JP2003166909A - Strength evaluation method for work machine, strength evaluation system, apparatus and program for conducting strength evaluation - Google Patents

Strength evaluation method for work machine, strength evaluation system, apparatus and program for conducting strength evaluation

Info

Publication number
JP2003166909A
JP2003166909A JP2001364305A JP2001364305A JP2003166909A JP 2003166909 A JP2003166909 A JP 2003166909A JP 2001364305 A JP2001364305 A JP 2001364305A JP 2001364305 A JP2001364305 A JP 2001364305A JP 2003166909 A JP2003166909 A JP 2003166909A
Authority
JP
Japan
Prior art keywords
stress
working machine
standard
correction coefficient
strength evaluation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001364305A
Other languages
Japanese (ja)
Other versions
JP3768437B2 (en
Inventor
Akira Hashimoto
昭 橋本
Hikari Yamamoto
光 山本
Toshihiro Ono
俊弘 大野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Construction Machinery Co Ltd
Original Assignee
Hitachi Construction Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Construction Machinery Co Ltd filed Critical Hitachi Construction Machinery Co Ltd
Priority to JP2001364305A priority Critical patent/JP3768437B2/en
Publication of JP2003166909A publication Critical patent/JP2003166909A/en
Application granted granted Critical
Publication of JP3768437B2 publication Critical patent/JP3768437B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To accurately evaluate the strength of front structure by in-place tests. <P>SOLUTION: A hydraulic shovel 20 is tested in-place by a specific operation pattern, and stress σ<SB>1</SB>of each part of front is detected with a stress detector 4. A hydraulic shovel 30 of the same model as the hydraulic shovel 20 is tested in-place to detect operation pattern of the hydraulic shovel 30 and stress σ<SB>2</SB>of each part of front with a stroke sensor 31 and a pressure sensor 32. With the stress σ<SB>1</SB>and σ<SB>2</SB>, a correction coefficient α corresponding to the operation pattern is calculated. A hydraulic shovel 10 of the same class as the hydraulic shovel 20 and 30 is tested in-place with a specified operation pattern to detect the stress σ<SB>1</SB>of each part of front by a stress detector 4, and the stress σ<SB>1</SB>is corrected with a correction coefficient α and stress σA, after correction is obtained. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、場内での負荷試験
に基づいて油圧ショベル等の強度評価を行う作業機の強
度評価方法、強度評価システム、強度評価装置、および
強度評価を行うためのプログラムに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a work machine strength evaluation method, a strength evaluation system, a strength evaluation device, and a strength evaluation program for a work machine for evaluating the strength of a hydraulic excavator or the like based on a load test in a field. Regarding

【0002】[0002]

【従来の技術】例えば油圧ショベル等のフロント構造物
の強度評価を行う場合、作業現場において油圧ショベル
を実稼働させてフロント各部の応力を測定し、この応力
測定値に基づいて強度評価を行っていた。また、試作機
の試験等、測定項目が多岐に渡り、作業現場で試験を行
うことが効率的でない場合には、場内で実稼働状態を模
した負荷試験を行い、その試験結果に基づいて強度評価
を行っていた。
2. Description of the Related Art For example, when evaluating the strength of a front structure such as a hydraulic excavator, the hydraulic excavator is actually operated at the work site to measure the stress at each part of the front, and the strength is evaluated based on the stress measurement value. It was In addition, if there are a wide variety of measurement items such as prototype tests and it is not efficient to perform the test at the work site, a load test imitating the actual operating condition is performed in the site, and the strength is determined based on the test result. I was doing an evaluation.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、場内試
験はあくまで実稼働状態を模した試験であり、場内試験
によりフロント構造物の強度評価を精度よく行うことは
難しかった。すなわち、一般に場内では実稼働時より厳
しめの条件で試験することが多く、この場内試験結果に
基づいて構造物を強度評価したのでは、安全率を過大に
設定したこととなり、最適な形状設計を行うことができ
ない。
However, the on-site test is a test imitating the actual operating condition, and it is difficult to accurately evaluate the strength of the front structure by the on-site test. In other words, in general, tests are often conducted under stricter conditions in the field than in actual operation.If the strength of a structure is evaluated based on the results of this field test, it means that the safety factor has been set excessively, and the optimum shape design Can't do.

【0004】本発明の目的は、場内試験により構造物の
強度評価を精度よく行うことができる作業機の強度評価
方法、強度評価システム、強度評価装置、および強度評
価を行うためのプログラムを提供することにある。
An object of the present invention is to provide a strength evaluation method for a working machine, a strength evaluation system, a strength evaluation device, and a program for strength evaluation, which can accurately evaluate the strength of a structure by an in-field test. Especially.

【0005】[0005]

【課題を解決するための手段】1, 請求項1の発明
は、第1の種類の作業機と第2の種類の作業機の試験結
果に基づいて第1の種類の作業機を強度評価する作業機
の強度評価方法であって、(1)標準動作パターンにし
たがった第2の種類の作業機の場内試験により作業機各
部の標準応力を検出し、(2)第2の種類の作業機によ
り現場で実作業を行ったときの作業機各部の実作業応力
を検出し、(3)前記応力と前記実作業応力とに基づい
て補正係数を算出して記憶し、(4)標準動作パターン
にしたがった第1の種類の作業機の場内試験により作業
機各部の標準応力を検出し、(5)この応力検出値を補
正係数で補正し、補正後の応力に基づいて第1の種類の
作業機を強度評価することにより上述した目的を達成す
る。 2, 請求項2の発明は、請求項1に記載の作業機の強
度評価方法において、(1)第2の種類の作業機により
現場で実作業を行ったときの動作を分析し、(2)第2
の種類の作業機の標準応力の検出結果と実作業応力の検
出結果を同一の動作の下で比較し、各動作毎に補正係数
を設定するものである。 3, 請求項3の発明による作業機の強度評価システム
は、標準動作パターンにしたがった場内試験を行う第1
の種類の作業機と、標準動作パターンにしたがった場内
試験および現場での実作業をそれぞれ行う第2の種類の
作業機と、第2の種類の作業機の場内試験による作業機
各部の標準応力を検出する第1の応力検出手段と、第2
の種類の作業機により現場で実作業を行ったときの作業
機各部の実作業応力を検出する第2の応力検出手段と、
第1の種類の作業機の場内試験による作業機各部の標準
応力を検出する第3の応力検出手段と、第1の応力検出
手段と第2の応力検出手段による検出結果に基づいて補
正係数を算出する係数算出手段と、補正係数を記憶する
記憶手段と、第3の応力検出手段による検出結果を補正
係数で補正した補正後応力を算出する算出手段と、算出
された補正後応力に基づいて、作業機の強度評価を演算
する評価手段とを備えることにより上述した目的を達成
する。 4, 請求項4の発明による作業機の強度評価装置は、
標準動作パターンによる標準作業を行ったときの作業機
各部の標準応力を予め検出して記憶する第1の記憶手段
と、実作業を行ったときの作業機各部の実作業応力を予
め検出して記憶する第2の記憶手段と、標準応力と実作
業応力とに基づいて補正係数を算出する係数算出手段
と、補正係数を記憶する第3の記憶手段と、標準動作パ
ターンによる標準作業を行ったときの作業機各部の標準
応力を補正係数で補正した補正後応力を算出する算出手
段と、算出された補正後応力に基づいて、作業機の強度
評価を演算する評価手段とを備えることにより上述した
目的を達成する。 5, 請求項5の発明によるプログラムは、標準動作パ
ターンによる標準作業を行ったときの作業機各部の標準
応力と実作業を行ったときの作業機各部の実作業応力と
に基づき算出された補正係数に基づいて、標準動作パタ
ーンによる標準作業を行ったときの作業機各部の標準応
力を補正する手順と、補正手順により補正された補正後
応力に基づいて、作業機の強度評価を演算する手順とを
コンピュータで実行して強度評価を行うためのプログラ
ムとしたことにより上述した目的を達成する。
[Means for Solving the Problems] 1. The invention according to claim 1 evaluates the strength of the first type working machine based on the test results of the first type working machine and the second type working machine. A method for evaluating the strength of a working machine, comprising: (1) detecting the standard stress of each part of the working machine by an in-field test of the working machine of the second type according to the standard operation pattern; and (2) the working machine of the second type. Detects the actual work stress of each part of the working machine when the actual work is performed by (3) calculates and stores a correction coefficient based on the stress and the actual work stress, and (4) standard operation pattern The standard stress of each part of the working machine is detected by the field test of the first type working machine according to the above, and (5) this stress detection value is corrected by the correction coefficient, and the stress of the first type is corrected based on the corrected stress. The above-mentioned object is achieved by evaluating the strength of the working machine. 2. The invention according to claim 2 is the strength evaluation method for a working machine according to claim 1, wherein (1) an operation when an actual work is performed on-site by the second type working machine, ) Second
The detection result of the standard stress and the detection result of the actual work stress of the types of working machines are compared under the same operation, and the correction coefficient is set for each operation. 3, The strength evaluation system for a working machine according to the invention of claim 3 performs the field test according to the standard operation pattern.
Type of work equipment, the second type of work equipment performing in-field testing and actual work in accordance with the standard operation pattern, and standard stress of each part of work equipment by the in-field test of the second type of work equipment A first stress detecting means for detecting
Second stress detecting means for detecting the actual work stress of each part of the working machine when the actual work is performed by the working machine of
A correction coefficient is calculated based on the third stress detection means for detecting the standard stress of each part of the work equipment by the field test of the first type work equipment, and the detection results by the first stress detection means and the second stress detection means. On the basis of the calculated stress after correction, the coefficient calculation means for calculating, the storage means for storing the correction coefficient, the calculation means for calculating the corrected stress by correcting the detection result by the third stress detection means with the correction coefficient, The above-described object is achieved by including an evaluation unit that calculates the strength evaluation of the working machine. 4. The strength evaluation device for a working machine according to the invention of claim 4 is
The first storage means for detecting and storing in advance the standard stress of each part of the working machine when performing the standard work according to the standard operation pattern, and for detecting the actual working stress of each part of the working machine when performing the actual work in advance. A second storage means for storing, a coefficient calculating means for calculating a correction coefficient based on the standard stress and the actual work stress, a third storage means for storing the correction coefficient, and a standard work with a standard operation pattern were performed. By including the calculating means for calculating the corrected stress by correcting the standard stress of each part of the working machine with the correction coefficient, and the evaluating means for calculating the strength evaluation of the working machine based on the calculated corrected stress as described above. Achieve the purpose. 5, The program according to the invention of claim 5 is a correction calculated based on the standard stress of each part of the working machine when performing the standard work according to the standard operation pattern and the actual work stress of each part of the working machine when performing the actual work. Procedure to correct the standard stress of each part of the working machine when performing standard work according to the standard operation pattern based on the coefficient, and procedure to calculate the strength evaluation of the working machine based on the corrected stress corrected by the correction procedure The above-described object is achieved by using and as a program for executing strength evaluation by a computer.

【0006】[0006]

【発明の実施の形態】以下、図1〜図6を参照して本発
明による作業機の強度評価方法の実施の形態について説
明する。図1は、本発明の実施の形態に係わる強度評価
方法が適用される油圧ショベル10の斜視図であり、図
2は、本実施の形態に係わる場内試験のシステム構成を
示すブロック図である。図1に示すように、油圧ショベ
ル10は、走行体1と、走行体1上に旋回可能に搭載さ
れた旋回体2と、旋回体2に回動可能に取り付けられた
ブーム3A、アーム3B、バケット3Cからなるフロン
ト装置3とを有する。ブーム3Aはブームシリンダ3a
の伸縮により回動し、アーム3Bはアームシリンダ3b
の伸縮により回動し、バケット3Cはバケットシリンダ
3cの伸縮により回動する。フロント装置3には、フロ
ント各部の応力σ1を検出する歪みゲージなどの応力検
出器4(図2参照)が設けられている。
BEST MODE FOR CARRYING OUT THE INVENTION An embodiment of a strength evaluation method for a working machine according to the present invention will be described below with reference to FIGS. FIG. 1 is a perspective view of a hydraulic excavator 10 to which a strength evaluation method according to an embodiment of the present invention is applied, and FIG. 2 is a block diagram showing a system configuration of a field test according to the present embodiment. As shown in FIG. 1, a hydraulic excavator 10 includes a traveling structure 1, a revolving structure 2 rotatably mounted on the traveling structure 1, a boom 3A, an arm 3B rotatably attached to the revolving structure 2. And a front device 3 including a bucket 3C. The boom 3A is a boom cylinder 3a.
The arm 3B is rotated by the expansion and contraction of the arm cylinder 3b.
The bucket 3C is rotated by the expansion and contraction of the bucket cylinder 3c. The front device 3 is provided with a stress detector 4 (see FIG. 2) such as a strain gauge for detecting the stress σ1 at each front portion.

【0007】一般に、油圧ショベルは、車両重量により
大型、中型、小型などにクラス分けされる。本実施の形
態では、例えば新機種の中型の油圧ショベル10の強度
評価を行う。この場合、油圧ショベル10と同クラス
(中型)の油圧ショベル20を予め場内試験するととも
に、油圧ショベル20とほぼ同機種の油圧ショベル30
を現場で試験して補正係数αを求める。そして、油圧シ
ョベル10の場内試験によって検出されたフロント各部
の応力σ1を後述するように補正係数αで補正し、この
応力補正値σAに基づいてフロント装置3の強度評価を
行う。なお、場内試験とは、予め定められた標準動作パ
ターンに従って工場内で作業機を駆動し、そのときの応
力、油圧、油温などの実測データから作業機が正常に動
作しているか否かを確認する試験である。
Generally, hydraulic excavators are classified into large, medium and small types according to vehicle weight. In the present embodiment, for example, the strength evaluation of a medium-sized hydraulic excavator 10 of a new model is performed. In this case, the hydraulic excavator 20 of the same class (medium size) as the hydraulic excavator 10 is preliminarily tested in the field, and the hydraulic excavator 30 of almost the same model as the hydraulic excavator 20 is used.
Is tested in the field to obtain the correction coefficient α. Then, the stress σ1 of each front portion detected by the in-field test of the hydraulic excavator 10 is corrected by a correction coefficient α as described later, and the strength of the front device 3 is evaluated based on the stress correction value σA. The on-site test is to drive the working machine in the factory according to a predetermined standard operation pattern, and check whether the working machine is operating normally from the measured data such as stress, oil pressure and oil temperature at that time. This is a test to confirm.

【0008】図2に示すように、強度評価システムは、
応力検出器4と、ハードディスク等の記憶装置5と、C
PU,ROM,RAMなどからなる演算装置6と、モニタ
やプロッタ等の出力装置7とを有する。応力検出器4と
記憶装置5からの信号は演算装置6に入力される。演算
装置6には各種プログラムやフロント装置3の疲労寿命
評価線図(S−N線図)などが記憶されている。記憶装
置5には補正係数αが記憶され、演算装置6での処理に
よって応力検出値σ1が補正係数αで補正されるととも
に、S−N線図に補正後応力σAを適用して疲労寿命が
推定される。この推定寿命は応力σAとともに出力装置
7に出力される。
As shown in FIG. 2, the strength evaluation system is
A stress detector 4, a storage device 5 such as a hard disk, and C
It has an arithmetic unit 6 including a PU, a ROM, a RAM and the like, and an output unit 7 such as a monitor and a plotter. The signals from the stress detector 4 and the storage device 5 are input to the arithmetic unit 6. The computer 6 stores various programs and a fatigue life evaluation diagram (SN diagram) of the front device 3. The correction coefficient α is stored in the storage device 5, the stress detection value σ1 is corrected by the correction coefficient α by the processing in the arithmetic device 6, and the corrected stress σA is applied to the SN diagram to reduce the fatigue life. Presumed. This estimated life is output to the output device 7 together with the stress σA.

【0009】以下、補正係数αの算出方法について説明
する。図3は、補正係数αの算出方法を示すブロック図
である。補正係数αの算出にあたっては、まず、油圧シ
ョベル10と同クラス(中型)の油圧ショベル20を工
場内で試験稼働(場内試験)する。油圧ショベル20の
フロント装置3には油圧ショベル10と同様、フロント
各部の応力σ1を検出する応力検出器4が設けられてい
る。応力検出器4からの信号とそのときの動作パターン
は係数算出部40の場内試験記憶部40aに記憶され
る。なお、油圧ショベル10と油圧ショベル20がほぼ
同機種の場合、油圧ショベル20を場内試験する代わり
に油圧ショベル10を場内試験して補正係数αを算出
し、その補正係数αを用いて油圧ショベル10の強度評
価を行うようにしてもよい。
The method of calculating the correction coefficient α will be described below. FIG. 3 is a block diagram showing a method of calculating the correction coefficient α. To calculate the correction coefficient α, first, the hydraulic excavator 20 in the same class (medium size) as the hydraulic excavator 10 is tested in a factory (in-site test). Like the hydraulic excavator 10, the front device 3 of the hydraulic excavator 20 is provided with a stress detector 4 for detecting the stress σ1 of each front portion. The signal from the stress detector 4 and the operation pattern at that time are stored in the in-field test storage unit 40a of the coefficient calculation unit 40. When the hydraulic excavator 10 and the hydraulic excavator 20 are of almost the same model, the hydraulic excavator 10 is tested in the field instead of being tested in the field to calculate the correction coefficient α, and the hydraulic shovel 10 is used by using the correction coefficient α. May be evaluated.

【0010】次に、油圧ショベル20とほぼ同機種の油
圧ショベル30を作業現場で試験稼働(現場試験)す
る。この油圧ショベル30のフロント装置3の各シリン
ダ3a〜3cには、シリンダストロークSをそれぞれ検
出するストロークセンサ31と、シリンダ3a〜3cの
圧力P(ロッド室圧力とボトム室圧力)をそれぞれ検出
する圧力センサ32が設けられている。これらセンサ3
1,32からの信号は係数算出部40の現場試験記憶部
40bに記憶される。なお、油圧ショベル30の代わり
に油圧ショベル20を用いて現場試験を行ってもよい。
すなわち、同一の油圧ショベル20により場内試験と現
場試験をそれぞれ行うようにしてもよい。
Next, a hydraulic excavator 30 of almost the same type as the hydraulic excavator 20 is subjected to a test operation (field test) at the work site. The cylinders 3a to 3c of the front device 3 of the hydraulic excavator 30 include a stroke sensor 31 for detecting the cylinder stroke S and a pressure P for detecting the pressure P (rod chamber pressure and bottom chamber pressure) of the cylinders 3a to 3c. A sensor 32 is provided. These sensors 3
The signals from 1, 32 are stored in the field test storage unit 40b of the coefficient calculation unit 40. The field test may be performed using the hydraulic excavator 20 instead of the hydraulic excavator 30.
That is, the same hydraulic excavator 20 may perform the on-site test and the on-site test, respectively.

【0011】係数算出部40では所定のプログラムを実
行して補正係数αを算出し、記憶部50に格納する。図
4は、係数算出部40で実行される処理の一例を示すフ
ローチャートである。ステップS1では現場試験記憶部
40bに記憶されたストロークセンサ31および圧力セ
ンサ32からの信号を取り込む。次いで、ステップS2
でストロークセンサ31からの検出値Sに基づいてフロ
ント装置3の姿勢変化、すなわち油圧ショベル30の動
作を分析する。ステップS3では圧力センサ32からの
検出値Pに基づいてフロント各部の応力2を算出する。
ステップS2、ステップS3の処理は次のように行う。
The coefficient calculation unit 40 executes a predetermined program to calculate the correction coefficient α and stores it in the storage unit 50. FIG. 4 is a flowchart showing an example of processing executed by the coefficient calculation unit 40. In step S1, the signals from the stroke sensor 31 and the pressure sensor 32 stored in the field test storage unit 40b are fetched. Then, step S2
Then, the posture change of the front device 3, that is, the operation of the hydraulic excavator 30 is analyzed based on the detection value S from the stroke sensor 31. In step S3, the stress 2 at each front portion is calculated based on the detected value P from the pressure sensor 32.
The processes of steps S2 and S3 are performed as follows.

【0012】図5は、フロント装置3を梁要素でモデル
化した一例である。動作分析を行うには、まず、梁要素
を構成する節点データの初期座標(X,Y)およびシリ
ンダ3a〜3cの初期ストロークを定める。そして、こ
の初期状態からのシリンダ3a〜3cのストローク量S
に応じてシリンダ3a〜3cに対応する梁要素(図では
3a〜3c)の長さを変化させ、フロント装置3の姿勢
変化を検出する。係数算出部40にはフロント装置3の
姿勢変化に対応した動作パターン(掘削、旋回など)が
予め記憶され、これにより、フロント装置3がどのパタ
ーンに従って姿勢変化したかを判定する。すなわち、油
圧ショベル30の動作を分析する。
FIG. 5 is an example of modeling the front device 3 with beam elements. In order to perform the motion analysis, first, the initial coordinates (X, Y) of the node data that configure the beam element and the initial strokes of the cylinders 3a to 3c are determined. The stroke amount S of the cylinders 3a to 3c from this initial state is S.
The length of the beam element (3a to 3c in the figure) corresponding to the cylinders 3a to 3c is changed according to the above, and the posture change of the front device 3 is detected. An operation pattern (excavation, turning, etc.) corresponding to the posture change of the front device 3 is stored in the coefficient calculation unit 40 in advance, and it is determined by which pattern the front device 3 has changed the posture. That is, the operation of the hydraulic excavator 30 is analyzed.

【0013】現場試験におけるフロント各部の応力σを
算出するには、上述したようにシリンダストロークSに
応じてフロント装置3を姿勢変化させ、その状態で梁要
素3a〜3cの節点に圧力センサ32からの検出値Pに
応じた負荷を作用させる。これにより、各節点に作用す
るピン荷重を算出し、このピン荷重を用いて梁要素に作
用する断面応力σを算出する。なお、シリンダストロー
クSとシリンダ圧力Pから応力σを算出するのではな
く、場内試験と同様にフロント各部に応力検出器4を設
け、この応力検出器4により現場試験の応力σを直接検
出するようにしてもよい。現場試験の動作分析結果およ
び応力算出結果の一例を図6(a)に示す。図中の応力
A1〜A4は、各動作の下での最大応力σ(ピーク応力)
である。
In order to calculate the stress σ of each front portion in the field test, the posture of the front device 3 is changed according to the cylinder stroke S as described above, and in that state, the pressure sensor 32 is applied to the nodes of the beam elements 3a to 3c. A load corresponding to the detected value P of is applied. With this, the pin load acting on each node is calculated, and the sectional stress σ acting on the beam element is calculated using this pin load. It should be noted that, instead of calculating the stress σ from the cylinder stroke S and the cylinder pressure P, the stress detector 4 is provided in each part of the front similarly to the in-field test, and the stress σ of the field test is directly detected by the stress detector 4. You may An example of the operation analysis result and stress calculation result of the field test is shown in FIG. The stresses A1 to A4 in the figure are the maximum stress σ (peak stress) under each operation.
Is.

【0014】ステップS4では場内試験記憶部40aに
記憶された応力検出器4からの信号とそのときの動作パ
ターンを取り込む。この場合、油圧ショベル20の場内
試験は例えば図6(b)に示すような動作パターンにし
たがって行う。各動作の下での最大応力σ1はB1〜B4
で示す。
In step S4, the signal from the stress detector 4 and the operation pattern at that time stored in the on-site test storage unit 40a are fetched. In this case, the on-site test of the hydraulic excavator 20 is performed according to the operation pattern as shown in FIG. 6B, for example. The maximum stress σ1 under each operation is B1 to B4
Indicate.

【0015】ステップS5では、現場試験により算出し
た応力σ2と場内試験により検出した応力σ1の比をとっ
て補正係数αを算出する。この場合、動作パターンが同
一なもの同士、すなわち、応力A1とB1、A2とB2、A
3とB3、A4とB4のそれぞれ比をとって(A1/B1,A2/
B2,A3/B3,A4/B4)動作パターン毎に補正係数αを
算出する。そして、この補正係数αを記憶部50に格納
し、処理を終了する。なお、説明の便宜上、記憶装置5
とは別に記憶部50を設けたが、記憶装置5が記憶部5
0を兼ねるようにしてもよい。
In step S5, the correction coefficient α is calculated by taking the ratio of the stress σ2 calculated by the field test and the stress σ1 detected by the field test. In this case, those having the same operation pattern, that is, stresses A1 and B1, A2 and B2, A
Take the ratio of 3 and B3, A4 and B4 respectively (A1 / B1, A2 /
B2, A3 / B3, A4 / B4) The correction coefficient α is calculated for each operation pattern. Then, the correction coefficient α is stored in the storage unit 50, and the process ends. For convenience of description, the storage device 5
Although the storage unit 50 is provided separately from the storage unit 5,
You may make it serve as 0.

【0016】油圧ショベル10のフロント装置3の強度
評価は次のように行う。 まず、上述したように油圧ショベル20の場内試験と
油圧ショベル30の現場試験を行い、動作パターンに対
応した補正係数αを求め、記憶部50に格納する。 次に、この補正係数αを記憶装置5に記憶するととも
に、所定の動作パターンに従って油圧ショベル10の場
内試験を行い、応力検出器4によりフロント各部の応力
σ1を検出する。 演算装置6では、この動作に対応する補正係数αを記
憶装置5から読み込み、その補正係数αに応力検出値σ
1を乗じて応力σA(=α×σ1)を算出し、出力装置7
に出力する。 さらに、演算装置6では、予め記憶されたフロント装
置3の疲労寿命評価線図(S−N線図)に補正後応力σ
Aを適用し、実稼働時の寿命を推定して、出力装置7に
出力する。これによりフロント装置3の強度評価を行
う。なお、演算装置6に予め応力許容値を記憶し、補正
後応力σAがこの許容値以下か否かによりフロント装置
3の強度評価を行うようにしてもよい。
The strength evaluation of the front device 3 of the hydraulic excavator 10 is performed as follows. First, as described above, the on-site test of the hydraulic excavator 20 and the on-site test of the hydraulic excavator 30 are performed, and the correction coefficient α corresponding to the operation pattern is obtained and stored in the storage unit 50. Next, the correction coefficient α is stored in the storage device 5, the field test of the hydraulic excavator 10 is performed according to a predetermined operation pattern, and the stress σ1 of each front part is detected by the stress detector 4. The arithmetic unit 6 reads the correction coefficient α corresponding to this operation from the storage unit 5, and uses the detected stress value σ as the correction coefficient α.
Multiply by 1 to calculate the stress σA (= α × σ1), and output device 7
Output to. Further, in the computing device 6, the corrected stress σ is added to the fatigue life evaluation diagram (SN diagram) of the front device 3 stored in advance.
A is applied to estimate the life during actual operation and output to the output device 7. Thereby, the strength of the front device 3 is evaluated. Alternatively, the stress allowable value may be stored in advance in the computing device 6, and the strength of the front device 3 may be evaluated based on whether the corrected stress σA is less than or equal to this allowable value.

【0017】このように本実施の形態では、場内試験に
よる応力検出値σ1と現場試験による応力検出値σ2とを
比較して応力検出値σ1から応力検出値σ2を推定するた
めの補正係数αを求め、この補正係数αにより応力検出
値σ1を補正するようにした。これにより、一旦補正係
数αを求めれば、以降、現場試験を行わなくても場内試
験によってフロント装置3を精度よく強度評価すること
ができる。また、フロント装置3の動作パターンを分析
し、動作パターンに応じて補正係数αを設定するように
したので、応力補正の精度が一層向上する。
As described above, in this embodiment, the correction coefficient α for estimating the stress detection value σ2 from the stress detection value σ1 by comparing the stress detection value σ1 by the in-field test and the stress detection value σ2 by the field test. Then, the stress detection value σ1 is corrected by the correction coefficient α. As a result, once the correction coefficient α is obtained, the strength of the front device 3 can be accurately evaluated by the field test thereafter without performing the field test. Further, since the operation pattern of the front device 3 is analyzed and the correction coefficient α is set according to the operation pattern, the accuracy of stress correction is further improved.

【0018】なお、上記実施の形態では油圧ショベルの
フロント装置3、とくにバックホウフロントに適用する
ようにしたが、ローダフロントに適用してもよい。ま
た、フロント装置3以外の他の構造部に適用してもよ
い。さらに、油圧ショベル以外の他の作業機に適用して
もよい。
In the above-described embodiment, the front device 3 of the hydraulic excavator is applied to the front device 3, especially the backhoe front, but it may be applied to the loader front. Further, it may be applied to other structural parts than the front device 3. Further, it may be applied to other working machines other than the hydraulic excavator.

【0019】以上の実施の形態と請求項との対応におい
て、油圧ショベル10が第1の種類の作業機を、油圧シ
ョベル20,30が第2の種類の作業機を、油圧ショベ
ル20に設けられた応力検出器4が第1の応力検出手段
を、油圧ショベル30に設けられたストロークセンサ3
1および圧力センサ32が第2の応力検出手段を、油圧
ショベル10に設けられた応力検出器4が第3の応力検
出手段を、係数算出部40が係数算出手段を、記憶装置
5が記憶手段を、演算装置6が算出手段を、演算装置6
が評価手段を、場内試験記憶部40aが第1の記憶手段
を、現場試験記憶部40bが第2の記憶手段を、記憶部
50が第3の記憶手段を、それぞれ構成する。
In the correspondence between the above embodiment and the claims, the hydraulic excavator 10 is provided with the first type working machine, and the hydraulic excavators 20, 30 are provided with the second type working machine in the hydraulic excavator 20. The stroke detector 3 provided in the hydraulic excavator 30 has a first stress detector 4 as the first stress detector.
1 and the pressure sensor 32 are the second stress detecting means, the stress detector 4 provided in the hydraulic excavator 10 is the third stress detecting means, the coefficient calculating section 40 is the coefficient calculating means, and the storage device 5 is the storing means. The computing device 6 serves as the calculating means, and the computing device 6
Indicates the evaluation means, the on-site test storage section 40a constitutes the first storage means, the on-site test storage section 40b constitutes the second storage means, and the storage section 50 constitutes the third storage means.

【0020】[0020]

【発明の効果】以上詳細に説明したように、本発明によ
れば、場内試験により求めた標準応力と現場試験により
求めた実作業応力とに基づいて補正係数を算出し、この
補正係数で場内試験による標準応力検出値を補正するよ
うにした。これにより、一旦補正係数を求めれば、以
降、現場試験を行わなくても場内試験によって構造物を
精度よく強度評価することができ、最適な形状設計を行
うことができる。
As described above in detail, according to the present invention, the correction coefficient is calculated based on the standard stress obtained by the field test and the actual work stress obtained by the field test. The standard stress detection value by the test was corrected. Accordingly, once the correction coefficient is obtained, the strength of the structure can be accurately evaluated by the field test thereafter without performing the field test, and the optimum shape design can be performed.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施の形態に係わる強度評価方法が適
用される油圧ショベルの斜視図。
FIG. 1 is a perspective view of a hydraulic excavator to which a strength evaluation method according to an embodiment of the present invention is applied.

【図2】本発明の実施の形態に係わる強度評価方法によ
る場内試験のシステム構成を示すブロック図。
FIG. 2 is a block diagram showing a system configuration of an in-field test by the strength evaluation method according to the embodiment of the present invention.

【図3】本発明の実施の形態に係わる強度評価方法で用
いる補正係数の算出方法を示すブロック図。
FIG. 3 is a block diagram showing a method of calculating a correction coefficient used in the strength evaluation method according to the embodiment of the present invention.

【図4】図3の係数算出部で実行される処理の一例を示
すフローチャート。
FIG. 4 is a flowchart showing an example of processing executed by a coefficient calculation unit in FIG.

【図5】フロント装置を梁要素でモデル化した一例を示
す図。
FIG. 5 is a diagram showing an example of modeling a front device with beam elements.

【図6】場内試験と現場試験の動作パターンの一例を示
す図。
FIG. 6 is a diagram showing an example of operation patterns of a field test and a field test.

【符号の説明】[Explanation of symbols]

3 フロント装置 3A ブーム 3B アーム 3C バケット 3a,3b,3c シリンダ 4 応力検出
器 5 記憶装置 6 演算装置 7 出力装置 10,20,30 油圧ショ
ベル 31 ストロークセンサ 32 圧力セン
サ 40 計数算出部 40a 場内試験
記憶部 40b 場外試験記憶部
3 Front device 3A Boom 3B Arm 3C Bucket 3a, 3b, 3c Cylinder 4 Stress detector 5 Memory device 6 Computing device 7 Output device 10,20,30 Hydraulic excavator 31 Stroke sensor 32 Pressure sensor 40 Count calculation unit 40a Field test storage unit 40b Field test memory

───────────────────────────────────────────────────── フロントページの続き (72)発明者 大野 俊弘 茨城県土浦市神立町650番地 日立建機株 式会社土浦工場内 Fターム(参考) 2G024 AD17 BA13 CA11 DA01 DA05 DA06 EA20 FA02 FA06    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Toshihiro Ohno             Hitachi Construction Machinery Co., Ltd.             Ceremony Company Tsuchiura Factory F-term (reference) 2G024 AD17 BA13 CA11 DA01 DA05                       DA06 EA20 FA02 FA06

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 第1の種類の作業機と第2の種類の作業
機の試験結果に基づいて第1の種類の作業機を強度評価
する作業機の強度評価方法であって、 (1)標準動作パターンにしたがった前記第2の種類の
作業機の場内試験により作業機各部の標準応力を検出
し、 (2)前記第2の種類の作業機により現場で実作業を行
ったときの作業機各部の実作業応力を検出し、 (3)前記標準応力と前記実作業応力とに基づいて補正
係数を算出して記憶し、 (4)標準動作パターンにしたがった前記第1の種類の
作業機の場内試験により作業機各部の標準応力を検出
し、 (5)この応力検出値を前記補正係数で補正し、補正後
の応力に基づいて前記第1の種類の作業機を強度評価す
ることを特徴とする作業機の強度評価方法。
1. A strength evaluation method for a working machine, wherein the strength of the working machine of the first type is evaluated based on the test results of the working machine of the first type and the working machine of the second type. The standard stress of each part of the working machine is detected by the field test of the second type working machine according to the standard operation pattern, and (2) the work when the actual work is performed on site by the second working machine. The actual work stress of each part of the machine is detected, (3) the correction coefficient is calculated and stored based on the standard stress and the actual work stress, and (4) the work of the first type according to the standard operation pattern. The standard stress of each part of the working machine is detected by an in-field test of the machine, and (5) this stress detection value is corrected by the correction coefficient, and the strength of the first type working machine is evaluated based on the corrected stress. A method for evaluating the strength of a working machine.
【請求項2】 請求項1に記載の作業機の強度評価方法
において、 (1)前記第2の種類の作業機により現場で実作業を行
ったときの動作を分析し、 (2)前記第2の種類の作業機の前記標準応力の検出結
果と前記実作業応力の検出結果を同一の動作の下で比較
し、各動作毎に前記補正係数を設定することを特徴とす
る作業機の強度評価方法。
2. The strength evaluation method for a working machine according to claim 1, wherein (1) an operation when actual work is performed on site by the second type working machine is analyzed, and (2) the second The strength of the working machine characterized in that the detection result of the standard stress and the detection result of the actual working stress of the two types of working machines are compared under the same motion, and the correction coefficient is set for each motion. Evaluation methods.
【請求項3】 標準動作パターンにしたがった場内試験
を行う第1の種類の作業機と、 標準動作パターンにしたがった場内試験および現場での
実作業をそれぞれ行う第2の種類の作業機と、 前記第2の種類の作業機の場内試験による作業機各部の
標準応力を検出する第1の応力検出手段と、 前記第2の種類の作業機により現場で実作業を行ったと
きの作業機各部の実作業応力を検出する第2の応力検出
手段と、 前記第1の種類の作業機の場内試験による作業機各部の
標準応力を検出する第3の応力検出手段と、 前記第1の応力検出手段と前記第2の応力検出手段によ
る検出結果に基づいて補正係数を算出する係数算出手段
と、 前記補正係数を記憶する記憶手段と、 前記第3の応力検出手段による検出結果を前記補正係数
で補正した補正後応力を算出する算出手段と、 前記算出された補正後応力に基づいて、作業機の強度評
価を演算する評価手段とを備えることを特徴とする作業
機の強度評価システム。
3. A first type working machine for performing an in-field test according to a standard operation pattern, and a second type working machine for respectively performing an on-site test according to a standard operation pattern and an actual work on site. First stress detecting means for detecting a standard stress of each part of the working machine by an in-field test of the second type working machine, and each part of the working machine when an actual work is performed on site by the second type working machine. Second stress detecting means for detecting the actual work stress of the first working machine, a third stress detecting means for detecting a standard stress of each part of the working machine by an in-field test of the first type working machine, and the first stress detecting means. Means and a coefficient calculation means for calculating a correction coefficient based on the detection result by the second stress detection means, a storage means for storing the correction coefficient, and a detection result by the third stress detection means by the correction coefficient. After correction After correction Working machine strength evaluation system, characterized in that it comprises a calculation unit, on the basis of the calculated corrected stress, and evaluating means for calculating the strength evaluation of the working machine for calculating the force.
【請求項4】 標準動作パターンによる標準作業を行っ
たときの作業機各部の標準応力を予め検出して記憶する
第1の記憶手段と、 実作業を行ったときの作業機各部の実作業応力を予め検
出して記憶する第2の記憶手段と、 前記標準応力と前記実作業応力とに基づいて補正係数を
算出する係数算出手段と、 前記補正係数を記憶する第3の記憶手段と、 標準動作パターンによる標準作業を行ったときの作業機
各部の標準応力を前記補正係数で補正した補正後応力を
算出する算出手段と、 前記算出された補正後応力に基づいて、作業機の強度評
価を演算する評価手段とを備えることを特徴とする作業
機の強度評価装置。
4. A first storage means for previously detecting and storing a standard stress of each part of the working machine when performing a standard work according to a standard operation pattern, and an actual working stress of each part of the working machine when performing an actual work. A second storage means for detecting and storing in advance, a coefficient calculation means for calculating a correction coefficient based on the standard stress and the actual work stress, a third storage means for storing the correction coefficient, and a standard Calculating means for calculating the corrected stress by correcting the standard stress of each part of the working machine when performing the standard work according to the operation pattern with the correction coefficient, and the strength evaluation of the working machine based on the calculated corrected stress. A strength evaluation device for a working machine, comprising: an evaluation means for calculating.
【請求項5】 標準動作パターンによる標準作業を行っ
たときの作業機各部の標準応力と実作業を行ったときの
作業機各部の実作業応力とに基づき算出された補正係数
に基づいて、標準動作パターンによる標準作業を行った
ときの作業機各部の標準応力を補正する手順と、 前記補正手順により補正された補正後応力に基づいて、
作業機の強度評価を演算する手順とをコンピュータで実
行して強度評価を行うためのプログラム。
5. A standard based on a correction coefficient calculated based on the standard stress of each part of the working machine when performing standard work according to the standard operation pattern and the actual work stress of each part of the working machine when performing actual work. Based on the procedure for correcting the standard stress of each part of the working machine when performing standard work according to the operation pattern, and the corrected stress corrected by the correction procedure,
A program for executing the procedure for calculating the strength evaluation of the working machine and the strength evaluation by the computer.
JP2001364305A 2001-11-29 2001-11-29 Work machine strength evaluation method, strength evaluation system, strength evaluation device, and program for strength evaluation Expired - Fee Related JP3768437B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001364305A JP3768437B2 (en) 2001-11-29 2001-11-29 Work machine strength evaluation method, strength evaluation system, strength evaluation device, and program for strength evaluation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001364305A JP3768437B2 (en) 2001-11-29 2001-11-29 Work machine strength evaluation method, strength evaluation system, strength evaluation device, and program for strength evaluation

Publications (2)

Publication Number Publication Date
JP2003166909A true JP2003166909A (en) 2003-06-13
JP3768437B2 JP3768437B2 (en) 2006-04-19

Family

ID=19174518

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001364305A Expired - Fee Related JP3768437B2 (en) 2001-11-29 2001-11-29 Work machine strength evaluation method, strength evaluation system, strength evaluation device, and program for strength evaluation

Country Status (1)

Country Link
JP (1) JP3768437B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010017610A (en) * 2008-07-08 2010-01-28 Ihi Corp Method of evaluating design strength of crushing mill
KR101058198B1 (en) * 2009-01-05 2011-08-22 성균관대학교산학협력단 Loading Automation Experiment Device of Wheel Loader
JP2014085293A (en) * 2012-10-26 2014-05-12 Sumitomo Heavy Ind Ltd Loading shovel management device, and loading shovel management method
CN109241608A (en) * 2018-08-31 2019-01-18 长安大学 Excavator turntable equivalent force time history obtains and method for sorting is composed in fatigue test
CN111582135A (en) * 2020-04-30 2020-08-25 中南大学 Excavator hand operation proficiency evaluation method and device based on working stage recognition
CN113190915A (en) * 2021-04-19 2021-07-30 东风柳州汽车有限公司 Vehicle strength evaluation method and system
CN114072654A (en) * 2019-07-12 2022-02-18 株式会社小松制作所 Evaluation system for work machine and evaluation method for work machine
WO2022071476A1 (en) * 2020-10-01 2022-04-07 日立建機株式会社 Working machine

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010017610A (en) * 2008-07-08 2010-01-28 Ihi Corp Method of evaluating design strength of crushing mill
KR101058198B1 (en) * 2009-01-05 2011-08-22 성균관대학교산학협력단 Loading Automation Experiment Device of Wheel Loader
JP2014085293A (en) * 2012-10-26 2014-05-12 Sumitomo Heavy Ind Ltd Loading shovel management device, and loading shovel management method
CN109241608A (en) * 2018-08-31 2019-01-18 长安大学 Excavator turntable equivalent force time history obtains and method for sorting is composed in fatigue test
CN109241608B (en) * 2018-08-31 2022-09-20 长安大学 Excavator turntable equivalent time history acquisition and fatigue test spectrum arrangement method
CN114072654A (en) * 2019-07-12 2022-02-18 株式会社小松制作所 Evaluation system for work machine and evaluation method for work machine
CN111582135A (en) * 2020-04-30 2020-08-25 中南大学 Excavator hand operation proficiency evaluation method and device based on working stage recognition
CN111582135B (en) * 2020-04-30 2023-05-16 中南大学 Excavator hand operation proficiency evaluation method and device based on working stage identification
WO2022071476A1 (en) * 2020-10-01 2022-04-07 日立建機株式会社 Working machine
CN113190915A (en) * 2021-04-19 2021-07-30 东风柳州汽车有限公司 Vehicle strength evaluation method and system

Also Published As

Publication number Publication date
JP3768437B2 (en) 2006-04-19

Similar Documents

Publication Publication Date Title
US7487066B2 (en) Classifying a work machine operation
Shi et al. Structural damage detection from modal strain energy change
US7953559B2 (en) Systems and methods for maintaining load histories
US7328625B2 (en) Systems and methods for determining fatigue life
JP5887405B2 (en) Stress calculation system for work machines
AU2006239171B2 (en) Systems and methods for maintaining load histories
JP5968189B2 (en) Excavator management apparatus and excavator management method
CN109918726B (en) Method for rapidly identifying abnormal state of mechanical structure and storage medium
CN111609805B (en) Tunnel structure state diagnosis method based on full-distribution strain measurement point section curvature
JP3842621B2 (en) Fatigue life evaluation system
CN111091310B (en) Excavation equipment health monitoring system and method
CN109406178A (en) Digger operating device equivalent force time history obtains and fatigue test spectrum arranges
US20230096788A1 (en) Boom monitoring method and system, and engineering machinery, and machine-readable storage medium
JP3768437B2 (en) Work machine strength evaluation method, strength evaluation system, strength evaluation device, and program for strength evaluation
Brasiliano et al. Damage identification in continuous beams and frame structures using the residual error method in the movement equation
Ganjdoust et al. A novel delamination damage detection strategy based on inverse finite element method for structural health monitoring of composite structures
CN114547725A (en) Intelligent underwater engineering structure detection method and system based on digital twins
KR20110005180A (en) System for structural health monitoring of each construction member, and method for the same
KR101212819B1 (en) Method for Decision of Optimal Sensor Placement
CN102998367B (en) Damage identification method based on virtual derivative structure
CN112182863A (en) Engineering machinery health monitoring method, residual life estimation method and system
JPH0350047B2 (en)
JPH06323962A (en) Fatigue strength evaluation device
Wickham et al. Integrating optimal experimental design into the design of a multi-axis load transducer
Zhao et al. A method for structural damage identification using residual force vector and mode shape expansion

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20040220

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20051216

Free format text: JAPANESE INTERMEDIATE CODE: A971007

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20060117

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060201

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees