Further, the controller 51 includes a cylinder pressure sensor 15, a front angle meter 25, a vehicle body tilt angle meter 31, a turning angle meter 33, a hydraulic oil temperature meter 35, an engine rotation meter 36, a hydraulic pump discharge pressure meter 37, and a hydraulic motor inlet pressure meter. 38, the stress calculation unit 53 that calculates the stress distribution 63a, which is the distribution of the stress applied to the front attachment 7 based on the physical quantity detected by the sensor such as the accelerometer 39, and the display of predetermined information to be displayed on the monitor 43. It has a display control unit 57 to be controlled.
 そして、表示制御部57は、応力演算部53によって演算されるフロントアタッチメント7における応力分布63aを、該フロントアタッチメント7の動作と連動して示すようにモニタ43の表示を制御する。 Then, the display control unit 57 controls the display of the monitor 43 so as to show the stress distribution 63a in the front attachment 7 calculated by the stress calculation unit 53 in conjunction with the operation of the front attachment 7.
 従って、応力演算部53によって演算されるフロントアタッチメント7における応力分布63aを、該フロントアタッチメント7の動作と連動するようにモニタ43に示すことで、オペレータによる油圧ショベル1の操作がフロントアタッチメント7に疲労が蓄積するような操作である場合に、オペレータは、当該操作がフロントアタッチメント7に疲労が蓄積するような操作であることを体感的に理解することができる。 Therefore, by showing the monitor 43 the stress distribution 63a in the front attachment 7 calculated by the stress calculation unit 53 so as to be interlocked with the operation of the front attachment 7, the operation of the hydraulic excavator 1 by the operator causes fatigue in the front attachment 7. When the operation is such that the stress is accumulated, the operator can sensibly understand that the operation is an operation in which the fatigue is accumulated in the front attachment 7.
 また、オペレータが例えば未だ油圧ショベル1の操作に不慣れな者(途上者)である場合であって、熟練者の指導の下、油圧ショベル1を操作しているような場合にあっては、フロントアタッチメント7の応力分布63aを見ながら油圧ショベル1を操作し及び当該操作の指導をすることができるので、熟練者の指導による途上者の油圧ショベル1の操作スキルを良好に向上させることができる。 Further, if the operator is, for example, a person (developing person) who is still unfamiliar with the operation of the hydraulic excavator 1 and is operating the hydraulic excavator 1 under the guidance of an expert, the front is used. Since the hydraulic excavator 1 can be operated and the operation is instructed while observing the stress distribution 63a of the attachment 7, the operation skill of the hydraulic excavator 1 of a developing person can be satisfactorily improved by the guidance of a skilled person.
 そして、表示制御部57によって制御されてモニタ43に表示される所定の情報の表示には、フロントアタッチメント7を模した模擬図が含まれ、模擬図には、応力演算部53によって演算される応力分布63aが、フロントアタッチメント7の動作と連動してモニタ43に示されるので、例えばオペレータによる油圧ショベル1の操作がフロントアタッチメント7に疲労が蓄積するような操作であるか否かを視覚的に容易に理解することができる。 The display of predetermined information controlled by the display control unit 57 and displayed on the monitor 43 includes a simulated diagram imitating the front attachment 7, and the simulated diagram includes the stress calculated by the stress calculation unit 53. Since the distribution 63a is shown on the monitor 43 in conjunction with the operation of the front attachment 7, for example, it is visually easy to visually determine whether or not the operation of the hydraulic excavator 1 by the operator is an operation in which stress accumulates in the front attachment 7. Can be understood.
 さらに、シリンダ圧力センサ15、フロント角度計25、車体傾斜角度計31、旋回角度計33、作動油温度計35、エンジン回転計36、油圧ポンプ吐出圧力計37、油圧モータ入口圧力計38、加速度計39等のセンサによって検出される物理量に基づいてフロントアタッチメント7の姿勢を演算する姿勢演算部55を有し、姿勢演算部55によって演算されるフロントアタッチメント7の姿勢が該フロントアタッチメント7の動作と連動する擬似映像63を模擬図として表示したので、フロントアタッチメント7の姿勢及び応力分布63aを同時に視認することができる。 Further, a cylinder pressure sensor 15, a front angle meter 25, a vehicle body tilt angle meter 31, a turning angle meter 33, a hydraulic oil temperature meter 35, an engine rotation meter 36, a hydraulic pump discharge pressure meter 37, a hydraulic motor inlet pressure meter 38, and an acceleration meter. It has a posture calculation unit 55 that calculates the posture of the front attachment 7 based on a physical quantity detected by a sensor such as 39, and the posture of the front attachment 7 calculated by the posture calculation unit 55 is linked to the operation of the front attachment 7. Since the simulated image 63 is displayed as a simulated diagram, the posture of the front attachment 7 and the stress distribution 63a can be visually recognized at the same time.
 そして、フロントアタッチメント7を撮像するカメラ41を有し、所定の情報の表示には、カメラ41によって撮像されるフロント映像61が含まれ、擬似映像63の応力分布63a及びフロント映像61は、フロントアタッチメント7の動作と連動するので、実在するフロントアタッチメント7の映像であるフロント映像61と模擬図である擬似映像63とを見比べながら、フロントアタッチメント7の応力分布63aを認識することができる。 The camera 41 that captures the front attachment 7 is included, and the display of predetermined information includes the front image 61 captured by the camera 41, and the stress distribution 63a and the front image 61 of the pseudo image 63 are front attachments. Since it is linked with the operation of 7, the stress distribution 63a of the front attachment 7 can be recognized while comparing the front image 61, which is an image of the existing front attachment 7, with the simulated image 63, which is a simulated diagram.
 そして、油圧ショベル1には、該油圧ショベル1を操作するオペレータが搭乗する操縦室5が設けられており、モニタ43は、操縦室5に配設されたので、オペレータは、油圧ショベル1を操作しつつモニタ43を視認して、自己の操作がフロントアタッチメント7に疲労が蓄積するような操作であるか否かを体感的に理解することができる。 The hydraulic excavator 1 is provided with a control room 5 on which the operator who operates the hydraulic excavator 1 is boarded, and the monitor 43 is arranged in the control room 5. Therefore, the operator operates the hydraulic excavator 1. While visually observing the monitor 43, it is possible to sensibly understand whether or not the operation is such that fatigue accumulates in the front attachment 7.
<第2実施形態>
 以下、図4に基づき第2実施形態について説明する。
 なお、上記第1実施形態と共通の構成、作用効果については説明を省略し、ここでは第1実施形態と異なる部分について説明する。
<Second Embodiment>
Hereinafter, the second embodiment will be described with reference to FIG.
It should be noted that the description of the configuration and the action and effect common to the first embodiment will be omitted, and the parts different from the first embodiment will be described here.
 図4を参照すると、第2実施形態の制御に係るコントローラ151の接続構成がブロック図で示されている。第2実施形態に係るコントローラ151は、第1実施形態に係るコントローラ51の出力側に電気的に接続されたモニタ43に代わり、通信装置160が接続されている点で相違する。 With reference to FIG. 4, the connection configuration of the controller 151 according to the control of the second embodiment is shown in the block diagram. The controller 151 according to the second embodiment is different in that the communication device 160 is connected instead of the monitor 43 electrically connected to the output side of the controller 51 according to the first embodiment.
 通信装置160は、第1通信機161及び第2通信機162を含み、第1通信機161と第2通信機162とで相互に情報を無線で送受信することが可能な装置である。具体的には、第1通信機161は、油圧ショベル1に配設され、第2通信機162は、例えば油圧ショベル1の管理をする管理センタ(遠隔地)100に配設されている。また、管理センタ100には、油圧ショベル1の操作や油圧ショベル1の状態等を管理するPC(Personal Computer)143が配設され、PC143は、第2通信機162に情報を入出力可能に電気的に接続されてなる。 The communication device 160 includes a first communication device 161 and a second communication device 162, and is a device capable of wirelessly transmitting and receiving information between the first communication device 161 and the second communication device 162. Specifically, the first communication device 161 is arranged in the hydraulic excavator 1, and the second communication device 162 is arranged in, for example, a management center (remote place) 100 that manages the hydraulic excavator 1. Further, the management center 100 is provided with a PC (Personal Computer) 143 that manages the operation of the hydraulic excavator 1 and the state of the hydraulic excavator 1, and the PC 143 can input and output information to the second communication device 162. It is connected to the computer.
 ここで、第2実施形態に係るコントローラ151は、第1実施形態に係るコントローラ51に相当し、表示制御部57で、フロント映像61及び擬似映像63と同様の映像を形成する。また、コントローラ151は、通信装置160を介してPC143にフロント映像61及び擬似映像63を送信する。そして、PC143は、フロント映像61及び擬似映像63を画面に映し出す。 Here, the controller 151 according to the second embodiment corresponds to the controller 51 according to the first embodiment, and the display control unit 57 forms the same images as the front image 61 and the pseudo image 63. Further, the controller 151 transmits the front image 61 and the pseudo image 63 to the PC 143 via the communication device 160. Then, the PC 143 projects the front image 61 and the pseudo image 63 on the screen.
 このようにPC143に映し出された映像は、例えば管理センタ100に位置する熟練者や油圧ショベル1を管理センタ100から遠隔操作するオペレータが見ることができる。したがって、PC143に映し出された映像を基に、油圧ショベル1に搭乗して操作をするオペレータに油圧ショベル1の適切な操作方法を、熟練者が管理センタ100から指導することや、油圧ショベル1を遠隔操作するオペレータが自ら油圧ショベル1の操作技術を向上させることができる。 The image projected on the PC 143 in this way can be viewed, for example, by a skilled person located in the management center 100 or an operator who remotely controls the hydraulic excavator 1 from the management center 100. Therefore, based on the image projected on the PC 143, an expert may instruct the operator who rides on the hydraulic excavator 1 to operate the hydraulic excavator 1 from the management center 100, or the hydraulic excavator 1 may be operated. The operator who operates remotely can improve the operation technique of the hydraulic excavator 1 by himself / herself.
 以上説明したように、第2実施形態に係る作業機械では、油圧ショベル1とPC143との間で無線通信を行う通信装置160を有し、PC143は、油圧ショベル1とは別体で備えられてなるので、管理センタ100等の油圧ショベル1から離れた場所でフロントアタッチメント7の応力分布63aを認識することができる。また、このようにして認識したフロントアタッチメント7の応力分布63aを基に、オペレータは、油圧ショベル1の操作技術を向上させることができる。 As described above, the work machine according to the second embodiment has a communication device 160 that performs wireless communication between the hydraulic excavator 1 and the PC 143, and the PC 143 is provided separately from the hydraulic excavator 1. Therefore, the stress distribution 63a of the front attachment 7 can be recognized at a place away from the hydraulic excavator 1 such as the management center 100. Further, based on the stress distribution 63a of the front attachment 7 recognized in this way, the operator can improve the operation technique of the hydraulic excavator 1.
 以上で本発明に係る作業機械の説明を終えるが、本発明は上記実施形態に限られるものではなく、発明の主旨を逸脱しない範囲で変更可能である。 This concludes the description of the working machine according to the present invention, but the present invention is not limited to the above embodiment and can be changed without departing from the gist of the present invention.
 例えば、本実施形態では、油圧ショベル1を用いて説明したが、ホイルローダ等の作業装置を有する作業機械であってもよい。
 また、本実施形態では、応力演算部53は、シリンダ圧力センサ15、フロント角度計25、車体傾斜角度計31、旋回角度計33、作動油温度計35、エンジン回転計36、油圧ポンプ吐出圧力計37、油圧モータ入口圧力計38及び加速度計39から入力される情報に基づいてフロントアタッチメント7の応力分布63aを演算することとしたが、これらセンサ類以外のセンサを用いるようにしてもよく、また、これらセンサ類の一部を用いないようにしてもよく、フロントアタッチメント7に加わる物理量に基づいて応力分布63aを演算することができればよい。
For example, in the present embodiment, the hydraulic excavator 1 has been described, but a working machine having a working device such as a wheel loader may be used.
Further, in the present embodiment, the stress calculation unit 53 includes a cylinder pressure sensor 15, a front angle meter 25, a vehicle body tilt angle meter 31, a turning angle meter 33, a hydraulic oil temperature meter 35, an engine rotation meter 36, and a hydraulic pump discharge pressure meter. 37, It was decided to calculate the stress distribution 63a of the front attachment 7 based on the information input from the hydraulic motor inlet pressure gauge 38 and the accelerometer 39, but sensors other than these sensors may be used. It is not necessary to use some of these sensors, and it is sufficient that the stress distribution 63a can be calculated based on the physical quantity applied to the front attachment 7.
 また、本実施形態では、応力演算部53による応力分布63aの演算手法について、有限要素法等の数値解析手法や回帰分析等の統計学的手法を用いることを例示したが、その他の演算手法によって演算するようにしてもよく、フロントアタッチメント7の応力分布63aを演算することができればよい。 Further, in the present embodiment, it is exemplified that the calculation method of the stress distribution 63a by the stress calculation unit 53 uses a numerical analysis method such as a finite element method or a statistical method such as regression analysis, but other calculation methods are used. The calculation may be performed, and it is sufficient that the stress distribution 63a of the front attachment 7 can be calculated.
 また、本実施形態では、操縦室5の前方を撮影する撮像装置の設置場所について、操縦室5内を例示したが、操縦室外の上部旋回体3に設置してもよく、機体から離れた位置に設置してもよい。 Further, in the present embodiment, the installation location of the image pickup device for photographing the front of the cockpit 5 is illustrated in the cockpit 5, but it may be installed in the upper swivel body 3 outside the cockpit, and the position away from the aircraft. It may be installed in.
 また、本実施形態では、模擬図として立体的な斜視図の擬似映像63を用いて説明したが、展開図や六面図等の他の形式の模擬図でもよい。またさらに、応力分布63aは、フロント映像61に重ねるようにして表示してもよい。
 また、本実施形態では、モニタ43にフロント映像61と擬似映像63とを左右に横並びに表示するようにしたが、擬似映像63のみ表示するようにしてもよく、オペレータによる油圧ショベル1の操作の改善具合が比較できるよう、応力分布63aにフロント映像61を重ねたものを1セットとし、過去のセットと現在のセットとを2セット以上、同時に並べるようにしてモニタ43に比較表示するようにしてもよい。
Further, in the present embodiment, the simulated image 63 of the three-dimensional perspective view is used as the simulated view, but other types of simulated views such as a developed view and a hexagonal view may be used. Further, the stress distribution 63a may be displayed so as to be superimposed on the front image 61.
Further, in the present embodiment, the front image 61 and the pseudo image 63 are displayed side by side on the monitor 43, but only the pseudo image 63 may be displayed, and the operator may operate the hydraulic excavator 1. In order to compare the degree of improvement, one set is the stress distribution 63a overlaid with the front image 61, and two or more sets of the past set and the current set are arranged at the same time and displayed on the monitor 43 for comparison. May be good.
 また、第2実施形態では、管理センタ100に配設されたPC143を用いて説明したが、タブレット端末にフロント映像61及び擬似映像63を表示し、油圧ショベル1を目視できる作業現場の一角でタブレット端末を用いるようにしてもよい。 Further, in the second embodiment, the PC 143 disposed in the management center 100 has been described, but the tablet terminal is displayed in the front image 61 and the pseudo image 63, and the hydraulic excavator 1 can be visually observed in the tablet at the corner of the work site. You may use a terminal.
 また、第2実施形態では、油圧ショベル1に配設されたコントローラ151の表示制御部57がフロント映像61及び擬似映像63と同様の映像を形成するよう説明したが、表示制御部57や応力演算部53、姿勢演算部55をPC143に配設して管理センタ100側で映像を形成するようにしてもよい。この場合、各センサやカメラ41による情報を通信装置160を介してPC143に送信すればよい。 Further, in the second embodiment, it has been described that the display control unit 57 of the controller 151 arranged on the hydraulic excavator 1 forms the same images as the front image 61 and the pseudo image 63, but the display control unit 57 and the stress calculation are performed. The unit 53 and the posture calculation unit 55 may be arranged on the PC 143 to form an image on the management center 100 side. In this case, the information from each sensor or camera 41 may be transmitted to the PC 143 via the communication device 160.
 また、第2実施形態では、フロント映像61及び擬似映像63をPC143に表示するようにしたが、油圧ショベル1にマイクを配設して音情報を取得するようにし、油圧ショベル1に搭乗している時に取得するのと同様の音を管理センタ100で油圧ショベル1を遠隔操作するオペレータに認識させるようにしてもよい。 Further, in the second embodiment, the front image 61 and the simulated image 63 are displayed on the PC 143, but a microphone is arranged on the hydraulic excavator 1 to acquire sound information, and the vehicle is mounted on the hydraulic excavator 1. The operator who remotely operates the hydraulic excavator 1 may be made to recognize the same sound as that acquired when the excavator is in the control center 100.
 1 油圧ショベル(機体、作業機械)
 7 フロントアタッチメント(作業装置)
 15 シリンダ圧力センサ(物理量検出センサ)
 25 フロント角度計(物理量検出センサ)
 31 車体傾斜角度計(物理量検出センサ)
 33 旋回角度計(物理量検出センサ)
 35 作動油温度計(物理量検出センサ)
 36 エンジン回転計(物理量検出センサ)
 37 油圧ポンプ吐出圧力計(物理量検出センサ)
 38 油圧モータ入口圧力計(物理量検出センサ)
 39 加速度計(物理量検出センサ)
 41 カメラ(撮像装置)
 43 モニタ
 51、151 コントローラ
 53 応力演算部
 55 姿勢演算部
 57 表示制御部
 63 擬似映像
 63a 応力分布
 143 PC(モニタ)
 160 通信装置

 
1 Hydraulic excavator (machine, work machine)
7 Front attachment (working equipment)
15 Cylinder pressure sensor (physical quantity detection sensor)
25 Front protractor (physical quantity detection sensor)
31 Tilting train (physical quantity detection sensor)
33 Swing angle meter (physical quantity detection sensor)
35 Hydraulic oil thermometer (physical quantity detection sensor)
36 Engine tachometer (physical quantity detection sensor)
37 Hydraulic pump discharge pressure gauge (physical quantity detection sensor)
38 Hydraulic motor inlet pressure gauge (physical quantity detection sensor)
39 Accelerometer (physical quantity detection sensor)
41 Camera (imaging device)
43 Monitor 51, 151 Controller 53 Stress calculation unit 55 Posture calculation unit 57 Display control unit 63 Pseudo video 63a Stress distribution 143 PC (monitor)
160 communication device

Claims (6)

  1.  機体の外方に延びる作業装置を備えた作業機械において、
     前記作業機械に関する物理量を検出する物理量検出センサと、
     所定の情報を表示するモニタと、
     前記モニタを制御するコントローラと、を備え、
     前記コントローラは、前記物理量検出センサによって検出される前記作業機械に関する物理量に基づいて前記作業装置に加わる応力の分布を演算する応力演算部と、前記モニタへの前記所定の情報の表示を制御する表示制御部と、を有し、
     前記表示制御部は、前記応力演算部によって演算される前記作業装置に加わる応力の分布を該作業装置の動作と連動して示すように前記モニタの表示を制御することを特徴とする作業機械。
    In a work machine equipped with a work device that extends to the outside of the machine
    A physical quantity detection sensor that detects a physical quantity related to the work machine,
    A monitor that displays the specified information and
    A controller for controlling the monitor is provided.
    The controller has a stress calculation unit that calculates the distribution of stress applied to the work device based on the physical quantity related to the work machine detected by the physical quantity detection sensor, and a display that controls the display of the predetermined information on the monitor. Has a control unit,
    The display control unit is a work machine that controls the display of the monitor so as to show the distribution of stress applied to the work device calculated by the stress calculation unit in conjunction with the operation of the work device.
  2.  前記表示制御部によって制御される前記所定の情報の表示には、前記作業装置を模した模擬図が含まれ、
     前記模擬図には、前記応力演算部によって演算される前記作業装置に加わる応力の分布が、該作業装置の動作と連動して示されてなる、
     ことを特徴とする、請求項1に記載の作業機械。
    The display of the predetermined information controlled by the display control unit includes a simulated drawing imitating the working device.
    The simulated diagram shows the distribution of stress applied to the working device calculated by the stress calculation unit in conjunction with the operation of the working device.
    The work machine according to claim 1, wherein the work machine is characterized by the above.
  3.  前記物理量検出センサによって検出される前記作業機械に関する物理量に基づいて前記作業装置の姿勢を演算する姿勢演算部を有し、
     前記模擬図は、前記姿勢演算部によって演算される前記作業装置の姿勢が該作業装置の動作と連動する擬似映像である、
     ことを特徴とする、請求項2に記載の作業機械。
    It has a posture calculation unit that calculates the posture of the work device based on the physical quantity related to the work machine detected by the physical quantity detection sensor.
    The simulated diagram is a simulated image in which the posture of the work device calculated by the posture calculation unit is linked to the operation of the work device.
    The work machine according to claim 2, wherein the work machine is characterized in that.
  4.  前記作業装置を撮像する撮像装置を有し、
     前記所定の情報の表示には、前記撮像装置によって撮像される前記作業装置の映像が含まれ、
     前記模擬図に示される応力分布及び前記作業装置の映像は、前記作業装置の動作と連動してなる、
     ことを特徴とする、請求項2に記載の作業機械。
    It has an image pickup device that captures the image of the work device, and has an image pickup device.
    The display of the predetermined information includes an image of the working device captured by the imaging device.
    The stress distribution shown in the simulated diagram and the image of the working device are linked to the operation of the working device.
    The work machine according to claim 2, wherein the work machine is characterized in that.
  5.  前記機体には、該機体を操作するオペレータが搭乗する操縦室が設けられており、
     前記モニタは、前記操縦室に配設されてなる、
     ことを特徴とする、請求項1に記載の作業機械。
    The aircraft is provided with a cockpit on which an operator who operates the aircraft is boarded.
    The monitor is disposed in the cockpit.
    The work machine according to claim 1, wherein the work machine is characterized by the above.
  6.  前記機体と前記モニタとの間で無線通信を行う通信装置を有し、
     前記モニタは、前記機体とは別体で備えられてなる、
     ことを特徴とする、請求項1に記載の作業機械。

     
    It has a communication device that performs wireless communication between the aircraft and the monitor.
    The monitor is provided separately from the airframe.
    The work machine according to claim 1, wherein the work machine is characterized by the above.

PCT/JP2021/036065 2020-10-01 2021-09-30 Working machine WO2022071476A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202180019404.3A CN115244255B (en) 2020-10-01 2021-09-30 Work machine
US17/909,550 US20230115070A1 (en) 2020-10-01 2021-09-30 Working machine
JP2022554089A JP7344398B2 (en) 2020-10-01 2021-09-30 working machine
EP21875772.2A EP4098813A4 (en) 2020-10-01 2021-09-30 Working machine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020167127 2020-10-01
JP2020-167127 2020-10-01

Publications (1)

Publication Number Publication Date
WO2022071476A1 true WO2022071476A1 (en) 2022-04-07

Family

ID=80951693

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/036065 WO2022071476A1 (en) 2020-10-01 2021-09-30 Working machine

Country Status (5)

Country Link
US (1) US20230115070A1 (en)
EP (1) EP4098813A4 (en)
JP (1) JP7344398B2 (en)
CN (1) CN115244255B (en)
WO (1) WO2022071476A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5176802A (en) * 1974-12-27 1976-07-03 Hokushin Electric Works YUATSUPAWAASHABERUNOSOJUSOCHI
JP2003166909A (en) * 2001-11-29 2003-06-13 Hitachi Constr Mach Co Ltd Strength evaluation method for work machine, strength evaluation system, apparatus and program for conducting strength evaluation
US20040122618A1 (en) * 2002-12-23 2004-06-24 Jin Suzuki Component life indicator
US20100039319A1 (en) * 2008-08-18 2010-02-18 Cameron John F Automated recordation of crane inspection activity
WO2013172277A1 (en) * 2012-05-14 2013-11-21 日立建機株式会社 Work machine stress computation system
US20140244101A1 (en) * 2011-09-20 2014-08-28 Tech Mining Pty Ltd Stress and/or accumulated damage monitoring system
JP2014222003A (en) 2013-05-14 2014-11-27 住友重機械工業株式会社 State display device for shovel
WO2017170651A1 (en) * 2016-03-31 2017-10-05 住友重機械工業株式会社 Work management system for construction machine, and construction machine
JP2018144932A (en) * 2017-03-03 2018-09-20 コベルコ建機株式会社 Crane information presentation system and crane

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4406695B2 (en) 2005-03-31 2010-02-03 独立行政法人産業技術総合研究所 Stress measurement system
JP2010014553A (en) 2008-07-03 2010-01-21 All Nippon Checkers Corp Container stress detecting device and trailer equipped with this
US9803342B2 (en) * 2011-09-20 2017-10-31 Tech Mining Pty Ltd Stress or accumulated damage monitoring system
JP5968189B2 (en) * 2012-10-26 2016-08-10 住友重機械工業株式会社 Excavator management apparatus and excavator management method
CN203704971U (en) 2013-12-10 2014-07-09 武汉飞恩微电子有限公司 A sensor system used for engineering mechanical failure detection
KR101871562B1 (en) * 2014-05-15 2018-06-26 가부시키가이샤 고마쓰 세이사쿠쇼 Display system for excavating machine, excavating machine, and display method for excavating machine
JP6868938B2 (en) * 2017-08-24 2021-05-12 日立建機株式会社 Construction machinery load measurement system
KR20200105651A (en) * 2018-01-10 2020-09-08 스미토모 겐키 가부시키가이샤 Shovel and shovel management system

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5176802A (en) * 1974-12-27 1976-07-03 Hokushin Electric Works YUATSUPAWAASHABERUNOSOJUSOCHI
JP2003166909A (en) * 2001-11-29 2003-06-13 Hitachi Constr Mach Co Ltd Strength evaluation method for work machine, strength evaluation system, apparatus and program for conducting strength evaluation
US20040122618A1 (en) * 2002-12-23 2004-06-24 Jin Suzuki Component life indicator
US20100039319A1 (en) * 2008-08-18 2010-02-18 Cameron John F Automated recordation of crane inspection activity
US20140244101A1 (en) * 2011-09-20 2014-08-28 Tech Mining Pty Ltd Stress and/or accumulated damage monitoring system
WO2013172277A1 (en) * 2012-05-14 2013-11-21 日立建機株式会社 Work machine stress computation system
JP2014222003A (en) 2013-05-14 2014-11-27 住友重機械工業株式会社 State display device for shovel
WO2017170651A1 (en) * 2016-03-31 2017-10-05 住友重機械工業株式会社 Work management system for construction machine, and construction machine
JP2018144932A (en) * 2017-03-03 2018-09-20 コベルコ建機株式会社 Crane information presentation system and crane

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4098813A4

Also Published As

Publication number Publication date
EP4098813A1 (en) 2022-12-07
EP4098813A4 (en) 2024-02-28
US20230115070A1 (en) 2023-04-13
CN115244255B (en) 2024-06-07
JP7344398B2 (en) 2023-09-13
JPWO2022071476A1 (en) 2022-04-07
CN115244255A (en) 2022-10-25

Similar Documents

Publication Publication Date Title
CN107407078A (en) The periphery monitoring apparatus of Work machine and the environment monitoring method of Work machine
JP4740890B2 (en) Construction machine and backward movement guidance method for construction machine
JPWO2019244574A1 (en) Excavator, information processing equipment
JP6947101B2 (en) Remote control system and main control device
CN103635637A (en) Device for displaying rearward field of view of hydraulic shovel
WO2021010489A1 (en) Work machine and assistance device that assists work using work machine
JP7434296B2 (en) Crane inspection system and crane
WO2019124043A1 (en) Construction machine
JP6917167B2 (en) Bird&#39;s-eye view image display device for construction machinery
EP3923594B1 (en) Remote operation system
JP7318258B2 (en) Remote control system and remote control server
JP6714549B2 (en) Position detection system and determination method for a sensor mounted on a construction machine
WO2022071476A1 (en) Working machine
JP6473648B2 (en) Remote control robot
JP2007016403A (en) Camera controller of work machine
JP6256874B2 (en) Overhead image display device for construction machinery
JP2021095718A (en) Shovel and information processor
CN115766817A (en) Remote control system and method for working machine, working machine and electronic device
WO2021141077A1 (en) Inspection system for construction machine
JP6433664B2 (en) Overhead image display device for construction machinery
JP7441733B2 (en) Actual machine status monitoring system and actual machine status monitoring method
JP2023040971A (en) Remote control support device, remote control support system, and remote control support method
JP2022179081A (en) Remote operation support system and remote operation support device
JP7349947B2 (en) Information processing equipment, working machines, information processing methods, information processing programs
WO2023100689A1 (en) Construction machine driving device, and construction machine and construction machine system provided with same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21875772

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022554089

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021875772

Country of ref document: EP

Effective date: 20220830

NENP Non-entry into the national phase

Ref country code: DE