WO2022071444A1 - Organic thin film to be used in photoelectric conversion element, and said photoelectric conversion element - Google Patents

Organic thin film to be used in photoelectric conversion element, and said photoelectric conversion element Download PDF

Info

Publication number
WO2022071444A1
WO2022071444A1 PCT/JP2021/035999 JP2021035999W WO2022071444A1 WO 2022071444 A1 WO2022071444 A1 WO 2022071444A1 JP 2021035999 W JP2021035999 W JP 2021035999W WO 2022071444 A1 WO2022071444 A1 WO 2022071444A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
substituted
photoelectric conversion
general formula
thin film
Prior art date
Application number
PCT/JP2021/035999
Other languages
French (fr)
Japanese (ja)
Inventor
大和 島
俊二 望月
直朗 樺澤
優太 三枝
Original Assignee
保土谷化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 保土谷化学工業株式会社 filed Critical 保土谷化学工業株式会社
Priority to JP2022554069A priority Critical patent/JPWO2022071444A1/ja
Priority to KR1020227044410A priority patent/KR20230078587A/en
Publication of WO2022071444A1 publication Critical patent/WO2022071444A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/56Ring systems containing three or more rings
    • C07D209/80[b, c]- or [b, d]-condensed
    • C07D209/82Carbazoles; Hydrogenated carbazoles
    • C07D209/86Carbazoles; Hydrogenated carbazoles with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to carbon atoms of the ring system
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/60Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation in which radiation controls flow of current through the devices, e.g. photoresistors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/81Electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K39/00Integrated devices, or assemblies of multiple devices, comprising at least one organic radiation-sensitive element covered by group H10K30/00
    • H10K39/30Devices controlled by radiation
    • H10K39/32Organic image sensors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/623Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing five rings, e.g. pentacene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the present invention relates to an organic thin film used for a photoelectric conversion element and a photoelectric conversion element thereof. Specifically, the present invention relates to an organic thin film containing a compound having an indenophenanthrene ring structure, and various photoelectric conversion elements using the organic thin film. In particular, it relates to an image pickup device.
  • Photoelectric conversion elements are widely used in, for example, solar cells and optical sensors.
  • the image sensor which is an image sensor, is expanding not only for TV cameras and cameras equipped with smartphones, but also for driving support systems and other applications and markets.
  • Inorganic materials such as Si film and Se film have been used as materials for conventional image sensors, and there are two imaging methods: a three-plate type that uses a prism to separate colors and a single-plate type that uses a color filter. It was mainstream. However, although the three-plate type has a high light utilization rate, it is difficult to miniaturize because it uses a prism, and the single-plate type is relatively easy to miniaturize because it does not use a prism, but because a color filter is used instead. The resolution and the utilization rate of light were poor (Non-Patent Document 1).
  • Non-Patent Document 2 Since organic matter absorbs light of a specific wavelength better than inorganic matter, an image sensor that can efficiently use each of the three primary colors without using a prism by combining materials suitable for each wavelength. Can be built. Therefore, the efficiency of light utilization is high, and it is possible to manufacture a small image sensor. In addition, there is a possibility of adding value such as flexibility and large area by coating in the manufacturing process, which cannot be achieved by inorganic substances (Non-Patent Document 2).
  • photoelectric conversion elements using organic substances are expected to be applied to next-generation image sensors, and several groups have reported.
  • a quinacdrine derivative or a quinazoline derivative is used in a photoelectric conversion element
  • Patent Document 2 an example in which a benzothiebenzothiophene derivative is used in a photoelectric conversion element
  • indrocarbazole is used in a photoelectric conversion element.
  • Patent Document 3 an example in which indrocarbazole is used in a photoelectric conversion element.
  • an organic image sensor is improved by aiming at reduction of dark current for the purpose of high contrast and power saving.
  • a method of inserting a hole block layer or an electron block layer between the photoelectric conversion unit and the electrode unit may be used.
  • the hole block layer and the electron block layer are methods generally used in the field of organic electronics, and are arranged at the interface between an electrode or a conductive film and another film in the constituent film of the device, respectively. It has the function of rapidly moving the required charge while controlling the reverse movement of holes or electrons.
  • thermal stability is one of the characteristics required for electron blocking materials.
  • the image sensor has higher thermal stability than other organic electronic devices because it is applied to manufacturing processes that have a heating process such as color filter installation, protective film installation, and element soldering, and is considered to improve storage stability. Desired.
  • Patent Document 4 reports that the thermal stability of a device is improved by using an electron blocking material having a glass transition temperature (Tg) of 140 ° C. or higher.
  • Tg glass transition temperature
  • the compound proposed here has a problem of a decrease in hole transport ability due to steric hindrance.
  • the present invention has been made in view of such a situation, and provides an organic thin film used for a photoelectric conversion element using a compound having excellent heat resistance and charge transport property, and uses the organic thin film. It is an object of the present invention to provide various photoelectric conversion elements, particularly an image pickup element, and an optical sensor using the same.
  • the present inventors have focused on the fact that a compound having an indenophenanthrene ring structure has high charge transportability and further excellent heat resistance, and aim to further improve the heat resistance.
  • an organic thin film containing a specific compound represented by the following general formula (1) solves the above-mentioned problems, and the present invention has been completed.
  • the present invention relates to the following items.
  • An organic thin film used for a photoelectric conversion element the organic thin film containing a compound having an indenophenanthrene ring structure represented by the following general formula (1).
  • A is a single-bonded, divalently substituted or unsubstituted aromatic hydrocarbon group, a divalent substituted or unsubstituted aromatic heterocyclic group, or a divalent substituted or unsubstituted condensed polycyclic aromatic group.
  • Ar 1 and Ar 2 may be the same or different from each other, and may be a substituted or unsubstituted aromatic hydrocarbon group, a substituted or unsubstituted aromatic heterocyclic group, or a substituted or unsubstituted condensed polycyclic aromatic group.
  • Ar 1 and Ar 2 may be bonded to each other via a single-bonded, substituted or unsubstituted methylene group, oxygen atom or sulfur atom to form a ring.
  • R 1 to R 11 may be the same or different from each other, and may have a hydrogen atom, a hydrocarbon atom, a fluorine atom, a chlorine atom, a cyano group, a nitro group, and a substituent, and have 1 to 6 carbon atoms.
  • a branched alkenyl group, a linear or branched alkyloxy group having 1 to 6 carbon atoms which may have a substituent, and a carbon atom having 5 to 10 which may have a substituent may have a substituent.
  • R 1 to R 11 may be bonded to each other via a single-bonded, substituted or unsubstituted methylene group, oxygen atom or sulfur atom to form a ring.
  • R 12 and R 13 may be the same or different from each other, and may have a substituent. Even if they have a linear or branched alkyl group having 1 to 6 carbon atoms and a substituent. A good cycloalkyl group having 5 to 10 carbon atoms, a linear or branched alkenyl group having 2 to 6 carbon atoms which may have a substituent, and a carbon atom which may have a substituent.
  • R 12 and R 13 may be bonded to each other via a single-bonded, substituted or unsubstituted methylene group, oxygen atom or sulfur atom to form a ring.
  • a and R 1 to R 13 are the same as the definitions of A and R 1 to R 13 in the general formula (1), and R 14 to R 21 are R 1 to R in the general formula (1). It is the same as the definition of 11. )
  • R 1 to R 13 are the same as the definitions of R 1 to R 13 in the general formula (1)
  • R 14 to R 20 are the definitions of R 1 to R 11 in the general formula (1).
  • Ar is the same as the definition of Ar 1 and Ar 2 in the general formula (1).
  • a photoelectric conversion element in which at least an anode, a buffer layer, a photoelectric conversion layer, and a cathode are laminated in this order, and a photoelectric conversion element having a layer made of an organic thin film according to any one of 1) to 3). ..
  • An image pickup device having the photoelectric conversion element according to any one of 4) to 6).
  • the organic thin film containing a compound having an indenophenanthrene ring structure represented by the general formula (1) of the present invention is an organic thin film having excellent heat resistance and charge transport property, and can be applied to various photoelectric conversion elements. Thereby, it is possible to provide a photoelectric conversion element having good dark current characteristics and conversion efficiency, particularly an image pickup element, and an optical sensor using the image pickup element.
  • the present invention is a photoelectric conversion element used for a photoelectric conversion element, which comprises an organic thin film containing a compound having an indenophenanthrene ring structure represented by the above general formula (1) and an organic thin film thereof.
  • divalent substituted or unsubstituted aromatic hydrocarbon group "divalent substituted or unsubstituted aromatic heterocyclic group”, or “divalent substituted or unsubstituted aromatic heterocyclic group” in the above general formula (1).
  • examples of the "divalent aromatic hydrocarbon group”, “divalent aromatic heterocyclic group” or “divalent condensed polycyclic aromatic group” in the "fused polycyclic aromatic group” include a phenylene group and a biphenylene group. Examples thereof include a terphenylene group, a naphthylene group, an anthrasenylene group, a thienylene group, a furanylene group and a phenanthrenylene group. Further, it is also possible to select from an arylene group having 6 to 30 carbon atoms and a heteroarylene group having 2 to 30 carbon atoms.
  • Substituted or unsubstituted aromatic hydrocarbon group "substituted or unsubstituted aromatic heterocyclic group”, or “substituted or unsubstituted condensed polycyclic aromatic group” in the above general formula (1).
  • aromatic hydrocarbon group “aromatic heterocyclic group” or “condensed polycyclic aromatic group” include phenyl group, biphenylyl group, turfenylyl group, naphthyl group, anthracenyl group, phenanthrenyl group, fluorenyl group and spirobiflu.
  • Olenyl group indenyl group, pyrenyl group, perylenyl group, fluoranthenyl group, triphenylenyl group, pyridyl group, pyrimidinyl group, triazinyl group, furyl group, pyrrolyl group, thienyl group, quinolyl group, isoquinolyl group, benzofuranyl group, benzothienyl group Group, indrill group, carbazolyl group, benzoxazolyl group, benzothiazolyl group, quinoxalinyl group, benzoimidazolyl group, pyrazolyl group, dibenzofuranyl group, dibenzothienyl group, naphthyldinyl group, phenanthrolinyl group, acridinyl group, carbolinyl group, etc. Can be mentioned. Further, it can be selected from an aryl group having 6 to 30 carbon atoms and a heteroaryl group having 2 to 30 carbon
  • a linear or branched alkyl group having 1 to 6 carbon atoms which may have a substituent and "the number of carbon atoms which may have a substituent 5".
  • the "alkyl group”, “cycloalkyl group having 5 to 10 carbon atoms", or “linear or branched alkenyl group having 2 to 6 carbon atoms” includes a methyl group, an ethyl group and an n-propyl group.
  • a linear or branched alkyloxy group having 1 to 6 carbon atoms which may have a substituent or "the number of carbon atoms which may have a substituent”.
  • the "linear or branched alkyloxy group having 1 to 6 carbon atoms” in “5 to 10 cycloalkyloxy groups” or the “cycloalkyloxy group having 5 to 10 carbon atoms” includes a methyloxy group.
  • Examples thereof include an oxy group, a 1-adamantyloxy group and a 2-adamantyloxy group.
  • the "aryloxy group" in the "substituted or unsubstituted aryloxy group” in the above general formula (1) includes a phenyloxy group, a biphenylyloxy group, a terphenylyloxy group, a naphthioxyl group, and an anthrasenyloxy group. And aryloxy groups having 6 to 30 carbon atoms such as phenylanthrenyloxy groups can be mentioned.
  • It has a "substituted aromatic hydrocarbon group", a “substituted aromatic heterocyclic group”, a “substituted condensed polycyclic aromatic group”, a “substituted methylene group” and a “substituted group” in the above general formula (1). It may have a linear or branched alkyl group having 1 to 6 carbon atoms, a cycloalkyl group having 5 to 10 carbon atoms which may have a substituent, and a substituent.
  • a linear or branched alkenyl group having 2 to 6 carbon atoms may be good, a "linear or branched alkyloxy group having 1 to 6 carbon atoms which may have a substituent", or
  • the "substituent" in the "cycloalkyloxy group having 5 to 10 carbon atoms which may have a substituent” includes a heavy hydrogen atom, a cyano group and a nitro group; a fluorine atom, a chlorine atom, a bromine atom and an iodine.
  • Halogen atoms such as atoms; Cyril groups such as trimethylsilyl group and triphenylsilyl group; Linear or branched alkyl groups having 1 to 6 carbon atoms such as methyl group, ethyl group and propyl group; methyloxy group and ethyloxy A linear or branched alkyloxy group having 1 to 6 carbon atoms such as a group and a propyloxy group; an alkenyl group such as a vinyl group and an allyl group; an aryloxy group such as a phenyloxy group and a trilloxy group; a benzyloxy group.
  • Aromatic hydrocarbon group such as tenyl group, triphenylenyl group or condensed polycyclic aromatic group; pyridyl group, thienyl group, frill group, pyrrolyl group, quinolyl group, isoquinolyl group, benzofuranyl group, benzothienyl group, indolyl group, carbazolyl group , Benzoxazolyl group, benzothiazolyl group, quinoxalinyl group, benzoimidazolyl group, pyrazolyl group, dibenzofuranyl group, dibenz
  • R 1 to R 11 in the above general formula (1) are hydrogen atoms because the synthesis is easy.
  • Ar 1 and Ar 2 are substituted or unsubstituted aromatic hydrocarbon groups, and R 12 and R 13 may have a substituent. It is preferably a linear or branched alkyl group having 1 to 6 atoms or a substituted or unsubstituted aromatic hydrocarbon group.
  • R 12 and R 13 may be bonded to each other via a single bond, substituted or unsubstituted methylene group, oxygen atom or sulfur atom to form a ring.
  • Ar 1 and Ar 2 in the above general formula (1) are substituted or unsubstituted aromatic hydrocarbon groups, and are simply used. Examples thereof include compounds which are bonded to each other via a bonded, substituted or unsubstituted methylene group, an oxygen atom or a sulfur atom to form a ring. In particular, compounds in which Ar 1 and Ar 2 are unsubstituted aromatic hydrocarbon groups and are bonded to each other via a single bond to form a ring are preferable.
  • Examples thereof include the compound represented by the above general formula (2).
  • the compound in which A in the general formula (2) is a single bond is preferable, and specifically, the exemplified compounds 1-16, 1-20, 1-39, 1-61, 1-62, 1-63 , 1-64, 1-65 and 1-66.
  • R 1 to R 13 in the general formula (2) are the same as the definitions of R 1 to R 13 in the general formula (1), and R 14 to R 21 are in the general formula (1). It is the same as the definition of R 1 to R 11 . That is, as all the substituents related to the general formula (2), the groups exemplified in the explanation of the general formula (1) can be mentioned.
  • R 12 and R 13 in the above general formula (2) may have a substituent in a linear or branched form having 1 to 6 carbon atoms. Is preferably an alkyl group or a substituted or unsubstituted aromatic hydrocarbon group, and more preferably a linear or branched alkyl group having 1 to 6 carbon atoms or an unsubstituted aromatic hydrocarbon group. It is preferably an unsubstituted aromatic hydrocarbon group, and particularly preferably.
  • R 12 and R 13 may be bonded to each other via a single bond, substituted or unsubstituted methylene group, oxygen atom or sulfur atom to form a ring.
  • R 1 to R 11 and R 14 to R 21 in the above general formula (2) are hydrogen atoms.
  • a in the above general formula (1) is a substituted or unsubstituted aromatic hydrocarbon group, and A and Ar 1 are used.
  • a compound in which A and Ar 2 are bonded to each other via a single bond to form a ring and examples of such a compound include a compound represented by the above general formula (3). More specifically, Exemplified Compounds 1-2, 1-6, 1-7, 1-12, 1-23, 1-25, 1-26, 1-31, 1-44, 1-47 and 1- 48 is mentioned.
  • Ar in the general formula (3) has the same definition as Ar 1 and Ar 2 in the general formula (1), and R 1 to R 13 are R 1 to R 13 in the general formula (1). It is the same as the definition, and R 14 to R 20 are the same as the definition of R 1 to R 11 in the above general formula (1). That is, as all the substituents related to the general formula (3), the groups exemplified in the above explanation of the general formula (1) can be mentioned.
  • Ar in the above general formula (3) is a substituted or unsubstituted aromatic hydrocarbon group, and an aryl group having 6 to 30 carbon atoms is used. It is more preferable to have an aryl group having 6 to 18 carbon atoms.
  • R 12 and R 13 in the above general formula (3) may have a substituent, and may have a linear or branched alkyl group having 1 to 6 carbon atoms, or a substituted or unsubstituted alkyl group. It is preferably an aromatic hydrocarbon group, and more preferably a linear or branched alkyl group having 1 to 6 carbon atoms or an unsubstituted aromatic hydrocarbon group.
  • R 12 and R 13 may be bonded to each other via a single bond, substituted or unsubstituted methylene group, oxygen atom or sulfur atom to form a ring.
  • R 1 to R 11 and R 14 to R 20 in the above general formula (3) are hydrogen atoms.
  • the above-mentioned compound having an indenophenanthrene ring structure can be synthesized according to a method known per se (for example, Patent Document 5).
  • Purification of these compounds can be performed by purification by column chromatography, adsorption purification with silica gel, activated charcoal, activated white clay, etc., recrystallization with a solvent, crystallization method, or the like.
  • Compound identification can be performed by NMR analysis.
  • As physical property values it is preferable to measure the glass transition point (Tg) and the work function.
  • the glass transition point (Tg) is an index of the stability of the thin film state
  • the work function is an index of the hole transport property.
  • the glass transition point (Tg) can be determined by a high-sensitivity differential scanning calorimeter (DSC3100SA, manufactured by Bruker AXS) using powder.
  • the work function can be obtained by forming a thin film of 100 nm on an ITO substrate and using an ionization potential measuring device (PYS-202, manufactured by Sumitomo Heavy Industries, Ltd.).
  • the compound having an indenophenanthrene ring structure represented by the above general formula (1) can form an organic thin film by a known method such as a vapor deposition method, a spin coating method and an inkjet method. Further, the compound having an indenophenanthrene ring structure represented by the general formula (1) may be formed alone, or a plurality of types may be mixed and formed. Further, it can be mixed with other compounds to form a film as long as the effect of the present invention is not impaired.
  • the organic thin film containing a compound having an indenophenanthrene ring structure represented by the above general formula (1) is suitable for use in a photoelectric conversion element, particularly an image pickup element.
  • the configuration of the photoelectric conversion element includes, for example, a first electrode (anode), a first buffer layer, a photoelectric conversion layer, and a second electrode (cathode) in this order, and the first buffer layer is represented by the above general formula (1).
  • Examples thereof include an organic thin film containing a compound having an indenophenanthrene ring structure.
  • it is possible to add layers, and for example, a configuration having a first electrode, a first buffer layer, a photoelectric conversion layer, a second buffer layer, and a second electrode can be used.
  • the organic thin film containing the compound having an indenophenanthrene ring structure represented by the general formula (1) can also be used for the photoelectric conversion layer.
  • the photoelectric conversion layer in the photoelectric conversion element of the present invention may be made of an organic material or an inorganic material, as long as it can generate a signal charge according to the amount of received light.
  • the organic semiconductor film may be one layer or a plurality of layers, and in the case of one layer, a p-type organic semiconductor film, an n-type organic semiconductor film, or a p-type organic.
  • a mixed film (bulk heterostructure) of a semiconductor and an n-type organic semiconductor is used.
  • the structure is such that any two or more of a p-type organic semiconductor film, an n-type organic semiconductor film, or a mixed film of a p-type organic semiconductor and an n-type organic semiconductor is laminated, and the layers are layers. It is also possible to insert a buffer layer in.
  • the photoelectric conversion element of the present invention is stable against a heat load by using a compound having an indenophenanthrene ring structure represented by the above general formula (1) in the organic thin film to be the first buffer layer contained in the element. Can be obtained.
  • the p-type organic semiconductor used in the photoelectric conversion layer is a donor organic semiconductor, and is a compound having a property of easily donating electrons represented mainly by a hole-transporting organic compound.
  • Examples of the p-type organic semiconductor include naphthalene derivatives, anthracene derivatives, phenanthrene derivatives, pyrene derivatives, perylene derivatives, tetracene derivatives, pentacene derivatives, quinacridone derivatives, chrysene derivatives, fluoranthene derivatives, phthalocyanine derivatives, subphthalocyanine derivatives, and heterocyclic compounds.
  • the n-type organic semiconductor used in the photoelectric conversion layer is an acceptor-type organic semiconductor, which is an organic compound having a property of easily accepting electrons, which is mainly represented by an electron-transporting organic compound. More specifically, it is the organic compound having the higher electron affinity when two kinds of organic compounds are brought into contact with each other. Therefore, as the n-type organic semiconductor, any organic compound can be used as long as it is an electron-accepting organic compound.
  • fused aromatic carbocyclic compounds naphthalene, anthracene, fullerene, phenanthrene, tetracene, pyrene, perylene, fluorantene, or derivatives thereof
  • 5- to 7-membered heterocyclic compounds containing nitrogen, oxygen, and sulfur atoms for example, fused aromatic carbocyclic compounds (naphthalene, anthracene, fullerene, phenanthrene, tetracene, pyrene, perylene, fluorantene, or derivatives thereof); 5- to 7-membered heterocyclic compounds containing nitrogen, oxygen, and sulfur atoms.
  • Examples thereof include a fluorene compound; a cyclopentadiene compound; a si
  • the anode and cathode may be any one using a conductive material generally used as an electrode, and examples thereof include metals, metal oxides, metal nitrides, metal boronides and organic conductive compounds, and mixtures thereof. Be done. Specific examples include conductive metal oxides such as tin oxide, zinc oxide, indium oxide, indium tin oxide (ITO), indium tin oxide (IZO), indium tungsten oxide (IWO), molybdenum oxide (MoO) and titanium oxide.
  • conductive metal oxides such as tin oxide, zinc oxide, indium oxide, indium tin oxide (ITO), indium tin oxide (IZO), indium tungsten oxide (IWO), molybdenum oxide (MoO) and titanium oxide.
  • Metal nitrides such as titanium oxide (TiN x Ox ) and titanium nitride (TiN); gold (Au), platinum (Pt), silver (Ag), chromium (Cr), nickel (Ni) and aluminum (Al). ), As well as mixtures or laminates of these metals and conductive metal oxides; organic conductive compounds such as polyaniline, polythiophene and polypyrrole, and laminates of these with ITO.
  • the second buffer layer may be inserted between the second electrode (cathode) and the photoelectric conversion layer, but the material used for this is a material whose work function value is larger than that used for the first buffer layer. Is preferable.
  • organic molecules and organic metal complexes containing a nitrogen-containing heterocycle such as pyridine, quinoline, acridine, indole, imidazole benzimidazole, and phenanthroline, and materials having less absorption in the visible light region are preferable.
  • fullerenes having absorption in the visible light region and derivatives thereof can also be used.
  • the reaction mixture was concentrated, ethyl acetate was added, and the mixture was separated.
  • the organic layer was washed with an aqueous solution of sodium thiosulfate and saturated brine, dehydrated with anhydrous sodium sulfate, and then concentrated under reduced pressure to obtain a crude product.
  • the crude product was purified by column chromatography (carrier: silica gel, eluent: chloroform / n-hexane), and 71.2 g (yield 96.1%) of a light purple powder of methyl 5-bromo-2-iodobenzoate was used.
  • the reaction solution was diluted with toluene and the insoluble material was removed by filtration.
  • the insoluble material was removed by filtration.
  • 11- (carbazole-9-yl) -13,13-diphenylindeno "1" , 2-I ”Phenanthrene (Compound 1-66) white powder 2.1 g (yield 40.0%) was obtained.
  • the glass transition temperature of compound (1-35) is 190 ° C., and the glass transition temperature of compound (1-66) is as high as 155 ° C., indicating that the thin film state is stable.
  • the glass transition temperature of compound (1-35) is higher than that of EBL-1, and by using compound (1-35) instead of EBL-1, a device with better thermal stability can be manufactured. Is.
  • the compound (1-35) of Example 1 shows a suitable energy level as compared with the work function of a hole transport material such as a carbazole compound, which is regarded as a suitable material, from 5.3 to 6.0 eV. It can be seen that it has a good hole transport capacity.
  • a hole transport material such as a carbazole compound, which is regarded as a suitable material
  • An ITO electrode was previously formed on a glass substrate as a transparent anode, and molybdenum oxide was formed as a hole injection layer to a thickness of 50 nm by a vacuum vapor deposition method.
  • the compound (1-35) of Example 1 was formed into a film by a vacuum vapor deposition method so as to have a diameter of 100 nm.
  • 100 nm of Al was vapor-deposited as a cathode to produce a hole-only element (HOD).
  • the compound (1-35) of Example 1 has suppressed decrease in mobility due to heating as compared with EBL-1. Even at the current density when -3V is applied, the leakage current of compound (1-35) is significantly suppressed as compared with EBL-1. This is because the compound having an indenophenanthrene ring structure has a good hole transporting ability and a higher glass transition temperature.
  • the organic thin film containing the compound having the indenophenanthrene ring structure represented by the general formula (1) of the present invention is an organic thin film having excellent heat resistance and charge transport property, and can be used for various photoelectric conversion elements. Applicable.
  • the photoelectric conversion element is formed by depositing a first buffer layer 3, a photoelectric conversion layer 4, and a metal cathode 5 in this order on a glass substrate 1 on which an ITO electrode is previously formed as a transparent anode 2. Made.
  • the glass substrate 1 on which ITO, which is a transparent anode 2, is formed is ultrasonically cleaned in isopropyl alcohol for 20 minutes, and then dried on a hot plate heated to 200 ° C. for 10 minutes. rice field. Then, after performing UV ozone treatment for 15 minutes, the glass substrate with ITO was mounted in a vacuum vapor deposition machine and the pressure was reduced to 0.0001 Pa or less. Subsequently, the compound (1-35) of Example 1 was deposited as the first buffer layer 3 so as to cover the transparent anode 2 so that the film thickness was 5 nm.
  • Two-way vapor deposition was performed at a thin-film deposition rate of 100 nm.
  • gold was formed on the photoelectric conversion layer 4 as a metal cathode 5 so as to have a film thickness of 100 nm.
  • the spectral sensitivity and bright current of the manufactured organic photoelectric conversion element were measured using a spectral sensitivity measuring device under the following measurement conditions.
  • the irradiation intensity at a specific wavelength at the time of measurement was calibrated using a Si photodiode (S1337-1010BQ, manufactured by Hamamatsu Photonics).
  • Si photodiode S1337-1010BQ, manufactured by Hamamatsu Photonics
  • the spectral radiation intensity to the photoelectric conversion element was set to zero, and the current value was measured under the same bias conditions.
  • Table 4 The measurement results are summarized in Table 4.
  • Example 3 For comparison, in Example 3, a photoelectric conversion element was produced in the same manner except that the EBL-1 was used instead of the compound (1-35) as the material of the first buffer layer 2, and the electrical characteristics were evaluated. bottom. The measurement results are summarized in Table 4.
  • the dark current of the element of Example 3 when a bias of -3V is applied is 1/40, which is significantly lower than that of the element of Comparative Example 1.
  • the conversion efficiency EQE when a bias of -3V is applied is 64%, which is 6% higher than that of Comparative Example 1 of 58%.
  • the device of Example 3 shows a lower dark current and a higher conversion efficiency EQE than the device of Comparative Example 1. This indicates that the dark current characteristics and conversion efficiency of the photoelectric conversion element can be significantly improved due to the high electron blocking property and good hole transport property of the compound having an indenophenanthrene ring structure.
  • the organic thin film of the present invention having high heat resistance and good charge mobility can be applied to various photoelectric conversion elements, a photoelectric conversion element having good dark current characteristics and conversion efficiency, particularly an image pickup element, and an image pickup element thereof are used. Can provide an optical sensor.

Abstract

The main purpose of the present invention is to provide: an organic thin film which utilizes a compound that has excellent heat resistance and charge transport properties, and which is applicable to various photoelectric conversion elements; a photoelectric conversion element which uses this organic thin film; and an imaging element. The present invention provides: an organic thin film which contains a compound that has an indenophenanthrene ring structure represented by general formula (1); and a photoelectric conversion element which uses this organic thin film. (In the formula, A represents a single bond, a divalent substituted or unsubstituted aromatic hydrocarbon group, or the like; each of Ar1 and Ar2 represents a substituted or unsubstituted aromatic hydrocarbon group or the like; each of R1 to R11 represents a hydrogen atom, an optionally substituted linear or branched alkyl group having from 1 to 6 carbon atoms, or the like; and each of R12 and R13 represents an optionally substituted linear or branched alkyl group having from 1 to 6 carbon atoms, a substituted or unsubstituted aromatic hydrocarbon group, or the like.)

Description

光電変換素子に用いる有機薄膜、及びその光電変換素子Organic thin films used for photoelectric conversion elements and their photoelectric conversion elements
 本発明は、光電変換素子に用いる有機薄膜、及びその光電変換素子に関するものであり、詳しくはインデノフェナントレン環構造を有する化合物を含有する有機薄膜、及びその有機薄膜を用いた各種の光電変換素子、特に撮像素子に関するものである。 The present invention relates to an organic thin film used for a photoelectric conversion element and a photoelectric conversion element thereof. Specifically, the present invention relates to an organic thin film containing a compound having an indenophenanthrene ring structure, and various photoelectric conversion elements using the organic thin film. In particular, it relates to an image pickup device.
 光電変換素子は、例えば太陽電池や光センサー等に広く利用されている。その中でも撮像素子であるイメージセンサーは、テレビカメラやスマートホン搭載のカメラだけでなく、運転支援システム用途にも用いられ始めるなど用途、市場共に広がりをみせている。 Photoelectric conversion elements are widely used in, for example, solar cells and optical sensors. Among them, the image sensor, which is an image sensor, is expanding not only for TV cameras and cameras equipped with smartphones, but also for driving support systems and other applications and markets.
 これまでの撮像素子の材料には、Si膜やSe膜といった無機材料が使用されており、その撮像方法としてはプリズムを用いて色を分ける3板式と、カラーフィルターを用いた単板式の2つが主流であった。しかし、3板式は光の利用率は高いものの、プリズムを使用するため小型化が難しく、単板式はプリズムを使用しないため小型化は比較的容易であるが、代わりにカラーフィルターを使用するため、解像度及び光の利用率が悪かった(非特許文献1)。 Inorganic materials such as Si film and Se film have been used as materials for conventional image sensors, and there are two imaging methods: a three-plate type that uses a prism to separate colors and a single-plate type that uses a color filter. It was mainstream. However, although the three-plate type has a high light utilization rate, it is difficult to miniaturize because it uses a prism, and the single-plate type is relatively easy to miniaturize because it does not use a prism, but because a color filter is used instead. The resolution and the utilization rate of light were poor (Non-Patent Document 1).
 有機物は無機物と比較して特定波長の光をよく吸収するため、それぞれの波長に合わせた材料を組み合わせることで、プリズムを使用せずとも3原色に対してそれぞれの光を効率よく利用できる撮像素子を構築することができる。そのため光の利用効率が高く、小型の撮像素子を作ることが可能となる。また、無機物では達成することのできない、フレキシブル性や作成プロセスにおいての塗布による大面積化といった価値を付加できる可能性がある(非特許文献2)。 Since organic matter absorbs light of a specific wavelength better than inorganic matter, an image sensor that can efficiently use each of the three primary colors without using a prism by combining materials suitable for each wavelength. Can be built. Therefore, the efficiency of light utilization is high, and it is possible to manufacture a small image sensor. In addition, there is a possibility of adding value such as flexibility and large area by coating in the manufacturing process, which cannot be achieved by inorganic substances (Non-Patent Document 2).
 このようなことから、有機物を用いた光電変換素子は、次世代の撮像素子への展開が期待されており、いくつかのグループから報告がなされている。例えばキナクドリン誘導体又はキナゾリン誘導体を光電変換素子に用いた例(特許文献1)、ベンゾチエベンゾチオフェン誘導体を光電変換素子に用いた例(特許文献2)、インドロカルバゾールを光電変換素子に用いた例(特許文献3)などがある。 For these reasons, photoelectric conversion elements using organic substances are expected to be applied to next-generation image sensors, and several groups have reported. For example, an example in which a quinacdrine derivative or a quinazoline derivative is used in a photoelectric conversion element (Patent Document 1), an example in which a benzothiebenzothiophene derivative is used in a photoelectric conversion element (Patent Document 2), and an example in which indrocarbazole is used in a photoelectric conversion element. (Patent Document 3) and the like.
 一般的に有機撮像素子は、高コントラスト化及び省電力化を目的として、暗電流の低減を目指すことによって性能が向上すると考えられている。暗電流の低減のため、光電変換部と電極部間に、正孔ブロック層又は電子ブロック層を挿入する手法が用いられることもある。 Generally, it is considered that the performance of an organic image sensor is improved by aiming at reduction of dark current for the purpose of high contrast and power saving. In order to reduce the dark current, a method of inserting a hole block layer or an electron block layer between the photoelectric conversion unit and the electrode unit may be used.
 正孔ブロック層及び電子ブロック層は、有機エレクトロニクス分野では一般的に使用される手法であり、それぞれデバイスの構成膜中において、電極又は導電性を有する膜と、それ以外の膜との界面に配置され、正孔又は電子の逆移動を制御しながら、必要な電荷は速やかに移動するという機能を有する。 The hole block layer and the electron block layer are methods generally used in the field of organic electronics, and are arranged at the interface between an electrode or a conductive film and another film in the constituent film of the device, respectively. It has the function of rapidly moving the required charge while controlling the reverse movement of holes or electrons.
 また、電子ブロッキング材料に求められる特性として熱安定性が挙げられる。特に撮像素子では、カラーフィルター設置、保護膜設置、素子のハンダ付け等、加熱工程を有する製造プロセスへの適用や保存性の向上を考慮するため、他の有機エレクトロニクスデバイスよりも高い熱安定性が求められる。特許文献4ではガラス転移温度(Tg)が140℃以上である電子ブロッキング材料を使用することで、素子の熱安定性が向上することを報告している。しかし、ここで提案された化合物には立体障害による正孔輸送能の低下の問題があった。 In addition, thermal stability is one of the characteristics required for electron blocking materials. In particular, the image sensor has higher thermal stability than other organic electronic devices because it is applied to manufacturing processes that have a heating process such as color filter installation, protective film installation, and element soldering, and is considered to improve storage stability. Desired. Patent Document 4 reports that the thermal stability of a device is improved by using an electron blocking material having a glass transition temperature (Tg) of 140 ° C. or higher. However, the compound proposed here has a problem of a decrease in hole transport ability due to steric hindrance.
特開2007-234651号公報Japanese Unexamined Patent Publication No. 2007-234651 特開2018-170487号公報Japanese Unexamined Patent Publication No. 2018-170487 US10886335US10886335 US9085537US90855537 US2020/0365813US2020 / 0365513
 本発明は、このような状況に鑑みてなされたものであり、優れた耐熱性及び電荷輸送性を持つ化合物を利用した、光電変換素子に用いる有機薄膜を提供すること、及びその有機薄膜を用いた各種の光電変換素子、特に撮像素子、及びこれを用いる光センサーを提供することを主目的とする。 The present invention has been made in view of such a situation, and provides an organic thin film used for a photoelectric conversion element using a compound having excellent heat resistance and charge transport property, and uses the organic thin film. It is an object of the present invention to provide various photoelectric conversion elements, particularly an image pickup element, and an optical sensor using the same.
 本発明者らは上記の目的を達成するために、インデノフェナントレン環構造を有する化合物が高い電荷輸送性を持ち、更に耐熱性に優れているということに着目し、さらなる耐熱性の向上を目指し、鋭意開発を行った結果、下記の一般式(1)で表される特定の化合物を含む有機薄膜が前記課題を解決するものであることを見出し、本発明を完成するに至った。 In order to achieve the above object, the present inventors have focused on the fact that a compound having an indenophenanthrene ring structure has high charge transportability and further excellent heat resistance, and aim to further improve the heat resistance. As a result of diligent development, it was found that an organic thin film containing a specific compound represented by the following general formula (1) solves the above-mentioned problems, and the present invention has been completed.
 すなわち本発明は、以下の各項に係るものである。
1)光電変換素子に用いる有機薄膜であり、前記有機薄膜は下記一般式(1)で表されるインデノフェナントレン環構造を有する化合物を含む有機薄膜。
That is, the present invention relates to the following items.
1) An organic thin film used for a photoelectric conversion element, the organic thin film containing a compound having an indenophenanthrene ring structure represented by the following general formula (1).
Figure JPOXMLDOC01-appb-C000004
(式中、Aは単結合、2価の置換若しくは無置換の芳香族炭化水素基、2価の置換若しくは無置換の芳香族複素環基又は2価の置換若しくは無置換の縮合多環芳香族基を表し、
 Ar及びArは、相互に同一でも異なってもよく、置換若しくは無置換の芳香族炭化水素基、置換若しくは無置換の芳香族複素環基又は置換若しくは無置換の縮合多環芳香族基を表し、
 A、Ar及びArは、単結合、置換若しくは無置換のメチレン基、酸素原子又は硫黄原子を介して互いに結合して環を形成してもよく、
 R~R11は、相互に同一でも異なってもよく、水素原子、重水素原子、フッ素原子、塩素原子、シアノ基、ニトロ基、置換基を有していてもよい炭素原子数1~6の直鎖状若しくは分岐状のアルキル基、置換基を有していてもよい炭素原子数5~10のシクロアルキル基、置換基を有していてもよい炭素原子数2~6の直鎖状若しくは分岐状のアルケニル基、置換基を有していてもよい炭素原子数1~6の直鎖状若しくは分岐状のアルキルオキシ基、置換基を有していてもよい炭素原子数5~10のシクロアルキルオキシ基、置換若しくは無置換の芳香族炭化水素基、置換若しくは無置換の芳香族複素環基、置換若しくは無置換の縮合多環芳香族基又は置換若しくは無置換のアリールオキシ基を表し、
 R~R11は、単結合、置換若しくは無置換のメチレン基、酸素原子又は硫黄原子を介して互いに結合して環を形成してもよく、
 R12及びR13は、相互に同一でも異なってもよく、置換基を有していてもよい炭素原子数1~6の直鎖状若しくは分岐状のアルキル基、置換基を有していてもよい炭素原子数5~10のシクロアルキル基、置換基を有していてもよい炭素原子数2~6の直鎖状若しくは分岐状のアルケニル基、置換基を有していてもよい炭素原子数1~6の直鎖状若しくは分岐状のアルキルオキシ基、置換基を有していてもよい炭素原子数5~10のシクロアルキルオキシ基、置換若しくは無置換の芳香族炭化水素基、置換若しくは無置換の芳香族複素環基、置換若しくは無置換の縮合多環芳香族基又は置換若しくは無置換のアリールオキシ基を表し、
 R12及びR13は、単結合、置換若しくは無置換のメチレン基、酸素原子又は硫黄原子を介して互いに結合して環を形成してもよい。)
Figure JPOXMLDOC01-appb-C000004
(In the formula, A is a single-bonded, divalently substituted or unsubstituted aromatic hydrocarbon group, a divalent substituted or unsubstituted aromatic heterocyclic group, or a divalent substituted or unsubstituted condensed polycyclic aromatic group. Represents the group
Ar 1 and Ar 2 may be the same or different from each other, and may be a substituted or unsubstituted aromatic hydrocarbon group, a substituted or unsubstituted aromatic heterocyclic group, or a substituted or unsubstituted condensed polycyclic aromatic group. Represent,
A, Ar 1 and Ar 2 may be bonded to each other via a single-bonded, substituted or unsubstituted methylene group, oxygen atom or sulfur atom to form a ring.
R 1 to R 11 may be the same or different from each other, and may have a hydrogen atom, a hydrocarbon atom, a fluorine atom, a chlorine atom, a cyano group, a nitro group, and a substituent, and have 1 to 6 carbon atoms. Linear or branched alkyl group, cycloalkyl group having 5 to 10 carbon atoms which may have a substituent, and linear chain having 2 to 6 carbon atoms which may have a substituent. Alternatively, a branched alkenyl group, a linear or branched alkyloxy group having 1 to 6 carbon atoms which may have a substituent, and a carbon atom having 5 to 10 which may have a substituent may have a substituent. Represents a cycloalkyloxy group, a substituted or unsubstituted aromatic hydrocarbon group, a substituted or unsubstituted aromatic heterocyclic group, a substituted or unsubstituted condensed polycyclic aromatic group or a substituted or unsubstituted aryloxy group.
R 1 to R 11 may be bonded to each other via a single-bonded, substituted or unsubstituted methylene group, oxygen atom or sulfur atom to form a ring.
R 12 and R 13 may be the same or different from each other, and may have a substituent. Even if they have a linear or branched alkyl group having 1 to 6 carbon atoms and a substituent. A good cycloalkyl group having 5 to 10 carbon atoms, a linear or branched alkenyl group having 2 to 6 carbon atoms which may have a substituent, and a carbon atom which may have a substituent. 1-6 linear or branched alkyloxy groups, 5-10 cycloalkyloxy groups optionally having substituents, substituted or unsubstituted aromatic hydrocarbon groups, substituted or absent Represents a substituted aromatic heterocyclic group, a substituted or unsubstituted fused polycyclic aromatic group or a substituted or unsubstituted aryloxy group.
R 12 and R 13 may be bonded to each other via a single-bonded, substituted or unsubstituted methylene group, oxygen atom or sulfur atom to form a ring. )
2)前記一般式(1)で表されるインデノフェナントレン環構造を有する化合物が、下記一般式(2)で表されるインデノフェナントレン環構造を有する化合物である、1)に記載の有機薄膜。 2) The organic thin film according to 1), wherein the compound having an indenophenanthrene ring structure represented by the general formula (1) is a compound having an indenophenanthrene ring structure represented by the following general formula (2). ..
Figure JPOXMLDOC01-appb-C000005
(式中、A及びR~R13は一般式(1)中のA及びR~R13の定義と同じであり、R14~R21は一般式(1)中のR~R11の定義と同じである。)
Figure JPOXMLDOC01-appb-C000005
(In the formula, A and R 1 to R 13 are the same as the definitions of A and R 1 to R 13 in the general formula (1), and R 14 to R 21 are R 1 to R in the general formula (1). It is the same as the definition of 11. )
3)前記一般式(1)で表されるインデノフェナントレン環構造を有する化合物が、下記一般式(3)で表されるインデノフェナントレン環構造を有する化合物である、1)に記載の有機薄膜。 3) The organic thin film according to 1), wherein the compound having an indenophenanthrene ring structure represented by the general formula (1) is a compound having an indenophenanthrene ring structure represented by the following general formula (3). ..
Figure JPOXMLDOC01-appb-C000006
(式中、R~R13は一般式(1)中のR~R13の定義と同じであり、R14~R20は一般式(1)中のR~R11の定義と同じであり、Arは一般式(1)中のAr及びArの定義と同じである。)
Figure JPOXMLDOC01-appb-C000006
(In the formula, R 1 to R 13 are the same as the definitions of R 1 to R 13 in the general formula (1), and R 14 to R 20 are the definitions of R 1 to R 11 in the general formula (1). It is the same, and Ar is the same as the definition of Ar 1 and Ar 2 in the general formula (1).)
4)少なくとも陽極とバッファ層と光電変換層と陰極とがこの順で積層される光電変換素子であり、1)~3)のいずれか1項に記載の有機薄膜からなる層を有する光電変換素子。 4) A photoelectric conversion element in which at least an anode, a buffer layer, a photoelectric conversion layer, and a cathode are laminated in this order, and a photoelectric conversion element having a layer made of an organic thin film according to any one of 1) to 3). ..
5)前記有機薄膜からなる層がバッファ層である、4)に記載の光電変換素子。 5) The photoelectric conversion element according to 4), wherein the layer made of the organic thin film is a buffer layer.
6)前記有機薄膜からなる層が光電変換層である、4)に記載の光電変換素子。 6) The photoelectric conversion element according to 4), wherein the layer made of the organic thin film is a photoelectric conversion layer.
7)4)~6)のいずれか1項に記載の光電変換素子を有する撮像素子。 7) An image pickup device having the photoelectric conversion element according to any one of 4) to 6).
 本発明の一般式(1)で表されるインデノフェナントレン環構造を有する化合物を含む有機薄膜は、優れた耐熱性及び電荷輸送性を持つ有機薄膜であり、各種の光電変換素子に適用できる。それにより、良い暗電流特性と変換効率を有する光電変換素子、特に撮像素子、及びこれを用いる光センサーを提供できる。 The organic thin film containing a compound having an indenophenanthrene ring structure represented by the general formula (1) of the present invention is an organic thin film having excellent heat resistance and charge transport property, and can be applied to various photoelectric conversion elements. Thereby, it is possible to provide a photoelectric conversion element having good dark current characteristics and conversion efficiency, particularly an image pickup element, and an optical sensor using the image pickup element.
本発明の光電変換素子の構成例である。This is a configuration example of the photoelectric conversion element of the present invention.
 本発明は、光電変換素子に用いる、上記一般式(1)で表されるインデノフェナントレン環構造を有する化合物を含む有機薄膜及びその有機薄膜を使用することを特徴とする光電変換素子である。 The present invention is a photoelectric conversion element used for a photoelectric conversion element, which comprises an organic thin film containing a compound having an indenophenanthrene ring structure represented by the above general formula (1) and an organic thin film thereof.
 上記一般式(1)中の「2価の置換若しくは無置換の芳香族炭化水素基」、「2価の置換若しくは無置換の芳香族複素環基」、又は「2価の置換若しくは無置換の縮合多環芳香族基」における「2価の芳香族炭化水素基」、「2価の芳香族複素環基」又は「2価の縮合多環芳香族基」としては、フェニレン基、ビフェニレン基、ターフェニレン基、ナフチレン基、アントラセニレン基、チエニレン基、フラニレン基及びフェナントレニレン基などを挙げることができる。さらに、炭素数6~30のアリーレン基及び炭素数2~30のヘテロアリーレン基から選択することもできる。 "Divalent substituted or unsubstituted aromatic hydrocarbon group", "divalent substituted or unsubstituted aromatic heterocyclic group", or "divalent substituted or unsubstituted aromatic heterocyclic group" in the above general formula (1). Examples of the "divalent aromatic hydrocarbon group", "divalent aromatic heterocyclic group" or "divalent condensed polycyclic aromatic group" in the "fused polycyclic aromatic group" include a phenylene group and a biphenylene group. Examples thereof include a terphenylene group, a naphthylene group, an anthrasenylene group, a thienylene group, a furanylene group and a phenanthrenylene group. Further, it is also possible to select from an arylene group having 6 to 30 carbon atoms and a heteroarylene group having 2 to 30 carbon atoms.
 上記一般式(1)中の「置換若しくは無置換の芳香族炭化水素基」、「置換若しくは無置換の芳香族複素環基」、又は「置換若しくは無置換の縮合多環芳香族基」における「芳香族炭化水素基」、「芳香族複素環基」又は「縮合多環芳香族基」としては、フェニル基、ビフェニリル基、ターフェニリル基、ナフチル基、アントラセニル基、フェナントレニル基、フルオレニル基、スピロビフルオレニル基、インデニル基、ピレニル基、ペリレニル基、フルオランテニル基、トリフェニレニル基、ピリジル基、ピリミジニル基、トリアジニル基、フリル基、ピロリル基、チエニル基、キノリル基、イソキノリル基、ベンゾフラニル基、ベンゾチエニル基、インドリル基、カルバゾリル基、ベンゾオキサゾリル基、ベンゾチアゾリル基、キノキサリニル基、ベンゾイミダゾリル基、ピラゾリル基、ジベンゾフラニル基、ジベンゾチエニル基、ナフチリジニル基、フェナントロリニル基、アクリジニル基及びカルボリニル基などを挙げることができる。さらに、炭素数6~30のアリール基及び炭素数2~30のヘテロアリール基から選択することもできる。 "Substituted or unsubstituted aromatic hydrocarbon group", "substituted or unsubstituted aromatic heterocyclic group", or "substituted or unsubstituted condensed polycyclic aromatic group" in the above general formula (1). Examples of the "aromatic hydrocarbon group", "aromatic heterocyclic group" or "condensed polycyclic aromatic group" include phenyl group, biphenylyl group, turfenylyl group, naphthyl group, anthracenyl group, phenanthrenyl group, fluorenyl group and spirobiflu. Olenyl group, indenyl group, pyrenyl group, perylenyl group, fluoranthenyl group, triphenylenyl group, pyridyl group, pyrimidinyl group, triazinyl group, furyl group, pyrrolyl group, thienyl group, quinolyl group, isoquinolyl group, benzofuranyl group, benzothienyl group Group, indrill group, carbazolyl group, benzoxazolyl group, benzothiazolyl group, quinoxalinyl group, benzoimidazolyl group, pyrazolyl group, dibenzofuranyl group, dibenzothienyl group, naphthyldinyl group, phenanthrolinyl group, acridinyl group, carbolinyl group, etc. Can be mentioned. Further, it can be selected from an aryl group having 6 to 30 carbon atoms and a heteroaryl group having 2 to 30 carbon atoms.
 上記一般式(1)中の「置換基を有していてもよい炭素原子数1~6の直鎖状若しくは分岐状のアルキル基」、「置換基を有していてもよい炭素原子数5~10のシクロアルキル基」又は「置換基を有していてもよい炭素原子数2~6の直鎖状若しくは分岐状のアルケニル基」における「炭素原子数1~6の直鎖状若しくは分岐状のアルキル基」、「炭素原子数5~10のシクロアルキル基」、又は「炭素原子数2~6の直鎖状若しくは分岐状のアルケニル基」としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、tert-ブチル基、n-ペンチル基、イソペンチル基、ネオペンチル基、n-ヘキシル基、シクロペンチル基、シクロヘキシル基、1-アダマンチル基、2-アダマンチル基、ビニル基、アリル基、イソプロペニル基及び2-ブテニル基などを挙げることができる。 In the above general formula (1), "a linear or branched alkyl group having 1 to 6 carbon atoms which may have a substituent" and "the number of carbon atoms which may have a substituent 5". A linear or branched alkenyl group having 1 to 6 carbon atoms in a "cycloalkyl group of ~ 10" or a "linear or branched alkenyl group having 2 to 6 carbon atoms which may have a substituent". The "alkyl group", "cycloalkyl group having 5 to 10 carbon atoms", or "linear or branched alkenyl group having 2 to 6 carbon atoms" includes a methyl group, an ethyl group and an n-propyl group. , Isopropyl group, n-butyl group, isobutyl group, tert-butyl group, n-pentyl group, isopentyl group, neopentyl group, n-hexyl group, cyclopentyl group, cyclohexyl group, 1-adamantyl group, 2-adamantyl group, vinyl Examples thereof include a group, an allyl group, an isopropenyl group and a 2-butenyl group.
 上記一般式(1)中の「置換基を有していてもよい炭素原子数1~6の直鎖状若しくは分岐状のアルキルオキシ基」又は「置換基を有していてもよい炭素原子数5~10のシクロアルキルオキシ基」における「炭素原子数1~6の直鎖状若しくは分岐状のアルキルオキシ基」又は「炭素原子数5~10のシクロアルキルオキシ基」としては、メチルオキシ基、エチルオキシ基、n-プロピルオキシ基、イソプロピルオキシ基、n-ブチルオキシ基、tert-ブチルオキシ基、n-ペンチルオキシ基、n-ヘキシルオキシ基、シクロペンチルオキシ基、シクロヘキシルオキシ基、シクロヘプチルオキシ基、シクロオクチルオキシ基、1-アダマンチルオキシ基及び2-アダマンチルオキシ基などを挙げることができる。 In the above general formula (1), "a linear or branched alkyloxy group having 1 to 6 carbon atoms which may have a substituent" or "the number of carbon atoms which may have a substituent". The "linear or branched alkyloxy group having 1 to 6 carbon atoms" in "5 to 10 cycloalkyloxy groups" or the "cycloalkyloxy group having 5 to 10 carbon atoms" includes a methyloxy group. Ethyloxy group, n-propyloxy group, isopropyloxy group, n-butyloxy group, tert-butyloxy group, n-pentyloxy group, n-hexyloxy group, cyclopentyloxy group, cyclohexyloxy group, cycloheptyloxy group, cyclooctyl Examples thereof include an oxy group, a 1-adamantyloxy group and a 2-adamantyloxy group.
 上記一般式(1)中の「置換若しくは無置換のアリールオキシ基」における「アリールオキシ基」としては、フェニルオキシ基、ビフェニリルオキシ基、ターフェニリルオキシ基、ナフチオキシル基、アントラセニルオキシ基及びフェナントレニルオキシ基などの炭素数6~30のアリールオキシ基を挙げることができる。 The "aryloxy group" in the "substituted or unsubstituted aryloxy group" in the above general formula (1) includes a phenyloxy group, a biphenylyloxy group, a terphenylyloxy group, a naphthioxyl group, and an anthrasenyloxy group. And aryloxy groups having 6 to 30 carbon atoms such as phenylanthrenyloxy groups can be mentioned.
 上記一般式(1)中の「置換芳香族炭化水素基」、「置換芳香族複素環基」、「置換縮合多環芳香族基」、「置換メチレン基」、「置換基を有していてもよい炭素原子数1~6の直鎖状若しくは分岐状のアルキル基」、「置換基を有していてもよい炭素原子数5~10のシクロアルキル基」、「置換基を有していてもよい炭素原子数2~6の直鎖状若しくは分岐状のアルケニル基」、「置換基を有していてもよい炭素原子数1~6の直鎖状若しくは分岐状のアルキルオキシ基」、又は「置換基を有していてもよい炭素原子数5~10のシクロアルキルオキシ基」における「置換基」としては、重水素原子、シアノ基、ニトロ基;フッ素原子、塩素原子、臭素原子、ヨウ素原子などのハロゲン原子;トリメチルシリル基、トリフェニルシリル基などのシリル基;メチル基、エチル基、プロピル基などの炭素原子数1~6の直鎖状若しくは分岐状のアルキル基;メチルオキシ基、エチルオキシ基、プロピルオキシ基などの炭素原子数1~6の直鎖状若しくは分岐状のアルキルオキシ基;ビニル基、アリル基などのアルケニル基;フェニルオキシ基、トリルオキシ基などのアリールオキシ基;ベンジルオキシ基、フェネチルオキシ基などのアリールアルキルオキシ基;フェニル基、ビフェニリル基、ターフェニリル基、ナフチル基、アントラセニル基、フェナントレニル基、フルオレニル基、スピロビフルオレニル基、インデニル基、ピレニル基、ペリレニル基、フルオランテニル基、トリフェニレニル基などの芳香族炭化水素基若しくは縮合多環芳香族基;ピリジル基、チエニル基、フリル基、ピロリル基、キノリル基、イソキノリル基、ベンゾフラニル基、ベンゾチエニル基、インドリル基、カルバゾリル基、ベンゾオキサゾリル基、ベンゾチアゾリル基、キノキサリニル基、ベンゾイミダゾリル基、ピラゾリル基、ジベンゾフラニル基、ジベンゾチエニル基、カルボリニル基などの芳香族複素環基を挙げることができ、これらの置換基は、更に前記例示した置換基で置換されていてもよい。 It has a "substituted aromatic hydrocarbon group", a "substituted aromatic heterocyclic group", a "substituted condensed polycyclic aromatic group", a "substituted methylene group" and a "substituted group" in the above general formula (1). It may have a linear or branched alkyl group having 1 to 6 carbon atoms, a cycloalkyl group having 5 to 10 carbon atoms which may have a substituent, and a substituent. A linear or branched alkenyl group having 2 to 6 carbon atoms may be good, a "linear or branched alkyloxy group having 1 to 6 carbon atoms which may have a substituent", or The "substituent" in the "cycloalkyloxy group having 5 to 10 carbon atoms which may have a substituent" includes a heavy hydrogen atom, a cyano group and a nitro group; a fluorine atom, a chlorine atom, a bromine atom and an iodine. Halogen atoms such as atoms; Cyril groups such as trimethylsilyl group and triphenylsilyl group; Linear or branched alkyl groups having 1 to 6 carbon atoms such as methyl group, ethyl group and propyl group; methyloxy group and ethyloxy A linear or branched alkyloxy group having 1 to 6 carbon atoms such as a group and a propyloxy group; an alkenyl group such as a vinyl group and an allyl group; an aryloxy group such as a phenyloxy group and a trilloxy group; a benzyloxy group. , Fenetyloxy group and other arylalkyloxy groups; phenyl group, biphenylyl group, terphenylyl group, naphthyl group, anthrasenyl group, phenanthrenyl group, fluorenyl group, spirobifluorenyl group, indenyl group, pyrenyl group, peryleneyl group, fluorane Aromatic hydrocarbon group such as tenyl group, triphenylenyl group or condensed polycyclic aromatic group; pyridyl group, thienyl group, frill group, pyrrolyl group, quinolyl group, isoquinolyl group, benzofuranyl group, benzothienyl group, indolyl group, carbazolyl group , Benzoxazolyl group, benzothiazolyl group, quinoxalinyl group, benzoimidazolyl group, pyrazolyl group, dibenzofuranyl group, dibenzothienyl group, carborinyl group and other aromatic heterocyclic groups, and these substituents are further added. It may be substituted with the above-exemplified substituent.
 本発明においては、合成が容易であることから、上記一般式(1)中のR~R11が水素原子であることが好ましい。 In the present invention, it is preferable that R 1 to R 11 in the above general formula (1) are hydrogen atoms because the synthesis is easy.
 また、耐熱性及び電荷移動度の観点から、Ar及びArが置換若しくは無置換の芳香族炭化水素基であることが好ましく、R12及びR13が置換基を有していてもよい炭素原子数1~6の直鎖状若しくは分岐状のアルキル基又は置換若しくは無置換の芳香族炭化水素基であることが好ましい。なお、R12及びR13は、単結合、置換若しくは無置換のメチレン基、酸素原子又は硫黄原子を介して互いに結合して環を形成してもよい。 Further, from the viewpoint of heat resistance and charge mobility, it is preferable that Ar 1 and Ar 2 are substituted or unsubstituted aromatic hydrocarbon groups, and R 12 and R 13 may have a substituent. It is preferably a linear or branched alkyl group having 1 to 6 atoms or a substituted or unsubstituted aromatic hydrocarbon group. In addition, R 12 and R 13 may be bonded to each other via a single bond, substituted or unsubstituted methylene group, oxygen atom or sulfur atom to form a ring.
 耐熱性及び電荷移動度の観点から、本発明における好ましい実施形態の一つとして、上記一般式(1)中のArとArが、置換若しくは無置換の芳香族炭化水素基であり、単結合、置換若しくは無置換のメチレン基、酸素原子又は硫黄原子を介して互いに結合して環を形成している化合物が挙げられる。特に、ArとArが、無置換の芳香族炭化水素基であり、単結合を介して互いに結合して環を形成している化合物が好ましい。 From the viewpoint of heat resistance and charge mobility, as one of the preferred embodiments of the present invention, Ar 1 and Ar 2 in the above general formula (1) are substituted or unsubstituted aromatic hydrocarbon groups, and are simply used. Examples thereof include compounds which are bonded to each other via a bonded, substituted or unsubstituted methylene group, an oxygen atom or a sulfur atom to form a ring. In particular, compounds in which Ar 1 and Ar 2 are unsubstituted aromatic hydrocarbon groups and are bonded to each other via a single bond to form a ring are preferable.
 上記一般式(1)中のAr及びArが置換若しくは無置換の芳香族炭化水素基であり、且つArとArが単結合を介して互いに結合して環を形成している化合物として、上記一般式(2)で表される化合物が挙げられる。特に、上記一般式(2)中のAが単結合である化合物が好ましく、具体的には、例示化合物1-16、1-20、1-39、1-61、1-62、1-63、1-64、1-65及び1-66が挙げられる。 A compound in which Ar 1 and Ar 2 in the above general formula (1) are substituted or unsubstituted aromatic hydrocarbon groups, and Ar 1 and Ar 2 are bonded to each other via a single bond to form a ring. Examples thereof include the compound represented by the above general formula (2). In particular, the compound in which A in the general formula (2) is a single bond is preferable, and specifically, the exemplified compounds 1-16, 1-20, 1-39, 1-61, 1-62, 1-63 , 1-64, 1-65 and 1-66.
 上記一般式(2)中のA及びR~R13は上記一般式(1)中のR~R13の定義と同じであり、R14~R21は上記一般式(1)中のR~R11の定義と同じである。すなわち、上記一般式(2)に係わる全ての置換基として、上記一般式(1)の説明で例示した基が挙げられる。 A and R 1 to R 13 in the general formula (2) are the same as the definitions of R 1 to R 13 in the general formula (1), and R 14 to R 21 are in the general formula (1). It is the same as the definition of R 1 to R 11 . That is, as all the substituents related to the general formula (2), the groups exemplified in the explanation of the general formula (1) can be mentioned.
 本発明においては、耐熱性及び移動度の観点から、上記一般式(2)中のR12及びR13が置換基を有していてもよい炭素原子数1~6の直鎖状若しくは分岐状のアルキル基又は置換若しくは無置換の芳香族炭化水素基であることが好ましく、炭素原子数1~6の直鎖状若しくは分岐状のアルキル基又は無置換の芳香族炭化水素基であることがより好ましく、無置換の芳香族炭化水素基であることが特に好ましい。なお、R12及びR13は、単結合、置換若しくは無置換のメチレン基、酸素原子又は硫黄原子を介して互いに結合して環を形成してもよい。 In the present invention, from the viewpoint of heat resistance and mobility, R 12 and R 13 in the above general formula (2) may have a substituent in a linear or branched form having 1 to 6 carbon atoms. Is preferably an alkyl group or a substituted or unsubstituted aromatic hydrocarbon group, and more preferably a linear or branched alkyl group having 1 to 6 carbon atoms or an unsubstituted aromatic hydrocarbon group. It is preferably an unsubstituted aromatic hydrocarbon group, and particularly preferably. In addition, R 12 and R 13 may be bonded to each other via a single bond, substituted or unsubstituted methylene group, oxygen atom or sulfur atom to form a ring.
 また、合成が容易であることから、上記一般式(2)中のR~R11及びR14~R21が水素原子であることが好ましい。 Further, since it is easy to synthesize, it is preferable that R 1 to R 11 and R 14 to R 21 in the above general formula (2) are hydrogen atoms.
 耐熱性及び電荷移動度の観点から、本発明における好ましい実施形態の一つとして、上記一般式(1)中のAが置換若しくは無置換の芳香族炭化水素基であり、AとArとが、又はAとArとが単結合を介して互いに結合して環を形成している化合物が挙げられ、このような化合物として上記一般式(3)で表される化合物が挙げられる。更に具体的には、例示化合物1-2、1-6、1-7、1-12、1-23、1-25、1-26、1-31、1-44、1-47及び1-48が挙げられる。 From the viewpoint of heat resistance and charge mobility, as one of the preferred embodiments of the present invention, A in the above general formula (1) is a substituted or unsubstituted aromatic hydrocarbon group, and A and Ar 1 are used. , Or a compound in which A and Ar 2 are bonded to each other via a single bond to form a ring, and examples of such a compound include a compound represented by the above general formula (3). More specifically, Exemplified Compounds 1-2, 1-6, 1-7, 1-12, 1-23, 1-25, 1-26, 1-31, 1-44, 1-47 and 1- 48 is mentioned.
 上記一般式(3)中のArは上記一般式(1)中のArとArの定義と同じであり、R~R13は上記一般式(1)中のR~R13の定義と同じであり、R14~R20は上記一般式(1)中のR~R11の定義と同じである。すなわち、一般式(3)に係わる全ての置換基として、上記一般式(1)の説明で例示した基が挙げられる。 Ar in the general formula (3) has the same definition as Ar 1 and Ar 2 in the general formula (1), and R 1 to R 13 are R 1 to R 13 in the general formula (1). It is the same as the definition, and R 14 to R 20 are the same as the definition of R 1 to R 11 in the above general formula (1). That is, as all the substituents related to the general formula (3), the groups exemplified in the above explanation of the general formula (1) can be mentioned.
 本発明においては、耐熱性及び電荷移動度の観点から、上記一般式(3)中のArが置換若しくは無置換の芳香族炭化水素基であることが好ましく、炭素数6~30のアリール基であることがより好ましく、特に炭素数6~18のアリール基であることが好ましい。 In the present invention, from the viewpoint of heat resistance and charge mobility, it is preferable that Ar in the above general formula (3) is a substituted or unsubstituted aromatic hydrocarbon group, and an aryl group having 6 to 30 carbon atoms is used. It is more preferable to have an aryl group having 6 to 18 carbon atoms.
 同様の観点から、上記一般式(3)中のR12及びR13が置換基を有していてもよい炭素原子数1~6の直鎖状若しくは分岐状のアルキル基又は置換若しくは無置換の芳香族炭化水素基であることが好ましく、炭素原子数1~6の直鎖状若しくは分岐状のアルキル基又は無置換の芳香族炭化水素基であることがより好ましい。なお、R12及びR13は、単結合、置換若しくは無置換のメチレン基、酸素原子又は硫黄原子を介して互いに結合して環を形成してもよい。 From the same viewpoint, R 12 and R 13 in the above general formula (3) may have a substituent, and may have a linear or branched alkyl group having 1 to 6 carbon atoms, or a substituted or unsubstituted alkyl group. It is preferably an aromatic hydrocarbon group, and more preferably a linear or branched alkyl group having 1 to 6 carbon atoms or an unsubstituted aromatic hydrocarbon group. In addition, R 12 and R 13 may be bonded to each other via a single bond, substituted or unsubstituted methylene group, oxygen atom or sulfur atom to form a ring.
 また、合成が容易であることから、上記一般式(3)中のR~R11及びR14~R20が水素原子であることが好ましい。 Further, since it is easy to synthesize, it is preferable that R 1 to R 11 and R 14 to R 20 in the above general formula (3) are hydrogen atoms.
 上記一般式(1)で表されるインデノフェナントレン環構造を有する化合物の中で、好ましい化合物の具体例を以下に示すが、本発明は、これらの化合物に限定されるものではない。 Specific examples of preferable compounds among the compounds having an indenophenanthrene ring structure represented by the above general formula (1) are shown below, but the present invention is not limited to these compounds.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
 上述したインデノフェナントレン環構造を有する化合物は、それ自体公知の方法に準じて合成することができる(例えば特許文献5)。 The above-mentioned compound having an indenophenanthrene ring structure can be synthesized according to a method known per se (for example, Patent Document 5).
 これらの化合物の精製は、カラムクロマトグラフィーによる精製、シリカゲル、活性炭、活性白土などによる吸着精製、溶媒による再結晶や晶析法などによって行うことができる。化合物の同定は、NMR分析によって行うことができる。物性値として、ガラス転移点(Tg)と仕事関数の測定を行うことが好ましい。ガラス転移点(Tg)は薄膜状態の安定性の指標となるものであり、仕事関数は正孔輸送性の指標となるものである。 Purification of these compounds can be performed by purification by column chromatography, adsorption purification with silica gel, activated charcoal, activated white clay, etc., recrystallization with a solvent, crystallization method, or the like. Compound identification can be performed by NMR analysis. As physical property values, it is preferable to measure the glass transition point (Tg) and the work function. The glass transition point (Tg) is an index of the stability of the thin film state, and the work function is an index of the hole transport property.
 ガラス転移点(Tg)は、粉体を用いて高感度示差走査熱量計(ブルカー・エイエックスエス製、DSC3100SA)によって求めることができる。 The glass transition point (Tg) can be determined by a high-sensitivity differential scanning calorimeter (DSC3100SA, manufactured by Bruker AXS) using powder.
 仕事関数は、ITO基板の上に100nmの薄膜を作製して、イオン化ポテンシャル測定装置(住友重機械工業株式会社製、PYS-202)によって求めることができる。 The work function can be obtained by forming a thin film of 100 nm on an ITO substrate and using an ionization potential measuring device (PYS-202, manufactured by Sumitomo Heavy Industries, Ltd.).
 上記一般式(1)で表されるインデノフェナントレン環構造を有する化合物は、蒸着法、スピンコート法及びインクジェット法などの公知の方法によって有機薄膜を形成することができる。また、上記一般式(1)で表されるインデノフェナントレン環構造を有する化合物は、単独で成膜してもよいが、複数種を混合して成膜することもできる。更に本発明の効果を損なわない範囲で、他の化合物と混合して成膜することもできる。 The compound having an indenophenanthrene ring structure represented by the above general formula (1) can form an organic thin film by a known method such as a vapor deposition method, a spin coating method and an inkjet method. Further, the compound having an indenophenanthrene ring structure represented by the general formula (1) may be formed alone, or a plurality of types may be mixed and formed. Further, it can be mixed with other compounds to form a film as long as the effect of the present invention is not impaired.
 上記一般式(1)で表されるインデノフェナントレン環構造を有する化合物を含む有機薄膜は、光電変換素子、特に撮像素子への使用に適している。光電変換素子の構成としては、例えば、順に第1電極(陽極)、第1バッファ層、光電変換層、第2電極(陰極)を有し、第1バッファ層が上記一般式(1)で表されるインデノフェナントレン環構造を有する化合物を含む有機薄膜である構成が挙げられる。このような多層構造においては層を追加することが可能であり、例えば、順に第1電極、第1バッファ層、光電変換層、第2バッファ層、第2電極を有する構成とすることもできる。また、上記一般式(1)で表されるインデノフェナントレン環構造を有する化合物を含む有機薄膜は、光電変換層に使用することもできる。 The organic thin film containing a compound having an indenophenanthrene ring structure represented by the above general formula (1) is suitable for use in a photoelectric conversion element, particularly an image pickup element. The configuration of the photoelectric conversion element includes, for example, a first electrode (anode), a first buffer layer, a photoelectric conversion layer, and a second electrode (cathode) in this order, and the first buffer layer is represented by the above general formula (1). Examples thereof include an organic thin film containing a compound having an indenophenanthrene ring structure. In such a multilayer structure, it is possible to add layers, and for example, a configuration having a first electrode, a first buffer layer, a photoelectric conversion layer, a second buffer layer, and a second electrode can be used. Further, the organic thin film containing the compound having an indenophenanthrene ring structure represented by the general formula (1) can also be used for the photoelectric conversion layer.
 本発明の光電変換素子における光電変換層は、有機材料からなるものでも無機材料からなるものでもよく、受光した光量に応じた信号電荷を発生することができればよい。光電変換層が有機材料からなる場合、その有機半導体膜は、一層であっても複数の層であってもよく、一層の場合はp型有機半導体膜、n型有機半導体膜、又はp型有機半導体とn型有機半導体との混合膜(バルクヘテロ構造)が用いられる。また、複数の層である場合は、p型有機半導体膜、n型有機半導体膜、又はp型有機半導体とn型有機半導体との混合膜のいずれか2つ以上を積層した構造であり、層間にバッファ層を挿入することも可能である。 The photoelectric conversion layer in the photoelectric conversion element of the present invention may be made of an organic material or an inorganic material, as long as it can generate a signal charge according to the amount of received light. When the photoelectric conversion layer is made of an organic material, the organic semiconductor film may be one layer or a plurality of layers, and in the case of one layer, a p-type organic semiconductor film, an n-type organic semiconductor film, or a p-type organic. A mixed film (bulk heterostructure) of a semiconductor and an n-type organic semiconductor is used. Further, in the case of a plurality of layers, the structure is such that any two or more of a p-type organic semiconductor film, an n-type organic semiconductor film, or a mixed film of a p-type organic semiconductor and an n-type organic semiconductor is laminated, and the layers are layers. It is also possible to insert a buffer layer in.
 本発明の光電変換素子は、素子に含まれる第1バッファ層となる有機薄膜に上記一般式(1)で表されるインデノフェナントレン環構造を有する化合物を用いることで、熱の負荷に対する安定性を得ることができる。 The photoelectric conversion element of the present invention is stable against a heat load by using a compound having an indenophenanthrene ring structure represented by the above general formula (1) in the organic thin film to be the first buffer layer contained in the element. Can be obtained.
 前記光電変換層に用いられるp型有機半導体は、ドナー性有機半導体であり、主に正孔輸送性の有機化合物に代表される電子を供与しやすい性質がある化合物である。上記p型有機半導体としては、例えば、ナフタレン誘導体、アントラセン誘導体、フェナントレン誘導体、ピレン誘導体、ペリレン誘導体、テトラセン誘導体、ペンタセン誘導体、キナクリドン誘導体、クリセン誘導体、フルオランテン誘導体、フタロシアニン誘導体、サブフタロシアニン誘導体、複素環化合物を配位子とする金属錯体、ベンゾチオフェン誘導体、ジナフトチエノチオフェン誘導体、ジアントラセノチエノチオフェン誘導体、ベンゾビスベンゾチオフェン誘導体、チエノビスベンゾチオフェン、ジベンゾチエノビスベンゾチオフェン誘導体、ジチエノベンゾジチオフェン誘導体、ジベンゾチエノジチオフェン誘導体、ベンゾジチオフェン誘導体、ナフトジチオフェン誘導体、アントラセノジチオフェン誘導体;テトラセノジチオフェン誘導体、ペンタセノジチオフェン誘導体に代表されるチエノアセン系材料;トリアリールアミン化合物、カルバゾール化合物といったアミン系誘導体;インデノカルバゾール誘導体などを挙げることができる。 The p-type organic semiconductor used in the photoelectric conversion layer is a donor organic semiconductor, and is a compound having a property of easily donating electrons represented mainly by a hole-transporting organic compound. Examples of the p-type organic semiconductor include naphthalene derivatives, anthracene derivatives, phenanthrene derivatives, pyrene derivatives, perylene derivatives, tetracene derivatives, pentacene derivatives, quinacridone derivatives, chrysene derivatives, fluoranthene derivatives, phthalocyanine derivatives, subphthalocyanine derivatives, and heterocyclic compounds. Metal complex with a ligand of, benzothiophene derivative, dinaphthothiophenophen derivative, dianthracenothienotiphene derivative, benzobisbenzothiophene derivative, thienovisbenzothiophene, dibenzothienobisbenzothiophene derivative, dithienobenzodithiophene derivative , Dibenzothienodithiophene derivative, benzodithiophene derivative, naphthodithiophene derivative, anthracenodithiophene derivative; thienoacene-based material typified by tetrasenodithiophene derivative, pentasenodithiophene derivative; triarylamine compound, carbazole compound, etc. Amine-based derivatives; indenocarbazole derivatives and the like can be mentioned.
 前記光電変換層に用いられるn型有機半導体は、アクセプター性有機半導体であり、主に電子輸送性の有機化合物に代表される電子を受容しやすい性質がある有機化合物である。更に詳しくは、2種の有機化合物を接触させたときに電子親和力の大きい方の有機化合物である。したがって、n型有機半導体は、電子受容性のある有機化合物であればいずれの有機化合物も使用可能である。例えば、縮合芳香族炭素環化合物(ナフタレン、アントラセン、フラーレン、フェナントレン、テトラセン、ピレン、ペリレン、フルオランテン、又はこれらの誘導体);窒素原子、酸素原子、硫黄原子を含有する5~7員のヘテロ環化合物(例えばピリジン、ピラジン、ピリミジン、ピリダジン、トリアジン、キノリン、キノキサリン、キナゾリン、フタラジン、シンノリン、イソキノリン、プテリジン、アクリジン、フェナジン、フェナントロリン、テトラゾール、ピラゾール、イミダゾール、チアゾール、オキサゾール、インダゾール、ベンズイミダゾール、ベンゾトリアゾール、ベンゾオキサゾール、ベンゾチアゾール、カルバゾール、プリン、トリアゾロピリダジン、トリアゾロピリミジン、テトラザインデン、オキサジアゾール、イミダゾピリジン、ピラリジン、ピロロピリジン、チアジアゾロピリジン、ジベンズアゼピン、トリベンズアゼピン等);ポリアリーレン化合物;フルオレン化合物;シクロペンタジエン化合物;シリル化合物;含窒素ヘテロ環化合物を配位子として有する金属錯体などが挙げられる。なお、これに限らず、上述のように、ドナー性有機化合物として用いた有機化合物よりも電子親和力の大きな有機化合物であればアクセプター性有機半導体として用いてよい。 The n-type organic semiconductor used in the photoelectric conversion layer is an acceptor-type organic semiconductor, which is an organic compound having a property of easily accepting electrons, which is mainly represented by an electron-transporting organic compound. More specifically, it is the organic compound having the higher electron affinity when two kinds of organic compounds are brought into contact with each other. Therefore, as the n-type organic semiconductor, any organic compound can be used as long as it is an electron-accepting organic compound. For example, fused aromatic carbocyclic compounds (naphthalene, anthracene, fullerene, phenanthrene, tetracene, pyrene, perylene, fluorantene, or derivatives thereof); 5- to 7-membered heterocyclic compounds containing nitrogen, oxygen, and sulfur atoms. (For example, pyridine, pyrazine, pyrimidine, pyridazine, triazine, quinoline, quinoxalin, quinazoline, phthalazine, cinnoline, isoquinoline, pteridine, aclysine, phenazine, phenanthroline, tetrazole, pyrazole, imidazole, thiazole, oxazole, indazole, benzimidazole, benzotriazole, Benzoxazole, benzothiazole, carbazole, purine, triazolopyridazine, triazolopyrimidine, tetrazyneden, oxadiazol, imidazolepyridine, pyrazine, pyrrolopyridine, thiadiazolopyridine, dibenzazepine, tribenzazepine, etc.); Examples thereof include a fluorene compound; a cyclopentadiene compound; a silyl compound; a metal complex having a nitrogen-containing heterocyclic compound as a ligand. Not limited to this, as described above, any organic compound having a higher electron affinity than the organic compound used as the donor organic compound may be used as the acceptor organic semiconductor.
 陽極、陰極としては、一般に電極として用いられている導電材料を用いたものであればよく、金属、金属酸化物、金属窒化物、金属硼化物及び有機導電性化合物、並びにこれらの混合物などが挙げられる。具体例としては、酸化錫、酸化亜鉛、酸化インジウム、酸化インジウム錫(ITO)、酸化インジウム亜鉛(IZO)、酸化インジウムタングステン(IWO)、酸化モリブデン(MoO)及び酸化チタンなどの導電性金属酸化物;酸化窒化チタン(TiN)及び窒化チタン(TiN)などの金属窒化物;金(Au)、白金(Pt)、銀(Ag)、クロム(Cr)、ニッケル(Ni)及びアルミニウム(Al)などの金属、並びにこれらの金属と導電性金属酸化物との混合物又は積層物;ポリアニリン、ポリチオフェン及びポリピロール等の有機導電性化合物、並びにこれらとITOとの積層物などが挙げられる。 The anode and cathode may be any one using a conductive material generally used as an electrode, and examples thereof include metals, metal oxides, metal nitrides, metal boronides and organic conductive compounds, and mixtures thereof. Be done. Specific examples include conductive metal oxides such as tin oxide, zinc oxide, indium oxide, indium tin oxide (ITO), indium tin oxide (IZO), indium tungsten oxide (IWO), molybdenum oxide (MoO) and titanium oxide. Metal nitrides such as titanium oxide (TiN x Ox ) and titanium nitride (TiN); gold (Au), platinum (Pt), silver (Ag), chromium (Cr), nickel (Ni) and aluminum (Al). ), As well as mixtures or laminates of these metals and conductive metal oxides; organic conductive compounds such as polyaniline, polythiophene and polypyrrole, and laminates of these with ITO.
 第2バッファ層が第2電極(陰極)と光電変換層との間に挿入されてもよいが、これに用いられる材料としては、仕事関数の値が第1バッファ層に用いられる材料より大きい材料が好ましい。例えば、ピリジン、キノリン、アクリジン、インドール、イミダゾールベンズイミダゾール、フェナントロリンのような含窒素複素環を含む有機分子及び有機金属錯体で、更に可視光領域の吸収が少ない材料が好ましい。また、5nmから20nm程度の薄膜で形成する場合には可視光領域に吸収を有するフラーレン及びその誘導体などを用いることもできる。 The second buffer layer may be inserted between the second electrode (cathode) and the photoelectric conversion layer, but the material used for this is a material whose work function value is larger than that used for the first buffer layer. Is preferable. For example, organic molecules and organic metal complexes containing a nitrogen-containing heterocycle such as pyridine, quinoline, acridine, indole, imidazole benzimidazole, and phenanthroline, and materials having less absorption in the visible light region are preferable. Further, in the case of forming with a thin film having a thickness of about 5 nm to 20 nm, fullerenes having absorption in the visible light region and derivatives thereof can also be used.
 以下、本発明の実施の形態について、実施例により具体的に説明するが、本発明は、以下の実施例に限定されるものではない。 Hereinafter, embodiments of the present invention will be specifically described with reference to Examples, but the present invention is not limited to the following Examples.
[実施例1]
<11-(3,6-ジフェニルカルバゾール-9-イル)-13,13-ジフェニルインデノ[1,2-I]フェナントレン(化合物1-35)の合成>
 窒素置換した反応容器に、3-ブロモアントラニル酸メチル50.0g、p-トルエンスルホン酸水和物124.0g、アセトニトリル500mlを加え、0℃まで冷却した。亜硝酸ナトリウム22.5gを加え、1時間攪拌し、ヨウ化カリウム72.2gを加えたのち、室温で攪拌した。反応液を濃縮し、酢酸エチルを加え、分液した。有機層をチオ硫酸ナトリウム水溶液、飽和食塩水で洗浄し、無水硫酸ナトリウムで脱水したのち、減圧下で濃縮することによって粗製物を得た。粗製物をカラムクロマトグラフィー(担体:シリカゲル、溶離液:クロロホルム/n-ヘキサン)によって精製し、5-ブロモ-2-ヨード安息香酸メチルの淡紫色粉体71.2g(収率96.1%)を得た。
[Example 1]
<Synthesis of 11- (3,6-diphenylcarbazole-9-yl) -13,13-diphenylindeno [1,2-I] phenanthrene (Compound 1-35)>
To the nitrogen-substituted reaction vessel, 50.0 g of methyl 3-bromoanthranilate, 124.0 g of p-toluenesulfonic acid hydrate, and 500 ml of acetonitrile were added, and the mixture was cooled to 0 ° C. 22.5 g of sodium nitrite was added, and the mixture was stirred for 1 hour. After adding 72.2 g of potassium iodide, the mixture was stirred at room temperature. The reaction mixture was concentrated, ethyl acetate was added, and the mixture was separated. The organic layer was washed with an aqueous solution of sodium thiosulfate and saturated brine, dehydrated with anhydrous sodium sulfate, and then concentrated under reduced pressure to obtain a crude product. The crude product was purified by column chromatography (carrier: silica gel, eluent: chloroform / n-hexane), and 71.2 g (yield 96.1%) of a light purple powder of methyl 5-bromo-2-iodobenzoate was used. Got
 窒素置換した反応容器に、9-ブロモフェナントレン50.0g、ビスピナコラートジボロン54.3g、酢酸カリウム28.6g、1,4-ジオキサン500mlを加え、窒素バブリングしたのち、1,1’-ビス(ジフェニルホスフィノ)フェロセンジクロロパラジウム(II)ジクロロメタン付加物1.59gを加え、90℃で6.5時間攪拌した。反応液を濃縮し、トルエン及び水を加えて80℃で攪拌し、ろ過助剤を用いて熱ろ過したのち、ろ液を分液した。有機層を飽和食塩水で洗浄し、無水硫酸ナトリウムで脱水後ろ過し、ろ液にシリカゲルを加え吸着精製した。ろ過後、ろ液を濃縮したのち、n-ヘキサンを加えて再結晶することで、9-(4,4,5,5-テトラメチル-[1,3,2]ジオキサボラン-2-イル)フェナントレンの白色固体39.4g(収率66.6%)を得た。 To a reaction vessel substituted with nitrogen, 50.0 g of 9-bromophenanthrene, 54.3 g of bispinacholate diboron, 28.6 g of potassium acetate and 500 ml of 1,4-dioxane were added, nitrogen bubbling was performed, and then 1,1'-bis. 1.59 g of (diphenylphosphino) ferrocene dichloropalladium (II) dichloromethane adduct was added, and the mixture was stirred at 90 ° C. for 6.5 hours. The reaction mixture was concentrated, toluene and water were added, the mixture was stirred at 80 ° C., and the filtrate was hot-filtered using a filtration aid, and then the filtrate was separated. The organic layer was washed with saturated brine, dehydrated with anhydrous sodium sulfate, filtered, and silica gel was added to the filtrate for adsorption and purification. After filtration, the filtrate is concentrated, and then n-hexane is added to recrystallize the 9- (4,4,5,5-tetramethyl- [1,3,2] dioxaboran-2-yl) phenanthrene. 39.4 g (yield 66.6%) of the white solid was obtained.
 得られた5-ブロモ-2-ヨード安息香酸メチル52.4gと、9-(4,4,5,5-テトラメチル-[1,3,2]ジオキサボラン-2-イル)フェナントレン39.0g、炭酸カリウム26.6g、トルエン312ml、水117ml、エタノール156mlを反応容器に加え、窒素バブリングしたのち、テトラキス(トリフェニルホスフィン)パラジウム0.26gを加えて加熱し、73℃で20時間攪拌した。反応液を分液後、有機層を飽和食塩水で洗浄し、無水硫酸マグネシウムで脱水した。ろ過後、ろ液を濃縮し、カラムクロマトグラフィー(担体:シリカゲル、溶離液:クロロホルム/n-ヘキサン)によって精製し、5-ブロモ-2-(9-フェナントレニル)安息香酸メチルの白色粉体33.6g(収率67.0%)を得た。 52.4 g of the obtained methyl 5-bromo-2-iodobenzoate and 39.0 g of 9- (4,4,5,5-tetramethyl- [1,3,2] dioxaboran-2-yl) phenanthrene, 26.6 g of potassium carbonate, 312 ml of toluene, 117 ml of water, and 156 ml of ethanol were added to the reaction vessel, nitrogen bubbling was performed, 0.26 g of tetrakis (triphenylphosphine) palladium was added, and the mixture was heated and stirred at 73 ° C. for 20 hours. After separating the reaction solution, the organic layer was washed with saturated brine and dehydrated with anhydrous magnesium sulfate. After filtration, the filtrate is concentrated, purified by column chromatography (carrier: silica gel, eluent: chloroform / n-hexane), and white powder of 5-bromo-2- (9-phenanthrenyl) methyl benzoate 33. 6 g (yield 67.0%) was obtained.
 ブロモベンゼン14.4gをテトラヒドロフラン150mlに溶解させ、-70℃でn-ブチルリチウム(1.6M)を滴下したのち、5-ブロモ-2-(9-フェナントレニル)安息香酸メチル13.8gを加え、室温で18時間攪拌した。水を加えたのち、トルエンを加え分液した。有機層に無水硫酸ナトリウムを加え脱水したのちろ過し、ろ液を濃縮し、n-ヘキサンを加えて固体を析出させてろ過した。得られた固体を酢酸エチル/n-ヘキサンを用いて再結晶させることで、[5-ブロモ-2-(9-フェナントレニル)フェニル]ジフェニルメタノールの白色粉体11.1g(収率61.2%)を得た。 14.4 g of bromobenzene was dissolved in 150 ml of tetrahydrofuran, n-butyllithium (1.6 M) was added dropwise at −70 ° C., and then 13.8 g of methyl 5-bromo-2- (9-phenanthrenyl) benzoate was added. The mixture was stirred at room temperature for 18 hours. After adding water, toluene was added to separate the liquids. Anhydrous sodium sulfate was added to the organic layer to dehydrate the mixture, and the mixture was filtered. The filtrate was concentrated, and n-hexane was added to precipitate a solid, which was then filtered. By recrystallizing the obtained solid with ethyl acetate / n-hexane, 11.1 g (yield 61.2%) of white powder of [5-bromo-2- (9-phenanthrenyl) phenyl] diphenylmethanol was obtained. ) Was obtained.
 得られた[5-ブロモ-2-(9-フェナントレニル)フェニル]ジフェニルメタノール13.3gと、酢酸130ml、35%塩酸4mlを反応容器に加え、110℃で3時間攪拌した。室温まで放冷したのち、メタノールと水で洗浄しながらろ過した。得られた固体に対して、メタノールと水で還流分散洗浄を行い、ろ過することで、11-ブロモ-13,13-ジフェニルインデノ[1,2-I]フェナントレンの白色粉体12.4g(収率96.5%)を得た。 13.3 g of the obtained [5-bromo-2- (9-phenanthrenyl) phenyl] diphenylmethanol, 130 ml of acetic acid and 4 ml of 35% hydrochloric acid were added to the reaction vessel, and the mixture was stirred at 110 ° C. for 3 hours. After allowing to cool to room temperature, the mixture was filtered while being washed with methanol and water. The obtained solid was reflux-dispersed and washed with methanol and water, and filtered to obtain 12.4 g of white powder of 11-bromo-13,13-diphenylindeno [1,2-I] phenanthrene (12.4 g). Yield 96.5%) was obtained.
 得られた11-ブロモ-13,13-ジフェニルインデノ[1,2-I]フェナントレン5.50g、3,6-ジフェニルカルバゾール3.53g、炭酸カリウム2.29g、銅粉0.035g、3,5-ジ-t-ブチルサリチル酸0.14g、ドデシルベンゼン30mlを窒素置換した反応容器に加え、210℃で27時間攪拌した。反応液をトルエンで希釈し、ろ過により不溶物を除去した。ろ液を濃縮し、n-ヘキサンを加えて析出した固体をろ過によって採取し、トルエンで再結晶を1回、トルエン/メタノールで再結晶を1回それぞれ実施することによって、11-(3,6-ジフェニルカルバゾール-9-イル)-13,13-ジフェニルインデノ[1,2-I]フェナントレン(化合物1-35)の白色粉体2.68g(収率32.9%)を得た。 The obtained 11-bromo-13,13-diphenylindeno [1,2-I] phenanthrene [1,2-I] phenanthrene 5.50 g, 3,6-diphenylcarbazole 3.53 g, potassium carbonate 2.29 g, copper powder 0.035 g, 3, 0.14 g of 5-di-t-butylsalicylic acid and 30 ml of dodecylbenzene were added to the reaction vessel substituted with nitrogen, and the mixture was stirred at 210 ° C. for 27 hours. The reaction solution was diluted with toluene and the insoluble material was removed by filtration. The filtrate was concentrated, n-hexane was added, and the precipitated solid was collected by filtration, and recrystallized once with toluene and once with toluene / methanol, thereby 11- (3, 6). -Diphenylcarbazole-9-yl) -13,13-diphenylindeno [1,2-I] Phenanthrene (Compound 1-35) was obtained as a white powder of 2.68 g (yield 32.9%).
 得られた白色粉体についてNMRを使用して構造を同定した。
 H-NMR(CDCl)で以下の37個の水素のシグナルを検出した。
δ(ppm) 9.08-9.06(1H)、8.91-8.89(1H)、8.79-8.77(1H)、8.69-8.66(1H)、8.37(2H)、7.89-7.77(4H)、7.73-7.70(5H)、7.63-7.55(3H)、7.50-7.33(13H)、7.26-7.19(6H)。
The structure of the obtained white powder was identified using NMR.
1 The following 37 hydrogen signals were detected by 1 H-NMR (CDCl 3 ).
δ (ppm) 9.08-9.06 (1H), 8.91-8.89 (1H), 8.79-8.77 (1H), 8.69-8.66 (1H), 8. 37 (2H), 7.89-7.77 (4H), 7.73-7.70 (5H), 7.63-7.55 (3H), 7.50-7.33 (13H), 7 .26-7.19 (6H).
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
[実施例2]
<11-(カルバゾール-9-イル)-13,13-ジフェニルインデノ「1,2-I」フェナントレン(化合物1-66)の合成>
 11-ブロモ-13,13-ジフェニルインデノ「1,2-I」フェナントレン4.48gとカルバゾール1.50g、炭酸カリウム1.87g、銅粉0.057g、3,5-ジ-t-ブチルサリチル酸0.22g、亜硫酸水素ナトリウム0.19g、ドデシルベンゼン10mlを窒素置換した反応容器に加え、220℃で7時間攪拌した。反応液をトルエンで希釈し、ろ過により不溶物を除去した。ろ液を濃縮し、アセトンを加えて析出した固体をろ過によって採取し、トルエン/メタノールで再結晶を実施することによって、11-(カルバゾール-9-イル)-13,13-ジフェニルインデノ「1,2-I」フェナントレン(化合物1-66)の白色粉体2.1g(収率40.0%)を得た。
[Example 2]
<Synthesis of 11- (carbazole-9-yl) -13,13-diphenylindeno "1,2-I" phenanthrene (Compound 1-66)>
11-bromo-13,13-diphenylindeno "1,2-I" phenanthrene 4.48 g and carbazole 1.50 g, potassium carbonate 1.87 g, copper powder 0.057 g, 3,5-di-t-butylsalicylic acid 0.22 g, 0.19 g of sodium hydrogen sulfite and 10 ml of dodecylbenzene were added to the reaction vessel substituted with nitrogen, and the mixture was stirred at 220 ° C. for 7 hours. The reaction solution was diluted with toluene and the insoluble material was removed by filtration. By concentrating the filtrate, adding acetone, collecting the precipitated solid by filtration, and performing recrystallization with toluene / methanol, 11- (carbazole-9-yl) -13,13-diphenylindeno "1" , 2-I ”Phenanthrene (Compound 1-66) white powder 2.1 g (yield 40.0%) was obtained.
 得られた白色粉体についてNMRを使用して構造を同定した。
 H-NMR(CDCl)で以下の29個の水素のシグナルを検出した。
δ(ppm) 9.04-9.03(1H)、8.86-8.84(1H)、8.74-8.73(1H)、8.63-8.61(1H)、8.11-8.10(2H)、7.88-7.86(1H)、7.83-7.80(1H)、7.77-7.73(2H)、7.66-7.64(1H)、7.54-7.51(1H)、7.43-7.42(4H)、7.35-7.32(5H)、7.26-7.16(8H)。
The structure of the obtained white powder was identified using NMR.
1 The following 29 hydrogen signals were detected by 1 H-NMR (CDCl 3 ).
δ (ppm) 9.04-9.03 (1H), 8.86-8.84 (1H), 8.74-8.73 (1H), 8.63-8.61 (1H), 8. 11-8.10 (2H), 7.88-7.86 (1H), 7.83-7.80 (1H), 7.77-7.73 (2H), 7.66-7.64 ( 1H), 7.54-7.51 (1H), 7.43-7.42 (4H), 7.35-7.32 (5H), 7.26-7.16 (8H).
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
<ガラス転移温度の測定>
 実施例1の化合物(1-35)及び実施例2の化合物(1-66)を高感度示差走査熱量計(ブルカー・エイエックスエス製、DSC3100SA)によってガラス転移温度を測定した。また高ガラス転移温度の化合物である下記構造のEBL-1(特許文献1を参照)も同様手法で測定を行った。測定したガラス転移温度の結果を表1にまとめて示す。
<Measurement of glass transition temperature>
The glass transition temperature of the compound (1-35) of Example 1 and the compound (1-66) of Example 2 was measured by a high-sensitivity differential scanning calorimeter (DSC3100SA, manufactured by Bruker AXS). Further, EBL-1 (see Patent Document 1) having the following structure, which is a compound having a high glass transition temperature, was also measured by the same method. The results of the measured glass transition temperature are summarized in Table 1.
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000016
 化合物(1-35)のガラス転移温度は190℃であり、化合物(1-66)のガラス転移温度は155℃と高い値が得られ、薄膜状態が安定であることを示している。また化合物(1-35)のガラス転移温度はEBL-1と比較しても高く、EBL-1の代わりに化合物(1-35)を用いることで、より熱安定性に優れた素子が作製可能である。 The glass transition temperature of compound (1-35) is 190 ° C., and the glass transition temperature of compound (1-66) is as high as 155 ° C., indicating that the thin film state is stable. In addition, the glass transition temperature of compound (1-35) is higher than that of EBL-1, and by using compound (1-35) instead of EBL-1, a device with better thermal stability can be manufactured. Is.
<仕事関数の測定>
 実施例1の化合物(1-35)、及びEBL-1を用いて、ITO基板の上に膜厚100nmの蒸着膜を作製して、イオン化ポテンシャル測定装置(住友重機械工業株式会社、PYS-202)によって仕事関数の測定結果を表2にまとめて示した。
<Measurement of work function>
Using the compound (1-35) of Example 1 and EBL-1, a thin-film deposition film having a thickness of 100 nm was produced on an ITO substrate, and an ionization potential measuring device (Sumitomo Heavy Industries, Ltd., PYS-202). ) The measurement results of the work function are summarized in Table 2.
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000017
 実施例1の化合物(1-35)は好適な材料な材料とされているカルバゾール化合物などの正孔輸送材料の仕事関数5.3~6.0eVと比較して、好適なエネルギー準位を示しており、良好な正孔輸送能力を有していることが分かる。 The compound (1-35) of Example 1 shows a suitable energy level as compared with the work function of a hole transport material such as a carbazole compound, which is regarded as a suitable material, from 5.3 to 6.0 eV. It can be seen that it has a good hole transport capacity.
<正孔輸送特性の評価>
 ガラス基板上に透明陽極としてITO電極をあらかじめ形成したものの上に、正孔注入層として酸化モリブデンを50nmになるように真空蒸着法にて成膜を行い、その正孔注入層の上に、実施例1の化合物(1-35)を100nmになるように真空蒸着法にて成膜した。続けて陰極としてAlを100nm蒸着することで、ホールオンリー素子(HOD)を作成した。
<Evaluation of hole transport characteristics>
An ITO electrode was previously formed on a glass substrate as a transparent anode, and molybdenum oxide was formed as a hole injection layer to a thickness of 50 nm by a vacuum vapor deposition method. The compound (1-35) of Example 1 was formed into a film by a vacuum vapor deposition method so as to have a diameter of 100 nm. Subsequently, 100 nm of Al was vapor-deposited as a cathode to produce a hole-only element (HOD).
 これを窒素雰囲気下のグローブボックス内で、180℃のホットプレートで3時間加熱したものと未加熱の素子を作成した。それぞれの素子に電圧を印加し、順方向バイアスで電流が流れた電流-電圧曲線にSCLC(空間電荷制限電流)の式をフィッティングさせ、移動度を測定した。また比較として前記EBL-1についても同様の条件で素子作製と測定を行った。表3に移動度と-3V印加時のリーク電流をまとめて示した。 This was heated in a glove box under a nitrogen atmosphere on a hot plate at 180 ° C for 3 hours, and an unheated element was created. A voltage was applied to each element, and the SCLC (space charge limiting current) equation was fitted to the current-voltage curve in which the current flowed with a forward bias, and the mobility was measured. For comparison, the EBL-1 was also manufactured and measured under the same conditions. Table 3 summarizes the mobility and the leakage current when -3V is applied.
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000018
 実施例1の化合物(1-35)はEBL-1と比較して、加熱による移動度の低下が抑えられている。-3V印加時の電流密度においても、化合物(1-35)はEBL-1に比べて大幅にリーク電流が抑制されている。これはインデノフェナントレン環構造を有する化合物が良好な正孔輸送能力を持ち、更に高いガラス転移温度を持つことに起因している。 The compound (1-35) of Example 1 has suppressed decrease in mobility due to heating as compared with EBL-1. Even at the current density when -3V is applied, the leakage current of compound (1-35) is significantly suppressed as compared with EBL-1. This is because the compound having an indenophenanthrene ring structure has a good hole transporting ability and a higher glass transition temperature.
 このように、本発明の一般式(1)で表されるインデノフェナントレン環構造を有する化合物を含む有機薄膜は優れた耐熱性、電荷輸送性を持つ有機薄膜であり、各種の光電変換素子に適用できる。 As described above, the organic thin film containing the compound having the indenophenanthrene ring structure represented by the general formula (1) of the present invention is an organic thin film having excellent heat resistance and charge transport property, and can be used for various photoelectric conversion elements. Applicable.
[実施例3]
<光電変換素子の作製>
 光電変換素子は、図1に示すように、ガラス基板1上に透明陽極2としてITO電極をあらかじめ形成したものの上に、第一バッファ層3、光電変換層4、金属陰極5の順に蒸着して作製した。
[Example 3]
<Manufacturing of photoelectric conversion element>
As shown in FIG. 1, the photoelectric conversion element is formed by depositing a first buffer layer 3, a photoelectric conversion layer 4, and a metal cathode 5 in this order on a glass substrate 1 on which an ITO electrode is previously formed as a transparent anode 2. Made.
 具体的には、透明陽極2であるITOを成膜したガラス基板1を、イソプロピルアルコール中での超音波洗浄を20分間行った後、200℃に加熱したホットプレート上にて10分間乾燥を行った。その後、UVオゾン処理を15分間行った後、このITO付きガラス基板を真空蒸着機内に取り付け、0.0001Pa以下まで減圧した。続いて、透明陽極2を覆うように第一バッファ層3として、実施例1の化合物(1-35)を膜厚が5nmとなるように蒸着した。この第一バッファ層3の上に、光電変換層4として下記構造式のp型半導体(SubPC)と下記構造式のn型半導体(C60)とを、蒸着速度比がSubPC:C60=50:50となる蒸着速度で二元蒸着し、膜厚が100nmとなるように形成した。最後に、この光電変換層4の上に、金属陰極5として金を膜厚100nmとなるように形成した。 Specifically, the glass substrate 1 on which ITO, which is a transparent anode 2, is formed, is ultrasonically cleaned in isopropyl alcohol for 20 minutes, and then dried on a hot plate heated to 200 ° C. for 10 minutes. rice field. Then, after performing UV ozone treatment for 15 minutes, the glass substrate with ITO was mounted in a vacuum vapor deposition machine and the pressure was reduced to 0.0001 Pa or less. Subsequently, the compound (1-35) of Example 1 was deposited as the first buffer layer 3 so as to cover the transparent anode 2 so that the film thickness was 5 nm. On the first buffer layer 3, a p-type semiconductor (SubPC) having the following structural formula and an n-type semiconductor (C60) having the following structural formula are placed as the photoelectric conversion layer 4, and the vapor deposition rate ratio is SubPC: C60 = 50: 50. Two-way vapor deposition was performed at a thin-film deposition rate of 100 nm. Finally, gold was formed on the photoelectric conversion layer 4 as a metal cathode 5 so as to have a film thickness of 100 nm.
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
<光電変換素子の評価>
 作製した有機光電変換素子の分光感度、及び明電流について、分光感度測定装置を用いて、下記測定条件により測定した。測定時の特定波長における照射強度は、Siフォトダイオード(S1337-1010BQ、浜松フォトニクス社製)を用いて校正した。暗電流について、光電変換素子への分光放射強度をゼロにして、同様のバイアス条件で電流値を測定した。測定結果を表4にまとめて示した。
(測定条件)
  装置:分光感度測定装置 SM―250A(分光計器社製)
  光源:キセノン150W
  分光放射照度:2.0mW/cm(550nm)
  有効照射面積:10×10mm
  受光面積:0.04cm
  面内不均一性:±5%以内
  ソースメーター:ケースレー 2635B(KEITHLEY社製)
  印加バイアス:-1~-3V
<Evaluation of photoelectric conversion element>
The spectral sensitivity and bright current of the manufactured organic photoelectric conversion element were measured using a spectral sensitivity measuring device under the following measurement conditions. The irradiation intensity at a specific wavelength at the time of measurement was calibrated using a Si photodiode (S1337-1010BQ, manufactured by Hamamatsu Photonics). For dark current, the spectral radiation intensity to the photoelectric conversion element was set to zero, and the current value was measured under the same bias conditions. The measurement results are summarized in Table 4.
(Measurement condition)
Device: Spectral sensitivity measuring device SM-250A (manufactured by Spectrometer Co., Ltd.)
Light source: Xenon 150W
Spectral irradiance: 2.0 mW / cm 2 (550 nm)
Effective irradiation area: 10 x 10 mm
Light receiving area: 0.04 cm 2
In-plane non-uniformity: within ± 5% Source meter: Caseley 2635B (manufactured by KEITHLEY)
Applied bias: -1 to -3V
[比較例1]
 比較として、実施例3において、第1バッファ層2の材料として、化合物(1-35)の代わりに前記EBL-1を用いた以外は、同様にして光電変換素子を作製し、電気特性を評価した。測定結果を表4にまとめて示した。
[Comparative Example 1]
For comparison, in Example 3, a photoelectric conversion element was produced in the same manner except that the EBL-1 was used instead of the compound (1-35) as the material of the first buffer layer 2, and the electrical characteristics were evaluated. bottom. The measurement results are summarized in Table 4.
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000020
 表4に示したように、実施例3の素子における-3Vのバイアス印加時における暗電流は、比較例1の素子に対して1/40と大幅に低い値である。また-3Vのバイアス印加時の変換効率EQEにおいても、比較例1の58%に対して、実施例3は64%と6%向上している。素子における-1V及び-2Vのバイアス印加時にも、実施例3の素子は比較例1の素子と比べ、低い暗電流と高い変換効率EQEが示されている。このことは、インデノフェナントレン環構造を有する化合物の高い電子ブロッキング性と良好なホール輸送性により、光電変換素子の暗電流特性と変換効率を大幅に改善できることを示している。 As shown in Table 4, the dark current of the element of Example 3 when a bias of -3V is applied is 1/40, which is significantly lower than that of the element of Comparative Example 1. Also, the conversion efficiency EQE when a bias of -3V is applied is 64%, which is 6% higher than that of Comparative Example 1 of 58%. Even when a bias of -1V and -2V is applied to the device, the device of Example 3 shows a lower dark current and a higher conversion efficiency EQE than the device of Comparative Example 1. This indicates that the dark current characteristics and conversion efficiency of the photoelectric conversion element can be significantly improved due to the high electron blocking property and good hole transport property of the compound having an indenophenanthrene ring structure.
 本発明の、耐熱性が高く、電荷移動度の良好な有機薄膜は、各種の光電変換素子に適用できるため、良い暗電流特性と変換効率を有する光電変換素子、特に撮像素子、及びこれを用いる光センサーを提供できる。 Since the organic thin film of the present invention having high heat resistance and good charge mobility can be applied to various photoelectric conversion elements, a photoelectric conversion element having good dark current characteristics and conversion efficiency, particularly an image pickup element, and an image pickup element thereof are used. Can provide an optical sensor.

Claims (7)

  1.  光電変換素子に用いる有機薄膜であり、前記有機薄膜は下記一般式(1)で表されるインデノフェナントレン環構造を有する化合物を含む有機薄膜。
    Figure JPOXMLDOC01-appb-C000001
    (式中、Aは単結合、2価の置換若しくは無置換の芳香族炭化水素基、2価の置換若しくは無置換の芳香族複素環基又は2価の置換若しくは無置換の縮合多環芳香族基を表し、
     Ar及びArは、相互に同一でも異なってもよく、置換若しくは無置換の芳香族炭化水素基、置換若しくは無置換の芳香族複素環基又は置換若しくは無置換の縮合多環芳香族基を表し、
     A、Ar及びArは、単結合、置換若しくは無置換のメチレン基、酸素原子又は硫黄原子を介して互いに結合して環を形成してもよく、
     R~R11は、相互に同一でも異なってもよく、水素原子、重水素原子、フッ素原子、塩素原子、シアノ基、ニトロ基、置換基を有していてもよい炭素原子数1~6の直鎖状若しくは分岐状のアルキル基、置換基を有していてもよい炭素原子数5~10のシクロアルキル基、置換基を有していてもよい炭素原子数2~6の直鎖状若しくは分岐状のアルケニル基、置換基を有していてもよい炭素原子数1~6の直鎖状若しくは分岐状のアルキルオキシ基、置換基を有していてもよい炭素原子数5~10のシクロアルキルオキシ基、置換若しくは無置換の芳香族炭化水素基、置換若しくは無置換の芳香族複素環基、置換若しくは無置換の縮合多環芳香族基又は置換若しくは無置換のアリールオキシ基を表し、
     R~R11は、単結合、置換若しくは無置換のメチレン基、酸素原子又は硫黄原子を介して互いに結合して環を形成してもよく、
     R12及びR13は、相互に同一でも異なってもよく、置換基を有していてもよい炭素原子数1~6の直鎖状若しくは分岐状のアルキル基、置換基を有していてもよい炭素原子数5~10のシクロアルキル基、置換基を有していてもよい炭素原子数2~6の直鎖状若しくは分岐状のアルケニル基、置換基を有していてもよい炭素原子数1~6の直鎖状若しくは分岐状のアルキルオキシ基、置換基を有していてもよい炭素原子数5~10のシクロアルキルオキシ基、置換若しくは無置換の芳香族炭化水素基、置換若しくは無置換の芳香族複素環基、置換若しくは無置換の縮合多環芳香族基又は置換若しくは無置換のアリールオキシ基を表し、
     R12及びR13は、単結合、置換若しくは無置換のメチレン基、酸素原子又は硫黄原子を介して互いに結合して環を形成してもよい。)
    It is an organic thin film used for a photoelectric conversion element, and the organic thin film is an organic thin film containing a compound having an indenophenanthrene ring structure represented by the following general formula (1).
    Figure JPOXMLDOC01-appb-C000001
    (In the formula, A is a single-bonded, divalently substituted or unsubstituted aromatic hydrocarbon group, a divalent substituted or unsubstituted aromatic heterocyclic group, or a divalent substituted or unsubstituted condensed polycyclic aromatic group. Represents the group
    Ar 1 and Ar 2 may be the same or different from each other, and may be a substituted or unsubstituted aromatic hydrocarbon group, a substituted or unsubstituted aromatic heterocyclic group, or a substituted or unsubstituted condensed polycyclic aromatic group. Represent,
    A, Ar 1 and Ar 2 may be bonded to each other via a single-bonded, substituted or unsubstituted methylene group, oxygen atom or sulfur atom to form a ring.
    R 1 to R 11 may be the same or different from each other, and may have a hydrogen atom, a hydrocarbon atom, a fluorine atom, a chlorine atom, a cyano group, a nitro group, and a substituent, and have 1 to 6 carbon atoms. Linear or branched alkyl group, cycloalkyl group having 5 to 10 carbon atoms which may have a substituent, and linear chain having 2 to 6 carbon atoms which may have a substituent. Alternatively, a branched alkenyl group, a linear or branched alkyloxy group having 1 to 6 carbon atoms which may have a substituent, and a carbon atom having 5 to 10 which may have a substituent may have a substituent. Represents a cycloalkyloxy group, a substituted or unsubstituted aromatic hydrocarbon group, a substituted or unsubstituted aromatic heterocyclic group, a substituted or unsubstituted condensed polycyclic aromatic group or a substituted or unsubstituted aryloxy group.
    R 1 to R 11 may be bonded to each other via a single-bonded, substituted or unsubstituted methylene group, oxygen atom or sulfur atom to form a ring.
    R 12 and R 13 may be the same or different from each other, and may have a substituent. Even if they have a linear or branched alkyl group having 1 to 6 carbon atoms and a substituent. A good cycloalkyl group having 5 to 10 carbon atoms, a linear or branched alkenyl group having 2 to 6 carbon atoms which may have a substituent, and a carbon atom which may have a substituent. 1 to 6 linear or branched alkyloxy groups, cycloalkyloxy groups having 5 to 10 carbon atoms which may have substituents, substituted or unsubstituted aromatic hydrocarbon groups, substituted or absent. Represents a substituted aromatic heterocyclic group, a substituted or unsubstituted fused polycyclic aromatic group or a substituted or unsubstituted aryloxy group.
    R 12 and R 13 may be bonded to each other via a single-bonded, substituted or unsubstituted methylene group, oxygen atom or sulfur atom to form a ring. )
  2.  前記一般式(1)で表されるインデノフェナントレン環構造を有する化合物が、下記一般式(2)で表されるインデノフェナントレン環構造を有する化合物である、請求項1に記載の有機薄膜。
    Figure JPOXMLDOC01-appb-C000002
    (式中、A及びR~R13は一般式(1)中のA及びR~R13の定義と同じであり、R14~R21は一般式(1)中のR~R11の定義と同じである。)
    The organic thin film according to claim 1, wherein the compound having an indenophenanthrene ring structure represented by the general formula (1) is a compound having an indenophenanthrene ring structure represented by the following general formula (2).
    Figure JPOXMLDOC01-appb-C000002
    (In the formula, A and R 1 to R 13 are the same as the definitions of A and R 1 to R 13 in the general formula (1), and R 14 to R 21 are R 1 to R in the general formula (1). It is the same as the definition of 11. )
  3.  前記一般式(1)で表されるインデノフェナントレン環構造を有する化合物が、下記一般式(3)で表されるインデノフェナントレン環構造を有する化合物である、請求項1に記載の有機薄膜。
    Figure JPOXMLDOC01-appb-C000003
    (式中、R~R13は一般式(1)中のR~R13の定義と同じであり、R14~R20は一般式(1)中のR~R11の定義と同じであり、Arは一般式(1)中のAr及びArの定義と同じである。)
    The organic thin film according to claim 1, wherein the compound having an indenophenanthrene ring structure represented by the general formula (1) is a compound having an indenophenanthrene ring structure represented by the following general formula (3).
    Figure JPOXMLDOC01-appb-C000003
    (In the formula, R 1 to R 13 are the same as the definitions of R 1 to R 13 in the general formula (1), and R 14 to R 20 are the definitions of R 1 to R 11 in the general formula (1). It is the same, and Ar is the same as the definition of Ar 1 and Ar 2 in the general formula (1).)
  4.  少なくとも陽極とバッファ層と光電変換層と陰極とがこの順で積層された光電変換素子であり、請求項1~3のいずれか1項に記載の有機薄膜からなる層を有する光電変換素子。 A photoelectric conversion element in which at least an anode, a buffer layer, a photoelectric conversion layer, and a cathode are laminated in this order, and has a layer made of an organic thin film according to any one of claims 1 to 3.
  5.  前記有機薄膜からなる層がバッファ層である、請求項4に記載の光電変換素子。 The photoelectric conversion element according to claim 4, wherein the layer made of the organic thin film is a buffer layer.
  6.  前記有機薄膜からなる層が光電変換層である、請求項4に記載の光電変換素子。 The photoelectric conversion element according to claim 4, wherein the layer made of the organic thin film is a photoelectric conversion layer.
  7.  請求項4~6のいずれか1項に記載の光電変換素子を有する撮像素子。 An image pickup device having the photoelectric conversion element according to any one of claims 4 to 6.
PCT/JP2021/035999 2020-10-01 2021-09-29 Organic thin film to be used in photoelectric conversion element, and said photoelectric conversion element WO2022071444A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022554069A JPWO2022071444A1 (en) 2020-10-01 2021-09-29
KR1020227044410A KR20230078587A (en) 2020-10-01 2021-09-29 Organic thin film used for photoelectric conversion element and its photoelectric conversion element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020166709 2020-10-01
JP2020-166709 2020-10-01

Publications (1)

Publication Number Publication Date
WO2022071444A1 true WO2022071444A1 (en) 2022-04-07

Family

ID=80951685

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/035999 WO2022071444A1 (en) 2020-10-01 2021-09-29 Organic thin film to be used in photoelectric conversion element, and said photoelectric conversion element

Country Status (3)

Country Link
JP (1) JPWO2022071444A1 (en)
KR (1) KR20230078587A (en)
WO (1) WO2022071444A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011529455A (en) * 2008-07-29 2011-12-08 メルク パテント ゲーエムベーハー Compounds for electronic devices
US20140346456A1 (en) * 2013-05-23 2014-11-27 Gyeongsang National University Industry-Academic Cooperation Foundation Organic light-emitting device
WO2020080848A1 (en) * 2018-10-17 2020-04-23 덕산네오룩스 주식회사 Compound for organic electric element, organic electric element using same, and electronic device thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4945146B2 (en) 2006-02-27 2012-06-06 富士フイルム株式会社 Photoelectric conversion device and solid-state imaging device
JP4852663B2 (en) 2010-02-09 2012-01-11 富士フイルム株式会社 Photoelectric conversion device, imaging device, and driving method thereof
JP6986887B2 (en) 2016-09-13 2021-12-22 日本化薬株式会社 Photoelectric conversion element for image sensor
JP6834400B2 (en) 2016-11-22 2021-02-24 ソニー株式会社 Image sensor, stacked image sensor, image sensor and electronic device
KR20200121293A (en) 2018-02-15 2020-10-23 호도가야 가가쿠 고교 가부시키가이샤 Organic Electroluminescence Device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011529455A (en) * 2008-07-29 2011-12-08 メルク パテント ゲーエムベーハー Compounds for electronic devices
US20140346456A1 (en) * 2013-05-23 2014-11-27 Gyeongsang National University Industry-Academic Cooperation Foundation Organic light-emitting device
WO2020080848A1 (en) * 2018-10-17 2020-04-23 덕산네오룩스 주식회사 Compound for organic electric element, organic electric element using same, and electronic device thereof

Also Published As

Publication number Publication date
KR20230078587A (en) 2023-06-02
JPWO2022071444A1 (en) 2022-04-07

Similar Documents

Publication Publication Date Title
EP3053985B1 (en) Heterocyclic compound and organic light-emitting element using same
EP3272833B1 (en) Composition for organic photoelectronic element, organic photoelectronic element, and display apparatus
KR101644699B1 (en) Hetero-cyclic compound and organic electronic device comprising the same
EP3828180A1 (en) Compound and organic light-emitting element comprising same
JP6029606B2 (en) Usage of photoelectric conversion element, imaging element, optical sensor, photoelectric conversion element
CN113285038B (en) Organic electroluminescent device and electronic device
WO2016027675A1 (en) Photoelectric conversion element, and image sensor, solar cell, single color detection sensor and flexible sensor each of which uses said photoelectric conversion element
CN113121408B (en) Nitrogen-containing compound, electronic component, and electronic device
CN117178652A (en) Composition for organic optoelectronic device, and display device
CN110573494B (en) Novel heterocyclic compound and organic light-emitting device comprising same
WO2020218264A1 (en) Photoelectric conversion device including organic thin film made of compound having indenocarbazole ring
WO2022071444A1 (en) Organic thin film to be used in photoelectric conversion element, and said photoelectric conversion element
CN112442035B (en) Compound for organic light-emitting material and organic electroluminescent device containing the same
CN115916760A (en) Compound for organic photoelectric element, composition for organic photoelectric element, and display device
WO2024062997A1 (en) Compound, organic thin film, and photoelectric conversion element
JP2022115832A (en) Photoelectric conversion element and imaging element
JP2022108268A (en) Organic thin film used for photoelectric conversion element, and photoelectric conversion element thereof
CN114497424B (en) Organic electroluminescent device and electronic device including the same
JP2022120273A (en) Organic thin film for photoelectric conversion element, photoelectric conversion element, and imaging element
KR20220115517A (en) Material for photoelectric conversion element having dicarbazole, organic thin-film, photoelectric conversion element and imaging element
JP2022100258A (en) Compound with indolocarbazole ring, photodetector material, organic thin film, photodetector, and imaging device
JP2023050149A (en) Organic thin film for use in photoelectric conversion element
JP2022120323A (en) Organic thin film for use in photoelectric conversion element, and photoelectric conversion element
JP2022181226A (en) Triscarbazolylphenyl derivative, organic thin film using the same, photoelectric conversion element using the same, and imaging element
JP2022123944A (en) Organic thin film for use in photoelectric conversion element, and that photoelectric conversion element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21875741

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022554069

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21875741

Country of ref document: EP

Kind code of ref document: A1