WO2022071436A1 - Method for measuring rna capable of detecting biological and physiological processes - Google Patents

Method for measuring rna capable of detecting biological and physiological processes Download PDF

Info

Publication number
WO2022071436A1
WO2022071436A1 PCT/JP2021/035970 JP2021035970W WO2022071436A1 WO 2022071436 A1 WO2022071436 A1 WO 2022071436A1 JP 2021035970 W JP2021035970 W JP 2021035970W WO 2022071436 A1 WO2022071436 A1 WO 2022071436A1
Authority
WO
WIPO (PCT)
Prior art keywords
trna
rna
aminoacylation
rate
sequence
Prior art date
Application number
PCT/JP2021/035970
Other languages
French (fr)
Japanese (ja)
Inventor
友則 木村
悠介 塚本
Original Assignee
国立研究開発法人医薬基盤・健康・栄養研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立研究開発法人医薬基盤・健康・栄養研究所 filed Critical 国立研究開発法人医薬基盤・健康・栄養研究所
Priority to JP2022554063A priority Critical patent/JPWO2022071436A1/ja
Publication of WO2022071436A1 publication Critical patent/WO2022071436A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • A61K31/7105Natural ribonucleic acids, i.e. containing only riboses attached to adenine, guanine, cytosine or uracil and having 3'-5' phosphodiester links
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • C12Q1/6853Nucleic acid amplification reactions using modified primers or templates
    • C12Q1/6855Ligating adaptors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • C12Q1/686Polymerase chain reaction [PCR]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes

Definitions

  • the present invention generally belongs to the fields of molecular biology and biochemistry of RNA, specifically tRNA-functional RNA and small RNA, including tRNA.
  • the present invention relates to a simple method for measuring tRNA-functional RNA and small RNA, and more specifically to tRNA-functional RNA and small RNA, particularly related to diagnostic, pharmaceutical and therapeutic applications related to tRNA. ..
  • Non-Patent Document 1 The central dogma of molecular biology is a continuous flow of information from genes to proteins (Non-Patent Document 1). Protein synthesis is carried out by translating into transfer RNA (tRNA) having an anticodon complementary to the codon of messenger RNA (mRNA) on the ribosome to the amino acid corresponding to that codon. The specificity of this tRNA is the source of the genetic code (Non-Patent Document 2), and the genetic code consists of 61 sense triplet codons encoding 20 amino acids.
  • tRNA transfer RNA
  • mRNA messenger RNA
  • Non-Patent Document 2 The specificity of this tRNA is the source of the genetic code (Non-Patent Document 2), and the genetic code consists of 61 sense triplet codons encoding 20 amino acids.
  • TRNA is an RNA biochemically identified as an amino acid receptor (Non-Patent Document 3). At one end of the tRNA structure is an anticodon loop, which specifically pairs with the mRNA's codon. At the other end is the 3'end ribonucleotide alignment "CCA" conserved between tRNAs, called the acceptor stem. Aminoacyl-tRNA synthetase (aaRS) binds (charges) a codon-specific amino acid to this "CCA” to generate aminoacyl-tRNAed tRNA (charged tRNA) (Non-Patent Document 4).
  • aaRS Aminoacyl-tRNA synthetase
  • Amino acids aminoacylated to tRNA are integrated into the protein during translation, and at the same time tRNA is deaminoacylated because it reaminoacylates the next amino acid.
  • Such vibrational fluctuations of aminoacylation and deaminoacylation of tRNA provide interesting implications for the boundary between molecular biology and biochemistry.
  • Non-Patent Document 5 This diversity of tRNAs derives from variations of "isoacceptors" and “isodecoders".
  • the tRNA isoacceptor has different anticodons that aminoacylate the same amino acid.
  • the "isodecoder” of tRNA shares the same anticodon, but the other sequences are different (Non-Patent Document 6).
  • This multifaceted aspect of tRNA, the genomic variation and the vibrational variation of aminoacylation described above, is the origin of the profound world of tRNA.
  • the aminoacyllation rate of tRNA is the ratio of aminoacylated tRNA to the total amount of tRNA that aminoacylates amino acids (aminoacylated tRNA) and tRNA that is not aminoacylated (non-aminoacylated tRNA) (Non-Patent Document 7). It has been reported that the aminoacylation rate of tRNA is closely related to some biological phenomena and diseases (Non-Patent Document 8; Non-Patent Document 9). The aminoacylation rate of tRNA varies in response to amino acid starvation (Non-Patent Document 10; Non-Patent Document 11), growth conditions (Non-Patent Document 12), and external stress (Non-Patent Document 13).
  • Non-Patent Document 14 Non-Patent Document 15
  • Disease-related mutations in tRNA and aminoacyl-tRNA synthesizers are widely known (Non-Patent Document 16; Non-Patent Document 17), and the aminoacylation rate of tRNA is associated with aging and cell activity (Non-Patent Document 16; Non-Patent Document 17).
  • Non-Patent Document 18; Non-Patent Document 19; Non-Patent Document 20 are examples of the aminoacylation rate of tRNA and affect the translation efficiency of proteins.
  • Non-Patent Document 10 Non-Patent Document 21; Non-Patent Document 22; Non-Patent Document 23.
  • Acid-urea polyacrylamide gel electrophoresis followed by Northern blot hybridization is commonly used to measure the aminoacyllation rate of tRNA at the isoacceptor level (Non-Patent Document 24).
  • a high-throughput method for detecting the tRNA aminoacylation rate has been developed based on either a microarray (Non-Patent Document 10) or next-generation sequencing (Non-Patent Document 21).
  • Non-Patent Document 21 By using a chemical step to remove the 3'-terminal adenine residue of the non-aminoacylated tRNA and an enzymatic step to remove the tRNA modification, the tRNA is sequenced and the aminoacylation rate of the tRNA is comprehensive. Can be measured (Non-Patent Document 21). On the other hand, convenient quantitative PCR (qPCR) -based methods are preferred for measuring the aminoacylation rate of individual tRNAs, while currently available qPCR-based methods allow only relative quantification. (Non-Patent Document 23).
  • qPCR quantitative PCR
  • Patent Documents 1, 2 and 3 Many patent documents describe a method for amplifying or measuring RNA, and various primers and probes used in the method (for example, Patent Documents 1, 2 and 3). However, no patent literature has been found that is oriented towards aminoacylation of RNA, especially tRNA.
  • the present invention by finding a method capable of easily measuring tRNA having a higher-order structure and having a complicated modification, and applying it to a simple search for the molecular biology and biochemical aspects of tRNA, the present invention is made. Completed the invention.
  • a simplified sequencing method for determining the aminoacylization rate of tRNA hereinafter referred to as "simplified aminoacyl-tRNAseq method" was developed, and the state of tRNA aminoacylation in cells was verified.
  • the aminoacylation level of tRNA Gln tRNA that aminoacylates Gln
  • the aminoacylation level of tRNA Gln is significantly reduced in response to amino acid starvation, unlike tRNA that aminoacylates other amino acids.
  • i-tRAP method a PCR method that can measure individual aminoacyl-tRNAs.
  • the i-tRAP method revealed nutrient-sensitive vibrational variability of tRNAaminoacylation and aging-related inhibition of tRNAaminoacylation.
  • Our method highlights a dynamic and profound tRNA aminoacylation cycle that predicts cell condition and aging.
  • the present invention includes the following aspects.
  • ⁇ I-tRAP method> In a method of qualitatively or quantitatively measuring the difference of a single nucleotide in one target RNA, here the difference of a single nucleotide is the 3'end sequence of the target RNA: the presence or absence of nucleotide A in CCA vs. CC. It ’s a way of being, ⁇ ) Create cDNA for target RNA and ⁇ ) A method of amplifying a target region containing a single nucleotide difference on the cDNA by PCR and simultaneously measuring the single nucleotide difference qualitatively or quantitatively.
  • Step ⁇ ) a-1) Adapter linked to the 3'end of the target RNA, RT primer containing a sequence complementary to the sequence of the adapter, one primer having a sequence specific to the target RNA, and specific to the RT primer.
  • amplification primer set consisting of the other primer having a sequence, and a probe set targeting the difference of a single nucleotide.
  • RNA ligase for the adapter is used to ligate the adapter to the target RNA, and the formed ligation product is used as a template to prepare cDNA.
  • RNA adapter and a DNA primer having a sequence complementary to the RNA adapter and having the 3'end protruding by only one base were prepared and annealed to the RNA adapter.
  • the probe set that targets the difference between single nucleotides in step a-1) is a fluorescently labeled probe set that recognizes the difference between single nucleotides, and the fluorescence emitted during amplification in step ⁇ ).
  • the method according to [2], wherein the difference between single nucleotides is measured qualitatively or quantitatively using the intensity as an index.
  • the target RNA is a tRNA-functional RNA, preferably a tRNA, or a tRF or tRNA half having a 3'end of the tRNA.
  • ⁇ ) step ⁇ ) Calculate the ratio of the quantitative value of the target RNA having CCA to the total amount of the quantitative value of the target RNA having CCA and the quantitative value of the target RNA having CC.
  • the method according to any one of [1] to [5], which comprises. [7] [6] A method for measuring the aminoacylation rate of one target RNA by the method described.
  • amplification primer set consisting of one primer having a sequence specific to the target RNA and the other primer having a sequence specific to the DNA primer.
  • RNA-A method for comprehensively measuring the base sequence, expression level, and aminoacylation rate of functional RNA a-10) TRNA-functional RNA extracted from biological specimens is treated to remove terminal bases in non-aminoacylated RNA (non-aminoacylated RNA), while aminoacylated RNA (aminoacylated). By removing amino acids from RNA), non-aminoacylated RNA and aminoacylated RNA are prepared, respectively. b-10) Connect the adapter to the 3'-end and 5'-end of both obtained RNAs. c-10) Reverse transcription is performed using the produced linked RNA as a template.
  • d-10) Amplify the obtained cDNA to create a cDNA library, e-10) Sequencing each cDNA in the library to obtain sequence data, tRNA-A method for measuring the base sequence, expression level and aminoacylation rate of functional RNA.
  • the treatment of RNA is periodic acid oxidation, ⁇ -desorption and terminal repair for non-aminoacylated RNA and weak alkaline treatment for aminoacylated RNA.
  • the method according to [9] or [10] wherein the RNA extracted from the biological sample is subjected to size fractionation, RNA of 20 bases to 150 bases is extracted, and the following steps are performed.
  • kits> An assay kit for the method according to any one of [11] to [13], which comprehensively measures the base sequence, expression level, and aminoacylation rate of tRNA-functional RNA.
  • ⁇ Screening method> [15] A method for screening substances that vary the aminoacylation rate of tRNA. a-20) Add the test substance to the cells and add b-20) Measure the aminoacylation rate of tRNA in the cells, and c-20) When the measured value is changed compared to the case where the aminoacyllation rate is measured in the absence of the test substance, the test substance is a substance that changes the aminoacylation rate of tRNA. How to determine that there is. [16] The method according to [15], wherein the aminoacylation rate is measured by the method according to any one of [1] to [7] and [9] to [13]. [17] A method for screening substances that vary the aminoacylation rate of tRNA.
  • test substance Administer the test substance to the animal and b-30) Collect cells of a predetermined organ from the animal and collect them.
  • Prescribed organs include blood, urine, spinal fluid, saliva, tears, semen, brain, heart, kidneys, liver, lungs, spleen, blood vessels, blood cells, muscles, fat, skin, pancreas, intestines, endocrine organs, nerves, The method according to [17], which is a sensory organ. [19] The method according to any one of [15] to [18], wherein the aminoacylation rate is measured by the method according to any one of [1] to [7] and [9] to [13].
  • a pharmaceutical composition for adjusting the effect on biological and physiological processes in a subject which comprises a substance that varies the aminoacylation rate of tRNA.
  • the pharmaceutical composition according to [20], wherein the substance that changes the aminoacylation rate of tRNA is a substance screened by the method according to any one of [15] to [19].
  • the substance that fluctuates the aminoacylation rate of tRNA is an aminoacylation rate-increasing substance selected from amino acids and protein synthesis inhibitors (eg, cyclohexamide), or aminoacylasease inhibitors (eg, mupyrosin, borelidine, etc.).
  • a pharmaceutical composition comprising a tRNA inhibitor for adjusting the effect on a biological and physiological process in a subject.
  • the inhibitor of tRNA is one or more selected from the group consisting of siRNA, shRNA, miRNA, antisense and ribozyme.
  • ⁇ Judgment method> [28] A method for determining the presence or absence of effects on biological and physiological processes in a subject. a-40) Step of measuring the aminoacylation rate (test aminoacylation rate) of tRNA in the cells of the subject, b-40) A step of comparing the test aminoacylation rate with the aminoacyllation rate of tRNA of the reference cell (control aminoacylation rate), and c-40) When the test aminoacylation rate fluctuates compared to the control aminoacylation rate, the subject has an effect on the biological and physiological processes in the subject. How to judge. [29] 28.
  • the method of [28], wherein the effect on a biological and physiological process in a subject is one or more events selected from among cellular activity, nutritional status, body, psychiatry and pathology.
  • Events include mitochondrial disease, age-related disease, lifestyle disease, mental illness, intractable disease, hereditary disease, life course-related disease, gastrointestinal disease, cancer, cardiovascular disease, kidney disease and neurological disease.
  • Events include mitochondrial disease, age-related disease, lifestyle disease, mental illness, intractable disease, hereditary disease, life course-related disease, gastrointestinal disease, cancer, cardiovascular disease, kidney disease and neurological disease.
  • the method according to [32] which is one or more selected.
  • the method according to any of [31] to [33], wherein the specific aminoacyl-tRNA synthetase is a glutaminyl tRNA synthetase.
  • ⁇ Biomarkers, etc.> [35] One or more selected from tRNA Leu , mt-tRNA His , tRNA Ser , tRNA Asn , tRNA Phe , tRNA Thr , tRNA Ile , tRNA Arg , tRNA Gln , and mt-tRNA Val .
  • tRNA Leu -CAG, mt-tRNA His -CAC, tRNA Ser -CGA, tRNA Asn -GTT, tRNA Phe -GAA, tRNA Ser -GCT, tRNA Thr -TGT, tRNA Thr -CGT, tRNA Ile -TAT, tRNA Arg- Determine the effect on biological and physiological processes in a subject, one or more selected from TCT, tRNA Gln -CTG, tRNA Gln -TTG, and mt-tRNA Val -GUA.
  • the biomarker according to [35].
  • the simplified aminoacyl-tRNAseq method or the i-tRAP method of the present invention makes it possible to detect the aminoacylation profile of all tRNAs with greatly improved resolution.
  • FIG. 1 shows the reaction scheme of pretreatment before sequencing tRNA. After a series of chemical and enzymatic treatments, aminoacylated and non-aminoacylated tRNAs are distinguished by 3'end CCA (3'CCA-tRNA) and CC (3'CC-tRNA), respectively.
  • PNK Polynucleotide Kinase-3'-Phosphatase.
  • FIG. 2 is an experimental scheme for culturing TIG-1 cells under amino acid starvation or amino acid supplementation.
  • FIG. 3 is a plot showing the aminoacyllation rate of individual tRNAs in an amino acid starved state.
  • Ala-AGC at the top of the vertical axis means tRNA Ala -AGC derived from nuclear DNA
  • mtAla-GCA means tRNA Ala -GCA derived from mitochondrial DNA. Others mean individual tRNAs as well.
  • the average of n 3 is plotted. n means the number of samples in one sample consisting of tens of thousands of cells.
  • the tRNA aminoacylation rate (%) is the ratio of the readings aligned to the 3'end CCA to the sum of the readings aligned to the 3'end CCA and the 3'end CC.
  • n means the number of samples in one sample consisting of tens of thousands of cells.
  • the data are mean ⁇ SE. Individual plots show tRNA isoacceptors for each homologous amino acid.
  • the tRNA aminoacylation rate (%) is the ratio of the readings aligned to the 3'end CCA to the sum of the readings aligned to the 3'end CCA and the 3'end CC.
  • FIG. 8B shows a marked decrease in the aminoacylation ratio in the amino acid supplemented state with respect to amino acid starvation
  • FIG. 8C shows a marked increase in the aminoacylation ratio in the amino acid supplemented state with respect to amino acid starvation.
  • the data are mean ⁇ SE. *: P ⁇ 0.05, t-test.
  • the data is mean ⁇ SE.
  • FIG. 10 is a schematic diagram showing a scheme for quantifying the tRNA aminoacylation rate based on a method called the i-tRAP method based on qPCR.
  • the pretreated tRNA as described in FIG. 1 is ligated with an adapter, reverse transcribed, and then performed with two probe-based qPCR methods.
  • the fluorescent signal from VIC represents the amount of 3'CCA-tRNA
  • the signal from FAM represents the amount of 3'CC-tRNA.
  • FIG. 11B shows the ratio of reading counts of the tRNA Gln isoacceptor. The numbers indicate the type of isodecoder.
  • the black part shows the Iso Decoder # 1 of interest.
  • FIG. 11C shows the result of aligning each of the tRNA Gln isodecoders.
  • the black part represents the nucleotide that is the same as Gln-CTG-1 in the uppermost row.
  • the wavy line between Gln-CTG-1 and Gln-CTG-2 shows the primer sequence used in the i-tRAP method, and the dotted line shows the partial sequence of the probe in the i-tRAP method. The line indicates an anticodon nucleotide.
  • FIG. 11B shows the ratio of reading counts of the tRNA Gln isoacceptor. The numbers indicate the type of isodecoder.
  • the black part shows the Iso Decoder # 1 of interest.
  • FIG. 11C shows the result of aligning each of the t
  • the numbers on the horizontal axis indicate the type of isodecoder.
  • the data are mean ⁇ SE. nd: Not detected.
  • FIG. 12B is the ratio of the reading count of the tRNA Gly isoacceptor. The numbers indicate the type of isodecoder.
  • the black part shows the Iso Decoder # 1 of interest.
  • FIG. 12C shows the result of aligning each of the tRNA Gly isodecoders.
  • the black part represents the nucleotide that is the same as Gly-GCC-1 in the uppermost row.
  • FIG. 13A is a graph showing a real-time plot of the i-tRAP method using a synthetic DNA template containing a 3'CCA-tRNA Gln -CTG sequence.
  • FIG. 13B is a graph showing a real-time plot of the i-tRAP method using a synthetic DNA template containing a 3'CC-tRNA Gln -CTG sequence. In both FIGS.
  • FIG. 14A is a graph showing a real-time plot of the i-tRAP method using a synthetic DNA template containing a 3'CCA-tRNA Gly -GCC sequence.
  • FIG. 14B is a graph showing a real-time plot of i-tRAP using a synthetic DNA template containing a 3'CC-tRNA Gly -GCC sequence.
  • the black line shows the VIC signal from the CCA probe and the gray line shows the FAM signal from the CC probe.
  • FIG. 15 is a graph showing a standard curve of ⁇ Ct values obtained from VIC and FAM signals for the 3'CCA-tRNA ratio of tRNA Gln -CTG. DNA templates containing 3'CCA-tRNA and 3'CC-tRNA sequences in several proportions were mixed and used.
  • FIG. 16 is a graph showing a standard curve of ⁇ Ct values obtained from VIC and FAM signals for the 3'CCA-tRNA ratio of tRNA Gly -GCC. DNA templates containing 3'CCA-tRNA and 3'CC-tRNA sequences in several proportions were mixed and used.
  • FIG. 15 is a graph showing a standard curve of ⁇ Ct values obtained from VIC and FAM signals for the 3'CCA-tRNA ratio of tRNA Gln -CTG. DNA templates containing 3'CCA-tRNA and 3'CC-tRNA sequences in several proportions were mixed and used.
  • FIG. 17 is a standard curve of the ⁇ Ct values of VIC and FAM for the ratio of tRNA Gln -CTG to 3'CCA with different template amounts.
  • the synthesized DNA fragment was used as a template.
  • FIG. 18A is a graph showing the effect of alkali treatment on the aminoacylation rate of tRNA Gln -CTG.
  • FIG. 18B is a graph showing the effect of alkali treatment on the aminoacylation rate of tRNAGly-GCC.
  • tRNA extracted from HEK293 cells was treated with 150 mM Tris-HCl, pH 9.0, 37 ° C. for 30 minutes.
  • n 4. Data: Average ⁇ SE.
  • FIG. 19A is a graph showing the effect of amino acid deficiency on the aminoacylation rate of tRNA Gln -CTG.
  • FIG. 19B is a graph showing the effect of amino acid deficiency on the aminoacylation rate of tRNAGly-GCC.
  • TIG-1 cells cultured in an amino acid-free medium and tRNA extracted from the cells exchanged for the amino acid-containing medium were incubated for 1 hour.
  • n 4.
  • FIG. 20 shows an experimental scheme for obtaining the results of aminoacylation rate of tRNA Gln -CTG after amino acid deficiency (FIG. 21).
  • TIG-1 cells cultured in an amino acid-rich medium were starved for amino acids, and RNA was extracted at a specified time after starvation.
  • Statistical analysis was performed in comparison with the expression level at 0 hours.
  • FIG. 23 shows an siRNA experimental scheme to obtain results for QARS expression (FIG. 24) and aminoacylation rate of tRNA Gln -CTG (FIG. 25).
  • TIG-1 cells cultured in amino acid-rich medium were transfected with the indicated siRNA and cultured for an additional 2 days.
  • FIG. 26 shows an experimental scheme for obtaining the results of aminoacylation rates of tRNA Gln -CTG cultured with CHX (FIG. 27).
  • TIG-1 cells were cultured in amino acid-free medium in the presence of chlorhexidine (CHX) for 6 hours.
  • FIG. 28 shows an experimental scheme for obtaining aminoacylation rates of tRNA Gln -CTG (FIG. 29) and QARS (FIG. 30) in young and aged TIG-1 cells.
  • RNA was prepared 0, 3, 6, 9 and 15 hours after amino acid starvation for young and old TIG-1 cells cultured in amino acid-free medium.
  • FIG. 31B shows the intracellular amino acid concentration in TIG-1 cells measured by high performance liquid chromatography (HPLC) based on the intracellular amino acid concentration before amino acid starvation under the conditions of the experimental scheme shown in FIG. 20 (0 o'clock, relative).
  • Concentration: 1) is a graph showing the relative concentration of intracellular amino acid concentration during amino acid starvation for 3, 6 and 9 hours.
  • FIG. 32B shows the intracellular amino acid concentration in TIG-1 cells cultured with CHX under the conditions of the experimental scheme shown in FIG. 26, based on the intracellular amino acid concentration cultured by adding DMSO instead of CHX (DMSO, relative concentration). : 1.0) is a graph showing the relative concentration of intracellular amino acid concentration in the amino acid starvation state for 6 hours.
  • FIG. 33A is a graph showing the results of measuring the intracellular amino acid concentration in TIG-1 cells cultured with chloroquin (CQ) by high performance liquid chromatography (HPLC). It is shown by the amino acid concentration (nmol) per cell unit amount (mg).
  • FIG. 33B shows the intracellular amino acid concentration in TIG-1 cells cultured with chloroquin (CQ) based on the intracellular amino acid concentration cultured by adding PBS to the medium instead of CQ (PBS, relative concentration: 1.0). It is a graph which shows the relative concentration of the intracellular amino acid concentration at the time of the amino acid starvation state for 4 hours.
  • the present invention is, in one form, a method of qualitatively or quantitatively measuring the difference of a single nucleotide in one target RNA, where the difference of a single nucleotide is the 3'end sequence of the target RNA: CCA.
  • the present invention relates to a method of amplifying a target region containing a single nucleotide difference on the cDNA by PCR and simultaneously measuring the single nucleotide difference qualitatively or quantitatively.
  • the "target RNA” to be measured may be RNA existing in nature or artificially synthesized RNA. Typically, it is an RNA of 20 to 150 bases (nt, nucleotide length), and specifically, it is an RNA of 20 to 80 bases.
  • the "target RNA” is preferably tRNA-functional RNA, where "tRNA-functional RNA” is tRNA, or in the same manner as tRNA, its 3'end is aminoacylated (charged) or deaminoacylated. It means an RNA-like molecule that is converted (decharged), a portion thereof, or a derivative thereof.
  • RNA-like molecule or a portion thereof or a derivative thereof is a microRNA derived from tRNA, for example, tRF or tRNA half having a 3'end of tRNA (Front. Genet., 11 June 2014
  • the molecule is not limited to a molecule having a total length of RNA, and may be a partially modified RNA, or may be a partially modified RNA or an RNA which is a DNA or an artificial nucleic acid.
  • Natural RNA existing in the living body is not limited to these, but for example, transfer RNA (tRNA, translocated RNA), mtRNA (mitomitrimal tRNA), messenger RNA (mRNA), ribosome RNA (rRNA), nuclei. Examples thereof include small nuclear RNA (snRNA), small nucleolar RNA (snoRNA), microRNA (miRNA), and small interfering RNA (siRNA).
  • tRNA transfer RNA
  • mtRNA mitomitrimal tRNA
  • mRNA messenger RNA
  • rRNA ribosome RNA
  • nuclei examples thereof include small nuclear RNA (snRNA), small nucleolar RNA (snoRNA), microRNA (miRNA), and small interfering RNA (siRNA).
  • the "target RNA” is preferably "small RNA".
  • the small RNA is a single-stranded RNA having a base length of about 200 bases or less, preferably 100 bases, and more preferably 80 bases or less.
  • the small RNA may or may not be a functional RNA such as, for example, tRNA, small nuclear RNA, small nucleolar RNA, microRNA, or small interfering RNA.
  • the target RNA is preferably tRNA, a microRNA derived from tRNA, for example, tRF or tRNA half-small RNA having a 3'end of tRNA, and more preferably tRNA.
  • tRNA a microRNA derived from tRNA
  • tRF tRF or tRNA half-small RNA having a 3'end of tRNA
  • tRNA a 3'end ribonucleotide alignment "CCA” that is conserved between tRNAs, which is codon-specific bound (charged) by aminoacyl-tRNA synthetase (aaRS).
  • RNA that is not aminoacylated that is, corresponds to a state in which amino acids are not bound, undergoes a series of chemical and enzymatic treatments such as periodic acid oxidation, ⁇ desorption, and terminal repair described in FIG. 1A.
  • RNA that is not aminoacylated that is, corresponds to a state in which amino acids are not bound, undergoes a series of chemical and enzymatic treatments such as periodic acid oxidation, ⁇ desorption, and terminal repair described in FIG. 1A.
  • its terminal base “A” is removed and becomes “CC”.
  • the presence or absence of nucleotide A in this "CCA" and "CC” is the "difference of a single nucleotide in one target RNA" in the present invention.
  • the significance of the "difference of a single nucleotide in one target RNA” in the present invention is that in one tRNA, a tRNA in which amino acids are aminoacylated (aminoacylated tRNA) and a tRNA in which amino acids are not aminoacylated (non-aminoacylated tRNA) are used.
  • aminoacylation rate of tRNA which is the ratio of aminoacylated tRNA to the total amount.
  • the “aminoacylation rate of tRNA” is also referred to as “charging rate of tRNA” or “charging rate of tRNA”. It has been reported that "tRNA represented by tRNA-aminoacylation rate of functional RNA" is closely related to some biological phenomena and diseases. See literature below:
  • RNA quantification is to investigate what kind of RNA is contained in a certain sample, and is also referred to as identification.
  • Measure quantitatively refers to absolute or relative quantification when used in situations where the abundance or concentration of target RNA is quantified. In the present invention, both are meant. Absolute quantification is performed, for example, by generating a standard curve by assuming one or more known concentrations of RNA, eg control RNA, and querying the known symmetric RNA for the intensity signal of an unknown amount of target RNA. Will be. Relative quantification is performed by comparing the intensity signals of two or more RNAs and quantifying the change in intensity.
  • step ⁇ ) of the method of the present invention any cDNA preparation method known to those skilled in the art can be used as the method for preparing the cDNA of the target RNA.
  • a method of adding an RNA strand of an arbitrary sequence to the 3'end of a target RNA and performing reverse transcription using a DNA having a sequence complementary to that sequence can be mentioned.
  • the target RNA is preferably "small RNA" and does not have a poly A tail. Therefore, the method for creating the cDNA of the target RNA preferably uses an adapter. And a method using reverse transcriptase such as template switching method using reverse transcriptase such as TGIRT (Thermostable Group II intron reverse transcriptase).
  • a method using reverse transcriptase such as template switching method using reverse transcriptase such as TGIRT (Thermostable Group II intron reverse transcriptase).
  • the adapter-based approach is a method of qualitatively or quantitatively measuring the difference in a single nucleotide in one target RNA, where the difference in a single nucleotide is 3'of the target RNA.
  • End sequence A method in which nucleotide A is present or absent in CCA vs. CC. a-1) It has an adapter linked to the 3'end of the target RNA, an RT primer containing a sequence complementary to the sequence of the adapter, one primer specific to the target RNA, and a sequence specific to the RT primer. Prepare an amplification primer set consisting of the other primer and a probe set targeting the difference between single nucleotides.
  • RNA ligase for the adapter is used to ligate the adapter to the target RNA, and cDNA is prepared using the formed ligation product as a template.
  • ⁇ ) PCR can include a method of amplifying a target region containing a single nucleotide difference on the cDNA and simultaneously measuring the single nucleotide difference qualitatively or quantitatively.
  • step a-1 an adapter linked to the 3'end of the target RNA, an RT primer containing a sequence complementary to the sequence of the adapter, one primer specific to the target RNA, and Prepare and prepare an amplification primer set consisting of the other primer having a sequence specific to the RT primer, and a probe set targeting the difference of a single nucleotide.
  • step a-1 the "adapter ligating to the 3'end of the target RNA" is introduced prior to the reverse transcription reaction when constructing a cDNA library of RNA without poly A tail, such as tRNA, miRNA or snoRNA.
  • RNA without poly A tail
  • the base length is not limited, it is usually 6 to 25 bases, preferably 15 to 23 bases, and more preferably 17 to 21 bases.
  • the fluorescent probe is annealed on the reverse transcriptase of the adapter sequence, it is preferable that the sequence is not significantly biased in AUGC, and it is considered that the detection efficiency is improved.
  • the "RT primer containing a sequence complementary to the sequence of the adapter” is a primer for reverse transcription reaction, which is single-stranded DNA, and is a primer for reverse transcription of the target RNA.
  • the RT primer contains a sequence for amplifying a template that is a linkage product between the target RNA and the adapter, and may specifically complement a part of the target RNA and a part of the adapter. That is, the base sequence of the RT primer contains a sequence complementary to the 3'end adapter sequence.
  • the base sequence of the RT primer can include any sequence of a certain length that can exhibit amplification primer function, in addition to a sequence complementary to the 3'end adapter sequence.
  • the base sequence of the RT primer contains a sequence complementary to the 3'end adapter sequence and any sequence of a certain length capable of exhibiting an amplification primer function.
  • the adapter sequence may be a part of the probe sequence and an arbitrary sequence of a certain length capable of exhibiting the primer function for amplification. Since it is necessary to include the full length, the length of the adapter sequence in that case is 15 bases or more, preferably 25 bases or more, and more preferably 35 bases or more.
  • any sequence of a certain length that can exhibit the function of an amplification primer include: -Arbitrary sequence 1: AATGGCAATGGTCACGCCGACTGG (SEQ ID NO: 23) From the Dilp1 gene of Drosophila melanogaster Dev Cell. 2009, 17 (6): 885-91.A fat body-derived IGF-like peptide regulates postfeeding growth in Drosophila; -Arbitrary sequence 2: GCTGTTGCCCAGCAAGCTTTCACG (SEQ ID NO: 24) From the Dilp1 gene of Drosophila melanogaster Dev Cell.
  • -Arbitrary sequence 6 CAAATGGCAGTGTGGCAGATGGTAC (SEQ ID NO: 28) From the shadow gene of silk moth (Bombyx mori) Biosci. Biotechnol. Biochem., 71 (11), 2808-2814, 2007.Differential Regulation of Ecdysteroidogenic P450 Gene Expression in the Silkworm, Bombyx mori; -Arbitrary sequence 7: AGTATGCTCAGGCTTCAGAAGA (SEQ ID NO: 29) From the human (homo spiens) RPL19 gene Transforming Growth Factor (TGF)- ⁇ promotes de novo serine synthesis for collagen production.J Biol Chem.
  • TGF Transforming Growth Factor
  • TRM6 / 61 connects PKC ⁇ with translational control through tRNAi (Met) stabilization: impact on tumorigenesis.Oncogene. 2016 Apr 7; 35 (14): 1785-96.
  • the "arbitrary sequence of a certain length capable of exhibiting the primer function for amplification” is at least 15 bases long, preferably 15 to 30 bases, and more preferably 18 to 25 bases.
  • the base length of the reverse transcription primer sequence is not particularly limited, but must have at least the base length of the adapter and the base length of the amplification primer, which is at least 30 base lengths, preferably 30 to 80 bases. More preferably, it is 40 to 60 bases.
  • the "amplification primer set” is a primer set for amplifying a nucleic acid containing a specific base sequence of RNA or a complementary sequence of a specific base sequence using the RT-PCR method.
  • the "amplification primer set” amplifies the cDNA of a target RNA consisting of one primer having a sequence specific to the target RNA and the other primer having a sequence specific to the RT primer.
  • specific sequence means the same or complementary sequence
  • one primer is complementary to the target RNA.
  • the other primer has the same sequence as the RT primer, or if one primer has the same sequence as the target RNA, the other primer has a sequence complementary to the RT primer.
  • Each primer in the primer set is not limited to its position if it is selected to sandwich the 3'end sequence of target RNA: CCA and CC, which is the difference of a single nucleotide in the present invention.
  • the other primer is specific to any position in the RT primer, i.e. a sequence complementary to the 3'end adapter sequence in the RT primer.
  • the length of each primer is usually 18-30 bases.
  • complementary refers to the ability to accurately pair between two nucleotides. That is, if a nucleotide at a given position in a nucleic acid sequence has the ability to hydrogen bond with a nucleotide in another nucleic acid sequence to form a base pair, the two nucleic acid sequences are complementary to each other at that position. Complementarity between two single-stranded nucleic acid sequences may be "partial" to which only a portion of the nucleotide binds.
  • the “probe set targeting the difference of a single nucleotide” in step a-1) will be described.
  • the “probe set targeting a single nucleotide difference” is the 3'end sequence of the target RNA that is the difference in a single nucleotide in the present invention: a probe that targets the presence of nucleotide A in CCA vs. CC, and a nucleotide.
  • a probe set used for probe qPCR consisting of probes that target the absence of A.
  • a fluorescent dye as a reporter is used at the 5'end of the sequence-specific oligonucleotide, and a probe set labeled with a quencher at the 3'end is used.
  • the probe set includes a Tm enhancer MGB (Minor Groove Binder) structure in the probe so that a probe having a high Tm value can be designed with a length of 20 bases or less.
  • Tm enhancer MGB Minor Groove Binder
  • the Tm difference due to the difference of one base can be made remarkable, so that the probes corresponding to each of CCA and CC are annealed in a sequence-specific manner between CCA and CC.
  • cDNA with CCA and CC sequences can be quantified separately. Incorporating a non-fluorescent quencher also suppresses background signals and increases quantification.
  • the length of the individual probes in the probe set can be adjusted as needed and according to the desired specificity, for example, the total length is about 3 to 300 bases, preferably about 5 to 100 bases. It is more preferably about 6 to 50 bases, and even more preferably 15 to 34 bases.
  • Each probe in the probe set contains labeled nucleotides within it.
  • any reporter dye suitable for labeling nucleic acids can be used.
  • the reporter dye is selected from the group consisting of fluorophores, chromophores, radioisotopes, chemical luminescent materials and enzymes.
  • Reporter dyes are preferably 5-carboxyfluorescein or 6-carboxyfluorescein (FAM®), VIC®, NED®, fluorescein, fluorescein isothiocyanate (FITC), IRD-700 / 800, Cyanine dyes such as CY3®, xanthene, 6-carboxy-2', 4', 7', 4,7-hexachlorofluorescein (HEX), 6-carboxy-1,4-dichloro-2', 7'-dichloro-fluorescein (TET®), 6-carboxy-4', 5'-dichloro-2', 7'-dimethoxyfluorescein (JOE®), N, N, N', N '-Tetramethyl-6-Rhodamine (TAMRA®), 6-carboxy-X-Rhodamine (ROX), 5-Rhodamine-6G (R6G5), 6-Rhodamine-6G (RG6), Rhodamine, Rhod
  • More preferred reporter dyes are Atto465, DY-485XL, FAM TM, AlexaFluor® 488, DY-495, Atto495, DY-510XL, JOE, TET TM, CALFluor® GolD540, DY- 521XL, RhoDamiN6G®, YakimaYellow®, Atto532, AlexaFluor® 532, HEX, SIMA, AttoRhoG6, VIC, CALFluorOraNge560, DY-530, TAMRA®, Quasar570, CY3®, NED TM, DY-550, Atto550, AlexaFluor® 555, PET®, CALFluorRED590, ROX, TexasReD®, CALFluorReD610, CALFluorReD635, Atto633, AlexaFluor® 633, DY-630, It is selected from the group consisting of DY-633, DY-6
  • More preferred reporter dyes are selected from the group of fluorophores consisting of FAM TM, DY-510XL, DY-530, and Atto550. Preferred are FAM, VIC, HEX, JOE, TET, NED, or TAMRA. From the above dyes, a combination of fluorescent dyes having different fluorescent wavelengths is selected.
  • each probe in the probe set comprises a "modified nucleotide".
  • the modified nucleotide can be a nucleotide containing a quencher in addition to the above-mentioned nucleotide containing a reporter dye.
  • One of ordinary skill in the art can select an appropriate nucleotide as a modified nucleotide, if necessary.
  • Quenching refers to any process that reduces the fluorescence intensity of a substance.
  • the "quenching agent" in the present invention relates to, for example, residues suitable for quenching the basic fluorescence of a label without activation.
  • a variety of processes can result in quenching, such as quenching by excited reactants, quenching by energy transfer, quenching by complex formation, and quenching by collisions. As a result, quenching is often highly dependent on pressure and temperature. Oxygen molecules and iodide ions are common chemical quenchers. Quenching raises the issue of non-immediate spectrophotometry, such as laser-induced fluorescence. Quenching is the basis of a fluorescence resonance energy transfer (FRET) assay.
  • FRET fluorescence resonance energy transfer
  • Quenching and quenching when interacting with a particular molecular biological target is the basis of an activable optical contrast agent for molecular imaging.
  • the probes in the probe set are usually labeled with a reporter dye, which is used to detect genes in real-time PCR. It is necessary to excite the selected reporter dye in the same well with a real-time PCR device and detect it accurately.
  • the manufacturer of the device introduces the recommended dyes for each device.
  • the reporter dye does not need to be selected according to the type of target RNA or gene product, but the assay can be simplified by selecting an appropriate dye.
  • the Invitrogen® FAM® dye is the most common reporter dye used in TaqMan probes.
  • the 3'end sequence of target RNA which is the difference between single nucleotides in the invention: Invitrogen® VIC (registered trademark) as a reporter in a probe targeting the presence of nucleotide A in CCA vs. CC.
  • the registered trademark) dye can be selected and the FAM dye can be selected as a reporter in probes targeting the absence of nucleotide A. This combination makes it possible to perform assays that combine two types of dyes, FAM dyes and VIC dyes.
  • step b-1 the adapter is ligated to the target RNA by the RNA ligase suitable for the adapter prepared in step a-1), and the cDNA formed is used as a template for cDNA.
  • RNA ligase suitable for the adapter prepared in step a-1
  • the cDNA formed is used as a template for cDNA.
  • RNA ligase can be achieved by RNA ligase.
  • the RNA ligase may be an ATP-dependent ligase.
  • the RNA ligase may be a family of Rnl1 or Rnl2 ligases.
  • Exemplary Rnl1 family ligases include, for example, T4 RNA ligase, Thermosscitoductus bacteriophage TS2126-derived thermostable RNA ligase 1 (CircLigase), or CircLigase II. These ligases generally catalyze the formation of ATP dependence of phosphodiester bonds between nucleotide 3-OH nucleophiles and 5'phosphate groups.
  • Rnl2 family ligases can seal nicks in double-stranded RNA.
  • Rnl2 family ligase examples include T4RNA ligase 2.
  • This RNA ligase may be an Archaeal RNA ligase, for example, an archaeal RNA ligase derived from the thermophilic archaea Methanobacterium thermoautotrophicum (MthRnl).
  • the ligase used for ligation is selected according to the arrangement of the adapters to be used.
  • Custom AIR® adenylation adapter / linker 5'-rAppCTGTAGGCACCATCAAT / 3ddC / -3', which is a 5'adenylation adapter with a 3'end block) used in the examples. (PerkinElmer (Waltham, MA)) ”)
  • the AIR adenylation linker is a 5'-adenylation / 3'protective oligo
  • RNA ligase 2 is used as the ligase.
  • ATP is not required, which is a preferable embodiment.
  • a synthetic oligo modified with 5'-adenylation or an oligo with a phosphorylated 5'end 5'-adenylated with a 5'DNA Adenylation Kit is used as an adapter.
  • the unreacted adapter can be filtered by any means known to those of skill in the art, eg by molecular weight cutoff, size exclusion chromatography, use of spin columns, It may be removed by selective precipitation with polyethylene glycol (PEG), selective precipitation with PEG on a silica matrix, alcohol precipitation, sodium acetate precipitation, PEG and salt precipitation, or high stringency washing.
  • PEG polyethylene glycol
  • cDNA is prepared by a method well known to those skilled in the art.
  • an RT primer, a linkage product of a target RNA and an adapter, and a reverse transcriptase are mixed, and the cDNA is synthesized using the linkage product as a template.
  • the RT primer has a region at the 3'end that hybridizes to the linkage product.
  • step ⁇ ) amplifies the target region containing the difference of a single nucleotide on the cDNA by PCR, and at the same time, measures the difference of a single nucleotide qualitatively or quantitatively.
  • "simultaneously" in step ⁇ ) means a form in which a target region containing a difference of a single nucleotide on cDNA is amplified and the difference is measured at the same time.
  • the measurement of the amplification product may be a sequencing of the amplification product or a measurement of the intensity of the reporter dye that reflects the difference of a single nucleotide in the amplification product. Preferably, it is a measurement of the intensity of the reporter dye.
  • step ⁇ the 3'end sequence of the target RNA, which is the difference between single nucleotides: probe qPCR consisting of a probe targeting the presence of nucleotide A in CCA vs. CC and a probe targeting the absence of nucleotide A.
  • probe set that targets single nucleotide differences works.
  • a fluorescent dye as a reporter is used at the 5'end of the sequence-specific oligonucleotide, and a probe set labeled with a quencher at the 3'end is used.
  • the probe (for detection) and the primer (for amplification) are used at the same time.
  • the quencher If the quencher is near the fluorochrome (on the same probe), it absorbs the fluorescence and no fluorescence is detected. Therefore, in the normal probe state, there is no fluorescent signal.
  • the probe hybridizes to the template cDNA during the PCR process, and no fluorescence is detected at this point.
  • the primer also binds to the template, and the DNA strand is synthesized and amplified by the polymerase from that point. When the polymerase reaches the position where the probe is bound, it begins to break the probe apart. As a result, the fluorescent substance and the quencher are separated from the probe, and the fluorescent substance and the quencher are physically separated from each other, so that the fluorescent signal can be detected. In this way, the amplification of the template by the polymerase starting from the primer and the detection of the fluorescent signal due to the destruction of the probe are performed in one reaction, so that it is “simultaneous”.
  • the probe set targeting the difference of a single nucleotide is a fluorescently labeled probe set that recognizes the difference of a single nucleotide
  • step ⁇ the probe set targeting the difference of a single nucleotide is a fluorescently labeled probe set that recognizes the difference of a single nucleotide
  • the present invention relates to a method for qualitatively or quantitatively measuring a single nucleotide difference in a target tRNA, which qualitatively or quantitatively measures a single nucleotide difference using the emitted fluorescence intensity as an index during amplification.
  • "as an index” is typically meant to compare fluorescence intensities that vary with different single nucleotides.
  • the fluorescently labeled probe set that recognizes the difference between single nucleotides for realizing such an embodiment is a probe set containing a modified nucleotide containing a reporter dye in the present invention.
  • a probe set containing a modified nucleotide containing a reporter dye in the present invention.
  • the reporter dyes are VIC (registered trademark) and FAM (registered trademark) will be described below.
  • one probe has a sequence complementary to the VIC® labeled 3'CCA-tRNA and the other probe is complementary to the FAM® labeled 3'CC-tRNA.
  • MGB moiety is commonly used to detect single nucleotide polymorphisms because it increases the higher melting temperature of the probe through increased binding affinity to the target sequence (Nagy, A., Vitaskova, E.
  • the probe When extended using Taq polymerase, the probe is degraded and either VIC or FAM is released, and the resulting fluorescent signal allows quantification of the amplification product.
  • the fluorescent signal from VIC represents the amount of 3'CCA-tRNA and the signal from FAM represents the amount of 3'CC-tRNA.
  • the aminoacyllation rate that is, the 3'-terminal CCA and CC are aligned.
  • the ratio of the readings aligned to the 3'end CCA to the sum of the readings made is determined. Therefore, as one embodiment, the present invention is in addition to the steps a-1), b-1) and ⁇ ) described above.
  • the present invention relates to a method for qualitatively or quantitatively measuring the difference between a single nucleotide of a target RNA including.
  • the present invention is represented by one target RNA, preferably one tRNA, by performing each step of the above steps a-1), b-1), ⁇ ) and ⁇ ) as one embodiment.
  • the amino acylation rate of tRNA-functional RNA can be measured. As mentioned above, it has been reported that "tRNA represented by tRNA-aminoacylation rate of functional RNA" is closely related to some biological phenomena and diseases.
  • Such a method of the present invention is a PCR method capable of detecting the acylation of one tRNA-functional RNA, that is, a PCR method capable of quantifying individual tRNA aminoacyllation rates, and can be referred to as an i-tRAP method. ..
  • the i-tRAP method of the present invention is very advantageous in terms of ease of use and convenience.
  • the previously reported tRNA sequencing method has significantly improved the resolution in detecting the aminoacylation profile of tRNA (Evans, ME, Clark, WC, Zheng, G., and Pan, T. (2017). Nucleic Acids Res. 45. , e133.), In comparison, the present invention simplifies the preparation of cDNA. Evans et al.
  • thermostable Group II intron reverse transcriptase for template switching reverse transcription and DNA circligase to generate cyclized cDNA
  • TGIRT thermostable Group II intron reverse transcriptase
  • the present invention is an improvement on the small RNA sequencing method. That is, ligation of the adapter sequence to the 5'and 3'ends of RNA and subsequent reverse transcription (Lau, NC, Lim, LP, Weinstein, EG, and Bartel, DP (2001). Science (80-.). 294, 858-862.).
  • the commercially available TaqMan probe (registered trademark) can be used as a preferred embodiment because MGB, FAM (registered trademark), VIC (registered trademark), and quencher are specified. ..
  • the TaqMan probe® is manufactured by Thermo fisher scientific.
  • the following probes are available.
  • -MGB probe The 5'side is modified with a reporter fluorescent dye, and the 3'side is modified with MGB (minor groove binder, Minor Groove Binder) and Eclipse quencher (EQ). Probes with MGB form a very stable double-stranded structure with the template DNA, resulting in higher melting temperatures (Tm values).
  • Some embodiments of the present invention are typical: A. A method of measuring target RNA with a single nucleotide resolution in the terminal sequence. a-11) 5'adenylation / 3'protective oligo adapters linked to the 3'end of the target RNA, RT primers; reverse primers; and forward primers, and TaqMan probes targeting the boundary between the target RNA and the adapter, respectively. Prepare and b-11) Rnl2 ligation ligates the adapter to the target RNA to form a ligation product. c-11) A method for amplifying and quantifying linked products by TaqMan RT-PCR;
  • a method for determining, detecting or analyzing CCA vs. CC which is the difference between single nucleotides in the 3'end sequence of the target tRNA.
  • a-12) Target the 5'adenylation / 3'protective oligo adapter, RT primer; reverse primer; and forward primer linked to the 3'end of the target RNA, and the CCA and CC boundaries of the target RNA and the adapter. Prepare two TaqMan probes respectively b-12) Rnl2 ligation ligates the adapter to the target RNA to form two ligation products.
  • c-12) A method for amplifying and quantifying two linkage products by TaqMan RT-PCR;
  • a-13) Target the 5'adenylation / 3'protective oligo adapter, RT primer; reverse primer; and forward primer linked to the 3'end of the target RNA, and the CCA and CC boundaries of the target RNA and the adapter.
  • the template switching method using reverse transcriptase using an enzyme such as TGIRT as the above preferred embodiment is a single nucleotide in one target RNA.
  • the difference of a single nucleotide is the 3'end sequence of the target RNA: the presence or absence of nucleotide A in CCA vs. CC. a-2)
  • PCR can include a method of amplifying a target region containing a single nucleotide difference on the cDNA and simultaneously measuring the single nucleotide difference qualitatively or quantitatively.
  • the adapter used in step a-1) above is an RNA / DNA hybrid in which a DNA strand complementary to the RNA adapter is annealed.
  • ligation and reverse transcription are possible at the same time, and the step of "linking the adapter to the target RNA by RNA ligase" in the above step b-1) becomes unnecessary.
  • an RNA / DNA hybrid annealed with a DNA strand complementary to the prepared RNA adapter is mixed with the target RNA.
  • the DNA strand to be annealed has only one base protruding at the 3'end.
  • the base to be overhanged preferably contains 50% each of T and G.
  • a and G are 50% each for the "protruding base" in the "DNA primer whose 3'end protrudes only 1 base with respect to the RNA adapter" in step a-2).
  • TGIRT which can act at high temperature, as an enzyme.
  • RNA adapter In addition, the significance of "arbitrary RNA adapter”, “DNA primer”, “primer set for amplification” such as “primer”, and “probe set targeting the difference of a single nucleotide” in step a-2). Is the same as in step a-1). Similarly, the cDNA preparation in step b-2) is the same as that in step b-1).
  • the i-tRAP method of the present invention can obtain the same effect as multiplex PCR (multiplex polymerase chain reaction, Multiplex PCR) by using 4 or 6 fluorescences.
  • Multiplex PCR is a modification of the polymerase chain reaction, which is a method of amplifying and specifically detecting two or more types of gene sequences in the same reaction.
  • a primer set corresponding to a tRNA-functional RNA represented by a plurality of tRNAs and a probe set corresponding to the CC-terminal and CCA-terminals of the tRNA-functional RNA represented by each tRNA are reacted at the same time. All fluorescent dyes used in the probe set must have different fluorescent wavelengths.
  • tRNA-functional RNA represented by tRNA which is schematically shown in FIG. 10
  • tRNA-functional RNA represented by tRNA which is schematically shown in FIG. 10
  • a series of chemical and enzymatic treatments described in FIG. 1, for example, are applied to tRNA extracted from cells to demethylate aminoacylated and non-aminoacylated tRNA, respectively, 3'CCA-tRNA and 3'CC-tRNA. Process to.
  • the resulting tRNA is ligated to the 5'adenylation linker by T4 RNA ligase 2 (T4Rnl2).
  • T4Rnl2 T4 RNA ligase 2
  • the ligation product is used as a template for reverse transcription to generate cDNA.
  • Two probe-based qPCR assays are utilized to detect single nucleotide differences in the 3'end sequence of tRNA, CCA vs. CC.
  • the cell from which RNA is extracted is not particularly limited, and means a cell containing RNA regardless of the type and content of RNA.
  • cells containing RNA from mammalian tissue, organ or blood such as human tissue, organ or human blood can be mentioned, preferably derived from human peripheral blood which does not burden the subject and is easy to collect. It is a cell containing the RNA of.
  • RNA extracted from cells needs to be demethylated. Some bases and ribose in the RNA sequence undergo chemical modifications such as methylation after transcription. There are many types of RNA modifications, and more than 130 types have been identified in eukaryotes. Most of them are found in tRNAs and are known to affect the stability and translation efficiency of tRNAs. In addition, the presence of modified nucleosides has been reported in rRNA, mRNA, and ncRNA. These modifications affect the measurements, quantifications, and tests in the present invention and should be removed. Typically, multiple enzymes are used for demethylation.
  • RNAs such as N1-methyladenosine (m1A), N1-methylguanosine (m1G), N3-methylcytosine (m3C), and N2, N2-dimethylguanosine (m22G).
  • m1A N1-methyladenosine
  • m1G N1-methylguanosine
  • m3C N3-methylcytosine
  • N2G N2-dimethylguanosine
  • coli AlkB and its D135S mutants can remove most of the m1A, m1G, and m3C modifications of tRNA.
  • the model RNA substrate containing m22G is efficiently and selectively converted to N2-methylguanosine (m2G) by the AlkB D135S / L118V mutant.
  • the invention treats target RNA extracted from a biological sample to remove terminal bases in non-aminoacylated RNA (non-aminoacylated RNA), while aminoacylated.
  • non-aminoacylated RNA non-aminoacylated RNA
  • aminoacylated RNA a step of preparing non-aminoacylated RNA and aminoacylated RNA can be included.
  • the treatment of the target RNA is periodic acid oxidation, ⁇ desorption and terminal repair for non-aminoacylated RNA, and weak alkaline treatment for aminoacylated RNA.
  • the present invention in another embodiment, in the method of the invention for qualitatively or quantitatively measuring the difference in a single nucleotide in one target small RNA, where the difference in a single nucleotide is 3'of the target RNA.
  • End sequence Assay kit used in the method in which nucleotide A is present or absent in CCA vs. CC.
  • kits can include instructions for use. In embodiments of this kit, demethylation with a demethylase improves the efficiency of reverse transcription, but the demethylase is not essential, and even without it, the difference between single nucleotides. It may be qualitatively or quantitatively measurable.
  • the present invention is a method for comprehensively measuring the sequence, expression level and aminoacylation rate of tRNA-functional RNA.
  • a-10) TRNA-functional RNA extracted from biological specimens is treated to remove terminal bases in non-aminoacylated RNA (non-aminoacylated RNA), while aminoacylated RNA (aminoacylated). By removing amino acids from RNA), non-aminoacylated RNA and aminoacylated RNA are prepared, respectively.
  • b-10) Connect the adapter to the 3'-end and 5'-end of both obtained RNAs.
  • c-10) Reverse transcription is performed using the produced linked RNA as a template.
  • RNA-functional RNA in the present embodiment of the present invention is an RNA of 20 to 150 bases (nt, nucleotide length), specifically the same as tRNA or tRNA which is 20 to 80 bases. In an embodiment, it means an RNA-like molecule or a portion thereof or a derivative thereof whose 3'end is aminoacylated (charged) or deaminoacylated (decharged). Specifically, such "RNA-like molecule or a portion thereof or a derivative thereof” is a tRF or tRNA half (Raina, M. & Ibba, M. tRNAs as regulators of) having a microRNA derived from tRNA, for example, a 3'end of tRNA. Biological processes.
  • RNA having tRNA-like activity for example, RNA synthetic products having tRNA-like activity having a 3'end of tRNA. More specifically, RNA obtained by extracting RNA of 20 to 150 bases by subjecting RNA extracted from a biological sample to size fractionation can be mentioned.
  • “Measuring RNA sequence” in the present embodiment of the present invention means RNA sequencing, that is, RNA sequencing, which is well known to those skilled in the art.
  • “Measuring the expression level of tRNA” in the present embodiment of the present invention means measuring the amount of RNA contained in a biological sample, specifically, all sequences of tens of thousands sequenced by this method. Of these, the expression level is evaluated as the ratio of the target RNA sequence, so to be precise, it means the ratio of each tRNA contained in the biological sample.
  • “Measuring the amino acylation rate of tRNA-functional RNA” in the present embodiment of the present invention means, as described above, tRNA-functional RNA (aminoacylation) in which an amino acid is aminoacylated in one tRNA-functional RNA. It means calculating the ratio of aminoacylated tRNA-functional RNA to tRNA-functional RNA) and non-aminoacylated tRNA-functional RNA (non-aminoacylated tRNA-functional RNA). As described above, in the sequence determination performed in the present embodiment, tens of thousands of DNA strands contained in the sample are read, and as a result, information on the sequence and how many sequences there are can be obtained. As shown in FIG.
  • the sequence of the tRNA-functional RNA to which the amino acid is bound and the tRNA-functional RNA to which the amino acid is not bound is different by one base.
  • the ratio can be calculated from the information on how many of the sequences are. For example, if the information obtained for a specific tRNA is 1500, 1000 out of 1500 are CCA, and 500 are CC, then from this information, CCA: CC is 2. It is 1 and the aminoacylation rate can be measured to be 66%.
  • “Comprehensive measurement” in the present embodiment of the present invention means that all RNA contained in the sample is targeted, and when the RNA is tRNA, it is encoded by the human genome and mitochondrial DNA. It means that all of the approximately 300 types of tRNA expressed are individually measured. Since it can be measured comprehensively, it has the advantage that the aminoacylation rates of all RNAs can be analyzed at once regardless of the level of expression.
  • the "biological sample” is blood, urine, cerebrospinal fluid, saliva, tears, semen, brain, heart obtained from humans or animals such as pets and domestic animals.
  • biological specimens are human-derived blood, serum, plasma, urine, tissue, cerebrospinal fluid, preferably blood, and more preferably serum or plasma, which is a liquid component of blood.
  • Conventionally known methods can be used as the method for preparing serum and plasma.
  • cultured cells include CHO (Chinese hamster ovary), HEK293 (human fetal kidney), adenoviral vector packaging cells, HL-60 (derived from human leukemia cells), HeLa (derived from human cervical cancer), MDCK.
  • the treatment of RNA is periodic acid oxidation, ⁇ desorption and terminal repair for non-aminoacylated RNA and deaminosylated for aminoacylated RNA.
  • periodic acid oxidation is an oxidative cleavage reaction that targets the carbon bonds at the 2nd and 3rd positions of ribose at the 3'end of the RNA chain.
  • periodic acid or sodium periodate is used to carry out an oxidative cleavage reaction.
  • ⁇ elimination is a reaction in which the carbon at the 5-position of ribose and the phosphate group adjacent to it are eliminated after the oxidative cleavage reaction.
  • terminal repair is a reaction in which the phosphate group bound to the carbon at the 3-position after ⁇ -elimination is removed by an enzyme.
  • Aminoacyl TRNA Deaminoacylation is a weak alkaline treatment that cleaves the aminoacyl bond and releases the amino acid bound to the aminoacylized RNA.
  • the "adapter" in step b-10) of the present embodiment is an RNA strand sometimes referred to as a linker.
  • the 3'-end adapter is an RNA whose 5'-end is adenylated and whose 3'-end is modified with -NH 2 or ddC to prevent self-ligation at the 3'end. It is a chain, and its length is not particularly limited, but it may have a length of at least about 20 bases and may be longer than that.
  • the 5'-terminal adapter is an RNA strand having a length of about 25 bases, although it is not particularly limited. Adapter ligation to both RNAs is performed using a predetermined ligase.
  • the ligase here is the same as that in the i-tRAP method of the present invention.
  • the method of Evans et al. does not have an RNA ligase step, but the present invention is new in that it includes an RNA ligase step.
  • the feature in this embodiment is that Evans et al. Used TGIRT, whereas the present invention uses a normal reverse transcriptase. In the present invention, it is an unexpected result that comprehensive analysis was possible even by using a normal reverse transcriptase.
  • the former performs reverse transcription with TGIRT, cyclization with Circuligase, and then PCR, whereas in the present invention, 3'adapter linkage is performed. , 5'adapter ligation, and reverse transcription, followed by PCR.
  • cDNA is prepared by performing reverse transcription using the produced linked RNA as a template by a method well known to those skilled in the art.
  • Step d-10 of this embodiment is a step of amplifying cDNA and creating a cDNA library.
  • Amplification can be performed by various amplification methods well known to those skilled in the art.
  • amplification is carried out by polymerase chain reaction (PCR), isothermal amplification (Walker et al., "Strand displacement amplification--anisothermal, invitro DNA amplification technique", Nucleic Acids Res., Vol. 20 (No. 7)).
  • TMA Transfer-mediated amplification
  • HDA Helicase-dependent amplification
  • tHDA Thermal stability HDA
  • SMAP Quantitative real-time PCR
  • RT-PCR reverse transcription PCR
  • Sanger sequencing Perform by the method selected from the group.
  • amplification is performed by PCR.
  • each cDNA in the library is sequenced and sequence data is acquired.
  • sequenced reads were mapped to human tRNA sequences and aligned to at least 25 nucleotides at the 3'end of the tRNA sequence without mismatch
  • the reads with CCA at the 3'end were derived from aminoacylated tRNA.
  • the reads ending at the 3'end CC were considered to be derived from unaminoacylated tRNA.
  • the aminoacylation rate is calculated from the total number of reads including 3'end CCA and CC and the ratio of 3'end CCA.
  • RNA extracted from a biological sample is subjected to size fractionation to extract 50-150 nt RNA, and the subsequent steps are performed.
  • it is 20-150 nt (nucleotide length) RNA, and specifically, 20-80 nt RNA is used.
  • tRNA microRNA derived from tRNA, for example, tRF or tRNA half having a 3'end of tRNA (Raina, M. & Ibba, M. tRNAs as regulators of biological processes. Frontiers in genesics 5, 171 (2014)).
  • RNA having tRNA-like activity eg, an RNA synthesis product having tRNA-like activity having a 3'end of tRNA.
  • the ratio of the expression level of aminoacylated RNA to the total expression amount of aminoacylated RNA and non-aminoacylated RNA Is calculated.
  • RNA extracted from a biological sample needs to be demethylated.
  • the demethylation treatment is the same as the method in the i-tRAP method of the present invention.
  • the present invention is an assay kit used in the method of the present invention for comprehensively measuring the "base sequence, expression level and amino acylation rate" of tRNA-functional RNA.
  • Both the i-tRAP method and the simplified aminoacylated tRNAseq method for evaluating the tRNA aminoacylation rate in the present invention can be used for evaluating the functional intracellular amino acid concentration.
  • "Functional amino acid” means an amino acid actually used for protein synthesis in a cell, that is, an aminoacylated amino acid.
  • certain anti-cancer drug treatments reduce the intracellular amino acid concentration of the cancer cells, thereby reducing the activity of the cancer cells and suppressing protein synthesis to induce cell death. ..
  • the tRNA aminoacylation rate in cancer cells by measuring the tRNA aminoacylation rate in cancer cells and confirming whether or not the functional amino acid concentration is actually decreased, it can be applied to the determination of the therapeutic effect and the selection of the therapeutic drug.
  • the present invention provides a method for screening a substance that varies the aminoacylation rate of tRNA.
  • the present invention is a method for screening a substance that changes the aminoacylation rate of tRNA.
  • a-20) Add the test substance to the cells and add b-20) Measure the aminoacylation rate of tRNA in the cells, and c-20)
  • the test substance is a substance that changes the aminoacylation rate of tRNA.
  • the "cell” in the present invention is not particularly limited as long as it is a cell expressing a protein, and is obtained from a living body capable of detecting a change in the rate in a test substance using the "aminoacyllation rate of tRNA" as an index. Any cell may be used.
  • cells that can be used blood, spinal fluid, semen, brain, heart, kidney, liver, lung, spleen, blood vessels, blood cells, muscles, fat, skin, pancreas, which are obtained from humans or animals such as pets and domestic animals.
  • Examples include living-derived cells selected from the intestine, endocrine system, nerves, and sensory organs, as well as cultured cells.
  • cultured cells include CHO (Chinese hamster ovary), HEK293 (human fetal kidney), adenoviral vector packaging cells, HL-60 (derived from human leukemia cells), HeLa (derived from human cervical cancer), MDCK.
  • test substance in the present invention is used to test any natural or non-natural molecule, such as a biological polymer such as a nucleic acid, polypeptide or protein, an organic or inorganic molecule, or an organism for testing the activity of interest. It means an extract prepared from a scientific material such as a cell or tissue such as a bacterium, a fungus, a plant or an animal, particularly a mammal, a human or the like. Not limited, but refers to natural and non-natural compound libraries, medicinal plant extracts, peptides, antibodies, nucleic acid libraries, etc. owned by universities, companies, etc.
  • the cells used in the screening method of the present invention can be prepared by a technique well known to those skilled in the art, and the cells can be obtained, for example, by collecting blood from a patient or a healthy person or by biopsy.
  • the cells used in the present invention are cultured according to standard cell culture techniques. For example, cells are placed in a suitable container in an incubator containing a humidified 5% CO2 atmosphere and grown in a sterile environment at 37 ° C.
  • the container contains agitated or standing medium.
  • various cell culture media may be used, and for example, a medium containing fetal bovine serum or the like, 293SFM serum-free medium (Invitrogen Corp., Carlsbad, CA) can be used.
  • Cell culture techniques are well known in the art and established protocols are available for culturing a variety of cell types (eg, R.I. Freshney, "Culture of Animal Cells: A Manual of Basic Technique", See 2nd Edition, 1987, Alan R. Liss, Inc.).
  • the screening method of the present invention is performed using cells contained in a plurality of wells of a multi-well assay plate.
  • assay plates include, for example, Stratgene Corp. (La Jolla, CA) and Corning Inc. (Acton, MA) commercial products, including, for example, 48-well, 96-well, 384-well, and 1536-well plates. ..
  • test substance changes the aminoacyllation rate of tRNA can be easily determined by the i-tRAP method or the simplified aminoacyl-tRNAseq method of the present invention according to the method described in the present specification.
  • the screening method of the present invention is useful for the treatment or prevention of diseases.
  • a cell corresponding to mitochondrial disease for example, a cell derived from a mitochondrial disease patient or a cell derived from a mitochondrial gene disease model mouse, it can be used.
  • Various causes of mitochondrial disease are known, but when they are derived from tRNA, aminoacylation becomes difficult. Therefore, a substance that improves the aminoacylation rate may be screened. Thereby, substances that can treat or prevent mitochondrial disease can be screened.
  • Mitochondrial diseases represented by MELAS show various symptoms such as short stature, general muscle atrophy, hearing loss, diabetes, headache, epileptic seizures, and lactic acidosis, and the most characteristic symptom is recurrent stroke-like seizures. Mitochondrial disease causes symptoms such as sudden inability to speak, half of the visual field, and paralysis of limbs, such as a stroke. While repeating these stroke-like attacks, disorders of physical function and cognitive function accumulate.
  • mtDNA mitochondrial DNA
  • MELAS Transfer RNA and human disease Jamie A. Abbott, Christopher S. Francklyn and Susan M. Robey-Bond. Front. Genet., 2014).
  • a specific cancer there is a cancer that highly requires a specific amino acid, for example, methionine, and in that case, if a substance that lowers the aminoacylation rate of that amino acid can be screened, a substance that can treat or prevent the specific cancer. It will be possible to obtain it.
  • a specific amino acid for example, methionine
  • the screening method of the present invention can be made into a kit.
  • the cells disclosed herein can be packaged in various containers such as vials, tubes, microtiterwell plates, bottles, and other reagents can be included in another container to form a kit.
  • the present invention is a method for screening a substance that changes the aminoacylation rate of tRNA.
  • a-30 Administer the test substance to the animal and b-30) Collect cells of a predetermined organ from the animal and collect them.
  • c-30) Measure the aminoacylation rate of tRNA in the cells, and c-30)
  • the test substance is a substance that changes the aminoacylation rate of tRNA.
  • the "animal” in the present invention includes wild-type mice, rodents such as rats, animals often used in animal experiments such as marmosets and monkeys, or genetically modified substances thereof.
  • the "predetermined organ” in the present invention means blood, urine, spinal fluid, saliva, tears, semen, brain, heart, kidney, liver, lung, spleen, blood vessel, blood cell, muscle, fat, skin, pancreas, intestine. , Endocrine, nerve, sensory.
  • the "cell” in the present invention is not particularly limited as long as it is a cell expressing a protein, and is obtained from a living body capable of detecting a change in the rate in a test substance using the "aminoacyllation rate of tRNA" as an index. Any cell may be used.
  • cells that can be used blood, spinal fluid, semen, brain, heart, kidney, liver, lung, spleen, blood vessels, blood cells, muscles, fat, skin, pancreas, which are obtained from humans or animals such as pets and domestic animals.
  • Examples include living-derived cells selected from the intestine, endocrine system, nerves, and sensory organs, as well as cultured cells. Examples of cultured cells are the same as above.
  • the cells used in the screening method of the present invention can be prepared by a technique well known to those skilled in the art, and the cells can be obtained, for example, by collecting blood from a patient or a healthy person or by biopsy.
  • test substance in the present invention is as described above.
  • the screening method of the invention is performed using cells contained in multiple wells of a multi-well assay plate, as described above. Whether or not the test substance changes the aminoacyllation rate of tRNA can be easily determined by the i-tRAP method or the simplified aminoacylated tRNAseq method of the present invention according to the method described herein.
  • the screening method of the present invention is useful for the treatment or prevention of diseases as described above.
  • substances that can treat or prevent mitochondrial diseases and cancer that is, substances that can improve the abnormal aminoacylation rate (charge rate) occurring in these diseases, can be screened.
  • the present invention relates to a pharmaceutical composition comprising a substance that varies the aminoacylation rate of tRNA, for adjusting the effect on a biological and physiological process in a subject.
  • the substance that changes the aminoacylation rate of tRNA is the substance that is screened by the screening method of the present invention.
  • Substances that change the aminoacyllation rate of tRNA include substances that increase the aminoacylation rate and substances that decrease the aminoacylation rate.
  • Aminoacylation rate increasing substances are specifically selected from amino acids, proteins synthesis inhibitors (eg, cyclohexamides), etc.
  • aminoacylating rate decreasing substances are specifically aminoacylase enzyme inhibitors.
  • mupyrosine, borelidine, halofuginone, neomycin, pentamidin, purpuromycin autophagy lithosome inhibitors (eg, chlorokin), proteasome inhibitors (eg, MG132), and inhibitors of integrated stress response (eg, eg). It is selected from ISRIB) and so on.
  • the "subject" of "adjusting the effects on biological and physiological processes in a subject” means a human or an animal such as a pet or livestock.
  • “coordinating the effects on biological and physiological processes” is an event related to one or more selected from cell activity, nutritional status, body, mental and pathological conditions in a subject. Means to adjust the effect on.
  • "adjusting the effect” means returning it to a desirable state if it is a bad effect, returning it to a good state if it is not bad but not good. .. In particular, it means improving indicators of health and illness.
  • events related to one or more selected from cell activity, nutritional status, physical, mental and pathological conditions in a subject are, for example, mitochondrial diseases, age-related diseases, and the like.
  • One or more selected from lifestyle-related diseases, mental diseases, intractable diseases, hereditary diseases, life-course-related diseases, digestive diseases, cancers, cardiovascular diseases, kidney diseases and neurological diseases are, for example, mitochondrial diseases, age-related diseases, and the like.
  • Mitochondrial disease is a general term for diseases that occur due to functional deterioration in mitochondria that are present in cells throughout the body and have the function of producing energy. Causes blood flow disorders and motility disorders in muscle cells. Mitochondrial diseases include, for example, MELAS, which presents with various symptoms such as short stature, generalized muscle atrophy, hearing loss, diabetes, headache, epileptic seizures, and lactic acidosis, and the most characteristic symptom is recurrent stroke-like seizures.
  • Aging-related diseases mean senile syndrome associated with aging phenomena and functional changes in the body organs of the elderly, and include various symptoms. For example, dizziness, shortness of breath, abdominal mass, chest and abdominal water, headache, consciousness disorder, insomnia, fall, fracture, abdominal pain, jaundice, lymph node swelling, diarrhea, hypothermia, obesity, sleep breathing, assuming no change with age.
  • Disorders, edema, and nausea are included, and those that increase in the elderly in the early stages include dementia, dehydration, paralysis, bone joint deformity, decreased vision, fever, joint pain, lower back pain, sputum, coughing, and asthma.
  • Loss of appetite, edema, leanness, numbness, speech disorders, nausea and vomiting, constipation, dyspnea, weight loss, and increased in older people include decreased ADL, osteoporosis, vertebral fractures, difficulty swallowing, urine Incontinence, frequent urination, edema, depression, decubitus, hearing loss, anemia, hyponutrition, bleeding tendency, chest pain, arrhythmia.
  • Lifestyle-related diseases are a general term for diseases caused by lifestyle-related diseases. Lifestyle-related diseases such as cancer, cerebrovascular disease, cardiovascular disease, which are the three major causes of death in Japan, as well as arteriosclerosis, diabetes, hypertension, and dyslipidemia, which are risk factors for cerebrovascular disease and cardiovascular disease. I'm sick.
  • Mental illnesses include, for example, Alzheimer's disease, vascular dementia, Levy body dementia, dementia, alcohol addiction, caffeine addiction, drug addiction, schizophrenia, depression, panic disorder, Asperger syndrome, PTSD, ADHD, bipolar.
  • sexual disorders anxiety disorders, compulsive disorders, adaptation disorders, dissecting disorders, feeding disorders, sleep disorders, sexual identity disorders, intellectual disorders, developmental disorders, tic disorders, drug addiction, addiction, alcohol addiction, gambling Addiction, personality disorder, withdrawal, neurological hyperphagia, learning disorder, organic psychiatric disorder, acute stress disorder, neurological thinness, borderline personality disorder, autism spectrum disorder, puerperal psychiatry, postoperative psychiatric illness, symptomatic psychiatry Disorders, psychosis, frontotemporal dementia, general anxiety disorders, social anxiety disorders, dementia, drug addiction, divorce disorders, senile depression, senile psychiatric disorders, Turret syndrome, anxiety , Drug addiction.
  • Intractable diseases mean diseases that are particularly difficult to treat, have long-lasting medical conditions, and place a heavy burden on daily life, including, for example, 333 designated intractable diseases, which include systemic erythematosus belonging to the family of allergies and rheumatism, microscopic polyangiitis.
  • Hereditary disorders are syndromes with chromosomal or genetic changes, such as the following disorders: Coffin-Lowry Syndrome, Sotos Syndrome, Smith-Magenis Syndrome, Rubinstein-Taybi Syndrome, Kabuki Syndrome, Weaver Syndrome, Cornelia Delange ( Cornelia de Lange Syndrome, Beckwith-Wiedemann Syndrome, Angelman Syndrome, 5p-Syndrome, 4p-Syndrome, Trisomy 18 Syndrome, Trisomy 13 Syndrome, Down Syndrome, Autosomal Abnormality ( Excluding Williams Syndrome and Prader-Willi Syndrome), CFC (cardio-facio-cutaneous) Syndrome, Marfan Syndrome, Royce Dietz Syndrome, Kamrathi Engelmann Syndrome, Costello ( Costello Syndrome, CHARGE Syndrome, Harraman Strife Syndrome, Pigment Impairment, Antley-Bixler Syndrome, Pfeiffer Syndrome, Coffin-Siris Syndrome, Simpson Gorabi Syndrome Simpson-Golabi-Behmel Syndrome, Smith-Lemli-Opitz Syndrome, Moebi
  • Life course-related illnesses develop after the biological, sociological, and psychological risks of health and illness are mutually accumulated, linked, and modified in the course of life throughout childhood, adolescence, and adulthood. It means chronic diseases after puberty and diseases in the previous stage. It is a disease concept derived from life course epidemiological studies.
  • Gastrointestinal disorders are disorders related to the gastrointestinal tract (esophagus, stomach, duodenum, small intestine, large intestine), liver, bile sac, pancreas, etc., and examples thereof include the following disorders: Esophageal inflammation, gastroesophageal reflux disease, esophageal fissure hernia, esophageal varices, esophageal diverticulum, acute gastric inflammation, chronic gastric inflammation, ulcerative disease, gastric ulcer, duodenal ulcer, stress ulcer, steroid ulcer, helicobacter pylori, gastric ptosis, gastric atony, Duodenal diverticulum, gastric neuropathy, etc., infectious enteritis, acute colitis, abscess, chronic enteritis, ulcerative colitis, Crohn's disease, ischemic colitis, intestinal obstruction (ireus), obstructive (simple) ireus, strangulation (simple) Complexity) ileus, para
  • Viral hepatitis congestive liver, hypertonic hypertension, fatty liver, liver abscess, liver abscess, hepatic abscess, hepatic hemangiomas, intrahepatic stones, pancreatitis, acute pancreatitis, chronic pancreatitis, pancreatic cysts, cholelithiasis (biliary duct) Stones / cholecystic stones), cholecystitis (acute cholecystitis / chronic cholecystitis), bile ductitis, total bile duct dilatation, cholecystic polyp.
  • Cancer is also called malignant tumor or malignant neoplasm, and includes cancer, sarcoma, leukemia and malignant lymphoma.
  • cancers Brain cancer, head and neck cancer, salivary adenocarcinoma, thyroid cancer, lung cancer, small cell lung cancer, breast cancer, mesenteric tumor, pancreatic cancer, liver cancer, biliary tract cancer, esophageal cancer, stomach cancer, GIST, small intestinal cancer , Colon cancer (colon cancer / rectal cancer), bile cancer, bile duct cancer, kidney cancer, renal pelvis / urinary tract cancer, bladder cancer, prostate cancer, cervical cancer, ovarian cancer, Uterine sarcoma, malignant lymphoma, leukemia, chronic lymphocytic leukemia (CLL), multiple myeloma, skin cancer, melanoma (malignant melanoma), sarcoma, cancer of unknown primary origin.
  • CLL chronic lymphocytic leukemia
  • Cardiovascular disease also called heart disease, is a disease of the coronary or aortic arteries connected to the heart and diseases of the circulatory system such as the heart itself.
  • Angina myocardial infarction, aortic aneurysm, aortic dissection, valvular disease, myocardium, atrial septal defect, heart tumor, heart failure, arrhythmia, cerebral infarction, cerebral hemorrhage, transient cerebral ischemic attack, obstructive arteriosclerosis ,heart failure.
  • Kidney diseases include nephritis caused by inflammation of the kidney and those that cause glomerular damage due to systemic diseases such as diabetes.
  • Primary glomerular disease such as IgA nephropathy
  • secondary glomerular disease nephritis
  • lupus nephritis nodular polyarteritis
  • microscopic polyangiitis diabetic nephropathy, nephrosclerosis
  • Neurological disease is a general term for diseases that cause movement disorders due to lesions of the nerve itself such as the brain, spinal cord, and peripheral nerves or lesions of the muscle itself.
  • Epilepsy headache, stroke, Alzheimer's disease, Lewy body dementias, vascular dementia, Parkinson's disease, Parkinson's syndrome, ataxia, neuritis, meningitis, encephalitis, severe myopathy, immune neuropathy, metabolic ⁇ Hereditary neuropathy, myopathy, muscular dystrophy, polymyositis, acute consciousness disorder, acute encephalopathy, amyotrophic lateral sclerosis (ALS), bulbous spinal cord atrophy.
  • ALS amyotrophic lateral sclerosis
  • the present invention relates to a pharmaceutical composition containing a tRNA inhibitor for adjusting the effect on a biological and physiological process in a subject.
  • the "tRNA inhibitor” is specifically one or more selected from the group consisting of siRNA, shRNA, miRNA, antisense and ribozyme.
  • inhibitortion of “inhibitor” means to inhibit tRNA expression or suppress tRNA activity.
  • examples of the substance that inhibits the expression of tRNA include a substance that inhibits the expression of the gene or nucleic acid shown in any of the following a-100) to d-100): a-100) Each tRNA gene, b-100) Nucleic acid containing a base sequence in which one or several bases are deleted, substituted or added in each tRNA gene, c-100) Nucleic acid with a base sequence of 90% or more identity with the base sequence of each tRNA gene, d-100) Nucleic acid that hybridizes with a base sequence complementary to each tRNA gene under stringent conditions.
  • one or several may be, for example, a range in which the gene of the above b-100) encodes a substance having a tRNA function.
  • “1 or several” is, for example, 1 to 10, preferably 1 to 7, more preferably 1 to 5, still more preferably 1 to 3, and particularly preferably 1 or 2 in the tRNA gene. be.
  • identity is synonymous with homology or similarity.
  • 90% or more is preferably 93% or more, more preferably 95% or more, still more preferably 98% or more.
  • the "stringent condition” may be, for example, any of a low stringent condition, a medium stringent condition, and a high stringent condition.
  • “Low stringent conditions” are, for example, 5 ⁇ SSC, 5 ⁇ Denhardt solution, 0.5% SDS, 50% formamide, 32 ° C.
  • the "medium stringent conditions” are, for example, 5 ⁇ SSC, 5 ⁇ Denhardt solution, 0.5% SDS, 50% formamide, 42 ° C.
  • “High stringent conditions” are, for example, 5 ⁇ SSC, 5 ⁇ Denhardt solution, 0.5% SDS, 50% formamide, 50 ° C.
  • the degree of stringency can be set by those skilled in the art by appropriately selecting conditions such as temperature, salt concentration, probe concentration and length, ionic strength, and time.
  • “Stringent conditions” are, for example, "Molecular Cloning: A Laboratory Manual 2nd Ed.” Edited by Sambrook et al. [Cold Spring Harbor Laboratory Press (1989). )] Etc. can also be adopted.
  • the gene or nucleic acid in the embodiment of inhibiting the expression of a gene or nucleic acid, is specifically any of the following a-100) to d-100).
  • target nucleic acid is specifically any of the following a-100) to d-100.
  • siRNA, shRNA, miRNA, antisense and ribozyme that inhibit the expression of the gene or nucleic acid shown in the above.
  • SiRNA small interfering RNA
  • siRNA small interfering RNA
  • RISC RNA-induced silencing complex
  • sense strand and antisense strand oligonucleotides are synthesized by a DNA / RNA automatic synthesizer, respectively, and denatured in an appropriate annealing buffer at 90 to 95 ° C for about 1 minute, and then 30 to 70 ° C. It can be prepared by annealing in for about 1 to 8 hours.
  • ShRNA short hairpin RNA
  • the shRNA may be introduced into cells by a vector and expressed by the U6 promoter or the H1 promoter, or an oligonucleotide having an shRNA sequence may be synthesized by a DNA / RNA automatic synthesizer and self-annealed by the same method as siRNA. May be prepared by.
  • the hairpin structure of the shRNA introduced into the cell is cleaved into siRNA and binds to RNA-induced silencing complex (RISC). This complex binds to and cleaves mRNA with a sequence complementary to siRNA. This suppresses gene expression in a sequence-specific manner.
  • RISC RNA-induced silencing complex
  • MiRNA is a functional nucleic acid encoded on the genome and finally becomes a microRNA of about 20 bases through a multi-step production process. miRNAs are classified as functional ncRNAs (non-coding RNAs, non-coding RNAs: a general term for RNAs that are not translated into proteins), and play an important role in life phenomena by regulating the expression of other genes. There is. By administering a miRNA having a specific base sequence to a living body, the expression of tRNA can be inhibited.
  • the ribozyme of the present invention means an RNA molecule that specifically cleaves another single-stranded RNA molecule by a mechanism similar to that of a DNA-restricted endonuclease.
  • Antisense nucleic acid is a nucleic acid complementary to the target sequence. Antisense nucleic acids inhibit transcription initiation by triple-strand formation, transcriptional repression by hybrid formation with a site where an open loop structure is locally formed by RNA polymerase, and transcriptional inhibition by hybrid formation with RNA whose synthesis is progressing.
  • the siRNA of the present invention refers to a double-stranded RNA that suppresses the expression of a target nucleic acid, and means "RNAi agent”, “short-chain interfering RNA”, “short-chain interfering nucleic acid”, “siRNA”, and is sequence-specific.
  • RNAi agent means "short-chain interfering RNA”, “short-chain interfering nucleic acid”, “siRNA”, and is sequence-specific.
  • a nucleic acid molecule capable of inhibiting or downwardly regulating gene expression or viral replication through RNA interference (RNAi) or gene silencing. It may consist only of RNA or it may be a fusion of DNA and RNA.
  • SiRNAs, shRNAs, miRNAs, ribozymes and antisense nucleic acids may contain various chemical modifications to improve stability and activity.
  • the phosphate residue may be replaced with a chemically modified phosphate residue such as phosphorothioate (PS), methylphosphonate, or phosphorodithionate.
  • PS phosphorothioate
  • methylphosphonate methylphosphonate
  • phosphorodithionate phosphorodithionate
  • at least a part thereof may be composed of a nucleic acid analog such as peptide nucleic acid (PNA).
  • PNA peptide nucleic acid
  • the present invention relates to a pharmaceutical composition containing a specific tRNA or an analog thereof for reducing the influence on biological and physiological processes in a subject.
  • a pharmaceutical composition that treats or prevents mitochondrial disease.
  • the "specific tRNA” means tRNA of the causative gene of mitochondrial disease, tRNA whose aminoacylation rate fluctuates due to cancer or the like, and tRNA-Gln which reflects the state of nutrition and aging. do.
  • analog of a specific tRNA means a synthesized unnatural tRNA. Mitochondrial disease is as described above.
  • the present invention is a method for determining the presence or absence of an effect on a biological and physiological process in a subject.
  • a-40 Step of measuring the aminoacylation rate (test aminoacylation rate) of tRNA in the cells of the subject, b-40) A step of comparing the test aminoacylation rate with the aminoacyllation rate of tRNA of the reference cell (control aminoacylation rate), and c-40)
  • the test aminoacylation rate fluctuates compared to the control aminoacylation rate
  • the subject has an effect on the biological and physiological processes in the subject.
  • the "effect on biological and physiological processes in a subject” in such an embodiment of the present invention is one selected from among cell activity, nutritional status, body, mental and pathological conditions in a subject. Or more related events, such as mitochondrial disease, age-related disease, lifestyle disease, mental illness, intractable disease, hereditary disease, life course-related disease, gastrointestinal disease, cancer, cardiovascular disease One or more selected from diseases, kidney diseases and neurological diseases.
  • control aminoacyllation rate typically means the aminoacylation rate obtained from a sample derived from a healthy person if the subject has adverse effects on biological and physiological processes. do.
  • the control aminoacyllation rate is the aminoacylation rate of a subject before treatment, and aminoacylation in the same subject after treatment.
  • the rate is the test aminoacylation rate.
  • the aminoacylization rate at a certain time is set as the control aminoacylation rate, and the aminoacylation rate at another time is set as the test aminoacylation rate.
  • the invention reduces the aminoacylation rate of the corresponding tRNA by knocking down a nucleic acid molecule encoding a particular aminoacyl-tRNA synthetase, thereby biologically and physiologically in the subject.
  • "Effects on biological and physiological processes in a subject” are, for example, one or more related events selected from among cellular activity, nutritional status, body, psychiatry and pathology. The events are specifically mitochondrial disease, age-related disease, lifestyle disease, mental illness, intractable disease, hereditary disease, life course-related disease, digestive disease, cancer, cardiovascular disease, kidney disease and neurology. One or more selected from the diseases.
  • the "specific aminoacyl-tRNA synthetase” means an aminoacyl-tRNA synthetase that is a causative gene of a disease and an aminoacyl-tRNA synthetase that is responsible for aminoacylation of the causative tRNA mutation.
  • an aminoacyl-tRNA synthetase responsible for aminoacylation of the causative tRNA mutation.
  • methionylaminoacyl-tRNA synthetase responsible for aminoacylation of methionine.
  • a mitochondrial-leucine tRNA synthesizer that adds leucine to mitochondrial leucine tRNA can also be mentioned.
  • the particular aminoacyl-tRNA synthesizer is a glutaminyl tRNA synthesizer.
  • the present invention can reduce the influence on the biological and physiological processes in the subject by knocking down the nucleic acid molecule encoding a specific aminoacyl-tRNA synthetase.
  • the present invention relates to cells, organs and / or tissues having a disrupted gene in a nucleic acid molecule encoding a particular aminoacyl-tRNA synthetase.
  • disruption is expected to be a gene that exhibits at least about 50%, 60%, 70%, 80%, 90%, 99% or 100% homology (at the nucleic acid or protein level).
  • Gene suppression is also possible.
  • gene expression can be reduced by knockdown, promoter modification of the gene, and / or administration of interfering RNA.
  • a nucleic acid molecule encoding a specific aminoacyl-tRNA synthetase in cells such as cancer cells, which preferably suppress proliferation.
  • cancer cells with high methionine requirement are known among cancer cells, amino acid requirement is also high in addition to methionine.
  • amino acid requirement is also high in addition to methionine.
  • the requirements of arginine, serine, glutamine, asparagine, etc. are also known (Garcia-Bermudez, J., Williams, R. T., Guarecuco, R. & Birsoy, K. Targeting extracellular nutrient dependencies of cancer cells. Molecular metabolism 33, 67-82 (2020)), it is preferable to knock down the expression of nucleic acid molecules encoding specific aminoacyl-tRNA synthesizers in each cancer cell.
  • One or more genes in human or non-human animals can be knocked down using any method known in the art. For example, it involves deleting the gene for a particular aminoacyl-tRNA synthesizer from the genome of a human or non-human animal. Knockdown can also include removing all or part of a particular aminoacyl-tRNA synthetase gene sequence from a non-human animal. Knockdown can be performed on any cell, organ and / or tissue in human or non-human animals. For example, a knockdown can be a whole body knockout. For example, the expression of the gene for a particular aminoacyl-tRNA synthesizer is reduced in all cells of non-human animals. Knockdown can also be specific for one or more cells, tissues and / or organs of human or non-human animals.
  • Knockdown techniques can also include gene editing.
  • gene editing can be performed using nucleases that include CRISPR-related proteins (Cas proteins such as Cas9), zinc finger nucleases (ZFNs), transcriptional activator-like effector nucleases (TALENs) and meganucleases.
  • the nuclease can be a naturally occurring nuclease, genetically modified, and / or recombinant.
  • the CRISPR / cas system may be suitable as a gene editing system.
  • Biomarkers etc.>
  • one selected from tRNA Leu , mt-tRNA His , tRNA Ser , tRNA Asn , tRNA Phe , tRNA Thr , tRNA Ile , tRNA Arg , tRNA Gln , and mt-tRNA Val or More than that, with respect to biomarkers for determining the effects on biological and physiological processes in the subject.
  • the notation of tRNA is the notation for each codon.
  • tRNA Gln -CTG, or just "Gln-CTG” means a tRNA whose codon is CTG and Gln is aminoacylated.
  • the effect on the biological and physiological processes in the subject is an event associated with one or more selected from cellular activity, nutritional status, physical, mental and pathological conditions.
  • the events include mitochondrial diseases, age-related diseases, lifestyle diseases, mental diseases, intractable diseases, hereditary diseases, life course-related diseases, digestive diseases, cancer, cardiovascular diseases, and kidney diseases. And one or more selected from among neurological disorders.
  • the invention relates to biomarkers of tRNA Gln and tRNA Glu for determining nutritional status, body, and aging.
  • it relates to the biomarker of the present invention, wherein the tRNA Gln is tRNA Gln -CTG.
  • another aspect of the present invention is selected from among tRNA Leu , mt-tRNA His , tRNA Ser , tRNA Asn , tRNA Phe , tRNA Thr , tRNA Ile , tRNA Arg , tRNA Gln , and mt-tRNA Val .
  • tRNA Leu -CAG, mt-tRNA His -CAC, tRNA Ser -CGA, tRNA Asn -GTT, tRNA Phe -GAA, tRNA Ser -GCT, tRNA Thr -TGT, tRNA Thr -CGT , tRNA Ile- For biological and physiological processes in the subject in one or more selected from TAT, tRNA Arg -TCT, tRNA Gln -CTG, tRNA Gln -TTG, and mt-tRNA Val -GUA. It is used as a biomarker to determine the effect.
  • the effect on a biological and physiological process in a subject is an event related to one or more selected from cellular activity, nutritional status, body, psychiatry and pathology.
  • the events include mitochondrial disease, age-related disease, lifestyle disease, mental illness, intractable disease, hereditary disease, life course-related disease, digestive disease, cancer, cardiovascular disease, kidney disease and It is used as a biomarker of the present invention, which is one or more selected from neurological diseases.
  • tRNA Gln and tRNA Glu as biomarkers for determining nutritional status, body, aging, preferably as biomarkers of the invention, where tRNA Gln is tRNA Gln -CTG.
  • a sequence determination method (referred to as "simplified aminoacyl-tRNAseq method" in the present specification), which is an improvement of the previously reported scheme (Non-Patent Document 21) for determining the aminoacylation rate of tRNA, was developed and naturally established. We comprehensively profiled the aminoacylation status of tRNA in amino acid starvation and amino acid supplementation in human diploid fibroblasts.
  • Example 1-1 Preparation of cells TIG-1 cells (Ohashi, M., Aizawa, S., Ooka, H.), which are naturally established human diploid fibroblasts without artificial immortalization treatment. , Ohsawa, T., Kaji, K., Kondo, H., Kobayashi, T., Noumura, T., Matsuo, M., Mitsui, Y., et al. (1980). Exp. Gerontol. 15, 121 -133.) was obtained from the JCRB (Japanese Collection of Research Bioresources) Cell Bank (TIG-1; # JCRB0501), National Institute of Pharmaceutical Sciences, Health and Nutrition.
  • JCRB Japanese Collection of Research Bioresources
  • DMEM Dulbecco's modified Eagle's medium
  • fetal bovine serum Gibco, Waltham, Mass.
  • Example 1-2 TIG-1 cells cultured under amino acid starvation or amino acid supplementation
  • the TIG-1 cells prepared in Example 1-1 are treated with 0.5% amino acid-free bovine serum as shown in FIG.
  • the cells were cultured in DMEM (Wako, Osaka, Japan) supplemented with fetal bovine serum (Gibco) for 15 hours.
  • DMEM Wako, Osaka, Japan
  • fetal bovine serum Gibco
  • TIG-1 cells were cultured for an additional hour in amino acid-free medium (amino acid-free medium).
  • the medium was replaced with a medium containing a MEM essential amino acid solution, a MEM non-essential amino acid solution and a 200 mM glutamine solution (Wako), and further incubated for 1 hour to obtain cells in an amino acid supplemented state.
  • the TIG-1 cells cultured in the amino acid starvation or amino acid supplemented state thus obtained were collected, and the following operations were carried out for each cell.
  • Example 1-3 Extraction of RNA Cells prepared and cultured in Example 1-2 using Isogen II reagent (Isogen II, Nippongene, Toyama, Japan) and Ethachin-mate (Nippongene) according to the manufacturer's instructions. RNA was extracted from each. Since Isogen II can extract small RNA ( ⁇ 200 nucleotides, small RNA) and large RNA ( ⁇ 200 nucleotides ⁇ , large RNA) separately, small RNA was selected here to obtain tRNA. For alkaline treatment, tRNA was incubated with 150 mM Tris-HCl, pH 9.0 at 37 ° C. for 30 minutes.
  • Example 1-4 Periodic acid oxidation, ⁇ desorption and terminal repair of tRNA
  • the extracted tRNA was subjected to periodic acid oxidation, ⁇ desorption and terminal repair (Fig. 1).
  • Periodic acid oxidation of tRNA was carried out with modifications to the previous report (Non-Patent Document 21). Briefly, the resulting small RNA was oxidized in 100 mM CH 3 COONa, pH 5.2, and freshly prepared 50 mM NaIO 4 at 27 ° C. for 30 minutes. 100 mM glucose was used at 27 ° C. for 5 minutes to terminate the reaction.
  • the obtained RNA was run on a 15% denatured polyacrylamide gel (5M urea, 1 ⁇ TBE, Bio-craft, Tokyo, Japan), and the tRNA was excised and gelled. Was eluted in TE buffer and then precipitated with ethanol.
  • the purified tRNA was treated with 150 mM Tris-HCl, pH 9.0 at 37 ° C. for 30 minutes, and then ethanol precipitation was performed.
  • the tRNA was then treated with T4 polynucleotide kinase (Thermo Fisher Scientific, Waltham, Mass.) At 37 ° C.
  • Example 1-5 Demethylation reaction The demethylation reaction was carried out with modifications to the previous report (Zheng et al., Nat Methods., 2015 Sep; 12 (9): 835-837). Briefly, decapitated AlkB and its D135S mutant (Qing Dai et al., Angew. Chem. Int. Ed. 2017, 56, 5017-5020) with the 11 amino acids at the amino (N) terminal removed. It was cloned into a pETBA vector (Biodynamics Laboratory, Tokyo, Japan) and overexpressed in Zip Competent Cell BL21 (DE3) (Zip Competent Cell BL21 (DE3), Biodynamics Laboratory). Cells were grown at 37 ° C.
  • reaction buffer containing 300 mM KCl, 2 mM MgCl2, 50 ⁇ M (NH4) 2Fe (SO4) 2.6H2O, 300 ⁇ M 2-ketoglutamate, 2 mM L-ascorbic acid, 50 ⁇ g / ml BSA, 50 mM MES buffer (pH 5.0).
  • the reaction containing the tRNA obtained in Example 1-4 and the decapitated AlkB and its D135S variant was incubated at 27 ° C. for 2 hours.
  • Demethylation is a base modification of the Watson-Crick interface that inhibits reverse transcription (Motorin, Y., Muller, S., Behm-Ansmant, I., and Branlant, C.
  • Example 1-6 Sequencing of tRNA for measuring aminoacylation rate by next-generation sequencing (NGS) Sequencing of tRNA was carried out with modifications to the previous report (Non-Patent Document 21). Briefly, tRNAs (500 ng) subjected to periodic acid oxidation, ⁇ desorption, deaminoacylation, end repair and demethylation as described in Examples 1-4 and 1-5. was used as a template for making a library. Using the NEBNext Small RNA Library Prep Set for Illumina (New England Biolabs, Ipswich, Mass.) According to the manufacturer's instructions, ligate adapter sequences to both the 5'and 3'ends of RNA to create a small RNAseq library. Prepared. The library size was selected using Super Sep Ace 10-20% (Wako).
  • the concentration of the cDNA library was quantified using the GenNext NGS Library Prep Kit (TOYOBO, Osaka, Japan). Sequencing was performed on the Illumina Nextseq 500 platform (Illumina, San Diego, CA) in 150-base single-end mode. The output data was demultiplexed and BCL-to-Fastq conversion was performed using Illumina's bcl2fastq software.
  • sequenced readings were mapped to human tRNA sequencing using Blast version 2.2.26 and aligned to the 3'end 25 nucleotides of the tRNA sequence without mismatch.
  • Reads aligned to the 3'end CCA were considered to be derived from aminoacylated tRNAs, and readings terminated at 3'end CCs were considered to be derived from non-aminoacylated tRNAs. That is, the aminoacylation rate of the tRNA is profiled by sequencing the final product of the above procedure, and the aminoacylated and non-aminoacylated tRNAs are 3'terminal CCA (3'CCA-tRNA) and CC (3'CC-), respectively. Distinguished by tRNA).
  • the aminoacylation rate was determined as the ratio of the readings aligned to the 3'end CCA to the sum of the readings aligned to the 3'end CCA and the 3'end CC.
  • the abundance ratio of the tRNA isodecoder was calculated based on the sum of the 3'end CCA and CC-aligned readings of each isodecoder.
  • tRNA Ala -AGC tRNA Ala -CGC, tRNA Ala -TGC; tRNA Arg -ACG, tRNA Arg -CCG, tRNA Arg -CCT, tRNA Arg -TCG, tRNA Arg -TCT; tRNA Asn -GTT; tRNA Asp -GTC ; tRNA Cys -GCA; tRNA Gln -CTG, tRNA Gln -TTG; tRNA Glu -CTC, tRNA Glu -TTC; tRNA Gly -CCC, tRNA Gly -GCC, tRNA Gly -TCC; tRNA His -GTG; tRNA Ile -AAT, tRNA Ile -TAT; tRNA Leu -AAG, tRNA Leu -CAA, tRNA Leu -CAG, t
  • tRNA Gln -CTG or just “Gln-CTG” means a tRNA whose codon is CTG and Gln is aminoacylated.
  • tRNA Glu , tRNA Tyr and tRNA Ala , tRNA Pro , tRNA Ser and tRNA Val derived from mitochondrial DNA were also shown to be low at an average amino acylation rate of less than 1 SD. Is the first event found this time (Figs. 3 and 5).
  • Amino acid supplementation did not change the overall aminoacylation rate of tRNAs (80.7 ⁇ 10.6%, Figure 4).
  • the aminoacylation profile of tRNA varied dynamically (FIGS. 3 and 5).
  • Amino acid supplementation restored tRNA Gln and tRNA Glu to an amino acylation rate of about 80%, while tRNA Ser , which was low in starvation, remained low after supplementation (Fig. 5).
  • Non-Patent Document 10 In studies using proliferative species such as Escherichia coli (Non-Patent Document 10), yeast (Non-Patent Document 13) and cancer cells HEK293 cells (Non-Patent Document 15), the aminoacylation rate of tRNA decreases rapidly and globally. It is shown that. In particular, the aminoacylation rates of the remaining tRNAs, such as tRNA Leu , have been reported to decrease during starvation. On the other hand, in this example, unlike them, the fluctuation of the aminoacyllation rate of tRNA of TIG-1 cells during starvation was small, and rather the aminoacylation rate was conserved (FIGS. 3 and 5). This may be due to the fact that the cell lines used here are naturally established and have low proliferative properties.
  • Example 2 i-tRAP method which is a tRNA aminoacylation detection PCR method
  • Example 2-1 Development of i-tRAP method
  • a method called i-tRAP (Fig. 10) was planned. This method involves the following steps: Aminoacylated and non-aminoacylated tRNAs extracted from TIG-1 cells were transferred to demethylated 3'CCA-tRNA and 3'CC-tRNA, respectively, as described in Examples 1-1 to 1-4. processed.
  • This tRNA (300 ng) is converted to an adenylation linker (5'-rAppCTGTAGGCACCATCAAT / 3ddC / -3') (SEQ ID NO: 1) (PerkinElmer (Waltham, MA)), which is a 5'adenylation adapter with a 3'end block. It was mixed with 20 pmol) and then treated with a ligated mixture (total volume 20 ⁇ L) containing 2 ⁇ L of 10X reaction buffer and 1 unit of T4 Rnl2 truncated form (tranlated T4 RNA ligase 2, truncated, New England Biolabs). The resulting mixture was incubated at 37 ° C. for 60 minutes.
  • RNA to which the adapter is ligated is incubated at 95 ° C. for 5 minutes, placed on ice for denaturation, and then the following reverse transcriptase (RT) primer (Fasmac) is used.
  • RT reverse transcriptase
  • Reverse transcribed by ReverTra Ace TOYOBO.
  • Primer for reverse transcription (5'-3'): ATGTACACCTTCGGCAACCACTACATTGATGGTGCCTACAG (SEQ ID NO: 2)
  • the RT primer sequence is derived from the sequence of the adenylated linker and the non-human species (Gryllus bimaculatus). It was determined based on the additional sequence of (Tsukamoto and Nagata, 2016). The reverse transcription reaction was carried out at 42 ° C. for 60 minutes. The obtained cDNA solution is diluted 1: 5 with water, and 1 ⁇ L of this solution is divided into 2X TaqMan Genotyping Master Mix (Thermo Fisher Scientific) 5 ⁇ L, and the specific primers and probes shown below (Table 1) (Thermo Fisher Scientific). ) was added to a real-time PCR mixture containing 0.4 ⁇ L of Custom TaqMan SNP Genotyping Assays and 3.6 ⁇ l of distilled water.
  • two probe-based qPCR assays are used to detect the single nucleotide difference in the 3'end sequence of the tRNA, ie CCA vs. CC.
  • a probe set having a sequence complementary to the FAM-labeled 3'CC-tRNA was prepared. Specifically, the fluorescent signals from the VIC and FAM are quenched by a quencher attached to the probe.
  • These probes are also bound to the minor groove binder (MGB) moiety.
  • MGB minor groove binder
  • VIC and FAM labeled probes were mixed and used for qPCR. When extended using Taq polymerase, the probe was degraded and either VIC or FAM was released, and the resulting fluorescent signal allowed quantification of the amplification product.
  • the fluorescent signal from VIC represented the amount of 3'CCA-tRNA
  • the signal from FAM represented the signal of 3'CC-tRNA.
  • PCR products containing 3'CCA-tRNA and 3'CC-tRNA sequences were prepared.
  • tRNA Gln -CTG was selected for the amino acid responder
  • tRNA Gly -GCC was selected for the non-responder as a control.
  • the tRNA Gln contains two isoacceptors, tRNA Gln -CTG and tRNA Gln -TTG, the former having seven isodecoders.
  • the detected tRNA Gln -CTG isodecoders responded to amino acids except # 7 (Fig.
  • tRNA Gln -CTG isodecoder # 1 had the highest aminoacylation rate in this group: tRNA Gln . 79.1 ⁇ 3.2% of, and 86.8 ⁇ 2.1% of tRNA Gln -CTG (Fig. 11B).
  • a set of primers and probes for tRNA Gln -CTG isocoder # 1 was prepared (FIG. 11C and Table 1).
  • the probes shown in Table 1 are isoacceptor-specific sequences of tRNA Gln -CTG that distinguish between tRNA Gln -CTG iso-decoder # 1 and tRNA Gln -CTG iso-acceptor and tRNA Gln -CTG iso-decoder # 6. Included.
  • the forward primer contains an isoacceptor # 1 specific sequence of tRNA Gln -CTG. This sequence was 1 to 4 nucleotides different from other isodecoders. Annealing efficiency was assumed to be dominant in isodecoder # 1, but it did not rule out the possibility that other isodecoders would be detected.
  • TRNA Gly -GCC was selected as the representative non-responder for amino acids to prepare the most abundant set of primers and probes for Isocoder # 2 (Fig. 12A-C).
  • Example 2-2 Verification of i-tRAP method
  • CC vs CCA 3'end of the 3'end of tRNA in this system.
  • 3'CCA-tRNA or 3'CC-tRNA was amplified by PCR and the amplified product was used as a template for i-tRAP.
  • the first forward (1F) oligonucleotide was 37 nucleotides containing the linker sequence
  • the second, third, and fourth reverse primers (2R, 3R, and 4R) were 33-37 nucleotides containing the tRNA sequence.
  • a 2R oligonucleotide was used to prepare a DNA fragment of 3'CCA-tRNA
  • a 3R oligonucleotide was used to prepare a DNA fragment of 3'CC-tRNA.
  • the primer extension reaction mixture contains 3 oligonucleotides (3'CCA-tRNA; 1F, 2R, 3R, 3'CC-tRNA; 1F, 3R, 4R) (25 pmol each) and 12.5 ⁇ L KOD One PCR in 25 ⁇ L. Master Mix-Blue- (TOYOBO) was included. After incubating the mixture at 98 ° C for 60 seconds, 12 cycles of 98 ° C for 10 seconds, 60 ° C for 5 seconds and 68 ° C for 5 seconds were performed. Using the obtained reaction mixture (10 ⁇ L) as a template, PCR containing 1F and 3R or 1F and 4R oligonucleotides (100 pmol) in 200 ⁇ l of the reaction mixture was performed.
  • PCR product was visualized by electrophoresis on a 2% agarose gel and staining with Midori Green Direct (Nippon Genetics, Tokyo, Japan).
  • the DNA of interest obtained from the agarose gel was purified with the QIAquick Gel Extraction Kit (Qiagen, Hilden, Germany) and eluted with 30 ⁇ L of elution buffer. The concentration of the purified PCR product was determined using NanoDrop2000 (Thermo Fisher Scientific).
  • FIG. 13 is a graph showing a real-time plot of the i-tRAP method using a synthetic DNA template containing (A) 3'CCA-tRNA Gln -CTG sequence and (B) 3'CC-tRNA Gln -CTG sequence.
  • the black line shows the VIC signal from the CCA probe and the gray line shows the FAM signal from the CC probe.
  • FIG. 14 is a graph showing a real-time plot of i-tRAP using a synthetic DNA template containing (A) 3'CCA-tRNAGly-GCC sequence and (B) 3'CC-tRNAGly-GCC sequence.
  • the black line shows the VIC signal from the CCA probe and the gray line shows the FAM signal from the CC probe.
  • PCR products containing 3'CCA-tRNA and 3'CC-tRNA sequences were mixed in several proportions and used as templates for i-tRAP. Specifically, two PCR products in several ratios (3'CCA-tRNA: 3'CC-tRNA; 10:90, 20:80, 30:70, 40:60, 50:50, 60:40. , 70:30, 80:20 and 90:10) together and used to establish a standard curve for qPCR. The total concentration of the standard solution was adjusted to 1 ag / ⁇ L and a linear calibration curve was prepared.
  • the threshold cycle (Ct) is the number of cycles when a certain amount of PCR amplification product is reached. Cycling conditions are as follows: 95 ° C, 10 minutes initial denaturation, and 40 or 50 cycles at 95 ° C for 5 seconds and 60 ° C for 60 seconds. Fluorescent signals were collected at the 60 ° C. step of each cycle. All reactions were performed twice to determine the threshold cycle. As a result, as shown in FIGS.
  • tRNAs were first prepared from commonly used cultured human cells, HEK293T cells, and treated with a weak alkali to deacylate the aminoacylated tRNAs.
  • the culture of HEK293T cells was similar to the culture of TIG-1 cells in Example 1-1.
  • the aminoacylation rates of tRNA Gln -CTG and tRNA Gly -GCC were high in a nutrient-rich state, and it was revealed that this was significantly reduced by the same alkaline treatment as in Examples 1-3. (Figs. 18A and B).
  • the aminoacylation rate was measured using tRNA from TIG-1 cells cultured in a medium containing or not containing amino acids.
  • the results of the i-tRAP method showed that the aminoacylation rate of tRNA Gln -CTG was significantly reduced by amino acid starvation (Fig. 19A), and that of tRNA Gly -GCC was unchanged (Fig. 19B). This was consistent with the results of the simplified aminoacyl-tRNAseq method shown in Example 1 (FIG. 5). Therefore, it was verified that the i-tRAP method can quantify the aminoacylation rate of tRNA.
  • Example 3 Vibrational Fluctuations in the Aminoacyllation Rate of tRNA Gln Between Consumption and Supply of Amino Acids
  • the dynamics of aminoacylation and deaminoacylation of tRNA Gln -CTG were evaluated by the i-tRAP method described in Example 2.
  • the tRNA Gln -CTG that responded most significantly to amino acid supplementation was selected as the subject (Fig. 5).
  • the selected tRNA Gln -CTG was deaminoacylated by starvation and at the same time reaminoacylated by amino acid supplementation.
  • the experimental scheme shown in FIG. 20 was used to investigate at what stage tRNA Gln -CTG was deaminoacylated by amino acid starvation.
  • RNA was extracted from cells using Isogen II (Nippon gene) according to the manufacturer's protocol. The extracted RNA was treated with RQ1 DNase I (Promega, Madison, WI) at 37 ° C for 30 minutes. RNA (300 ng each) was then reverse transcribed using the SuperScript VILO cDNA Synthesis Kit (Thermo Fisher Scientific). The procedure of real-time PCR was the same as the expression analysis of tRNA of Example 1. The RT mixture was incubated at 42 ° C for 60 minutes.
  • QARS glutaminyl tRNA synthesizer
  • the resulting cDNA solution is diluted 1: 5 with water and 1 ⁇ L of this solution contains 5 ⁇ L of 2xGeneAce SYBR qPCR Mix ⁇ (Nippon gene), 10 ⁇ M of each primer (sequence 3) 0.5 ⁇ L, and 3 ⁇ L of water. Added to real-time PCR mixture.
  • the 7900HT real-time PCR system (Thermo Fisher Scientific) was used. Cycling conditions are as follows: initial denaturation at 95 ° C for 10 minutes, and 40 cycles at 95 ° C for 15 seconds and 60 ° C for 30 seconds. Fluorescent signals were collected at the 60 ° C. step of each cycle. All reactions were performed twice to determine Ct.
  • a primer set specific for ATP synthase peripheral stalk subunit B (ATP5F1) was used as a standard. The sequence was obtained from NCBI (QARS; NM_005051.3, ATP5F1; NM_001688.5).
  • the expression level of QARS did not change or slightly increased after 15 hours even in the amino acid starvation state (Fig. 22).
  • the reduction in aminoacyl-tRNA did not up-regulate or down-regulate the expression level of QARS, but maintaining the expression level of QARS alone was not sufficient to maintain the aminoacylation rate of tRNA. there were. That is, the expression level of QARS does not affect the aminoacylation rate of glutamine.
  • siRNA was knocked down by siRNA.
  • cells reached a confluency of 50-70% and were transfected with 50 nM siGenome Human-QARS siRNA-SMARTpool (Dharmacon, Waltham, MA).
  • siGENOME Non-Targeting siRNA Pool # 1 was used.
  • Transfection was performed using Lipofectamine RNAiMAX (Invitrogen) according to the manufacturer's instructions. The cells were then incubated at 37 ° C. for 48 hours in a humidified chamber supplemented with 5% CO2 (FIG. 23).
  • tRNA Gln -CTG Since the main function of tRNA is to transfer amino acids during translation, we investigated whether a decrease in the aminoacylation rate of tRNA Gln -CTG during starvation is associated with protein synthesis.
  • Amino acid-starved cells were treated with cyclohexamide (CHX), which blocks the transfer of tRNA to the ribosome and blocks protein synthesis (FIG. 26).
  • CHX cyclohexamide
  • Amino acid starvation for 6 hours reduced the aminoacylation rate of tRNA Gln -CTG (Fig. 21), but blocking protein synthesis using CHX maintained the aminoacylation rate (Fig. 27).
  • Blocking protein synthesis suppressed the consumption of glutamine aminoacylated to tRNA, resulting in the preservation of the aminoacyllation rate of tRNA Gln -CTG (Fig. 27). From this, it is considered that the incorporation of glutamine aminoacylated to tRNA into the protein during protein synthesis caused a decrease in the aminoacylation rate of tRNA Gln -CTG.
  • the aminoacylation rate of tRNA Gln fluctuates oscillatingly and is balanced between amino acid consumption and supply.
  • Example 4 Use as a nutritional sensor for tRNA Gln -CTG
  • the tRNA Gln -CTG identified in Example 1 can be used as a nutritional sensor in tRNA.
  • the amount of amino acid aminoacylated to tRNA is balanced between consumption and supply of protein synthesis.
  • Glutamine MacLennan, PA, Brown, RA, and Rennie, MJ (1987).
  • a well-known stimulant in protein synthesis and cell proliferation is rapidly depleted in starvation. [Onodera, J., and Ohsumi, Y. (2005). J. Biol. Chem. 280, 31582-31586.].
  • the amount of glutamine aminoacylated to tRNA Gln is reduced because it is consumed for protein synthesis. Therefore, tRNA Gln is a nutrition sensor.
  • Glutamine aminoacylating tRNAs may be the key to sensing nutrition.
  • the cellular level of glutamine dynamically fluctuates between consumption and biodevelopment, depending on nutrition and the external environment (Onodera, J., and Ohsumi, Y. (2005). J. Biol. Chem. . 280, 31582-31586.).
  • Example 5 Aging Affects TRNA's Aminoacylation Ability
  • Decreased protein synthesis is associated with decreased cell activity in senescent cells (Mainwaring, WIP (1969). Biochem. J. 113, 869-878.).
  • TIG-1 cells are naturally established cells and are used as a model of cellular senescence because they stop dividing at a high degree of passage.
  • young TIG-1 cells population doubling level [PDL] 30
  • old TIG-1 cells (PDL 50) were used and cultured under amino acid starvation.
  • tRNA Gln -CTG The aminoacylation dynamics of tRNA Gln -CTG were analyzed.
  • the aminoacylation rate of tRNA Gln -CTG was examined in young TIG-1 cells starved for amino acids and aged TIG-1 cells supplemented with an amino acid mixture (Fig. 28).
  • the aminoacylation rate of tRNA Gln -CTG in young TIG-1 cells recovered rapidly within 15 minutes upon supplementation, indicating that the supplemented amino acids rapidly induce aminoacylation of tRNA. (Fig. 29). This increase in aminoacylation rate occurred faster than the decrease in aminoacylation rate in starvation (Fig. 21).
  • the aminoacylation rate of tRNA Gln -CTG also recovered rapidly in aged TIG-1 cells, but the rate was generally lower than that of young cells (Fig.
  • the i-tRAP method used in this example demonstrated sufficient sensitivity to detect the aging-related decline in tRNA Gln -CTG aminoacylation rates.
  • Aging cells were able to oscillate the aminoacylation rate of tRNA Gln -CTG in response to nutrition, but the aminoacylation rate was consistently low in senescent cells.
  • the causal relationship between the low aminoacylation rate of tRNA Gln -CTG in aging cells is speculated, but the low aminoacylation rate of tRNA Gln -CTG suppresses protein synthesis in aging cells, and vice versa. possible.
  • aaRS with aging may suppress aminoacylation of tRNA (SEQ ID NO: 18; Takahashi, R., Mori, N., and Goto, S. (1985). Mech. Aging Dev. 33. , 67-75.).
  • Example 6 Measurement of Intracellular Amino Acid Concentration in TIG-1 Cells in Amino Acid Starvation
  • HPLC high performance liquid chromatography
  • Example 7 Measurement of intracellular amino acid concentration in TIG-1 cells cultured with CHX
  • HPLC high performance liquid chromatography
  • CHX cyclohexamide
  • FIG. 32A shows the intracellular amino acid concentration in TIG-1 cells cultured with cyclohexamide (CHX) under the conditions of the experimental scheme shown in FIG. ).
  • FIG. 32B shows the relative concentration (rate of change) of the intracellular amino acid concentration in the amino acid starvation state for 6 hours when DMSO was added to the culture medium and cultured with CHX based on the cultured intracellular amino acid concentration.
  • Example 8 Measurement of intracellular amino acid concentration in TIG-1 cells cultured with CQ TIG-1 cells are cultured for a certain period of time in a medium starved for amino acids in the presence of chloroquin (CQ), which is an inhibitor of the autophagy-lysosomal system. bottom.
  • CQ chloroquin
  • FIG. 33A The results of measuring the intracellular amino acid concentration in TIG-1 cells cultured for 4 hours by high performance liquid chromatography (HPLC) are shown in FIG. 33A.
  • FIG. 33B shows the relative concentration (rate of change) of the intracellular amino acid concentration during the 4-hour amino acid starvation state in which PBS was added to the culture medium and cultured together with CQ based on the cultured intracellular amino acid concentration. ..
  • FIG. 33C shows that CQ administration resulted in a lower aminoacylation rate of tRNA Gln -CTG after 4 hours compared to the control (PBS). This result shows that CQ has the greatest effect on the aminoacylation rate of tRNA Gln -CTG after 4 hours.
  • FIG. 33B shows that the concentration of glutamine at 4 hours of amino acid starvation was lowered by CQ administration as compared with the control. Since CQ is an inhibitor of the autophagy lysosome system, administration of CQ promotes the degradation of intracellular proteins by autophagy lysosome, which provides a general supply of amino acids and supplements the deficient glutamine. It is clear that the aminoacylation rate of tRNA Gln -CTG is increased as shown in FIG. 27.
  • FIG. 33A shows the change in intracellular amino acid concentration per protein unit amount after 4 hours by administration of CQ.
  • the intracellular concentration of amino acids is significantly reduced, as shown in FIG. 33B.
  • the aminoacylation rate of tRNAGln-CTG is also significantly reduced after 4 hours by administration of CQ. That is, it was shown that when the amount of intracellular amino acids falls below a certain level, there is a correlation between the amount of intracellular amino acids and the aminoacylation rate of tRNA.
  • Example 8 the correlation between the aminoacylation rate and the amount of amino acids was shown as in Example 7.
  • the present invention provides an overview of the aminoacylation profile of tRNAs, specifically identifying individual tRNA Gln -CTGs that sense nutrients.
  • the aminoacylation profile of tRNA is an unexplored scientific field with profound significance in biology, physiology and disease.
  • the combination of tRNA sequencing and i-tRAP allows us to explore the profound world of tRNA aminoacylation while cross-validating the results obtained.
  • tRNA aminoacylation rate By evaluating the functional intracellular amino acid concentration based on the evaluation of the tRNA aminoacylation rate, various uses are possible. For example, in cancer cells, certain anti-cancer drug treatments reduce the intracellular amino acid concentration of the cancer cells, thereby reducing the activity of the cancer cells and suppressing protein synthesis to induce cell death. .. At this time, by measuring the tRNA aminoacylation rate in cancer cells and confirming whether or not the functional amino acid concentration is actually decreased, it can be applied to the determination of the therapeutic effect and the selection of the therapeutic drug.

Abstract

Provided are: a method for detecting the aminoacylation profile of target RNA, particularly tRNA-functional RNA or small RNA, rapidly, with high accuracy, in a simple manner and at low cost; a method for screening for tRNA-functional RNA based on the aminoacylation profile thereof; a pharmaceutical composition for a disease; a gene therapy; a biomarker; and others. The present invention includes inventions each relied on a method for measuring a single nucleotide difference in a single molecule of target RNA qualitatively or quantitatively, in which the single nucleotide difference is the presence or absence of a nucleotide A in a 3'-terminal sequence, i.e., a CCA-CC pair, in the target RNA, and the method comprises (a-1) providing an RT primer comprising an adapter linked to the 3'-terminal of the target RNA and a sequence complementary to the sequence for the adapter, a specific amplification primer set, and a probe set that targets a single nucleotide difference, (b-1) linking the adapter to the target RNA by the action of an RNA ligase for the adapter to produce a linked product, and forming cDNA using the linked product as a template, and (β) amplifying a target region located on the cDNA and containing the single nucleotide difference by PCR and, at the same time, measuring the single nucleotide difference qualitatively or quantitatively.

Description

生物学的および生理学的プロセスを感知するRNAの測定方法Methods for measuring RNA that sense biological and physiological processes
 本発明は一般に、RNA、具体的にはtRNAを含むtRNA-機能性RNAおよびスモールRNAの分子生物学および生化学の分野に属する。詳細には、本発明は、tRNA-機能性RNAおよびスモールRNAの簡便な測定方法に関し、より具体的にはtRNA-機能性RNAおよびスモールRNA、特にtRNAに関連する診断、医薬および治療における応用に関する。 The present invention generally belongs to the fields of molecular biology and biochemistry of RNA, specifically tRNA-functional RNA and small RNA, including tRNA. In particular, the present invention relates to a simple method for measuring tRNA-functional RNA and small RNA, and more specifically to tRNA-functional RNA and small RNA, particularly related to diagnostic, pharmaceutical and therapeutic applications related to tRNA. ..
 分子生物学のセントラルドグマは、遺伝子からタンパク質への情報の連続的な流れである(非特許文献1)。タンパク質合成は、リボソーム上でメッセンジャーRNA(mRNA)のコドンと相補的なアンチコドンを持つトランスファーRNA(tRNA)を介し、そのコドンに対応するアミノ酸に翻訳されることにより行われる。このtRNAの特異性は遺伝暗号の源であり(非特許文献2)、遺伝暗号は、20個のアミノ酸をコードする61個のセンストリプレットコドンからなる。 The central dogma of molecular biology is a continuous flow of information from genes to proteins (Non-Patent Document 1). Protein synthesis is carried out by translating into transfer RNA (tRNA) having an anticodon complementary to the codon of messenger RNA (mRNA) on the ribosome to the amino acid corresponding to that codon. The specificity of this tRNA is the source of the genetic code (Non-Patent Document 2), and the genetic code consists of 61 sense triplet codons encoding 20 amino acids.
 tRNAは、アミノ酸の受容体として生化学的に同定されたRNAである(非特許文献3)。tRNA構造の一端にはアンチコドンループがあり、アンチコドンはmRNAのコドンに特異的に対合する。もう一端には、tRNA間で保存されている3'末端のリボヌクレオチドアライメント「CCA」があり、アクセプターステムと呼ばれる。この「CCA」にアミノアシル-tRNAシンセターゼ(aaRS)によってコドン特異的なアミノ酸が結合(チャージ)し、アミノアシル化tRNA (チャージtRNA)が生じる(非特許文献4)。tRNAにアミノアシル化されたアミノ酸は、翻訳の際にタンパク質に組み込まれ、同時にtRNAは次のアミノ酸を再アミノアシル化するため、脱アミノアシル化される。このようなtRNAのアミノアシル化および脱アミノアシル化の振動変動は、分子生物学と生化学の境界に興味深い示唆を与える。 TRNA is an RNA biochemically identified as an amino acid receptor (Non-Patent Document 3). At one end of the tRNA structure is an anticodon loop, which specifically pairs with the mRNA's codon. At the other end is the 3'end ribonucleotide alignment "CCA" conserved between tRNAs, called the acceptor stem. Aminoacyl-tRNA synthetase (aaRS) binds (charges) a codon-specific amino acid to this "CCA" to generate aminoacyl-tRNAed tRNA (charged tRNA) (Non-Patent Document 4). Amino acids aminoacylated to tRNA are integrated into the protein during translation, and at the same time tRNA is deaminoacylated because it reaminoacylates the next amino acid. Such vibrational fluctuations of aminoacylation and deaminoacylation of tRNA provide interesting implications for the boundary between molecular biology and biochemistry.
 驚くべきことに、真核生物のゲノムは多数のtRNA遺伝子を担持しており、これまでに、ヒトゲノムでは500個を超えるtRNA遺伝子が同定されている(非特許文献5)。このtRNAの多様性は、「アイソアクセプター」と「アイソデコーダー」のバリエーションに由来する。tRNAアイソアクセプターは、同じアミノ酸をアミノアシル化する異なるアンチコドンを有している。一方、tRNAの「アイソデコーダー」は、同じアンチコドンを共有するが、それ以外の配列が異なっている(非特許文献6)。このゲノム変動と上述のアミノアシル化の振動変動というtRNAの多面的な側面は、深遠なtRNAの世界の起源となっている。 Surprisingly, the eukaryotic genome carries a large number of tRNA genes, and so far, more than 500 tRNA genes have been identified in the human genome (Non-Patent Document 5). This diversity of tRNAs derives from variations of "isoacceptors" and "isodecoders". The tRNA isoacceptor has different anticodons that aminoacylate the same amino acid. On the other hand, the "isodecoder" of tRNA shares the same anticodon, but the other sequences are different (Non-Patent Document 6). This multifaceted aspect of tRNA, the genomic variation and the vibrational variation of aminoacylation described above, is the origin of the profound world of tRNA.
 tRNAのアミノアシル化率は、アミノ酸をアミノアシル化しているtRNA(アミノアシル化tRNA)およびアミノアシル化していないtRNA(非アミノアシル化tRNA)の総量に対するアミノアシル化tRNAの比率(非特許文献7)である。tRNAのアミノアシル化率は、いくつかの生物学的現象や疾患と密接に関連していることが報告されている(非特許文献8; 非特許文献9)。tRNAのアミノアシル化率は、アミノ酸飢餓 (非特許文献10; 非特許文献11)、成長条件(非特許文献12)、および外部ストレス(非特許文献13)に対し、種々、応答する。tRNAのアミノアシル化率を変更させ、タンパク質の翻訳効率に影響を与えることが、提案されている(非特許文献14; 非特許文献15)。tRNAおよびアミノアシル-tRNAシンセターゼにおける疾患に関連する変異は、広く知られており(非特許文献16; 非特許文献17)、また、tRNAのアミノアシル化率は、老化と細胞活動に関連している(非特許文献18; 非特許文献19; 非特許文献20)。 The aminoacyllation rate of tRNA is the ratio of aminoacylated tRNA to the total amount of tRNA that aminoacylates amino acids (aminoacylated tRNA) and tRNA that is not aminoacylated (non-aminoacylated tRNA) (Non-Patent Document 7). It has been reported that the aminoacylation rate of tRNA is closely related to some biological phenomena and diseases (Non-Patent Document 8; Non-Patent Document 9). The aminoacylation rate of tRNA varies in response to amino acid starvation (Non-Patent Document 10; Non-Patent Document 11), growth conditions (Non-Patent Document 12), and external stress (Non-Patent Document 13). It has been proposed to change the aminoacylation rate of tRNA and affect the translation efficiency of proteins (Non-Patent Document 14; Non-Patent Document 15). Disease-related mutations in tRNA and aminoacyl-tRNA synthesizers are widely known (Non-Patent Document 16; Non-Patent Document 17), and the aminoacylation rate of tRNA is associated with aging and cell activity (Non-Patent Document 16; Non-Patent Document 17). Non-Patent Document 18; Non-Patent Document 19; Non-Patent Document 20).
 tRNAのアミノアシル化率を測定するために、いくつかの方法が開発されている(非特許文献10; 非特許文献21; 非特許文献22; 非特許文献23)。酸-尿素ポリアクリルアミドゲル電気泳動とそれに続くノーザンブロットハイブリダイゼーションは、tRNAのアミノアシル化率をアイソアクセプターレベルで測定するために、一般的に使用されている(非特許文献24)。最近、マイクロアレイ(非特許文献10)または次世代シーケンシング(非特許文献21)のいずれかに基づき、tRNAアミノアシル化率を検出するハイスループット法が開発された。化学的工程を利用して非アミノアシル化tRNAの3'末端アデニン残基を除去し、そして酵素的工程でtRNA修飾を除去することにより、tRNAの配列決定を行ってtRNAのアミノアシル化率を包括的に測定することができる(非特許文献21)。一方、便利な定量的PCR(qPCR)を基本とする方法は、個々のtRNAのアミノアシル化率を測定するのに好ましいが、現在利用可能なqPCRベースの方法は、相対的な定量化のみを可能にする(非特許文献23)。 Several methods have been developed for measuring the aminoacylation rate of tRNA (Non-Patent Document 10; Non-Patent Document 21; Non-Patent Document 22; Non-Patent Document 23). Acid-urea polyacrylamide gel electrophoresis followed by Northern blot hybridization is commonly used to measure the aminoacyllation rate of tRNA at the isoacceptor level (Non-Patent Document 24). Recently, a high-throughput method for detecting the tRNA aminoacylation rate has been developed based on either a microarray (Non-Patent Document 10) or next-generation sequencing (Non-Patent Document 21). By using a chemical step to remove the 3'-terminal adenine residue of the non-aminoacylated tRNA and an enzymatic step to remove the tRNA modification, the tRNA is sequenced and the aminoacylation rate of the tRNA is comprehensive. Can be measured (Non-Patent Document 21). On the other hand, convenient quantitative PCR (qPCR) -based methods are preferred for measuring the aminoacylation rate of individual tRNAs, while currently available qPCR-based methods allow only relative quantification. (Non-Patent Document 23).
 なお、多くの特許文献が、RNAを増幅または測定するための方法、およびその方法に使用されるプライマーやプローブを種々記載している(例えば、特許文献1、2および3)。しかし、RNA、特にtRNAのアミノアシル化に指向する特許文献は見出されていない。 Many patent documents describe a method for amplifying or measuring RNA, and various primers and probes used in the method (for example, Patent Documents 1, 2 and 3). However, no patent literature has been found that is oriented towards aminoacylation of RNA, especially tRNA.
特表2015-530113公報Special Table 2015-530113 Gazette WO2014/157377公報WO2014 / 157377 Gazette 特表2014-512834公報Special Table 2014-512834 Gazette
 上記の通り、従前より、tRNAに代表されるtRNA-機能性RNAのアミノアシル化プロファイルを検出するための種々の方法が提案されているが、いずれも、操作が煩雑、時間がかかる、正確性に劣る、経費が高過ぎる等、何らかの欠点を有している。従って、高精度、迅速、簡便かつ廉価にRNA、特にtRNA-機能性RNAやスモールRNAのアミノアシル化プロファイルを検出できる方法が、依然として望まれる。 As described above, various methods for detecting the aminoacylation profile of tRNA-functional RNA represented by tRNA have been proposed, but all of them are complicated, time-consuming, and accurate. It has some drawbacks such as inferiority and too high cost. Therefore, a method capable of detecting the aminoacylation profile of RNA, particularly tRNA-functional RNA or small RNA, with high accuracy, rapidity, convenience and low cost is still desired.
 本発明では、高次構造を有し、複雑な修飾を有するtRNAが簡便に測定できる手法を見出し、それを、tRNAの分子生物学および生化学的側面の簡便な探索に応用することにより、本発明を完成した。
 本発明では、tRNAのアミノアシル化率を決定するための簡略化された配列決定手法(以下、「簡略アミノアシル化tRNAseq法」と称する)を開発し、細胞のtRNAアミノアシル化状況を検証した。自然に確立されたヒト二倍体線維芽細胞において、tRNAGln(Glnをアミノアシル化するtRNA)のアミノアシル化レベルが他のアミノ酸をアミノアシル化するtRNAとは異なり、アミノ酸飢餓に応答し、有意に減少することを見出した。次ぎに、特定のtRNAのダイナミクスを簡便に調査するため、個々のアミノアシル化tRNAを測定できるPCR法(以下、「i-tRAP法」と称する。)を開発した。i-tRAP法により、tRNAアミノアシル化の栄養を感知する振動変動およびtRNAアミノアシル化の老化に関連する抑制が明らかとなった。本発明者らの方法は、細胞の状態と老化を予測する、動的で深遠なtRNAアミノアシル化サイクルを浮き彫りにした。
In the present invention, by finding a method capable of easily measuring tRNA having a higher-order structure and having a complicated modification, and applying it to a simple search for the molecular biology and biochemical aspects of tRNA, the present invention is made. Completed the invention.
In the present invention, a simplified sequencing method for determining the aminoacylization rate of tRNA (hereinafter referred to as "simplified aminoacyl-tRNAseq method") was developed, and the state of tRNA aminoacylation in cells was verified. In naturally established human diploid fibroblasts, the aminoacylation level of tRNA Gln (tRNA that aminoacylates Gln) is significantly reduced in response to amino acid starvation, unlike tRNA that aminoacylates other amino acids. I found out to do. Next, in order to easily investigate the dynamics of specific tRNAs, we developed a PCR method (hereinafter referred to as "i-tRAP method") that can measure individual aminoacyl-tRNAs. The i-tRAP method revealed nutrient-sensitive vibrational variability of tRNAaminoacylation and aging-related inhibition of tRNAaminoacylation. Our method highlights a dynamic and profound tRNA aminoacylation cycle that predicts cell condition and aging.
 したがって、本発明は、以下の態様を含む。
<i-tRAP法>
[1]
 1つの標的RNAにおける単一ヌクレオチドの違いを定性的または定量的に測定する方法において、ここに、単一ヌクレオチドの違いは、標的RNAの3'末端配列:CCA対CCにおけるヌクレオチドAの存在または不存在である方法であって、
α) 標的RNAのcDNAを作成し、
β) PCRによって、該cDNA上の単一ヌクレオチドの違いを含む標的領域を増幅し、同時に単一ヌクレオチドの違いを定性的または定量的に測定する方法。
[2]
 工程α)が、
a-1) 標的RNAの3'末端に連結するアダプター、該アダプターの配列と相補的な配列を含むRTプライマー、該標的RNAに特異的な配列を有する一方のプライマーおよび該RTプライマーに特異的な配列を有する他方のプライマーからなる増幅用プライマーセット、および単一ヌクレオチドの違いを標的とするプローブセットをそれぞれ用意し、
b-1) 該アダプター用のRNAリガーゼによって、該アダプターを標的RNAに連結し、形成された連結産物を鋳型としてcDNAを作成する、または
a-2) 任意のRNAアダプターと、該RNAアダプターと相補的な配列を有し、かつ該RNAアダプターに対して、3’末端が1塩基だけ突出したDNAプライマーを用意し、これらをアニールさせたハイブリッドプライマー、該標的RNAに特異的な配列を有する一方のプライマーおよび該RTプライマーに特異的な配列を有する他方のプライマーからなる増幅用プライマーセット、および単一ヌクレオチドの違いを標的とするプローブセットをそれぞれ用意し、
b-2) 該ハイブリッドプライマーを標的RNAの3’末端にアニーリングさせ、テンプレートスイッチング活性を有する逆転写酵素により、cDNAを作成する、
ことを含む、[1]記載の方法。
[3]
 工程a-1)において、単一ヌクレオチドの違いを標的とするプローブセットが、単一ヌクレオチドの違いを認識する蛍光標識されたプローブセットであり、工程β)において、増幅の際、放出される蛍光強度を指標にして、単一ヌクレオチドの違いを定性的または定量的に測定する、[2]記載の方法。
[4]
 標的RNAが、tRNA-機能性RNA、好ましくはtRNA、またはtRNAの3'末端を有するtRFもしくはtRNAハーフである[1]または[2]記載の方法。
[5]
 tRNA-機能性RNAが、tRNAである、[4]記載の方法。
[6]
 さらに、以下のγ)工程:
γ) CCAを有している標的RNAの定量値およびCCを有している標的RNAの定量値の総量に対する、CCAを有している標的RNAの定量値の比率を算出する、
を含む、[1]から[5]のいずれか記載の方法。
[7]
 [6]記載の方法によって、1つの標的RNAのアミノアシル化率を測定する方法。
Therefore, the present invention includes the following aspects.
<I-tRAP method>
[1]
In a method of qualitatively or quantitatively measuring the difference of a single nucleotide in one target RNA, here the difference of a single nucleotide is the 3'end sequence of the target RNA: the presence or absence of nucleotide A in CCA vs. CC. It ’s a way of being,
α) Create cDNA for target RNA and
β) A method of amplifying a target region containing a single nucleotide difference on the cDNA by PCR and simultaneously measuring the single nucleotide difference qualitatively or quantitatively.
[2]
Step α),
a-1) Adapter linked to the 3'end of the target RNA, RT primer containing a sequence complementary to the sequence of the adapter, one primer having a sequence specific to the target RNA, and specific to the RT primer. Prepare an amplification primer set consisting of the other primer having a sequence, and a probe set targeting the difference of a single nucleotide.
b-1) RNA ligase for the adapter is used to ligate the adapter to the target RNA, and the formed ligation product is used as a template to prepare cDNA.
a-2) An arbitrary RNA adapter and a DNA primer having a sequence complementary to the RNA adapter and having the 3'end protruding by only one base were prepared and annealed to the RNA adapter. A hybrid primer, an amplification primer set consisting of one primer having a sequence specific to the target RNA and the other primer having a sequence specific to the RT primer, and a probe set targeting the difference of a single nucleotide. Prepare each and
b-2) Anneal the hybrid primer to the 3'end of the target RNA and generate cDNA by reverse transcriptase with template switching activity.
The method according to [1], including the above.
[3]
The probe set that targets the difference between single nucleotides in step a-1) is a fluorescently labeled probe set that recognizes the difference between single nucleotides, and the fluorescence emitted during amplification in step β). The method according to [2], wherein the difference between single nucleotides is measured qualitatively or quantitatively using the intensity as an index.
[4]
The method according to [1] or [2], wherein the target RNA is a tRNA-functional RNA, preferably a tRNA, or a tRF or tRNA half having a 3'end of the tRNA.
[5]
tRNA-The method according to [4], wherein the functional RNA is tRNA.
[6]
Further, the following γ) step:
γ) Calculate the ratio of the quantitative value of the target RNA having CCA to the total amount of the quantitative value of the target RNA having CCA and the quantitative value of the target RNA having CC.
The method according to any one of [1] to [5], which comprises.
[7]
[6] A method for measuring the aminoacylation rate of one target RNA by the method described.
<そのキット>
[8]
 1つの標的RNAにおける単一ヌクレオチドの違いを定性的または定量的に測定する、請求項1から7のいずれか記載の方法において、ここに、単一ヌクレオチドの違いは、標的RNAの3'末端配列:CCA対CCにおけるヌクレオチドAの存在または不存在である該方法に用いるアッセイキットであって、
ア) 標的RNAの3'末端に連結するアダプター、
イ) 該アダプターの配列と相補的な配列を含むRTプライマー、
ウ) 該標的RNAに特異的な配列を有する一方のプライマーおよび該RTプライマーに特異的な配列を有する他方のプライマーからなる増幅用プライマーセット、
エ) 単一ヌクレオチドの違いを標的とするプローブセット、
オ) 該アダプター用のRNAリガーゼ、および
カ) 要すれば、脱メチル化酵素、
を含む、キット;または
サ) 任意のRNAアダプター、
シ) 該アダプターと相補的な配列を含み、該RNAアダプターに対して、3’末端が1塩基だけ突出したDNAプライマー、
ス) 該標的RNAに特異的な配列を有する一方のプライマーおよび該DNAプライマーに特異的な配列を有する他方のプライマーからなる増幅用プライマーセット、
セ) 単一ヌクレオチドの違いを標的とするプローブセット、
ソ) テンプレートスイッチング活性を有する逆転写酵素、および
タ) 要すれば、脱メチル化酵素、
を含む、キット。
<The kit>
[8]
In the method of any of claims 1-7, wherein the single nucleotide difference in one target RNA is measured qualitatively or quantitatively, where the single nucleotide difference is the 3'end sequence of the target RNA. : An assay kit used for the method in which nucleotide A is present or absent in CCA vs. CC.
A) Adapter that connects to the 3'end of the target RNA,
B) RT primer containing a sequence complementary to the sequence of the adapter,
C) Amplification primer set consisting of one primer having a sequence specific to the target RNA and the other primer having a sequence specific to the RT primer,
D) Probe sets that target single nucleotide differences,
E) RNA ligase for the adapter, and f) demethylase, if necessary,
Including, kit; or service) any RNA adapter,
B) A DNA primer containing a sequence complementary to the adapter and having the 3'end protruding only one base from the RNA adapter.
S) An amplification primer set consisting of one primer having a sequence specific to the target RNA and the other primer having a sequence specific to the DNA primer.
C) Probe sets that target single nucleotide differences,
S) Reverse transcriptase with template switching activity, and Ta) Demethylase, if necessary,
Including, kit.
<簡略アミノアシル化tRNAseq法>
[9]
 tRNA-機能性RNAの塩基配列、発現量およびアミノアシル化率を網羅的に測定する方法であって、
a-10) 生物学的検体から抽出したtRNA-機能性RNAを処理し、アミノアシル化されていないRNA(非アミノアシル化RNA)における末端塩基を除去し、他方、アミノアシル化されているRNA(アミノアシル化RNA)からアミノ酸を除去することで、非アミノアシル化RNAおよびアミノアシル化RNAをそれぞれ調製し、
b-10) 得られた両RNAの3'-末端および5'-末端にアダプターを連結し、
c-10) 産生された連結RNAを鋳型として逆転写を行い、
d-10) 得られたcDNAを増幅し、cDNAライブラリーを作成し、
e-10) ライブラリーの各cDNAを配列決定して、配列データを取得する、
 tRNA-機能性RNAの塩基配列、発現量およびアミノアシル化率を測定する方法。
[10]
 工程a-10)において、RNAの処理が、非アミノアシル化RNAについて過ヨウ素酸酸化、β脱離および末端修復であり、アミノアシル化RNAについて弱アルカリ処理である、[9]記載の方法。
[11]
 生物学的検体から抽出したRNAをサイズ分画にかけ、20塩基-150塩基のRNAを抽出し、以降の工程を行う、[9]または[10]記載の方法。
[12]
 20塩基-150塩基のRNAが、tRNAまたはtRNAの3'末端を有するtRFもしくはtRNAハーフである、[11]記載の方法。
[13]
 tRNA-機能性RNAのアミノアシル化率を測定するに当たり、アミノアシル化RNAの発現量および非アミノアシル化RNAの発現量の総量に対する、アミノアシル化RNAの発現量の比率を算出する、[9]から[12]のいずれか記載の方法。
<Simplified aminoacyl-tRNAseq method>
[9]
tRNA-A method for comprehensively measuring the base sequence, expression level, and aminoacylation rate of functional RNA.
a-10) TRNA-functional RNA extracted from biological specimens is treated to remove terminal bases in non-aminoacylated RNA (non-aminoacylated RNA), while aminoacylated RNA (aminoacylated). By removing amino acids from RNA), non-aminoacylated RNA and aminoacylated RNA are prepared, respectively.
b-10) Connect the adapter to the 3'-end and 5'-end of both obtained RNAs.
c-10) Reverse transcription is performed using the produced linked RNA as a template.
d-10) Amplify the obtained cDNA to create a cDNA library,
e-10) Sequencing each cDNA in the library to obtain sequence data,
tRNA-A method for measuring the base sequence, expression level and aminoacylation rate of functional RNA.
[10]
The method according to [9], wherein in step a-10), the treatment of RNA is periodic acid oxidation, β-desorption and terminal repair for non-aminoacylated RNA and weak alkaline treatment for aminoacylated RNA.
[11]
The method according to [9] or [10], wherein the RNA extracted from the biological sample is subjected to size fractionation, RNA of 20 bases to 150 bases is extracted, and the following steps are performed.
[12]
The method according to [11], wherein the 20-base-150-base RNA is a tRF or tRNA half having a tRNA or a 3'end of the tRNA.
[13]
In measuring the aminoacyllation rate of tRNA-functional RNA, the ratio of the expression level of aminoacyl-tylated RNA to the total expression level of aminoacyl-tylated RNA and non-aminoacylated RNA is calculated from [9] to [12]. ] Any of the methods described.
<そのキット>
[14]
 tRNA-機能性RNAの塩基配列、発現量およびアミノアシル化率を網羅的に測定する、[11]から[13]のいずれか記載の方法に用いるアッセイキットであって、
ア-10) tRNA-機能性RNAの3'-末端および5'-末端に連結するアダプター、
イ-10) 該アダプターの配列と相補的な配列を含むRTプライマー、
ウ-10) 該アダプター用のRNAリガーゼ、および
エ-10) 脱メチル化酵素
を含む、キット。
<The kit>
[14]
An assay kit for the method according to any one of [11] to [13], which comprehensively measures the base sequence, expression level, and aminoacylation rate of tRNA-functional RNA.
A-10) tRNA-adapter that connects to the 3'-end and 5'-end of functional RNA,
B-10) RT primer containing a sequence complementary to the sequence of the adapter,
C-10) A kit containing RNA ligase for the adapter and d-10) demethylase.
<スクリーニング方法>
[15]
 tRNAのアミノアシル化率を変動させる物質をスクリーニングするための方法であって、
a-20) 細胞に被験物質を添加し、
b-20) 前記細胞のtRNAのアミノアシル化率を測定し、そして
c-20) 前記測定値が、前記被験物質の非存在下で前記アミノアシル化率を測定した場合と比較し、変化していた場合に、前記被験物質がtRNAのアミノアシル化率を変動させる物質であると判断する、方法。
[16]
 アミノアシル化率の測定を、[1]から[7]、ならびに[9]から[13]までのいずれか記載の方法によって行う、[15]記載の方法。
[17]
 tRNAのアミノアシル化率を変動させる物質をスクリーニングするための方法であって、
a-30) 被験物質を動物に投与し、
b-30) 前記動物から所定の臓器の細胞を採取し、
c-30) 前記細胞のtRNAのアミノアシル化率を測定し、そして
c-30) 前記測定値が、前記被験物質の非存在下で前記アミノアシル化率を測定した場合と比較し、変化していた場合に、前記被験物質がtRNAのアミノアシル化率を変動させる物質であると判断する、方法。
[18]
 所定の臓器が、血液、尿、髄液、唾液、涙液、精液、脳、心臓、腎臓、肝臓、肺臓、脾臓、血管、血球、筋肉、脂肪、皮膚、膵臓、腸、内分泌器、神経、感覚器である[17]記載の方法。
[19]
 アミノアシル化率の測定を、[1]から[7]、ならびに[9]から[13]までのいずれか記載の方法によって行う、[15]から[18]までのいずれか記載の方法。
<Screening method>
[15]
A method for screening substances that vary the aminoacylation rate of tRNA.
a-20) Add the test substance to the cells and add
b-20) Measure the aminoacylation rate of tRNA in the cells, and
c-20) When the measured value is changed compared to the case where the aminoacyllation rate is measured in the absence of the test substance, the test substance is a substance that changes the aminoacylation rate of tRNA. How to determine that there is.
[16]
The method according to [15], wherein the aminoacylation rate is measured by the method according to any one of [1] to [7] and [9] to [13].
[17]
A method for screening substances that vary the aminoacylation rate of tRNA.
a-30) Administer the test substance to the animal and
b-30) Collect cells of a predetermined organ from the animal and collect them.
c-30) Measure the aminoacylation rate of tRNA in the cells, and
c-30) When the measured value is changed compared to the case where the aminoacyllation rate is measured in the absence of the test substance, the test substance is a substance that changes the aminoacylation rate of tRNA. How to determine that there is.
[18]
Prescribed organs include blood, urine, spinal fluid, saliva, tears, semen, brain, heart, kidneys, liver, lungs, spleen, blood vessels, blood cells, muscles, fat, skin, pancreas, intestines, endocrine organs, nerves, The method according to [17], which is a sensory organ.
[19]
The method according to any one of [15] to [18], wherein the aminoacylation rate is measured by the method according to any one of [1] to [7] and [9] to [13].
<医薬組成物>
[20]
 tRNAのアミノアシル化率を変動させる物質を含有する、被検者における生物学的および生理学的プロセスに対する影響を調整するための医薬組成物。
[21]
 tRNAのアミノアシル化率を変動させる物質が、[15]から[19]までのいずれか記載の方法によってスクリーニングされた物質である、[20]記載の医薬組成物。
[22]
 tRNAのアミノアシル化率を変動させる物質が、アミノ酸、およびタンパク質合成の阻害剤(例えば、シクロヘキサミド)の中から選ばれるアミノアシル化率増大物質、またはアミノアシル化酵素阻害剤(例えば、ムピロシン、ボレリジン、ハロフギノン、ネオマイシン、ペンタミジン、プルプロマイシン)、オートファジー・リソソーム阻害剤(例えば、クロロキン)、プロテアソーム阻害剤(例えば、MG132)、および統合的ストレス応答の阻害剤(例えば、ISRIB)の中から選ばれるアミノアシル化率減少物質である、[20]または[21]記載の医薬組成物。
[23]
 tRNAの阻害物質を含有する、被検者における生物学的および生理学的プロセスに対する影響を調整するための医薬組成物。
[24]
 tRNAの阻害物質が、siRNA、shRNA、miRNA、アンチセンスおよびリボザイムからなる群から選択される一つまたはそれ以上である[23]記載の医薬組成物。
[25]
 癌、加齢性疾患、栄養状態を治療するための、[20]から[24]までのいずれか記載の医薬組成物。
[26]
 特定のtRNAまたはそのアナログを含有する、被検者における生物学的および生理学的プロセスに対する影響を軽減するための医薬組成物。
[27]
 ミトコンドリア病を治療するための、[26]記載の医薬組成物。
<Pharmaceutical composition>
[20]
A pharmaceutical composition for adjusting the effect on biological and physiological processes in a subject, which comprises a substance that varies the aminoacylation rate of tRNA.
[21]
The pharmaceutical composition according to [20], wherein the substance that changes the aminoacylation rate of tRNA is a substance screened by the method according to any one of [15] to [19].
[22]
The substance that fluctuates the aminoacylation rate of tRNA is an aminoacylation rate-increasing substance selected from amino acids and protein synthesis inhibitors (eg, cyclohexamide), or aminoacylasease inhibitors (eg, mupyrosin, borelidine, etc.). Selected from among halofuginone, neomycin, pentamidine, purplomycin), autophagy lithosome inhibitors (eg, chlorokin), proteasome inhibitors (eg MG132), and inhibitors of integrated stress response (eg ISRIB). The pharmaceutical composition according to [20] or [21], which is a substance for reducing the aminoacylation rate.
[23]
A pharmaceutical composition comprising a tRNA inhibitor for adjusting the effect on a biological and physiological process in a subject.
[24]
23. The pharmaceutical composition according to [23], wherein the inhibitor of tRNA is one or more selected from the group consisting of siRNA, shRNA, miRNA, antisense and ribozyme.
[25]
The pharmaceutical composition according to any one of [20] to [24] for treating cancer, age-related diseases, and nutritional status.
[26]
A pharmaceutical composition containing a specific tRNA or an analog thereof for reducing the effect on biological and physiological processes in a subject.
[27]
The pharmaceutical composition according to [26] for treating mitochondrial disease.
<判定方法>
[28]
 被検者における生物学的および生理学的プロセスに対する影響の有無を判定する方法であって、
a-40) 被検者の細胞のtRNAのアミノアシル化率 (被検アミノアシル化率) を測定する工程、
b-40) 被検アミノアシル化率と、基準の細胞のtRNAのアミノアシル化率 (対照アミノアシル化率) とを比較する工程、および
c-40) 被検アミノアシル化率が、対照アミノアシル化率と比較して変動している場合に、被検者を、被検者における生物学的および生理学的プロセスに対する影響を有していると判定する方法。
[29]
 被検者における生物学的および生理学的プロセスに対する影響が、細胞活動、栄養状態、身体、精神および病態の中から選ばれる一つまたはそれ以上に関連する事象である、[28]記載の方法。
[30]
 事象が、ミトコンドリア病、加齢性疾患、生活習慣病、精神疾患、難治性疾患、遺伝性疾患、ライフコース関連疾患、消化器疾患、がん、心血管疾患、腎臓疾患および神経疾患の中から選ばれる一つまたはそれ以上である、[29]記載の方法。
<Judgment method>
[28]
A method for determining the presence or absence of effects on biological and physiological processes in a subject.
a-40) Step of measuring the aminoacylation rate (test aminoacylation rate) of tRNA in the cells of the subject,
b-40) A step of comparing the test aminoacylation rate with the aminoacyllation rate of tRNA of the reference cell (control aminoacylation rate), and
c-40) When the test aminoacylation rate fluctuates compared to the control aminoacylation rate, the subject has an effect on the biological and physiological processes in the subject. How to judge.
[29]
28. The method of [28], wherein the effect on a biological and physiological process in a subject is one or more events selected from among cellular activity, nutritional status, body, psychiatry and pathology.
[30]
Events include mitochondrial disease, age-related disease, lifestyle disease, mental illness, intractable disease, hereditary disease, life course-related disease, gastrointestinal disease, cancer, cardiovascular disease, kidney disease and neurological disease. The method according to [29], which is one or more selected.
<遺伝子治療>
[31]
 特定のアミノアシル-tRNAシンセターゼをコードする核酸分子をノックダウンすることにより、対応するtRNAのアミノアシル化率を低下させ、それにより、被検者における生物学的および生理学的プロセスに対する影響を軽減する方法。
[32]
 被検者における生物学的および生理学的プロセスに対する影響が、細胞活動、栄養状態、身体、精神および病態の中から選ばれる一つまたはそれ以上に関連する事象である、[31]記載の方法。
[33]
 事象が、ミトコンドリア病、加齢性疾患、生活習慣病、精神疾患、難治性疾患、遺伝性疾患、ライフコース関連疾患、消化器疾患、がん、心血管疾患、腎臓疾患および神経疾患の中から選ばれる一つまたはそれ以上である、[32]記載の方法。
[34]
 特定のアミノアシル-tRNAシンセターゼがグルタミニルtRNAシンセターゼである、[31]から[33]のいずれか記載の方法。
<Gene therapy>
[31]
A method of reducing the aminoacylation rate of a corresponding tRNA by knocking down a nucleic acid molecule encoding a particular aminoacyl-tRNA synthetase, thereby reducing its effect on biological and physiological processes in the subject.
[32]
31. The method of [31], wherein the effect on a biological and physiological process in a subject is one or more events selected from among cellular activity, nutritional status, body, psychiatry and pathology.
[33]
Events include mitochondrial disease, age-related disease, lifestyle disease, mental illness, intractable disease, hereditary disease, life course-related disease, gastrointestinal disease, cancer, cardiovascular disease, kidney disease and neurological disease. The method according to [32], which is one or more selected.
[34]
The method according to any of [31] to [33], wherein the specific aminoacyl-tRNA synthetase is a glutaminyl tRNA synthetase.
<バイオマーカー等>
[35]
 tRNALeu、mt-tRNAHis、tRNASer、tRNAAsn、tRNAPhe、tRNAThr、tRNAIle、tRNAArg、tRNAGln、およびmt-tRNAValの中から選ばれる一つまたはそれ以上のものである、被検者における生物学的および生理学的プロセスに対する影響を判断するためのバイオマーカー。
[36]
 tRNALeu-CAG、mt-tRNAHis-CAC、tRNASer-CGA、tRNAAsn-GTT、tRNAPhe-GAA、tRNASer-GCT、tRNAThr-TGT、tRNAThr-CGT、tRNAIle-TAT、tRNAArg-TCT、tRNAGln-CTG、tRNAGln-TTG、およびmt-tRNAVal-GUAの中から選ばれる一つまたはそれ以上のものである、被検者における生物学的および生理学的プロセスに対する影響を判断するための、[35]記載のバイオマーカー。
[37]
 被検者における生物学的および生理学的プロセスに対する影響が、細胞活動、栄養状態、身体、精神および病態の中から選ばれる一つまたはそれ以上に関連する事象である、[35]または[36]記載のバイオマーカー。
[38]
 事象が、ミトコンドリア病、加齢性疾患、生活習慣病、精神疾患、難治性疾患、遺伝性疾患、ライフコース関連疾患、消化器疾患、がん、心血管疾患、腎臓疾患および神経疾患の中から選ばれる一つまたはそれ以上である、[35]から[37]のいずれか記載のバイオマーカー。
[39]
 tRNAGlnおよびtRNAGluの、栄養状態、身体、健康、老化を判断するためのバイオマーカー。
[40]
 tRNAGlnがtRNAGln-CTGである、[39]記載のバイオマーカー。
<Biomarkers, etc.>
[35]
One or more selected from tRNA Leu , mt-tRNA His , tRNA Ser , tRNA Asn , tRNA Phe , tRNA Thr , tRNA Ile , tRNA Arg , tRNA Gln , and mt-tRNA Val . A biomarker for determining the effect on biological and physiological processes in the examiner.
[36]
tRNA Leu -CAG, mt-tRNA His -CAC, tRNA Ser -CGA, tRNA Asn -GTT, tRNA Phe -GAA, tRNA Ser -GCT, tRNA Thr -TGT, tRNA Thr -CGT, tRNA Ile -TAT, tRNA Arg- Determine the effect on biological and physiological processes in a subject, one or more selected from TCT, tRNA Gln -CTG, tRNA Gln -TTG, and mt-tRNA Val -GUA. The biomarker according to [35].
[37]
Effects on biological and physiological processes in a subject are events associated with one or more selected from cellular activity, nutritional status, physical, mental and pathological conditions, [35] or [36]. The biomarker described.
[38]
Events include mitochondrial disease, age-related disease, lifestyle disease, mental illness, intractable disease, hereditary disease, life course-related disease, gastrointestinal disease, cancer, cardiovascular disease, kidney disease and neurological disease. The biomarker according to any one of [35] to [37], which is one or more selected.
[39]
Biomarkers of tRNA Gln and tRNA Glu for determining nutritional status, body, health and aging.
[40]
The biomarker according to [39], wherein tRNA Gln is tRNA Gln -CTG.
 本発明によれば、本発明の簡略アミノアシル化tRNAseq法またはi-tRAP法により、分解能が大幅に向上した、すべてのtRNAのアミノアシル化プロファイルの検出が可能となる。 According to the present invention, the simplified aminoacyl-tRNAseq method or the i-tRAP method of the present invention makes it possible to detect the aminoacylation profile of all tRNAs with greatly improved resolution.
図1は、tRNAの配列決定を行う前における前処理の反応スキームを示す。一連の化学的および酵素的処理の後、アミノアシル化および非アミノアシル化tRNAを、それぞれ3'末端CCA(3'CCA-tRNA)およびCC(3'CC-tRNA)によって区別する。PNK:ポリヌクレオチドキナーゼ-3'-ホスファターゼ。FIG. 1 shows the reaction scheme of pretreatment before sequencing tRNA. After a series of chemical and enzymatic treatments, aminoacylated and non-aminoacylated tRNAs are distinguished by 3'end CCA (3'CCA-tRNA) and CC (3'CC-tRNA), respectively. PNK: Polynucleotide Kinase-3'-Phosphatase. 図2は、アミノ酸飢餓またはアミノ酸補充状態でTIG-1細胞を培養する実験スキームである。FIG. 2 is an experimental scheme for culturing TIG-1 cells under amino acid starvation or amino acid supplementation. 図3は、アミノ酸飢餓状態における個々のtRNAのアミノアシル化率を示すプロット図である。横軸のtRNAアミノアシル化率は、アミノ酸飢餓下におけるすべてのtRNAのtRNAアミノアシル化率の値の平均からのSD値(平均= 81.8%、SD = 13.4) (図4)を、個々のtRNAに対してプロットしている。縦軸の最上段にあるAla-AGCは核DNA由来tRNAAla-AGCを、またmtAla-GCAはミトコンドリアDNA由来のtRNAAla-GCAを意味する。他も同様に個々のtRNAを意味している。n = 3の平均をプロットしている。nは、数万個の細胞からなる1検体の検体数を意味する。FIG. 3 is a plot showing the aminoacyllation rate of individual tRNAs in an amino acid starved state. The tRNA aminoacylation rate on the horizontal axis is the SD value (mean = 81.8%, SD = 13.4) from the average of the tRNA aminoacylation rates of all tRNAs under amino acid starvation (Fig. 4) for each tRNA. And plot. Ala-AGC at the top of the vertical axis means tRNA Ala -AGC derived from nuclear DNA, and mtAla-GCA means tRNA Ala -GCA derived from mitochondrial DNA. Others mean individual tRNAs as well. The average of n = 3 is plotted. n means the number of samples in one sample consisting of tens of thousands of cells. 図4は、図2のスキームに従って測定した、アミノ酸飢餓およびアミノ酸補充培地で培養した細胞におけるtRNAのアミノアシル化率を示すグラフである(n = 3)。データは、すべてのtRNAアミノアシル化率の平均からのSD値として表示している(平均= 81.8、SD = 13.4)。データは平均±SEである。FIG. 4 is a graph showing the aminoacylation rate of tRNA in cells cultured in amino acid starvation and amino acid replacement medium, measured according to the scheme of FIG. 2 (n = 3). The data are shown as SD values from the average of all tRNA aminoacylation rates (mean = 81.8, SD = 13.4). The data are mean ± SE. 図5は、アミノ酸補充(黒点、n = 3)またはアミノ酸飢餓状態(灰点、n = 3)でのtRNAのアミノアシル化率を示すプロット図である。ここでは、図2に示す通り、まず飢餓状態、次いで補充状態でプロットした結果である。tRNAアミノアシル化率(%)は、3'末端CCAおよび3'末端CCにアラインされた読み値の合計に対する3'末端CCAにアラインされた読み値の比率である。nは、数万個の細胞からなる1検体の検体数を意味する。FIG. 5 is a plot showing the aminoacylation rate of tRNA under amino acid supplementation (black dot, n = 3) or amino acid starvation state (ash dot, n = 3). Here, as shown in FIG. 2, it is the result of plotting first in the starvation state and then in the replenishment state. The tRNA aminoacylation rate (%) is the ratio of the readings aligned to the 3'end CCA to the sum of the readings aligned to the 3'end CCA and the 3'end CC. n means the number of samples in one sample consisting of tens of thousands of cells.
図6は、アミノ酸補充培地で培養した細胞における核およびミトコンドリアDNA由来のtRNAの全体的なアミノアシル化率を示すプロット図である。平均±SE (n = 3)。FIG. 6 is a plot showing the overall aminoacylation rate of nuclei and mitochondrial DNA-derived tRNAs in cells cultured in amino acid supplement medium. Average ± SE (n = 3). 図7は、核およびミトコンドリアDNA由来のtRNAにおけるアミノ酸補充(黒)またはアミノ酸飢餓(灰)状態のアミノアシル化率を示すグラフである(n = 3)。データは、すべてのtRNAアミノアシル化率の平均からのSD値として表示している(平均= 80.7、SD = 10.6)。データは平均±SEである。FIG. 7 is a graph showing the aminoacyllation rate of amino acid supplemented (black) or amino acid starved (ash) states in tRNA derived from nuclear and mitochondrial DNA (n = 3). The data are shown as SD values from the average of all tRNA aminoacylation rates (mean = 80.7, SD = 10.6). The data are mean ± SE. 図8Aは、アミノ酸補充(黒点)またはアミノ酸飢餓(灰点)状態における同族アミノ酸に基づいて個々のtRNAのアミノアシル化率を示すプロット図である(n = 3)。データは平均±SEである。個々のプロットは各同族アミノ酸におけるtRNAのアイソアクセプターを示す。tRNAアミノアシル化率(%)は、3'末端CCAおよび3'末端CCにアラインされた読み値の合計に対する3'末端CCAにアラインされた読み値の比率である。図8Bおよび図8Cは、アミノ酸飢餓(濃い灰色)またはアミノ酸補充(薄い灰色)状態における同族アミノ酸に基づいて個々のtRNAのアミノアシル化率のうち、統計的に有意な差を示したtRNAを示す棒グラフである(n = 3)。図8Bはアミノ酸飢餓に対してアミノ酸補充状態において顕著にアミノアシル化比率が減少したもの、図8Cはアミノ酸飢餓に対してアミノ酸補充状態において顕著にアミノアシル化比率が増加したものを示す。データは平均±SEである。*: P <0.05、 t-検定。FIG. 8A is a plot showing the aminoacylation rates of individual tRNAs based on homologous amino acids under amino acid supplementation (black spots) or amino acid starvation (ash spots) (n = 3). The data are mean ± SE. Individual plots show tRNA isoacceptors for each homologous amino acid. The tRNA aminoacylation rate (%) is the ratio of the readings aligned to the 3'end CCA to the sum of the readings aligned to the 3'end CCA and the 3'end CC. 8B and 8C are bar graphs showing tRNAs showing statistically significant differences in the aminoacylation rates of individual tRNAs based on their homologous amino acids in amino acid starvation (dark gray) or amino acid supplementation (light gray) conditions. (N = 3). FIG. 8B shows a marked decrease in the aminoacylation ratio in the amino acid supplemented state with respect to amino acid starvation, and FIG. 8C shows a marked increase in the aminoacylation ratio in the amino acid supplemented state with respect to amino acid starvation. The data are mean ± SE. *: P <0.05, t-test. 図9は、飢餓に対してアミノ酸補充した場合のtRNAアミノアシル化率の変化を示すプロット図である(n = 3)。tRNAアミノアシル化の平均変化からのSD値を示している(平均= 1.00、SD = 0.18)。tRNAGln-CTGは、平均より5SD上であった。n = 3。データは平均±SE。FIG. 9 is a plot showing the change in tRNA aminoacylation rate when amino acid supplementation is performed for starvation (n = 3). The SD value from the average change of tRNA aminoacylation is shown (mean = 1.00, SD = 0.18). tRNA Gln -CTG was 5SD above average. n = 3. The data is mean ± SE.
図10は、qPCRを基本とするi-tRAP法と呼称する方法に基づき、tRNAアミノアシル化率を定量化するスキームを示す模式図である。図1で説明しているようにして前処理したtRNAをアダプターと連結し、逆転写し、次いで2つのプローブベースのqPCR法を行う。ここでは、VICからの蛍光シグナルは3'CCA-tRNAの量を表し、FAMからのシグナルは3'CC-tRNAの量を表す。FIG. 10 is a schematic diagram showing a scheme for quantifying the tRNA aminoacylation rate based on a method called the i-tRAP method based on qPCR. The pretreated tRNA as described in FIG. 1 is ligated with an adapter, reverse transcribed, and then performed with two probe-based qPCR methods. Here, the fluorescent signal from VIC represents the amount of 3'CCA-tRNA and the signal from FAM represents the amount of 3'CC-tRNA. 図11Aは、アミノ酸飢餓(黒色)および補充条件(灰色)での2つのtRNAGlnアイソアクセプターのアミノアシル化率を示すグラフである(n = 3)。横軸の数字は、アイソデコーダーの型を示す。データは平均±SEである。nd:検出せず。図11Bは、tRNAGlnアイソアクセプターの読み値カウントの比率である。数字は、アイソデコーダーの型を示す。黒い部分が、注目したアイソデコーダー#1を示す。図11Cは、tRNAGlnアイソデコーダーそれぞれをアラインメントした結果を示す。黒い塗り部分は、最上段のGln-CTG-1と同一であるヌクレオチドを表している。Gln-CTG-1とGln-CTG-2の間にある波線は、i-tRAP法に用いたプライマー配列を示し、点線はi-tRAP法のプローブの部分配列を示す。線は、アンチコドンヌクレオチドを示す。FIG. 11A is a graph showing the aminoacylation rates of the two tRNA Gln isoacceptors under amino acid starvation (black) and supplementation conditions (gray) (n = 3). The numbers on the horizontal axis indicate the type of isodecoder. The data are mean ± SE. nd: Not detected. FIG. 11B shows the ratio of reading counts of the tRNA Gln isoacceptor. The numbers indicate the type of isodecoder. The black part shows the Iso Decoder # 1 of interest. FIG. 11C shows the result of aligning each of the tRNA Gln isodecoders. The black part represents the nucleotide that is the same as Gln-CTG-1 in the uppermost row. The wavy line between Gln-CTG-1 and Gln-CTG-2 shows the primer sequence used in the i-tRAP method, and the dotted line shows the partial sequence of the probe in the i-tRAP method. The line indicates an anticodon nucleotide. 図12Aは、アミノ酸飢餓(黒色)および補充条件(灰色)での3つのtRNAGlyアイソアクセプターのアミノアシル化率を示すグラフである(n = 3)。横軸の数字は、アイソデコーダーの型を示す。データは平均±SEである。nd:検出せず。図12Bは、tRNAGlyアイソアクセプターの読み値カウントの比率である。数字は、アイソデコーダーの型を示す。黒い部分が、注目したアイソデコーダー#1を示す。図12Cは、tRNAGlyアイソデコーダーそれぞれをアラインメントした結果を示す。黒い塗り部分は、最上段のGly-GCC-1と同一であるヌクレオチドを表している。Gly-GCC-1とGly-GCC-2の間にある波線は、i-tRAP法に用いたプライマー配列を示し、点線はi-tRAP法のプローブの部分配列を示す。線は、アンチコドンヌクレオチドを示す。FIG. 12A is a graph showing the aminoacylation rates of the three tRNA Gly isoacceptors under amino acid starvation (black) and supplementation conditions (gray) (n = 3). The numbers on the horizontal axis indicate the type of isodecoder. The data are mean ± SE. nd: Not detected. FIG. 12B is the ratio of the reading count of the tRNA Gly isoacceptor. The numbers indicate the type of isodecoder. The black part shows the Iso Decoder # 1 of interest. FIG. 12C shows the result of aligning each of the tRNA Gly isodecoders. The black part represents the nucleotide that is the same as Gly-GCC-1 in the uppermost row. The wavy line between Gly-GCC-1 and Gly-GCC-2 shows the primer sequence used for the i-tRAP method, and the dotted line shows the partial sequence of the probe for the i-tRAP method. The line indicates an anticodon nucleotide. 図13Aは、3'CCA-tRNAGln-CTG配列を含む合成DNA鋳型を使用したi-tRAP法のリアルタイムプロットを示すグラフである。図13Bは、3'CC-tRNAGln-CTG配列を含む合成DNA鋳型を使用したi-tRAP法のリアルタイムプロットを示すグラフである。図13AおよびBともに、黒色の線は、CCAプローブからのVICシグナルを示し、灰色の線はCCプローブからのFAMシグナルを示す。FIG. 13A is a graph showing a real-time plot of the i-tRAP method using a synthetic DNA template containing a 3'CCA-tRNA Gln -CTG sequence. FIG. 13B is a graph showing a real-time plot of the i-tRAP method using a synthetic DNA template containing a 3'CC-tRNA Gln -CTG sequence. In both FIGS. 13A and 13B, the black line shows the VIC signal from the CCA probe and the gray line shows the FAM signal from the CC probe. 図14Aは、3'CCA-tRNAGly-GCC配列を含む合成DNA鋳型を使用したi-tRAP法のリアルタイムプロットを示すグラフである。図14Bは、3'CC-tRNAGly-GCC配列を含む合成DNA鋳型を使用したi-tRAPのリアルタイムプロットを示すグラフである。図14AおよびBともに、黒色の線は、CCAプローブからのVICシグナルを示し、灰色の線はCCプローブからのFAMシグナルを示す。FIG. 14A is a graph showing a real-time plot of the i-tRAP method using a synthetic DNA template containing a 3'CCA-tRNA Gly -GCC sequence. FIG. 14B is a graph showing a real-time plot of i-tRAP using a synthetic DNA template containing a 3'CC-tRNA Gly -GCC sequence. In both FIGS. 14A and 14B, the black line shows the VIC signal from the CCA probe and the gray line shows the FAM signal from the CC probe.
図15は、tRNAGln-CTGの3'CCA-tRNA比に対する、VICおよびFAMシグナルから得られるΔCt値の標準曲線を示すグラフである。3'CCA-tRNAおよび3'CC-tRNA配列をいくつかの比率で含むDNA鋳型を混合し、使用した。FIG. 15 is a graph showing a standard curve of ΔCt values obtained from VIC and FAM signals for the 3'CCA-tRNA ratio of tRNA Gln -CTG. DNA templates containing 3'CCA-tRNA and 3'CC-tRNA sequences in several proportions were mixed and used. 図16は、tRNAGly-GCCの3'CCA-tRNA比に対する、VICおよびFAMシグナルから得られるΔCt値の標準曲線を示すグラフである。3'CCA-tRNAおよび3'CC-tRNA配列をいくつかの比率で含むDNA鋳型を混合し、使用した。FIG. 16 is a graph showing a standard curve of ΔCt values obtained from VIC and FAM signals for the 3'CCA-tRNA ratio of tRNA Gly -GCC. DNA templates containing 3'CCA-tRNA and 3'CC-tRNA sequences in several proportions were mixed and used. 図17は、異なる鋳型量とのtRNAGln-CTGと3'CCAの比に対するVICおよびFAMのΔCtの値の標準曲線である。鋳型として、合成したDNA断片を使用した。FIG. 17 is a standard curve of the ΔCt values of VIC and FAM for the ratio of tRNA Gln -CTG to 3'CCA with different template amounts. The synthesized DNA fragment was used as a template. 図18Aは、tRNAGln-CTGのアミノアシル化率に対するアルカリ処理の影響を示すグラフである。図18Bは、tRNAGly-GCCのアミノアシル化率に対するアルカリ処理の影響を示すグラフである。図18AおよびBともに、HEK293細胞から抽出されたtRNAを、150 mM Tris-HCl、pH 9.0、37℃で30分間処理した。 n = 4。データ:平均±SE。*: P <0.05、 t-検定。FIG. 18A is a graph showing the effect of alkali treatment on the aminoacylation rate of tRNA Gln -CTG. FIG. 18B is a graph showing the effect of alkali treatment on the aminoacylation rate of tRNAGly-GCC. In both FIGS. 18A and 18B, tRNA extracted from HEK293 cells was treated with 150 mM Tris-HCl, pH 9.0, 37 ° C. for 30 minutes. n = 4. Data: Average ± SE. *: P <0.05, t-test. 図19Aは、tRNAGln-CTGのアミノアシル化率に対するアミノ酸欠乏の影響を示すグラフである。図19Bは、tRNAGly-GCCのアミノアシル化率に対するアミノ酸欠乏の影響を示すグラフである。図19AおよびBともに、アミノ酸を含まない培地で培養したTIG-1細胞、それを、アミノ酸を含む培地に交換した細胞から抽出したtRNAを1時間インキュベートしたものを分析した。n = 4。データ:平均±SE。*: P <0.05、 t-検定; ns、有意でない。FIG. 19A is a graph showing the effect of amino acid deficiency on the aminoacylation rate of tRNA Gln -CTG. FIG. 19B is a graph showing the effect of amino acid deficiency on the aminoacylation rate of tRNAGly-GCC. In both FIGS. 19A and 19B, TIG-1 cells cultured in an amino acid-free medium and tRNA extracted from the cells exchanged for the amino acid-containing medium were incubated for 1 hour. n = 4. Data: Average ± SE. *: P <0.05, t-test; ns, not significant.
図20は、アミノ酸欠乏後のtRNAGln-CTGのアミノアシル化率(図21)の結果を得るための実験スキームを示す。アミノ酸が豊富な培地で培養したTIG-1細胞をアミノ酸飢餓状態とし、飢餓後、指定した時間にRNAを抽出した。FIG. 20 shows an experimental scheme for obtaining the results of aminoacylation rate of tRNA Gln -CTG after amino acid deficiency (FIG. 21). TIG-1 cells cultured in an amino acid-rich medium were starved for amino acids, and RNA was extracted at a specified time after starvation. 図21はアミノ酸欠乏後のtRNAGln-CTGのアミノアシル化率を示すグラフである。n = 5; Bonferroniの事後検定による分散分析。*:0時間に対してP <0.05。統計分析は、0時間のアミノアシル化率と比較して行った。FIG. 21 is a graph showing the aminoacylation rate of tRNA Gln -CTG after amino acid deficiency. n = 5; ANOVA with Bonferroni's post-test. *: P <0.05 for 0 hours. Statistical analysis was performed in comparison with the aminoacylation rate at 0 hours. 図22は、アミノ酸欠乏後のグルタミニルtRNAシンセターゼ(QARS)の発現を示すグラフである。n = 5; Bonferroniの事後検定による分散分析。*:0時間に対してP <0.05。統計分析は、0時間の発現量と比較して行った。FIG. 22 is a graph showing the expression of glutaminyl tRNA synthesizer (QARS) after amino acid deficiency. n = 5; ANOVA with Bonferroni's post-test. *: P <0.05 for 0 hours. Statistical analysis was performed in comparison with the expression level at 0 hours.
図23は、QARSの発現(図24)およびtRNAGln-CTGのアミノアシル化率(図25)の結果を得るためのsiRNA実験スキームを示す。アミノ酸の豊富な培地で培養したTIG-1細胞を、指示しているsiRNAでトランスフェクトし、さらに2日間培養した。FIG. 23 shows an siRNA experimental scheme to obtain results for QARS expression (FIG. 24) and aminoacylation rate of tRNA Gln -CTG (FIG. 25). TIG-1 cells cultured in amino acid-rich medium were transfected with the indicated siRNA and cultured for an additional 2 days. 図24は、QARSの発現量を示すグラフである。平均±SE (n = 4)、*: P <0.05、t検定。FIG. 24 is a graph showing the expression level of QARS. Mean ± SE (n = 4), *: P <0.05, t-test. 図25は、tRNAGln-CTGのアミノアシル化率を示すグラフである。平均±SE (n = 4)、*: P <0.05、t検定。FIG. 25 is a graph showing the aminoacylation rate of tRNA Gln -CTG. Mean ± SE (n = 4), *: P <0.05, t-test. 図26は、CHXとともに培養したtRNAGln-CTGのアミノアシル化率の結果(図27)を得るための実験スキームを示す。TIG-1細胞を、アミノ酸を含まない培地でサイクロヘキサマイド(CHX)の存在下、6時間培養した。FIG. 26 shows an experimental scheme for obtaining the results of aminoacylation rates of tRNA Gln -CTG cultured with CHX (FIG. 27). TIG-1 cells were cultured in amino acid-free medium in the presence of chlorhexidine (CHX) for 6 hours. 図27は、CHXとともに培養したtRNAGln-CTGのアミノアシル化率を示すグラフである。平均±SE(n = 4)、*: P <0.05、t検定。FIG. 27 is a graph showing the aminoacylation rate of tRNA Gln -CTG cultured with CHX. Mean ± SE (n = 4), *: P <0.05, t-test. 図28は、若年および老齢TIG-1細胞におけるtRNAGln-CTGのアミノアシル化率(図29)およびQARS(図30)の結果を得るための実験スキームを示す。アミノ酸を含まない培地で培養した若年および老齢TIG-1細胞について、RNAをアミノ酸飢餓の0、3、6、9および15時間後に調製した。FIG. 28 shows an experimental scheme for obtaining aminoacylation rates of tRNA Gln -CTG (FIG. 29) and QARS (FIG. 30) in young and aged TIG-1 cells. RNA was prepared 0, 3, 6, 9 and 15 hours after amino acid starvation for young and old TIG-1 cells cultured in amino acid-free medium. 図29は、若年および老齢TIG-1細胞におけるtRNAGln-CTGのアミノアシル化率を示すグラフである。平均±SE (n = 5)、*: P <0.05、2因子ANOVA事後Bonferroni。FIG. 29 is a graph showing the aminoacylation rate of tRNA Gln -CTG in young and old TIG-1 cells. Mean ± SE (n = 5), *: P <0.05, 2-factor ANOVA posterior Bonferroni. 図30は、アミノ酸飢餓の若年および老齢TIG-1細胞におけるQARSの定量的RT-PCR分析を示すグラフである。参照としてATP5F1を使用した。平均±SE (n = 5)、*: P <0.05、2因子ANOVA事後Bonferroni。FIG. 30 is a graph showing quantitative RT-PCR analysis of QARS in young and aged TIG-1 cells of amino acid starvation. ATP5F1 was used as a reference. Mean ± SE (n = 5), *: P <0.05, 2 factor ANOVA ex post Bonferroni.
図31Aは、図20に示す実験スキームの条件において、TIG-1細胞におけるアミノ酸飢餓前、および3、6、9時間のアミノ酸飢餓状態の細胞内アミノ酸濃度を高速液体クロマトグラフィー(HPLC)で測定した結果を示すグラフである。細胞抽出液のタンパク質単位量(mg)あたりのアミノ酸濃度(nmol)で示されている。n = 3; Bonferroniの事後検定による分散分析。*:0時間に対してP <0.05。統計分析は、0時間の細胞内アミノ酸濃度と比較して行った。図31Bは、図20に示す実験スキームの条件において、高速液体クロマトグラフィー(HPLC)で測定したTIG-1細胞における細胞内アミノ酸濃度について、アミノ酸飢餓前の細胞内アミノ酸濃度を基準(0時、相対濃度:1)にして3、6、9時間のアミノ酸飢餓状態の際の細胞内アミノ酸濃度の相対濃度を示すグラフである。FIG. 31A shows the intracellular amino acid concentrations in TIG-1 cells before amino acid starvation and in amino acid starvation for 3, 6 and 9 hours under the conditions of the experimental scheme shown in FIG. 20 by high performance liquid chromatography (HPLC). It is a graph which shows the result. It is shown by the amino acid concentration (nmol) per protein unit amount (mg) of the cell extract. n = 3; ANOVA with Bonferroni's post-test. *: P <0.05 for 0 hours. Statistical analysis was performed in comparison with the intracellular amino acid concentration at 0 hours. FIG. 31B shows the intracellular amino acid concentration in TIG-1 cells measured by high performance liquid chromatography (HPLC) based on the intracellular amino acid concentration before amino acid starvation under the conditions of the experimental scheme shown in FIG. 20 (0 o'clock, relative). Concentration: 1) is a graph showing the relative concentration of intracellular amino acid concentration during amino acid starvation for 3, 6 and 9 hours. 図32Aは、図26に示す実験スキームの条件における、CHXとともに培養したTIG-1細胞における細胞内アミノ酸濃度を高速液体クロマトグラフィー(HPLC)で測定した結果である。細胞抽出液のタンパク質単位量(mg)あたりのアミノ酸濃度(nmol)で示されている。n = 3; Bonferroniの事後検定による分散分析。*:0時間に対してP <0.05。統計分析は、0時間の細胞内アミノ酸濃度と比較して行った。図32Bは、図26に示す実験スキームの条件における、CHXとともに培養したTIG-1細胞における細胞内アミノ酸濃度について、CHXの代わりにDMSOを加えて培養した細胞内アミノ酸濃度を基準(DMSO、相対濃度:1.0)に対して、6時間のアミノ酸飢餓状態の際の細胞内アミノ酸濃度の相対濃度を示すグラフである。FIG. 32A is the result of high performance liquid chromatography (HPLC) measurement of the intracellular amino acid concentration in TIG-1 cells cultured with CHX under the conditions of the experimental scheme shown in FIG. 26. It is shown by the amino acid concentration (nmol) per protein unit amount (mg) of the cell extract. n = 3; ANOVA with Bonferroni's post-test. *: P <0.05 for 0 hours. Statistical analysis was performed in comparison with the intracellular amino acid concentration at 0 hours. FIG. 32B shows the intracellular amino acid concentration in TIG-1 cells cultured with CHX under the conditions of the experimental scheme shown in FIG. 26, based on the intracellular amino acid concentration cultured by adding DMSO instead of CHX (DMSO, relative concentration). : 1.0) is a graph showing the relative concentration of intracellular amino acid concentration in the amino acid starvation state for 6 hours. 図33Aは、クロロキン(CQ)とともに培養したTIG-1細胞における細胞内アミノ酸濃度を高速液体クロマトグラフィー(HPLC)で測定した結果を示すグラフである。細胞単位量(mg)あたりのアミノ酸濃度(nmol)で示されている。n = 3; t-検定。*:0時間に対してP <0.05。統計分析は、溶媒(PBS)投与した細胞の細胞内アミノ酸濃度と比較して行った。図33Bは、クロロキン(CQ)とともに培養したTIG-1細胞における細胞内アミノ酸濃度について、CQの代わりにPBSを培地に加えて培養した細胞内アミノ酸濃度を基準(PBS、相対濃度:1.0)にして4時間のアミノ酸飢餓状態の際の細胞内アミノ酸濃度の相対濃度を示すグラフである。図33Cは、クロロキン(CQ)とともに培養したTIG-1細胞におけるtRNAGln-CTGのアミノアシル化率を示すグラフである。平均±SE (n = 4)、*: P <0.05、t検定。統計分析は、溶媒(PBS)投与した細胞の細胞内アミノ酸濃度と比較して行った。FIG. 33A is a graph showing the results of measuring the intracellular amino acid concentration in TIG-1 cells cultured with chloroquin (CQ) by high performance liquid chromatography (HPLC). It is shown by the amino acid concentration (nmol) per cell unit amount (mg). n = 3; t-test. *: P <0.05 for 0 hours. Statistical analysis was performed in comparison with the intracellular amino acid concentration of the cells treated with solvent (PBS). FIG. 33B shows the intracellular amino acid concentration in TIG-1 cells cultured with chloroquin (CQ) based on the intracellular amino acid concentration cultured by adding PBS to the medium instead of CQ (PBS, relative concentration: 1.0). It is a graph which shows the relative concentration of the intracellular amino acid concentration at the time of the amino acid starvation state for 4 hours. FIG. 33C is a graph showing the aminoacylation rate of tRNA Gln -CTG in TIG-1 cells cultured with chloroquine (CQ). Mean ± SE (n = 4), *: P <0.05, t-test. Statistical analysis was performed in comparison with the intracellular amino acid concentration of the cells treated with solvent (PBS).
 以下、本発明について、本発明を実施するうえで使用できる好ましい方法や材料とともに例示する実施形態を用いて説明するが、本発明の範囲はこれらの記載で限定されるものではない。特に断りが無い限り、本明細書にて使用している技術用語や科学用語は、本発明の属する技術の分野における通常の知識を有する者にとって普通に理解されるものと同じ意味を有している。 Hereinafter, the present invention will be described with reference to embodiments illustrated together with preferred methods and materials that can be used in carrying out the present invention, but the scope of the present invention is not limited to these descriptions. Unless otherwise noted, the technical and scientific terms used herein have the same meaning as would be commonly understood by anyone with ordinary knowledge in the field of technology to which the invention belongs. There is.
<i-tRAP法>
 本発明は、ひとつの形態として、1つの標的RNAにおける単一ヌクレオチドの違いを定性的または定量的に測定する方法において、ここに、単一ヌクレオチドの違いは、標的RNAの3'末端配列:CCA対CCにおけるヌクレオチドAの存在または不存在である方法であって、
α) 標的RNAのcDNAを作成し、
β) PCRによって、該cDNA上の単一ヌクレオチドの違いを含む標的領域を増幅し、同時に単一ヌクレオチドの違いを定性的または定量的に測定する方法、に関する。
<I-tRAP method>
The present invention is, in one form, a method of qualitatively or quantitatively measuring the difference of a single nucleotide in one target RNA, where the difference of a single nucleotide is the 3'end sequence of the target RNA: CCA. A method in which nucleotide A is present or absent in anti-CC.
α) Create cDNA for target RNA and
β) The present invention relates to a method of amplifying a target region containing a single nucleotide difference on the cDNA by PCR and simultaneously measuring the single nucleotide difference qualitatively or quantitatively.
 本発明において、測定の対象となる「標的RNA」は、自然界に存在するRNAであっても、人工的に合成されたRNAであってもよい。典型的には、20塩基~150塩基(nt、ヌクレオチド長)のRNAであり、具体的には20塩基~80塩基のRNAである。「標的RNA」は好ましくは、tRNA-機能性RNAであり、ここに「tRNA-機能性RNA」とは、tRNA、またはtRNAと同じ態様にてその3'末端がアミノアシル化(チャージ)もしくは脱アミノアシル化(脱チャージ)されるRNA様分子もしくはその部分もしくはその誘導体を意味する。かかる「RNA様分子もしくはその部分もしくはその誘導体」は具体的には、tRNA由来のマイクロRNA、例えばtRNAの3’末端を有するtRFまたはtRNAハーフ(Front. Genet., 11 June 2014 | https://doi.org/10.3389/fgene.2014.00171 tRNAs as regulators of biological processes)、およびtRNA様活性を有するRNA、例えばtRNAの3’末端を有するtRNA様活性を有するRNA合成品が挙げられる。また、全長がRNAである分子に限らず、一部が修飾されたRNAであってもよく、また、一部がDNA若しくは人工核酸であるRNAであってもよい。臨床診断の目的のためには、生体内に存在する天然のRNAを人工的に抽出したものを「標的RNA」とすることが好ましい。生体内に存在する天然のRNAとしては、これらに限定されるわけではないが、例えばトランスファーRNA(tRNA、転移RNA)、mtRNA(ミトコンドリアtRNA)、メッセンジャーRNA(mRNA)、リボソームRNA(rRNA)、核内低分子RNA(small nuclear RNA: snRNA)、核小体低分子RNA(small nucleolar RNA: snoRNA)、マイクロRNA( miRNA)、低分子干渉RNA(small interfering RNA: siRNA)などが挙げられる。 In the present invention, the "target RNA" to be measured may be RNA existing in nature or artificially synthesized RNA. Typically, it is an RNA of 20 to 150 bases (nt, nucleotide length), and specifically, it is an RNA of 20 to 80 bases. The "target RNA" is preferably tRNA-functional RNA, where "tRNA-functional RNA" is tRNA, or in the same manner as tRNA, its 3'end is aminoacylated (charged) or deaminoacylated. It means an RNA-like molecule that is converted (decharged), a portion thereof, or a derivative thereof. Specifically, such "RNA-like molecule or a portion thereof or a derivative thereof" is a microRNA derived from tRNA, for example, tRF or tRNA half having a 3'end of tRNA (Front. Genet., 11 June 2014 | https: // Doi.org/10.3389/fgene.2014.00171 tRNAs as regulators of biological processes), and RNA having tRNA-like activity, for example, RNA synthetic products having tRNA-like activity having a 3'end of tRNA. Further, the molecule is not limited to a molecule having a total length of RNA, and may be a partially modified RNA, or may be a partially modified RNA or an RNA which is a DNA or an artificial nucleic acid. For the purpose of clinical diagnosis, it is preferable to use an artificially extracted natural RNA existing in the living body as a “target RNA”. Natural RNA existing in the living body is not limited to these, but for example, transfer RNA (tRNA, translocated RNA), mtRNA (mitomitrimal tRNA), messenger RNA (mRNA), ribosome RNA (rRNA), nuclei. Examples thereof include small nuclear RNA (snRNA), small nucleolar RNA (snoRNA), microRNA (miRNA), and small interfering RNA (siRNA).
 本発明において、「標的RNA」は好ましくは、「スモールRNA」である。スモールRNAは、塩基長が概ね200塩基以下、好ましくは100塩基、さらに好ましくは80塩基以下の一本鎖RNAである。スモールRNAは、例えばtRNA、核内低分子RNA、核小体低分子RNA、マイクロRNA、または低分子干渉RNAなど機能性RNAであってよく、または機能性RNAでなくてもよい。 In the present invention, the "target RNA" is preferably "small RNA". The small RNA is a single-stranded RNA having a base length of about 200 bases or less, preferably 100 bases, and more preferably 80 bases or less. The small RNA may or may not be a functional RNA such as, for example, tRNA, small nuclear RNA, small nucleolar RNA, microRNA, or small interfering RNA.
 本発明において、「1つの標的RNAにおける単一ヌクレオチドの違い」とは、1つの標的RNAの3'末端配列:CCA対CCにおけるヌクレオチドAの存在または不存在を意味する。上記の通り、標的RNAは好ましくは、tRNA、tRNA由来のマイクロRNA、例えばtRNAの3’末端を有するtRFまたはtRNAハーフスモールRNAであり、より好ましくは、tRNAである。tRNA構造の一端には、tRNA間で保存されている3'末端のリボヌクレオチドアライメント「CCA」があり、これは、アミノアシル-tRNAシンセターゼ(aaRS)によってコドン特異的なアミノ酸が結合(チャージ)し、アミノアシル化tRNA (チャージtRNA)を与えるtRNAの3'末端部分である。他方、アミノアシル化されていない、すなわちアミノ酸が結合していない状態に相当するRNAは、例えば図1Aにて説明する過ヨウ素酸酸化、β脱離、末端修復という一連の化学的および酵素的処理を受けると、その末端塩基「A」が除去され、「CC」となる。この「CCA」および「CC」におけるヌクレオチドAの存在または不存在が、本発明における「1つの標的RNAにおける単一ヌクレオチドの違い」である。ここに、本発明における「1つの標的RNAにおける単一ヌクレオチドの違い」の意義は、1つのtRNAにおいて、アミノ酸をアミノアシル化しているtRNA(アミノアシル化tRNA)およびアミノアシル化していないtRNA(非アミノアシル化tRNA)の総量に対するアミノアシル化tRNAの比率である「tRNAのアミノアシル化率」の測定への利用である。なお、「tRNAのアミノアシル化率」は、「tRNAのチャージング率」または「tRNAのチャージ率」とも称される。「tRNAに代表されるtRNA-機能性RNAのアミノアシル化率」は、いくつかの生物学的現象や疾患と密接に関連していることが報告されている。以下、文献参照: In the present invention, "difference of a single nucleotide in one target RNA" means the presence or absence of nucleotide A in the 3'end sequence of one target RNA: CCA vs. CC. As described above, the target RNA is preferably tRNA, a microRNA derived from tRNA, for example, tRF or tRNA half-small RNA having a 3'end of tRNA, and more preferably tRNA. At one end of the tRNA structure is the 3'end ribonucleotide alignment "CCA" that is conserved between tRNAs, which is codon-specific bound (charged) by aminoacyl-tRNA synthetase (aaRS). It is the 3'end portion of the tRNA that gives the aminoacylated tRNA (charged tRNA). On the other hand, RNA that is not aminoacylated, that is, corresponds to a state in which amino acids are not bound, undergoes a series of chemical and enzymatic treatments such as periodic acid oxidation, β desorption, and terminal repair described in FIG. 1A. When it is received, its terminal base "A" is removed and becomes "CC". The presence or absence of nucleotide A in this "CCA" and "CC" is the "difference of a single nucleotide in one target RNA" in the present invention. Here, the significance of the "difference of a single nucleotide in one target RNA" in the present invention is that in one tRNA, a tRNA in which amino acids are aminoacylated (aminoacylated tRNA) and a tRNA in which amino acids are not aminoacylated (non-aminoacylated tRNA) are used. ) Is used for measuring the "aminoacylation rate of tRNA", which is the ratio of aminoacylated tRNA to the total amount. The "aminoacylation rate of tRNA" is also referred to as "charging rate of tRNA" or "charging rate of tRNA". It has been reported that "tRNA represented by tRNA-aminoacylation rate of functional RNA" is closely related to some biological phenomena and diseases. See literature below:
1. Gong, S. et al.; ミトコンドリアヒスチジルtRNAシンセターゼの過剰発現は、難聴に関連するtRNA(His)変異によって引き起こされるミトコンドリア機能障害を復元する(Overexpression of mitochondrial histidyl-tRNA synthetase restores mitochondrial dysfunction caused by a deafness-associated tRNA(His) mutation.) J Biol Chem 295, 940-954 (2020).
2. Loayza-Puch, F. et al.; 特異なリボソームコドンの読取りによって明らかになった腫瘍固有のプロリン脆弱性(Tumour-specific proline vulnerability uncovered by differential ribosome codon reading.) Nature 530, 490-494 (2016).
3. Zhou, Y., Goodenbour, J. M., Godley, L. A., Wickrema, A. & Pan, T.; 多発性骨髄腫における高レベルのtRNAの存在量とボルテゾミブによるtRNAチャージ(アミノアシル化)の変化(High levels of tRNA abundance and alteration of tRNA charging by bortezomib in multiple myeloma.) Biochemical and Biophysical Research Communications 385, 160-164 (2009).
4. Ho, J. M., Bakkalbasi, E., Soll, D. & Miller, C. A.; 医薬的tRNAアミノアシル化(Drugging tRNA aminoacylation.) RNA Biol 15, 667-677 (2018).
5. Bock, A., Faiman, L. E. & Neidhardt, F. C.; 温度感受性バリルリボ核酸シンセターゼによる大腸菌変異株の生化学的および遺伝的特性(Biochemical and genetic characterization of a mutant of Escherichia coli with a temperature-sensitive valyl ribonucleic acid synthetase.) J Bacteriol 92, 1076-1082 (1966).
6. Kwon, N. H., Fox, P. L. & Kim, S.; 治療標的としてのアミノアシル-tRNAシンセターゼ(Aminoacyl-tRNA synthetases as therapeutic targets.) Nat Rev Drug Discov 18, 629-650 (2019).
7. Sorensen, M. A.; アミノ酸飢餓時の大腸菌Rel(+)およびRel(-)株における4つのtRNA種のチャージング(アミノアシル化)レベル:翻訳精度に対するppGppの影響の簡単なモデル(Charging levels of four tRNA species in Escherichia coli Rel(+) and Rel(-) strains during amino acid starvation: a simple model for the effect of ppGpp on translational accuracy.) J Mol Biol 307, 785-798 (2001).
8. Sorensen, M. A. et al.; tRNA(Leu)アイソアクセプターの過剰発現は、ロイシンtRNAのチャージング(アミノアシル化)パターンを変更し、新しいコドンの読取りを明らかにする(Over expression of a tRNA(Leu) isoacceptor changes charging pattern of leucine tRNAs and reveals new codon reading. J Mol Biol 354, 16-24 (2005).
9. Girstmair, H. et al.; 同族のチャージ(アミノアシル化)トランスファーRNAの枯渇は、ハンチンチン病の拡張されたCAGストレッチ内で翻訳フレームシフトを引き起こす(Depletion of cognate charged transfer RNA causes translational frameshifting within the expanded CAG stretch in huntingtin.) Cell Rep 3, 148-159 (2013).
10. Dittmar, K. A., Mobley, E. M., Radek, A. J. & Pan, T.; ゲノム規模でのtRNA分布の調節を探索する(Exploring the regulation of tRNA distribution on the genomic scale.) J Mol Biol 337, 31-47 (2004).
11. Vanlander, A. V. et al.; ミトコンドリアのアスパラギニルtRNAシンセターゼ(NARS2)におけるホモ接合の病原性スプライス部位変異を持つ2人の兄弟(Two siblings with homozygous pathogenic splice-site variant in mitochondrial asparaginyl-tRNA synthetase (NARS2).) Human mutation 36, 222-231 (2015).
12. Coughlin, C. R., 2nd et al.; ミトコンドリアのシステイニル-tRNAシンセーゼ遺伝子CARS2の変異は、重篤なてんかん性脳症と複雑な運動障害を引き起こす(Mutations in the mitochondrial cysteinyl-tRNA synthase gene, CARS2, lead to a severe epileptic encephalopathy and complex movement disorder.) J Med Genet 52, 532-540 (2015).
13. Zaborske, J. M. et al.; tRNAチャージ(アミノアシル化)とeIF2キナーゼGcn2pの活性化の全ゲノム解析(Genome-wide analysis of tRNA charging and activation of the eIF2 kinase Gcn2p.) J Biol Chem 284, 25254-25267 (2009).
14. Suzuki, T., Nagao, A. & Suzuki, T.; ヒトミトコンドリアtRNA:生合成、機能、構造的側面および疾患(Human mitochondrial tRNAs: biogenesis, function, structural aspects, and diseases.) Annu Rev Genet 45, 299-329 (2011).
15. Jiang, P. et al.; 高血圧に関連するtRNA Ala変異は、tRNA代謝とミトコンドリア機能を変化させる(A Hypertension-Associated tRNAAla Mutation Alters tRNA Metabolism and Mitochondrial Function.) Mol Cell Biol 36, 1920-1930 (2016).
 本明細書に引用している各文献の記載は、本明細書における引用によって本明細書に包含される。
1. Gong, S. et al .; Overexpression of mitochondrial histidyl-tRNA synthetase restores mitochondrial dysfunction caused by a deafness-associated tRNA (His) mutation.) J Biol Chem 295, 940-954 (2020).
2. Loayza-Puch, F. et al .; Tumor-specific proline vulnerability uncovered by differential ribosome codon reading. Nature 530, 490-494 ( 2016).
3. Zhou, Y., Goodenbour, J.M., Godley, L.A., Wickrema, A. & Pan, T .; High levels of tRNA abundance in multiple myeloma and changes in tRNA charge (aminoacylation) due to bortezomib (High) levels of tRNA abundance and alteration of tRNA charging by bortezomib in multiple myeloma.) Biochemical and Biophysical Research Communications 385, 160-164 (2009).
4. Ho, J. M., Bakkalbasi, E., Soll, D. & Miller, C. A .; Pharmaceutical tRNA aminoacylation. RNA Biol 15, 667-677 (2018).
5. Bock, A., Faiman, L. E. & Neidhardt, F. C .; Biochemical and genetic characterization of a mutant of Escherichia coli with a temperature-sensitive valyl ribonucleic acid synthetase.) J Bacteriol 92, 1076-1082 (1966).
6. Kwon, N.H., Fox, P.L. & Kim, S .; Aminoacyl-tRNA synthetases as therapeutic targets. Nat Rev Drug Discov 18, 629-650 (2019).
7. Sorensen, M. A .; Charging levels of four for the effect of ppGpp on translation accuracy: charging levels of four tRNA species in E. coli Rel (+) and Rel (-) strains during amino acid starvation. tRNA species in Escherichia coli Rel (+) and Rel (-) strains during amino acid starvation: a simple model for the effect of ppGpp on translational accuracy.) J Mol Biol 307, 785-798 (2001).
8. Sorensen, M. A. et al .; Overexpression of tRNA (Leu) isoacceptors alters the charging (aminoacylation) pattern of leucine tRNA, revealing new codon readings (Over expression of a tRNA (Over expression of a tRNA). Leu) isoacceptor changes charging pattern of leucine tRNAs and reveals new codon reading. J Mol Biol 354, 16-24 (2005).
9. Girstmair, H. et al .; Depletion of cognate charged transfer RNA causes translational frameshifting within the expanded CAG stretch in huntingtin.) Cell Rep 3, 148-159 (2013).
10. Dittmar, K.A., Mobley, E.M., Radek, A.J. & Pan, T .; Exploring the regulation of tRNA distribution on the genomic scale. J Mol Biol 337, 31- 47 (2004).
11. Vanlander, A.V. et al .; Two siblings with homozygous pathogenic splice-site variant in mitochondrial asparaginyl-tRNA synthetase (NARS2) ).) Human mutation 36, 222-231 (2015).
12. Coughlin, C.R., 2nd et al .; Mutations in the mitochondrial cysteinyl-tRNA synthase gene, CARS2, lead to a severe epileptic encephalopathy and complex movement disorder.) J Med Genet 52, 532-540 (2015).
13. Zaborske, J.M. et al .; Genome-wide analysis of tRNA charging and activation of the eIF2 kinase Gcn2p. J Biol Chem 284, 25254- 25267 (2009).
14. Suzuki, T., Nagao, A. & Suzuki, T .; Human mitochondrial tRNAs: biogenesis, function, structural aspects, and diseases. Annu Rev Genet 45, 299-329 (2011).
15. Jiang, P. et al .; tRNA Ala mutations associated with hypertension alter tRNA metabolism and mitochondrial function (A Hypertension-Associated tRNAAla Mutation Alters tRNA Metabolism and Mitochondrial Function.) Mol Cell Biol 36, 1920-1930 (2016).
The description of each document cited herein is incorporated herein by reference in this specification.
 本発明において、「定性的に測定する」とは、ある検体にどんなRNAが含まれているかを調べることであり、同定とも称される。「定量的に測定する」とは、標的RNAの存在量または濃度を定量する情況で用いる場合、絶対または相対定量化を示す。本発明においては、その両者を意味する。絶対定量化は、既知の濃度の1つまたはそれ以上のRNA、例えば対照RNAを想定し、未知量の標的RNAの強度シグナルを既知の対称RNAに照会することにより、例えば標準曲線の生成によって行われる。相対定量化は、2つまたはそれ以上のRNAの強度シグナルを比較し、強度の変化を定量することにより行われる。 In the present invention, "qualitatively measuring" is to investigate what kind of RNA is contained in a certain sample, and is also referred to as identification. "Measuring quantitatively" refers to absolute or relative quantification when used in situations where the abundance or concentration of target RNA is quantified. In the present invention, both are meant. Absolute quantification is performed, for example, by generating a standard curve by assuming one or more known concentrations of RNA, eg control RNA, and querying the known symmetric RNA for the intensity signal of an unknown amount of target RNA. Will be. Relative quantification is performed by comparing the intensity signals of two or more RNAs and quantifying the change in intensity.
 本発明方法の工程α)において、標的RNAのcDNAを作成する手法は、当業者に周知のあらゆるcDNA作成手法を利用できる。例えば、任意の配列のRNA鎖を標的RNAの3’末端に付加し、その配列に相補的な配列を持つDNAを用いて逆転写をする方法などが挙げられる。逆転写の方法には、「ライゲーションでアダプターを付ける方法」と「テンプレートスイッチング法」がある。 In step α) of the method of the present invention, any cDNA preparation method known to those skilled in the art can be used as the method for preparing the cDNA of the target RNA. For example, a method of adding an RNA strand of an arbitrary sequence to the 3'end of a target RNA and performing reverse transcription using a DNA having a sequence complementary to that sequence can be mentioned. There are two methods of reverse transcription: "method of attaching an adapter by ligation" and "template switching method".
 本発明において、標的RNAは、上記のように、好ましくは「スモールRNA」であり、ポリAテールを有していないRNAであるため、標的RNAのcDNAを作成する手法は、好ましくはアダプターを利用する手法、およびTGIRT(Thermostable Group II intron reverse transcriptase)等の逆転写酵素を利用したテンプレートスイッチング法等の逆転写反応を利用する手法を挙げることができる。 In the present invention, as described above, the target RNA is preferably "small RNA" and does not have a poly A tail. Therefore, the method for creating the cDNA of the target RNA preferably uses an adapter. And a method using reverse transcriptase such as template switching method using reverse transcriptase such as TGIRT (Thermostable Group II intron reverse transcriptase).
 上記好ましい実施形態において、アダプターを利用する手法は、1つの標的RNAにおける単一ヌクレオチドの違いを定性的または定量的に測定する方法において、ここに、単一ヌクレオチドの違いは、標的RNAの3'末端配列:CCA対CCにおけるヌクレオチドAの存在または不存在である方法であって、
a-1) 標的RNAの3'末端に連結するアダプター、該アダプターの配列と相補的な配列を含むRTプライマー、該標的RNAに特異的な一方のプライマーおよび該RTプライマーに特異的な配列を有する他方のプライマーからなる増幅用プライマーセット、および単一ヌクレオチドの違いを標的とするプローブセットをそれぞれ用意し、
b-1) 該アダプター用のRNAリガーゼによって、該アダプターを標的RNAに連結し、形成された連結産物を鋳型としてcDNAを作成し、
β) PCRによって、該cDNA上の単一ヌクレオチドの違いを含む標的領域を増幅し、同時に単一ヌクレオチドの違いを定性的または定量的に測定する方法、を含むことができる。
In the preferred embodiment described above, the adapter-based approach is a method of qualitatively or quantitatively measuring the difference in a single nucleotide in one target RNA, where the difference in a single nucleotide is 3'of the target RNA. End sequence: A method in which nucleotide A is present or absent in CCA vs. CC.
a-1) It has an adapter linked to the 3'end of the target RNA, an RT primer containing a sequence complementary to the sequence of the adapter, one primer specific to the target RNA, and a sequence specific to the RT primer. Prepare an amplification primer set consisting of the other primer and a probe set targeting the difference between single nucleotides.
b-1) RNA ligase for the adapter is used to ligate the adapter to the target RNA, and cDNA is prepared using the formed ligation product as a template.
β) PCR can include a method of amplifying a target region containing a single nucleotide difference on the cDNA and simultaneously measuring the single nucleotide difference qualitatively or quantitatively.
 本発明の測定方法において、工程a-1)では、標的RNAの3'末端に連結するアダプター、該アダプターの配列と相補的な配列を含むRTプライマー、該標的RNAに特異的な一方のプライマーおよび該RTプライマーに特異的な配列を有する他方のプライマーからなる増幅用プライマーセット、および単一ヌクレオチドの違いを標的とするプローブセットをそれぞれ用意・作成する。 In the measurement method of the present invention, in step a-1), an adapter linked to the 3'end of the target RNA, an RT primer containing a sequence complementary to the sequence of the adapter, one primer specific to the target RNA, and Prepare and prepare an amplification primer set consisting of the other primer having a sequence specific to the RT primer, and a probe set targeting the difference of a single nucleotide.
 工程a-1)において、「標的RNAの3'末端に連結するアダプター」は、tRNA、miRNAまたはsnoRNAなど、ポリAテールがないRNAのcDNAライブラリーを構築する場合、逆転写反応の前に導入する共通の配列であり、その塩基長に制限はないが、通常、6塩基~25塩基、好ましくは、15塩基~23塩基、より好ましくは17塩基~21塩基である。また、本発明のi-tRAP法では、アダプター配列の逆転写物上に蛍光プローブがアニーリングするため、好ましくはAUGCに著しい偏りがない配列であり、そうすると、検出効率が高くなると考えられる。 In step a-1), the "adapter ligating to the 3'end of the target RNA" is introduced prior to the reverse transcription reaction when constructing a cDNA library of RNA without poly A tail, such as tRNA, miRNA or snoRNA. Although the base length is not limited, it is usually 6 to 25 bases, preferably 15 to 23 bases, and more preferably 17 to 21 bases. Further, in the i-tRAP method of the present invention, since the fluorescent probe is annealed on the reverse transcriptase of the adapter sequence, it is preferable that the sequence is not significantly biased in AUGC, and it is considered that the detection efficiency is improved.
 工程a-1)において、「該アダプターの配列と相補的な配列を含むRTプライマー」は、逆転写反応用プライマーであり、これは一本鎖DNAであり、標的RNAを逆転写するためのプライマーである。RTプライマーは、標的RNAとアダプターとの連結産物である鋳型を増幅するための配列を含むものであり、具体的には標的RNAの一部とアダプターの一部とに相補することがある。すなわち、RTプライマーの塩基配列は、3'末端アダプター配列と相補的な配列を含む。あるいは、RTプライマーの塩基配列は、3'末端アダプター配列と相補的な配列に加え、増幅用プライマー機能を示し得る一定の長さの任意の配列を含むことができる。すなわち、後者は、RTプライマーの塩基配列は、3'末端アダプター配列と相補的な配列および増幅用プライマー機能を示し得る一定の長さの任意の配列を含む。なお、RTプライマーの塩基配列が3'末端アダプター配列と相補的な配列だけを含む場合、上記アダプター配列が、プローブ配列の一部と増幅用プライマー機能を示し得る一定の長さの任意の配列の全長を含む必要があるため、その場合のアダプター配列の長さは、15塩基以上、好ましくは25塩基以上、より好ましくは35塩基以上である。 In step a-1), the "RT primer containing a sequence complementary to the sequence of the adapter" is a primer for reverse transcription reaction, which is single-stranded DNA, and is a primer for reverse transcription of the target RNA. Is. The RT primer contains a sequence for amplifying a template that is a linkage product between the target RNA and the adapter, and may specifically complement a part of the target RNA and a part of the adapter. That is, the base sequence of the RT primer contains a sequence complementary to the 3'end adapter sequence. Alternatively, the base sequence of the RT primer can include any sequence of a certain length that can exhibit amplification primer function, in addition to a sequence complementary to the 3'end adapter sequence. That is, in the latter, the base sequence of the RT primer contains a sequence complementary to the 3'end adapter sequence and any sequence of a certain length capable of exhibiting an amplification primer function. When the base sequence of the RT primer contains only a sequence complementary to the 3'end adapter sequence, the adapter sequence may be a part of the probe sequence and an arbitrary sequence of a certain length capable of exhibiting the primer function for amplification. Since it is necessary to include the full length, the length of the adapter sequence in that case is 15 bases or more, preferably 25 bases or more, and more preferably 35 bases or more.
 「増幅用プライマー機能を示し得る一定の長さの任意の配列」の具体例としては、以下を挙げることができる:
・任意の配列1:AATGGCAATGGTCACGCCGACTGG(配列番号23)
キイロショウジョウバエ(Drosophila melanogaster)のDilp1遺伝子より
Dev Cell. 2009, 17(6):885-91.A fat body-derived IGF-like peptide regulates postfeeding growth in Drosophila;
・任意の配列2:GCTGTTGCCCAGCAAGCTTTCACG(配列番号24)
キイロショウジョウバエ(Drosophila melanogaster)のDilp1遺伝子より
Dev Cell. 2009, 17(6):885-91.A fat body-derived IGF-like peptide regulates postfeeding growth in Drosophila;
・任意の配列3:AGGAGGAAGTGCGCACGCAA(配列番号25)
フタホシコオロギ(Gryllus bimaculatus)のApoLpIII遺伝子より
PLoS ONE 11(5): e0154841.2016.Hemolymph Lipid Levels Affect Feeding Motivation in the Two-Spotted Cricket, Gryllus bimaculatus;
・任意の配列4:GCAGTCTTGAGGGACTCTGCGA(配列番号26)
フタホシコオロギ(Gryllus bimaculatus)のApoLpIII遺伝子より
PLoS ONE 11(5): e0154841.2016.Hemolymph Lipid Levels Affect Feeding Motivation in the Two-Spotted Cricket, Gryllus bimaculatus;
・任意の配列5:TCGAGGAAGGGACTCCAGTAATAGC(配列番号27)
カイコ(Bombyx mori)のshadow遺伝子より
Biosci. Biotechnol. Biochem., 71 (11), 2808-2814, 2007.Differential Regulation of Ecdysteroidogenic P450 Gene Expression in the Silkworm, Bombyx mori;
Specific examples of "any sequence of a certain length that can exhibit the function of an amplification primer" include:
-Arbitrary sequence 1: AATGGCAATGGTCACGCCGACTGG (SEQ ID NO: 23)
From the Dilp1 gene of Drosophila melanogaster
Dev Cell. 2009, 17 (6): 885-91.A fat body-derived IGF-like peptide regulates postfeeding growth in Drosophila;
-Arbitrary sequence 2: GCTGTTGCCCAGCAAGCTTTCACG (SEQ ID NO: 24)
From the Dilp1 gene of Drosophila melanogaster
Dev Cell. 2009, 17 (6): 885-91.A fat body-derived IGF-like peptide regulates postfeeding growth in Drosophila;
-Arbitrary sequence 3: AGGAGGAAGTGCGCACGCAA (SEQ ID NO: 25)
From the ApoLpIII gene of the cricket (Gryllus bimaculatus)
PLoS ONE 11 (5): e0154841.2016.Hemolymph Lipid Levels Affect Feeding Motivation in the Two-Spotted Cricket, Gryllus bimaculatus;
-Arbitrary sequence 4: GCAGTCTTGAGGGACTCTGCGA (SEQ ID NO: 26)
From the ApoLpIII gene of the cricket (Gryllus bimaculatus)
PLoS ONE 11 (5): e0154841.2016.Hemolymph Lipid Levels Affect Feeding Motivation in the Two-Spotted Cricket, Gryllus bimaculatus;
-Arbitrary sequence 5: TCGAGGAAGGGACTCCAGTAATAGC (SEQ ID NO: 27)
From the shadow gene of silk moth (Bombyx mori)
Biosci. Biotechnol. Biochem., 71 (11), 2808-2814, 2007.Differential Regulation of Ecdysteroidogenic P450 Gene Expression in the Silkworm, Bombyx mori;
・任意の配列6:CAAATGGCAGTGTGGCAGATGGTAC(配列番号28)
カイコ(Bombyx mori)のshadow遺伝子より
Biosci. Biotechnol. Biochem., 71 (11), 2808-2814, 2007.Differential Regulation of Ecdysteroidogenic P450 Gene Expression in the Silkworm, Bombyx mori;
・任意の配列7:AGTATGCTCAGGCTTCAGAAGA(配列番号29)
ヒト(homo spiens)RPL19遺伝子より
Transforming Growth Factor (TGF)-β promotes de novo serine synthesis for collagen production.J Biol Chem. 2016 Dec 30;291(53):27239-27251;
・任意の配列8:CATTGGTCTCATTGGGGTCTAAC(配列番号30)
ヒト(homo spiens)RPL19遺伝子より
Transforming Growth Factor (TGF)-β promotes de novo serine synthesis for collagen production.J Biol Chem. 2016 Dec 30;291(53):27239-27251;
・任意の配列9:CACCGCACGCAGATCCTCTACT(配列番号31)
ヒト(homo spiens)TRM61遺伝子より
TRM6/61 connects PKCα with translational control through tRNAi(Met) stabilization: impact on tumorigenesis.Oncogene. 2016 Apr 7;35(14):1785-96;
・任意の配列10:CCACTGCCGGTGCCAGACT(配列番号32)
ヒト(homo spiens)TRM61遺伝子より
TRM6/61 connects PKCα with translational control through tRNAi(Met) stabilization: impact on tumorigenesis.Oncogene. 2016 Apr 7;35(14):1785-96。
-Arbitrary sequence 6: CAAATGGCAGTGTGGCAGATGGTAC (SEQ ID NO: 28)
From the shadow gene of silk moth (Bombyx mori)
Biosci. Biotechnol. Biochem., 71 (11), 2808-2814, 2007.Differential Regulation of Ecdysteroidogenic P450 Gene Expression in the Silkworm, Bombyx mori;
-Arbitrary sequence 7: AGTATGCTCAGGCTTCAGAAGA (SEQ ID NO: 29)
From the human (homo spiens) RPL19 gene
Transforming Growth Factor (TGF)-β promotes de novo serine synthesis for collagen production.J Biol Chem. 2016 Dec 30; 291 (53): 27239-27251;
-Arbitrary sequence 8: CATTGGTCTCATTGGGGTCTAAC (SEQ ID NO: 30)
From the human (homo spiens) RPL19 gene
Transforming Growth Factor (TGF)-β promotes de novo serine synthesis for collagen production.J Biol Chem. 2016 Dec 30; 291 (53): 27239-27251;
-Arbitrary sequence 9: CACCGCACGCAGATCCTCTACT (SEQ ID NO: 31)
From the human (homo spiens) TRM61 gene
TRM6 / 61 connects PKCα with translational control through tRNAi (Met) stabilization: impact on tumorigenesis.Oncogene. 2016 Apr 7; 35 (14): 1785-96;
-Arbitrary sequence 10: CCACTGCCGGTGCCAGACT (SEQ ID NO: 32)
From the human (homo spiens) TRM61 gene
TRM6 / 61 connects PKCα with translational control through tRNAi (Met) stabilization: impact on tumorigenesis.Oncogene. 2016 Apr 7; 35 (14): 1785-96.
 「増幅用プライマー機能を示し得る一定の長さの任意の配列」とは、少なくとも15塩基長であり、好ましくは15~30塩基、より好ましくは18~25塩基である。逆転写プライマー配列の塩基長は、特に限定されるものではないが、アダプターの塩基長および増幅用プライマーの塩基長を少なくとも有する必要があり、それは少なくとも30塩基長、好ましくは30塩基~80塩基、さらに好ましくは40塩基から60塩基である。 The "arbitrary sequence of a certain length capable of exhibiting the primer function for amplification" is at least 15 bases long, preferably 15 to 30 bases, and more preferably 18 to 25 bases. The base length of the reverse transcription primer sequence is not particularly limited, but must have at least the base length of the adapter and the base length of the amplification primer, which is at least 30 base lengths, preferably 30 to 80 bases. More preferably, it is 40 to 60 bases.
 工程a-1)において、「増幅用プライマーセット」とは、RT-PCR法を利用する、RNAの特定塩基配列または特定塩基配列の相補配列を含む核酸を増幅するためのプライマーセットである。本発明のi-tRAP法では、「増幅用プライマーセット」は、標的RNAに特異的な配列を有する一方のプライマーおよびRTプライマーに特異的な配列を有する他方のプライマーからなる標的RNAのcDNAを増幅するためのプライマーセットであり、ここに、「特異的な配列」とは同一または相補的な配列を意味し、本発明の「増幅用プライマーセット」において、一方のプライマーが標的RNAに相補的な配列を有する場合、他方のプライマーはRTプライマーと同一の配列を有し、あるいは、一方のプライマーが標的RNAと同一の配列を有する場合、他方のプライマーはRTプライマーに相補的な配列を有する。プライマーセットにおける各プライマーは、本発明における単一ヌクレオチドの違いである標的RNAの3'末端配列:CCAおよびCCを挟むように選択すれば、その位置に限定されない。例えば、一方のプライマーが標的RNAにおける任意の位置に特異的である場合、他方のプライマーは、RTプライマーの任意の位置に特異的であり、すなわちRTプライマーにおける3'末端アダプター配列と相補的な配列および増幅用プライマー機能を示し得る一定の長さの任意の配列の任意の位置およびその境界部分をまたぐ位置に特異的であることができる。各プライマーの長さは、通常、18~30塩基である。 In step a-1), the "amplification primer set" is a primer set for amplifying a nucleic acid containing a specific base sequence of RNA or a complementary sequence of a specific base sequence using the RT-PCR method. In the i-tRAP method of the present invention, the "amplification primer set" amplifies the cDNA of a target RNA consisting of one primer having a sequence specific to the target RNA and the other primer having a sequence specific to the RT primer. Here, "specific sequence" means the same or complementary sequence, and in the "primer set for amplification" of the present invention, one primer is complementary to the target RNA. If it has a sequence, the other primer has the same sequence as the RT primer, or if one primer has the same sequence as the target RNA, the other primer has a sequence complementary to the RT primer. Each primer in the primer set is not limited to its position if it is selected to sandwich the 3'end sequence of target RNA: CCA and CC, which is the difference of a single nucleotide in the present invention. For example, if one primer is specific to any position in the target RNA, the other primer is specific to any position in the RT primer, i.e. a sequence complementary to the 3'end adapter sequence in the RT primer. And can be specific to any position in any sequence of constant length that may exhibit amplification primer function and positions that straddle its boundaries. The length of each primer is usually 18-30 bases.
 本明細書において「相補的な」、「相補的」または「相補」は、2つのヌクレオチド間において正確に対合する能力を指す。すなわち、核酸配列の所定の位置におけるヌクレオチドが、別の核酸配列のヌクレオチドと水素結合して塩基対を形成する能力があるなら、その2つの核酸配列は、その位置において互いに相補的である。2つの一本鎖核酸配列間の相補性は、ヌクレオチドの一部のみが結合する「部分的」であってよい。 As used herein, "complementary," "complementary," or "complementary" refers to the ability to accurately pair between two nucleotides. That is, if a nucleotide at a given position in a nucleic acid sequence has the ability to hydrogen bond with a nucleotide in another nucleic acid sequence to form a base pair, the two nucleic acid sequences are complementary to each other at that position. Complementarity between two single-stranded nucleic acid sequences may be "partial" to which only a portion of the nucleotide binds.
 工程a-1)における「単一ヌクレオチドの違いを標的とするプローブセット」について、説明する。
 「単一ヌクレオチドの違いを標的とするプローブセット」とは、本発明における単一ヌクレオチドの違いである標的RNAの3'末端配列:CCA対CCにおけるヌクレオチドAの存在を標的とするプローブ、およびヌクレオチドAの不存在を標的とするプローブからなる、プローブqPCRに利用されるプローブセットである。ここでは、リアルタイムPCR法において、配列特異的なオリゴヌクレオチドの5'末端にレポーターとなる蛍光色素および3’末端に消光物質(クエンチャー)で標識したプローブセットを用いる。好ましくは、TmエンハンサーであるMGB (Minor Groove Binder) 構造をプローブに含めることで、Tm値が高いプローブを20塩基以下の長さで設計することができようにしたプローブセットである。この場合、一塩基の違いによるTm差を顕著にすることができ、これにより、CCAとCCのそれぞれに対応したプローブが、CCAとCCの配列特異的にアニーリングする。CCAとCCのそれぞれに対応したプローブに異なる蛍光物質を結合させることで、CCAとCCの配列をもつcDNAを別々に定量することができる。また、非蛍光のクエンチャーを組み込むことで、バックグラウンドのシグナルが抑えられ、定量性が増す。
The “probe set targeting the difference of a single nucleotide” in step a-1) will be described.
The "probe set targeting a single nucleotide difference" is the 3'end sequence of the target RNA that is the difference in a single nucleotide in the present invention: a probe that targets the presence of nucleotide A in CCA vs. CC, and a nucleotide. A probe set used for probe qPCR, consisting of probes that target the absence of A. Here, in the real-time PCR method, a fluorescent dye as a reporter is used at the 5'end of the sequence-specific oligonucleotide, and a probe set labeled with a quencher at the 3'end is used. Preferably, the probe set includes a Tm enhancer MGB (Minor Groove Binder) structure in the probe so that a probe having a high Tm value can be designed with a length of 20 bases or less. In this case, the Tm difference due to the difference of one base can be made remarkable, so that the probes corresponding to each of CCA and CC are annealed in a sequence-specific manner between CCA and CC. By binding different fluorescent substances to the probes corresponding to CCA and CC, cDNA with CCA and CC sequences can be quantified separately. Incorporating a non-fluorescent quencher also suppresses background signals and increases quantification.
 プローブセットの個々のプローブの長さは、必要に応じて、また所望の特異性に応じて調整することができ、例えば、全長が約3~300塩基であり、好ましくは、約5~100塩基であり、より好ましくは、約6~50塩基であり、さらにまた好ましくは15~34塩基である。 The length of the individual probes in the probe set can be adjusted as needed and according to the desired specificity, for example, the total length is about 3 to 300 bases, preferably about 5 to 100 bases. It is more preferably about 6 to 50 bases, and even more preferably 15 to 34 bases.
 プローブセットの個々のプローブは、その内部において標識ヌクレオチドを含む。通常、核酸を標識するのに適する任意のレポーター色素を用いることができる。本発明の一実施形態では、レポーター色素は、フルオロフォア、発色団、放射性同位体、化学発光物質および酵素からなる群から選択される。レポーター色素は好ましくは、5-カルボキシフルオレセインまたは6-カルボキシフルオレセイン(FAM(登録商標))、VIC(登録商標)、NED(登録商標)、フルオレセイン、フルオレセインイソチオシアネート(FITC)、IRD-700/800、シアニン色素、例えば、CY3(登録商標)等、キサンテン、6-カルボキシ-2',4',7',4,7-ヘキサクロロフルオレセイン(HEX)、6-カルボキシ-1,4-ジクロロ-2',7'-ジクロロ-フルオレセイン(TET(登録商標))、6-カルボキシ-4',5'-ジクロロ-2',7'-ジメトキシフルオレセイン(JOE(登録商標))、N,N,N',N'-テトラメチル-6-カルボキシローダミン(TAMRA(登録商標))、6-カルボキシ-X-ローダミン(ROX)、5-カルボキシローダミン-6G(R6G5)、6-カルボキシローダミン-6G(RG6)、ローダミン、ローダミングリーン、ローダミンレッド、ローダミン110、RhoDamiN6G(登録商標)、BODIPYTMRなどのBODIPY色素、OregoNGreeN、ウンベリフェロンなどのクマリン(coumariNe)、Hoechst33258などのベンズイミド;フェナントリジン、例えば、TexasReD(登録商標)、CaliforNiaReD(登録商標)、YakimaYellow、AlexaFluor(登録商標)350等、PET(登録商標)、臭化エチジウム、アクリジニウム色素、カルバゾール色素、フェノキサジン色素、ポルフィリン色素、ポリメチン色素、Atto390、Atto425、Atto465等、AttoRhoG6等、BMN-5(商標)、CEQ8000D2等、DY-480XL、DY-485XL、DY-495、DY-505等、6-カルボキシ-4',5'-ジクロロ-2',7'-ジメトキシフルオレセイン(JOE)、TET(商標)、CALFluor(登録商標)GolD540、CALFluorRED590、CALFluorReD610、CALFluorReD635、IRDYe(登録商標)700Dx、IRDYe(登録商標)800CW、MariNaBlue(登録商標)、PacificBlue(登録商標)、YakimaYellow(登録商標)、6-(4,7-ジクロロ-2',7'-ジフェニル-3',6'-ジピバロイルフルオレセイン-6-カルボキサミド)-ヘキシル-1-O-(2-シアノエチル)-(N,N-ジイソプロピル)-ホスホルアミダイト(SIMA)、CALFluor(登録商標)GolD540、CALFluor(登録商標)OraNge560、CALFluorReD635、Quasar570、Quasar670、LIZ、SuNNyvaleReD、LCReD(登録商標)610、LCReD(登録商標)640、LCReD(登録商標)670、およびLCReD(登録商標)705を含む群から選択されるフルオロフォアである。さらに好ましいレポーター色素は、Atto465、DY-485XL、FAM(商標)、AlexaFluor(登録商標)488、DY-495、Atto495、DY-510XL、JOE、TET(商標)、CALFluor(登録商標)GolD540、DY-521XL、RhoDamiN6G(登録商標)、YakimaYellow(登録商標)、Atto532、AlexaFluor(登録商標)532、HEX、SIMA、AttoRhoG6、VIC、CALFluorOraNge560、DY-530、TAMRA(商標)、Quasar570、CY3(商標)、NED(商標)、DY-550、Atto550、AlexaFluor(登録商標)555、PET(登録商標)、CALFluorRED590、ROX、TexasReD(登録商標)、CALFluorReD610、CALFluorReD635、Atto633、AlexaFluor(登録商標)633、DY-630、DY-633、DY-631、LIZ、Quasar670、DY-635およびCY5(商標)からなる群から選択される。さらに好ましいレポーター色素は、FAM(商標)、DY-510XL、DY-530、およびAtto550からなるフルオロフォアの群より選択される。好ましくは、FAM、VIC、HEX、JOE、TET、NED、またはTAMRAである。上記色素より、異なる蛍光波長を有する蛍光色素の組み合わせを選択する。 Each probe in the probe set contains labeled nucleotides within it. Generally, any reporter dye suitable for labeling nucleic acids can be used. In one embodiment of the invention, the reporter dye is selected from the group consisting of fluorophores, chromophores, radioisotopes, chemical luminescent materials and enzymes. Reporter dyes are preferably 5-carboxyfluorescein or 6-carboxyfluorescein (FAM®), VIC®, NED®, fluorescein, fluorescein isothiocyanate (FITC), IRD-700 / 800, Cyanine dyes such as CY3®, xanthene, 6-carboxy-2', 4', 7', 4,7-hexachlorofluorescein (HEX), 6-carboxy-1,4-dichloro-2', 7'-dichloro-fluorescein (TET®), 6-carboxy-4', 5'-dichloro-2', 7'-dimethoxyfluorescein (JOE®), N, N, N', N '-Tetramethyl-6-Rhodamine (TAMRA®), 6-carboxy-X-Rhodamine (ROX), 5-Rhodamine-6G (R6G5), 6-Rhodamine-6G (RG6), Rhodamine, Rhodamine Green, Rhodamine Red, Rhodamine 110, RhoDamiN6G®, BODIPY dyes such as BODIPYTMR, OregoNGreeN, coumariNe such as Umberiferon, Benzimide such as Hoechst33258; CaliforNiaReD®, YakimaYellow, AlexaFluor® 350, etc., PET®, ethidium bromide, acridinium dye, carbazole dye, phenoxazine dye, porphyrin dye, polymethine dye, Atto390, Atto425, Atto465, etc., AttoRhoG6 , BMN-5 ™, CEQ8000D2, etc., DY-480XL, DY-485XL, DY-495, DY-505, etc., 6-carboxy-4', 5'-dichloro-2', 7'-dimethoxyfluorescein ( JOE), TET (trademark), CALFluor (registered trademark) GolD540, CALFluorRED590, CALFluorReD610, CALFluorReD635, IRDYe (registered trademark) 700Dx, IRDYe (registered trademark) 800CW, MariNaBlue (registered trademark), PacificBlue (registered trademark), YakimaYellow (registered trademark) Trademarks), 6- (4,7-dichloro-2', 7'-diphenyl-3', 6'-dipivalo Ilfluorescein-6-carboxamide) -hexyl-1-O- (2-cyanoethyl)-(N, N-diisopropyl) -phosphorumidite (SIMA), CALFluor® GolD540, CALFluor® OraNge560, CALFluorReD635 , Quasar570, Quasar670, LIZ, SuNNyvaleReD, LCReD® 610, LCReD® 640, LCReD® 670, and LCReD® 705. More preferred reporter dyes are Atto465, DY-485XL, FAM ™, AlexaFluor® 488, DY-495, Atto495, DY-510XL, JOE, TET ™, CALFluor® GolD540, DY- 521XL, RhoDamiN6G®, YakimaYellow®, Atto532, AlexaFluor® 532, HEX, SIMA, AttoRhoG6, VIC, CALFluorOraNge560, DY-530, TAMRA®, Quasar570, CY3®, NED ™, DY-550, Atto550, AlexaFluor® 555, PET®, CALFluorRED590, ROX, TexasReD®, CALFluorReD610, CALFluorReD635, Atto633, AlexaFluor® 633, DY-630, It is selected from the group consisting of DY-633, DY-631, LIZ, Quasar670, DY-635 and CY5 ™. More preferred reporter dyes are selected from the group of fluorophores consisting of FAM ™, DY-510XL, DY-530, and Atto550. Preferred are FAM, VIC, HEX, JOE, TET, NED, or TAMRA. From the above dyes, a combination of fluorescent dyes having different fluorescent wavelengths is selected.
 本発明はひとつの実施形態として、プローブセットの個々のプローブは「修飾ヌクレオチド」を含む。修飾ヌクレオチドは、上記のレポーター色素を含むヌクレオチドのほか、消光剤を含むヌクレオチドであり得る。当業者は、修飾ヌクレオチドとして、必要に応じて、適切なヌクレオチドを選択できる。 As one embodiment of the present invention, each probe in the probe set comprises a "modified nucleotide". The modified nucleotide can be a nucleotide containing a quencher in addition to the above-mentioned nucleotide containing a reporter dye. One of ordinary skill in the art can select an appropriate nucleotide as a modified nucleotide, if necessary.
 消光とは、ある物質の蛍光強度を減少させる任意の過程を指す。本発明における「消光剤」は、例えば、活性化を伴わない標識の基本的な蛍光を消光させるのに適する残基に関する。励起状態の反応物による消光、エネルギー移動による消光、複合体形成による消光、および衝突による消光など、多様な過程が、消光を結果としてもたらしうる。結果として、消光は、圧力および温度に大きく依存することが多い。酸素分子およびヨウ化物イオンは、一般的な化学消光剤である。消光は、レーザー誘起蛍光など、非即時的分光光度法の問題を提起する。消光は、蛍光共鳴エネルギー移動(FRET)アッセイの基盤である。特定の分子生物学的標的との相互作用時における消光および脱消光は、分子イメージング用の活性化可能な光学造影剤の基盤である。エネルギーを2つの色素であるドナーとアクセプターとの間で非放射的に(光子の吸収または放射を伴わずに)移動させうる異なる機構がいくつか存在する。当業者は、必要に応じて、消光剤を選択することができる。 Quenching refers to any process that reduces the fluorescence intensity of a substance. The "quenching agent" in the present invention relates to, for example, residues suitable for quenching the basic fluorescence of a label without activation. A variety of processes can result in quenching, such as quenching by excited reactants, quenching by energy transfer, quenching by complex formation, and quenching by collisions. As a result, quenching is often highly dependent on pressure and temperature. Oxygen molecules and iodide ions are common chemical quenchers. Quenching raises the issue of non-immediate spectrophotometry, such as laser-induced fluorescence. Quenching is the basis of a fluorescence resonance energy transfer (FRET) assay. Quenching and quenching when interacting with a particular molecular biological target is the basis of an activable optical contrast agent for molecular imaging. There are several different mechanisms by which energy can be transferred non-radiatively (without photon absorption or radiation) between the two dyes, donor and acceptor. Those skilled in the art can select the quenching agent as needed.
 本発明のひとつの実施形態では、プローブセットのプローブは、通常、リアルタイムPCRにて遺伝子の検出に使用される、レポーター色素で標識される。選択するレポーター色素を同一のウエル内においてリアルタイムPCR装置によって励起し、正確に検出することが必要となる。装置の製造元は、各装置について推奨する色素を紹介している。レポーター色素は、標的RNAや遺伝子産物の種類によって選択する必要はないが、適切な色素の選択を行うことにより、アッセイを簡素化できる。例えば、Invitrogen(登録商標)FAM(登録商標)色素は、TaqManプローブで使用される最も一般的なレポーター色素である。本発明のひとつの実施形態では、本発明における単一ヌクレオチドの違いである標的RNAの3'末端配列:CCA対CCにおけるヌクレオチドAの存在を標的とするプローブにおけるレポーターとしてInvitrogen(登録商標)VIC(登録商標)色素を選択し、ヌクレオチドAの不存在を標的とするプローブにおけるレポーターとしてFAM色素を選択することができる。この組み合わせにより、FAM色素とVIC色素の2種類の色素を組み合わせたアッセイを行うことが可能となる。 In one embodiment of the invention, the probes in the probe set are usually labeled with a reporter dye, which is used to detect genes in real-time PCR. It is necessary to excite the selected reporter dye in the same well with a real-time PCR device and detect it accurately. The manufacturer of the device introduces the recommended dyes for each device. The reporter dye does not need to be selected according to the type of target RNA or gene product, but the assay can be simplified by selecting an appropriate dye. For example, the Invitrogen® FAM® dye is the most common reporter dye used in TaqMan probes. In one embodiment of the invention, the 3'end sequence of target RNA, which is the difference between single nucleotides in the invention: Invitrogen® VIC (registered trademark) as a reporter in a probe targeting the presence of nucleotide A in CCA vs. CC. The registered trademark) dye can be selected and the FAM dye can be selected as a reporter in probes targeting the absence of nucleotide A. This combination makes it possible to perform assays that combine two types of dyes, FAM dyes and VIC dyes.
 本発明の測定方法において、工程b-1)は、工程a-1)にて作成したアダプターに適したRNAリガーゼによって、該アダプターを標的RNAに連結し、形成された連結産物を鋳型としてcDNAを作成する工程である。
 アダプターを標的RNAに連結することに関連し、天然に存在するRNA、特にスモールRNAの検出は、それらの数、小さなサイズおよび細胞中に数が少ないことから、その測定は困難である。そこで、RNAリガーゼを用いて、適当なアダプターを標的RNAに連結し、適当な塩基長とする。アダプターについては、上記の通りである。
In the measurement method of the present invention, in step b-1), the adapter is ligated to the target RNA by the RNA ligase suitable for the adapter prepared in step a-1), and the cDNA formed is used as a template for cDNA. This is the process of creating.
Detection of naturally occurring RNA, especially small RNA, associated with ligating the adapter to the target RNA is difficult due to their number, small size and low number in the cell. Therefore, using RNA ligase, an appropriate adapter is ligated to the target RNA to obtain an appropriate base length. The adapter is as described above.
 リガーゼよる連結は、RNAリガーゼによって達成され得る。いくつかの実施形態では、RNAリガーゼは、ATP依存性リガーゼであってもよい。RNAリガーゼは、Rnl1またはRnl2のファミリーのリガーゼであってもよい。例示的なRnl1ファミリーリガーゼとしては、例えば、T4RNAリガーゼ、Thermus scitoductus bacteriophage TS2126由来の熱安定性RNAリガーゼ1(CircLigase)、またはCircLigase IIが挙げられる。これらのリガーゼは一般的には、ヌクレオチド3-OH求核試薬と5'リン酸基との間のホスホジエステル結合のATP依存性の形成を触媒する。一般には、Rnl2ファミリーリガーゼは、二重鎖RNA中のニックをシールし得る。Rnl2ファミリーリガーゼとしては例えば、T4RNAリガーゼ2が挙げられる。このRNAリガーゼは、Archaeal RNAリガーゼ、例えば、好熱性の古細菌Methanobacterium thermoautotrophicum(MthRnl)由来の古細菌のRNAリガーゼであってもよい。 Ligase ligation can be achieved by RNA ligase. In some embodiments, the RNA ligase may be an ATP-dependent ligase. The RNA ligase may be a family of Rnl1 or Rnl2 ligases. Exemplary Rnl1 family ligases include, for example, T4 RNA ligase, Thermosscitoductus bacteriophage TS2126-derived thermostable RNA ligase 1 (CircLigase), or CircLigase II. These ligases generally catalyze the formation of ATP dependence of phosphodiester bonds between nucleotide 3-OH nucleophiles and 5'phosphate groups. In general, Rnl2 family ligases can seal nicks in double-stranded RNA. Examples of the Rnl2 family ligase include T4RNA ligase 2. This RNA ligase may be an Archaeal RNA ligase, for example, an archaeal RNA ligase derived from the thermophilic archaea Methanobacterium thermoautotrophicum (MthRnl).
 好ましくは、連結に用いるリガーゼは、使用するアダプターの配列に応じて選択する。例えば、Custom AIR(登録商標)アデニル化アダプター/リンカー(実施例で使用している「3'末端ブロックを有する5'アデニル化アダプターであるアデニル化リンカー(5'-rAppCTGTAGGCACCATCAAT/3ddC/-3')(PerkinElmer(Waltham、MA))」)を用いた場合、AIR アデニル化リンカーは5'-アデニル化/3' 保護オリゴであり、RNAリガーゼ2をリガーゼとして用いる。この場合、ATPを必要としないので、好ましい態様である。また、5'-アデニル化修飾をした合成オリゴや、5'末端がリン酸化されたオリゴを5’DNA Adenylation Kitにより5'-アデニル化したものをアダプターとして用いる。 Preferably, the ligase used for ligation is selected according to the arrangement of the adapters to be used. For example, Custom AIR® adenylation adapter / linker (5'-rAppCTGTAGGCACCATCAAT / 3ddC / -3', which is a 5'adenylation adapter with a 3'end block) used in the examples. (PerkinElmer (Waltham, MA)) ”), the AIR adenylation linker is a 5'-adenylation / 3'protective oligo, and RNA ligase 2 is used as the ligase. In this case, ATP is not required, which is a preferable embodiment. In addition, a synthetic oligo modified with 5'-adenylation or an oligo with a phosphorylated 5'end 5'-adenylated with a 5'DNA Adenylation Kit is used as an adapter.
 標的RNAに対するアダプターの連結を達成するために十分な時間の後、未反応のアダプターを、当業者に公知の任意の手段によって、例えば分子量カットオフによるろ過、サイズ排除クロマトグラフィー、スピンカラムの使用、ポリエチレングリコール(PEG)での選択的沈殿、シリカマトリックス上へのPEGでの選択的沈殿、アルコール沈殿、酢酸ナトリウム沈殿、PEGおよび塩沈、または高ストリンジェンシー洗浄によって除去してもよい。 After sufficient time to achieve ligation of the adapter to the target RNA, the unreacted adapter can be filtered by any means known to those of skill in the art, eg by molecular weight cutoff, size exclusion chromatography, use of spin columns, It may be removed by selective precipitation with polyethylene glycol (PEG), selective precipitation with PEG on a silica matrix, alcohol precipitation, sodium acetate precipitation, PEG and salt precipitation, or high stringency washing.
 形成された連結産物を鋳型としてcDNAを作成することに関連し、当業者に周知の手法により、cDNAを作成する。本発明のひとつの実施形態では、RTプライマー、標的RNAとアダプターとの連結産物、および逆転写酵素を混合し、該連結産物を鋳型としてcDNAを合成する。この合成方法において、RTプライマーは、連結産物とハイブリダイズする領域を3’末端に有している。混合物を逆転写反応に適した温度条件下に置くことにより、逆転写酵素の作用により、連結産物とハイブリダイズしたRTプライマーの3’末端が伸長され、cDNAが合成される。 In connection with the preparation of cDNA using the formed linkage product as a template, cDNA is prepared by a method well known to those skilled in the art. In one embodiment of the present invention, an RT primer, a linkage product of a target RNA and an adapter, and a reverse transcriptase are mixed, and the cDNA is synthesized using the linkage product as a template. In this synthetic method, the RT primer has a region at the 3'end that hybridizes to the linkage product. By placing the mixture under temperature conditions suitable for the reverse transcription reaction, the action of reverse transcriptase extends the 3'end of the RT primer hybridized with the linkage product, and cDNA is synthesized.
 本発明の測定方法において、工程β)は、PCRによって、該cDNA上の単一ヌクレオチドの違いを含む標的領域を増幅し、同時に単一ヌクレオチドの違いを定性的または定量的に測定する。
 本発明は、工程β)における「同時に」とは、cDNA上の単一ヌクレオチドの違いを含む標的領域を増幅するとともに、その違いを同時に測定する形態を意味する。
 増幅産物の測定は、増幅産物の配列決定であってもよく、増幅産物における単一ヌクレオチドの違いを反映するレポーター色素の強度の測定であってもよい。好ましくは、レポーター色素の強度の測定である。
In the measuring method of the present invention, step β) amplifies the target region containing the difference of a single nucleotide on the cDNA by PCR, and at the same time, measures the difference of a single nucleotide qualitatively or quantitatively.
In the present invention, "simultaneously" in step β) means a form in which a target region containing a difference of a single nucleotide on cDNA is amplified and the difference is measured at the same time.
The measurement of the amplification product may be a sequencing of the amplification product or a measurement of the intensity of the reporter dye that reflects the difference of a single nucleotide in the amplification product. Preferably, it is a measurement of the intensity of the reporter dye.
 工程β)では、単一ヌクレオチドの違いである標的RNAの3'末端配列:CCA対CCにおけるヌクレオチドAの存在を標的とするプローブ、およびヌクレオチドAの不存在を標的とするプローブからなる、プローブqPCRに利用される「単一ヌクレオチドの違いを標的とするプローブセット」が機能する。ここでは、リアルタイムPCR法において、配列特異的なオリゴヌクレオチドの5'末端にレポーターとなる蛍光色素および3’末端に消光物質(クエンチャー)で標識したプローブセットを用いる。プローブを用いたリアルタイムPCRでは、プローブ(検出のため)とプライマー(増幅のため)を同時に使用する。クエンチャーが蛍光色素の近く(同じプローブ上)に存在すると、蛍光を吸収するため、蛍光は検出されない。そのため、通常のプローブの状態では、蛍光シグナルはない。プローブは、PCRの過程で鋳型であるcDNAにハイブリダイズし、この時点でも蛍光は検出されない。一方、プライマーも鋳型に結合し、そこを起点としてポリメラーゼによってDNA鎖が合成増幅される。ポリメラーゼはプローブが結合している位置まで来ると、プローブをバラバラに破壊し始める。その結果、蛍光物質とクエンチャーがプローブから離れ、物理的に蛍光物質とクエンチャーが離れるため、蛍光シグナルが検出されるようになる。このように、プライマーを起点としたポリメラーゼによる鋳型の増幅と、プローブの破壊に伴う蛍光シグナルの検出が一度の反応で行われるため、「同時」となる。 In step β), the 3'end sequence of the target RNA, which is the difference between single nucleotides: probe qPCR consisting of a probe targeting the presence of nucleotide A in CCA vs. CC and a probe targeting the absence of nucleotide A. The "probe set that targets single nucleotide differences" works. Here, in the real-time PCR method, a fluorescent dye as a reporter is used at the 5'end of the sequence-specific oligonucleotide, and a probe set labeled with a quencher at the 3'end is used. In real-time PCR using a probe, the probe (for detection) and the primer (for amplification) are used at the same time. If the quencher is near the fluorochrome (on the same probe), it absorbs the fluorescence and no fluorescence is detected. Therefore, in the normal probe state, there is no fluorescent signal. The probe hybridizes to the template cDNA during the PCR process, and no fluorescence is detected at this point. On the other hand, the primer also binds to the template, and the DNA strand is synthesized and amplified by the polymerase from that point. When the polymerase reaches the position where the probe is bound, it begins to break the probe apart. As a result, the fluorescent substance and the quencher are separated from the probe, and the fluorescent substance and the quencher are physically separated from each other, so that the fluorescent signal can be detected. In this way, the amplification of the template by the polymerase starting from the primer and the detection of the fluorescent signal due to the destruction of the probe are performed in one reaction, so that it is “simultaneous”.
 本発明は、ひとつの実施形態として、工程a)において、単一ヌクレオチドの違いを標的とするプローブセットが、単一ヌクレオチドの違いを認識する蛍光標識されたプローブセットであり、工程β)において、増幅の際、放出される蛍光強度を指標にして、単一ヌクレオチドの違いを定性的または定量的に測定する、標的tRNAにおける単一ヌクレオチドの違いを定性的または定量的に測定する方法に関する。
 ここに、「指標にして」とは、典型的には、単一ヌクレオチドの違いに応じて変動する蛍光強度を比較する意味である。
 かかる実施形態を実現するための、単一ヌクレオチドの違いを認識する蛍光標識されたプローブセットは、本発明におけるレポーター色素を含む修飾ヌクレオチドを含むプローブセットである。このようなプローブセットの典型例として、レポーター色素がVIC(登録商標)およびFAM(登録商標)であるセットを以下説明する。
In one embodiment of the present invention, in step a), the probe set targeting the difference of a single nucleotide is a fluorescently labeled probe set that recognizes the difference of a single nucleotide, and in step β). The present invention relates to a method for qualitatively or quantitatively measuring a single nucleotide difference in a target tRNA, which qualitatively or quantitatively measures a single nucleotide difference using the emitted fluorescence intensity as an index during amplification.
Here, "as an index" is typically meant to compare fluorescence intensities that vary with different single nucleotides.
The fluorescently labeled probe set that recognizes the difference between single nucleotides for realizing such an embodiment is a probe set containing a modified nucleotide containing a reporter dye in the present invention. As a typical example of such a probe set, a set in which the reporter dyes are VIC (registered trademark) and FAM (registered trademark) will be described below.
 プローブセットとして、1つのプローブはVIC(登録商標)で標識した3'CCA-tRNAに相補的な配列を有し、もう1つのプローブはFAM(登録商標)で標識した3'CC-tRNAに相補的な配列を有するプローブセットを用意する。VIC(登録商標)およびFAM(登録商標)からの蛍光シグナルは、プローブに取り付けたクエンチャーによって消光する。これらのプローブは、マイナーグルーブバインダー(MGB)部分と結合することができる。MGB部分は、標的配列への結合親和性の増加を通じ、プローブのより高い融解温度を増大させるため、一般的に一塩基多型の検出に使用されている(Nagy, A., Vitaskova, E., Cernikova, L., Krivda, V., Jirincova, H., Sedlak, K., Hornickova, J., and Havlickova, M. (2017). Sci. Rep. 7, 1-10.; Sam, S.S., Teoh, B.T., Chee, C.M., Mohamed-Romai-Noor, N.A., Abd-Jamil, J., Loong, S.K., Khor, C.S., Tan, K.K., and AbuBakar, S. (2018). Sci. Rep. 8, 2-8.)。同じ量のVICおよびFAM標識プローブを混合し、それらをqPCRに使用する。Taqポリメラーゼを使用して伸長すると、プローブは分解され、VICまたはFAMのいずれかが遊離し、結果として生じる蛍光シグナルにより、増幅産物の定量が可能になる。VICからの蛍光信号は3'CCA-tRNAの量を表し、FAMからの信号は3'CC-tRNAの量を表す。 As a probe set, one probe has a sequence complementary to the VIC® labeled 3'CCA-tRNA and the other probe is complementary to the FAM® labeled 3'CC-tRNA. Prepare a probe set having a specific sequence. Fluorescent signals from VIC® and FAM® are quenched by a quencher attached to the probe. These probes can bind to the minor groove binder (MGB) moiety. The MGB moiety is commonly used to detect single nucleotide polymorphisms because it increases the higher melting temperature of the probe through increased binding affinity to the target sequence (Nagy, A., Vitaskova, E. , Cernikova, L., Krivda, V., Jirincova, H., Sedlak, K., Hornickova, J., and Havlickova, M. (2017). Teoh, B.T., Chee, C.M., Mohamed-Romai-Noor, N.A., Abd-Jamil, J., Loong, S.K., Khor, C.S., Tan, K.K., and AbuBakar, S. (2018). 2-8.). Mix the same amount of VIC and FAM labeled probes and use them for qPCR. When extended using Taq polymerase, the probe is degraded and either VIC or FAM is released, and the resulting fluorescent signal allows quantification of the amplification product. The fluorescent signal from VIC represents the amount of 3'CCA-tRNA and the signal from FAM represents the amount of 3'CC-tRNA.
 このようにして得られる、VIC蛍光信号由来の3'CCA-tRNAの量、およびFAM蛍光信号由来の3'CC-tRNAの量を利用し、アミノアシル化率、すなわち3'末端CCAおよびCCにアラインされた読み値の合計に対する3'末端CCAにアラインされた読み値の比率が決定される。
 従って、本発明はひとつの実施形態として、上記工程a-1)、工程b-1)および工程β)の工程に加え、
γ) CCAを有しているtRNA-機能性RNAの定量値およびCCを有しているtRNA-機能性RNAの定量値の総量に対する、CCAを有しているtRNA-機能性RNAの定量値の比率を算出する、
を含む、標的RNAの単一ヌクレオチドの違いを定性的または定量的に測定する方法に関する。
 本発明はひとつの実施形態として、上記工程a-1)、工程b-1)、工程β)および工程γ)の各工程を行うことで、1つの標的RNA、好ましくは1つのtRNAに代表されるtRNA-機能性RNAのアミノアシル化率を測定することができる。「tRNAに代表されるtRNA-機能性RNAのアミノアシル化率」は上記の通り、いくつかの生物学的現象や疾患と密接に関連していることが報告されている。
Using the amount of 3'CCA-tRNA derived from the VIC fluorescence signal and the amount of 3'CC-tRNA derived from the FAM fluorescence signal thus obtained, the aminoacyllation rate, that is, the 3'-terminal CCA and CC are aligned. The ratio of the readings aligned to the 3'end CCA to the sum of the readings made is determined.
Therefore, as one embodiment, the present invention is in addition to the steps a-1), b-1) and β) described above.
γ) Quantitative value of tRNA having CCA-quantitative value of tRNA having CCA to the total amount of quantitative value of tRNA having CCA-quantitative value of tRNA having CC Calculate the ratio,
The present invention relates to a method for qualitatively or quantitatively measuring the difference between a single nucleotide of a target RNA including.
The present invention is represented by one target RNA, preferably one tRNA, by performing each step of the above steps a-1), b-1), β) and γ) as one embodiment. The amino acylation rate of tRNA-functional RNA can be measured. As mentioned above, it has been reported that "tRNA represented by tRNA-aminoacylation rate of functional RNA" is closely related to some biological phenomena and diseases.
 このような本発明の方法は、1つのtRNA-機能性RNAのアシル化を検出できるPCR法、すなわち個々のtRNAアミノアシル化率を定量できるPCR法であり、i-tRAP法と呼称することができる。
 本発明のi-tRAP法は、使い易さおよび簡便性において非常に有利である。既報tRNA配列決定法により、tRNAのアミノアシル化プロファイルの検出における分解能が大幅に向上したが(Evans, M.E., Clark, W.C., Zheng, G., and Pan, T. (2017). Nucleic Acids Res. 45, e133.)、これと比べ、本発明では、cDNAの調製が単純化されている。Evansらは、鋳型スイッチング逆転写に熱安定グループIIイントロン逆転写酵素(TGIRT)を利用し、環状化cDNAを生成するためにDNAサークリガーゼを利用した(Evans, M.E., Clark, W.C., Zheng, G., and Pan, T. (2017). Nucleic Acids Res. 45, e133.)。本発明では代わって、スモールRNA配列決定法に改良を加えたものである。すなわち、RNAの5'および3'末端へのアダプター配列の連結と、その後の逆転写(Lau, N.C., Lim, L.P., Weinstein, E.G., and Bartel, D.P. (2001). Science (80-. ). 294, 858-862.)である。両方のcDNA調製方法ともに、慎重な評価を要する、反応効率と人工副産物にバイアスを有する(Jackson, T.J., Spriggs, R. V., Burgoyne, N.J., Jones, C., and Willis, A.E. (2014).BMC Genomics 15, 1-9.; Viollet, S., Fuchs, R.T., Munafo, D.B., Zhuang, F., and Robb, G.B. (2011). BMC Biotechnol. 11, 1-14.; Zhuang, F., Fuchs, R.T., Sun, Z., Zheng, Y., and Robb, G.B. (2012). Nucleic Acids Res. 40.)。
Such a method of the present invention is a PCR method capable of detecting the acylation of one tRNA-functional RNA, that is, a PCR method capable of quantifying individual tRNA aminoacyllation rates, and can be referred to as an i-tRAP method. ..
The i-tRAP method of the present invention is very advantageous in terms of ease of use and convenience. The previously reported tRNA sequencing method has significantly improved the resolution in detecting the aminoacylation profile of tRNA (Evans, ME, Clark, WC, Zheng, G., and Pan, T. (2017). Nucleic Acids Res. 45. , e133.), In comparison, the present invention simplifies the preparation of cDNA. Evans et al. Utilized thermostable Group II intron reverse transcriptase (TGIRT) for template switching reverse transcription and DNA circligase to generate cyclized cDNA (Evans, ME, Clark, WC, Zheng, G). ., and Pan, T. (2017). Nucleic Acids Res. 45, e133.). Instead, the present invention is an improvement on the small RNA sequencing method. That is, ligation of the adapter sequence to the 5'and 3'ends of RNA and subsequent reverse transcription (Lau, NC, Lim, LP, Weinstein, EG, and Bartel, DP (2001). Science (80-.). 294, 858-862.). Both cDNA preparation methods are biased towards reaction efficiency and artificial by-products that require careful evaluation (Jackson, TJ, Spriggs, R.V., Burgoyne, NJ, Jones, C., and Willis, AE (2014). BMC Genomics. 15, 1-9 .; Viollet, S., Fuchs, RT, Munafo, DB, Zhuang, F., and Robb, GB (2011). BMC Biotechnol. 11, 1-14 .; Zhuang, F., Fuchs, RT, Sun, Z., Zheng, Y., and Robb, GB (2012). Nucleic Acids Res. 40.).
 本発明のひとつの実施形態において、市販されているTaqManプローブ(登録商標)は、MGB、FAM(登録商標)、VIC(登録商標)、クエンチャーが特定されているので、好ましい態様としている利用できる。TaqManプローブ(登録商標)の製造はThermo fisher scientificである。さらに、以下のプローブを利用できる。
・MGBプローブ:5'側がレポーター蛍光色素、3'側がMGB(マイナーグルーブバインダー、Minor Groove Binder)とEclipseクエンチャー (EQ)で修飾されている。MGBを有するプローブは、鋳型DNAと非常に安定な二重鎖構造を形成するため、より高い融解温度(Tm値)が実現する。これまでのDLPプローブ(ダブル蛍光標識プローブ)よりも短いプローブ設計が可能(13塩基~)であり、特異性とプローブデザインの自由度が向上している。(https://www.eurofinsgenomics.jp/jp/product/oligo-dna/qpcr-probe.aspx)
・PrimeTime(登録商標)リアルタイムPCR用プローブ:リアルタイムPCR-ハイブリダイゼーション法(プローブ法、5'ヌクレアーゼアッセイ法)を比較的安価に行うことができる。インターカレーション法と異なり、特異性が高いため、融解曲線の作成やPCR後のサンプル電気泳動を必要としない。遺伝子発現解析において、確実な手法を提供する。(https://sg.idtdna.com/jp/site/primetime.html)
In one embodiment of the present invention, the commercially available TaqMan probe (registered trademark) can be used as a preferred embodiment because MGB, FAM (registered trademark), VIC (registered trademark), and quencher are specified. .. The TaqMan probe® is manufactured by Thermo fisher scientific. In addition, the following probes are available.
-MGB probe: The 5'side is modified with a reporter fluorescent dye, and the 3'side is modified with MGB (minor groove binder, Minor Groove Binder) and Eclipse quencher (EQ). Probes with MGB form a very stable double-stranded structure with the template DNA, resulting in higher melting temperatures (Tm values). It is possible to design a probe shorter than the conventional DLP probe (double fluorescent labeled probe) (from 13 bases), and the specificity and the degree of freedom in probe design are improved. (Https://www.eurofinsgenomics.jp/jp/product/oligo-dna/qpcr-probe.aspx)
-PrimeTime (registered trademark) real-time PCR probe: Real-time PCR-hybridization method (probe method, 5'nuclease assay method) can be performed at a relatively low cost. Unlike the intercalation method, it is highly specific and does not require the creation of melting curves or post-PCR sample electrophoresis. It provides a reliable method for gene expression analysis. (Https://sg.idtdna.com/jp/site/primetime.html)
 典型的な本発明のいくつかの実施形態は、次の通りである:
A. 末端配列における単一のヌクレオチド分解能を有する、標的RNAを測定する方法であって、
a-11) 標的RNAの3'末端に連結する5'アデニル化/3'保護オリゴアダプター、RTプライマー; リバースプライマー; およびフォワードプライマー、ならびに標的RNAと該アダプターの境界を標的とするTaqManプローブをそれぞれ用意し、
b-11) Rnl2ライゲーションによって該アダプターを標的RNAに連結し、連結産物を形成し、
c-11) TaqMan RT-PCRによって、連結産物を増幅、定量する方法;
Some embodiments of the present invention are typical:
A. A method of measuring target RNA with a single nucleotide resolution in the terminal sequence.
a-11) 5'adenylation / 3'protective oligo adapters linked to the 3'end of the target RNA, RT primers; reverse primers; and forward primers, and TaqMan probes targeting the boundary between the target RNA and the adapter, respectively. Prepare and
b-11) Rnl2 ligation ligates the adapter to the target RNA to form a ligation product.
c-11) A method for amplifying and quantifying linked products by TaqMan RT-PCR;
B. 標的tRNAの3'末端配列における単一ヌクレオチドの違いであるCCA対CCを判定、検出または分析するための方法であって、
a-12) 標的RNAの3'末端に連結する5'アデニル化/3'保護オリゴアダプター、RTプライマー; リバースプライマー; およびフォワードプライマー、ならびに標的RNAのCCAおよびCCと該アダプターの境界を標的とする2つのTaqManプローブをそれぞれ用意し、
b-12) Rnl2ライゲーションによって該アダプターを標的RNAに連結し、2つの連結産物を形成し、
c-12) TaqMan RT-PCRによって、2つの連結産物を増幅、定量する方法;
B. A method for determining, detecting or analyzing CCA vs. CC, which is the difference between single nucleotides in the 3'end sequence of the target tRNA.
a-12) Target the 5'adenylation / 3'protective oligo adapter, RT primer; reverse primer; and forward primer linked to the 3'end of the target RNA, and the CCA and CC boundaries of the target RNA and the adapter. Prepare two TaqMan probes respectively
b-12) Rnl2 ligation ligates the adapter to the target RNA to form two ligation products.
c-12) A method for amplifying and quantifying two linkage products by TaqMan RT-PCR;
C. 3'末端配列において単一ヌクレオチドの違いであるCCA対CCを有している標的tRNAのアミノアシル化率を測定する方法であって、
a-13) 標的RNAの3'末端に連結する5'アデニル化/3'保護オリゴアダプター、RTプライマー; リバースプライマー; およびフォワードプライマー、ならびに標的RNAのCCAおよびCCと該アダプターの境界を標的とする2つのTaqManプローブをそれぞれ用意し、
b-13) Rnl2ライゲーションによって該アダプターを標的RNAに連結し、2つの連結産物を形成し、
c-13) TaqMan RT-PCRによって、2つの連結産物を増幅、定量し、
d-13) CCAを有している標的アミノアシル化tRNAの定量値およびCCを有している標的非アミノアシル化tRNAの定量値の総量に対する、標的アミノアシル化tRNAの定量値の比率を算出する方法。
C. A method for measuring the aminoacylation rate of a target tRNA having CCA vs. CC, which is a single nucleotide difference in the 3'end sequence.
a-13) Target the 5'adenylation / 3'protective oligo adapter, RT primer; reverse primer; and forward primer linked to the 3'end of the target RNA, and the CCA and CC boundaries of the target RNA and the adapter. Prepare two TaqMan probes respectively
b-13) Rnl2 ligation ligates the adapter to the target RNA to form two ligation products.
c-13) Amplify and quantify the two linkage products by TaqMan RT-PCR.
d-13) A method for calculating the ratio of the quantitative value of the target aminoacyl-tRNA to the total amount of the quantitative value of the target aminoacyl-tRNA having CCA and the quantitative value of the target non-aminoacylated tRNA having CC.
 本発明方法の標的RNAのcDNAを作成する工程α)における、上記好ましい実施形態としてのTGIRT等の酵素を用いた、逆転写酵素を利用するテンプレートスイッチング法は、1つの標的RNAにおける単一ヌクレオチドの違いを定性的または定量的に測定する方法において、ここに、単一ヌクレオチドの違いは、標的RNAの3'末端配列:CCA対CCにおけるヌクレオチドAの存在または不存在である方法であって、
a-2) 任意のRNAアダプターと、該RNAアダプターと相補的な配列を有し、かつ該RNAアダプターに対して、3’末端が1塩基だけ突出したDNAプライマー(突出する塩基は、AとGが50%ずつが望ましい)を用意し、これらをアニールさせたハイブリッドプライマー、該標的RNAに特異的な配列を有する一方のプライマーおよび該RTプライマーに特異的な配列を有する他方のプライマーからなる増幅用プライマーセット、および単一ヌクレオチドの違いを標的とするプローブセットをそれぞれ用意し、
b-2) 該ハイブリッドプライマーを標的RNAの3’末端にアニーリングさせ、テンプレートスイッチング活性を有する逆転写酵素により、cDNAを作成し、
β) PCRによって、該cDNA上の単一ヌクレオチドの違いを含む標的領域を増幅し、同時に単一ヌクレオチドの違いを定性的または定量的に測定する方法、を含むことができる。
In the step α) for preparing the cDNA of the target RNA of the present invention, the template switching method using reverse transcriptase using an enzyme such as TGIRT as the above preferred embodiment is a single nucleotide in one target RNA. In the method of measuring the difference qualitatively or quantitatively, here the difference of a single nucleotide is the 3'end sequence of the target RNA: the presence or absence of nucleotide A in CCA vs. CC.
a-2) A DNA primer that has an arbitrary RNA adapter and a sequence complementary to the RNA adapter, and the 3'end protrudes from the RNA adapter by only one base (the protruding bases are A and G). For amplification, which consists of a hybrid primer obtained by annealing these, one primer having a sequence specific to the target RNA, and the other primer having a sequence specific to the RT primer. Prepare a primer set and a probe set that targets the difference between single nucleotides.
b-2) The hybrid primer is annealed to the 3'end of the target RNA, and cDNA is prepared by reverse transcriptase having template switching activity.
β) PCR can include a method of amplifying a target region containing a single nucleotide difference on the cDNA and simultaneously measuring the single nucleotide difference qualitatively or quantitatively.
 テンプレートスイッチング活性を有する逆転写酵素、例えばTGIRTを使用する場合、上記工程a-1)にて使用するアダプターが、RNAアダプターに相当するものと相補的なDNA鎖がアニールしてなるRNA/DNAハイブリッドに対応し、連結と逆転写が同時に可能となり、上記工程b-1)における「RNAリガーゼによって該アダプターを標的RNAに連結する」工程が不要となる。ここでは、用意したRNAアダプターに相当するものと相補的なDNA鎖をアニールしたRNA/DNAハイブリッドを、標的RNAと混合する。RNA/DNAハイブリッドに使用するRNA鎖に対して、アニーリングするDNA鎖は3’末端が1塩基だけ突出させる。突出させる塩基は、好ましくはTおよびGがそれぞれ50%ずつ含まれるようにする。RNA/DNAハイブリッドプライマーの3’側の突出した1塩基がRNAの3’末端にアニーリングし、TGIRT-IIIはRNA/DNAハイブリッドプライマーのDNA鎖からcDNAを伸長するため、RNA/DNAハイブリッドに使用したDNA鎖を5’末端にもつcDNAが得られる。 When using a reverse transcriptase having template switching activity, for example, TGIRT, the adapter used in step a-1) above is an RNA / DNA hybrid in which a DNA strand complementary to the RNA adapter is annealed. Corresponding to this, ligation and reverse transcription are possible at the same time, and the step of "linking the adapter to the target RNA by RNA ligase" in the above step b-1) becomes unnecessary. Here, an RNA / DNA hybrid annealed with a DNA strand complementary to the prepared RNA adapter is mixed with the target RNA. For the RNA strand used for the RNA / DNA hybrid, the DNA strand to be annealed has only one base protruding at the 3'end. The base to be overhanged preferably contains 50% each of T and G. One protruding base on the 3'side of the RNA / DNA hybrid primer annealed to the 3'end of RNA, and TGIRT-III was used for RNA / DNA hybrids because it extends cDNA from the DNA strand of the RNA / DNA hybrid primer. A cDNA with a DNA strand at the 5'end is obtained.
 工程a-2)における「RNAアダプターに対して、3’末端が1塩基だけ突出したDNAプライマー」における「突出する塩基」は、AとGが50%ずつであることが望ましい。なお、標的RNAがtRNAである場合、高温で作用することが可能であるTGIRTを酵素として用いることが望ましい。 It is desirable that A and G are 50% each for the "protruding base" in the "DNA primer whose 3'end protrudes only 1 base with respect to the RNA adapter" in step a-2). When the target RNA is tRNA, it is desirable to use TGIRT, which can act at high temperature, as an enzyme.
 その他、工程a-2)における「任意のRNAアダプター」、「DNAプライマー」、「プライマー」等の「増幅用プライマーセット」、および「単一ヌクレオチドの違いを標的とするプローブセット」のそれぞれの意義は、工程a-1)におけるものと同じである。また、同様に、工程b-2)のcDNA作成も、工程b-1)におけるものと同じである。 In addition, the significance of "arbitrary RNA adapter", "DNA primer", "primer set for amplification" such as "primer", and "probe set targeting the difference of a single nucleotide" in step a-2). Is the same as in step a-1). Similarly, the cDNA preparation in step b-2) is the same as that in step b-1).
 本発明のi-tRAP法は、原理的には4つか6つの蛍光を使用すれば、マルチプレックスPCR(マルチプレックスポリメラーゼ連鎖反応、Multiplex PCR)と同様の効果を得ることができる。マルチプレックスPCRはポリメラーゼ連鎖反応の変法であり、同一反応における2種類以上の遺伝子配列を増幅し特異的に検出する方法である。複数のtRNAに代表されるtRNA-機能性RNAに対応したプライマーセットと、それぞれのtRNAに代表されるtRNA-機能性RNAのCC末端、CCA末端に対応したプローブセットを同時に反応させる。プローブセットに用いる蛍光色素は、すべて異なる蛍光波長を有する必要がある。上記方法により、1反応で複数tRNAに代表されるtRNA-機能性RNAのアミノアシル化率を測定することが可能である。 In principle, the i-tRAP method of the present invention can obtain the same effect as multiplex PCR (multiplex polymerase chain reaction, Multiplex PCR) by using 4 or 6 fluorescences. Multiplex PCR is a modification of the polymerase chain reaction, which is a method of amplifying and specifically detecting two or more types of gene sequences in the same reaction. A primer set corresponding to a tRNA-functional RNA represented by a plurality of tRNAs and a probe set corresponding to the CC-terminal and CCA-terminals of the tRNA-functional RNA represented by each tRNA are reacted at the same time. All fluorescent dyes used in the probe set must have different fluorescent wavelengths. By the above method, it is possible to measure the aminoacylation rate of tRNA-functional RNA represented by a plurality of tRNAs in one reaction.
 以下、図10に模式的に示すi-tRAP法と呼称するtRNAに代表されるtRNA-機能性RNAのアミノアシル化率を測定するためのqPCR法について、具体的に説明する。これにより、tRNAのアミノアシル化率の動的変化を簡便に調査することができる。
 細胞から抽出したtRNAに対し、例えば図1にて説明する一連の化学的および酵素的処理を適用し、アミノアシル化および非アミノアシル化tRNAをそれぞれ脱メチル化3'CCA-tRNAおよび3'CC-tRNAに加工する。得られたtRNAを、T4 RNAリガーゼ2(T4Rnl2)によって5'アデニル化リンカーに連結する。連結産物を、cDNAを生成するための逆転写の鋳型として使用する。tRNAの3'末端配列における単一ヌクレオチドの違い、すなわちCCA対CCを検出するため、2つのプローブベースqPCRアッセイを利用する。qPCRアッセイを行うため、tRNAの3'末端での配列のみに対応して配列が異なる2つのプローブのプローブセット、すなわち1つのプローブは3'CCA-tRNAに相補的な配列を有し、もう1つのプローブは3'CC-tRNAに相補的な配列を有するプローブセットを用意する。
Hereinafter, the qPCR method for measuring the aminoacyllation rate of tRNA-functional RNA represented by tRNA, which is schematically shown in FIG. 10, will be specifically described. This makes it possible to easily investigate the dynamic change in the aminoacylation rate of tRNA.
A series of chemical and enzymatic treatments described in FIG. 1, for example, are applied to tRNA extracted from cells to demethylate aminoacylated and non-aminoacylated tRNA, respectively, 3'CCA-tRNA and 3'CC-tRNA. Process to. The resulting tRNA is ligated to the 5'adenylation linker by T4 RNA ligase 2 (T4Rnl2). The ligation product is used as a template for reverse transcription to generate cDNA. Two probe-based qPCR assays are utilized to detect single nucleotide differences in the 3'end sequence of tRNA, CCA vs. CC. To perform the qPCR assay, a probe set of two probes with different sequences corresponding only to the sequence at the 3'end of the tRNA, ie one probe has a sequence complementary to the 3'CCA-tRNA and the other For one probe, prepare a probe set having a sequence complementary to 3'CC-tRNA.
 RNAの細胞からの抽出法は、効率を考慮し、スモール/ラージRNAのプロトコールを使い分けることが良いが、若干効率が落ちるものの、全RNAから開始しても問題ない。
 また、RNAを抽出する細胞は特に制限されず、RNAの種類や含有量にかかわらず、RNAが含まれている細胞を意味する。例えば、哺乳動物組織、臓器または血液、例えばヒト組織、臓器またはヒト血液由来のRNAを含む細胞を挙げることができ、好ましくは被検者に負担をかけずまた採取が容易であるヒト末梢血由来のRNAを含む細胞である。
For the RNA extraction method from cells, it is better to use a small / large RNA protocol properly in consideration of efficiency, but although the efficiency is slightly reduced, there is no problem even if it is started from all RNA.
Further, the cell from which RNA is extracted is not particularly limited, and means a cell containing RNA regardless of the type and content of RNA. For example, cells containing RNA from mammalian tissue, organ or blood such as human tissue, organ or human blood can be mentioned, preferably derived from human peripheral blood which does not burden the subject and is easy to collect. It is a cell containing the RNA of.
 細胞から抽出したRNAは脱メチル化処理する必要がある。
 RNA配列中の一部の塩基やリボースは、転写後にメチル化などの化学修飾を受ける。RNA修飾の種類は豊富であり、真核生物では130種類以上同定されている。その多くはtRNAで見いだされ、tRNAの安定性や翻訳効率に影響を及ぼすことが知られている。その他、rRNAやmRNA、ncRNAにも修飾ヌクレオシドの存在が報告されている。これらの修飾は、本発明における測定、定量、検定に影響するため、除去する必要がある。典型的には、脱メチル化には、複数の酵素を利用する。
RNA extracted from cells needs to be demethylated.
Some bases and ribose in the RNA sequence undergo chemical modifications such as methylation after transcription. There are many types of RNA modifications, and more than 130 types have been identified in eukaryotes. Most of them are found in tRNAs and are known to affect the stability and translation efficiency of tRNAs. In addition, the presence of modified nucleosides has been reported in rRNA, mRNA, and ncRNA. These modifications affect the measurements, quantifications, and tests in the present invention and should be removed. Typically, multiple enzymes are used for demethylation.
 Dai et al, Angew. Chem. Int. Ed. 2017, 56, 5017-5020を例として、脱メチル化酵素について、説明する。
 N1-メチルアデノシン(m1A)、N1-メチルグアノシン(m1G)、N3-メチルシトシン(m3C)、およびN2,N2-ジメチルグアノシン(m22G)などの生物学的RNAにおける豊富なWatson-Crick面のメチル化は、cDNA合成を損なうことになり、RNAの配列決定を妨げてしまう。この障害を克服する1つの戦略は、酵素を使用し、cDNAを合成する前に、これらの修飾塩基のメチル基を除去することである。野生型大腸菌AlkBとそのD135S変異体は、tRNAのm1A、m1G、m3C修飾のほとんどを削除することができる。また、m22Gを含むモデルRNA基質は、AlkB D135S / L118V変異体によって効率的かつ選択的にN2-メチルグアノシン(m2G)に変換される。
Demethylase will be described by taking Dai et al, Angew. Chem. Int. Ed. 2017, 56, 5017-5020 as an example.
Methylation of the abundant Watson-Crick surface in biological RNAs such as N1-methyladenosine (m1A), N1-methylguanosine (m1G), N3-methylcytosine (m3C), and N2, N2-dimethylguanosine (m22G). Will impair cDNA synthesis and interfere with RNA sequencing. One strategy to overcome this obstacle is to use enzymes to remove the methyl groups of these modified bases before synthesizing the cDNA. Wild-type E. coli AlkB and its D135S mutants can remove most of the m1A, m1G, and m3C modifications of tRNA. In addition, the model RNA substrate containing m22G is efficiently and selectively converted to N2-methylguanosine (m2G) by the AlkB D135S / L118V mutant.
 このように、本発明はひとつの実施形態では、生物学的検体から抽出した標的RNAを処理し、アミノアシル化されていないRNA(非アミノアシル化RNA)における末端塩基を除去し、他方、アミノアシル化されているRNA(アミノアシル化RNA)からアミノ酸を除去することで、非アミノアシル化RNAおよびアミノアシル化RNAをそれぞれ調製する工程を含むことができる。ここに、標的RNAの処理は、非アミノアシル化RNAについて過ヨウ素酸酸化、β脱離および末端修復であり、アミノアシル化RNAについて弱アルカリ処理である。 Thus, in one embodiment, the invention treats target RNA extracted from a biological sample to remove terminal bases in non-aminoacylated RNA (non-aminoacylated RNA), while aminoacylated. By removing amino acids from the RNA (aminoacylated RNA), a step of preparing non-aminoacylated RNA and aminoacylated RNA can be included. Here, the treatment of the target RNA is periodic acid oxidation, β desorption and terminal repair for non-aminoacylated RNA, and weak alkaline treatment for aminoacylated RNA.
 本発明は別の実施形態として、1つの標的スモールRNAにおける単一ヌクレオチドの違いを定性的または定量的に測定する本発明の方法において、ここに、単一ヌクレオチドの違いは、標的RNAの3'末端配列:CCA対CCにおけるヌクレオチドAの存在または不存在である該方法に用いるアッセイキットであって、
ア) 標的スモールRNAの3'末端に連結するアダプター、
イ) 該アダプターの配列と相補的な配列を含むRTプライマー、
ウ) 該標的スモールRNAに特異的な配列を有する一方のプライマーおよび該RTプライマーに特異的な配列を有する他方のプライマーからなる増幅用プライマーセット、
エ) 単一ヌクレオチドの違いを標的とするプローブセット、
オ) 該アダプター用のRNAリガーゼ、および
カ) 要すれば、脱メチル化酵素、
を含む、キット、または
サ) 任意のRNAアダプター、
シ) 該アダプターと相補的な配列を含み、該RNAアダプターに対して、3’末端が1塩基だけ突出したDNAプライマー、
ス) 該標的RNAに特異的な配列を有する一方のプライマーおよび該DNAプライマーに特異的な配列を有する他方のプライマーからなる増幅用プライマーセット、
セ) 単一ヌクレオチドの違いを標的とするプローブセット、
ソ) テンプレートスイッチング活性を有する逆転写酵素、および
タ) 要すれば、脱メチル化酵素、
を含む、キット、
に関する。本発明のキットは、使用説明書を包含することができる。このキットの実施態様において、脱メチル化酵素により脱メチル化処理を行うと、逆転写の効率が改善されるが、脱メチル化酵素は、必須でなく、無くても、単一ヌクレオチドの違いを定性的または定量的に測定できることがある。
The present invention, as another embodiment, in the method of the invention for qualitatively or quantitatively measuring the difference in a single nucleotide in one target small RNA, where the difference in a single nucleotide is 3'of the target RNA. End sequence: Assay kit used in the method in which nucleotide A is present or absent in CCA vs. CC.
A) Adapter that connects to the 3'end of the target small RNA,
B) RT primer containing a sequence complementary to the sequence of the adapter,
C) Amplification primer set consisting of one primer having a sequence specific to the target small RNA and the other primer having a sequence specific to the RT primer,
D) Probe sets that target single nucleotide differences,
E) RNA ligase for the adapter, and f) demethylase, if necessary,
Including, kit, or service) any RNA adapter,
B) A DNA primer containing a sequence complementary to the adapter and having the 3'end protruding only one base from the RNA adapter.
S) An amplification primer set consisting of one primer having a sequence specific to the target RNA and the other primer having a sequence specific to the DNA primer.
C) Probe sets that target single nucleotide differences,
S) Reverse transcriptase with template switching activity, and Ta) Demethylase, if necessary,
Including, kit,
Regarding. The kit of the present invention can include instructions for use. In embodiments of this kit, demethylation with a demethylase improves the efficiency of reverse transcription, but the demethylase is not essential, and even without it, the difference between single nucleotides. It may be qualitatively or quantitatively measurable.
<簡略アミノアシル化tRNAseq法>
 本発明は別の態様として、tRNA-機能性RNAの配列、発現量およびアミノアシル化率を網羅的に測定する方法であって、
a-10) 生物学的検体から抽出したtRNA-機能性RNAを処理し、アミノアシル化されていないRNA(非アミノアシル化RNA)における末端塩基を除去し、他方、アミノアシル化されているRNA(アミノアシル化RNA)からアミノ酸を除去することで、非アミノアシル化RNAおよびアミノアシル化RNAをそれぞれ調製し、
b-10) 得られた両RNAの3’-末端および5’-末端にアダプターを連結し、
c-10) 産生された連結RNAを鋳型として逆転写を行い、
d-10) PCRによりcDNAライブラリーを作成し、
e-10) ライブラリーの各cDNAを配列決定して、配列データを取得する、
 tRNA-機能性RNAの塩基配列、発現量およびアミノアシル化率を測定する方法、に関する。
<Simplified aminoacyl-tRNAseq method>
As another aspect, the present invention is a method for comprehensively measuring the sequence, expression level and aminoacylation rate of tRNA-functional RNA.
a-10) TRNA-functional RNA extracted from biological specimens is treated to remove terminal bases in non-aminoacylated RNA (non-aminoacylated RNA), while aminoacylated RNA (aminoacylated). By removing amino acids from RNA), non-aminoacylated RNA and aminoacylated RNA are prepared, respectively.
b-10) Connect the adapter to the 3'-end and 5'-end of both obtained RNAs.
c-10) Reverse transcription is performed using the produced linked RNA as a template.
d-10) Create a cDNA library by PCR and
e-10) Sequencing each cDNA in the library to obtain sequence data,
tRNA-A method for measuring the base sequence, expression level and aminoacylation rate of a functional RNA.
 本発明の本実施形態における「tRNA-機能性RNA」は、20塩基~150塩基(nt、ヌクレオチド長)のRNAであり、具体的には20塩基~80塩基である、tRNA、またはtRNAと同じ態様にてその3'末端がアミノアシル化(チャージ)もしくは脱アミノアシル化(脱チャージ)されるRNA様分子もしくはその部分もしくはその誘導体を意味する。かかる「RNA様分子もしくはその部分もしくはその誘導体」は具体的には、tRNA由来のマイクロRNA、例えばtRNAの3’末端を有するtRFまたはtRNAハーフ(Raina, M. & Ibba, M. tRNAs as regulators of biological processes. Frontiers in genetics 5, 171 (2014))、およびtRNA様活性を有するRNA、例えばtRNAの3’末端を有するtRNA様活性を有するRNA合成品が挙げられる。より具体的には、生物学的検体から抽出したRNAをサイズ分画にかけ、20塩基~150塩基のRNAを抽出して入手したRNAを挙げることができる。 The "tRNA-functional RNA" in the present embodiment of the present invention is an RNA of 20 to 150 bases (nt, nucleotide length), specifically the same as tRNA or tRNA which is 20 to 80 bases. In an embodiment, it means an RNA-like molecule or a portion thereof or a derivative thereof whose 3'end is aminoacylated (charged) or deaminoacylated (decharged). Specifically, such "RNA-like molecule or a portion thereof or a derivative thereof" is a tRF or tRNA half (Raina, M. & Ibba, M. tRNAs as regulators of) having a microRNA derived from tRNA, for example, a 3'end of tRNA. Biological processes. Frontiers in genesics 5, 171 (2014)), and RNA having tRNA-like activity, for example, RNA synthetic products having tRNA-like activity having a 3'end of tRNA. More specifically, RNA obtained by extracting RNA of 20 to 150 bases by subjecting RNA extracted from a biological sample to size fractionation can be mentioned.
 本発明の本実施形態における「RNAの配列を測定」とは、当業者に周知のRNAの配列決定、すなわちRNAのシークエンシングを意味する。
 本発明の本実施形態における「tRNAの発現量を測定」とは、生物学的検体に含まれるRNAの量を測定すること、詳細には、この方法では配列決定した何万本というすべての配列のうち、目的のRNAの配列が含まれる割合として発現量が評価されるため、正確には、生物学的検体に含まれるそれぞれのtRNAの割合を意味する。
"Measuring RNA sequence" in the present embodiment of the present invention means RNA sequencing, that is, RNA sequencing, which is well known to those skilled in the art.
"Measuring the expression level of tRNA" in the present embodiment of the present invention means measuring the amount of RNA contained in a biological sample, specifically, all sequences of tens of thousands sequenced by this method. Of these, the expression level is evaluated as the ratio of the target RNA sequence, so to be precise, it means the ratio of each tRNA contained in the biological sample.
 本発明の本実施形態における「tRNA-機能性RNAのアミノアシル化率を測定」とは、上記の通り、1つのtRNA-機能性RNAにおいて、アミノ酸をアミノアシル化しているtRNA-機能性RNA(アミノアシル化tRNA-機能性RNA)およびアミノアシル化していないtRNA-機能性RNA(非アミノアシル化tRNA-機能性RNA)に対するアミノアシル化tRNA-機能性RNAの比率を算定することを意味する。
 上記の通り、本実施形態で行う配列決定では、試料中に含まれるDNA鎖を、何万本も読み、その結果、配列とその配列が何本あったかという情報が得られる。図1に示す通り、工程a-10)を経るとアミノ酸が結合しているtRNA-機能性RNAと結合していないtRNA-機能性RNAとの間ではその配列が1塩基異なるため、配列情報とその配列が何本あるかという情報から、割合を算出することができる。例えば、ある特定のtRNAのついて得られる情報が、1500本であり、1500本のうち1000本がCCAになっており、500本がCCになっていた場合、この情報から、CCA:CCが2:1であり、アミノアシル化率は66%であると測定できる。
"Measuring the amino acylation rate of tRNA-functional RNA" in the present embodiment of the present invention means, as described above, tRNA-functional RNA (aminoacylation) in which an amino acid is aminoacylated in one tRNA-functional RNA. It means calculating the ratio of aminoacylated tRNA-functional RNA to tRNA-functional RNA) and non-aminoacylated tRNA-functional RNA (non-aminoacylated tRNA-functional RNA).
As described above, in the sequence determination performed in the present embodiment, tens of thousands of DNA strands contained in the sample are read, and as a result, information on the sequence and how many sequences there are can be obtained. As shown in FIG. 1, after the step a-10), the sequence of the tRNA-functional RNA to which the amino acid is bound and the tRNA-functional RNA to which the amino acid is not bound is different by one base. The ratio can be calculated from the information on how many of the sequences are. For example, if the information obtained for a specific tRNA is 1500, 1000 out of 1500 are CCA, and 500 are CC, then from this information, CCA: CC is 2. It is 1 and the aminoacylation rate can be measured to be 66%.
 本発明の本実施形態における「網羅的に測定」とは、試料中に含まれるRNAすべてを対象とすることを意味し、RNAがtRNAの場合は、ヒトのゲノムおよびミトコンドリアDNAにコードされているtRNAのうち、発現している約300種類のtRNA全てを個々に測定することを意味する。網羅的に測定できることから、発現量の大小にかかわらず、すべてのRNAのアミノアシル化率を、一度に解析することが可能という利点を有する。 "Comprehensive measurement" in the present embodiment of the present invention means that all RNA contained in the sample is targeted, and when the RNA is tRNA, it is encoded by the human genome and mitochondrial DNA. It means that all of the approximately 300 types of tRNA expressed are individually measured. Since it can be measured comprehensively, it has the advantage that the aminoacylation rates of all RNAs can be analyzed at once regardless of the level of expression.
 本実施形態の工程a-10)において、「生物学的検体」とは、ヒトまたは、ペットや家畜等の動物から得られる、血液、尿、髄液、唾液、涙液、精液、脳、心臓、腎臓、肝臓、肺臓、脾臓、血管、血球、筋肉、脂肪、皮膚、膵臓、腸、内分泌器、神経、感覚器から選択される生体由来の検体、好ましくは血液、血清、血漿、尿、組織、唾液、リンパ液、組織液(組織間液、細胞間液、乾湿液)、体腔液(関節液、脳脊髄液、漿膜腔液、眼房水)より選択される、生体由来の検体、ならびに培養細胞由来の検体を意味する。
 生体由来の検体の例としては、ヒト由来の血液、血清、血漿、尿、組織、脳脊髄液であり、好ましくは血液であり、より好ましくは血液の液体成分である血清または血漿である。血清および血漿の調製方法としては従来の既知の方法を用いることができる。
 培養細胞の例としては、CHO(チャイニーズハムスター卵巣)、HEK293(ヒト胎児腎臓)、アデノウイルス系ベクターのパッケージング細胞、HL-60(ヒト白血病細胞由来)、HeLa(ヒト子宮頸癌由来)、MDCK(イヌの腎臓上皮、上皮の細胞)、NIH3T3(マウス胎児の皮膚)、PC12(ラット副腎髄質 - 神経細胞分化)、S2(ショウジョウバエ - 組み替え蛋白質発現)、Sf9(Spodoptera frugiperda (蛾)- 組み替え蛋白質発現)、Vero(アフリカミドリザル腎臓 - ウイルス感染実験、ベロ毒素活性測定)、などが挙げられ、ヒトや動物から樹立した初代培養および不死化した細胞種、ならびにこれらの細胞の遺伝子改変体を挙げることができる。
In step a-10) of the present embodiment, the "biological sample" is blood, urine, cerebrospinal fluid, saliva, tears, semen, brain, heart obtained from humans or animals such as pets and domestic animals. , Kidney, liver, lungs, spleen, blood vessels, blood cells, muscles, fat, skin, pancreas, intestines, endocrine organs, nerves, biological specimens selected from sensory organs, preferably blood, serum, plasma, urine, tissues , Saliva, lymph, tissue fluid (interstitial fluid, interstitial fluid, dry and wet fluid), body cavity fluid (joint fluid, cerebrospinal fluid, serous cavity fluid, atrioventricular fluid), biological specimens, and cultured cells It means a sample of origin.
Examples of biological specimens are human-derived blood, serum, plasma, urine, tissue, cerebrospinal fluid, preferably blood, and more preferably serum or plasma, which is a liquid component of blood. Conventionally known methods can be used as the method for preparing serum and plasma.
Examples of cultured cells include CHO (Chinese hamster ovary), HEK293 (human fetal kidney), adenoviral vector packaging cells, HL-60 (derived from human leukemia cells), HeLa (derived from human cervical cancer), MDCK. (Canine kidney epithelium, epithelial cells), NIH3T3 (mouse fetal skin), PC12 (rat adrenal medulla-neural cell differentiation), S2 (Drosophila-recombinant protein expression), Sf9 (Spodoptera frugiperda (moth) -recombinant protein expression ), Vero (African Midori monkey kidney-virus infection experiment, measurement of verotoxin activity), etc., including primary cultures and immortalized cell types established from humans and animals, and genetic variants of these cells. can.
 本発明の本実施形態において、好ましくは、工程a-10)において、RNAの処理が、非アミノアシル化RNAについて過ヨウ素酸酸化、β脱離および末端修復であり、アミノアシル化RNAについて脱アミノアシル化である。
 非アミノアシル化RNAについて「過ヨウ素酸酸化」とは、RNA鎖の3’末端のリボースの2位と3位の炭素の結合をターゲットとした酸化的開裂反応である。ここでは、過ヨウ素酸または過ヨウ素酸ナトリウムを用い、酸化的開裂反応を行う。
 非アミノアシル化RNAについて「β脱離」とは、酸化的開裂反応後のリボースの5位の炭素と隣接するリン酸基から脱離する反応である。
 非アミノアシル化RNAについて「末端修復」とは、β脱離後の3位の炭素に結合したリン酸基を酵素により取り除く反応である。
 アミノアシル化RNAについて脱アミノアシル化とは、弱アルカリ処置であり、それにより、アミノアシル結合が切断され、アミノアシル化RNAに結合しているアミノ酸が遊離する。
In the present embodiment of the present invention, preferably in step a-10), the treatment of RNA is periodic acid oxidation, β desorption and terminal repair for non-aminoacylated RNA and deaminosylated for aminoacylated RNA. be.
For non-aminoacylated RNA, "periodic acid oxidation" is an oxidative cleavage reaction that targets the carbon bonds at the 2nd and 3rd positions of ribose at the 3'end of the RNA chain. Here, periodic acid or sodium periodate is used to carry out an oxidative cleavage reaction.
For non-aminoacylated RNA, "β elimination" is a reaction in which the carbon at the 5-position of ribose and the phosphate group adjacent to it are eliminated after the oxidative cleavage reaction.
For non-aminoacylated RNA, "terminal repair" is a reaction in which the phosphate group bound to the carbon at the 3-position after β-elimination is removed by an enzyme.
About Aminoacyl TRNA Deaminoacylation is a weak alkaline treatment that cleaves the aminoacyl bond and releases the amino acid bound to the aminoacylized RNA.
 対象となるRNAについてこれらの操作を行い、非アミノアシル化RNAの遊離3'末端を過ヨウ素酸酸化によって酸化し(Neu, H.C., and Heppel, L.A. (1964). J. Biol. Chem. 239, 2927-2934.)、次いで、弱塩基性pHでのβ脱離により、酸化された3'-アデニル酸リボヌクレオチド(A)残基を末端の3'-シチジル酸リボヌクレオチド(C)残基において3'リン酸に選択的に変更し、次にこの3'リン酸はT4ポリヌクレオチドキナーゼ(PNK)で除去され、結果、非アミノアシル化tRNAの3'末端ヌクレオチドは「C」となる。替わって、アミノアシル化tRNAでは、3'末端はアミノ酸が結合しているため、過ヨウ素酸処理によっては酸化を受けず、次いで、弱塩基性pHでの上記と同じβ脱離工程によってアミノ酸が脱アシル化され、アミノ酸を伴わないtRNAの3'ヌクレオチドにおいて「A」となる。図1参照。 These operations were performed on the target RNA, and the free 3'end of the non-aminoacylated RNA was oxidized by periodic acid oxidation (Neu, H.C., and Heppel, L.A. (1964). J. Biol. Chem. 239, 2927. -2934.), Then by β-desorption at weakly basic pH, oxidized 3'-adenylate ribonucleotide (A) residues at the terminal 3'-citidirate ribonucleotide (C) residues 3 It is selectively converted to'phosphate, which is then removed with T4 polynucleotide kinase (PNK), resulting in a'C'of the 3'terminal nucleotide of the non-aminoacylated tRNA. Instead, in aminoacylated tRNAs, the 3'end is bound to an amino acid, so it is not oxidized by periodic acid treatment and then desorbed by the same β desorption step as above at weakly basic pH. It is acylated and becomes an "A" at the 3'nucleotide of the amino acid-free tRNA. See Figure 1.
 本実施形態の工程b-10)における「アダプター」とは、リンカーと称することもあるRNA鎖である。3'-末端アダプターは、その5'-末端がアデニル化されており、3'-末端が-NH2やddCなどで修飾され、3'末端における自己連結(セルフライゲーション)が妨げられているRNA鎖であり、その長さは特に制限されるものでないが、少なくとも20塩基程度の長さを有し、それ以上の長さであっても構わない。5'-末端アダプターは、特に制限されるものでないが、25塩基程度の長さのRNA鎖である。
 両RNAへのアダプター連結は、所定のリガーゼを用いて行う。ここでのリガーゼは、本発明のi-tRAP法におけるものと同様である。この点、Evansら(非特許文献21)の方法ではRNAリガーゼの工程がないが、本発明ではRNAリガーゼの工程を含む点で、新しい。本実施形態での特徴は、EvansらがTGIRTを使用したのに対し、本発明では通常の逆転写酵素を使用している点である。本発明では、通常の逆転写酵素を使用しても網羅的解析が可能であった点が予想外の結果である。ここで、Evansらの方法と本発明の方法を比較すると前者が、TGIRTで逆転写し、サーキュリガーゼ(Circuligase)で環状化し、次いでPCRを行っているのに対し、本発明では、3'アダプター連結、5'アダプター連結、そして逆転写し、次いでPCRを行う。
The "adapter" in step b-10) of the present embodiment is an RNA strand sometimes referred to as a linker. The 3'-end adapter is an RNA whose 5'-end is adenylated and whose 3'-end is modified with -NH 2 or ddC to prevent self-ligation at the 3'end. It is a chain, and its length is not particularly limited, but it may have a length of at least about 20 bases and may be longer than that. The 5'-terminal adapter is an RNA strand having a length of about 25 bases, although it is not particularly limited.
Adapter ligation to both RNAs is performed using a predetermined ligase. The ligase here is the same as that in the i-tRAP method of the present invention. In this respect, the method of Evans et al. (Non-Patent Document 21) does not have an RNA ligase step, but the present invention is new in that it includes an RNA ligase step. The feature in this embodiment is that Evans et al. Used TGIRT, whereas the present invention uses a normal reverse transcriptase. In the present invention, it is an unexpected result that comprehensive analysis was possible even by using a normal reverse transcriptase. Here, comparing the method of Evans et al. And the method of the present invention, the former performs reverse transcription with TGIRT, cyclization with Circuligase, and then PCR, whereas in the present invention, 3'adapter linkage is performed. , 5'adapter ligation, and reverse transcription, followed by PCR.
 本実施形態の工程c-10)では、当業者の周知の手法によって、産生された連結RNAを鋳型として逆転写を行い、cDNAを調製する。 In step c-10) of the present embodiment, cDNA is prepared by performing reverse transcription using the produced linked RNA as a template by a method well known to those skilled in the art.
 本実施形態の工程d-10)は、cDNAを増幅し、cDNAライブラリーを作成する工程である。増幅は、当業者に周知の多様な増幅法により実施できる。本発明のひとつの実施形態では、増幅を、ポリメラーゼ連鎖反応(PCR)、等温増幅(Walkerら、「Strand displacement amplification--anisothermal,invitro DNA amplification technique」、Nucleic Acids Res. 、20巻(7号): 1691~6頁(1992年)における等温増幅など)、リガーゼ連鎖反応(LCR; Landegrenら、「A Ligase-Mediated Gene Detection Technique」、Science、241巻: 1077~1080頁、1988年、またはWiedmannら、「Ligase Chain Reaction(LCR)--Overview and Applications」、PCR Methods and Applications(Cold Spring Harbor Laboratory Press、Cold Spring Harbor Laboratory、NY、1994年)、S51~S64頁)におけるリガーゼ連鎖反応など)、転写ベースの増幅系(TAS)、核酸配列ベースの増幅(NASBA; Kievitsら(1991年)、J Virol Methods、35巻: 273~286頁)、ローリングサークル増幅(RCA; Liuら、「Rolling circle DNA synthesis: Small circular oligonucleotides as efficient templates for DNA polymerases」、J. Am. Chem. Soc. 、118巻: 1587~1594頁(1996年)におけるローリングサークル増幅など)、転写媒介増幅(TMA; Vuorinenら(1995年)、J Clin Microbiol、33巻: 1856~1859頁)、自己持続配列複製(self-sustaining sequence replication)(3SR)、Qβ増幅、鎖置換増幅(SDA)(Walkerら(1992年)、Nucleic Acids Res、20巻(7号): 1691~6頁)、多重置換増幅(MDA)(Deanら(2002年)、Proc Natl Acad Sci USA、99巻(8号): 5261~5266頁)、制限支援RCA(restriction aided RCA)(Wangら(2004年)、Genome Res、14巻: 2357~2366頁)、単一プライマーによる等温増幅(SPIA; Daffornら(2004年)、Bio techniques、37巻(5号): 854~7頁)、ループ媒介等温増幅(LAMP; Notomiら(2000年)、Nucleic Acids Res、28巻(12号): e63)、転写媒介増幅(TMA)、ヘリカーゼ依存性増幅(HDA)、熱安定性のHDA(tHDA)(Anら(2005年)、J Biol Chem、280巻(32号): 28952~28958頁)、スマート増幅法(smart-amplification process)(SMAP; Mitaniら(2007年)、Nat Methods、4巻(3号): 257~62頁))、定量的リアルタイムPCR(qPCR)、逆転写PCR(RT-PCR)、サンガー配列決定からなる群より選択される方法により実施する。好ましくは、PCRによって増幅を実施する。 Step d-10) of this embodiment is a step of amplifying cDNA and creating a cDNA library. Amplification can be performed by various amplification methods well known to those skilled in the art. In one embodiment of the invention, amplification is carried out by polymerase chain reaction (PCR), isothermal amplification (Walker et al., "Strand displacement amplification--anisothermal, invitro DNA amplification technique", Nucleic Acids Res., Vol. 20 (No. 7)). : Isothermal amplification on pages 1691-6 (1992), ligase chain reaction (LCR; Landegren et al., "A Ligase-Mediated Gene Detection Technique", Science, Volume 241: 1077-1080, 1988, or Wiedmann et al. , "Ligase Chain Reaction (LCR)-Overview and Applications", PCR Methods and Applications (Cold Spring Harbor Laboratory Press, Cold Spring Harbor Laboratory, NY, 1994), ligase chain reaction in S51-S64), transcription, etc. Nucleic acid sequence-based amplification system (TAS), nucleic acid sequence-based amplification (NASBA; Kievits et al. (1991), J Virol Methods, Vol. 35: pp. 273-286), rolling circle amplification (RCA; Liu et al., “Rolling circle DNA synthesis” : Small circular oligonucleotides as modulus templates for DNA polymerases ”, J. Am. Chem. Soc., Volume 118: Rolling circle amplification in pp. 1587-1594 (1996), transcription mediation amplification (TMA; Vuorinen et al. (1995)) ), J Clin Microbiol, Vol. 33: pp. 1856-1859), self-sustaining sequence replication (3SR), Qβ amplification, chain substitution amplification (SDA) (Walker et al. (1992), Nucleic Acids Res , Volume 20 (No. 7): pp. 1691-6), Multiple Substitution Amplification (MDA) (Dean et al. (2002), Proc Natl Acad Sci USA, Volume 99 (No. 8): 52 61-5266), Restriction aided RCA (Wang et al. (2004), GenomeRes, Vol. 14, pp. 2357-2366), Isothermal amplification with a single primer (SPIA; Dafforn et al. (2004), Biotechniques, Vol. 37 (No. 5): pp. 854-7), Loop-mediated isothermal amplification (LAMP; Notomi et al. (2000), Nucleic Acids Res, Vol. 28 (No. 12): e63), Transfer-mediated amplification (TMA) , Helicase-dependent amplification (HDA), Thermal stability HDA (tHDA) (An et al. (2005), J Biol Chem, Vol. 280 (No. 32): pp. 28952-28958), smart-amplification process ) (SMAP; Mitani et al. (2007), Nat Methods, Volume 4 (No. 3): pp. 257-62)), Quantitative real-time PCR (qPCR), reverse transcription PCR (RT-PCR), and Sanger sequencing. Perform by the method selected from the group. Preferably, amplification is performed by PCR.
 本実施形態の工程e-10)では、ライブラリーの各cDNAを配列決定して、配列データを取得する。配列決定されたリードをヒトtRNA配列にマッピングし、tRNA配列の3'末端の少なくとも25ヌクレオチドにミスマッチなくアラインメントした配列について、その3'末端がCCAだったリードはアミノアシル化したtRNAに由来するものとみなし、その3'末端CCで終わったリードはアミノアシル化されていないtRNAに由来するものとした。アミノアシル化率は、3′末端CCAとCCを合わせたリードの合計と3′末端CCAとの比率より算出する。 In step e-10) of this embodiment, each cDNA in the library is sequenced and sequence data is acquired. For sequences in which sequenced reads were mapped to human tRNA sequences and aligned to at least 25 nucleotides at the 3'end of the tRNA sequence without mismatch, the reads with CCA at the 3'end were derived from aminoacylated tRNA. The reads ending at the 3'end CC were considered to be derived from unaminoacylated tRNA. The aminoacylation rate is calculated from the total number of reads including 3'end CCA and CC and the ratio of 3'end CCA.
 本実施形態では、好ましくは、生物学的検体から抽出したRNAをサイズ分画にかけ、50-150ntのRNAを抽出し、以降の工程を行う。典型的には、20-150nt(ヌクレオチド長)のRNAであり、具体的には20-80ntのRNAを利用する。好ましくは、tRNA、tRNA由来のマイクロRNA、例えばtRNAの3’末端を有するtRFまたはtRNAハーフ(Raina, M. & Ibba, M. tRNAs as regulators of biological processes. Frontiers in genetics 5, 171 (2014))、およびtRNA様活性を有するRNA、例えばtRNAの3’末端を有するtRNA様活性を有するRNA合成品である。 In this embodiment, preferably, RNA extracted from a biological sample is subjected to size fractionation to extract 50-150 nt RNA, and the subsequent steps are performed. Typically, it is 20-150 nt (nucleotide length) RNA, and specifically, 20-80 nt RNA is used. Preferably, tRNA, microRNA derived from tRNA, for example, tRF or tRNA half having a 3'end of tRNA (Raina, M. & Ibba, M. tRNAs as regulators of biological processes. Frontiers in genesics 5, 171 (2014)). , And RNA having tRNA-like activity, eg, an RNA synthesis product having tRNA-like activity having a 3'end of tRNA.
 本実施形態では、tRNAに代表されるtRNA-機能性RNAのアミノアシル化率を測定するに当たり、アミノアシル化RNAの発現量および非アミノアシル化RNAの発現量の総量に対する、アミノアシル化RNAの発現量の比率を算出する。 In the present embodiment, in measuring the aminoacyllation rate of tRNA-functional RNA represented by tRNA, the ratio of the expression level of aminoacylated RNA to the total expression amount of aminoacylated RNA and non-aminoacylated RNA. Is calculated.
 本実施形態では、生物学的検体から抽出したRNAは脱メチル化処理する必要がある。脱メチル化処理は、本発明のi-tRAP法における手法と同様である。 In this embodiment, RNA extracted from a biological sample needs to be demethylated. The demethylation treatment is the same as the method in the i-tRAP method of the present invention.
 本発明は別の実施形態として、tRNA-機能性RNAの「塩基配列、発現量およびアミノアシル化率を網羅的に測定する本発明の方法に用いるアッセイキットであって、
ア-10) tRNA-機能性RNAの3'-末端および5'-末端に連結するアダプター、
イ-10) 該アダプターの配列と相補的な配列を含むRTプライマー、
ウ-10) 該アダプター用のRNAリガーゼ、および
エ-10) 脱メチル化酵素
を含む、キットに関する。
As another embodiment, the present invention is an assay kit used in the method of the present invention for comprehensively measuring the "base sequence, expression level and amino acylation rate" of tRNA-functional RNA.
A-10) tRNA-adapter that connects to the 3'-end and 5'-end of functional RNA,
B-10) RT primer containing a sequence complementary to the sequence of the adapter,
C-10) RNA ligase for the adapter, and d-10) a kit containing a demethylase.
 本発明におけるtRNAアミノアシル化率を評価するためのi-tRAP法および簡略アミノアシル化tRNAseq法はいずれも、機能的な細胞内アミノ酸濃度の評価に利用できる。「機能的なアミノ酸」とは、細胞内において実際にタンパク質合成に利用されるアミノ酸を意味し、すなわちアミノアシル化されたアミノ酸である。例えば、がん細胞において、ある種の抗癌剤治療は、がん細胞の細胞内アミノ酸濃度を低下させることにより、がん細胞の活動性を低下させ、タンパク質合成を抑制することで細胞死を誘導する。この時に、がん細胞におけるtRNAアミノアシル化率を測定し、実際に機能的なアミノ酸濃度が低下しているかどうか確認することで、治療効果の判定や治療薬の選択に応用できる。がん細胞における細胞内アミノ酸濃度測定では例えば、取得したがん組織の違いによって、アミノ酸含有率が異なることが想定される。アミノ酸低下時の濃度測定や測定方法を何にするかも課題となる。従って、細胞内アミノ酸濃度測定のみならず、アミノアシル化レベルでの評価を行うことは、意義があると考えられる。なお、本明細書中、以下の実施例6、7および8にて明らかになったように、アミノ酸濃度が低下しても、低下の程度が軽度であれは゛tRNAのアミノアシル化率には影響しない。ある一定の濃度より下がった時に、tRNAのアミノアシル化率が低下し、タンパク質合成などに影響が出る。 Both the i-tRAP method and the simplified aminoacylated tRNAseq method for evaluating the tRNA aminoacylation rate in the present invention can be used for evaluating the functional intracellular amino acid concentration. "Functional amino acid" means an amino acid actually used for protein synthesis in a cell, that is, an aminoacylated amino acid. For example, in cancer cells, certain anti-cancer drug treatments reduce the intracellular amino acid concentration of the cancer cells, thereby reducing the activity of the cancer cells and suppressing protein synthesis to induce cell death. .. At this time, by measuring the tRNA aminoacylation rate in cancer cells and confirming whether or not the functional amino acid concentration is actually decreased, it can be applied to the determination of the therapeutic effect and the selection of the therapeutic drug. In the measurement of intracellular amino acid concentration in cancer cells, for example, it is assumed that the amino acid content differs depending on the acquired cancer tissue. The issue is what to do with the concentration measurement and measurement method when amino acids are low. Therefore, it is considered meaningful to evaluate not only the intracellular amino acid concentration measurement but also the aminoacylation level. In addition, as revealed in Examples 6, 7 and 8 below in the present specification, even if the amino acid concentration decreases, it does not affect the aminoacylation rate of tRNA as long as the degree of decrease is slight. .. When the concentration drops below a certain level, the aminoacylation rate of tRNA decreases, which affects protein synthesis and the like.
<スクリーニング方法>
 本発明は別の態様として、tRNAのアミノアシル化率を変動させる物質をスクリーニングするための方法を提供する。
 具体的には、本発明は、tRNAのアミノアシル化率を変動させる物質をスクリーニングするための方法であって、
a-20) 細胞に被験物質を添加し、
b-20) 前記細胞のtRNAのアミノアシル化率を測定し、そして
c-20) 前記測定値が、前記被験物質の非存在下で前記アミノアシル化率を測定した場合と比較し、変化していた場合に、前記被験物質がtRNAのアミノアシル化率を変動させる物質であると判断する、方法に関する。以下、具体的に説明する。
<Screening method>
As another aspect, the present invention provides a method for screening a substance that varies the aminoacylation rate of tRNA.
Specifically, the present invention is a method for screening a substance that changes the aminoacylation rate of tRNA.
a-20) Add the test substance to the cells and add
b-20) Measure the aminoacylation rate of tRNA in the cells, and
c-20) When the measured value is changed compared to the case where the aminoacyllation rate is measured in the absence of the test substance, the test substance is a substance that changes the aminoacylation rate of tRNA. Regarding the method of determining that there is. Hereinafter, a specific description will be given.
 本発明における「細胞」とは、タンパク質を発現する細胞ならば、特に限定されず、「tRNAのアミノアシル化率」を指標として、被験物質における率の変化を検出することができる、生体から取得されるいかなる細胞でもよい。例えば、使用できる細胞として、ヒトまたは、ペットや家畜等の動物から得られる血液、髄液、精液、脳、心臓、腎臓、肝臓、肺臓、脾臓、血管、血球、筋肉、脂肪、皮膚、膵臓、腸、内分泌器、神経、感覚器から選択される生体由来の細胞、ならびに培養細胞を挙げることができる。培養細胞の例としては、CHO(チャイニーズハムスター卵巣)、HEK293(ヒト胎児腎臓)、アデノウイルス系ベクターのパッケージング細胞、HL-60(ヒト白血病細胞由来)、HeLa(ヒト子宮頸癌由来)、MDCK(イヌの腎臓上皮、上皮の細胞)、NIH3T3(マウス胎児の皮膚)、PC12(ラット副腎髄質 - 神経細胞分化)、S2(ショウジョウバエ - 組み替え蛋白質発現)、Sf9(Spodoptera frugiperda (蛾)- 組み替え蛋白質発現)、Vero(アフリカミドリザル腎臓 - ウイルス感染実験、ベロ毒素活性測定)、などが挙げられ、ヒトや動物から樹立した初代培養および不死化した細胞種、ならびにこれらの細胞の遺伝子改変体を挙げることができる。 The "cell" in the present invention is not particularly limited as long as it is a cell expressing a protein, and is obtained from a living body capable of detecting a change in the rate in a test substance using the "aminoacyllation rate of tRNA" as an index. Any cell may be used. For example, as cells that can be used, blood, spinal fluid, semen, brain, heart, kidney, liver, lung, spleen, blood vessels, blood cells, muscles, fat, skin, pancreas, which are obtained from humans or animals such as pets and domestic animals. Examples include living-derived cells selected from the intestine, endocrine system, nerves, and sensory organs, as well as cultured cells. Examples of cultured cells include CHO (Chinese hamster ovary), HEK293 (human fetal kidney), adenoviral vector packaging cells, HL-60 (derived from human leukemia cells), HeLa (derived from human cervical cancer), MDCK. (Canine kidney epithelium, epithelial cells), NIH3T3 (mouse fetal skin), PC12 (rat adrenal medulla-nerve cell differentiation), S2 (Drosophila-recombinant protein expression), Sf9 (Spodoptera frugiperda (moth)-recombinant protein expression) ), Vero (African Midori monkey kidney-virus infection experiment, measurement of verotoxin activity), etc., including primary culture and immortalized cell types established from humans and animals, and genetic variants of these cells. can.
 本発明における「被験物質」なる用語は、任意の天然または非天然の分子、例えば核酸、ポリペプチドまたはタンパク質などの生物学的高分子、有機または無機分子、あるいは目的の活性についてテストするために生物学的材料、例えば細菌、真菌、植物または動物、特に哺乳動物、ヒトなどの細胞または組織などから調製される抽出物などを意味する。限定するものでないが、大学、企業等が有する天然、非天然化合物ライブラリー、薬用植物抽出液、ペプチド、抗体、核酸ライブラリーなどを指す。 The term "test substance" in the present invention is used to test any natural or non-natural molecule, such as a biological polymer such as a nucleic acid, polypeptide or protein, an organic or inorganic molecule, or an organism for testing the activity of interest. It means an extract prepared from a scientific material such as a cell or tissue such as a bacterium, a fungus, a plant or an animal, particularly a mammal, a human or the like. Not limited, but refers to natural and non-natural compound libraries, medicinal plant extracts, peptides, antibodies, nucleic acid libraries, etc. owned by universities, companies, etc.
 本発明のスクリーニング方法に使用される細胞は、当業者に周知の技術により調製でき、例えば細胞を患者または健常者からの採血によりまたは生検により得ることができる。 The cells used in the screening method of the present invention can be prepared by a technique well known to those skilled in the art, and the cells can be obtained, for example, by collecting blood from a patient or a healthy person or by biopsy.
 本発明において使用される細胞は、標準的な細胞培養技術に従って培養する。例えば、細胞を、適した容器中で、加湿5%CO2雰囲気を含むインキュベータに入れ、37℃の無菌環境において増殖させる。容器は撹拌または静置培地を含む。培地としては、種々の細胞培養液を使用してよく、例えばウシ胎児血清などを含む培地、293 SFM無血清培地 (Invitrogen Corp., Carlsbad, CA) を使用できる。細胞培養技術は、当技術分野において周知であり、確立されたプロトコールを多様な細胞タイプの培養のために利用可能である (例えば、R.I. Freshney, "Culture of Animal Cells: A Manual of Basic Technique", 2nd Edition, 1987, Alan R. Liss, Inc.を参照のこと)。 The cells used in the present invention are cultured according to standard cell culture techniques. For example, cells are placed in a suitable container in an incubator containing a humidified 5% CO2 atmosphere and grown in a sterile environment at 37 ° C. The container contains agitated or standing medium. As the medium, various cell culture media may be used, and for example, a medium containing fetal bovine serum or the like, 293SFM serum-free medium (Invitrogen Corp., Carlsbad, CA) can be used. Cell culture techniques are well known in the art and established protocols are available for culturing a variety of cell types (eg, R.I. Freshney, "Culture of Animal Cells: A Manual of Basic Technique", See 2nd Edition, 1987, Alan R. Liss, Inc.).
 特定の実施形態では、本発明のスクリーニング方法は、マルチウエルアッセイプレートの複数のウエルに含まれる細胞を使用して実施する。そのようなアッセイプレートは、例えば、Strategene Corp. (La Jolla, CA) およびCorning Inc. (Acton, MA) の市販品があり、例えば、48ウエル、96ウエル、384ウエル、および1536ウエルプレートを含む。 In a particular embodiment, the screening method of the present invention is performed using cells contained in a plurality of wells of a multi-well assay plate. Such assay plates include, for example, Stratgene Corp. (La Jolla, CA) and Corning Inc. (Acton, MA) commercial products, including, for example, 48-well, 96-well, 384-well, and 1536-well plates. ..
 被験物質がtRNAのアミノアシル化率を変動させる否かは、本明細書に記載の手法に従い、本発明のi-tRAP法または簡略アミノアシル化tRNAseq法によって容易に決定することができる。 Whether or not the test substance changes the aminoacyllation rate of tRNA can be easily determined by the i-tRAP method or the simplified aminoacyl-tRNAseq method of the present invention according to the method described in the present specification.
 本発明のスクリーニング方法は具体的には、疾患の処置または予防のために有用である。例えば、ミトコンドリア病に対応する細胞、例えばミトコンドリア病患者由来の細胞、またはミトコンドリア遺伝子疾患モデルマウス由来の細胞があれば、それを使用できる。ミトコンドリア病の要因は種々知られているが、それがtRNAに由来する場合、アミノアシル化が困難になっている。そのため、そのアミノアシル化率を向上させる物質をスクリーニングすれば、よい。それにより、ミトコンドリア病を処置または予防できる物質をスクリーニングすることができる。 Specifically, the screening method of the present invention is useful for the treatment or prevention of diseases. For example, if there is a cell corresponding to mitochondrial disease, for example, a cell derived from a mitochondrial disease patient or a cell derived from a mitochondrial gene disease model mouse, it can be used. Various causes of mitochondrial disease are known, but when they are derived from tRNA, aminoacylation becomes difficult. Therefore, a substance that improves the aminoacylation rate may be screened. Thereby, substances that can treat or prevent mitochondrial disease can be screened.
 MELASを代表とするミトコンドリア病は、低身長、全身の筋萎縮、難聴、糖尿病、頭痛、てんかん発作、乳酸アシドーシスなどいろいろな症状を呈し、最も特徴的な症状は反復する脳卒中様発作である。ミトコンドリア病では、脳卒中のように突然、言葉がしゃべれなくなったり、視野の半分が見えなくなったり、手足が麻痺するなどの症状を呈する。こうした脳卒中様発作を繰り返しながら、身体機能や認知機能の障害が蓄積していく。MELASなどのミトコンドリア病の患者の原因として、ミトコンドリアDNA(mtDNA)がコードするtRNA遺伝子の変異が知られている(Transfer RNA and human disease Jamie A. Abbott, Christopher S. Francklyn and Susan M. Robey-Bond Front. Genet., 2014)。 Mitochondrial diseases represented by MELAS show various symptoms such as short stature, general muscle atrophy, hearing loss, diabetes, headache, epileptic seizures, and lactic acidosis, and the most characteristic symptom is recurrent stroke-like seizures. Mitochondrial disease causes symptoms such as sudden inability to speak, half of the visual field, and paralysis of limbs, such as a stroke. While repeating these stroke-like attacks, disorders of physical function and cognitive function accumulate. A mutation in the tRNA gene encoded by mitochondrial DNA (mtDNA) is known to be the cause of patients with mitochondrial diseases such as MELAS (Transfer RNA and human disease Jamie A. Abbott, Christopher S. Francklyn and Susan M. Robey-Bond. Front. Genet., 2014).
 特定のがんの場合、特定のアミノ酸、例えばメチオニンを高度に要求するがんがあり、その場合、そのアミノ酸のアミノアシル化率を下げる物質がスクリーニングできれば、その特定がんを処置または予防できる物質を入手することが可能となる。 In the case of a specific cancer, there is a cancer that highly requires a specific amino acid, for example, methionine, and in that case, if a substance that lowers the aminoacylation rate of that amino acid can be screened, a substance that can treat or prevent the specific cancer. It will be possible to obtain it.
 本発明のスクリーニング方法は、キットにすることができる。例えば、本明細書で開示する細胞を、バイアル、チューブ、マイクロタイターウエルプレート、ボトルなどの種々の容器にパッケージングし、他の試薬を別の容器に含め、キット化することができる。ここには、ポジティブコントロール試料または化合物、ネガティブコントロール試料または化合物や、緩衝液、細胞培養液、特異的検出プローブなどを含め、それを総じてキットとすることができる。 The screening method of the present invention can be made into a kit. For example, the cells disclosed herein can be packaged in various containers such as vials, tubes, microtiterwell plates, bottles, and other reagents can be included in another container to form a kit. This includes a positive control sample or compound, a negative control sample or compound, a buffer solution, a cell culture solution, a specific detection probe, and the like, which can be collectively referred to as a kit.
 本発明は別の実施形態として、tRNAのアミノアシル化率を変動させる物質をスクリーニングするための方法であって、
a-30) 被験物質を動物に投与し、
b-30) 前記動物から所定の臓器の細胞を採取し、
c-30) 前記細胞のtRNAのアミノアシル化率を測定し、そして
c-30) 前記測定値が、前記被験物質の非存在下で前記アミノアシル化率を測定した場合と比較し、変化していた場合に、前記被験物質がtRNAのアミノアシル化率を変動させる物質であると判断する方法、に関する。以下、具体的に説明する。
The present invention, as another embodiment, is a method for screening a substance that changes the aminoacylation rate of tRNA.
a-30) Administer the test substance to the animal and
b-30) Collect cells of a predetermined organ from the animal and collect them.
c-30) Measure the aminoacylation rate of tRNA in the cells, and
c-30) When the measured value is changed compared to the case where the aminoacyllation rate is measured in the absence of the test substance, the test substance is a substance that changes the aminoacylation rate of tRNA. Regarding how to determine that there is. Hereinafter, a specific description will be given.
 本発明における「動物」とは、野生型のマウス、ラットなどのげっ歯類、マーモセットやサルなどの動物実験でよく利用される動物、またはそれらの遺伝子改変体が含まれる。 The "animal" in the present invention includes wild-type mice, rodents such as rats, animals often used in animal experiments such as marmosets and monkeys, or genetically modified substances thereof.
 本発明における「所定の臓器」とは、血液、尿、髄液、唾液、涙液、精液、脳、心臓、腎臓、肝臓、肺臓、脾臓、血管、血球、筋肉、脂肪、皮膚、膵臓、腸、内分泌器、神経、感覚器である。 The "predetermined organ" in the present invention means blood, urine, spinal fluid, saliva, tears, semen, brain, heart, kidney, liver, lung, spleen, blood vessel, blood cell, muscle, fat, skin, pancreas, intestine. , Endocrine, nerve, sensory.
 本発明における「細胞」とは、タンパク質を発現する細胞ならば、特に限定されず、「tRNAのアミノアシル化率」を指標として、被験物質における率の変化を検出することができる、生体から取得されるいかなる細胞でもよい。例えば、使用できる細胞として、ヒトまたは、ペットや家畜等の動物から得られる血液、髄液、精液、脳、心臓、腎臓、肝臓、肺臓、脾臓、血管、血球、筋肉、脂肪、皮膚、膵臓、腸、内分泌器、神経、感覚器から選択される生体由来の細胞、ならびに培養細胞を挙げることができる。培養細胞の例としては、上記と同様である。 The "cell" in the present invention is not particularly limited as long as it is a cell expressing a protein, and is obtained from a living body capable of detecting a change in the rate in a test substance using the "aminoacyllation rate of tRNA" as an index. Any cell may be used. For example, as cells that can be used, blood, spinal fluid, semen, brain, heart, kidney, liver, lung, spleen, blood vessels, blood cells, muscles, fat, skin, pancreas, which are obtained from humans or animals such as pets and domestic animals. Examples include living-derived cells selected from the intestine, endocrine system, nerves, and sensory organs, as well as cultured cells. Examples of cultured cells are the same as above.
 本発明のスクリーニング方法に使用される細胞は、当業者に周知の技術により調製でき、例えば細胞を患者または健常者からの採血によりまたは生検により得ることができる。 The cells used in the screening method of the present invention can be prepared by a technique well known to those skilled in the art, and the cells can be obtained, for example, by collecting blood from a patient or a healthy person or by biopsy.
 本発明における「被験物質」なる用語は、上記の通りである。特定の実施形態では、本発明のスクリーニング方法は、上記の通り、マルチウエルアッセイプレートの複数のウエルに含まれる細胞を使用して実施する。被験物質がtRNAのアミノアシル化率を変動させる否かは、本明細書に記載の手法に従い、本発明のi-tRAP法または簡略アミノアシル化tRNAseq法によって容易に決定することができる。 The term "test substance" in the present invention is as described above. In certain embodiments, the screening method of the invention is performed using cells contained in multiple wells of a multi-well assay plate, as described above. Whether or not the test substance changes the aminoacyllation rate of tRNA can be easily determined by the i-tRAP method or the simplified aminoacylated tRNAseq method of the present invention according to the method described herein.
 本発明のスクリーニング方法は具体的には、上記の通り、疾患の処置または予防のために有用である。例えば、ミトコンドリア病、がんを処置または予防できる物質、すなわちこれらの疾患で起きている異常なアミノアシル化率(チャージ率)を改善することができる物質をスクリーニングすることができる。 Specifically, the screening method of the present invention is useful for the treatment or prevention of diseases as described above. For example, substances that can treat or prevent mitochondrial diseases and cancer, that is, substances that can improve the abnormal aminoacylation rate (charge rate) occurring in these diseases, can be screened.
<医薬組成物>
 本発明は別の態様として、tRNAのアミノアシル化率を変動させる物質を含有する、被検者における生物学的および生理学的プロセスに対する影響を調整するための医薬組成物に関する。具体的には、tRNAのアミノアシル化率を変動させる物質は、本発明のスクリーニング方法によってスクリーニングされる物質である。
<Pharmaceutical composition>
In another aspect, the present invention relates to a pharmaceutical composition comprising a substance that varies the aminoacylation rate of tRNA, for adjusting the effect on a biological and physiological process in a subject. Specifically, the substance that changes the aminoacylation rate of tRNA is the substance that is screened by the screening method of the present invention.
 tRNAのアミノアシル化率を変動させる物質には、アミノアシル化率増大物質およびアミノアシル化率減少物質がある。アミノアシル化率増大物質は具体的には、アミノ酸、およびタンパク質合成の阻害剤(例えば、シクロヘキサミド)などの中から選ばれ、そしてアミノアシル化率減少物質は具体的には、アミノアシル化酵素阻害剤(例えば、ムピロシン、ボレリジン、ハロフギノン、ネオマイシン、ペンタミジン、プルプロマイシン)、オートファジー・リソソーム阻害剤(例えば、クロロキン)、プロテアソーム阻害剤(例えば、MG132)、および統合的ストレス応答の阻害剤(例えば、ISRIB)などの中から選ばれる。 Substances that change the aminoacyllation rate of tRNA include substances that increase the aminoacylation rate and substances that decrease the aminoacylation rate. Aminoacylation rate increasing substances are specifically selected from amino acids, proteins synthesis inhibitors (eg, cyclohexamides), etc., and aminoacylating rate decreasing substances are specifically aminoacylase enzyme inhibitors. (Eg, mupyrosine, borelidine, halofuginone, neomycin, pentamidin, purpuromycin), autophagy lithosome inhibitors (eg, chlorokin), proteasome inhibitors (eg, MG132), and inhibitors of integrated stress response (eg, eg). It is selected from ISRIB) and so on.
 本発明において、「被検者における生物学的および生理学的プロセスに対する影響を調整する」の「被検者」とは、ヒト、またはペットや家畜等の動物を意味する。
 本発明において、「生物学的および生理学的プロセスに対する影響を調整する」とは、被検者における細胞活動、栄養状態、身体、精神および病態の中から選ばれる一つまたはそれ以上に関連する事象に対する影響を調整することを意味する。
 本発明において、「影響を調整する」とは、悪い影響であれば、それを望ましい状態に戻すこと、悪くないまでも良くない影響であれば、それを良い状態に戻すこと、等を意味する。特に、健康や病気に関する指標を改善させることを意味する。
 本発明において、「被検者における細胞活動、栄養状態、身体、精神および病態の中から選ばれる一つまたはそれ以上に関連する事象」の具体例は、例えば、ミトコンドリア病、加齢性疾患、生活習慣病、精神疾患、難治性疾患、遺伝性疾患、ライフコース関連疾患、消化器疾患、がん、心血管疾患、腎臓疾患および神経疾患の中から選ばれる一つまたはそれ以上が挙げられる。
In the present invention, the "subject" of "adjusting the effects on biological and physiological processes in a subject" means a human or an animal such as a pet or livestock.
In the present invention, "coordinating the effects on biological and physiological processes" is an event related to one or more selected from cell activity, nutritional status, body, mental and pathological conditions in a subject. Means to adjust the effect on.
In the present invention, "adjusting the effect" means returning it to a desirable state if it is a bad effect, returning it to a good state if it is not bad but not good. .. In particular, it means improving indicators of health and illness.
In the present invention, specific examples of "events related to one or more selected from cell activity, nutritional status, physical, mental and pathological conditions in a subject" are, for example, mitochondrial diseases, age-related diseases, and the like. One or more selected from lifestyle-related diseases, mental diseases, intractable diseases, hereditary diseases, life-course-related diseases, digestive diseases, cancers, cardiovascular diseases, kidney diseases and neurological diseases.
 ミトコンドリア病は、全身の細胞に存在しエネルギーを産生する機能を有するミトコンドリアにおいて、その機能低下が原因でおこる病気の総称であり、例えば、脳神経細胞での視覚、聴覚、認知機能の障害、心臓細胞での血流障害、筋肉細胞での運動障害を起こす。ミトコンドリア病には、例えばMELASがあり、低身長、全身の筋萎縮、難聴、糖尿病、頭痛、てんかん発作、乳酸アシドーシスなどいろいろな症状を呈し、最も特徴的な症状は反復する脳卒中様発作である。 Mitochondrial disease is a general term for diseases that occur due to functional deterioration in mitochondria that are present in cells throughout the body and have the function of producing energy. Causes blood flow disorders and motility disorders in muscle cells. Mitochondrial diseases include, for example, MELAS, which presents with various symptoms such as short stature, generalized muscle atrophy, hearing loss, diabetes, headache, epileptic seizures, and lactic acidosis, and the most characteristic symptom is recurrent stroke-like seizures.
 加齢性疾患は、高齢者の身体器官の加齢現象・機能的変化に伴う老年症候群を意味し、種々の症状が挙げられる。例えば、加齢による変化はないものとして、めまい、息切れ、腹部腫瘤、胸腹水、頭痛、意識障害、不眠、転倒、骨折、腹痛、黄疸、リンパ節腫脹、下痢、低体温、肥満、睡眠時呼吸障害、喀血、吐下血が挙げられ、前期老年者で増加するものとして、認知症、脱水、麻痺、骨関節変形、視力低下、発熱、関節痛、腰痛、喀痰、咳嗽(がいそう)、喘鳴、食欲不振、浮腫、やせ、しびれ、言語障害、悪心嘔吐、便秘、呼吸困難、体重減少が挙げられ、そして後期老年者で増加するものとして、ADL低下、骨粗鬆症、椎体骨折、嚥下困難、尿失禁、頻尿、譫妄(せんもう)、鬱、褥瘡、難聴、貧血、低栄養、出血傾向、胸痛、不整脈が挙げられる。 Aging-related diseases mean senile syndrome associated with aging phenomena and functional changes in the body organs of the elderly, and include various symptoms. For example, dizziness, shortness of breath, abdominal mass, chest and abdominal water, headache, consciousness disorder, insomnia, fall, fracture, abdominal pain, jaundice, lymph node swelling, diarrhea, hypothermia, obesity, sleep breathing, assuming no change with age. Disorders, edema, and nausea are included, and those that increase in the elderly in the early stages include dementia, dehydration, paralysis, bone joint deformity, decreased vision, fever, joint pain, lower back pain, sputum, coughing, and asthma. , Loss of appetite, edema, leanness, numbness, speech disorders, nausea and vomiting, constipation, dyspnea, weight loss, and increased in older people include decreased ADL, osteoporosis, vertebral fractures, difficulty swallowing, urine Incontinence, frequent urination, edema, depression, decubitus, hearing loss, anemia, hyponutrition, bleeding tendency, chest pain, arrhythmia.
 生活習慣病は、生活習慣が原因で起こる疾患の総称である。日本人の三大死因であるがん、脳血管疾患、心血管疾患、更に脳血管疾患や心血管疾患の危険因子となる動脈硬化症、糖尿病、高血圧症、脂質異常症などはいずれも生活習慣病である。 Lifestyle-related diseases are a general term for diseases caused by lifestyle-related diseases. Lifestyle-related diseases such as cancer, cerebrovascular disease, cardiovascular disease, which are the three major causes of death in Japan, as well as arteriosclerosis, diabetes, hypertension, and dyslipidemia, which are risk factors for cerebrovascular disease and cardiovascular disease. I'm sick.
 精神疾患としては、例えばアルツハイマー病、血管性認知症、レビー小体型認知症、せん妄、アルコール中毒、カフェイン中毒、麻薬中毒、統合失調症、うつ病、パニック障害、アスペルガー症候群、PTSD、ADHD、双極性障害、不安障害、強迫性障害、適応障害、解離性障害、摂食障害、睡眠障害、性同一性障害、知的障害、発達障害、チック障害、薬物中毒、依存症、アルコール依存症、ギャンブル依存症、パーソナリティ障害、ひきこもり、神経性過食症、学習障害、器質性精神障害、急性ストレス障害、神経性やせ症、境界性パーソナリティ障害、自閉スペクトラム症、産褥精神病、術後精神病、症状性精神障害、心気症、前頭側頭型認知症、全般性不安障害、社交不安障害、認知症、薬物依存症、離人症性障害、老年期うつ病、老年期精神病、トゥレット症候群、不安神経症、薬物依存が挙げられる。 Mental illnesses include, for example, Alzheimer's disease, vascular dementia, Levy body dementia, dementia, alcohol addiction, caffeine addiction, drug addiction, schizophrenia, depression, panic disorder, Asperger syndrome, PTSD, ADHD, bipolar. Sexual disorders, anxiety disorders, compulsive disorders, adaptation disorders, dissecting disorders, feeding disorders, sleep disorders, sexual identity disorders, intellectual disorders, developmental disorders, tic disorders, drug addiction, addiction, alcohol addiction, gambling Addiction, personality disorder, withdrawal, neurological hyperphagia, learning disorder, organic psychiatric disorder, acute stress disorder, neurological thinness, borderline personality disorder, autism spectrum disorder, puerperal psychiatry, postoperative psychiatric illness, symptomatic psychiatry Disorders, psychosis, frontotemporal dementia, general anxiety disorders, social anxiety disorders, dementia, drug addiction, divorce disorders, senile depression, senile psychiatric disorders, Turret syndrome, anxiety , Drug addiction.
 難治性疾患は、治療が特に難しく、病状も長く続いて日常生活の負担が大きい病気を意味し、例えば333の指定難病を含み、それには、アレルギー・リウマチ科に属する全身性エリテマトーデス、顕微鏡的多発血管炎、好酸球性多発血管炎性肉芽腫症;神経内科に属するパーキンソン病・パーキンソン症候群、多発性硬化症、視神経脊髄炎;呼吸器内科に属する間質性肺炎、難治性喘息;消化器内科に属する炎症性腸疾患(クローン病・潰瘍性大腸炎)、肝硬変、胆管結石症;循環器内科に属する特発性拡張型心筋症、心アミロイドーシス;骨・関節整形外科に属する高度変形および骨切り手術後の変形性股関節症;皮膚科に属する糖尿病性足病変;耳鼻咽喉科に属するANCA関連血管炎性中耳炎、好酸球性中耳炎・好酸球性副鼻腔炎;小児科に属する完全大血管転移症、単身室症、ファロー四徴症、両大血管右室起始症などがある。 Intractable diseases mean diseases that are particularly difficult to treat, have long-lasting medical conditions, and place a heavy burden on daily life, including, for example, 333 designated intractable diseases, which include systemic erythematosus belonging to the family of allergies and rheumatism, microscopic polyangiitis. Vascular inflammation, eosinophilic polyangiitis granulomatosis; Parkinson's disease / Parkinson's syndrome belonging to neurology, polysclerosis, optic neuromyelitis; interstitial pneumonia belonging to respiratory medicine, refractory asthma; digestive organs Inflammatory bowel disease (Clone's disease / ulcerative colitis) belonging to internal medicine, liver cirrhosis, bile duct stone disease; idiopathic dilated myocardial disease belonging to cardiovascular medicine, cardiac amyloidosis; advanced deformity and osteotomy belonging to bone / joint orthopedic surgery Postoperative hip osteoarthritis; diabetic foot lesions belonging to dermatology; ANCA-related vasculitis otitis media belonging to otolaryngology, eosinophilia otolitis / eosinophilia sinusitis; complete macrovascular metastasis belonging to pediatrics Diseases, single room disease, Farrow quadruple disease, bilateral right ventricular origin, etc.
 遺伝性疾患は、染色体または遺伝子に変化を伴う症候群であり、例えば、以下の疾患が挙げられる:
コフィン・ローリー(Coffin-Lowry)症候群、ソトス(Sotos)症候群、スミス・マギニス(Smith-Magenis)症候群、ルビンシュタイン・テイビ(Rubinstein-Taybi)症候群、歌舞伎症候群、ウィーバー(Weaver)症候群、コルネリア・デランゲ(Cornelia de Lange)症候群、ベックウィズ・ヴィーデマン(Beckwith-Wiedemann)症候群、アンジェルマン(Angelman)症候群、5p-症候群、4p-症候群、18トリソミー症候群、13トリソミー症候群、ダウン(Down)症候群、常染色体異常(ウィリアムズ(Williams)症候群及びプラダー・ウィリ(Prader-Willi)症候群を除く。)、CFC(cardio-facio-cutaneous)症候群、マルファン(Marfan)症候群、ロイス・ディーツ症候群、カムラティ・エンゲルマン症候群、コステロ(Costello)症候群、チャージ(CHARGE)症候群、ハーラマン・ストライフ症候群、色素失調症、アントレー・ビクスラー(Antley-Bixler)症候群、ファイファー(Pfeiffer)症候群、コフィン・シリス(Coffin-Siris)症候群、シンプソン・ゴラビ・ベーメル(Simpson-Golabi-Behmel)症候群、スミス・レムリ・オピッツ(Smith-Lemli-Opitz)症候群、メビウス(Moebius)症候群、モワット・ウィルソン(Mowat-Wilson)症候群、ヤング・シンプソン(Young-Simpson)症候群、VATER症候群、MECP2重複症候群、武内・小崎症候群。
Hereditary disorders are syndromes with chromosomal or genetic changes, such as the following disorders:
Coffin-Lowry Syndrome, Sotos Syndrome, Smith-Magenis Syndrome, Rubinstein-Taybi Syndrome, Kabuki Syndrome, Weaver Syndrome, Cornelia Delange ( Cornelia de Lange Syndrome, Beckwith-Wiedemann Syndrome, Angelman Syndrome, 5p-Syndrome, 4p-Syndrome, Trisomy 18 Syndrome, Trisomy 13 Syndrome, Down Syndrome, Autosomal Abnormality ( Excluding Williams Syndrome and Prader-Willi Syndrome), CFC (cardio-facio-cutaneous) Syndrome, Marfan Syndrome, Royce Dietz Syndrome, Kamrathi Engelmann Syndrome, Costello ( Costello Syndrome, CHARGE Syndrome, Harraman Strife Syndrome, Pigment Impairment, Antley-Bixler Syndrome, Pfeiffer Syndrome, Coffin-Siris Syndrome, Simpson Gorabi Syndrome Simpson-Golabi-Behmel Syndrome, Smith-Lemli-Opitz Syndrome, Moebius Syndrome, Mowat-Wilson Syndrome, Young-Simpson Syndrome, VATER syndrome, MECP2 duplication syndrome, Takeuchi / Kozaki syndrome.
 ライフコース関連疾患は、小児期、思春期、成人期にわたる人生の流れにおいて健康や疾病の生物学的・社会学的・心理学的なリスクが相互に蓄積・連鎖し、修飾されてから発症する成人期以降の慢性疾患およびその前段階の疾患を意味する。ライフコース疫学の研究により導かれた疾患概念である。 Life course-related illnesses develop after the biological, sociological, and psychological risks of health and illness are mutually accumulated, linked, and modified in the course of life throughout childhood, adolescence, and adulthood. It means chronic diseases after puberty and diseases in the previous stage. It is a disease concept derived from life course epidemiological studies.
 消化器疾患は、消化管(食道,胃,十二指腸,小腸,大腸)をはじめとして肝臓、胆のう、膵臓などに関係する疾患であり、例えば、以下の疾患が挙げられる:
食道炎、胃食道逆流症、食道裂孔ヘルニア、食道静脈瘤、食道憩室、急性胃炎、慢性胃炎、潰瘍性疾患、胃潰瘍、十二指腸潰瘍、ストレス性潰瘍、ステロイド潰瘍、ヘリコバクターピロリ菌、胃下垂、胃アトニー、十二指腸憩室、胃神経症など、感染性腸炎、急性大腸炎、虫垂炎、慢性腸炎、潰瘍性大腸炎、クローン病、虚血性大腸炎、腸閉塞(イレウス)、閉塞性(単純性)イレウス、絞扼性(複雑性)イレウス、麻痺性イレウス、痙攣性イレウス、過敏性腸症候群、大腸憩室症、吸収不全症候群、胃神経症など、痔核、肛門周囲炎、肛門周囲膿瘍、裂肛、痔ろう、肝不全、肝硬変、ウイルス性肝炎、うっ血肝、門脈圧亢進症、脂肪肝、肝膿瘍、肝膿胞、肝膿腫、肝血管腫、肝内結石、膵炎、急性膵炎、慢性膵炎、膵のう胞、胆石症(胆管結石・胆のう結石)、胆のう炎(急性胆のう炎・慢性胆のう炎)、胆管炎、総胆管拡張症、胆のうポリープ。
Gastrointestinal disorders are disorders related to the gastrointestinal tract (esophagus, stomach, duodenum, small intestine, large intestine), liver, bile sac, pancreas, etc., and examples thereof include the following disorders:
Esophageal inflammation, gastroesophageal reflux disease, esophageal fissure hernia, esophageal varices, esophageal diverticulum, acute gastric inflammation, chronic gastric inflammation, ulcerative disease, gastric ulcer, duodenal ulcer, stress ulcer, steroid ulcer, helicobacter pylori, gastric ptosis, gastric atony, Duodenal diverticulum, gastric neuropathy, etc., infectious enteritis, acute colitis, abscess, chronic enteritis, ulcerative colitis, Crohn's disease, ischemic colitis, intestinal obstruction (ireus), obstructive (simple) ireus, strangulation (simple) Complexity) ileus, paralytic ileus, spasmodic ileus, irritable bowel syndrome, colonic diverticulum, malabsorption syndrome, gastric neuropathy, etc. , Viral hepatitis, congestive liver, hypertonic hypertension, fatty liver, liver abscess, liver abscess, hepatic abscess, hepatic hemangiomas, intrahepatic stones, pancreatitis, acute pancreatitis, chronic pancreatitis, pancreatic cysts, cholelithiasis (biliary duct) Stones / cholecystic stones), cholecystitis (acute cholecystitis / chronic cholecystitis), bile ductitis, total bile duct dilatation, cholecystic polyp.
 がんは、悪性腫瘍、悪性新生物とも呼ばれ、癌、肉腫、白血病や悪性リンパ腫などが含まれる。例えば、以下のがんが挙げられる:
脳腫瘍、頭頸部がん、唾液腺がん、甲状腺がん、肺がん、小細胞肺がん、乳がん、中皮腫、膵臓がん、肝臓がん、胆道がん、食道がん、胃がん、GIST、小腸がん、大腸がん(結腸がん・直腸がん)、胆のうがん、胆管がん、腎臓がん、腎盂・尿管がん、膀胱がん、前立腺がん、子宮頸がん、卵巣がん、子宮肉腫、悪性リンパ腫、白血病、慢性リンパ性白血病(CLL)、多発性骨髄腫、皮膚がん、メラノーマ(悪性黒色腫)、肉腫、原発不明がん。
Cancer is also called malignant tumor or malignant neoplasm, and includes cancer, sarcoma, leukemia and malignant lymphoma. For example, the following cancers:
Brain cancer, head and neck cancer, salivary adenocarcinoma, thyroid cancer, lung cancer, small cell lung cancer, breast cancer, mesenteric tumor, pancreatic cancer, liver cancer, biliary tract cancer, esophageal cancer, stomach cancer, GIST, small intestinal cancer , Colon cancer (colon cancer / rectal cancer), bile cancer, bile duct cancer, kidney cancer, renal pelvis / urinary tract cancer, bladder cancer, prostate cancer, cervical cancer, ovarian cancer, Uterine sarcoma, malignant lymphoma, leukemia, chronic lymphocytic leukemia (CLL), multiple myeloma, skin cancer, melanoma (malignant melanoma), sarcoma, cancer of unknown primary origin.
 心血管疾患は、心臓病とも呼ばれ、心臓に連結した冠動脈または大動脈の疾患と心臓そのもののなど循環器における疾患である。例えば、以下の疾患が挙げられる:
狭心症、心筋梗塞、大動脈瘤、大動脈解離、弁膜症、心筋症、心房中隔欠損症、心臓腫瘍、心不全、不整脈、脳梗塞、脳出血、一過性脳虚血発作、閉塞性動脈硬化症、心不全。
Cardiovascular disease, also called heart disease, is a disease of the coronary or aortic arteries connected to the heart and diseases of the circulatory system such as the heart itself. For example:
Angina, myocardial infarction, aortic aneurysm, aortic dissection, valvular disease, myocardium, atrial septal defect, heart tumor, heart failure, arrhythmia, cerebral infarction, cerebral hemorrhage, transient cerebral ischemic attack, obstructive arteriosclerosis ,heart failure.
 腎臓疾患は、腎臓に生じた炎症によって引き起こされる腎炎と、糖尿病などの全身の病気により糸球体に障害を起こすものがある。例えば、以下の疾患が挙げられる:
IgA腎症などの原発性糸球体疾患(腎炎);ループス腎炎、結節性多発動脈炎、顕微鏡的多発性血管炎、糖尿病腎症、腎硬化症などの続発性糸球体疾患(腎炎);ネフローゼ症候群;急性腎障害(acute kidney injury:AKI);慢性腎臓病(chronic kidney disease:CKD);慢性腎不全。
Kidney diseases include nephritis caused by inflammation of the kidney and those that cause glomerular damage due to systemic diseases such as diabetes. For example:
Primary glomerular disease (nephritis) such as IgA nephropathy; secondary glomerular disease (nephritis) such as lupus nephritis, nodular polyarteritis, microscopic polyangiitis, diabetic nephropathy, nephrosclerosis; nephrosis syndrome Acute kidney injury (AKI); Chronic kidney disease (CKD); Chronic kidney disease.
 神経疾患は、脳・脊髄・末梢神経など神経自体の病変または筋肉自体の病変によって運動障害をきたす疾患の総称である。例えば、以下の疾患が挙げられる:
てんかん、頭痛、脳卒中、アルツハイマー病、レビー小体型認知症、血管性認知症、パーキンソン病、パーキンソン症候群、運動失調症、神経炎、髄膜炎、脳炎、重症筋無力症、免疫性ニューロパチー、代謝性・遺伝性ニューロパチー、ミオパチー、筋ジストロフィー、多発性筋炎、急性意識障害、急性脳症、筋萎縮性側索硬化症(ALS)、球脊髄性筋萎縮症。
Neurological disease is a general term for diseases that cause movement disorders due to lesions of the nerve itself such as the brain, spinal cord, and peripheral nerves or lesions of the muscle itself. For example:
Epilepsy, headache, stroke, Alzheimer's disease, Lewy body dementias, vascular dementia, Parkinson's disease, Parkinson's syndrome, ataxia, neuritis, meningitis, encephalitis, severe myopathy, immune neuropathy, metabolic・ Hereditary neuropathy, myopathy, muscular dystrophy, polymyositis, acute consciousness disorder, acute encephalopathy, amyotrophic lateral sclerosis (ALS), bulbous spinal cord atrophy.
 本発明は、さらなる実施形態として、tRNAの阻害物質を含有する、被検者における生物学的および生理学的プロセスに対する影響を調整するための医薬組成物に関する。本発明において、「tRNAの阻害物質」は具体的には、siRNA、shRNA、miRNA、アンチセンスおよびリボザイムからなる群から選択される一つまたはそれ以上である。 The present invention, as a further embodiment, relates to a pharmaceutical composition containing a tRNA inhibitor for adjusting the effect on a biological and physiological process in a subject. In the present invention, the "tRNA inhibitor" is specifically one or more selected from the group consisting of siRNA, shRNA, miRNA, antisense and ribozyme.
 本発明において、「阻害物質」の「阻害」とは、tRNA発現を阻害またはtRNAの活性を抑制することを意味する。 In the present invention, "inhibition" of "inhibitor" means to inhibit tRNA expression or suppress tRNA activity.
 本発明において、tRNA発現の阻害物質として、以下のa-100)~d-100)のいずれかに示される遺伝子または核酸の発現を阻害する物質が挙げられる:
a-100) 各々のtRNA遺伝子、
b-100) 各々のtRNA遺伝子において1個若しくは数個の塩基が欠失、置換または付加されている塩基配列を含む核酸、
c-100) 各々のtRNA遺伝子の塩基配列と同一性が90%以上の塩基配列の核酸、
d-100) 各々のtRNA遺伝子と相補的な塩基配列とストリンジェントな条件でハイブリダイズする核酸。
In the present invention, examples of the substance that inhibits the expression of tRNA include a substance that inhibits the expression of the gene or nucleic acid shown in any of the following a-100) to d-100):
a-100) Each tRNA gene,
b-100) Nucleic acid containing a base sequence in which one or several bases are deleted, substituted or added in each tRNA gene,
c-100) Nucleic acid with a base sequence of 90% or more identity with the base sequence of each tRNA gene,
d-100) Nucleic acid that hybridizes with a base sequence complementary to each tRNA gene under stringent conditions.
 上記 b-100)において、「1個若しくは数個」とは、例えば、前記 b-100) の遺伝子がtRNA機能を有する物質をコードする範囲であればよい。「1個若しくは数個」は、tRNA遺伝子において、例えば1~10個、好ましくは1~7個、より好ましくは1~5個、さらに好ましくは1~3個、特に好ましくは1または2個である。 In the above b-100), "one or several" may be, for example, a range in which the gene of the above b-100) encodes a substance having a tRNA function. "1 or several" is, for example, 1 to 10, preferably 1 to 7, more preferably 1 to 5, still more preferably 1 to 3, and particularly preferably 1 or 2 in the tRNA gene. be.
 上記 c-100)において、「同一性」とは相同性または類似性と同義である。「90%以上」は好ましくは、93%以上、より好ましくは95%以上、さらに好ましくは98%以上である。 In the above c-100), "identity" is synonymous with homology or similarity. "90% or more" is preferably 93% or more, more preferably 95% or more, still more preferably 98% or more.
 上記 d-100)において、「ストリンジェントな条件」は、例えば低ストリンジェントな条件、中ストリンジェントな条件、高ストリンジェントな条件のいずれでもよい。「低ストリンジェントな条件」は、例えば、5×SSC、5×デンハルト溶液、0.5%SDS、50%ホルムアミド、32℃の条件である。「中ストリンジェントな条件」は、例えば、5×SSC、5×デンハルト溶液、0.5%SDS、50%ホルムアミド、42℃の条件である。「高ストリンジェントな条件」は、例えば、5×SSC、5×デンハルト溶液、0.5%SDS、50%ホルムアミド、50℃の条件である。ストリンジェンシーの程度は、当業者であれば、例えば、温度、塩濃度、プローブの濃度および長さ、イオン強度、時間等の条件を適宜選択することで、設定可能である。「ストリンジェントな条件」は、例えば、前述したザンブルーク (Sambrook) ら編「モレキュラー・クローニング:ア・ラボラトリーマニュアル第2版 (Molecular Cloning: A Laboratory Manual 2nd Ed.) 」[Cold Spring Harbor Laboratory Press  (1989) ]等に記載の条件を採用することもできる。 In the above d-100), the "stringent condition" may be, for example, any of a low stringent condition, a medium stringent condition, and a high stringent condition. "Low stringent conditions" are, for example, 5 × SSC, 5 × Denhardt solution, 0.5% SDS, 50% formamide, 32 ° C. The "medium stringent conditions" are, for example, 5 × SSC, 5 × Denhardt solution, 0.5% SDS, 50% formamide, 42 ° C. "High stringent conditions" are, for example, 5 × SSC, 5 × Denhardt solution, 0.5% SDS, 50% formamide, 50 ° C. The degree of stringency can be set by those skilled in the art by appropriately selecting conditions such as temperature, salt concentration, probe concentration and length, ionic strength, and time. "Stringent conditions" are, for example, "Molecular Cloning: A Laboratory Manual 2nd Ed." Edited by Sambrook et al. [Cold Spring Harbor Laboratory Press (1989). )] Etc. can also be adopted.
 本発明において、遺伝子または核酸の発現を阻害する態様において遺伝子または核酸 (以下「標的核酸」ということがある。) とは、具体的には、以下の a-100) ~ d-100) のいずれかに示される遺伝子または核酸の発現を阻害するsiRNA、shRNA、miRNA、アンチセンスおよびリボザイムからなる群から選択される一つまたはそれ以上である。 In the present invention, in the embodiment of inhibiting the expression of a gene or nucleic acid, the gene or nucleic acid (hereinafter, may be referred to as “target nucleic acid”) is specifically any of the following a-100) to d-100). One or more selected from the group consisting of siRNA, shRNA, miRNA, antisense and ribozyme that inhibit the expression of the gene or nucleic acid shown in the above.
 siRNA (small interfering RNA) は、RNA干渉による遺伝子サイレンシングのために用いられる21~23塩基対の低分子2本鎖RNAである。細胞内に導入されたsiRNAは、RNA誘導サイレンシング複合体 (RISC) と結合する。この複合体はsiRNAと相補的な配列を持つmRNAに結合し切断する。これにより、配列特異的に遺伝子の発現を抑制する。siRNAは、センス鎖及びアンチセンス鎖オリゴヌクレオチドをDNA/RNA自動合成機でそれぞれ合成し、例えば、適当なアニーリング緩衝液中、90~95℃で約1分程度変性させた後、30~70℃で約1~8時間アニーリングさせることにより調製することができる。 SiRNA (small interfering RNA) is a 21-23 base pair small double-stranded RNA used for gene silencing by RNA interference. The siRNA introduced into the cell binds to RNA-induced silencing complex (RISC). This complex binds to and cleaves mRNA with a sequence complementary to siRNA. This suppresses gene expression in a sequence-specific manner. For siRNA, sense strand and antisense strand oligonucleotides are synthesized by a DNA / RNA automatic synthesizer, respectively, and denatured in an appropriate annealing buffer at 90 to 95 ° C for about 1 minute, and then 30 to 70 ° C. It can be prepared by annealing in for about 1 to 8 hours.
 shRNA (short hairpin RNA) は、RNA干渉による遺伝子サイレンシングのために用いられるヘアピン型のRNA配列である。shRNAは、ベクターによって細胞に導入し、U6プロモーターまたはH1プロモーターで発現させてもよいし、shRNA配列を有するオリゴヌクレオチドをDNA/RNA自動合成機で合成し、siRNAと同様の方法によりセルフアニーリングさせることによって調製してもよい。細胞内に導入されたshRNAのヘアピン構造は、siRNAへと切断され、RNA誘導サイレンシング複合体 (RISC) と結合する。この複合体はsiRNAと相補的な配列を持つmRNAに結合し切断する。これにより、配列特異的に遺伝子の発現を抑制する。 ShRNA (short hairpin RNA) is a hairpin-type RNA sequence used for gene silencing by RNA interference. The shRNA may be introduced into cells by a vector and expressed by the U6 promoter or the H1 promoter, or an oligonucleotide having an shRNA sequence may be synthesized by a DNA / RNA automatic synthesizer and self-annealed by the same method as siRNA. May be prepared by. The hairpin structure of the shRNA introduced into the cell is cleaved into siRNA and binds to RNA-induced silencing complex (RISC). This complex binds to and cleaves mRNA with a sequence complementary to siRNA. This suppresses gene expression in a sequence-specific manner.
 miRNA (microRNA、マイクロRNA) は、ゲノム上にコードされ、多段階的な生成過程を経て最終的に約20塩基の微小RNAとなる機能性核酸である。miRNAは、機能性のncRNA (non-coding RNA、非コードRNA:タンパク質に翻訳されないRNAの総称) に分類されており、他の遺伝子の発現を調節するという、生命現象において重要な役割を担っている。特定の塩基配列を有するmiRNAを生体に投与することにより、tRNAの発現を阻害することができる。 MiRNA (microRNA, microRNA) is a functional nucleic acid encoded on the genome and finally becomes a microRNA of about 20 bases through a multi-step production process. miRNAs are classified as functional ncRNAs (non-coding RNAs, non-coding RNAs: a general term for RNAs that are not translated into proteins), and play an important role in life phenomena by regulating the expression of other genes. There is. By administering a miRNA having a specific base sequence to a living body, the expression of tRNA can be inhibited.
 本発明のリボザイムとはDNA制限エンドヌクレアーゼと類似の機構により他の一本鎖RNA分子を特異的に切断するRNA分子を意味する。既知の手法によりRNAの核酸配列を適宜修飾することにより、RNA一本鎖中の特定の塩基配列を認識し切断するリボザイムを作製することができる (Science,239,p.1412-1416,1988)。 The ribozyme of the present invention means an RNA molecule that specifically cleaves another single-stranded RNA molecule by a mechanism similar to that of a DNA-restricted endonuclease. By appropriately modifying the nucleic acid sequence of RNA by a known method, it is possible to prepare a ribozyme that recognizes and cleaves a specific base sequence in a single strand of RNA (Science, 239, p. 1412-1416, 1988). ..
 アンチセンス核酸は、標的配列に相補的な核酸である。アンチセンス核酸は、三重鎖形成による転写開始阻害、RNAポリメラーゼによって局部的に開状ループ構造が形成された部位とのハイブリッド形成による転写抑制、合成の進みつつあるRNAとのハイブリッド形成による転写阻害、イントロンとエクソンとの接合点でのハイブリッド形成によるスプライシング抑制、スプライソソーム形成部位とのハイブリッド形成によるスプライシング抑制、mRNAとのハイブリッド形成による核から細胞質への移行抑制、キャッピング部位やポリ (A) 付加部位とのハイブリッド形成によるスプライシング抑制、翻訳開始因子結合部位とのハイブリッド形成による翻訳開始抑制、開始コドン近傍のリボソーム結合部位とのハイブリッド形成による翻訳抑制、mRNAの翻訳領域やポリソーム結合部位とのハイブリッド形成によるペプチド鎖の伸長阻止、核酸とタンパク質との相互作用部位とのハイブリッド形成による遺伝子発現抑制等により、標的遺伝子の発現を抑制することができる。 Antisense nucleic acid is a nucleic acid complementary to the target sequence. Antisense nucleic acids inhibit transcription initiation by triple-strand formation, transcriptional repression by hybrid formation with a site where an open loop structure is locally formed by RNA polymerase, and transcriptional inhibition by hybrid formation with RNA whose synthesis is progressing. Suppression of splicing by hybrid formation at the junction of intron and exson, suppression of splicing by hybrid formation with sprisosome formation site, suppression of transcription from nucleus to cytoplasm by hybrid formation with mRNA, capping site and poly (A) addition site Suppression of splicing by hybrid formation with, suppression of translation initiation by hybrid formation with translation initiation factor binding site, translation inhibition by hybrid formation with ribosome binding site near the initiation codon, by hybrid formation with RNA translation region or polysome binding site The expression of the target gene can be suppressed by inhibiting the elongation of the peptide chain, suppressing the gene expression by forming a hybrid between the interaction site between the nucleic acid and the protein, and the like.
 本発明のsiRNAとは標的核酸の発現を抑制する二本鎖RNAを指し、「RNAi剤」、「短鎖干渉性RNA」、「短鎖干渉性核酸」、「siRNA」を意味し、配列特異的なRNA干渉 (RNAi) または遺伝子サイレンシングを介して遺伝子発現またはウイルス複製を阻害または下向き調節することのできる核酸分子である。これは、RNAのみからなるものであってもよいし、DNAとRNAとの融合体であってもよい。 The siRNA of the present invention refers to a double-stranded RNA that suppresses the expression of a target nucleic acid, and means "RNAi agent", "short-chain interfering RNA", "short-chain interfering nucleic acid", "siRNA", and is sequence-specific. A nucleic acid molecule capable of inhibiting or downwardly regulating gene expression or viral replication through RNA interference (RNAi) or gene silencing. It may consist only of RNA or it may be a fusion of DNA and RNA.
 siRNA、shRNA、miRNA、リボザイムおよびアンチセンス核酸は、安定性や活性を向上させるために、種々の化学修飾を含んでいてもよい。例えば、ヌクレアーゼ等の加水分解酵素による分解を防ぐために、リン酸残基を、例えば、ホスホロチオエート (PS) 、メチルホスホネート、ホスホロジチオネート等の化学修飾リン酸残基に置換してもよい。また、少なくとも一部をペプチド核酸 (PNA) 等の核酸類似体により構成してもよい。 SiRNAs, shRNAs, miRNAs, ribozymes and antisense nucleic acids may contain various chemical modifications to improve stability and activity. For example, in order to prevent degradation by a hydrolase such as a nuclease, the phosphate residue may be replaced with a chemically modified phosphate residue such as phosphorothioate (PS), methylphosphonate, or phosphorodithionate. Further, at least a part thereof may be composed of a nucleic acid analog such as peptide nucleic acid (PNA).
 本発明は別の実施形態として、特定のtRNAまたはそのアナログを含有する、被検者における生物学的および生理学的プロセスに対する影響を軽減するための医薬組成物に関する。典型的には、特定のtRNAまたはそのアナログを被検者にトランスフェクションすることにより、被検者において特定のtRNAのアミノアシル化率、および特定のtRNAがコードするアミノ酸のタンパク質翻訳効率を上昇させ、ミトコンドリア病を処置または予防する医薬組成物である。 As another embodiment, the present invention relates to a pharmaceutical composition containing a specific tRNA or an analog thereof for reducing the influence on biological and physiological processes in a subject. Typically, by transfecting a particular tRNA or an analog thereof into a subject, the aminoacylation rate of the particular tRNA and the protein translation efficiency of the amino acid encoded by the particular tRNA are increased in the subject. A pharmaceutical composition that treats or prevents mitochondrial disease.
 かかる実施形態において、「特定のtRNA」とは、ミトコンドリア病の原因遺伝子のtRNAや、がんなどでアミノアシル化率が変動しているtRNA、栄養や加齢の状態を反映するtRNA-Glnを意味する。
 また、「特定のtRNAのアナログ」とは、合成した非天然のtRNAを意味する。
 ミトコンドリア病は、上記の通りである。
In such an embodiment, the "specific tRNA" means tRNA of the causative gene of mitochondrial disease, tRNA whose aminoacylation rate fluctuates due to cancer or the like, and tRNA-Gln which reflects the state of nutrition and aging. do.
Further, "analog of a specific tRNA" means a synthesized unnatural tRNA.
Mitochondrial disease is as described above.
<判定方法>
 本発明は別の態様として、被検者における生物学的および生理学的プロセスに対する影響の有無を判定する方法であって、
a-40) 被検者の細胞のtRNAのアミノアシル化率 (被検アミノアシル化率) を測定する工程、
b-40) 被検アミノアシル化率と、基準の細胞のtRNAのアミノアシル化率 (対照アミノアシル化率) とを比較する工程、および
c-40) 被検アミノアシル化率が、対照アミノアシル化率と比較して変動している場合に、被検者を、被検者における生物学的および生理学的プロセスに対する影響を有していると判定する方法、に関する。
<Judgment method>
The present invention, as another aspect, is a method for determining the presence or absence of an effect on a biological and physiological process in a subject.
a-40) Step of measuring the aminoacylation rate (test aminoacylation rate) of tRNA in the cells of the subject,
b-40) A step of comparing the test aminoacylation rate with the aminoacyllation rate of tRNA of the reference cell (control aminoacylation rate), and
c-40) When the test aminoacylation rate fluctuates compared to the control aminoacylation rate, the subject has an effect on the biological and physiological processes in the subject. Regarding the method of determination.
 本発明のかかる態様における「被検者における生物学的および生理学的プロセスに対する影響」とは、上記の通り、被検者における細胞活動、栄養状態、身体、精神および病態の中から選ばれる一つまたはそれ以上に関連する事象、例えば、事象が、ミトコンドリア病、加齢性疾患、生活習慣病、精神疾患、難治性疾患、遺伝性疾患、ライフコース関連疾患、消化器疾患、がん、心血管疾患、腎臓疾患および神経疾患の中から選ばれる一つまたはそれ以上である。 As described above, the "effect on biological and physiological processes in a subject" in such an embodiment of the present invention is one selected from among cell activity, nutritional status, body, mental and pathological conditions in a subject. Or more related events, such as mitochondrial disease, age-related disease, lifestyle disease, mental illness, intractable disease, hereditary disease, life course-related disease, gastrointestinal disease, cancer, cardiovascular disease One or more selected from diseases, kidney diseases and neurological diseases.
 本発明において、「対照アミノアシル化率」とは、典型的には、被検者が生物学的および生理学的プロセスに対する悪い影響を有する場合、健常人由来の検体から入手されるアミノアシル化率を意味する。例えば、ある治療方法が良好に機能しているか否かを調べる場合には、対照アミノアシル化率とは、治療前の被検者のアミノアシル化率であり、治療後の同一被検者におけるアミノアシル化率が被検アミノアシル化率となる。また、例えば、睡眠障害の場合の日内変動を追跡する場合、一定時刻のアミノアシル化率を対照アミノアシル化率と設定し、別の時刻のアミノアシル化率を被検アミノアシル化率と設定する。 In the present invention, "control aminoacyllation rate" typically means the aminoacylation rate obtained from a sample derived from a healthy person if the subject has adverse effects on biological and physiological processes. do. For example, when investigating whether or not a certain treatment method is functioning well, the control aminoacyllation rate is the aminoacylation rate of a subject before treatment, and aminoacylation in the same subject after treatment. The rate is the test aminoacylation rate. Further, for example, when tracking the diurnal variation in the case of sleep disorder, the aminoacylization rate at a certain time is set as the control aminoacylation rate, and the aminoacylation rate at another time is set as the test aminoacylation rate.
<遺伝子治療>
 本発明は別の態様として、特定のアミノアシル-tRNAシンセターゼをコードする核酸分子をノックダウンすることにより、対応するtRNAのアミノアシル化率を低下させ、それにより、被検者における生物学的および生理学的プロセスに対する影響を軽減する方法に関する。
 「被検者における生物学的および生理学的プロセスに対する影響」は、例えば、細胞活動、栄養状態、身体、精神および病態の中から選ばれる一つまたはそれ以上に関連する事象である。事象は具体的には、ミトコンドリア病、加齢性疾患、生活習慣病、精神疾患、難治性疾患、遺伝性疾患、ライフコース関連疾患、消化器疾患、がん、心血管疾患、腎臓疾患および神経疾患の中から選ばれる一つまたはそれ以上である。
<Gene therapy>
In another aspect, the invention reduces the aminoacylation rate of the corresponding tRNA by knocking down a nucleic acid molecule encoding a particular aminoacyl-tRNA synthetase, thereby biologically and physiologically in the subject. On how to mitigate the impact on the process.
"Effects on biological and physiological processes in a subject" are, for example, one or more related events selected from among cellular activity, nutritional status, body, psychiatry and pathology. The events are specifically mitochondrial disease, age-related disease, lifestyle disease, mental illness, intractable disease, hereditary disease, life course-related disease, digestive disease, cancer, cardiovascular disease, kidney disease and neurology. One or more selected from the diseases.
 「特定のアミノアシル-tRNAシンセターゼ」とは、疾患の原因遺伝子となっているアミノアシルtRNAシンセターゼと、原因となっているtRNA変異に対してアミノアシル化を担当するアミノアシルtRNAシンセターゼを意味する。例えば、メチオニンを高度に要求するがんに対しては、メチオニンのアミノアシル化を担当するメチオニルアミノアシルtRNAシンセターゼとなる。また、前述の通り、MELASの場合の、ミトコンドリアのロイシンtRNAにロイシンを付加するミトコンドリア-ロイシルtRNAシンセターゼも挙げられる。
 アミノ酸に対するtRNAの応答を抑制する場合、および老化の場合、好ましくは、特定のアミノアシル-tRNAシンセターゼがグルタミニルtRNAシンセターゼである。
The "specific aminoacyl-tRNA synthetase" means an aminoacyl-tRNA synthetase that is a causative gene of a disease and an aminoacyl-tRNA synthetase that is responsible for aminoacylation of the causative tRNA mutation. For example, for cancers that require high methionine, it is a methionylaminoacyl-tRNA synthetase responsible for aminoacylation of methionine. Further, as described above, in the case of MELAS, a mitochondrial-leucine tRNA synthesizer that adds leucine to mitochondrial leucine tRNA can also be mentioned.
In the case of suppressing the response of tRNA to amino acids, and in the case of aging, preferably the particular aminoacyl-tRNA synthesizer is a glutaminyl tRNA synthesizer.
 本発明は、特定のアミノアシル-tRNAシンセターゼをコードする核酸分子をノックダウンすることで、被検者における生物学的および生理学的プロセスに対する影響を軽減させることが可能と考えられる。ここに、本発明は、特定のアミノアシル-tRNAシンセターゼをコードする核酸分子の破壊された遺伝子を有する細胞、臓器および/または組織に関する。例えば、破壊とは、(核酸レベルまたはタンパク質レベルで)少なくとも約50%、60%、70%、80%、90%、99%または100%の相同性を示す遺伝子となることが想定される。遺伝子抑制もまた、可能である。例えば、遺伝子発現は、ノックダウン、遺伝子のプロモーター変更、および/または干渉RNAを投与することによって低減し得る。特に、がん細胞をはじめとする増殖を抑制することが好ましい細胞における特定のアミノアシル-tRNAシンセターゼをコードする核酸分子の発現をノックダウンするのが、好ましい。また、がん細胞の中にはメチオニン要求性の高いがん細胞が知られているが、メチオニン以外にも、アミノ酸要求性が高い。例えば、アルギニン、セリン、グルタミン、アスパラギンなどの要求性も知られており(Garcia-Bermudez, J., Williams, R. T., Guarecuco, R. & Birsoy, K. Targeting extracellular nutrient dependencies of cancer cells. Molecular metabolism 33, 67-82 (2020))、それぞれのがん細胞において、特定のアミノアシル-tRNAシンセターゼをコードする核酸分子の発現をノックダウンするのが、好ましい。 It is considered that the present invention can reduce the influence on the biological and physiological processes in the subject by knocking down the nucleic acid molecule encoding a specific aminoacyl-tRNA synthetase. Here, the present invention relates to cells, organs and / or tissues having a disrupted gene in a nucleic acid molecule encoding a particular aminoacyl-tRNA synthetase. For example, disruption is expected to be a gene that exhibits at least about 50%, 60%, 70%, 80%, 90%, 99% or 100% homology (at the nucleic acid or protein level). Gene suppression is also possible. For example, gene expression can be reduced by knockdown, promoter modification of the gene, and / or administration of interfering RNA. In particular, it is preferable to knock down the expression of a nucleic acid molecule encoding a specific aminoacyl-tRNA synthetase in cells such as cancer cells, which preferably suppress proliferation. In addition, although cancer cells with high methionine requirement are known among cancer cells, amino acid requirement is also high in addition to methionine. For example, the requirements of arginine, serine, glutamine, asparagine, etc. are also known (Garcia-Bermudez, J., Williams, R. T., Guarecuco, R. & Birsoy, K. Targeting extracellular nutrient dependencies of cancer cells. Molecular metabolism 33, 67-82 (2020)), it is preferable to knock down the expression of nucleic acid molecules encoding specific aminoacyl-tRNA synthesizers in each cancer cell.
 ヒトまたは非ヒト動物中の1つまたは複数の遺伝子は、当該分野で公知の任意の方法を使用してノックダウンすることができる。例えば、ヒトまたは非ヒト動物のゲノムから特定のアミノアシル-tRNAシンセターゼの遺伝子を欠失させることを含む。ノックダウンすることは、非ヒト動物から特定のアミノアシル-tRNAシンセターゼ遺伝子配列の全てまたは一部を除去することもまた含み得る。ノックダウンは、ヒトまたは非ヒト動物中の任意の細胞、臓器および/または組織において実施され得る。例えば、ノックダウンは、全身ノックアウトであり得る。例えば、特定のアミノアシル-tRNAシンセターゼの遺伝子の発現が、非ヒト動物の全ての細胞において低減される。ノックダウンはまた、ヒトまたは非ヒト動物の1つまたは複数の細胞、組織および/または臓器に対して特異的であり得る。 One or more genes in human or non-human animals can be knocked down using any method known in the art. For example, it involves deleting the gene for a particular aminoacyl-tRNA synthesizer from the genome of a human or non-human animal. Knockdown can also include removing all or part of a particular aminoacyl-tRNA synthetase gene sequence from a non-human animal. Knockdown can be performed on any cell, organ and / or tissue in human or non-human animals. For example, a knockdown can be a whole body knockout. For example, the expression of the gene for a particular aminoacyl-tRNA synthesizer is reduced in all cells of non-human animals. Knockdown can also be specific for one or more cells, tissues and / or organs of human or non-human animals.
 ノックダウン技術の任意の組合せが可能である。例えば、組織特異的ノックダウンは、誘導性テクノロジーと組み合わせ、組織特異的な誘導性ノックアウトを創出し得る。さらに、他の系、例えば発生特異的プロモーターが、組織特異的プロモーターおよび/または誘導性ノックアウトと組み合わせて使用され得る。ノックダウン技術は、遺伝子編集もまた含み得る。例えば、遺伝子編集は、CRISPR関連タンパク質(Casタンパク質、例えばCas9)、ジンクフィンガーヌクレアーゼ(ZFN)、転写アクチベーター様エフェクターヌクレアーゼ(TALEN)およびメガヌクレアーゼが含まれるヌクレアーゼを使用して実施され得る。ヌクレアーゼは、天然に存在するヌクレアーゼ、遺伝子改変された、および/または組換えであり得る。例えば、CRISPR/cas系は、遺伝子編集系として適切であり得る。 Any combination of knockdown technology is possible. For example, tissue-specific knockdown can be combined with inducible technology to create tissue-specific inducible knockouts. In addition, other systems, such as development-specific promoters, can be used in combination with tissue-specific promoters and / or inducible knockouts. Knockdown techniques can also include gene editing. For example, gene editing can be performed using nucleases that include CRISPR-related proteins (Cas proteins such as Cas9), zinc finger nucleases (ZFNs), transcriptional activator-like effector nucleases (TALENs) and meganucleases. The nuclease can be a naturally occurring nuclease, genetically modified, and / or recombinant. For example, the CRISPR / cas system may be suitable as a gene editing system.
<バイオマーカー等>
 本発明は別の態様として、tRNALeu、mt-tRNAHis、tRNASer、tRNAAsn、tRNAPhe、tRNAThr、tRNAIle、tRNAArg、tRNAGln、およびmt-tRNAValの中から選ばれる一つまたはそれ以上のものである、被検者における生物学的および生理学的プロセスに対する影響を判断するためのバイオマーカーに関する。
 具体的には、tRNALeu-CAG、mt-tRNAHis-CAC、tRNASer-CGA、tRNAAsn-GTT、tRNAPhe-GAA、tRNASer-GCT、tRNAThr-TGT、tRNAThr-CGT、tRNAIle-TAT、tRNAArg-TCT、tRNAGln-CTG、tRNAGln-TTG、およびmt-tRNAVal-GUAの中から選ばれる一つまたはそれ以上のものである、被検者における生物学的および生理学的プロセスに対する影響を判断するためのバイオマーカーである。
 ここに、tRNAの表記は、コドンごとの表記となっている。例えば、tRNAGln-CTGまたは、単なる「Gln-CTG」は、コドンがCTGでGlnがアミノアシル化されているtRNAを意味する。
<Biomarkers, etc.>
As another aspect of the present invention, one selected from tRNA Leu , mt-tRNA His , tRNA Ser , tRNA Asn , tRNA Phe , tRNA Thr , tRNA Ile , tRNA Arg , tRNA Gln , and mt-tRNA Val or More than that, with respect to biomarkers for determining the effects on biological and physiological processes in the subject.
Specifically, tRNA Leu -CAG, mt-tRNA His -CAC, tRNA Ser -CGA, tRNA Asn -GTT, tRNA Phe -GAA, tRNA Ser -GCT, tRNA Thr -TGT, tRNA Thr -CGT , tRNA Ile- Biological and physiological processes in the subject, one or more selected from TAT, tRNA Arg -TCT, tRNA Gln -CTG, tRNA Gln -TTG, and mt-tRNA Val -GUA. It is a biomarker for determining the effect on.
Here, the notation of tRNA is the notation for each codon. For example, tRNA Gln -CTG, or just "Gln-CTG", means a tRNA whose codon is CTG and Gln is aminoacylated.
 かかる態様において、ひとつの実施形態では、被検者における生物学的および生理学的プロセスに対する影響は、細胞活動、栄養状態、身体、精神および病態の中から選ばれる一つまたはそれ以上に関連する事象である。また、事象は具体的には、ミトコンドリア病、加齢性疾患、生活習慣病、精神疾患、難治性疾患、遺伝性疾患、ライフコース関連疾患、消化器疾患、がん、心血管疾患、腎臓疾患および神経疾患の中から選ばれる一つまたはそれ以上である。 In such embodiments, in one embodiment, the effect on the biological and physiological processes in the subject is an event associated with one or more selected from cellular activity, nutritional status, physical, mental and pathological conditions. Is. Specifically, the events include mitochondrial diseases, age-related diseases, lifestyle diseases, mental diseases, intractable diseases, hereditary diseases, life course-related diseases, digestive diseases, cancer, cardiovascular diseases, and kidney diseases. And one or more selected from among neurological disorders.
 ひとつの実施形態では、本発明は、tRNAGlnおよびtRNAGluの、栄養状態、身体、老化を判断するためのバイオマーカーに関する。好ましくは、tRNAGlnがtRNAGln-CTGである、本発明のバイオマーカーに関する。 In one embodiment, the invention relates to biomarkers of tRNA Gln and tRNA Glu for determining nutritional status, body, and aging. Preferably, it relates to the biomarker of the present invention, wherein the tRNA Gln is tRNA Gln -CTG.
 さらに、本発明は別の態様として、tRNALeu、mt-tRNAHis、tRNASer、tRNAAsn、tRNAPhe、tRNAThr、tRNAIle、tRNAArg、tRNAGln、およびmt-tRNAValの中から選ばれる一つまたはそれ以上のものにおける、被検者における生物学的および生理学的プロセスに対する影響を判断するためのバイオマーカーとしての使用に関する。具体的には、tRNALeu-CAG、mt-tRNAHis-CAC、tRNASer-CGA、tRNAAsn-GTT、tRNAPhe-GAA、tRNASer-GCT、tRNAThr-TGT、tRNAThr-CGT、tRNAIle-TAT、tRNAArg-TCT、tRNAGln-CTG、tRNAGln-TTG、およびmt-tRNAVal-GUAの中から選ばれる一つまたはそれ以上のものにおける、被検者における生物学的および生理学的プロセスに対する影響を判断するためのバイオマーカーとしての使用である。被検者における生物学的および生理学的プロセスに対する影響が、細胞活動、栄養状態、身体、精神および病態の中から選ばれる一つまたはそれ以上に関連する事象である、本発明のバイオマーカーとしての使用に関する。具体的には、事象は、ミトコンドリア病、加齢性疾患、生活習慣病、精神疾患、難治性疾患、遺伝性疾患、ライフコース関連疾患、消化器疾患、がん、心血管疾患、腎臓疾患および神経疾患の中から選ばれる一つまたはそれ以上である、本発明のバイオマーカーとしての使用である。tRNAGlnおよびtRNAGluの、栄養状態、身体、老化を判断するためのバイオマーカーとしての使用、好ましくはtRNAGlnがtRNAGln-CTGである、本発明のバイオマーカーとしての使用に関する。 Further, another aspect of the present invention is selected from among tRNA Leu , mt-tRNA His , tRNA Ser , tRNA Asn , tRNA Phe , tRNA Thr , tRNA Ile , tRNA Arg , tRNA Gln , and mt-tRNA Val . With respect to use as a biomarker for determining the effect on a biological and physiological process in a subject in one or more. Specifically, tRNA Leu -CAG, mt-tRNA His -CAC, tRNA Ser -CGA, tRNA Asn -GTT, tRNA Phe -GAA, tRNA Ser -GCT, tRNA Thr -TGT, tRNA Thr -CGT , tRNA Ile- For biological and physiological processes in the subject in one or more selected from TAT, tRNA Arg -TCT, tRNA Gln -CTG, tRNA Gln -TTG, and mt-tRNA Val -GUA. It is used as a biomarker to determine the effect. As a biomarker of the present invention, the effect on a biological and physiological process in a subject is an event related to one or more selected from cellular activity, nutritional status, body, psychiatry and pathology. Regarding use. Specifically, the events include mitochondrial disease, age-related disease, lifestyle disease, mental illness, intractable disease, hereditary disease, life course-related disease, digestive disease, cancer, cardiovascular disease, kidney disease and It is used as a biomarker of the present invention, which is one or more selected from neurological diseases. Concerning the use of tRNA Gln and tRNA Glu as biomarkers for determining nutritional status, body, aging, preferably as biomarkers of the invention, where tRNA Gln is tRNA Gln -CTG.
 以下、本発明を実施例により、詳細に説明するが、これらは本発明の範囲を限定するものでなく、単なる例示であることに留意すべきである。 Hereinafter, the present invention will be described in detail by way of examples, but it should be noted that these do not limit the scope of the present invention and are merely examples.
ヒト成熟tRNAの配列
 実施例において利用しているtRNAの配列情報は、ゲノムtRNAデータベース(http://lowelab.ucsc.edu/GtRNAdb/)を (Chan, P.P., and Lowe, T.M. (2016). Nucleic Acids Res. 44, D184-D189.)およびミトコンドリアゲノム配列(NC_012920)(Andrews et al., 1999) を参照した。
統計
 特に断らない限り、両側t検定またはBonferroniの事後検定を伴う一元配置もしくは二元配置分散分析のいずれかを使用した。統計分析は、GraphPad Prism 8(GraphPad Software)を使用して行った。統計的有意性は、 P <0.05として規定した。
Sequence of human mature tRNA For the sequence information of tRNA used in the examples, refer to the genomic tRNA database (http://lowelab.ucsc.edu/GtRNAdb/) (Chan, PP, and Lowe, TM (2016). Nucleic. Acids Res. 44, D184-D189.) And the mitochondrial genome sequence (NC_012920) (Andrews et al., 1999) were referenced.
Statistics Unless otherwise noted, either one-way or two-way ANOVA with a two-sided t-test or a Bonferroni post-test was used. Statistical analysis was performed using GraphPad Prism 8 (GraphPad Software). Statistical significance was defined as P <0.05.
実施例1
栄養状態を反映するtRNAアミノアシル化率の包括的プロファイル
Example 1
Comprehensive profile of tRNA aminoacylation rates that reflect nutritional status
 tRNAのアミノアシル化率を決定するための既報のスキーム(非特許文献21)に改良を加えた配列決定手法(本明細書において「簡略アミノアシル化tRNAseq法」と称する)を開発し、自然に樹立されたヒト二倍体線維芽細胞におけるアミノ酸飢餓状態およびアミノ酸補充状態におけるtRNAのアミノアシル化状況を包括的にプロファイルした。 A sequence determination method (referred to as "simplified aminoacyl-tRNAseq method" in the present specification), which is an improvement of the previously reported scheme (Non-Patent Document 21) for determining the aminoacylation rate of tRNA, was developed and naturally established. We comprehensively profiled the aminoacylation status of tRNA in amino acid starvation and amino acid supplementation in human diploid fibroblasts.
実施例1-1:細胞の準備
 人工的な不死化処理なしで自然に樹立されたヒト二倍体線維芽細胞であるTIG-1細胞(Ohashi, M., Aizawa, S., Ooka, H., Ohsawa, T., Kaji, K., Kondo, H., Kobayashi, T., Noumura, T., Matsuo, M., Mitsui, Y., et al. (1980). Exp. Gerontol. 15, 121-133.)を、国立研究開発法人医薬基盤・健康・栄養研究所JCRB(Japanese Collection of Research Bioresources)細胞バンク(TIG-1; #JCRB0501)から入手した。細胞を、10%ウシ胎児血清(Gibco、マサチューセッツ州ウォルサム)を補充したダルベッコ改変イーグル培地(DMEM、ナカライテスク、京都)にて培養し、5%CO2を補充した加湿チャンバー内で37℃に維持した。
Example 1-1: Preparation of cells TIG-1 cells (Ohashi, M., Aizawa, S., Ooka, H.), which are naturally established human diploid fibroblasts without artificial immortalization treatment. , Ohsawa, T., Kaji, K., Kondo, H., Kobayashi, T., Noumura, T., Matsuo, M., Mitsui, Y., et al. (1980). Exp. Gerontol. 15, 121 -133.) Was obtained from the JCRB (Japanese Collection of Research Bioresources) Cell Bank (TIG-1; # JCRB0501), National Institute of Pharmaceutical Sciences, Health and Nutrition. Cells were cultured in Dulbecco's modified Eagle's medium (DMEM, Nakaraitesk, Kyoto) supplemented with 10% fetal bovine serum (Gibco, Waltham, Mass.) And maintained at 37 ° C in a humidified chamber supplemented with 5% CO 2 . bottom.
実施例1-2:アミノ酸飢餓またはアミノ酸補充状態で培養するTIG-1細胞
 実施例1-1にて調製したTIG-1細胞を、図2に示す通り、アミノ酸を含まない、0.5%透析したウシ胎仔血清(Gibco)を補充したDMEM(和光、大阪、日本)にて、15時間培養した。次いで、アミノ酸飢餓のため、TIG-1細胞を、アミノ酸を含まない培地(アミノ酸不含培地)でさらに1時間培養した。あるいは、その培地を、MEM必須アミノ酸溶液、MEM非必須アミノ酸溶液および200mMグルタミン溶液(和光)を含む培地に置き換え、さらに1時間のインキュベーションを行い、アミノ酸補充状態の細胞を入手した。
 このようにして得たアミノ酸飢餓またはアミノ酸補充状態で培養したTIG-1細胞を回収し、以下の操作をそれぞれの細胞について実施した。
Example 1-2: TIG-1 cells cultured under amino acid starvation or amino acid supplementation The TIG-1 cells prepared in Example 1-1 are treated with 0.5% amino acid-free bovine serum as shown in FIG. The cells were cultured in DMEM (Wako, Osaka, Japan) supplemented with fetal bovine serum (Gibco) for 15 hours. Then, for amino acid starvation, TIG-1 cells were cultured for an additional hour in amino acid-free medium (amino acid-free medium). Alternatively, the medium was replaced with a medium containing a MEM essential amino acid solution, a MEM non-essential amino acid solution and a 200 mM glutamine solution (Wako), and further incubated for 1 hour to obtain cells in an amino acid supplemented state.
The TIG-1 cells cultured in the amino acid starvation or amino acid supplemented state thus obtained were collected, and the following operations were carried out for each cell.
実施例1-3:RNAの抽出
 アイソジェンII試薬(Isogen II、Nippongene、富山、日本)とエタチンメイト(Ethachin-mate、Nippongene)を製造元の教示に従って使用し、実施例1-2にて調整培養した細胞からそれぞれ、RNAを抽出した。アイソジェンIIは、小さいRNA(~200ヌクレオチド、スモールRNA)および大きいRNA(200ヌクレオチド~、ラージRNA)を別々に抽出できるため、ここでは、スモールRNAを選別し、tRNAを入手した。アルカリ処理では、tRNAを150 mM Tris-HCl、pH 9.0とともに37℃にて30分間インキュベートした。
Example 1-3: Extraction of RNA Cells prepared and cultured in Example 1-2 using Isogen II reagent (Isogen II, Nippongene, Toyama, Japan) and Ethachin-mate (Nippongene) according to the manufacturer's instructions. RNA was extracted from each. Since Isogen II can extract small RNA (~ 200 nucleotides, small RNA) and large RNA (~ 200 nucleotides ~, large RNA) separately, small RNA was selected here to obtain tRNA. For alkaline treatment, tRNA was incubated with 150 mM Tris-HCl, pH 9.0 at 37 ° C. for 30 minutes.
実施例1-4:tRNAの過ヨウ素酸酸化、β脱離および末端修復
 抽出したtRNAに対し、過ヨウ素酸酸化、β脱離および末端修復を行った(図1)。
 tRNAの過ヨウ素酸酸化は、既報(非特許文献21)に変更を加えて実施した。簡単に説明すれば、得られたスモールRNAを、100 mM CH3COONa、pH 5.2、および新しく調製した50 mM NaIO4中、27℃で30分間、酸化した。100 mMグルコースを27℃で5分間使用し、反応を停止させた。tRNAを精製し、過ヨウ素酸塩を除去するため、得られたRNAを15%変性ポリアクリルアミドゲル(5M尿素、1×TBE、Bio-craft、東京、日本)で泳動し、tRNAを切り出し、ゲルからTE緩衝液中に溶出し、次いでエタノールで沈殿させた。β脱離および脱アシル化のため、精製したtRNAを150 mM Tris-HCl、pH 9.0にて37℃、30分間処理した後、エタノール沈殿を行った。次いで、tRNAをT4ポリヌクレオチドキナーゼ(Thermo Fisher Scientific、マサチューセッツ州ウォルサム)で37℃、30分間処理し、3'リン酸を除去した(末端修復)後、エタノール沈殿を行った。これらの操作により、すなわち、抽出したスモールRNAを過ヨウ素酸塩(IO4-)で処理することで、非アミノアシル化tRNAの遊離3'末端は酸化され、次いで弱塩基性pHでのβ脱離およびT4ポリヌクレオチドキナーゼ(PNK)処理により、非アミノアシル化tRNAの3'末端ヌクレオチドは「C」となり、他方、アミノアシル化tRNAは、弱塩基性pHでの同じβ脱離工程によってアミノ酸が脱アシル化され、アミノアシル化tRNAの3'末端ヌクレオチドが「A」となる。図1参照。
Example 1-4: Periodic acid oxidation, β desorption and terminal repair of tRNA The extracted tRNA was subjected to periodic acid oxidation, β desorption and terminal repair (Fig. 1).
Periodic acid oxidation of tRNA was carried out with modifications to the previous report (Non-Patent Document 21). Briefly, the resulting small RNA was oxidized in 100 mM CH 3 COONa, pH 5.2, and freshly prepared 50 mM NaIO 4 at 27 ° C. for 30 minutes. 100 mM glucose was used at 27 ° C. for 5 minutes to terminate the reaction. In order to purify the tRNA and remove the periodate, the obtained RNA was run on a 15% denatured polyacrylamide gel (5M urea, 1 × TBE, Bio-craft, Tokyo, Japan), and the tRNA was excised and gelled. Was eluted in TE buffer and then precipitated with ethanol. For β-desorption and deacyllation, the purified tRNA was treated with 150 mM Tris-HCl, pH 9.0 at 37 ° C. for 30 minutes, and then ethanol precipitation was performed. The tRNA was then treated with T4 polynucleotide kinase (Thermo Fisher Scientific, Waltham, Mass.) At 37 ° C. for 30 minutes to remove 3'phosphate (terminal repair) and then ethanol precipitation. By these procedures, that is, by treating the extracted small RNA with periodated acid (IO4-), the free 3'end of the non-aminoacylated tRNA is oxidized, followed by β-desorption and β-desorption at weakly basic pH. Treatment with T4 polynucleotide kinase (PNK) results in a "C" of the 3'end nucleotide of the non-aminoacylated tRNA, while the aminoacylated tRNA is deacylated by the same β-desorption step at weakly basic pH. , The 3'end nucleotide of the aminoacylated tRNA becomes "A". See Figure 1.
実施例1-5:脱メチル化反応
 脱メチル化反応は、既報(Zheng et al., Nat Methods., 2015 Sep; 12(9):835-837)に変更を加えて実施した。簡単に説明すれば、アミノ(N)末端の11アミノ酸が削除された断頭AlkBおよびそのD135S変異体(Qing Dai et al., Angew. Chem. Int. Ed. 2017, 56, 5017-5020)を、pETBAベクター (Biodynamics Laboratory、東京、日本)にクローンし、Zipコンピーテント細胞BL21 (DE3) (Zip Competent Cell BL21 (DE3), Biodynamics Laboratory)にて過剰発現させた。細胞を、OD600が0.5~0.6に達するまで、50 μMアンピシリンの存在下、37℃で増殖させた。1mM IPTGと5μM FeSO4を加えた後、細胞を30℃でさらに4時間インキュベートした。プロテアーゼ阻害剤(cOmplete、Mini、EDTAフリー、Roche、バーゼル、スイス)を含むPBS中、細胞を収集し、ペレット化し、再懸濁した。次に、超音波処理によって細胞を溶解し、3000 gで10分間遠心分離した。可溶性タンパク質である断頭AlkBおよびそのD135S変異体を、HisTrap FFクルード(Cytiva、Marlborough、MA)を使用して4℃で精製した。300mM KCl、2mM MgCl2、50μM (NH4)2Fe(SO4)2・6H2O、300μM 2-ケトグルタメート、2mM L-アスコルビン酸、50μg/ ml BSA、50mM MES緩衝液(pH 5.0)を含有する反応緩衝液中、実施例1-4にて入手したtRNAと断頭AlkBおよびそのD135S変異体とを含む反応物を、27℃、2時間インキュベートした。脱メチル化は、逆転写を阻害するワトソン・クリック界面の塩基修飾(Motorin, Y., Muller, S., Behm-Ansmant, I., and Branlant, C. (2007). Methods Enzymol. 425, 21-53.)を、除去するものである(Trewick, S.C., Henshaw, T.F., Hausinger, R.P., Lindahl, T., and Sedgwick, B. (2002). Nature 419, 174-178.)。
Example 1-5: Demethylation reaction The demethylation reaction was carried out with modifications to the previous report (Zheng et al., Nat Methods., 2015 Sep; 12 (9): 835-837). Briefly, decapitated AlkB and its D135S mutant (Qing Dai et al., Angew. Chem. Int. Ed. 2017, 56, 5017-5020) with the 11 amino acids at the amino (N) terminal removed. It was cloned into a pETBA vector (Biodynamics Laboratory, Tokyo, Japan) and overexpressed in Zip Competent Cell BL21 (DE3) (Zip Competent Cell BL21 (DE3), Biodynamics Laboratory). Cells were grown at 37 ° C. in the presence of 50 μM ampicillin until OD600 reached 0.5-0.6. After adding 1 mM IPTG and 5 μM FeSO 4 , cells were incubated at 30 ° C. for an additional 4 hours. Cells were collected, pelleted and resuspended in PBS containing protease inhibitors (cOmplete, Mini, EDTA-free, Roche, Basel, Switzerland). The cells were then lysed by sonication and centrifuged at 3000 g for 10 minutes. The soluble protein decapitation AlkB and its D135S mutant were purified using HisTrap FF Crude (Cytiva, Marlborough, MA) at 4 ° C. In a reaction buffer containing 300 mM KCl, 2 mM MgCl2, 50 μM (NH4) 2Fe (SO4) 2.6H2O, 300 μM 2-ketoglutamate, 2 mM L-ascorbic acid, 50 μg / ml BSA, 50 mM MES buffer (pH 5.0). , The reaction containing the tRNA obtained in Example 1-4 and the decapitated AlkB and its D135S variant was incubated at 27 ° C. for 2 hours. Demethylation is a base modification of the Watson-Crick interface that inhibits reverse transcription (Motorin, Y., Muller, S., Behm-Ansmant, I., and Branlant, C. (2007). Methods Enzymol. 425, 21 -53.) is removed (Trewick, SC, Henshaw, TF, Hausinger, RP, Lindahl, T., and Sedgwick, B. (2002). Nature 419, 174-178.).
実施例1-6:次世代シークエンシング(NGS)によるアミノアシル化率を測定するためのtRNAの配列決定
 tRNAの配列決定は、既報(非特許文献21)に変更を加えて実施した。簡単に説明すれば、実施例1-4および実施例1-5に記載のようにして過ヨウ素酸酸化、β脱離、脱アミノアシル化、末端修復および脱メチル化を行ったtRNA(500 ng)を、ライブラリーを作製するための鋳型として使用した。NEBNext Small RNA Library Prep Set for Illumina (New England Biolabs、マサチューセッツ州イプスウィッチ)を製造元の教示に従って使用し、RNAの5'末端と3'末端の両方へのアダプター配列を連結し、スモールRNAseqライブラリーを調製した。ライブラリーサイズの選択は、Super Sep Ace 10-20%(和光)を使用して行った。
Example 1-6: Sequencing of tRNA for measuring aminoacylation rate by next-generation sequencing (NGS) Sequencing of tRNA was carried out with modifications to the previous report (Non-Patent Document 21). Briefly, tRNAs (500 ng) subjected to periodic acid oxidation, β desorption, deaminoacylation, end repair and demethylation as described in Examples 1-4 and 1-5. Was used as a template for making a library. Using the NEBNext Small RNA Library Prep Set for Illumina (New England Biolabs, Ipswich, Mass.) According to the manufacturer's instructions, ligate adapter sequences to both the 5'and 3'ends of RNA to create a small RNAseq library. Prepared. The library size was selected using Super Sep Ace 10-20% (Wako).
 次いで、cDNAライブラリーの濃度を、GenNext NGS Library Prep Kit(TOYOBO、大阪、日本)を使用し、定量した。配列決定は、150-base single-end modeのイルミナNextseq 500プラットフォーム (イルミナ、カリフォルニア州サンディエゴ)で行った。出力データは逆多重化し、Illumina's bcl2fastqソフトウェアを使用し、BCL-to-Fastq変換を行った。 Next, the concentration of the cDNA library was quantified using the GenNext NGS Library Prep Kit (TOYOBO, Osaka, Japan). Sequencing was performed on the Illumina Nextseq 500 platform (Illumina, San Diego, CA) in 150-base single-end mode. The output data was demultiplexed and BCL-to-Fastq conversion was performed using Illumina's bcl2fastq software.
 配列決定した読み値(リード)を、Blastバージョン2.2.26を使用し、ヒトtRNA配列決定にマッピングし、ミスマッチなしに、tRNA配列の3'末端の25ヌクレオチドにアラインした。3'末端CCAにアラインされたリードは、アミノアシル化したtRNAに由来し、3'末端CCで終了した読み値は、非アミノアシル化tRNAに由来すると見做した。すなわち、tRNAのアミノアシル化率は、上記の手順の最終産物の配列決定によってプロファイルし、アミノアシル化および非アミノアシル化tRNAは、それぞれ3'末端CCA(3'CCA-tRNA)およびCC(3'CC-tRNA)によって区別した。
 アミノアシル化率は、3'末端CCAおよび3'末端CCにアラインされた読み値の合計に対する3'末端CCAにアラインされた読み値の比率として決定した。tRNAアイソデコーダーの存在比は、各アイソデコーダーの3'末端CCAおよびCCアライン読み値の合計に基づいて計算した。
The sequenced readings (reads) were mapped to human tRNA sequencing using Blast version 2.2.26 and aligned to the 3'end 25 nucleotides of the tRNA sequence without mismatch. Reads aligned to the 3'end CCA were considered to be derived from aminoacylated tRNAs, and readings terminated at 3'end CCs were considered to be derived from non-aminoacylated tRNAs. That is, the aminoacylation rate of the tRNA is profiled by sequencing the final product of the above procedure, and the aminoacylated and non-aminoacylated tRNAs are 3'terminal CCA (3'CCA-tRNA) and CC (3'CC-), respectively. Distinguished by tRNA).
The aminoacylation rate was determined as the ratio of the readings aligned to the 3'end CCA to the sum of the readings aligned to the 3'end CCA and the 3'end CC. The abundance ratio of the tRNA isodecoder was calculated based on the sum of the 3'end CCA and CC-aligned readings of each isodecoder.
 ここに調べたtRNAは次の通りである。
 tRNAAla-AGC、tRNAAla-CGC、tRNAAla-TGC;
 tRNAArg-ACG、tRNAArg-CCG、tRNAArg-CCT、tRNAArg-TCG、tRNAArg-TCT;
 tRNAAsn-GTT;
 tRNAAsp-GTC;
 tRNACys-GCA;
 tRNAGln-CTG、tRNAGln-TTG;
 tRNAGlu-CTC、tRNAGlu-TTC;
 tRNAGly-CCC、tRNAGly-GCC、tRNAGly-TCC;
 tRNAHis-GTG;
 tRNAIle-AAT、tRNAIle-TAT;
 tRNALeu-AAG、tRNALeu-CAA、tRNALeu-CAG、tRNALeu-TAA、tRNALeu-TAG;
 tRNALys-CTT、tRNALys-TTT;
 tRNAMet-CAT;
 tRNAPhe-GAA;
 tRNAPro-AGG、tRNAPro-CGG、tRNAPro-TGG;
 tRNASeC-TCA、tRNASer-AGA、tRNASer-CGA、tRNASer-GCT、tRNASer-TGA;
 tRNAThr-AGT、tRNAThr-CGT、tRNAThr-TGT;
 tRNATrp-CCA;
 tRNATyr-GTA;
 tRNAVal-AAC、tRNAVal-CAC、tRNAVal-TAC;
 tRNAiMet-CAT;
 mt-tRNAAla-TGC;
 mt-tRNAArg-TCG;
 mt-tRNAAsn-GTT;
 mt-tRNAAsp-GTC;
 mt-tRNACys-GCA;
 mt-tRNAGln-TTG;
 mt-tRNAGlu-TTC;
 mt-tRNAGly-TCC;
 mt-tRNAHis-GTG;
 mt-tRNAIle-GAT;
 mt-tRNALeu-TAG、mt-tRNALeu-TAA;
 mt-tRNALys-TTT;
 mt-tRNAMet-CAT;
 mt-tRNAPhe-GAA;
 mt-tRNAPro-TGG;
 mt-tRNASer-GCT、mt-tRNASer-TGA;
 mt-tRNAThr-TGT;
 mt-tRNATrp-TCA;
 mt-tRNATyr-GTA;
 mt-tRNAVal-TAC。
 ここに、tRNAの表記は、コドンごとの表記となっている。例えば、tRNAGln-CTGまたは、単なる「Gln-CTG」は、コドンがCTGでGlnがアミノアシル化されているtRNAを意味する。
The tRNAs examined here are as follows.
tRNA Ala -AGC, tRNA Ala -CGC, tRNA Ala -TGC;
tRNA Arg -ACG, tRNA Arg -CCG, tRNA Arg -CCT, tRNA Arg -TCG, tRNA Arg -TCT;
tRNA Asn -GTT;
tRNA Asp -GTC ;
tRNA Cys -GCA;
tRNA Gln -CTG, tRNA Gln -TTG;
tRNA Glu -CTC, tRNA Glu -TTC;
tRNA Gly -CCC, tRNA Gly -GCC, tRNA Gly -TCC;
tRNA His -GTG;
tRNA Ile -AAT, tRNA Ile -TAT;
tRNA Leu -AAG, tRNA Leu -CAA, tRNA Leu -CAG, tRNA Leu -TAA, tRNA Leu -TAG;
tRNA Lys -CTT, tRNA Lys -TTT;
tRNA Met -CAT ;
tRNA Phe -GAA ;
tRNA Pro -AGG, tRNA Pro -CGG, tRNA Pro -TGG;
tRNA SeC -TCA, tRNA Ser -AGA, tRNA Ser -CGA, tRNA Ser -GCT, tRNA Ser -TGA;
tRNA Thr -AGT, tRNA Thr -CGT, tRNA Thr -TGT;
tRNA Trp -CCA;
tRNA Tyr -GTA ;
tRNA Val -AAC, tRNA Val -CAC, tRNA Val -TAC;
tRNA iMet -CAT
mt-tRNA Ala -TGC;
mt-tRNA Arg -TCG;
mt-tRNA Asn -GTT ;
mt-tRNA Asp -GTC ;
mt-tRNA Cys -GCA ;
mt-tRNA Gln -TTG;
mt-tRNA Glu -TTC;
mt-tRNA Gly -TCC;
mt-tRNA His -GTG ;
mt-tRNA Ile -GAT ;
mt-tRNA Leu -TAG, mt-tRNA Leu -TAA;
mt-tRNA Lys -TTT ;
mt-tRNA Met -CAT ;
mt-tRNA Phe -GAA ;
mt-tRNA Pro -TGG;
mt-tRNA Ser -GCT, mt-tRNA Ser -TGA;
mt-tRNA Thr -TGT ;
mt-tRNA Trp -TCA;
mt-tRNA Tyr -GTA ;
mt-tRNA Val -TAC.
Here, the notation of tRNA is the notation for each codon. For example, tRNA Gln -CTG, or just "Gln-CTG", means a tRNA whose codon is CTG and Gln is aminoacylated.
実施例1-7:最終産物の配列決定によるtRNAのアミノアシル化率のプロファイル
 実施例1-6に従ってtRNA配列決定を行い、アミノ酸飢餓下ではtRNAのあるサブセットのアミノアシル化率が低いことが確認された(図3および図5)。詳細には、アミノ酸飢餓下、tRNAGlnのアミノアシル化率が最も低いことが判明した(図3および図5)。また、アミノ酸飢餓下、tRNASerのアミノアシル化率が低いことが報告されているが(非特許文献21)、これと同様、本実施例でもアイソアクセプターのサブグループの中で、tRNASerのアミノアシル化率は特徴的に低いことが示された(64.5%、SD = 3.9)。また、本実施例ではさらに、アミノ酸飢餓下、tRNAGlu、tRNATyrならびにミトコンドリアDNA由来のtRNAAla、tRNAPro、tRNASerおよびtRNAValも、平均アミノアシル化率の1SD未満で低いことが示され、これらは今回初めて見出された事象である(図3および図5)。
Example 1-7: Profile of aminoacylation rate of tRNA by sequencing the final product TRNA sequencing was performed according to Example 1-6, and it was confirmed that the aminoacyllation rate of a subset of tRNA was low under amino acid starvation. (Fig. 3 and Fig. 5). Specifically, it was found that tRNA Gln had the lowest aminoacylation rate under amino acid starvation (FIGS. 3 and 5). In addition, it has been reported that the aminoacyllation rate of tRNA Ser is low under amino acid starvation (Non-Patent Document 21). Similarly, in this example, the aminoacyl of tRNA Ser is included in the subgroup of isoacceptors. The conversion rate was shown to be characteristically low (64.5%, SD = 3.9). Further, in this example, under amino acid starvation, tRNA Glu , tRNA Tyr and tRNA Ala , tRNA Pro , tRNA Ser and tRNA Val derived from mitochondrial DNA were also shown to be low at an average amino acylation rate of less than 1 SD. Is the first event found this time (Figs. 3 and 5).
 また、tRNA配列決定によって測定されたtRNAの全体的なアミノアシル化率はTIG-1細胞において、15時間の飢餓でもほとんど変わらなかった(図2、図4)。他方、酵母や一部のがん細胞では、全体的なアミノアシル化率が、1時間程度のアミノ酸飢餓で減少することが知られている(非特許文献13、15)。そして、tRNA配列決定によって測定されたtRNAの全体的なアミノアシル化率はTIG-1細胞において、以下で説明する酵母、がん細胞との対比で高かった(80.7%、SD = 10.6)(図5および図4)。以上のことから、tRNAのアミノアシル化ダイナミクスは、種や細胞の型に応じて異なると考えられる。 In addition, the overall aminoacylation rate of tRNA measured by tRNA sequencing was almost unchanged even after 15 hours of starvation in TIG-1 cells (Figs. 2 and 4). On the other hand, in yeast and some cancer cells, it is known that the overall aminoacylation rate decreases after about 1 hour of amino acid starvation (Non-Patent Documents 13 and 15). The overall aminoacylation rate of tRNA measured by tRNA sequencing was higher in TIG-1 cells than in yeast and cancer cells described below (80.7%, SD = 10.6) (Fig. 5). And Figure 4). From the above, it is considered that the aminoacylation dynamics of tRNA differs depending on the species and cell type.
 アミノ酸を補充しても、tRNAの全体的なアミノアシル化率は変化しなかった(80.7±10.6%、図4)。また、アミノ酸補充状態における全体的なアミノアシル化率は、核およびミトコンドリアDNA由来のtRNA間において類似していることが解析できた(図6)。
 個々のtRNAアイソアクセプターレベルでは、tRNAのアミノアシル化プロファイルは動的に変動した(図3、図5)。tRNAGlnとtRNAGluは、アミノ酸補充により、アミノアシル化率が約80%に回復したが、他方、飢餓状態では低いtRNASerは、補充後も低いままであった(図5)。この傾向は、同族アミノ酸レベルでtRNAアミノアシル化ダイナミクスを分析した場合、つまり、同族アミノ酸をアミノアシル化するtRNAのサブグループ分析の結果(図8A)と同様であった。飢餓に対し、アミノ酸補充時のtRNAアミノアシル化率の変化を分析したところ、また、統計解析の結果、アミノ酸飢餓に対して、アミノ酸補充状態において、tRNALeu-CAG、mt-tRNAHis-CAC、tRNASer-CGA、tRNAAsn-GTT、tRNAPhe-GAA、tRNASer-GCT、tRNAThr-TGT、tRNAThr-CGT、tRNAIle-TATおよびtRNAArg-TCTが、顕著にアミノアシル化比率が減少し(図8B)、tRNAGln-CTG、tRNAGln-TTG、およびmt-tRNAVal-GUAが、顕著にアミノアシル化率が増加した(図8C)。tRNAGln-CTGではアミノ酸飢餓状態に対して、アミノ酸補充により最大5SDの変化が認められた(図9)。このことは、tRNAGln-CTGのアミノアシル化率は、アミノ酸に鋭敏に反応することを示している。
Amino acid supplementation did not change the overall aminoacylation rate of tRNAs (80.7 ± 10.6%, Figure 4). In addition, it was possible to analyze that the overall aminoacylation rate in the amino acid supplemented state was similar between tRNAs derived from nuclear and mitochondrial DNA (Fig. 6).
At individual tRNA isoacceptor levels, the aminoacylation profile of tRNA varied dynamically (FIGS. 3 and 5). Amino acid supplementation restored tRNA Gln and tRNA Glu to an amino acylation rate of about 80%, while tRNA Ser , which was low in starvation, remained low after supplementation (Fig. 5). This tendency was similar to the analysis of tRNA aminoacylation dynamics at the homologous amino acid level, that is, the result of subgroup analysis of tRNA that aminoacylates homologous amino acids (FIG. 8A). When the change in tRNA amino acylation rate during amino acid supplementation was analyzed for starvation, and as a result of statistical analysis, tRNA Leu -CAG, mt-tRNA His -CAC, tRNA were analyzed for amino acid starvation in the amino acid supplementation state. Ser -CGA, tRNA Asn -GTT, tRNA Phe -GAA, tRNA Ser -GCT, tRNA Thr -TGT, tRNA Thr -CGT, tRNA Ile -TAT and tRNA Arg -TCT have significantly reduced amino acylation ratios (Fig. 8B), tRNA Gln -CTG, tRNA Gln -TTG, and mt-tRNA Val -GUA markedly increased amino acylation rates (FIG. 8C). In tRNA Gln -CTG, a maximum of 5 SD change was observed by amino acid supplementation for amino acid starvation (Fig. 9). This indicates that the aminoacylation rate of tRNA Gln -CTG reacts sensitively to amino acids.
 大腸菌(非特許文献10)、酵母(非特許文献13)および癌細胞HEK293細胞(非特許文献15)などの増殖性の種を使用した研究では、tRNAのアミノアシル化率は急速かつグローバルに減少することが示されている。特に、tRNALeuなどの残りのtRNAのアミノアシル化率は、飢餓状態では減少したと報告されているが。他方、本実施例では、それらと異なり、飢餓時のTIG-1細胞のtRNAのアミノアシル化率の変動は少なく、むしろアミノアシル化率は保存されていた(図3および図5)。このことは、ここで使用した細胞株が自然に確立され、増殖性が低い性質を有することが原因である可能性がある。 In studies using proliferative species such as Escherichia coli (Non-Patent Document 10), yeast (Non-Patent Document 13) and cancer cells HEK293 cells (Non-Patent Document 15), the aminoacylation rate of tRNA decreases rapidly and globally. It is shown that. In particular, the aminoacylation rates of the remaining tRNAs, such as tRNA Leu , have been reported to decrease during starvation. On the other hand, in this example, unlike them, the fluctuation of the aminoacyllation rate of tRNA of TIG-1 cells during starvation was small, and rather the aminoacylation rate was conserved (FIGS. 3 and 5). This may be due to the fact that the cell lines used here are naturally established and have low proliferative properties.
実施例2
tRNAアミノアシル化検出PCR法であるi-tRAP法
実施例2-1:i-tRAP法の開発
 tRNAGln-CTGのアミノアシル化率の動的変化を調査するため、個々のtRNAアミノアシル化検出PCR法である、i-tRAPと呼称する方法(図10)を企図した。この方法には、次の手順が含まれる。
 実施例1-1から実施例1-4に記載するようにして、TIG-1細胞から抽出した、アミノアシル化および非アミノアシル化tRNAをそれぞれ脱メチル化3'CCA-tRNAおよび3'CC-tRNAに加工した。このtRNA(300 ng)を、3'末端ブロックを有する5'アデニル化アダプターであるアデニル化リンカー(5'-rAppCTGTAGGCACCATCAAT/3ddC/-3')(配列番号1)(PerkinElmer(Waltham、MA))(20 pmol)と混合し、次に、10X反応緩衝液2 μLと1ユニット T4 Rnl2トランケート体(トランケート化T4 RNAリガーゼ2, truncated、New England Biolabs)を含む連結混合物(総量20 μL)で処理した。得られた混合物を、37℃にて60分間インキュベートした。なお、配列「5'-rAppCTGTAGGCACCATCAAT/3ddC/-3'」において、配列としては、「CTGTAGGCACCATCAATC」であり、「rApp」は、5'末の塩基(C)がアデニル化されていることを意味し、「/3ddc」は、3’末にジデオキシシチジンが結合していることを意味する。なお、「ddc」は、Cが脱酸化されていることを意味する。
Example 2
i-tRAP method which is a tRNA aminoacylation detection PCR method Example 2-1: Development of i-tRAP method In order to investigate the dynamic change in the aminoacylation rate of tRNA Gln -CTG, individual tRNA aminoacylation detection PCR methods are used. A method called i-tRAP (Fig. 10) was planned. This method involves the following steps:
Aminoacylated and non-aminoacylated tRNAs extracted from TIG-1 cells were transferred to demethylated 3'CCA-tRNA and 3'CC-tRNA, respectively, as described in Examples 1-1 to 1-4. processed. This tRNA (300 ng) is converted to an adenylation linker (5'-rAppCTGTAGGCACCATCAAT / 3ddC / -3') (SEQ ID NO: 1) (PerkinElmer (Waltham, MA)), which is a 5'adenylation adapter with a 3'end block. It was mixed with 20 pmol) and then treated with a ligated mixture (total volume 20 μL) containing 2 μL of 10X reaction buffer and 1 unit of T4 Rnl2 truncated form (tranlated T4 RNA ligase 2, truncated, New England Biolabs). The resulting mixture was incubated at 37 ° C. for 60 minutes. In the sequence "5'-rAppCTGTAGGCACCATCAAT / 3ddC / -3'", the sequence is "CTGTAGGCACCATCAATC", and "rApp" means that the base (C) at the end of 5'is adenylated. , "/ 3ddc" means that dideoxycytidine is bound at the end of 3'. In addition, "ddc" means that C is deoxidized.
 得られた連結産物を鋳型として使用するため、アダプターが連結されたRNAを、95℃で5分間インキュベートし、氷上に置いて変性させた後、以下の逆転写(RT)プライマー(Fasmac)を用いるReverTra Ace(TOYOBO)によって逆転写した。
 逆転写のためのプライマー(5'-3'):
ATGTACACCTTCGGCAACCACTACATTGATGGTGCCTACAG(配列番号2)
In order to use the obtained ligation product as a template, RNA to which the adapter is ligated is incubated at 95 ° C. for 5 minutes, placed on ice for denaturation, and then the following reverse transcriptase (RT) primer (Fasmac) is used. Reverse transcribed by ReverTra Ace (TOYOBO).
Primer for reverse transcription (5'-3'):
ATGTACACCTTCGGCAACCACTACATTGATGGTGCCTACAG (SEQ ID NO: 2)
 なお、鋳型として使用するにはtRNA配列は短すぎ、以降のqPCR用のプライマーおよびプローブセットを作ることができないため、RTプライマーの配列は、アデニル化リンカーの配列と非ヒト種(Gryllus bimaculatus)からの付加配列(Tsukamoto and Nagata, 2016)とに基づいて決定した。逆転写反応は42℃で60分間行った。得られたcDNA溶液を水で1:5に希釈し、この溶液1 μLを、2X TaqMan Genotyping Master Mix(Thermo Fisher Scientific) 5 μL、以下に示す特定のプライマーとプローブ(表1)(Thermo Fisher Scientific)を含むCustom TaqMan SNP Genotyping Assays 0.4 μL、および蒸留水3.6μlを含むリアルタイムPCR混合物に添加した。 Since the tRNA sequence is too short to be used as a template and it is not possible to make a primer and probe set for subsequent qPCR, the RT primer sequence is derived from the sequence of the adenylated linker and the non-human species (Gryllus bimaculatus). It was determined based on the additional sequence of (Tsukamoto and Nagata, 2016). The reverse transcription reaction was carried out at 42 ° C. for 60 minutes. The obtained cDNA solution is diluted 1: 5 with water, and 1 μL of this solution is divided into 2X TaqMan Genotyping Master Mix (Thermo Fisher Scientific) 5 μL, and the specific primers and probes shown below (Table 1) (Thermo Fisher Scientific). ) Was added to a real-time PCR mixture containing 0.4 μL of Custom TaqMan SNP Genotyping Assays and 3.6 μl of distilled water.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 ここでは、tRNAの3'末端の配列における単一ヌクレオチドの違い、すなわちCCA対CCを検出するため、2つのプローブベースqPCRアッセイを利用している。qPCRアッセイを行うため、tRNAの3'末端での配列のみに対応して配列が異なる2つのプローブのプローブセット、すなわち1つのプローブはVICで標識した3'CCA-tRNAに相補的な配列を有し、もう1つのプローブはFAMで標識した3'CC-tRNAに相補的な配列を有するプローブセットを用意した。詳細には、VICおよびFAMからの蛍光シグナルは、プローブに取り付けたクエンチャーによって消光する。これらのプローブは、マイナーグルーブバインダー(MGB)部分とも結合している。同じ量のVICおよびFAM標識プローブを混合し、それらをqPCRに使用した。Taqポリメラーゼを使用して伸長すると、プローブは分解され、VICまたはFAMのいずれかが遊離し、結果として生じる蛍光シグナルにより、増幅産物の定量が可能になった。VICからの蛍光信号は3'CCA-tRNAの量を表し、FAMからの信号は3'CC-tRNAの信号を表していた。 Here, two probe-based qPCR assays are used to detect the single nucleotide difference in the 3'end sequence of the tRNA, ie CCA vs. CC. To perform the qPCR assay, a probe set of two probes with different sequences corresponding only to the sequence at the 3'end of the tRNA, ie one probe has a sequence complementary to the VIC-labeled 3'CCA-tRNA. Then, for the other probe, a probe set having a sequence complementary to the FAM-labeled 3'CC-tRNA was prepared. Specifically, the fluorescent signals from the VIC and FAM are quenched by a quencher attached to the probe. These probes are also bound to the minor groove binder (MGB) moiety. The same amount of VIC and FAM labeled probes were mixed and used for qPCR. When extended using Taq polymerase, the probe was degraded and either VIC or FAM was released, and the resulting fluorescent signal allowed quantification of the amplification product. The fluorescent signal from VIC represented the amount of 3'CCA-tRNA, and the signal from FAM represented the signal of 3'CC-tRNA.
 i-tRAP法が定量的にアミノアシル化率を判定できるかを検証するために、3'CCA-tRNAおよび3'CC-tRNA配列を含むPCR産物を調製した。
 tRNA配列として、アミノ酸リスポンダーはtRNAGln-CTGを、対照としての非リスポンダーはtRNAGly-GCCを選択した。tRNAGlnには2つのアイソアクセプターtRNAGln-CTGおよびtRNAGln-TTGが含まれ、前者には7つのアイソデコーダーがある。検出されたtRNAGln-CTGのアイソデコーダーは#7を除き、アミノ酸に反応し(図11A)、tRNAGln-CTGのアイソデコーダー#1がこのグループで最もアミノアシル化率が豊富であった: tRNAGlnの79.1±3.2%、およびtRNAGln-CTG の86.8±2.1% (図11B)。tRNAGln-CTGのアイソデコーダー#1のプライマーとプローブのセットを調製した(図11Cおよび表1)。
In order to verify whether the i-tRAP method can quantitatively determine the aminoacylation rate, PCR products containing 3'CCA-tRNA and 3'CC-tRNA sequences were prepared.
As the tRNA sequence, tRNA Gln -CTG was selected for the amino acid responder, and tRNA Gly -GCC was selected for the non-responder as a control. The tRNA Gln contains two isoacceptors, tRNA Gln -CTG and tRNA Gln -TTG, the former having seven isodecoders. The detected tRNA Gln -CTG isodecoders responded to amino acids except # 7 (Fig. 11A), and the tRNA Gln -CTG isodecoder # 1 had the highest aminoacylation rate in this group: tRNA Gln . 79.1 ± 3.2% of, and 86.8 ± 2.1% of tRNA Gln -CTG (Fig. 11B). A set of primers and probes for tRNA Gln -CTG isocoder # 1 was prepared (FIG. 11C and Table 1).
 表1に示すプローブは、tRNAGln-CTGのアイソデコーダー#1と、tRNAGlnのアイソアクセプターおよびtRNAGln-CTGのアイソデコーダー#6とを区別するアイソアクセプター特異的なtRNAGln-CTGの配列を含んでいた。フォワードプライマーは、tRNAGln-CTGのアイソアクセプター#1特異的な配列を含む。この配列は、他のアイソデコーダーとは1~4ヌクレオチドで異なっていた。アニーリング効率はアイソデコーダー#1で支配的であると想定したが、他のアイソデコーダーが検出される可能性をすべて排除した訳ではない。アミノ酸に対する代表的な非リスポンダーとして、tRNAGly-GCCを選択し、最も豊富なアイソデコーダー#2のプライマーとプローブのセットを調製した(図12A-C)。 The probes shown in Table 1 are isoacceptor-specific sequences of tRNA Gln -CTG that distinguish between tRNA Gln -CTG iso-decoder # 1 and tRNA Gln -CTG iso-acceptor and tRNA Gln -CTG iso-decoder # 6. Included. The forward primer contains an isoacceptor # 1 specific sequence of tRNA Gln -CTG. This sequence was 1 to 4 nucleotides different from other isodecoders. Annealing efficiency was assumed to be dominant in isodecoder # 1, but it did not rule out the possibility that other isodecoders would be detected. TRNA Gly -GCC was selected as the representative non-responder for amino acids to prepare the most abundant set of primers and probes for Isocoder # 2 (Fig. 12A-C).
実施例2-2:i-tRAP法の検証
 実施例2-1に記載のようにして開発したi-tRAPの検証のため、このシステムにおけるtRNAの3'末端(CC vs CCA)の検出特異性を最初に確認した。この目的のため、3'CCA-tRNAまたは3'CC-tRNAのいずれかをPCRにて増幅させ、その増幅産物をi-tRAPの鋳型として使用した。
Example 2-2: Verification of i-tRAP method For the verification of i-tRAP developed as described in Example 2-1 the detection specificity of the 3'end (CC vs CCA) of tRNA in this system. Was confirmed first. For this purpose, either 3'CCA-tRNA or 3'CC-tRNA was amplified by PCR and the amplified product was used as a template for i-tRAP.
 すなわち、標準曲線を作成するためのtRNA配列を含むPCR産物の調製では、表2に示す、1つのtRNAあたり4つのオリゴヌクレオチドを設計した(Fasmac、神奈川、日本)。
Figure JPOXMLDOC01-appb-T000002
That is, in the preparation of the PCR product containing the tRNA sequence for creating a standard curve, four oligonucleotides per tRNA shown in Table 2 were designed (Fasmac, Kanagawa, Japan).
Figure JPOXMLDOC01-appb-T000002
 第1フォワード(1F)オリゴヌクレオチドは、リンカー配列を含む37ヌクレオチドであり、第2、第3、第4リバースプライマー(2R、3Rおよび4R)は、tRNA配列を含む33-37ヌクレオチドであった。3'CCA-tRNAのDNA断片の作製には、2Rオリゴヌクレオチドを用い、3'CC-tRNAのDNA断片の作製には、3Rオリゴヌクレオチドを用いた。プライマー伸長反応混合物には、25μL中、3つのオリゴヌクレオチド(3'CCA-tRNA; 1F、2R、3R、3'CC-tRNA; 1F、3R、4R)(各25 pmol)と12.5 μL KOD One PCR Master Mix-Blue-(TOYOBO)が含まれていた。混合物を98℃で60秒間インキュベートした後、98℃で10秒間、60℃で5秒間、68℃で5秒間の12サイクルを行った。得られた反応混合物(10 μL)を鋳型として使用し、反応混合物200 μl中に1Fと3R、または1Fと4Rオリゴヌクレオチド(100 pmol)を含むPCRを行った。混合物を98℃で60秒間インキュベートした後、98℃で10秒間、60℃で5秒間、68℃で5秒間の40サイクルを行った。PCR産物を2%アガロースゲルで電気泳動し、ミドリグリーンダイレクト(日本ジェネティクス、東京、日本)で染色することにより視覚化した。アガロースゲルから得られた目的のDNAを、QIAquick Gel Extraction Kit(Qiagen、ヒルデン、ドイツ)で精製し、溶出緩衝液30 μLで溶出した。NanoDrop 2000(Thermo Fisher Scientific)を使用し、精製されたPCR産物の濃度を決定した。 The first forward (1F) oligonucleotide was 37 nucleotides containing the linker sequence, and the second, third, and fourth reverse primers (2R, 3R, and 4R) were 33-37 nucleotides containing the tRNA sequence. A 2R oligonucleotide was used to prepare a DNA fragment of 3'CCA-tRNA, and a 3R oligonucleotide was used to prepare a DNA fragment of 3'CC-tRNA. The primer extension reaction mixture contains 3 oligonucleotides (3'CCA-tRNA; 1F, 2R, 3R, 3'CC-tRNA; 1F, 3R, 4R) (25 pmol each) and 12.5 μL KOD One PCR in 25 μL. Master Mix-Blue- (TOYOBO) was included. After incubating the mixture at 98 ° C for 60 seconds, 12 cycles of 98 ° C for 10 seconds, 60 ° C for 5 seconds and 68 ° C for 5 seconds were performed. Using the obtained reaction mixture (10 μL) as a template, PCR containing 1F and 3R or 1F and 4R oligonucleotides (100 pmol) in 200 μl of the reaction mixture was performed. After incubating the mixture at 98 ° C for 60 seconds, 40 cycles of 98 ° C for 10 seconds, 60 ° C for 5 seconds and 68 ° C for 5 seconds were performed. The PCR product was visualized by electrophoresis on a 2% agarose gel and staining with Midori Green Direct (Nippon Genetics, Tokyo, Japan). The DNA of interest obtained from the agarose gel was purified with the QIAquick Gel Extraction Kit (Qiagen, Hilden, Germany) and eluted with 30 μL of elution buffer. The concentration of the purified PCR product was determined using NanoDrop2000 (Thermo Fisher Scientific).
 図13は、(A)3'CCA-tRNAGln-CTG配列および(B)3'CC-tRNAGln-CTG配列を含む合成DNA鋳型を使用したi-tRAP法のリアルタイムプロットを示すグラフである。黒色の線は、CCAプローブからのVICシグナルを示し、灰色の線はCCプローブからのFAMシグナルを示す。図14は、(A)3'CCA-tRNAGly-GCC配列および(B)3'CC-tRNAGly-GCC配列を含む合成DNA鋳型を使用したi-tRAPのリアルタイムプロットを示すグラフである。黒色の線は、CCAプローブからのVICシグナルを示し、灰色の線はCCプローブからのFAMシグナルを示す。 結果、VIC(3'CCA-tRNAの検出用)とFAM(3'CC-tRNAの検出用)プローブの混合物を使用するリアルタイムプロットは、i-tRAP法が3'CCA-tRNAまたは3'CC-tRNAの配列を正確に識別できることを示した(図13、図14)。 FIG. 13 is a graph showing a real-time plot of the i-tRAP method using a synthetic DNA template containing (A) 3'CCA-tRNA Gln -CTG sequence and (B) 3'CC-tRNA Gln -CTG sequence. The black line shows the VIC signal from the CCA probe and the gray line shows the FAM signal from the CC probe. FIG. 14 is a graph showing a real-time plot of i-tRAP using a synthetic DNA template containing (A) 3'CCA-tRNAGly-GCC sequence and (B) 3'CC-tRNAGly-GCC sequence. The black line shows the VIC signal from the CCA probe and the gray line shows the FAM signal from the CC probe. As a result, real-time plots using a mixture of VIC (for detection of 3'CCA-tRNA) and FAM (for detection of 3'CC-tRNA) probes show that the i-tRAP method is 3'CCA-tRNA or 3'CC-. It was shown that the sequence of tRNA can be accurately identified (FIGS. 13 and 14).
 次に、蛍光シグナルの比率が3'CCA-tRNAと3'CC-tRNAの量の比率を反映しているか否かを検証した。この目的のため、3'CCA-tRNAと3'CC-tRNA配列を含むPCR産物をいくつかの比率で混合し、これらをi-tRAPの鋳型として使用した。具体的には、2つのPCR産物をいくつかの比率(3'CCA-tRNA:3'CC-tRNA; 10:90、20:80、30:70、40:60、50:50、60:40、70: 30、80:20および90:10)で一緒にし、qPCRの標準曲線を確立するために使用した。標 準溶液の総濃度を1 ag/μLに調整し、線形検量線を作成した。7900HTリアルタイムPCRシステム(Thermo Fisher Scientific)を使用し、閾値サイクル(Ct)を決定した。閾値サイクル(Ct)とは、PCR増幅産物がある一定量に達したときのサイクル数である。サイクリング条件は次のとおりである:95℃、10分間の初期変性、ならびに95℃で5秒および60℃で60秒の40または50サイクル。蛍光シグナルを各サイクルの60℃工程で収集した。すべての反応を2回実行し、閾値サイクルを決定した。
 結果、図15および図16に示すように、すべての産物における3'CCA-tRNAに由来するPCR産物の比率は、FAM-およびVIC-層(それぞれR2 = 1.00と0.98)間の閾値サイクル値(ΔCt)の差に比例していた。注目すべきことに、異なる量(0.1~100 attoグラム)の鋳型で作成した標準曲線は関係せず、従って、試料中のtRNA濃度は定量に影響を与える可能性が低かった(図17)。
Next, it was examined whether the ratio of the fluorescent signal reflected the ratio of the amount of 3'CCA-tRNA and 3'CC-tRNA. For this purpose, PCR products containing 3'CCA-tRNA and 3'CC-tRNA sequences were mixed in several proportions and used as templates for i-tRAP. Specifically, two PCR products in several ratios (3'CCA-tRNA: 3'CC-tRNA; 10:90, 20:80, 30:70, 40:60, 50:50, 60:40. , 70:30, 80:20 and 90:10) together and used to establish a standard curve for qPCR. The total concentration of the standard solution was adjusted to 1 ag / μL and a linear calibration curve was prepared. A 7900HT real-time PCR system (Thermo Fisher Scientific) was used to determine the threshold cycle (Ct). The threshold cycle (Ct) is the number of cycles when a certain amount of PCR amplification product is reached. Cycling conditions are as follows: 95 ° C, 10 minutes initial denaturation, and 40 or 50 cycles at 95 ° C for 5 seconds and 60 ° C for 60 seconds. Fluorescent signals were collected at the 60 ° C. step of each cycle. All reactions were performed twice to determine the threshold cycle.
As a result, as shown in FIGS. 15 and 16, the proportion of PCR products derived from 3'CCA-tRNA in all products is the threshold cycle value (R2 = 1.00 and 0.98, respectively) between the FAM- and VIC-layers (R2 = 1.00 and 0.98, respectively). It was proportional to the difference in ΔCt). Notably, standard curves made with different amounts (0.1-100 attogram) of templates were not relevant, so tRNA concentrations in the sample were unlikely to affect quantification (Fig. 17).
 最後に、生体試料を使用し、i-tRAP法の定量性を検証した。
 この目的のため、最初に、一般的に使用されているヒト培養細胞であるHEK293T細胞からtRNAを調製し、弱アルカリで処理することにより、アミノアシル化されたtRNAを脱アシル化した。HEK293T細胞の培養は、実施例1-1でのTIG-1細胞の培養と同様であった。i-tRAP法により、tRNAGln-CTGとtRNAGly-GCCのアミノアシル化率が栄養豊富な状態で高く、これは、実施例1-3と同様のアルカリ処理により、大幅に減少することが明らかになった(図18AおよびB)。
Finally, using biological samples, the quantitativeness of the i-tRAP method was verified.
To this end, tRNAs were first prepared from commonly used cultured human cells, HEK293T cells, and treated with a weak alkali to deacylate the aminoacylated tRNAs. The culture of HEK293T cells was similar to the culture of TIG-1 cells in Example 1-1. By the i-tRAP method, the aminoacylation rates of tRNA Gln -CTG and tRNA Gly -GCC were high in a nutrient-rich state, and it was revealed that this was significantly reduced by the same alkaline treatment as in Examples 1-3. (Figs. 18A and B).
 次に、図2のように、アミノ酸を含むまたは含まない培地で培養したTIG-1細胞からのtRNAを使用し、アミノアシル化率を測定した。i-tRAP法の結果により、tRNAGln-CTGのアミノアシル化率がアミノ酸飢餓によって有意に減少し(図19A)、tRNAGly-GCCのそれは変化しない(図19B)ことが判明した。このことは、実施例1で示した簡略アミノアシル化tRNAseq法の結果と一致した(図5)。従って、i-tRAP法は、tRNAのアミノアシル化率を定量化できることが検証された。 Next, as shown in FIG. 2, the aminoacylation rate was measured using tRNA from TIG-1 cells cultured in a medium containing or not containing amino acids. The results of the i-tRAP method showed that the aminoacylation rate of tRNA Gln -CTG was significantly reduced by amino acid starvation (Fig. 19A), and that of tRNA Gly -GCC was unchanged (Fig. 19B). This was consistent with the results of the simplified aminoacyl-tRNAseq method shown in Example 1 (FIG. 5). Therefore, it was verified that the i-tRAP method can quantify the aminoacylation rate of tRNA.
実施例3
アミノ酸の消費および供給の間でのtRNAGlnのアミノアシル化率の振動変動
 実施例2にて説明したi-tRAP法により、tRNAGln-CTGのアミノアシル化および脱アミノアシル化のダイナミクスを評価した。対象として、アミノ酸補充に最も顕著に応答したtRNAGln-CTGを選択した(図5)。選択したtRNAGln-CTGは飢餓によって脱アミノアシル化され、同時にアミノ酸補充によって再アミノアシル化された。図20に示す実験スキームにより、アミノ酸飢餓によって、tRNAGln-CTGがどの段階で脱アミノアシル化されるかを調べた。i-tRAP法によって測定されるtRNAGln-CTGのアミノアシル化率は、簡略アミノアシル化tRNAseq法によって得られた結果と相互に検証した。すなわち、アミノ酸が豊富な条件下では、アミノアシル化率は70.5%(SE = 4.4)であり、これは飢餓の15時間後に29.1%(SE = 1.89)に脱アミノアシル化された(図3および21)。飢餓の3~6時間後には、アミノアシル化率の低下が見られた。飢餓後にtRNAのアミノアシル化率が維持する期間は、大腸菌(非特許文献10) およびHEK293細胞(非特許文献15)で見られた持続時間よりも比較的長かった。
Example 3
Vibrational Fluctuations in the Aminoacyllation Rate of tRNA Gln Between Consumption and Supply of Amino Acids The dynamics of aminoacylation and deaminoacylation of tRNA Gln -CTG were evaluated by the i-tRAP method described in Example 2. The tRNA Gln -CTG that responded most significantly to amino acid supplementation was selected as the subject (Fig. 5). The selected tRNA Gln -CTG was deaminoacylated by starvation and at the same time reaminoacylated by amino acid supplementation. The experimental scheme shown in FIG. 20 was used to investigate at what stage tRNA Gln -CTG was deaminoacylated by amino acid starvation. The aminoacylation rates of tRNA Gln -CTG measured by the i-tRAP method were cross-validated with the results obtained by the simplified aminoacylated tRNAseq method. That is, under amino acid-rich conditions, the aminoacylation rate was 70.5% (SE = 4.4), which was deaminoacylated to 29.1% (SE = 1.89) 15 hours after starvation (FIGS. 3 and 21). .. After 3-6 hours of starvation, a decrease in aminoacylation rate was observed. The duration at which the aminoacylation rate of tRNA was maintained after starvation was relatively longer than the duration seen in E. coli (Non-Patent Document 10) and HEK293 cells (Non-Patent Document 15).
 次いで、グルタミンをtRNAGlnに付加するグルタミニルtRNAシンセターゼ(QARS)の発現レベルを調べた。詳細には、製造元のプロトコールに従ってIsogen II(Nippon gene)を使用し、ラージRNAを細胞から抽出した。抽出したRNAをRQ1 DNase I(Promega、Madison、WI)で37℃、30分間処理した。次に、RNA(各300 ng)を、SuperScript VILO cDNA Synthesis Kit(Thermo Fisher Scientific)を使用して逆転写した。リアルタイムPCRの手順は、実施例1のtRNAの発現解析と同じであった。RT混合物を42℃で60分間インキュベートした。得られたcDNA溶液を水で1:5に希釈し、この溶液1 μLを、2xGeneAce SYBR qPCR Mixα(Nippon gene) 5 μL、各プライマー10 μM(配列は表3)0.5μL、および水 3μLを含むリアルタイムPCR混合物に加えた。 Next, the expression level of glutaminyl tRNA synthesizer (QARS), which adds glutamine to tRNA Gln , was examined. Specifically, large RNA was extracted from cells using Isogen II (Nippon gene) according to the manufacturer's protocol. The extracted RNA was treated with RQ1 DNase I (Promega, Madison, WI) at 37 ° C for 30 minutes. RNA (300 ng each) was then reverse transcribed using the SuperScript VILO cDNA Synthesis Kit (Thermo Fisher Scientific). The procedure of real-time PCR was the same as the expression analysis of tRNA of Example 1. The RT mixture was incubated at 42 ° C for 60 minutes. The resulting cDNA solution is diluted 1: 5 with water and 1 μL of this solution contains 5 μL of 2xGeneAce SYBR qPCR Mix α (Nippon gene), 10 μM of each primer (sequence 3) 0.5 μL, and 3 μL of water. Added to real-time PCR mixture.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 7900HTリアルタイムPCRシステム(Thermo Fisher Scientific)を使用した。サイクリング条件は次のとおりである:95℃で10分間の初期変性、ならびに95℃で15秒および60℃で30秒の40サイクル。蛍光シグナルは各サイクルの60℃工程で収集した。すべての反応は2回実行し、Ctを決定した。ΔCT法を用いて反応を評価するため、標準として、ATPシンターゼ周辺茎膜サブユニットB(ATP5F1)に特異的なプライマーセットを用いた。配列は、NCBIから取得した(QARS ; NM_005051.3、ATP5F1 ; NM_001688.5)。 The 7900HT real-time PCR system (Thermo Fisher Scientific) was used. Cycling conditions are as follows: initial denaturation at 95 ° C for 10 minutes, and 40 cycles at 95 ° C for 15 seconds and 60 ° C for 30 seconds. Fluorescent signals were collected at the 60 ° C. step of each cycle. All reactions were performed twice to determine Ct. In order to evaluate the reaction using the ΔCT method, a primer set specific for ATP synthase peripheral stalk subunit B (ATP5F1) was used as a standard. The sequence was obtained from NCBI (QARS; NM_005051.3, ATP5F1; NM_001688.5).
 結果、アミノ酸飢餓状態であっても、QARSの発現レベルは変化しなかったか、15時間後にわずかに増加した(図22)。このように、アミノアシル化tRNAの減少はQARSの発現レベルをアップレギュレートもダウンレギュレートもしなかったが、QARSの発現レベルを維持するだけでは、tRNAのアミノアシル化率を維持するには不十分であった。つまり、QARSの発現レベルは、グルタミンのアミノアシル化率に影響を与えない。 As a result, the expression level of QARS did not change or slightly increased after 15 hours even in the amino acid starvation state (Fig. 22). Thus, the reduction in aminoacyl-tRNA did not up-regulate or down-regulate the expression level of QARS, but maintaining the expression level of QARS alone was not sufficient to maintain the aminoacylation rate of tRNA. there were. That is, the expression level of QARS does not affect the aminoacylation rate of glutamine.
 次に、QARSをsiRNAによってノックダウンした。トランスフェクション前に細胞を50~70%の集密度(コンフルエンシー)に到達させ、50 nM siGenome Human- QARS siRNA- SMARTpool (Dharmacon、Waltham、MA)でトランスフェクションした。対照として、siGENOME Non-Targeting siRNA Pool#1(Dharmacon)を使用した。トランスフェクションは、製造元の教示に従ってLipofectamine RNAiMAX(Invitrogen)を使用して行った。その後、細胞を、37℃で48時間、5%CO2を補充した加湿チャンバー内でインキュベートした(図23)。 Next, QARS was knocked down by siRNA. Prior to transfection, cells reached a confluency of 50-70% and were transfected with 50 nM siGenome Human-QARS siRNA-SMARTpool (Dharmacon, Waltham, MA). As a control, siGENOME Non-Targeting siRNA Pool # 1 (Dharmacon) was used. Transfection was performed using Lipofectamine RNAiMAX (Invitrogen) according to the manufacturer's instructions. The cells were then incubated at 37 ° C. for 48 hours in a humidified chamber supplemented with 5% CO2 (FIG. 23).
 tRNAアミノアシル化におけるQARSの発現レベルの影響を、過小評価するつもりはない。実際、QARSのノックダウンは(図24)、栄養豊富な培地で2日間培養した細胞におけるtRNAGln-CTGのアミノアシル化率を減少させ(図25)、このことは、QARSの発現レベルが、tRNAGln-CTGのアミノアシル化率を決定する重要な因子の1つであることを示している。しかし、アミノ酸飢餓の場合、tRNAGln-CTGのアミノアシル化率はQARSの維持発現レベルの存在下で減少した(図21、図22)。 We do not intend to underestimate the effect of QARS expression levels on tRNA aminoacylation. In fact, knockdown of QARS (Fig. 24) reduced the aminoacylation rate of tRNA Gln -CTG in cells cultured for 2 days in nutrient-rich medium (Fig. 25), which means that the expression level of QARS is tRNA. It has been shown to be one of the important factors that determine the aminoacylation rate of Gln -CTG. However, in the case of amino acid starvation, the aminoacylation rate of tRNA Gln -CTG was reduced in the presence of maintained expression levels of QARS (FIGS. 21 and 22).
 tRNAの主な機能は翻訳の過程でアミノ酸を転移することであるため、飢餓時のtRNAGln-CTGのアミノアシル化率の低下がタンパク質合成に関連するか否かを調査した。アミノ酸飢餓細胞を、tRNAのリボソームへの移行を妨げ、タンパク質合成をブロックするサイクロヘキサマイド(CHX)で処理した(図26)。6時間のアミノ酸飢餓によりtRNAGln-CTGのアミノアシル化率は低下したが(図21)、CHXを使用してタンパク質合成を遮断すると、アミノアシル化率は維持された(図27)。 Since the main function of tRNA is to transfer amino acids during translation, we investigated whether a decrease in the aminoacylation rate of tRNA Gln -CTG during starvation is associated with protein synthesis. Amino acid-starved cells were treated with cyclohexamide (CHX), which blocks the transfer of tRNA to the ribosome and blocks protein synthesis (FIG. 26). Amino acid starvation for 6 hours reduced the aminoacylation rate of tRNA Gln -CTG (Fig. 21), but blocking protein synthesis using CHX maintained the aminoacylation rate (Fig. 27).
 タンパク質合成を遮断すると、tRNAにアミノアシル化されたグルタミンの消費を抑制し、その結果、tRNAGln-CTGのアミノアシル化率は保持された(図27)。このことから、タンパク質の合成中、tRNAにアミノアシル化されたグルタミンがタンパク質に組み込まれると、tRNAGln-CTGのアミノアシル化率の低下が引き起こされたと考えられる。
 tRNAGlnのアミノアシル化率は振動変動し、アミノ酸の消費と供給の間でバランスが取れている。
Blocking protein synthesis suppressed the consumption of glutamine aminoacylated to tRNA, resulting in the preservation of the aminoacyllation rate of tRNA Gln -CTG (Fig. 27). From this, it is considered that the incorporation of glutamine aminoacylated to tRNA into the protein during protein synthesis caused a decrease in the aminoacylation rate of tRNA Gln -CTG.
The aminoacylation rate of tRNA Gln fluctuates oscillatingly and is balanced between amino acid consumption and supply.
実施例4
tRNAGln-CTGの栄養センサーとして用途
 実施例1にて同定されたtRNAGln-CTGは、tRNAの中で栄養センサーとして利用できる。
 実施例3にて示すように、tRNAにアミノアシル化されたアミノ酸の量は、タンパク質合成の消費と供給の間でバランスが取れている。タンパク質合成、そして細胞増殖における周知の刺激剤であるグルタミン(MacLennan, P.A., Brown, R.A., and Rennie, M.J. (1987). FEBS Lett. 215, 187-191.)は、飢餓状態で急速に枯渇する[Onodera, J., and Ohsumi, Y. (2005). J. Biol. Chem. 280, 31582-31586.]。飢餓によりグルタミンの供給が停止されると、タンパク質合成のために消費されるため、tRNAGlnにアミノアシル化されるグルタミンの量が減少する。
 よって、tRNAGlnは栄養センサーである。
Example 4
Use as a nutritional sensor for tRNA Gln -CTG The tRNA Gln -CTG identified in Example 1 can be used as a nutritional sensor in tRNA.
As shown in Example 3, the amount of amino acid aminoacylated to tRNA is balanced between consumption and supply of protein synthesis. Glutamine (MacLennan, PA, Brown, RA, and Rennie, MJ (1987). FEBS Lett. 215, 187-191.), A well-known stimulant in protein synthesis and cell proliferation, is rapidly depleted in starvation. [Onodera, J., and Ohsumi, Y. (2005). J. Biol. Chem. 280, 31582-31586.]. When the supply of glutamine is stopped due to starvation, the amount of glutamine aminoacylated to tRNA Gln is reduced because it is consumed for protein synthesis.
Therefore, tRNA Gln is a nutrition sensor.
 アミノ酸飢餓は、タンパク質合成の消費のために、tRNAGln-CTGのアミノアシル化率をゆっくりと減少させた(図21)。他方、アミノ酸を補充すると、tRNAGln-CTGを急速に再アミノアシル化した(図29)。細胞はtRNAのアミノアシル化率を維持する傾向がある。 Amino acid starvation slowly reduced the aminoacylation rate of tRNA Gln -CTG due to the consumption of protein synthesis (Fig. 21). On the other hand, amino acid supplementation rapidly reaminoacylated tRNA Gln -CTG (Fig. 29). Cells tend to maintain the aminoacylation rate of tRNA.
 tRNAGln-CTGのアミノアシル化率が栄養状態を選択的に反映する理由に拘るものでないが、グルタミンはタンパク質合成と細胞増殖において重要なアミノ酸であり、飢餓するとその細胞レベルが容易に低下するため(Onodera, J., and Ohsumi, Y. (2005). J. Biol. Chem. 280, 31582-31586.)、グルタミンをアミノアシル化するtRNAは栄養を感知するための鍵となるのかもしれない。非必須アミノ酸として、グルタミンの細胞レベルは、栄養と外部環境に応じ、消費と生物発生の間で動的に変動する(Onodera, J., and Ohsumi, Y. (2005). J. Biol. Chem. 280, 31582-31586.)。 Regardless of the reason why the aminoacylation rate of tRNA Gln -CTG selectively reflects nutritional status, glutamine is an important amino acid in protein synthesis and cell proliferation, and its cellular level easily decreases when starved (" Onodera, J., and Ohsumi, Y. (2005). J. Biol. Chem. 280, 31582-31586.), Glutamine aminoacylating tRNAs may be the key to sensing nutrition. As a non-essential amino acid, the cellular level of glutamine dynamically fluctuates between consumption and biodevelopment, depending on nutrition and the external environment (Onodera, J., and Ohsumi, Y. (2005). J. Biol. Chem. . 280, 31582-31586.).
 次に、tRNAのアミノアシル化率の変動は、タンパク質合成の活動に関連し、生物学的および生理学的プロセスに影響を与える可能性がある(非特許文献19; 非特許文献23; 非特許文献15)。tRNAGln-CTGのアミノアシル化率は、細胞プロセスのエフェクターとしても機能する可能性がある。 Next, fluctuations in the aminoacylation rate of tRNA are related to the activity of protein synthesis and may affect biological and physiological processes (Non-Patent Document 19; Non-Patent Document 23; Non-Patent Document 15). ). The aminoacylation rate of tRNA Gln -CTG may also function as an effector of cellular processes.
実施例5
老化はtRNAのアミノアシル化能力に影響を与える
 タンパク質合成が低下する生理的条件として、tRNAGln-CTGの脱アミノアシル化に対する細胞老化の影響を調べた。
 タンパク質合成の低下は老化細胞における細胞活動の低下と関連している(Mainwaring, W.I.P. (1969). Biochem. J. 113, 869-878.)。前述したように、TIG-1細胞は自然に確立された細胞であり、高度な継代で分裂を停止するため、細胞老化モデルとして使用される。ここでは、若齢TIG-1細胞(人口倍加レベル[PDL] 30)と老齢TIG-1細胞(PDL 50)を利用し、アミノ酸飢餓下で培養した。
Example 5
Aging Affects TRNA's Aminoacylation Ability We investigated the effect of cellular senescence on deaminoacylation of tRNA Gln -CTG as a physiological condition that reduces protein synthesis.
Decreased protein synthesis is associated with decreased cell activity in senescent cells (Mainwaring, WIP (1969). Biochem. J. 113, 869-878.). As mentioned above, TIG-1 cells are naturally established cells and are used as a model of cellular senescence because they stop dividing at a high degree of passage. Here, young TIG-1 cells (population doubling level [PDL] 30) and old TIG-1 cells (PDL 50) were used and cultured under amino acid starvation.
 次に、tRNAGln-CTGのアミノアシル化ダイナミクスを分析した。tRNAGln-CTGのアミノアシル化率を、アミノ酸を飢餓させた若齢TIG-1細胞と、アミノ酸混合物を補充した老齢TIG-1細胞とで調べた(図28)。若齢TIG-1細胞におけるtRNAGln-CTGのアミノアシル化率は、補充すると15分以内に急速に回復し、このことは、補充されるアミノ酸がtRNAのアミノアシル化をすばやく誘発させることを示している(図29)。このアミノアシル化率の上昇は、飢餓状態でのアミノアシル化率の低下よりも速く発生した(図21)。tRNAGln-CTGのアミノアシル化率は、老齢TIG-1細胞においても急速に回復したが、その比率は一般に、若い細胞のアミノアシル化率よりも低かった(図29)。QARSの発現レベルは、若い細胞と古い細胞の両方においてアミノ酸を補充しても変化しなかった(図30)。
 細胞は、tRNAGln-CTGのアミノアシル化ダイナミクスを介して栄養を感知し、アミノアシル化したtRNAGln-CTGの抑制は、タンパク質合成と細胞活性に影響を与え得る老化の特徴である。
Next, the aminoacylation dynamics of tRNA Gln -CTG were analyzed. The aminoacylation rate of tRNA Gln -CTG was examined in young TIG-1 cells starved for amino acids and aged TIG-1 cells supplemented with an amino acid mixture (Fig. 28). The aminoacylation rate of tRNA Gln -CTG in young TIG-1 cells recovered rapidly within 15 minutes upon supplementation, indicating that the supplemented amino acids rapidly induce aminoacylation of tRNA. (Fig. 29). This increase in aminoacylation rate occurred faster than the decrease in aminoacylation rate in starvation (Fig. 21). The aminoacylation rate of tRNA Gln -CTG also recovered rapidly in aged TIG-1 cells, but the rate was generally lower than that of young cells (Fig. 29). Expression levels of QARS did not change with amino acid supplementation in both young and old cells (Fig. 30).
Cells sense nutrients through the aminoacylylated dynamics of tRNA Gln -CTG, and inhibition of aminoacylated tRNA Gln -CTG is a hallmark of aging that can affect protein synthesis and cell activity.
 本実施例で使用したi-tRAP法は、tRNAGln-CTGアミノアシル化率の老化に伴う低下を検出するのに十分な感度があることが実証された。老化細胞は栄養に応じてtRNAGln-CTGのアミノアシル化率を振動変動させることができるが、アミノアシル化率は老化細胞では一貫して低かった。老化細胞におけるtRNAGln-CTGのアミノアシル化率が低いことの因果関係は推測であるが、tRNAGln-CTGのアミノアシル化率が低いと、老化細胞でのタンパク質合成が抑制されているか、その逆もあり得る。加齢に伴う異常なaaRSは、tRNAのアミノアシル化を抑制する可能性がある(配列番号18; Takahashi, R., Mori, N., and Goto, S. (1985). Mech. Ageing Dev. 33, 67-75.)。 The i-tRAP method used in this example demonstrated sufficient sensitivity to detect the aging-related decline in tRNA Gln -CTG aminoacylation rates. Aging cells were able to oscillate the aminoacylation rate of tRNA Gln -CTG in response to nutrition, but the aminoacylation rate was consistently low in senescent cells. The causal relationship between the low aminoacylation rate of tRNA Gln -CTG in aging cells is speculated, but the low aminoacylation rate of tRNA Gln -CTG suppresses protein synthesis in aging cells, and vice versa. possible. Aberrant aaRS with aging may suppress aminoacylation of tRNA (SEQ ID NO: 18; Takahashi, R., Mori, N., and Goto, S. (1985). Mech. Aging Dev. 33. , 67-75.).
実施例6
アミノ酸飢餓状態のTIG-1細胞における細胞内アミノ酸濃度の測定
 図20に示す実験スキームの条件により、TIG-1細胞における細胞内アミノ酸濃度を高速液体クロマトグラフィー(HPLC)によって経時的に測定した。結果を図31Aおよび図31Bに示す。図31Aは、多くのアミノ酸が、3、6、9時間のアミノ酸飢餓に応答して、細胞内濃度が低下することを示している。図31Bは、飢餓前の細胞内アミノ酸濃度を基準にした際の、3、6、9時間のアミノ酸飢餓状態の際の細胞内アミノ酸濃度の相対濃度(変化率)を示している。図31Bは、Glnのみが飢餓の3時間目以降経時的に、細胞内アミノ酸濃度が減少し続けることを示している。このことが、図5において、15時間のアミノ酸飢餓時に、tRNAGlnのアミノアシル化率が顕著に下がっている原因であると推定される。図21に示している通り、この条件において、アミノ酸飢餓6時間後にはGlnのアミノアシル化率は低下することから、図31BにおけるGlnの相対濃度の経時変化に照らし、飢餓前のアミノ酸濃度の3.5-7%程度を下回るとアミノアシル化率の低下を招くと推定される。タンパク質合成にはアミノアシル化されたアミノ酸が使用されることから、細胞内アミノ酸濃度を単に測定するのではなく、アミノアシル化されたアミノ酸、すなわち機能的なアミノ酸を測定するためにtRNAアミノアシル化率を測定することが重要だと思われる。tRNAアミノアシル化率を測定することで、タンパク質合成に使用され得るtRNAアミノアシル化率の変動が確認でき、すなわち細胞内の機能的なアミノ酸の濃度変動を評価することが可能となる。
Example 6
Measurement of Intracellular Amino Acid Concentration in TIG-1 Cells in Amino Acid Starvation Under the conditions of the experimental scheme shown in FIG. 20, the intracellular amino acid concentration in TIG-1 cells was measured over time by high performance liquid chromatography (HPLC). The results are shown in FIGS. 31A and 31B. FIG. 31A shows that many amino acids have decreased intracellular concentrations in response to amino acid starvation for 3, 6 and 9 hours. FIG. 31B shows the relative concentration (rate of change) of the intracellular amino acid concentration under the amino acid starvation state for 3, 6 and 9 hours based on the intracellular amino acid concentration before starvation. FIG. 31B shows that only Gln continues to decrease the intracellular amino acid concentration over time after the third hour of starvation. It is presumed that this is the cause of the remarkable decrease in the aminoacylation rate of tRNA Gln during 15 hours of amino acid starvation in FIG. As shown in FIG. 21, under these conditions, the aminoacyllation rate of Gln decreases after 6 hours of amino acid starvation. Therefore, in light of the time course of the relative concentration of Gln in FIG. 31B, the amino acid concentration before starvation was 3.5-. If it is less than about 7%, it is estimated that the aminoacylation rate will decrease. Since aminoacylated amino acids are used for protein synthesis, the tRNA aminoacylation rate is measured to measure aminoacylated amino acids, that is, functional amino acids, rather than simply measuring the intracellular amino acid concentration. It seems important to do. By measuring the tRNA aminoacylation rate, it is possible to confirm the fluctuation of the tRNAaminoacylation rate that can be used for protein synthesis, that is, to evaluate the fluctuation of the intracellular functional amino acid concentration.
実施例7
CHXとともに培養したTIG-1細胞における細胞内アミノ酸濃度の測定
 図26に示す実験スキームの条件により、サイクロヘキサマイド(CHX)とともに培養したTIG-1細胞における細胞内アミノ酸濃度を高速液体クロマトグラフィー(HPLC)によって測定した。結果を図32Aに示す。他方、DMSOを培養液に加えて培養した細胞内アミノ酸濃度を基準にしたCHXとともに培養した、6時間のアミノ酸飢餓状態の際の細胞内アミノ酸濃度の相対濃度(変化率)を図32Bに示す。
Example 7
Measurement of intracellular amino acid concentration in TIG-1 cells cultured with CHX High performance liquid chromatography (HPLC) shows the intracellular amino acid concentration in TIG-1 cells cultured with cyclohexamide (CHX) under the conditions of the experimental scheme shown in FIG. ). The results are shown in FIG. 32A. On the other hand, FIG. 32B shows the relative concentration (rate of change) of the intracellular amino acid concentration in the amino acid starvation state for 6 hours when DMSO was added to the culture medium and cultured with CHX based on the cultured intracellular amino acid concentration.
 タンパク質合成をブロックするサイクロヘキサマイド(CHX)の負荷に応答して、図32Aおよび図32Bに示すように、Glnなどのアミノ酸はタンパク質合成に利用されないため、細胞内アミノ酸濃度はCHX投与で高めとなる。その結果、図27に示されるようにtRNAGlnのアミノアシル化率もCHX投与により高くなったと想定される。すなわち、高くなった細胞内Glnの濃度に対応して、tRNAGln-CTGのアミノアシル化率もCHX投与により高くなったと想定される。すなわち、細胞内アミノ酸量がある一定のレベルより下がるとアミノアシル化率の低下を招くことが示された図31Bに照らし、細胞内アミノ酸量が一定レベル以下になると、細胞内アミノ酸量とtRNAのアミノアシル化率の間には相関的な関係があることが示された。 As shown in FIGS. 32A and 32B, in response to the load of cyclohexamide (CHX) that blocks protein synthesis, amino acids such as Gln are not utilized for protein synthesis, so the intracellular amino acid concentration is increased by administration of CHX. Become. As a result, as shown in FIG. 27, it is assumed that the aminoacyllation rate of tRNA Gln was also increased by the administration of CHX. That is, it is assumed that the aminoacyllation rate of tRNA Gln -CTG was also increased by CHX administration, corresponding to the increased concentration of intracellular Gln. That is, in light of FIG. 31B, which showed that when the intracellular amino acid amount falls below a certain level, the aminoacylation rate decreases, and when the intracellular amino acid amount falls below a certain level, the intracellular amino acid amount and the aminoacyl of tRNA. It was shown that there is a correlation between the conversion rates.
実施例8
CQとともに培養したTIG-1細胞における細胞内アミノ酸濃度の測定
 TIG-1細胞を、アミノ酸を飢餓状態の培地において、オートファジー・リソソーム系の阻害剤であるクロロキン(CQ)の存在下、一定時間培養した。4時間培養のTIG-1細胞における細胞内アミノ酸濃度を高速液体クロマトグラフィー(HPLC)によって測定した結果を、図33Aに示す。図33Bは、PBSを培養液に加えて培養した細胞内アミノ酸濃度を基準にしたCQとともに培養した、4時間のアミノ酸飢餓状態の際の細胞内アミノ酸濃度の相対濃度(変化率)を示している。また、2、4、6時間、CQとともに培養したTIG-1細胞におけるtRNAGln-CTGのアミノアシル化率を測定した結果を図33Cに示す。統計分析は、溶媒(PBS)投与した細胞の細胞内アミノ酸濃度と比較して行った。
Example 8
Measurement of intracellular amino acid concentration in TIG-1 cells cultured with CQ TIG-1 cells are cultured for a certain period of time in a medium starved for amino acids in the presence of chloroquin (CQ), which is an inhibitor of the autophagy-lysosomal system. bottom. The results of measuring the intracellular amino acid concentration in TIG-1 cells cultured for 4 hours by high performance liquid chromatography (HPLC) are shown in FIG. 33A. FIG. 33B shows the relative concentration (rate of change) of the intracellular amino acid concentration during the 4-hour amino acid starvation state in which PBS was added to the culture medium and cultured together with CQ based on the cultured intracellular amino acid concentration. .. The results of measuring the aminoacylation rate of tRNA Gln -CTG in TIG-1 cells cultured with CQ for 2, 4 and 6 hours are shown in FIG. 33C. Statistical analysis was performed in comparison with the intracellular amino acid concentration of the cells treated with solvent (PBS).
 図33Cは、CQ投与によりtRNAGln-CTGのアミノアシル化率は4時間後に、対照(PBS)に比してより低下したことを示している。この結果は、CQがtRNAGln-CTGのアミノアシル化率に対して4時間後に最も影響を及ぼすことを示している。図33BはCQ投与によりアミノ酸飢餓4時間におけるグルタミンの濃度が、対照に比べて低下していることを示している。CQはオートファジー・リソソーム系の阻害剤であることから、CQ投与により、オートファジー・リソソームによる細胞内タンパク質の分解が促され、これによりアミノ酸が全般的に供給され、不足していたグルタミンが補充されることで、図27に示されるようにtRNAGln-CTGのアミノアシル化率が高まることが明らかである。 FIG. 33C shows that CQ administration resulted in a lower aminoacylation rate of tRNA Gln -CTG after 4 hours compared to the control (PBS). This result shows that CQ has the greatest effect on the aminoacylation rate of tRNA Gln -CTG after 4 hours. FIG. 33B shows that the concentration of glutamine at 4 hours of amino acid starvation was lowered by CQ administration as compared with the control. Since CQ is an inhibitor of the autophagy lysosome system, administration of CQ promotes the degradation of intracellular proteins by autophagy lysosome, which provides a general supply of amino acids and supplements the deficient glutamine. It is clear that the aminoacylation rate of tRNA Gln -CTG is increased as shown in FIG. 27.
 図33Aは、CQの投与によって4時間後のタンパク質単位量あたりの細胞内アミノ酸濃度の変動を示している。CQ投与4時間後では、図33Bに示すように、アミノ酸の細胞内濃度は、顕著に減少する。その結果、図33Cに示すようにCQの投与によって、4時間後にtRNAGln-CTGのアミノアシル化率も顕著に減少する。すなわち、細胞内アミノ酸量がある一定のレベルより下がると、細胞内アミノ酸量とtRNAのアミノアシル化率の間には相関的な関係があることが示された。結論として実施例8においても、実施例7と同様、アミノアシル化率とアミノ酸量の相関性が示された。 FIG. 33A shows the change in intracellular amino acid concentration per protein unit amount after 4 hours by administration of CQ. After 4 hours of CQ administration, the intracellular concentration of amino acids is significantly reduced, as shown in FIG. 33B. As a result, as shown in FIG. 33C, the aminoacylation rate of tRNAGln-CTG is also significantly reduced after 4 hours by administration of CQ. That is, it was shown that when the amount of intracellular amino acids falls below a certain level, there is a correlation between the amount of intracellular amino acids and the aminoacylation rate of tRNA. In conclusion, in Example 8 as well, the correlation between the aminoacylation rate and the amount of amino acids was shown as in Example 7.
 本発明は、tRNAのアミノアシル化プロファイルの全体像を示し、具体的には栄養を感知する個々のtRNAGln-CTGを同定した。tRNAのアミノアシル化プロファイルは、生物学、生理学および疾患において深遠な意義を持つ、未踏の科学分野である。tRNA配列決定とi-tRAPを組み合わせて使用すると、得られた結果を相互検証しながら、深遠なtRNAアミノアシル化の世界を探索できる。 The present invention provides an overview of the aminoacylation profile of tRNAs, specifically identifying individual tRNA Gln -CTGs that sense nutrients. The aminoacylation profile of tRNA is an unexplored scientific field with profound significance in biology, physiology and disease. The combination of tRNA sequencing and i-tRAP allows us to explore the profound world of tRNA aminoacylation while cross-validating the results obtained.
 tRNAアミノアシル化率の評価に基づき、機能的な細胞内アミノ酸濃度を評価することによって、様々な利用が可能となる。例えば、がん細胞において、ある種の抗癌剤治療は、がん細胞の細胞内アミノ酸濃度を低下させることにより、がん細胞の活動性を低下させ、タンパク質合成を抑制することで細胞死を誘導する。この時に、がん細胞におけるtRNAアミノアシル化率を測定し、実際に機能的なアミノ酸濃度が低下しているかどうか確認することで、治療効果の判定や治療薬の選択に応用できる。 By evaluating the functional intracellular amino acid concentration based on the evaluation of the tRNA aminoacylation rate, various uses are possible. For example, in cancer cells, certain anti-cancer drug treatments reduce the intracellular amino acid concentration of the cancer cells, thereby reducing the activity of the cancer cells and suppressing protein synthesis to induce cell death. .. At this time, by measuring the tRNA aminoacylation rate in cancer cells and confirming whether or not the functional amino acid concentration is actually decreased, it can be applied to the determination of the therapeutic effect and the selection of the therapeutic drug.

Claims (40)

 1つの標的RNAにおける単一ヌクレオチドの違いを定性的または定量的に測定する方法において、ここに、単一ヌクレオチドの違いは、標的RNAの3'末端配列:CCA対CCにおけるヌクレオチドAの存在または不存在である方法であって、
α) 標的RNAのcDNAを作成し、
β) PCRによって、該cDNA上の単一ヌクレオチドの違いを含む標的領域を増幅し、同時に単一ヌクレオチドの違いを定性的または定量的に測定する方法。
In a method of qualitatively or quantitatively measuring the difference of a single nucleotide in one target RNA, here the difference of a single nucleotide is the 3'end sequence of the target RNA: the presence or absence of nucleotide A in CCA vs. CC. It ’s a way of being,
α) Create cDNA for target RNA and
β) A method of amplifying a target region containing a single nucleotide difference on the cDNA by PCR and simultaneously measuring the single nucleotide difference qualitatively or quantitatively.
 工程α)が、
a-1) 標的RNAの3'末端に連結するアダプター、該アダプターの配列と相補的な配列を含むRTプライマー、該標的RNAに特異的な配列を有する一方のプライマーおよび該RTプライマーに特異的な配列を有する他方のプライマーからなる増幅用プライマーセット、および単一ヌクレオチドの違いを標的とするプローブセットをそれぞれ用意し、
b-1) 該アダプター用のRNAリガーゼによって、該アダプターを標的RNAに連結し、形成された連結産物を鋳型としてcDNAを作成する、または
a-2) 任意のRNAアダプターと、該RNAアダプターと相補的な配列を有し、かつ該RNAアダプターに対して、3’末端が1塩基だけ突出したDNAプライマーを用意し、これらをアニールさせたハイブリッドプライマー、該標的RNAに特異的な配列を有する一方のプライマーおよび該RTプライマーに特異的な配列を有する他方のプライマーからなる増幅用プライマーセット、および単一ヌクレオチドの違いを標的とするプローブセットをそれぞれ用意し、
b-2) 該ハイブリッドプライマーを標的RNAの3’末端にアニーリングさせ、テンプレートスイッチング活性を有する逆転写酵素により、cDNAを作成する、
ことを含む、請求項1記載の方法。
Step α),
a-1) Adapter linked to the 3'end of the target RNA, RT primer containing a sequence complementary to the sequence of the adapter, one primer having a sequence specific to the target RNA, and specific to the RT primer. Prepare an amplification primer set consisting of the other primer having a sequence, and a probe set targeting the difference of a single nucleotide.
b-1) RNA ligase for the adapter is used to ligate the adapter to the target RNA, and the formed ligation product is used as a template to prepare cDNA.
a-2) An arbitrary RNA adapter and a DNA primer having a sequence complementary to the RNA adapter and having the 3'end protruding by only one base were prepared and annealed to the RNA adapter. A hybrid primer, an amplification primer set consisting of one primer having a sequence specific to the target RNA and the other primer having a sequence specific to the RT primer, and a probe set targeting the difference of a single nucleotide. Prepare each and
b-2) Anneal the hybrid primer to the 3'end of the target RNA and generate cDNA by reverse transcriptase with template switching activity.
The method according to claim 1, comprising the above.
 工程a-1)において、単一ヌクレオチドの違いを標的とするプローブセットが、単一ヌクレオチドの違いを認識する蛍光標識されたプローブセットであり、工程β)において、増幅の際、放出される蛍光強度を指標にして、単一ヌクレオチドの違いを定性的または定量的に測定する、請求項2記載の方法。 The probe set that targets the difference between single nucleotides in step a-1) is a fluorescently labeled probe set that recognizes the difference between single nucleotides, and the fluorescence emitted during amplification in step β). The method according to claim 2, wherein the difference between single nucleotides is measured qualitatively or quantitatively using the intensity as an index.
 標的RNAが、tRNA-機能性RNA、好ましくはtRNA、またはtRNAの3'末端を有するtRFもしくはtRNAハーフである請求項1または2記載の方法。 The method according to claim 1 or 2, wherein the target RNA is tRNA-functional RNA, preferably tRNA, or tRF or tRNA half having a 3'end of tRNA.
 tRNA-機能性RNAが、tRNAである、請求項4記載の方法。 The method according to claim 4, wherein the tRNA-functional RNA is tRNA.
 さらに、以下のγ)工程:
γ) CCAを有している標的RNAの定量値およびCCを有している標的RNAの定量値の総量に対する、CCAを有している標的RNAの定量値の比率を算出する、
を含む、請求項1から5のいずれか記載の方法。
Further, the following γ) step:
γ) Calculate the ratio of the quantitative value of the target RNA having CCA to the total amount of the quantitative value of the target RNA having CCA and the quantitative value of the target RNA having CC.
The method according to any one of claims 1 to 5, comprising.
 請求項6記載の方法によって、1つの標的RNAのアミノアシル化率を測定する方法。 A method for measuring the aminoacylation rate of one target RNA by the method according to claim 6.
 1つの標的RNAにおける単一ヌクレオチドの違いを定性的または定量的に測定する、請求項1から7のいずれか記載の方法において、ここに、単一ヌクレオチドの違いは、標的RNAの3'末端配列:CCA対CCにおけるヌクレオチドAの存在または不存在である該方法に用いるアッセイキットであって、
ア) 標的RNAの3'末端に連結するアダプター、
イ) 該アダプターの配列と相補的な配列を含むRTプライマー、
ウ) 該標的RNAに特異的な配列を有する一方のプライマーおよび該RTプライマーに特異的な配列を有する他方のプライマーからなる増幅用プライマーセット、
エ) 単一ヌクレオチドの違いを標的とするプローブセット、
オ) 該アダプター用のRNAリガーゼ、および
カ) 要すれば、脱メチル化酵素、
を含む、キット;または
サ) 任意のRNAアダプター、
シ) 該アダプターと相補的な配列を含み、該RNAアダプターに対して、3’末端が1塩基だけ突出したDNAプライマー、
ス) 該標的RNAに特異的な配列を有する一方のプライマーおよび該DNAプライマーに特異的な配列を有する他方のプライマーからなる増幅用プライマーセット、
セ) 単一ヌクレオチドの違いを標的とするプローブセット、
ソ) テンプレートスイッチング活性を有する逆転写酵素、および
タ) 要すれば、脱メチル化酵素、
を含む、キット。
In the method of any of claims 1-7, wherein the single nucleotide difference in one target RNA is measured qualitatively or quantitatively, where the single nucleotide difference is the 3'end sequence of the target RNA. : An assay kit used for the method in which nucleotide A is present or absent in CCA vs. CC.
A) Adapter that connects to the 3'end of the target RNA,
B) RT primer containing a sequence complementary to the sequence of the adapter,
C) Amplification primer set consisting of one primer having a sequence specific to the target RNA and the other primer having a sequence specific to the RT primer,
D) Probe sets that target single nucleotide differences,
E) RNA ligase for the adapter, and f) demethylase, if necessary,
Including, kit; or service) any RNA adapter,
B) A DNA primer containing a sequence complementary to the adapter and having the 3'end protruding only one base from the RNA adapter.
S) An amplification primer set consisting of one primer having a sequence specific to the target RNA and the other primer having a sequence specific to the DNA primer.
C) Probe sets that target single nucleotide differences,
S) Reverse transcriptase with template switching activity, and Ta) Demethylase, if necessary,
Including, kit.
 tRNA-機能性RNAの塩基配列、発現量およびアミノアシル化率を網羅的に測定する方法であって、
a-10) 生物学的検体から抽出したtRNA-機能性RNAを処理し、アミノアシル化されていないRNA(非アミノアシル化RNA)における末端塩基を除去し、他方、アミノアシル化されているRNA(アミノアシル化RNA)からアミノ酸を除去することで、非アミノアシル化RNAおよびアミノアシル化RNAをそれぞれ調製し、
b-10) 得られた両RNAの3'-末端および5'-末端にアダプターを連結し、
c-10) 産生された連結RNAを鋳型として逆転写を行い、
d-10) 得られたcDNAを増幅し、cDNAライブラリーを作成し、
e-10) ライブラリーの各cDNAを配列決定して、配列データを取得する、
 tRNA-機能性RNAの塩基配列、発現量およびアミノアシル化率を測定する方法。
tRNA-A method for comprehensively measuring the base sequence, expression level, and aminoacylation rate of functional RNA.
a-10) Treat tRNA-functional RNA extracted from biological specimens to remove terminal bases in non-aminoacylated RNA (non-aminoacylated RNA), while aminoacylated RNA (aminoacylated). By removing amino acids from RNA), non-aminoacylated RNA and aminoacylated RNA are prepared, respectively.
b-10) Connect the adapter to the 3'-end and 5'-end of both obtained RNAs.
c-10) Reverse transcription is performed using the produced linked RNA as a template.
d-10) Amplify the obtained cDNA to create a cDNA library,
e-10) Sequencing each cDNA in the library to obtain sequence data,
tRNA-A method for measuring the base sequence, expression level and aminoacylation rate of functional RNA.
 工程a-10)において、RNAの処理が、非アミノアシル化RNAについて過ヨウ素酸酸化、β脱離および末端修復であり、アミノアシル化RNAについて弱アルカリ処理である、請求項9記載の方法。 The method according to claim 9, wherein in step a-10), the RNA treatment is periodic acid oxidation, β-desorption and terminal repair for non-aminoacylated RNA, and weak alkaline treatment for aminoacylated RNA.
 生物学的検体から抽出したRNAをサイズ分画にかけ、20塩基-150塩基のRNAを抽出し、以降の工程を行う、請求項9または10記載の方法。 The method according to claim 9 or 10, wherein the RNA extracted from the biological sample is subjected to size fractionation, RNA of 20 bases to 150 bases is extracted, and the subsequent steps are performed.
 20塩基-150塩基のRNAが、tRNAまたはtRNAの3'末端を有するtRFもしくはtRNAハーフである、請求項11記載の方法。 The method according to claim 11, wherein the 20-150 base RNA is a tRF or a tRNA half having a 3'end of the tRNA or tRNA.
 tRNA-機能性RNAのアミノアシル化率を測定するに当たり、アミノアシル化RNAの発現量および非アミノアシル化RNAの発現量の総量に対する、アミノアシル化RNAの発現量の比率を算出する、請求項9から12のいずれか記載の方法。 In measuring the aminoacyllation rate of tRNA-functional RNA, the ratio of the expression level of aminoacylated RNA to the total expression level of aminoacylated RNA and non-aminoacylated RNA is calculated, according to claims 9 to 12. Any method described.
 tRNA-機能性RNAの塩基配列、発現量およびアミノアシル化率を網羅的に測定する、請求項11から13のいずれか記載の方法に用いるアッセイキットであって、
ア-10) tRNA-機能性RNAの3'-末端および5'-末端に連結するアダプター、
イ-10) 該アダプターの配列と相補的な配列を含むRTプライマー、
ウ-10) 該アダプター用のRNAリガーゼ、および
エ-10) 脱メチル化酵素
を含む、キット。
An assay kit used for the method according to any one of claims 11 to 13, which comprehensively measures the base sequence, expression level, and aminoacylation rate of tRNA-functional RNA.
A-10) tRNA-adapter that connects to the 3'-end and 5'-end of functional RNA,
B-10) RT primer containing a sequence complementary to the sequence of the adapter,
C-10) A kit containing RNA ligase for the adapter and d-10) demethylase.
 tRNAのアミノアシル化率を変動させる物質をスクリーニングするための方法であって、
a-20) 細胞に被験物質を添加し、
b-20) 前記細胞のtRNAのアミノアシル化率を測定し、そして
c-20) 前記測定値が、前記被験物質の非存在下で前記アミノアシル化率を測定した場合と比較し、変化していた場合に、前記被験物質がtRNAのアミノアシル化率を変動させる物質であると判断する、方法。
A method for screening substances that vary the aminoacylation rate of tRNA.
a-20) Add the test substance to the cells and add
b-20) Measure the aminoacylation rate of tRNA in the cells, and
c-20) When the measured value is changed compared to the case where the aminoacyllation rate is measured in the absence of the test substance, the test substance is a substance that changes the aminoacylation rate of tRNA. How to determine that there is.
 アミノアシル化率の測定を、請求項1から7、ならびに請求項9から13までのいずれか記載の方法によって行う、請求項15記載の方法。 The method according to claim 15, wherein the aminoacylation rate is measured by the method according to any one of claims 1 to 7 and claims 9 to 13.
 tRNAのアミノアシル化率を変動させる物質をスクリーニングするための方法であって、
a-30) 被験物質を動物に投与し、
b-30) 前記動物から所定の臓器の細胞を採取し、
c-30) 前記細胞のtRNAのアミノアシル化率を測定し、そして
c-30) 前記測定値が、前記被験物質の非存在下で前記アミノアシル化率を測定した場合と比較し、変化していた場合に、前記被験物質がtRNAのアミノアシル化率を変動させる物質であると判断する、方法。
A method for screening substances that vary the aminoacylation rate of tRNA.
a-30) Administer the test substance to the animal and
b-30) Collect cells of a predetermined organ from the animal and collect them.
c-30) Measure the aminoacylation rate of tRNA in the cells, and
c-30) When the measured value is changed compared to the case where the aminoacyllation rate is measured in the absence of the test substance, the test substance is a substance that changes the aminoacylation rate of tRNA. How to determine that there is.
 所定の臓器が、血液、尿、髄液、唾液、涙液、精液、脳、心臓、腎臓、肝臓、肺臓、脾臓、血管、血球、筋肉、脂肪、皮膚、膵臓、腸、内分泌器、神経、感覚器である請求項17記載の方法。 Prescribed organs include blood, urine, spinal fluid, saliva, tears, semen, brain, heart, kidneys, liver, lungs, spleen, blood vessels, blood cells, muscles, fat, skin, pancreas, intestines, endocrine organs, nerves, 17. The method of claim 17, which is a sensory organ.
 アミノアシル化率の測定を、請求項1から7、ならびに請求項9から13までのいずれか記載の方法によって行う、請求項15から18までのいずれか記載の方法。 The method according to any one of claims 15 to 18, wherein the aminoacylation rate is measured by the method according to any one of claims 1 to 7 and claims 9 to 13.
 tRNAのアミノアシル化率を変動させる物質を含有する、被検者における生物学的および生理学的プロセスに対する影響を調整するための医薬組成物。 A pharmaceutical composition for adjusting the effect on biological and physiological processes in a subject, which contains a substance that varies the aminoacylation rate of tRNA.
 tRNAのアミノアシル化率を変動させる物質が、請求項15から19までのいずれか記載の方法によってスクリーニングされた物質である、請求項20記載の医薬組成物。 The pharmaceutical composition according to claim 20, wherein the substance that changes the aminoacylation rate of tRNA is a substance screened by the method according to any one of claims 15 to 19.
 tRNAのアミノアシル化率を変動させる物質が、アミノ酸、およびタンパク質合成の阻害剤の中から選ばれるアミノアシル化率増大物質、またはアミノアシル化酵素阻害剤、オートファジー・リソソーム阻害剤、プロテアソーム阻害剤、および統合的ストレス応答の阻害剤の中から選ばれるアミノアシル化率減少物質である、請求項20または21記載の医薬組成物。 Substances that fluctuate the aminoacylation rate of tRNA are amino acids and aminoacylation rate-increasing substances selected from inhibitors of protein synthesis, or aminoacylasease inhibitors, autophagy lithosome inhibitors, proteasome inhibitors, and integration. The pharmaceutical composition according to claim 20 or 21, which is an aminoacylation-reducing substance selected from among inhibitors of a target stress response.
 tRNAの阻害物質を含有する、被検者における生物学的および生理学的プロセスに対する影響を調整するための医薬組成物。 A pharmaceutical composition containing a tRNA inhibitor for adjusting the effect on biological and physiological processes in a subject.
 tRNAの阻害物質が、siRNA、shRNA、miRNA、アンチセンスおよびリボザイムからなる群から選択される一つまたはそれ以上である請求項23記載の医薬組成物。 The pharmaceutical composition according to claim 23, wherein the inhibitor of tRNA is one or more selected from the group consisting of siRNA, shRNA, miRNA, antisense and ribozyme.
 癌、加齢性疾患、栄養状態を治療するための、請求項20から24までのいずれか記載の医薬組成物。 The pharmaceutical composition according to any one of claims 20 to 24 for treating cancer, age-related diseases, and nutritional status.
 特定のtRNAまたはそのアナログを含有する、被検者における生物学的および生理学的プロセスに対する影響を軽減するための医薬組成物。 A pharmaceutical composition containing a specific tRNA or an analog thereof for reducing the effect on biological and physiological processes in a subject.
 ミトコンドリア病を治療するための、請求項26記載の医薬組成物。 The pharmaceutical composition according to claim 26 for treating mitochondrial disease.
 被検者における生物学的および生理学的プロセスに対する影響の有無を判定する方法であって、
a-40) 被検者の細胞のtRNAのアミノアシル化率 (被検アミノアシル化率) を測定する工程、
b-40) 被検アミノアシル化率と、基準の細胞のtRNAのアミノアシル化率 (対照アミノアシル化率) とを比較する工程、および
c-40) 被検アミノアシル化率が、対照アミノアシル化率と比較して変動している場合に、被検者を、被検者における生物学的および生理学的プロセスに対する影響を有していると判定する方法。
A method for determining the presence or absence of effects on biological and physiological processes in a subject.
a-40) Step of measuring the aminoacylation rate (test aminoacylation rate) of tRNA in the cells of the subject,
b-40) A step of comparing the test aminoacylation rate with the aminoacyllation rate of tRNA of the reference cell (control aminoacylation rate), and
c-40) When the test aminoacylation rate fluctuates compared to the control aminoacylation rate, the subject has an effect on the biological and physiological processes in the subject. How to judge.
 被検者における生物学的および生理学的プロセスに対する影響が、細胞活動、栄養状態、身体、精神および病態の中から選ばれる一つまたはそれ以上に関連する事象である、請求項28記載の方法。 28. The method of claim 28, wherein the effect on the biological and physiological processes in the subject is an event related to one or more selected from cellular activity, nutritional status, physical, mental and pathological conditions.
 事象が、ミトコンドリア病、加齢性疾患、生活習慣病、精神疾患、難治性疾患、遺伝性疾患、ライフコース関連疾患、消化器疾患、がん、心血管疾患、腎臓疾患および神経疾患の中から選ばれる一つまたはそれ以上である、請求項29記載の方法。 Events include mitochondrial disease, age-related disease, lifestyle disease, mental illness, intractable disease, hereditary disease, life course-related disease, gastrointestinal disease, cancer, cardiovascular disease, kidney disease and neurological disease. 29. The method of claim 29, which is one or more chosen.
 特定のアミノアシル-tRNAシンセターゼをコードする核酸分子をノックダウンすることにより、対応するtRNAのアミノアシル化率を低下させ、それにより、被検者における生物学的および生理学的プロセスに対する影響を軽減する方法。 A method of reducing the aminoacylation rate of a corresponding tRNA by knocking down a nucleic acid molecule encoding a particular aminoacyl-tRNA synthetase, thereby reducing its effect on biological and physiological processes in the subject.
 被検者における生物学的および生理学的プロセスに対する影響が、細胞活動、栄養状態、身体、精神および病態の中から選ばれる一つまたはそれ以上に関連する事象である、請求項31記載の方法。 31. The method of claim 31, wherein the effect on the biological and physiological processes in the subject is an event related to one or more selected from cellular activity, nutritional status, physical, mental and pathological conditions.
 事象が、ミトコンドリア病、加齢性疾患、生活習慣病、精神疾患、難治性疾患、遺伝性疾患、ライフコース関連疾患、消化器疾患、がん、心血管疾患、腎臓疾患および神経疾患の中から選ばれる一つまたはそれ以上である、請求項32記載の方法。 Events include mitochondrial disease, age-related disease, lifestyle disease, mental illness, intractable disease, hereditary disease, life course-related disease, gastrointestinal disease, cancer, cardiovascular disease, kidney disease and neurological disease. 32. The method of claim 32, which is one or more selected.
 特定のアミノアシル-tRNAシンセターゼがグルタミニルtRNAシンセターゼである、請求項31から33のいずれか記載の方法。 The method according to any one of claims 31 to 33, wherein the specific aminoacyl-tRNA synthesizer is a glutaminyl tRNA synthesizer.
 tRNALeu、mt-tRNAHis、tRNASer、tRNAAsn、tRNAPhe、tRNAThr、tRNAIle、tRNAArg、tRNAGln、およびmt-tRNAValの中から選ばれる一つまたはそれ以上のものである、被検者における生物学的および生理学的プロセスに対する影響を判断するためのバイオマーカー。 One or more selected from tRNA Leu , mt-tRNA His , tRNA Ser , tRNA Asn , tRNA Phe , tRNA Thr , tRNA Ile , tRNA Arg , tRNA Gln , and mt-tRNA Val . A biomarker for determining the effect on biological and physiological processes in the examiner.
 tRNALeu-CAG、mt-tRNAHis-CAC、tRNASer-CGA、tRNAAsn-GTT、tRNAPhe-GAA、tRNASer-GCT、tRNAThr-TGT、tRNAThr-CGT、tRNAIle-TAT、tRNAArg-TCT、tRNAGln-CTG、tRNAGln-TTG、およびmt-tRNAVal-GUAの中から選ばれる一つまたはそれ以上のものである、被検者における生物学的および生理学的プロセスに対する影響を判断するための、請求項35記載のバイオマーカー。 tRNA Leu -CAG, mt-tRNA His -CAC, tRNA Ser -CGA, tRNA Asn -GTT, tRNA Phe -GAA, tRNA Ser -GCT, tRNA Thr -TGT, tRNA Thr -CGT, tRNA Ile -TAT, tRNA Arg- Determine the effect on biological and physiological processes in a subject, one or more selected from TCT, tRNA Gln -CTG, tRNA Gln -TTG, and mt-tRNA Val -GUA. 35. The biomarker according to claim 35.
 被検者における生物学的および生理学的プロセスに対する影響が、細胞活動、栄養状態、身体、精神および病態の中から選ばれる一つまたはそれ以上に関連する事象である、請求項35または36記載のバイオマーカー。 35 or 36. Biomarker.
 事象が、ミトコンドリア病、加齢性疾患、生活習慣病、精神疾患、難治性疾患、遺伝性疾患、ライフコース関連疾患、消化器疾患、がん、心血管疾患、腎臓疾患および神経疾患の中から選ばれる一つまたはそれ以上である、請求項35から37のいずれか記載のバイオマーカー。 Events include mitochondrial disease, age-related disease, lifestyle disease, mental illness, intractable disease, hereditary disease, life course-related disease, gastrointestinal disease, cancer, cardiovascular disease, kidney disease and neurological disease. The biomarker of any of claims 35-37, which is one or more selected.
 tRNAGlnおよびtRNAGluの、栄養状態、身体、健康、老化を判断するためのバイオマーカー。 Biomarkers of tRNA Gln and tRNA Glu for determining nutritional status, body, health and aging.
 tRNAGlnがtRNAGln-CTGである、請求項39記載のバイオマーカー。 39. The biomarker of claim 39, wherein the tRNA Gln is tRNA Gln -CTG.
PCT/JP2021/035970 2020-09-30 2021-09-29 Method for measuring rna capable of detecting biological and physiological processes WO2022071436A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022554063A JPWO2022071436A1 (en) 2020-09-30 2021-09-29

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-164372 2020-09-30
JP2020164372 2020-09-30

Publications (1)

Publication Number Publication Date
WO2022071436A1 true WO2022071436A1 (en) 2022-04-07

Family

ID=80951675

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/035970 WO2022071436A1 (en) 2020-09-30 2021-09-29 Method for measuring rna capable of detecting biological and physiological processes

Country Status (2)

Country Link
JP (1) JPWO2022071436A1 (en)
WO (1) WO2022071436A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004024007A (en) * 2002-06-19 2004-01-29 Kokuritsu Iyakuhin Shokuhin Eisei Kenkyusho Method for examining drug metabolism utilizing polymorphysm of metaboilic enzyme cyp2c8 and examination drug and method for screening compound improving drug metabolism
JP2019112338A (en) * 2017-12-22 2019-07-11 国立大学法人 熊本大学 Mitochondrial disease therapeutic agent
JP2020513756A (en) * 2016-12-22 2020-05-21 エフ.ホフマン−ラ ロシュ アーゲーF. Hoffmann−La Roche Aktiengesellschaft COBRA probe for detecting epidemic ribotype markers of Clostridium difficile

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004024007A (en) * 2002-06-19 2004-01-29 Kokuritsu Iyakuhin Shokuhin Eisei Kenkyusho Method for examining drug metabolism utilizing polymorphysm of metaboilic enzyme cyp2c8 and examination drug and method for screening compound improving drug metabolism
JP2020513756A (en) * 2016-12-22 2020-05-21 エフ.ホフマン−ラ ロシュ アーゲーF. Hoffmann−La Roche Aktiengesellschaft COBRA probe for detecting epidemic ribotype markers of Clostridium difficile
JP2019112338A (en) * 2017-12-22 2019-07-11 国立大学法人 熊本大学 Mitochondrial disease therapeutic agent

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
EVANS MOLLY E., CLARK WESLEY C., ZHENG GUANQUN, PAN TAO: "Determination of tRNA aminoacylation levels by high-throughput sequencing", NUCLEIC ACIDS RESEARCH, vol. 45, no. 14, 21 August 2017 (2017-08-21), GB , pages 1 - 8, XP055917888, ISSN: 0305-1048, DOI: 10.1093/nar/gkx514 *

Also Published As

Publication number Publication date
JPWO2022071436A1 (en) 2022-04-07

Similar Documents

Publication Publication Date Title
Li et al. Pseudouridine: the fifth RNA nucleotide with renewed interests
Suzuki The expanding world of tRNA modifications and their disease relevance
Ou et al. Simultaneous detection of telomerase and miRNA with graphene oxide-based fluorescent aptasensor in living cells and tissue samples
Hu et al. Simultaneous sensitive detection of multiple DNA glycosylases from lung cancer cells at the single-molecule level
Green et al. Mutations at nucleotides G2251 and U2585 of 23 S rRNA perturb the peptidyl transferase center of the ribosome
Liu et al. A Graphene-enhanced imaging of microRNA with enzyme-free signal amplification of catalyzed hairpin assembly in living cells
Wang et al. Rapid 40S scanning and its regulation by mRNA structure during eukaryotic translation initiation
WO2021041260A1 (en) Enzymatic rna capping method
Klemke et al. Loss of let-7 binding sites resulting from truncations of the 3′ untranslated region of HMGA2 mRNA in uterine leiomyomas
George et al. Posttranscriptional chemical labeling of RNA by using bioorthogonal chemistry
CN109266721B (en) Method for detecting telomerase activity based on non-quenching molecular beacon
Peng et al. Ultra-sensitive detection of microRNA-21 based on duplex-specific nuclease-assisted target recycling and horseradish peroxidase cascading signal amplification
Xing et al. Accelerated DNA tetrahedron-based molecular beacon for efficient microRNA imaging in living cells
CN109055498A (en) MiRNA and/or biological micromolecule detection probe, detection method and kit based on the dendritic rolling ring responsive transcription of hypertree
George et al. Bioorthogonal chemistry-based RNA labeling technologies: evolution and current state
CN106967794B (en) Kit and method for detecting miRNA (micro ribonucleic acid) by bidirectional signal amplification
Wu et al. G-triplex based molecular beacon with duplex-specific nuclease amplification for the specific detection of microRNA
Das et al. The importance of RNA modifications: From cells to muscle physiology
Kimoto et al. Site‐Specific Functional Labeling of Nucleic Acids by In Vitro Replication and Transcription using Unnatural Base Pair Systems
WO2022071436A1 (en) Method for measuring rna capable of detecting biological and physiological processes
CA3147797A1 (en) Enzymatic rna capping method
JP6857622B2 (en) Simultaneous detection of oligonucleotides, related kits and usage
KR20190139960A (en) Nucleic Acid Modifications and Identification Methods
Liu et al. A dual signal amplification method for miR-204 assay by combining chimeric molecular beacon with double-stranded nuclease
Xu et al. Hypersensitive detection of transcription factors by multiple amplification strategy based on molecular beacon

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21875733

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022554063

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21875733

Country of ref document: EP

Kind code of ref document: A1