WO2022071419A1 - Steel material - Google Patents

Steel material Download PDF

Info

Publication number
WO2022071419A1
WO2022071419A1 PCT/JP2021/035934 JP2021035934W WO2022071419A1 WO 2022071419 A1 WO2022071419 A1 WO 2022071419A1 JP 2021035934 W JP2021035934 W JP 2021035934W WO 2022071419 A1 WO2022071419 A1 WO 2022071419A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel material
ferrite
less
cross
section
Prior art date
Application number
PCT/JP2021/035934
Other languages
French (fr)
Japanese (ja)
Inventor
聡 志賀
豊 根石
誠 江頭
雄介 河原木
Original Assignee
日本製鉄株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本製鉄株式会社 filed Critical 日本製鉄株式会社
Priority to KR1020237013781A priority Critical patent/KR20230072500A/en
Priority to JP2022554053A priority patent/JP7417171B2/en
Priority to DE112021005117.2T priority patent/DE112021005117T5/en
Priority to CN202180066500.3A priority patent/CN116209782A/en
Publication of WO2022071419A1 publication Critical patent/WO2022071419A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/06Surface hardening
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/06Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
    • C21D8/065Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/28Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for plain shafts
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/32Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for gear wheels, worm wheels, or the like
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/56General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering characterised by the quenching agents
    • C21D1/58Oils
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/56General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering characterised by the quenching agents
    • C21D1/60Aqueous agents
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/56General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering characterised by the quenching agents
    • C21D1/613Gases; Liquefied or solidified normally gaseous material
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • C21D1/76Adjusting the composition of the atmosphere
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/009Pearlite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2261/00Machining or cutting being involved
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D7/00Modifying the physical properties of iron or steel by deformation
    • C21D7/13Modifying the physical properties of iron or steel by deformation by hot working
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/005Modifying the physical properties by deformation combined with, or followed by, heat treatment of ferrous alloys

Definitions

  • This disclosure relates to steel materials, and more particularly to steel materials suitable for materials for machine structural parts manufactured by performing vacuum carburizing treatment.
  • the vacuum carburizing treatment also includes the vacuum carburizing nitriding treatment. Further, in the present specification, the vacuum carburizing treatment includes a vacuum carburizing step (including a vacuum carburizing nitriding step) and a quenching step after the vacuum carburizing step.
  • Mechanical structural parts are represented by, for example, gears and shafts of automobiles and construction vehicles.
  • alloy steel materials for machine structure represented by SCr420, SCM420, and SNCM420 specified in JIS G4053 (2016) are used.
  • These steel materials are manufactured into machine structural parts by, for example, the following manufacturing process. Forging (hot forging or cold forging) and / or cutting is performed on the steel material to produce an intermediate product having a desired shape. The intermediate product is subjected to heat treatment (quenching and tempering, carburizing treatment, carburizing nitriding treatment, etc.) to adjust the hardness and microstructure of the intermediate product.
  • Heat treatment quenching and tempering, carburizing treatment, carburizing nitriding treatment, etc.
  • the steel material used as the material for machine structural parts is required to have high machinability.
  • Vacuum carburizing treatment is known as a method for increasing the bending fatigue strength and surface fatigue strength of mechanical structural parts.
  • a hardened layer (carburized layer or carburized nitrided layer) is formed on the surface layer of the mechanical structural component. This hardened layer improves bending fatigue strength and surface fatigue strength of mechanical structural parts.
  • vacuum carburizing treatment vacuum carburizing treatment and vacuum carburizing nitriding treatment
  • mechanical structural parts are easily deformed.
  • the deformation of the mechanical structural parts during the vacuum carburizing process is referred to as heat treatment deformation. Due to heat treatment deformation, the shape of mechanical structural parts is distorted. Distortion of the shape of mechanical structural parts causes noise and vibration when driving automobiles, construction vehicles, and the like. Therefore, there is a need for a steel material that can suppress heat treatment deformation when vacuum carburizing treatment is performed.
  • Patent Document 4 JP-A-2016-191151
  • Patent Document 2 JP-A-2018-028130
  • Patent Document 3 JP-A-2007-291486
  • JP-A-2010. -150566 is disclosed in Japanese Patent Application Laid-Open No. 4 (Patent Document 4).
  • the carburized parts disclosed in Patent Document 1 are C: 0.10 to 0.30%, Si: 0.16 to 1.40%, Mn: 1.40 to 3.00%, P: in mass%. Contains 0.030% or less, S: 0.060% or less, Cr: 0.01 to 0.29%, Al: 0.010 to 0.300%, and N: 0.003 to 0.030%. The balance is composed of Fe and impurities.
  • This carburized part has a flat surface portion and an edge portion on the surface.
  • the carbon concentration of the flat portion surface layer region from the surface of the flat portion to the position of 0.05 mm is 0.70 to 0.89%, and the edge portion surface layer from the surface of the edge portion to the position of 0.05 mm in depth.
  • the carbon concentration in the region is 1.20% or less.
  • Patent Document 1 describes that the carburized parts of Patent Document 1 are excellent in bending fatigue strength even if the carburized parts have a shape including an edge portion.
  • the carburized parts disclosed in Patent Document 2 are C: 0.10 to 0.30%, Si: 0.16 to 1.40%, Mn: 1.40 to 3.00%, P: in mass%. Contains 0.030% or less, S: 0.060% or less, Cr: 0.01 to 0.29%, Al: 0.010 to 0.100%, and N: 0.003 to 0.030%. The balance is composed of Fe and impurities.
  • This carburized part has a flat surface portion and an edge portion on the surface.
  • the carbon concentration of the flat portion surface layer region from the surface of the flat portion to the position of 0.05 mm is 0.70 to 0.89%, and the edge portion surface layer from the surface of the edge portion to the position of 0.05 mm in depth.
  • the carbon concentration in the region is 1.20% or less.
  • Patent Document 2 describes that the carburized parts of Patent Document 2 are excellent in bending fatigue strength even if the carburized parts have a shape including an edge portion.
  • the carburized parts disclosed in Patent Document 3 are, in mass%, C: 0.1 to 0.3%, Si: 0.5 to 3.0%, Mn: 0.3 to 3.0%, P:. 0.03% or less, S: 0.03% or less, Cu: 0.01 to 1.00%, Ni: 0.01 to 3.00%, Cr: 0.3 to 1.0%, Al: 0 .20% or less and N: 0.05% or less, the balance is composed of unavoidable impurities and Fe, [Si%] + [Ni%] + [Cu%]-[Cr%]> 0.5 It has an alloy composition that meets the conditions. Further, this carburized part is obtained by carrying out a carburizing treatment by vacuum carburizing.
  • the steel material for vacuum carburizing or vacuum carburizing nitriding disclosed in Patent Document 4 has a mass% of C: 0.10 to 0.25%, Si: 0.35 to 1.5%, Mn: 0.4 to 1.5%, P: 0.025% or less, S: 0.015 to 0.05%, Cr: 0.50 to 2.0%, Al: 0.010 to 0.050% and N: 0. It contains 012 to 0.025%, the balance is Fe and impurities, O (oxygen) in the impurities: 0.0012% or less and Ti: 0.003% or less, and the formulas (1) to (3). Has a chemical composition that satisfies.
  • the formula (1) is 910-203 ⁇ C 0.5 + 44.7 ⁇ Si ⁇ 860
  • the formula (2) is 2.0 ⁇ (0.31 ⁇ C 0.5 ) ⁇ (0). .7 ⁇ Si + 1.00) ⁇ (3.33 ⁇ Mn + 1.00) ⁇ (2.16 ⁇ Cr + 1.00) ⁇ 3.5
  • the formula (3) is 0.2 ⁇ (S / Mn) + P. ⁇ 0.030.
  • the major axis of the inclusion is L ( ⁇ m) and the minor axis is W ( ⁇ m), and under predetermined conditions, an oxide represented by ( ⁇ LW / 4) 0.5 , etc.
  • the maximum equivalent circle diameter of the inclusions is 35 ⁇ m or less.
  • Patent Document 4 describes that the steel material of Patent Document 4 reduces variations in heat treatment strain during quenching and enhances surface fatigue strength and bending fatigue strength by adjusting the C and Si contents. ..
  • Japanese Unexamined Patent Publication No. 2016-191151 Japanese Unexamined Patent Publication No. 2018-028130 Japanese Unexamined Patent Publication No. 2007-291486 Japanese Unexamined Patent Publication No. 2010-150566
  • Patent Documents 1 to 4 disclose techniques for improving fatigue strength, and do not disclose any technique for suppressing heat treatment deformation.
  • An object of the present disclosure is a steel material having excellent machinability, having excellent bending fatigue strength and surface fatigue strength after vacuum carburizing treatment, and capable of suppressing heat treatment deformation after vacuum carburizing treatment. Is to provide.
  • the steel material of this embodiment is The chemical composition is by mass%, C: 0.18 to 0.25%, Si: 0.70 to 2.00%, Mn: 0.70 to 1.50%, S: 0.005 to 0.050%, N: 0.0050-0.0200%, Al: 0.001 to 0.100%, O: 0.0050% or less, and P: Contains 0.030% or less, The balance consists of Fe and impurities, and the formulas (1) and (2) are satisfied.
  • the microstructure at each cross-sectional observation position contains ferrite and the rest consists of pearlite and / or bainite.
  • the arithmetic mean value of the area fraction of the ferrite at the nine cross-sectional observation positions is 50 to 70%, and the standard deviation of the area fraction of the ferrite is 4.0% or less.
  • the ratio of the maximum average grain size to the minimum average grain size is 2.00 or less.
  • Three central axis positions arranged at R / 2 pitch on the central axis, and six R / 2 positions arranged at R / 2 positions in the radial direction from each central axis position. When defined as 9 vertical cross-sectional observation positions, The microstructure at each longitudinal section observation position contains ferrite and the rest consists of pearlite and / or bainite.
  • the arithmetic mean value of the area fraction of ferrite at the nine vertical cross-sectional observation positions is 50 to 70%, and the standard deviation of the area fraction of the ferrite is 4.0% or less.
  • the ratio of the maximum average particle size to the minimum average particle size is 2.00 or less.
  • the steel material according to the present disclosure has excellent machinability, has excellent bending fatigue strength and surface fatigue strength after vacuum carburizing treatment, and can suppress heat treatment deformation after vacuum carburizing treatment.
  • FIG. 2 is a schematic view for explaining a cross-sectional observation position where microstructure observation is carried out in a cross section perpendicular to the longitudinal direction of the steel material of the present embodiment.
  • FIG. 3 is a schematic view for explaining a vertical cross-sectional observation position in which microstructure observation is carried out in a vertical cross section including the central axis, which is parallel to the longitudinal direction of the steel material of the present embodiment.
  • FIG. 4 is a schematic diagram of the band structure.
  • FIG. 5 is a diagram showing an example of heat patterns in the vacuum carburizing step and the quenching step.
  • FIG. 6 is a plan view of the Ono-type rotary bending test piece produced in the example.
  • FIG. 7 is a diagram showing an example of heat patterns in the gas carburizing step and the quenching step.
  • FIG. 8 is a plan view of the test piece for the roller pitching fatigue test produced in the example.
  • FIG. 9 is a schematic diagram for explaining a roller pitching fatigue test.
  • FIG. 10 is a front view of the large roller test piece produced in the example.
  • FIG. 11A is a perspective view of the gear simulated test piece produced in the example.
  • 11B is a perspective view of the through hole in FIG. 11A.
  • the present inventors have excellent machinability, have excellent bending fatigue strength and surface fatigue strength when subjected to vacuum carburizing treatment to obtain mechanical structural parts, and after vacuum carburizing treatment.
  • the present inventors examined a steel material having excellent machinability and further having excellent bending fatigue strength and surface fatigue strength after vacuum carburizing treatment from the viewpoint of chemical composition.
  • the chemical composition was C: 0.18 to 0.25%, Si: 0.70 to 2.00%, Mn: 0.70 to 1.50%, S: 0.005 in mass%. ⁇ 0.050%, N: 0.0050 to 0.0200%, Al: 0.001 to 0.100%, O: 0.0050% or less, P: 0.030% or less, Mo: 0 to 0.
  • Nb 0 to 0.050%
  • Cr 0 to 0.60%
  • Ti 0 to 0.020%
  • Cu 0 to 0.50%
  • Ni 0 to 0.80%
  • V A steel material containing 0 to 0.30%
  • Mg 0 to 0.0035%
  • Ca 0 to 0.0030%
  • rare earth elements 0 to 0.0050%, with the balance being Fe and impurities.
  • it is considered that it has excellent machinability and may have excellent bending fatigue strength and surface fatigue strength after vacuum carburizing treatment.
  • the present inventors further assume that the content of each element in the chemical composition is within the above range, and further satisfy the following formula (1) to have excellent bending fatigue strength after vacuum carburizing treatment. I thought there was a possibility. Si / Mn ⁇ 1.00 (1) Here, the content (mass%) of the corresponding element is substituted for each element symbol in the formula (1).
  • the inclusions are soft MnO-SiO 2 .
  • the inclusions are vitrified during hot working (hot rolling), stretched and fragmented, and refined. Therefore, coarse inclusions that reduce the bending fatigue strength can be reduced, and the bending fatigue strength is increased.
  • the present inventors further investigated means for suppressing heat treatment deformation in vacuum carburizing treatment.
  • the present inventors focused on the microstructure of steel materials. If the microstructure at each part of the steel material is as uniform as possible, specifically, if the variation in the phase composition of the microstructure at each part in the steel material and the variation in the crystal grains are suppressed, the vacuum Variations in the timing of martensitic transformation during carburizing and quenching can be suppressed. As a result, heat treatment deformation can be suppressed. Therefore, the present inventors investigated the phase composition and the crystal grain size at each part of the steel material.
  • the present inventors first focused on the variation in microstructure in the cross section, which is the cross section perpendicular to the longitudinal direction of the steel material.
  • the cross-sectional observation position which is the observation position of the microstructure in the cross section.
  • the center position of the cross section and the position of R / 2 in the radial direction from the center of the cross section are arranged at a pitch of 45 ° around the center of the cross section 8
  • the R / 2 position of the location is defined as the cross-sectional observation position of 9 locations.
  • the present inventors investigated and examined the microstructure at each cross-sectional observation position. As a result of the examination, it was found that the heat treatment deformation after the carburizing treatment is suppressed if the microstructure at the cross-sectional observation position meets the following requirements.
  • the microstructure at each cross-sectional observation position contains ferrite, and the balance consists of pearlite and / or bainite.
  • the arithmetic mean value of the area fraction of ferrite at nine cross-sectional observation positions is 50 to 70%, and the standard deviation of the area fraction of ferrite is 4.0% or less.
  • the ratio of the maximum average particle size to the minimum average particle size is 2.00 or less.
  • the present inventors paid attention not only to the variation in the microstructure of the cross section of the steel material but also to the variation of the microstructure of the vertical cross section of the steel material. Then, in order to quantify the variation of the microstructure in the vertical section, the vertical section observation position, which is the observation position of the microstructure in the vertical section, is defined as follows.
  • the present inventors investigated and examined the microstructure at each vertical cross-sectional observation position. As a result of the examination, if the microstructure at the cross-sectional observation position meets the above requirements and the microstructure at the vertical cross-section observation position meets the following requirements, the heat treatment deformation after the gas carburizing treatment is sufficiently suppressed. There was found.
  • the microstructure at each vertical cross-sectional observation position contains ferrite, and the balance consists of pearlite and / or bainite.
  • the arithmetic mean value of the area fraction of ferrite at nine vertical cross-sectional observation positions is 50 to 70%, and the standard deviation of the area fraction of ferrite is 4.0% or less.
  • the ratio of the maximum average particle size to the minimum average particle size is 2.00 or less.
  • the present inventors focused on martensitic transformation after vacuum carburizing. Then, the present inventors investigated in detail the mechanism of occurrence of martensitic transformation during vacuum carburizing and quenching.
  • the present inventors first attempted to suppress heat treatment deformation by using a steel material having the above-mentioned chemical composition and making the martensitic transformation time at each part of the mechanical structural parts as similar as possible. Specifically, it is possible to suppress heat treatment deformation by suppressing variations in the microstructure at each part of the steel material (cross-section observation position, vertical cross-section observation position) and by suppressing variations in the Ms point of each part as much as possible. I tried.
  • the microstructural changes of the steel material during the vacuum carburizing treatment occur as follows.
  • quenching time quenching time
  • martensitic transformation starts in a part of the inside of the steel material first. After that, as time progresses, martensitic transformation progresses from the central part toward the surface layer part. That is, the martensitic transformation occurs not from the surface layer of the steel material but from the inside of the steel material.
  • the carbon concentration on the surface layer of the steel material is higher than the carbon concentration inside the steel material. Therefore, the Ms point on the surface layer of the steel material is lower than the Ms point inside the steel material. Further, even if it is possible to make the Ms points uniform in each part inside the steel material, the cooling rates of each part are not completely the same due to the shape of the steel material. Therefore, when the quenching time is divided into minute times, the martensitic transformation starts from each part of the steel material where the cooling rate inside the steel material is high. Therefore, at the time of quenching of the gas carburizing treatment, a minute time zone in which the martensitic transformed portion and the martensitic untransformed portion coexist always occurs.
  • the present inventors do not suppress the heat treatment deformation by setting the martensitic transformation time as much as possible, but during the vacuum carburizing treatment, the martensitic transformed portion and the martensitic untransformed portion are mixed.
  • the means for suppressing heat treatment deformation was investigated.
  • the untransformed part of martensite is softer than the transformed part of martensite.
  • the martensitic transformational portion having a body-centered cubic lattice structure has a larger volume than the martensitic untransformed portion having a face-centered cubic lattice structure. Therefore, when a part of the steel material undergoes martensitic transformation during quenching, and the martensitic transformed portion and the martensitic untransformed portion coexist, the martensitic untransformed portion is distorted. It is considered that this strain causes heat treatment deformation.
  • the present inventors assume that there is a minute time zone in which the martensitic transformed portion and the martensitic untransformed portion coexist during the vacuum carburizing treatment, and when the martensitic transformed portion is generated, It was considered that if the strength of the untransformed martensite portion could be kept high, the occurrence of distortion in the untransformed martensite portion could be suppressed, and as a result, the heat treatment deformation could be suppressed.
  • the present inventors further investigated a means for maintaining high strength of the martensitic untransformed portion when the martensitic transformed portion is generated during quenching in the vacuum carburizing treatment.
  • the martensitic untransformed portion is strengthened in the temperature range where the martensitic transformed portion is generated. It is effective to appropriately contain the elements to be used.
  • the present inventors considered that C, Si, Mn, Cr and Mo are effective as elements for increasing the strength of the martensitic untransformed portion in the temperature range where the martensitic transformed portion is generated. .. Therefore, the relationship between these elements and the amount of heat treatment deformation during quenching of the gas carburizing treatment was further investigated. As a result, it was found that the heat treatment deformation was remarkably suppressed by further satisfying the following formula (2) in the steel material having the above-mentioned chemical composition.
  • 1- 0.5C + 0.03Si + 0.06Mn + 0.01Cr + 0.05Mo
  • the content (mass%) of the corresponding element is substituted for each element symbol in the formula (2). If the corresponding element is not contained, "0" is substituted for the element symbol.
  • FIG. 1 shows the F2 value and the maximum in a steel material in which the content of each element in the chemical composition is within the above range and the variation in microstructure at the cross-sectional observation position and the vertical cross-sectional observation position satisfies the above-mentioned requirements. It is a figure which shows the relationship with the deformation amount ratio (%).
  • the maximum deformation ratio is an index of heat treatment deformation. The larger the maximum deformation amount ratio, the larger the heat treatment deformation of the steel material. The maximum deformation amount ratio was determined by the method described later.
  • the content of each element in the chemical composition is within the above range, and the microstructure at the cross-sectional observation position and the vertical cross-sectional observation position satisfies the above-mentioned conditions (1) to (6).
  • the maximum deformation amount ratio decreases as F2 decreases.
  • F2 is less than 0.800
  • the present inventors suppress the variation in the microstructure at the cross-sectional observation position and the vertical section observation position in the steel material having the above-mentioned chemical composition, and suppress the variation in the timing of martensitic transformation during quenching to some extent.
  • it has excellent machinability by setting F2 to less than 0.800 on the premise that a minute time zone in which martensite transformed portion and martensite untransformed portion coexist is inevitably generated at the time of quenching. It has been found that it has excellent bending fatigue strength and excellent surface fatigue strength after vacuum carburizing treatment, and can sufficiently suppress heat treatment deformation after vacuum carburizing treatment.
  • the steel material according to the present embodiment completed based on the above knowledge has the following constitution.
  • the microstructure at each cross-sectional observation position contains ferrite and the rest consists of pearlite and / or bainite.
  • the arithmetic mean value of the area fraction of the ferrite at the nine cross-sectional observation positions is 50 to 70%, and the standard deviation of the area fraction of the ferrite is 4.0% or less.
  • the ratio of the maximum average grain size to the minimum average grain size is 2.00 or less.
  • Three central axis positions arranged at R / 2 pitch on the central axis, and six R / 2 positions arranged at R / 2 positions in the radial direction from each central axis position. When defined as 9 vertical cross-sectional observation positions, The microstructure at each longitudinal section observation position contains ferrite and the rest consists of pearlite and / or bainite.
  • the arithmetic mean value of the area fraction of ferrite at the nine vertical cross-sectional observation positions is 50 to 70%, and the standard deviation of the area fraction of the ferrite is 4.0% or less.
  • the ratio of the maximum average particle size to the minimum average particle size is 2.00 or less.
  • Steel material Si / Mn ⁇ 1.00 (1) 1- (0.5C + 0.03Si + 0.06Mn + 0.01Cr + 0.05Mo) ⁇ 0.800 (2)
  • the content (mass%) of the corresponding element is substituted for each element symbol in the formula (1) and the formula (2). If the corresponding element is not contained, "0" is substituted for the element symbol.
  • Carbon (C) increases the strength of the steel material. If the C content is less than 0.18%, the above effect cannot be sufficiently obtained even if the content of other elements is within the range of the present embodiment. On the other hand, if the C content exceeds 0.25%, the hardenability becomes excessively high even if the content of other elements is within the range of the present embodiment. In this case, the hardness of the mechanical structural parts after the vacuum carburizing treatment becomes excessively high. As a result, the machinability of mechanical structural parts is significantly reduced. Therefore, the C content is 0.18 to 0.25%.
  • the lower limit of the C content is preferably 0.19%, more preferably 0.20%, still more preferably 0.21%.
  • the preferred upper limit of the C content is 0.24%, more preferably 0.23%, still more preferably 0.22%.
  • Si 0.70 to 2.00%
  • Silicon (Si) enhances the hardenability of the steel material and enhances the strength of the steel material. Si further enhances the temper softening resistance of the hardened layer when steel is used as a mechanical structural component. Therefore, the surface fatigue strength of the mechanical structural parts is increased. If the Si content is less than 0.70%, the above effect cannot be sufficiently obtained even if the content of other elements is within the range of the present embodiment. On the other hand, if the Si content exceeds 2.00%, the hardenability is too high even if the content of other elements is within the range of the present embodiment. Therefore, the hardness of the steel material after the vacuum carburizing treatment becomes high. Therefore, the machinability of the steel material is significantly reduced. Therefore, the Si content is 0.70 to 2.00%.
  • the lower limit of the Si content is preferably 0.71%, more preferably 0.72%, still more preferably 0.75%.
  • the preferred upper limit of the Si content is 1.90%, more preferably 1.70%, still more preferably 1.50%, still more preferably 1.47%, still more preferably 1.45%. %.
  • Mn 0.70 to 1.50%
  • Manganese (Mn) enhances the hardenability of steel materials and enhances the bending fatigue strength and surface fatigue strength of mechanical structural parts. If the Mn content is less than 0.70%, the above effect cannot be sufficiently obtained even if the content of other elements is within the range of the present embodiment. On the other hand, if the Mn content exceeds 1.50%, the steel material becomes too hard even if the content of other elements is within the range of the present embodiment. In this case, the machinability of the steel material is reduced. Therefore, the Mn content is 0.70 to 1.50%.
  • the preferred lower limit of the Mn content is more than 0.70%, more preferably 0.75%, still more preferably 0.80%.
  • the preferred upper limit of the Mn content is less than 1.50%, more preferably 1.45%, still more preferably 1.40%, still more preferably 1.35%.
  • S 0.005 to 0.050% Sulfur (S) combines with Mn to form MnS.
  • MnS enhances the machinability of steel materials. If the S content is less than 0.005%, the above effect cannot be sufficiently obtained even if the content of other elements is within the range of the present embodiment. On the other hand, if the S content exceeds 0.050%, MnS is excessively formed even if the content of other elements is within the range of the present embodiment. In this case, the bending fatigue strength and the surface fatigue strength of the mechanical structural parts are reduced. Therefore, the S content is 0.005 to 0.050%.
  • the lower limit of the S content is preferably 0.010%, more preferably 0.013%, still more preferably 0.015%.
  • the preferred upper limit of the S content is less than 0.050%, more preferably 0.035%, still more preferably 0.025%.
  • N 0.0050-0.0200%
  • Nitrogen (N) combines with Al and Nb to form AlN and NbN.
  • AlN and NbN suppress the coarsening of crystal grains during heating in the vacuum carburizing treatment due to the pinning effect. If the N content is less than 0.0050%, the above effect cannot be sufficiently obtained even if the content of other elements is within the range of the present embodiment. On the other hand, if the N content exceeds 0.0200%, scratches are likely to occur on the surface of the manufactured slab or ingot in the steelmaking process even if the content of other elements is within the range of the present embodiment. .. Therefore, the N content is 0.0050 to 0.0200%.
  • the lower limit of the N content is preferably 0.0100%, more preferably 0.0120%, still more preferably 0.0130%.
  • the preferred upper limit of the N content is less than 0.0200%, more preferably 0.0190%, still more preferably 0.0180%, still more preferably 0.0150%.
  • Al 0.001 to 0.100%
  • Aluminum (Al) deoxidizes steel. Al further combines with N to form AlN. AlN suppresses the coarsening of crystal grains during heating in the vacuum carburizing treatment due to the pinning effect. If the Al content is less than 0.001%, the above effect cannot be sufficiently obtained even if the content of other elements is within the range of the present embodiment. On the other hand, if the Al content exceeds 0.100%, the formation of a coarse Al oxide is promoted even if the content of other elements is within the range of the present embodiment. The coarse Al oxide reduces the bending fatigue strength of mechanical structural parts. Therefore, the Al content is 0.001 to 0.100%.
  • the preferred lower limit of the Al content is 0.010%, more preferably 0.020%, still more preferably 0.025%, still more preferably 0.027%, still more preferably 0.030. %.
  • the preferred upper limit of the Al content is 0.090%, more preferably 0.070%, still more preferably 0.050%, still more preferably 0.045%, still more preferably 0.040. %, More preferably 0.035%.
  • Oxygen (O) is an impurity. O combines with other elements in the steel to form coarse oxide inclusions. Coarse oxide-based inclusions reduce the bending fatigue strength of mechanical structural parts. If the O content exceeds 0.0050%, the bending fatigue strength of the mechanical structural parts is significantly reduced even if the content of other elements is within the range of the present embodiment. Therefore, the O content is 0.0050% or less.
  • the preferred upper limit of the O content is 0.0040%, more preferably 0.0030%, still more preferably 0.0020%, still more preferably 0.0015%. It is preferable that the O content is as low as possible. However, excessive reduction of O content raises manufacturing costs. Therefore, when considering normal industrial production, the preferred lower limit of the O content is more than 0%, more preferably 0.0001%, still more preferably 0.0005%, still more preferably 0.0010. %.
  • Phosphorus (P) is an impurity. P segregates at the grain boundaries and lowers the grain boundary strength. If the P content exceeds 0.030%, even if the content of other elements is within the range of the present embodiment, P is excessively segregated at the grain boundaries to reduce the grain boundary strength, and as a result, the machine. Bending fatigue strength and surface fatigue strength of structural parts are reduced. Therefore, the P content is 0.030% or less.
  • the preferred upper limit of the P content is 0.025%, more preferably 0.020%, still more preferably 0.015%. It is preferable that the P content is as low as possible. However, excessive reduction of P content raises manufacturing costs. Therefore, when considering normal industrial production, the preferred lower limit of the P content is more than 0%, more preferably 0.001%, still more preferably 0.005%, still more preferably 0.010. %.
  • the balance of the chemical composition of the steel material according to this embodiment consists of Fe and impurities.
  • the impurities are mixed from ore, scrap, or the manufacturing environment as a raw material when the steel material is industrially manufactured, and are within a range that does not adversely affect the steel material of the present embodiment. Means what is acceptable.
  • the impurities referred to here are B, Pb, W, Sb, Bi, Co, Ta, Sn, In, Zr, Te, Se, Zn and the like.
  • the total content of impurities other than O and P is 0.01% or less. Of the above impurities, the B content is 0.0003% or less.
  • the chemical composition of the steel material of the present embodiment is replaced with a part of Fe.
  • Mo 0.50% or less
  • Nb 0.050% or less
  • Cr 0.60% or less
  • Ti 0.020% or less
  • Cu 0.50% or less
  • Ni 0.80% or less
  • V 0.30% or less
  • Mg 0.0035% or less
  • Ca 0.0030% or less
  • Rare earth element It may contain one or more elements selected from the group consisting of 0.0050% or less. These elements are arbitrary elements, and all of them enhance the bending fatigue strength and the surface fatigue strength of mechanical structural parts.
  • Mo Molybdenum
  • Mo Molybdenum
  • Mo is an optional element and may not be contained. That is, the Mo content may be 0%.
  • Mo enhances the hardenability of steel materials and enhances bending fatigue strength and surface fatigue strength of mechanical structural parts. If Mo is contained even in a small amount, the above effect can be obtained to some extent. However, if the Mo content exceeds 0.50%, the steel material becomes too hard even if the content of other elements is within the range of the present embodiment. In this case, the machinability of the steel material is reduced. Therefore, the Mo content is 0 to 0.50%, and when it is contained, it is 0.50% or less (that is, more than 0 to 0.50%).
  • the lower limit of the Mo content is preferably 0.01%, more preferably 0.02%, still more preferably 0.05%, still more preferably 0.10%.
  • the preferred upper limit of the Mo content is less than 0.50%, more preferably 0.45%, still more preferably 0.40%, still more preferably 0.35%.
  • Niobium (Nb) is an optional element and may not be contained. That is, the Nb content may be 0%.
  • Nb binds to C and / or N to form Nb precipitates (NbC, NbN, Nb (CN), etc.). Similar to AlN, the Nb precipitate suppresses the coarsening of crystal grains in the gas carburizing treatment due to the pinning effect. Therefore, the bending fatigue strength and the surface fatigue strength of the mechanical structural parts are increased. If even a small amount of Nb is contained, the above effect can be obtained to some extent.
  • the Nb content is 0 to 0.050%, and when it is contained, it is 0.050% or less (that is, more than 0 to 0.050%).
  • the preferred lower limit of the Nb content is 0.001%, more preferably 0.010%, still more preferably 0.015%, still more preferably 0.020%, still more preferably 0.025. %.
  • the preferred upper limit of the Nb content is less than 0.050%, more preferably 0.045%, still more preferably 0.040%, still more preferably 0.035%.
  • Chromium (Cr) is an optional element and may not be contained. That is, the Cr content may be 0%. When contained, Cr enhances the hardenability of steel materials and enhances bending fatigue strength and surface fatigue strength of mechanical structural parts. If even a small amount of Cr is contained, the above effect can be obtained to some extent. However, if the Cr content exceeds 0.60%, excessive carburizing is likely to occur on the surface layer of the mechanical structural parts during the vacuum carburizing treatment even if the other element content is within the range of the present embodiment. In this case, coarse cementite is formed at the grain boundaries. Therefore, the bending fatigue strength of the mechanical structural parts is reduced.
  • the Cr content is 0 to 0.60%, and when it is contained, it is 0.60% or less (that is, more than 0 to 0.60%).
  • the lower limit of the Cr content is preferably 0.01%, more preferably 0.05%, still more preferably 0.10%.
  • the preferred upper limit of the Cr content is less than 0.60%, more preferably 0.55%, still more preferably 0.50%, still more preferably 0.45%, still more preferably 0. It is 40%.
  • Titanium (Ti) is an optional element and may not be contained. That is, the Ti content may be 0%. When contained, Ti forms Ti precipitates (TiC, TiN, Ti (CN), etc.) as well as Nb. The Ti precipitate suppresses the coarsening of crystal grains in the gas carburizing treatment due to the pinning effect. Therefore, the bending fatigue strength and the surface fatigue strength of the mechanical structural parts are increased. If even a small amount of Ti is contained, the above effect can be obtained to some extent. However, if the Ti content exceeds 0.020%, the Ti precipitate will be coarsened even if the content of other elements is within the range of this embodiment.
  • the Ti content is 0 to 0.020%, and when it is contained, it is 0.020% or less (that is, more than 0 to 0.020%).
  • the lower limit of the Ti content is preferably 0.001%, more preferably 0.005%, still more preferably 0.010%.
  • the preferred upper limit of the Ti content is 0.019%, more preferably 0.017%, still more preferably 0.015%.
  • Cu 0.50% or less Copper (Cu) is an optional element and may not be contained. That is, the Cu content may be 0%. When contained, Cu enhances the hardenability of steel materials and enhances bending fatigue strength and surface fatigue strength of mechanical structural parts. If even a small amount of Cu is contained, the above effect can be obtained to some extent. However, if the Cu content exceeds 0.50%, the steel material becomes too hard even if the content of other elements is within the range of this embodiment. In this case, the machinability of the steel material is reduced. Therefore, the Cu content is 0 to 0.50%, and when it is contained, it is 0.50% or less (that is, more than 0 to 0.50%).
  • the lower limit of the Cu content is preferably 0.01%, more preferably 0.05%, still more preferably 0.10%.
  • the preferred upper limit of the Cu content is 0.45%, more preferably 0.40%, still more preferably 0.30%, still more preferably 0.25%.
  • Nickel (Ni) is an optional element and may not be contained. That is, the Ni content may be 0%. When contained, Ni enhances the hardenability of steel materials and enhances the bending fatigue strength and surface fatigue strength of mechanical structural parts. If even a small amount of Ni is contained, the above effect can be obtained to some extent. However, if the Ni content exceeds 0.80%, the steel material becomes too hard even if the content of other elements is within the range of the present embodiment. In this case, the machinability of the steel material is reduced. Therefore, the Ni content is 0 to 0.80%, and when it is contained, it is 0.80% or less (that is, more than 0 to 0.80%).
  • the lower limit of the Ni content is preferably 0.01%, more preferably 0.05%, still more preferably 0.10%.
  • the preferred upper limit of the Ni content is 0.70%, more preferably 0.60%, still more preferably 0.40%, still more preferably 0.20%.
  • V 0.30% or less Vanadium (V) is an optional element and may not be contained. That is, the V content may be 0%. When contained, V forms V precipitates (VC, VN, V (CN), etc.), similar to Nb. The V precipitate suppresses the coarsening of crystal grains in the gas carburizing treatment due to the pinning effect. Therefore, the bending fatigue strength and the surface fatigue strength of the mechanical structural parts are increased. If V is contained even in a small amount, the above effect can be obtained to some extent. However, if the V content exceeds 0.30%, the steel material becomes too hard even if the content of other elements is within the range of the present embodiment. In this case, the machinability of the steel material is reduced.
  • the V content is 0 to 0.30%, and when it is contained, it is 0.30% or less (that is, more than 0 to 0.30%).
  • the lower limit of the V content is preferably 0.01%, more preferably 0.03%, still more preferably 0.04%.
  • the preferred upper limit of the V content is 0.20%, more preferably 0.15%, still more preferably 0.10%.
  • Mg 0.0035% or less
  • Magnesium (Mg) is an optional element and may not be contained. That is, the Mg content may be 0%. When contained, Mg deoxidizes steel, similar to Al. In this case, the formation of coarse oxides is suppressed. Therefore, the bending fatigue strength and the surface fatigue strength of the mechanical structural parts are increased. If even a small amount of Mg is contained, the above effect can be obtained to some extent. However, if the Mg content exceeds 0.0035%, the formation of coarse Mg oxides in the steel material is promoted even if the content of other elements is within the range of the present embodiment. In this case, the limit machining rate during hot machining decreases.
  • the Mg content is 0 to 0.0035%, and when it is contained, it is 0.0035% or less (that is, more than 0 to 0.0035%).
  • the preferable lower limit of the Mg content is 0.0001%, more preferably 0.0003%, still more preferably 0.0005%.
  • the preferred upper limit of the Mg content is 0.0030%, more preferably 0.0028%, still more preferably 0.0025%, still more preferably 0.0020%.
  • Ca 0.0030% or less Calcium (Ca) is an optional element and may not be contained. That is, the Ca content may be 0%.
  • Ca refines sulfides in steel. Ca further promotes spheroidization of sulfides in steel. Therefore, the bending fatigue strength and the surface fatigue strength of the mechanical structural parts are increased. If even a small amount of Ca is contained, the above effect can be obtained to some extent. However, if the Ca content exceeds 0.0030%, coarse Ca oxides are formed in the steel material even if the content of other elements is within the range of this embodiment. In this case, the bending fatigue strength and the surface fatigue strength of the mechanical structural parts are reduced.
  • the Ca content is 0 to 0.0030%, and when it is contained, it is 0.0030% or less (that is, more than 0 to 0.0030%).
  • the preferred lower limit of the Ca content is 0.0001%, more preferably 0.0002%, still more preferably 0.0005%, still more preferably 0.0007%, still more preferably 0.0010. %.
  • the preferred upper limit of the Ca content is 0.0025%, more preferably 0.0022%, still more preferably 0.0020%.
  • Rare earth element (REM) 0.0050% or less
  • Rare earth element (REM) is an optional element and may not be contained. That is, the REM content may be 0%. When contained, the REM dissolves in the sulfide in the steel material and suppresses the stretching of MnS. As a result, the bending fatigue strength and the surface fatigue strength of the mechanical structural parts are increased. If even a small amount of REM is contained, the above effect can be obtained to some extent. However, if the REM content exceeds 0.0050%, coarse oxides will be produced even if the content of other elements is within the range of this embodiment. In this case, the bending fatigue strength and the surface fatigue strength of the mechanical structural parts are reduced.
  • the REM content is 0 to 0.0050%, and when contained, it is 0.0050% or less (that is, more than 0 to 0.0050%).
  • the preferred lower limit of the REM content is 0.0001%, more preferably 0.0010%, still more preferably 0.0020%.
  • the preferred upper limit of the REM content is 0.0045%, more preferably 0.0040%, still more preferably 0.0035%, still more preferably 0.0030%.
  • the REMs are scandium (Sc) having an atomic number of 21, yttrium (Y) having an atomic number of 39, and lanthanum (La) having an atomic number of 57 to lutetium having an atomic number of 71 (Lutetium). It is one or more elements selected from the group consisting of Lu).
  • the REM content in the present specification is the total content of these elements.
  • MnO-SiO 2 has a melting point of about 1250 ° C. Therefore, it is liquid in the molten metal before solidification, but becomes solid in the steel pieces after solidification, and becomes vitrified soft inclusions.
  • the bending fatigue strength of the mechanical structural parts manufactured from the steel material of the present embodiment increases.
  • the bending fatigue strength is higher than that of SCM420H specified in JIS G4052 (2016). Therefore, when F1 satisfies the formula (1), that is, when F1 is 1.00 or more, it is assumed that the content of each element is within the range of the present embodiment and F2 satisfies the formula (2).
  • the bending fatigue strength of the mechanical structural parts manufactured using the steel material of the present embodiment is sufficiently increased.
  • the preferred lower limit of F1 is 1.05, more preferably 1.07, and even more preferably 1.10.
  • the upper limit of F1 is not particularly limited. However, considering the content of each element in the chemical composition of the present embodiment, the preferred upper limit of F1 is 2.10, more preferably 2.00, and even more preferably 1.70.
  • the microstructure of the steel material of the present embodiment contains ferrite, the balance is pearlite and / or bainite, and the surface integral of ferrite is 50 to 70%.
  • the surface integral of ferrite is less than 50%, the surface integral of pearlite and / or bainite is too high in the steel material. In this case, the hardness of the steel material is excessively increased. As a result, the machinability of the steel material is reduced. On the other hand, if the surface integral of the ferrite exceeds 70%, the crystal grain size tends to vary during the gas carburizing treatment. Therefore, heat treatment deformation occurs excessively during the gas carburizing treatment.
  • the surface integral of ferrite is 50 to 70% and the balance other than ferrite in the microstructure is pearlite and / or bainite, the machinability of the steel material is sufficiently enhanced. Further, heat treatment deformation during gas carburizing treatment can be suppressed.
  • the microstructure at each cross-sectional observation position and each vertical cross-sectional observation position contains 50 to 70% ferrite in area fraction, and the balance is composed of pearlite and / or bainite.
  • the preferable lower limit of the surface integral of ferrite at each observation position is 52%, more preferably 55%, still more preferably 57%.
  • the preferred upper limit of the surface integral of ferrite at each observation position is 68%, more preferably 65%, still more preferably 63%.
  • FIG. 2 is a schematic cross-sectional view of the steel material of the present embodiment, which is a cross section perpendicular to the longitudinal direction.
  • the cross-sectional CS of the steel material has a circular shape with a radius R.
  • the center position C1 of the cross-section CS and the position of R / 2 in the radial direction from the center position C1 of the cross-section CS are arranged around the center of the cross-section CS at a pitch of 45 °.
  • the R / 2 positions C2 to C9 at the locations are defined as the "cross-sectional observation positions" C1 to C9 at the nine locations.
  • the microstructure at the cross-sectional observation positions C1 to C9 satisfies the following (A) and (B).
  • A) The arithmetic mean value of the area fraction of ferrite at the cross-sectional observation positions C1 to C9 is 50 to 70%, and the standard deviation of the area fraction of ferrite is 4.0% or less.
  • the arithmetic mean value of the area fraction of ferrite at the cross-sectional observation positions C1 to C9 is 50 to 70%, and the standard deviation of the area fraction of ferrite. Is 4.0% or less.
  • the standard deviation of the ferrite area fraction is 4.0% or less, the variation in the phase fraction of the microstructure at each cross-sectional observation position C1 to C9 is sufficiently suppressed. Therefore, it is possible to suppress variations in the occurrence timing of martensitic transformation at each cross-sectional observation positions C1 to C9 during the gas carburizing treatment.
  • the standard deviation of the surface integral of ferrite at the cross-sectional observation positions C1 to C9 exceeds 4.0%, the phase fraction varies greatly at each of the cross-sectional observation positions C1 to C9. In this case, the heat treatment deformation during the gas carburizing treatment cannot be sufficiently suppressed. Therefore, the standard deviation of the surface integral of ferrite at the cross-sectional observation positions C1 to C9 is 4.0% or less.
  • the preferred upper limit of the standard deviation of the surface integral of ferrite is 3.8%, more preferably 3.5%, still more preferably 3.0%.
  • the lower limit of the standard deviation of the surface integral of ferrite is not particularly limited.
  • the preferred lower limit of the standard deviation of the surface integral of ferrite is 0.1%, more preferably 0.5%, still more preferably 1.0%, still more preferably 1.5%.
  • ferrite average grain size ratio (maximum value of ferrite average particle size in C1 to C9) / (minimum value of ferrite average particle size in C1 to C9)
  • the ferrite average particle size ratio at the cross-sectional observation positions C1 to C9 is 2.00 or less.
  • the variation in the average particle size of the ferrite at each of the cross-sectional observation positions C1 to C9 is sufficiently suppressed. That is, the ferrite grains at each position are aligned. Therefore, it is possible to sufficiently suppress the variation in the occurrence of martensitic transformation during the carburizing treatment. Therefore, it is possible to suppress heat treatment deformation of the steel material during the carburizing treatment.
  • the ferrite average particle size ratio exceeds 2.00, the ferrite grains at each cross-sectional observation position C1 to C9 are scattered. In this case, the heat treatment deformation of the steel material during the gas carburizing treatment cannot be sufficiently suppressed. Therefore, the ferrite average particle size ratio is 2.00 or less.
  • the preferred upper limit of the ferrite average particle size ratio is 1.95, more preferably 1.90, and even more preferably 1.80.
  • the lower limit of the ferrite average particle size ratio is not particularly limited.
  • the preferred lower limit of the ferrite average particle size ratio is 1.10, more preferably 1.20, still more preferably 1.30, and even more preferably 1.40.
  • the variation in microstructure is sufficiently suppressed not only in the above-mentioned cross section but also in the vertical cross section which is parallel to the longitudinal direction of the steel material and includes the central axis of the steel material. ..
  • the variation in the microstructure not only in the cross section but also in the vertical section is sufficiently suppressed, so that the heat treatment deformation generated three-dimensionally can be sufficiently suppressed.
  • the suppression of the variation in the microstructure in the vertical cross section will be described.
  • FIG. 3 is a schematic view of a vertical cross section that is parallel to the longitudinal direction of the steel material of the present embodiment and is a cross section including the central axis.
  • the six R / 2 positions L4 to L9 arranged at the / 2 position are defined as the nine “longitudinal section observation positions” L1 to L9.
  • the microstructures at the above-mentioned nine vertical cross-sectional observation positions L1 to L9 satisfy the following (C) and (D).
  • C The arithmetic mean value of the area fraction of ferrite at the vertical cross-sectional observation positions L1 to L9 is 50 to 70%, and the standard deviation of the area fraction of ferrite is 4.0% or less.
  • D Among the average particle diameters of ferrites at the vertical cross-sectional observation positions L1 to L9, the ratio of the maximum average particle size to the minimum average particle size (ferrite average particle size ratio) is 2.00 or less.
  • (C) and (D) will be described in detail.
  • the arithmetic mean value of the area fraction of ferrite at the vertical cross-sectional observation positions L1 to L9 is 50 to 70%, and the standard deviation of the area fraction of ferrite. Is 4.0% or less.
  • the standard deviation of the surface integral of ferrite at the vertical cross-sectional observation positions L1 to L9 is 4.0% or less.
  • the preferred upper limit of the standard deviation of the surface integral of ferrite is 3.8%, more preferably 3.5%, still more preferably 3.0%.
  • the lower limit of the standard deviation of the surface integral of ferrite is not particularly limited.
  • the preferred lower limit of the standard deviation of the surface integral of ferrite is 0.1%, more preferably 0.5%, still more preferably 1.0%, still more preferably 1.5%.
  • ferrite average grain size ratio (maximum value of ferrite average particle size in L1 to L9) / (minimum value of ferrite average particle size in L1 to L9)
  • the ferrite average particle size ratio at the vertical cross-sectional observation positions L1 to L9 is 2.00 or less.
  • the variation in the average particle size of the ferrite at each of the vertical cross-sectional observation positions L1 to L9 is sufficiently suppressed. That is, the ferrite grains at each position are aligned. Therefore, it is possible to sufficiently suppress the variation in the occurrence of martensitic transformation during the carburizing treatment. Therefore, it is possible to suppress heat treatment deformation of the steel material during the carburizing treatment.
  • the ferrite average particle size ratio exceeds 2.00, the ferrite grains at each vertical cross-sectional observation position L1 to L9 are scattered. In this case, the heat treatment deformation of the steel material during the gas carburizing treatment cannot be sufficiently suppressed. Therefore, the ferrite average particle size ratio at the nine vertical cross-sectional observation positions L1 to L9 is 2.00 or less.
  • the preferred upper limit of the ferrite average particle size ratio is 1.95, more preferably 1.90, and even more preferably 1.80.
  • the lower limit of the ferrite average particle size ratio is not particularly limited.
  • the preferred lower limit of the ferrite average particle size ratio is 1.10, more preferably 1.20, still more preferably 1.30, and even more preferably 1.40.
  • Method of observing microstructure at each observation position Method of measuring surface integral of ferrite and average grain size ratio of ferrite
  • the method for observing the microstructure at the cross-sectional observation positions C1 to C9 and the vertical cross-sectional observation positions L1 to L9 of the steel material of the present embodiment, and the method for measuring the area fraction of ferrite and the average grain size ratio of ferrite are as follows. be.
  • the method of observing the microstructure of the cross-sectional CS is as follows. A sample including each cross-sectional observation position C1 to C9 is collected from the steel material. Of the surfaces of the sample, the surface corresponding to the cross section CS is used as the observation surface. On the observation surface, the observation field of view including the cross-sectional observation position is 0.5 mm ⁇ 1.0 mm.
  • the contrast of each phase such as ferrite, pearlite, and bainite is different for each phase.
  • ferrite is observed to be white, and bainite and pearlite are observed to be blacker than ferrite. Therefore, ferrite can be easily distinguished from other phases (pearlite and bainite). Identify ferrite based on contrast.
  • the arithmetic mean value of the ferrite area fraction (%) at the nine observation fields (cross-section observation positions) is the arithmetic mean value (%) of the ferrite area fraction at the nine cross-section observation positions C1 to C9. Define.
  • the standard deviation (%) of the ferrite area fractions at the nine cross-sectional observation positions C1 to C9 is calculated from the ferrite area fractions (%) at the nine observation fields (cross-section observation positions).
  • the standard deviation here is the sample standard deviation.
  • the average particle size of the ferrites at the cross-sectional observation positions C1 to C9 at 9 locations are obtained. Then, among the average particle diameters of these ferrites, the maximum average particle diameter ( ⁇ m) and the minimum average particle diameter ( ⁇ m) of the ferrites are specified. The ratio of the maximum average particle size to the specified minimum average particle size (ferrite average particle size ratio) is obtained.
  • the method of observing the microstructure of the vertical cross section LS is as follows. A sample including each vertical cross-sectional observation position L1 to L9 is taken from the steel material. Of the surface of the sample, the surface corresponding to the vertical cross section LS is used as the observation surface. On the observation surface, the observation field of view including the vertical cross-sectional observation position is 0.5 mm ⁇ 1.0 mm. More specifically, the length of 0.5 mm of the observation field of view is defined as the radial direction of the steel material, and 1.0 mm is defined as the longitudinal direction of the steel material.
  • the observation field of view (0.5 mm ⁇ 1.0 mm) of the etched observation surface is observed with a 100x optical microscope.
  • Each phase in the observation field is identified by the same method as the microstructure observation of the cross-sectional CS.
  • the arithmetic mean value of the ferrite area fraction (%) in the nine observation fields (vertical cross-section observation positions) is the arithmetic mean value (%) of the ferrite area fraction in the nine vertical cross-section observation positions L1 to L9. Define.
  • the standard deviation (%) of the ferrite area fractions at the nine vertical cross-sectional observation positions L1 to L9 is calculated from the ferrite area fractions (%) at the nine observation fields (vertical cross-sectional observation positions).
  • the steel material of the present embodiment not only the cross-sectional CS but also the microstructure of the vertical cross-sectional LS is made uniform.
  • the microstructures of the cross-sectional observation positions C1 to C9 in the cross-section CS satisfy (A) and (B)
  • the microstructures of the vertical cross-section observation positions L1 to L9 in the vertical cross-section LS satisfy (C) and.
  • (D) even if the microstructure is made uniform, as described above, a minute time zone in which the martensitic transformed portion and the martensitic untransformed portion coexist always occurs at the time of quenching of the vacuum carburizing treatment. If the amount of heat treatment strain in the martensite untransformed portion is large in this minute time zone, heat treatment deformation will occur. Therefore, the steel material of the present embodiment further satisfies the formula (2).
  • F2 1- (0.5C + 0.03Si + 0.06Mn + 0.01Cr + 0.05Mo).
  • F2 is an index relating to the amount of heat treatment deformation of the steel material in the gas carburizing treatment with respect to the steel material.
  • C, Si, Mn, Cr and Mo contained in F2 are particularly martensite in a minute time zone in which a martensitic transformed portion and a martensitic untransformed portion are mixed at the time of quenching. Increases the strength of untransformed parts.
  • the maximum deformation amount ratio decreases, and the heat treatment deformation amount decreases.
  • the preferred upper limit of F2 is 0.799, more preferably 0.797, and even more preferably 0.795.
  • the lower limit of F2 is not particularly limited. However, considering the upper limit of the content of each element in the chemical composition of the present embodiment, the preferable lower limit of F2 is 0.765, more preferably 0.770, and even more preferably 0.775.
  • the numerical value of F2 is a value obtained by rounding off to the fourth decimal place.
  • the steel material of the present embodiment having the above structure has a cross section in which the content of each element in the chemical composition is within the range of the present embodiment, and F1 and F2 satisfy the formulas (1) and (2).
  • the microstructures at the observation positions C1 to C9 and the vertical cross-sectional observation positions L1 to L9 are within the scope of the present embodiment. Therefore, the machinability after hot working on the steel material of the present embodiment is excellent. Further, when the steel material of the present embodiment is subjected to the vacuum carburizing treatment, the mechanical structural parts have excellent bending fatigue strength and surface fatigue strength, and can sufficiently suppress heat treatment deformation.
  • the steel material of the present embodiment is a so-called as-rolled material (azurol material). Therefore, in the steel material of the present embodiment, a so-called band structure is observed in the above observation fields of the vertical cross-sectional observation positions L1 to L9.
  • the band structure is a well-known microstructure, and as shown in FIG. 4, a ferrite (ferrite band) F extending in the longitudinal direction of the steel material and a non-ferrite (non-ferrite band) NF extending in the longitudinal direction of the steel material are used. However, it means a structure that is alternately laminated in the radial direction. Non-ferrites are pearlite and / or bainite.
  • the steel material of the present embodiment is suitable as a material for mechanical structural parts.
  • the steel material of the present embodiment is particularly suitable for applications such as gears or shafts of automobile applications, construction machinery, industrial machinery and the like.
  • An example of the method for producing a steel material of the present embodiment includes the following steps.
  • Process of preparing materials (Material preparation process)
  • Process 2 A process of hot-working a material to manufacture a steel material (hot-working process)
  • each step will be described.
  • the steel material of the present embodiment is prepared. Specifically, a molten steel in which the content of each element in the chemical composition is within the range of the present embodiment, F1 satisfies the formula (1), and F2 satisfies the formula (2) is produced.
  • the refining method is not particularly limited, and a well-known method may be used. For example, refining in a converter (primary refining) is performed on hot metal produced by a well-known method. Well-known secondary refining will be carried out on the molten steel discharged from the converter.
  • the content of the alloying elements in the molten steel is adjusted so that the content of each element is within the range of the present embodiment, F1 satisfies the formula (1), and F2 satisfies the formula (2).
  • the material is manufactured by a well-known casting method.
  • an ingot may be manufactured by an ingot method using molten steel.
  • bloom or billet may be produced by a continuous casting method using molten steel.
  • the material (ingot, bloom or billet) is manufactured by the above method.
  • reduction may be applied to the slab in the middle of solidification.
  • Step 2 Hot working process the material (ingot, bloom or billet) prepared in the material preparing step is hot-worked to produce the steel material of the present embodiment.
  • the shape of the steel material is not particularly limited, but is, for example, steel bar or wire rod. In the following description, a case where the steel material is steel bar will be described as an example. However, even if the steel material has a shape other than that of steel bar, it can be manufactured by the same hot working process.
  • the hot working process includes the following steps.
  • Step 21 Ingot rolling step Heating temperature: 1250 to 1300 ° C Holding time: 10 hours or more
  • Process 22 Finish rolling process Heating temperature: 1150 to 1200 ° C Holding time: 1.5 to 3.0 hours Finishing temperature: 950 to 1000 ° C
  • Step 23 Temperature holding step Average cooling rate at 900 to 800 ° C .: 0.05 ° C / sec or less
  • Step 24 Cooling step Average cooling rate at 800 to 300 ° C: 0.10 to 1.00 ° C / sec
  • each step will be described.
  • the material is hot-rolled to produce billets.
  • the material is hot-rolled (bulk-rolled) by a lump-rolling machine to manufacture billets.
  • a continuous rolling mill is located downstream of the lump rolling mill, hot rolling is further performed on the billet after lump rolling using the continuous rolling mill to produce a smaller billet.
  • horizontal stands having a pair of horizontal rolls and vertical stands having a pair of vertical rolls are alternately arranged in a row.
  • the slab rolling process the material is produced in billets using a slab rolling mill or using a shunt rolling mill and a continuous rolling mill.
  • the conditions in the lump rolling process are as follows. Heating temperature: 1250 to 1300 ° C Holding time: 10 hours or more The heating temperature in the heating furnace in the lump rolling process is 1250 to 1300 ° C. The holding time at the heating temperature (1250-1300 ° C.) is 10 hours or more. If the heating temperature in the heating furnace in the lump rolling process is 1250-1300 ° C. and the holding time at the heating temperature (1250-1300 ° C.) is 10 hours or more, other production conditions must be satisfied. As a premise, the solidification segregation in the material generated during the material preparation process can be sufficiently alleviated.
  • the standard deviation of the surface integral of the ferrite at each of the cross-sectional observation positions C1 to C9 and each of the vertical section observation positions L1 to L9 is 4.0% or less.
  • the upper limit of the holding time at the heating temperature is not particularly limited. However, considering the manufacturing cost, the preferable upper limit of the holding time at the heating temperature is 30 hours.
  • the billet manufactured by the lump-rolling process is allowed to cool (air-cooled) to room temperature before the finish rolling process.
  • the surface reduction rate in the ingot rolling process is 30% or more.
  • the reduction rate (%) is defined by the following equation.
  • Surface reduction rate (%) (1-Area of cross section (cross section perpendicular to longitudinal direction) of steel material after lump rolling / Area of cross section (cross section perpendicular to longitudinal direction) of material before lump rolling) ⁇ 100
  • the surface reduction rate in the ingot rolling process is 30% or more, the area of ferrite at each cross-section observation position C1 to C9 and each longitudinal cross-section observation position L1 to L9, assuming that other manufacturing conditions are satisfied.
  • the standard deviation of the fraction is 4.0% or less.
  • the conditions in the finish rolling process are as follows. Heating temperature: 1150-1200 ° C Holding time: 1.5 to 3.0 hours Finishing temperature: 950 to 1000 ° C
  • the heating temperature in the heating furnace in the finish rolling step is 1150 to 1200 ° C.
  • the holding time at the heating temperature (1150 to 1200 ° C.) is 1.5 to 3.0 hours. If the heating temperature of the heating furnace in the finish rolling process is 1150 to 1200 ° C. and the holding time at the heating temperature (1150-1200 ° C.) is 1.5 to 3.0 hours, other manufacturing conditions are satisfied. Assuming that, the temperature variation in the steel material (steel bar) can be sufficiently suppressed. Therefore, the ferrite average particle size ratio at the cross-sectional observation positions C1 to C9 and the vertical cross-sectional observation positions L1 to L9 is 2.00 or less.
  • finish rolling In the finish rolling process, hot rolling (finish rolling) is carried out by a continuous rolling machine equipped with a plurality of rolling stands arranged in a row. In hot rolling using a continuous rolling mill, the temperature of the steel material on the outlet side of the stand where the steel material is finally rolled is defined as the finishing temperature (° C.).
  • the steel material temperature means the surface temperature of the steel material.
  • the finishing temperature is 950 to 1000 ° C.
  • the finishing temperature is 950 to 1000 ° C.
  • the variation in the austenite particle size in the steel material (steel bar) is sufficiently suppressed on the premise that other production conditions are satisfied. Therefore, when the austenite is transformed into ferrite in the temperature holding step and the cooling step described later, the variation in the average particle size of ferrite is sufficiently suppressed. Therefore, the ferrite average particle size ratio at the cross-sectional observation positions C1 to C9 and the vertical cross-sectional observation positions L1 to L9 is 2.00 or less.
  • Step 23 Temperature holding step
  • the temperature of the steel material is held after the finish rolling step and before the cooling step.
  • the conditions in the temperature holding process are as follows. Average cooling rate when the steel material temperature is 900 to 800 ° C: 0.05 ° C / sec or less
  • the average cooling rate when the steel material temperature is 900 to 800 ° C is suppressed to 0.05 ° C / sec or less.
  • the average cooling rate of the steel material having a steel material temperature of 900 to 800 ° C. is 0.05 ° C./sec using a slow cooling cover, a heat retaining cover, or a temperature holding furnace. Keep it below.
  • the average cooling rate at a steel material temperature of 900 to 800 ° C. is 0.05 ° C./sec or less, temperature variation in the axial direction (longitudinal direction) of the steel material can be suppressed on the premise that other manufacturing conditions are satisfied. Therefore, it is possible to suppress variations in the ferrite transformation timing in the axial direction of the steel material. Therefore, in particular, it is possible to suppress the growth variation of the ferrite grains in the axial direction (longitudinal section) of the steel material. Specifically, the following mechanism works.
  • austenite gradually transforms into ferrite as the steel material temperature decreases. If the temperature of the steel material varies in the axial direction in the range of 900 to 800 ° C., ferrite produced at a relatively early stage after the finish rolling process and ferrite produced at a relatively late stage coexist. It ends up. In this case, the ferrite grains produced at an early stage tend to be coarser than the ferrite grains transformed at a later stage. As a result, in particular, the variation of ferrite grains becomes large in the axial direction (longitudinal section) of the steel material.
  • the average cooling rate at a steel material temperature of 900 to 800 ° C. is high, the temperature variation in the axial direction (longitudinal section) of the steel material becomes large. Therefore, the ferrite average particle size ratio at the vertical cross-sectional observation positions L1 to L9 becomes large.
  • the average cooling rate when the steel material temperature is 900 to 800 ° C. is suppressed to 0.05 ° C./sec or less.
  • temperature variation in the axial direction (longitudinal cross section) of the steel material can be suppressed. Therefore, the deviation of the ferrite formation (transformation) timing in the vertical cross section of the steel material is suppressed.
  • the ferrite average particle size ratio at the vertical cross-sectional observation positions L1 to L9 can be set to 2.00 or less, provided that other manufacturing conditions are satisfied.
  • Step 24 Cooling step
  • the conditions in the cooling process are as follows. Average cooling rate at a steel temperature of 800 to 300 ° C: 0.10 to 1.00 ° C / sec An average cooling rate of 0.10 to 1.00 ° C / sec for a steel with a steel temperature of 800 to 300 ° C. Cool with. Assuming that the average cooling rate at a steel material temperature of 800 to 300 ° C. is 0.10 to 1.00 ° C./sec, the cross-sectional observation positions C1 to C9 and the vertical cross-sectional observation positions are assumed to satisfy other manufacturing conditions.
  • the arithmetic mean value of the area fraction of the ferrite in L1 to L9 is 50 to 70%.
  • the steel material of the present embodiment having the above-mentioned configuration can be manufactured.
  • the steel material of the present embodiment is a rolled material.
  • the steel material of this embodiment is suitable as a material for mechanical structural parts manufactured by performing vacuum carburizing treatment.
  • the steel material of the present embodiment may be manufactured as a mechanical structural part by subjecting a surface hardening heat treatment other than the vacuum carburizing treatment.
  • Other surface hardening heat treatments include, for example, quenching and tempering, induction hardening and tempering, and soaking treatment (quenching quenching and tempering).
  • Mechanical structural parts are used, for example, in automobiles, construction vehicles, and the like. Mechanical structural parts are, for example, gears and shafts used in steering mechanisms.
  • the mechanical structural parts made of the steel material of this embodiment are manufactured by a well-known manufacturing method.
  • mechanical structural parts are manufactured by the following method.
  • An example of a method for manufacturing mechanical structural parts includes the following steps. -Hot working process-Cutting process-Heat treatment process Each process will be described below.
  • Hot working process hot working is performed on the steel material of the present embodiment.
  • Hot working is, for example, well-known hot forging.
  • the heating temperature in the hot working step is, for example, 1000 to 1300 ° C.
  • the steel material after hot working is allowed to cool (air cooling). If necessary, the steel material after allowing to cool may be annealed.
  • a cutting process is performed on the steel material after the hot working process to manufacture an intermediate product having a predetermined shape. During this cutting process, high machinability of steel materials is required. In the cutting process, well-known cutting is performed. By cutting, it is possible to manufacture precision-shaped machine structural parts, which is difficult only with the hot working process.
  • Heat treatment is performed on the intermediate product after cutting.
  • the "heat treatment” includes a well-known vacuum carburizing treatment and a well-known tempering step.
  • the vacuum carburizing treatment also includes the vacuum carburizing nitriding treatment.
  • the vacuum carburizing process includes a vacuum carburizing step and a quenching step. It is a well-known technical matter to those skilled in the art that in the vacuum carburizing treatment, well-known conditions can be appropriately adjusted to appropriately adjust the surface hardness, core hardness, and surface carbon concentration of mechanical structural parts. Hereinafter, a well-known vacuum carburizing process will be described as an example of the heat treatment step. It is well known to those skilled in the art that the well-known vacuum carburizing nitriding treatment is also carried out in the same process as the vacuum carburizing treatment.
  • the vacuum carburizing and quenching process includes a vacuum carburizing step and a quenching step.
  • the vacuum carburizing process and the quenching process will be described.
  • FIG. 5 is a diagram showing an example of a heat pattern in the vacuum carburizing step S10 and the quenching step S20.
  • the vertical axis of FIG. 5 is the treatment temperature (° C.) during the vacuum carburizing treatment, and the horizontal axis is the time (minutes).
  • the vacuum carburizing step S10 includes a heating step S0, a soaking step S1, a carburizing step S2, and a diffusion step S3.
  • the intermediate product charged in the furnace is heated to the carburizing temperature Tc.
  • the pressure in the furnace is set to 10 Pa or less.
  • the carburizing temperature Tc in the heating step S0 is, for example, 900 to 1100 ° C.
  • the intermediate product is held for a predetermined time (holding time t1) at the carburizing temperature Tc, and the soaking heat treatment is carried out.
  • the holding time t1 at the carburizing temperature Tc in the soaking step S1 is, for example, 5 to 120 minutes.
  • the pressure in the furnace in the soaking step S1 may be 10 Pa or less, or the nitrogen gas may be introduced and evacuated by a vacuum pump at the same time to create a nitrogen gas atmosphere of 1000 Pa or less.
  • the intermediate product is held for a predetermined time (holding time t2) at the carburizing temperature Tc.
  • the holding time t2 at the carburizing temperature Tc in the carburizing step S2 may be appropriately adjusted.
  • the holding time t2 at the carburizing temperature Tc is, for example, 20 to 60 minutes.
  • the carburizing gas in the carburizing step S2 a well-known carburizing gas is used.
  • the carburized gas is, for example, a hydrocarbon gas such as acetylene, propane or ethylene.
  • the carburized gas pressure in the carburizing step S2 is set to a predetermined gas pressure according to the type of carburized gas.
  • the carburizing gas pressure is, for example, 10 to 1000 Pa.
  • the carburized gas is propane, for example, 200 to 3000 Pa.
  • the intermediate product is held for a predetermined time (holding time t3) at the carburizing temperature Tc.
  • the holding time t3 at the carburizing temperature Tc in the diffusion step S3 is appropriately adjusted.
  • the holding time t3 at the carburizing temperature Tc is, for example, 40 to 90 minutes.
  • the pressure in the furnace in the diffusion step S3 may be 100 Pa or less in order to remove the residual gas in the carburizing step.
  • the introduction of nitrogen gas and the vacuum exhaust by a vacuum pump may be performed at the same time to create a nitrogen gas atmosphere of 1000 Pa or less.
  • the quenching step S20 is carried out on the intermediate product after the vacuum carburizing step S10.
  • a well-known cooling method may be used as a cooling method up to the quenching temperature Ts in the quenching step S20 after the vacuum carburizing step S10.
  • the cooling method may be, for example, air cooling under vacuum, gas cooling, or any other method.
  • cooling is performed at a pressure of 100 Pa or less.
  • an inactivated gas such as nitrogen gas and / or helium gas may be used as the cooling gas.
  • the quenching step S20 includes a heat soaking step S4.
  • the intermediate product after the vacuum carburizing step S10 is held at the quenching temperature.
  • the intermediate product is rapidly cooled and quenched.
  • the quenching temperature Ts is not particularly limited, but is, for example, 800 to 880 ° C.
  • the holding time t4 at the quenching temperature Ts is not particularly limited, but is, for example, 10 to 80 minutes.
  • the atmosphere during holding at the quenching temperature Ts is not particularly limited, but is, for example, a nitrogen gas atmosphere.
  • the pressure in the furnace may be atmospheric pressure or less, for example, 400 hPa or less.
  • the cooling method in the quenching treatment is oil cooling or water cooling. Specifically, an intermediate product maintained at a quenching temperature is immersed in a cooling bath containing oil or water as a cooling medium and rapidly cooled.
  • the temperature of the oil or water that is the cooling medium is, for example, 60 to 200 ° C. Further, if necessary, sub-zero processing may be carried out.
  • tempering process A well-known tempering process is carried out for intermediate products after the quenching process.
  • the tempering temperature is, for example, 100 to 200 ° C.
  • the holding time at the tempering temperature is, for example, 90 to 150 minutes.
  • the intermediate product after the tempering step may be further subjected to a grinding process or a shot peening process.
  • grinding is performed, cutting is performed to give the steel material a shape. By cutting, a more precise shape can be given to the steel material.
  • the shot peening treatment is carried out, the compressive residual stress is introduced into the surface layer portion of the intermediate product after the vacuum carburizing treatment. Compressive residual stress suppresses the generation and growth of fatigue cracks. Therefore, the bending fatigue strength and the surface fatigue strength of the mechanical structural parts are increased.
  • the shot peening process may be carried out by a well-known method. For example, it is desirable that the shot peening treatment is performed using shot grains having a diameter of 0.7 mm or less and having an arc height of 0.4 mm or more.
  • a steel material having the chemical composition shown in Table 1 was prepared.
  • the steel type number A corresponds to SCM420H specified in JIS G4052 (2016).
  • the steel grade number A in Table 1 means that the measured Nb content was 0% when rounded to the fourth decimal place.
  • rounding means that if the digit (fraction) below the specified minimum digit is less than 5, it is rounded down, and if it is 5 or more, it is rounded up.
  • the temperature described in the “heating temperature (° C.)” column of the “bulk rolling process” and the “finish rolling process” column is the heating temperature (° C.).
  • the time described in the “holding time (time)” column of the “lump rolling process” and the “finish rolling process” column is the holding time (hour) at the heating temperature.
  • the temperature in the “Finishing temperature (° C)” column in the “Finish rolling process” column is the steel material temperature (surface temperature of the steel material) (° C) on the outlet side of the last rolled stand in the continuous rolling mill in the finish rolling process. Is.
  • the speed described in the "cooling rate (° C./sec)" column of the “temperature holding step” column is the average cooling rate (° C./sec) when the steel material temperature is 900 to 800 ° C.
  • the speed described in the "cooling rate (° C./sec)” column of the “cooling step” column is the average cooling rate (° C./sec) when the steel material temperature is 800 to 300 ° C.
  • the produced bloom was heated at the heating temperature and holding time shown in Table 2. Then, bloom was lump-rolled using a lump-rolling machine to produce billets.
  • the manufactured billet was water-cooled to room temperature (25 ° C.).
  • the cross section perpendicular to the longitudinal direction of the billet was a rectangle of 162 mm ⁇ 162 mm.
  • the heating temperature and holding time in the lump rolling process are as shown in Table 2.
  • the surface reduction rate in the bulk rolling process was 30% or more under all manufacturing conditions.
  • the billet after the ingot rolling process was subjected to a finishing rolling process under the conditions shown in Table 2 to produce a steel material (steel bar) having a diameter of 50 mm.
  • the billet was heated at the heating temperature (° C.) and holding time (hours) shown in the finish rolling process column of Table 2.
  • Finish rolling was carried out on the billets after heating to produce steel bars. At this time, the finishing temperature (° C.) was as shown in Table 2.
  • a temperature holding process was carried out on the steel material (steel bar) after the finish rolling process.
  • the production conditions a to i were adjusted so that the average cooling rate was 0.05 ° C./sec or less by using a slow cooling cover for the steel material having a steel material temperature of 900 to 800 ° C.
  • the steel material having a steel material temperature of 900 to 800 ° C. was allowed to cool without using a slow cooling cover. Therefore, the average cooling rate at a steel material temperature of 900 to 800 ° C. was over 0.05 ° C./sec.
  • the cooling process was carried out. Specifically, under each manufacturing condition, the average cooling rate (° C./sec) when the steel material temperature was 800 to 300 ° C. was as shown in the cooling process column of Table 2.
  • Test No. 1 is an example using SCM420H, which is a reference steel, and uses manufacturing condition a, which is one of the manufacturing methods generally used for steel materials having a chemical composition of SCM420H.
  • the observation surface of the sample was etched with 3% alcohol nitrate (Nital corrosive liquid).
  • the observation field of view (0.5 mm ⁇ 1.0 mm) of the etched observation surface was observed with a 100x optical microscope. In the observation field, the phase was identified by contrast.
  • the arithmetic mean value of the ferrite area fraction (%) at the nine observation fields (cross-section observation positions) is the arithmetic mean value (%) of the ferrite area fraction at the nine cross-section observation positions C1 to C9. Defined.
  • the arithmetic mean value of the obtained ferrite surface integral is shown in the "ferrite surface integral (%)" column of the "cross section” column of Table 3.
  • the average particle size of the ferrites at the cross-sectional observation positions C1 to C9 at 9 locations was determined. Then, among the average particle diameters of these ferrites, the maximum average particle diameter ( ⁇ m) and the minimum average particle diameter ( ⁇ m) of ferrite were specified. The ratio of the maximum average particle size to the specified minimum average particle size (ferrite average particle size ratio) was determined. The obtained ferrite average particle size ratio is shown in the "ferrite particle size ratio" column of the "cross section" column of Table 3.
  • the observation surface of the sample was etched with 3% alcohol nitrate (Nital corrosive liquid).
  • the observation field of view (0.5 mm ⁇ 1.0 mm) of the etched observation surface was observed with a 100x optical microscope. In the observation field, the phase was identified by contrast.
  • the observed phase is shown in the "Phase” column of the "Vertical section” column of Table 3.
  • the microstructure at all the vertical section observation positions contains ferrite and the balance consists of pearlite and / or bainite, " ⁇ " is indicated.
  • the microstructure of the longitudinal section contained ferrite and the balance was pearlite and / or bainite.
  • the arithmetic mean value of the ferrite area fraction (%) in the nine observation fields (vertical cross-section observation positions) is the arithmetic mean value (%) of the ferrite area fraction in the nine vertical cross-section observation positions L1 to L9. Defined.
  • the arithmetic mean value of the obtained ferrite surface integral is shown in the "ferrite surface integral (%)" column of the "longitudinal section” column of Table 3.
  • the average particle size of ferrites at 9 vertical cross-sectional observation positions L1 to L9 was determined. Then, among the average particle diameters of these ferrites, the maximum average particle diameter ( ⁇ m) and the minimum average particle diameter ( ⁇ m) of ferrite were specified. The ratio of the maximum average particle size to the specified minimum average particle size (ferrite average particle size ratio) was determined. The obtained ferrite average particle size ratio is shown in the "ferrite particle size ratio" column of the "longitudinal section" column of Table 3.
  • the machinability evaluation test was carried out by the following method. A heat treatment simulating hot forging and a constant temperature annealing treatment were carried out on a steel bar having a diameter of 50 mm. Specifically, the steel bar was heated at 1200 ° C. and held at 1200 ° C. for 30 minutes. Then, the steel bar was allowed to cool to room temperature. Further, it was heated at 950 ° C. and kept at 950 ° C. for 1 hour. Further, after holding at 650 ° C. for 2 hours, the mixture was allowed to cool to room temperature. Machining (cutting) was carried out on the steel bar after cooling to prepare a test piece for machinability evaluation having a diameter of 45 mm and a length of 400 mm.
  • the outer circumference of the test piece of each test number was turned and the tool life was evaluated. Specifically, the test piece of each test number was subjected to outer peripheral lathe processing under the following conditions.
  • the cutting tool used was an uncoated cemented carbide equivalent to P20 specified in JIS B 4053 (2013).
  • the cutting speed was 250 m / min, the feed rate was 0.35 mm / rev, and the depth of cut was 1.0 mm.
  • water-soluble cutting oil was used.
  • the outer circumference was turned for 20 minutes under the above-mentioned cutting conditions. Then, the flank wear amount (mm) of the cutting tool was measured.
  • the obtained flank wear amount (mm) is shown in the "wear amount (mm)" column of Table 3.
  • the flank wear amount (mm) was less than 0.25 mm, it was judged that the machinability of the steel material was high.
  • the obtained flank wear amount (mm) was 0.25 mm or more, it was judged that the machinability of the steel material was low.
  • the steel material (steel bar with a diameter of 50 mm) of each test number was heated under the conditions of a heating temperature of 1200 ° C. and a holding time of 30 minutes. Then, hot working (hot forging) was performed at a finishing temperature of 950 ° C. or higher to produce a steel bar having a diameter of 35 mm.
  • a steel bar having a diameter of 35 mm was machined (cut) to process an intermediate product of the Ono type rotary bending test piece. The diameter of the cross section of the intermediate product at the notched bottom was 8 mm.
  • Carburizing treatment gas carburizing quenching and tempering or vacuum carburizing quenching and tempering
  • test piece of Test No. 1 was subjected to gas carburizing treatment and tempering, which is one of the carburizing treatment methods generally used for steel having a chemical composition of SCM420H.
  • gas carburizing treatment and tempering which is one of the carburizing treatment methods generally used for steel having a chemical composition of SCM420H.
  • test pieces of test numbers 2 to 22 were vacuum carburized and quenched.
  • the conditions of the gas carburizing treatment and the vacuum carburizing treatment carried out were as follows.
  • FIG. 7 is a diagram showing an example of a heat pattern of gas carburizing treatment (gas carburizing step and quenching step).
  • the test piece of test number 1 was subjected to gas carburizing treatment and tempering under the conditions shown in FIG.
  • the gas carburizing step S30 and the quenching step S20 were carried out.
  • the heating step S0, the carburizing step S2, and the diffusion step S3 were carried out on the test piece.
  • the round bar of test number 1 was heated to a carburizing temperature Tc: 950 ° C.
  • the carburizing temperature Tc: 950 ° C. and the holding time t2: 240 minutes were set in an atmosphere where the carbon potential Cp2 was 0.80%.
  • the carburizing temperature Tc 950 ° C. and the holding time t3: 60 minutes were set in an atmosphere where the carbon potential Cp3 was 0.80%.
  • the quenching step S20 was carried out.
  • the soaking step S4 was carried out. After cooling to 850 ° C., in the soaking step S4, the quenching temperature was Ts: 850 ° C. and the holding time was t4: 30 minutes. Then, quenching was carried out with oil at 130 ° C.
  • test piece After quenching, the test piece was tempered.
  • the tempering temperature was 180 ° C., and the holding time at the tempering temperature was 120 minutes. After the holding time had elapsed, it was air-cooled.
  • the C concentration on the surface of the steel material (round bar) was adjusted to 0.80% by mass.
  • test pieces of test numbers 2 to 22 were subjected to vacuum carburizing treatment and tempering as shown in FIG. Specifically, the pressure in the furnace was kept below 10 Pa.
  • the round bar of each test number was heated to a carburizing temperature Tc: 950 ° C.
  • the soaking step S1 was carried out. In the soaking step S1, the steel material (round bar) was held at a carburizing temperature Tc: 950 ° C. for a holding time t1: 60 minutes.
  • the carburizing step S2 was carried out.
  • acetylene was supplied as a carburizing gas into the vacuum carburizing furnace.
  • the carburized gas pressure in the carburizing step S2 was kept below 1 kPa.
  • the holding time t2 at the carburizing temperature Tc: 950 ° C. was 40 minutes.
  • the carburized gas pressure in the diffusion step S3 was kept below 5 hPa.
  • the holding time t3 at the carburizing temperature Tc: 950 ° C. was 70 minutes.
  • the temperature of the steel material was cooled to 850 ° C., and then the test piece was equalized at a quenching temperature Ts: 850 ° C. and a holding time t4: 30 minutes. Then, quenching was carried out with oil at 130 ° C.
  • test piece After quenching, the test piece was tempered.
  • the tempering temperature was 180 ° C., and the holding time at the tempering temperature was 120 minutes. After the holding time had elapsed, it was air-cooled.
  • the C concentration on the surface of the steel material (round bar) was adjusted to 0.80% by mass.
  • An Ono-type rotary bending fatigue test was performed using an Ono-type rotary bending test piece after carburizing (gas carburizing and tempering or vacuum carburizing and tempering and tempering). Multiple test pieces were prepared for each test number. A fatigue test was carried out by changing the stress applied to each test piece, and after repeating 10 million times ( 107 times), the highest stress that did not break was taken as the bending fatigue strength (MPa). In the Ono-type rotary bending fatigue test, the rotational speed was 3000 rpm and the stress ratio was double swing.
  • the test piece using the steel material of test number 1 was used as the reference steel.
  • the obtained bending fatigue strength ratio (%) is shown in the "Bending fatigue strength ratio (%)" column of Table 3.
  • the bending fatigue strength ratio was 120% or more, it was judged that sufficient bending fatigue strength could be obtained.
  • the bending fatigue strength ratio is less than 120%, it is determined that the bending fatigue strength is low.
  • the steel material (steel bar with a diameter of 50 mm) of each test number was heated under the conditions of a heating temperature of 1200 ° C. and a holding time of 30 minutes. Then, hot working (hot forging) was performed at a finishing temperature of 950 ° C. or higher to produce a steel bar having a diameter of 35 mm.
  • a steel bar having a diameter of 35 mm was machined (cut) to process an intermediate product of a test piece for a roller pitching fatigue test.
  • the intermediate product of Test No. 1 was subjected to gas carburizing treatment and tempering under the above conditions.
  • the intermediate products of test numbers 2 to 22 were vacuum carburized and tempered under the above conditions.
  • FIG. 9 is a schematic diagram of a roller pitching fatigue test.
  • the small roller test piece 200 was rotated while pressing the large roller test piece 100 against the small roller test piece 200 with a surface pressure described later.
  • the small roller test piece 200 was a test piece for a roller pitching fatigue test produced by the method of the above test piece.
  • the large roller test piece had the shape shown in FIG.
  • the numerical values in FIG. 10 indicate the dimensions (unit: mm). “R700” in the figure indicates that the radius of curvature of the outer peripheral surface was 700 mm.
  • the large roller test piece 100 uses a steel having a chemical composition equivalent to SCM420H specified in JIS G4053 (2016), and has a surface after gas carburizing treatment under the same conditions as the small roller test piece 200 of test number 1 which is a standard steel. The polished one was used. The diameter of the large roller test piece 100 was 130 mm.
  • the large roller test piece 100 was pressed against the small roller test piece 200 at a surface pressure of various Hertz stresses.
  • the peripheral speed direction of both roller test pieces at the contact portion is the same, and the slip ratio is -40% (the peripheral speed of the contact portion is 40% higher for the large roller test piece 100 than for the small roller test piece 200).
  • the test was performed by rotating.
  • the oil temperature of ATF (lubricating oil for AT) supplied to the contact portion as lubricating oil was 90 ° C.
  • the maximum surface pressure of the contact stress between the large roller test piece 100 and the small roller test piece 200 was 4000 MPa.
  • the number of test terminations was set to 20 million (2.0 ⁇ 107 ). For each test number, the highest stress at which pitching did not occur after repeating 2.0 ⁇ 10 7 times for a plurality of test pieces was defined as the surface fatigue strength (MPa).
  • the test piece using the steel material of test number 1 was used as the reference steel.
  • the ratio of the surface fatigue strength of each test number to the surface fatigue strength of the reference steel was defined as the surface fatigue strength ratio. That is, the surface fatigue strength ratio (%) was obtained by the following equation.
  • Surface fatigue strength ratio (%) (surface fatigue strength (MPa) of each test number / surface fatigue strength of standard steel (MPa)) ⁇ 100
  • the obtained surface fatigue intensity ratio (%) is shown in the "surface fatigue intensity ratio (%)" column of Table 3.
  • the surface fatigue strength ratio was 125% or more, it was judged that sufficient surface fatigue strength could be obtained.
  • the surface fatigue strength ratio is less than 125%, it is determined that the surface fatigue strength is low.
  • the gear simulation test piece shown in FIG. 11A was produced from the steel material (steel bar having a diameter of 50 mm) of each test number. Specifically, the steel material (steel bar having a diameter of 50 mm) of each test number was heated under the conditions of a heating temperature of 1200 ° C. and a holding time of 30 minutes. Then, hot working (hot forging) was performed at a finishing temperature of 950 ° C. or higher to produce a steel bar having a diameter of 35 mm. A steel bar having a diameter of 35 mm was machined (cut) to prepare a gear simulation test piece before carburizing (gas carburizing, vacuum carburizing).
  • the numerical value accompanied by "mm” in FIG. 11A indicates the dimension (unit is mm). “ ⁇ ” in the figure means the diameter.
  • the gear simulation test piece had a truncated cone shape.
  • the gear simulation test piece includes a circular upper surface having a diameter of 22 mm and a circular lower surface having a diameter of 34 mm.
  • the gear simulation test piece had a columnar through hole TH including the central axis CL2.
  • the diameter (inner diameter) of the through hole TH was 15 mm, and the central axis of the through hole TH coincided with the central axis of the gear simulation test piece.
  • the inner diameter (diameter) of the prepared gear simulation test piece before carburizing treatment at each position in the longitudinal direction of the through hole TH was measured with a three-dimensional measuring machine.
  • a three-dimensional measuring machine a CNC three-dimensional measuring machine (trade name: Crysta-Apex) manufactured by Mitutoyo Co., Ltd. was used.
  • the gear simulated test piece after the inner diameter measurement is subjected to carburizing treatment (gas carburizing quenching and tempering, or vacuum carburizing quenching and tempering) under the above carburizing treatment conditions, and the gear simulated test piece after the carburizing treatment is obtained.
  • carburizing treatment gas carburizing quenching and tempering, or vacuum carburizing quenching and tempering
  • the gear simulated test piece after the carburizing treatment is obtained.
  • the gear simulated test piece of test number 1 was subjected to gas carburizing treatment and tempering under the above-mentioned conditions.
  • the gear simulated test pieces of test numbers 2 to 22 were subjected to vacuum carburizing treatment and tempering under the above conditions.
  • the inner diameter of the through hole TH was measured for the gear simulated test piece of each test number after the carburizing treatment by the same method as the method for measuring the inner diameter of the through hole TH of the gear simulated test piece before the carburizing treatment.
  • the ratio of the maximum heat treatment deformation amount of each test number to the maximum heat treatment deformation amount of the reference steel (test number 1) was defined as "maximum deformation amount ratio". That is, the maximum deformation amount ratio (%) was obtained by the following equation.
  • Maximum deformation amount ratio (%) (maximum heat treatment deformation amount (mm) of each test number / maximum heat treatment deformation amount (mm) of reference steel) ⁇ 100
  • the obtained maximum deformation amount ratio (%) is shown in the "maximum deformation amount ratio (%)" column of Table 3. If the obtained maximum deformation amount ratio is 90% or less, it is determined that the maximum deformation amount ratio is small. On the other hand, when the maximum deformation amount ratio exceeds 90%, it is determined that the maximum deformation amount ratio is large.
  • the ratio of the deformation amount difference of each test number to the deformation amount difference of the reference steel (test number 1) was defined as the deformation amount difference ratio. That is, the deformation amount difference ratio was obtained by the following equation.
  • Deformation amount difference ratio (%) (deformation amount difference of each test number ( ⁇ m) / deformation amount difference of reference steel ( ⁇ m)) ⁇ 100
  • the obtained deformation amount difference ratio (%) is shown in the "deformation amount difference ratio (%)" column of Table 3. If the obtained deformation amount difference ratio is 90% or less, it is determined that the deformation amount difference ratio is small. On the other hand, when the deformation amount difference ratio exceeds 90%, it is determined that the deformation amount difference ratio is large.
  • both the maximum deformation amount ratio and the deformation amount difference ratio were 90% or less, it was judged that the heat treatment deformation could be sufficiently suppressed three-dimensionally.
  • the maximum deformation amount ratio and / or the deformation amount difference ratio exceeds 90%, it is judged that the heat treatment deformation cannot be sufficiently suppressed.
  • Table 3 shows the test results.
  • the content of each element in the chemical composition was appropriate, and F1 and F2 satisfied the formulas (1) and (2).
  • the production conditions of the steel materials of test numbers 4 to 6 were also appropriate. Therefore, the microstructure of the steel material was appropriate.
  • the microstructure of the cross section of Test Nos. 4 to 6 contained ferrite and the balance was a structure composed of pearlite and / or bainite. Further, the arithmetic mean value of the area fraction of ferrite was 50 to 70%, the standard deviation of the area fraction of ferrite was 4.0% or less, and the ferrite average particle size ratio was 2.00 or less.
  • the microstructure of the vertical cross section of Test Nos. 4 to 6 contained ferrite, and the balance was a structure composed of pearlite and / or bainite. Further, the arithmetic mean value of the area fraction of ferrite was 50 to 70%, the standard deviation of the area fraction of ferrite was 4.0% or less, and the ferrite average particle size ratio was 2.00 or less.
  • the flank wear amount was less than 0.25 mm, and the machinability was high. Further, the bending fatigue strength ratio was 120% or more, the surface fatigue strength ratio was 125% or more, and both the bending fatigue strength and the surface fatigue strength were excellent. Further, the maximum deformation amount ratio and the deformation amount difference ratio in the heat treatment were 90% or less, and the heat treatment deformation was sufficiently suppressed three-dimensionally.
  • test numbers 2 and 3 the holding time of the lump rolling process was less than 10 hours. Therefore, the standard deviation of the surface integral of the ferrite of the steel material in the cross section and the vertical section exceeded 4.0%. As a result, the deformation amount difference ratio in the heat treatment exceeded 90%, and the heat treatment deformation was not sufficiently suppressed.
  • test numbers 9 and 10 the heating temperature in the finish rolling process was too low. Therefore, the ferrite average particle size ratio in the cross section and the vertical section exceeded 2.00. As a result, the deformation amount difference ratio in the heat treatment exceeded 90%, and the heat treatment deformation was not sufficiently suppressed.
  • test numbers 11 and 12 the holding time of the finish rolling process was too short. Therefore, the ferrite average particle size ratio in the cross section and the vertical section exceeded 2.00. As a result, the deformation amount difference ratio in the heat treatment exceeded 90%, and the heat treatment deformation was not sufficiently suppressed.
  • test numbers 13 and 14 the finishing temperature of the finishing rolling process was too high. Therefore, the ferrite average particle size ratio in the cross section and the vertical section exceeded 2.00. As a result, the deformation amount difference ratio in the heat treatment exceeded 90%, and the heat treatment deformation was not sufficiently suppressed.
  • test numbers 15 and 16 the finish temperature of the finish rolling process was too low. Therefore, the ferrite average particle size ratio in the cross section and the vertical section exceeded 2.00. As a result, the deformation amount difference ratio in the heat treatment exceeded 90%, and the heat treatment deformation was not sufficiently suppressed.
  • test numbers 21 and 22 the cooling rate in the temperature holding process was too fast. Therefore, the ferrite average particle size ratio exceeded 2.00 in the microstructure of the vertical cross section. Therefore, the deformation amount difference ratio in the heat treatment exceeded 90%, and the heat treatment deformation was not sufficiently suppressed.
  • Steel materials were manufactured by the following method. With respect to the molten steel, the steel materials (steel bars) of the test numbers 1 to 35 shown in Table 5 were produced in the same manner as in Example 1 using the production condition b in Table 2.
  • Table 5 shows the test results.
  • the content of each element was appropriate, F1 satisfied the formula (1), and F2 satisfied the formula (2).
  • the steel materials of test numbers 1 to 18 had appropriate manufacturing conditions. Therefore, the microstructure of the steel material was appropriate.
  • the microstructure of the cross section of test numbers 1 to 18 is composed of ferrite, pearlite and / or bainite, and the arithmetic mean value of the area fraction of ferrite is 50 to 70%, and the area fraction of ferrite. The standard deviation of was 4.0% or less, and the ferrite average particle size ratio was 2.00 or less.
  • the microstructure of the vertical cross section of test numbers 1 to 18 consists of ferrite, pearlite and / or bainite, the arithmetic mean value of the area fraction of ferrite is 50 to 70%, and the standard deviation of the area fraction of ferrite is 4. It was 0.0% or less, and the ferrite average particle size ratio was 2.00 or less. Therefore, the flank wear amount was less than 0.25 mm, and the machinability was high. Further, the bending fatigue strength ratio was 120% or more, the surface fatigue strength ratio was 125% or more, and both the bending fatigue strength and the surface fatigue strength were excellent. Further, the maximum deformation amount ratio and the deformation amount difference ratio in the heat treatment were 90% or less, and the heat treatment deformation was sufficiently suppressed.
  • test numbers 19-23 F2 was too high. Therefore, the maximum deformation amount ratio in the heat treatment exceeded 90%, and the heat treatment deformation was not sufficiently suppressed.
  • Test number 26 had too high a C content. Therefore, the flank wear amount was 0.25 mm or more, and the machinability was low.
  • Test number 27 had a Si content that was too low. Therefore, F1 did not satisfy the formula (1). Therefore, the bending fatigue strength ratio was less than 120%, and the surface fatigue strength ratio was less than 125%. As a result, the bending fatigue strength and the surface fatigue strength were low.
  • Test number 28 had too low Si and Mn contents. Therefore, the bending fatigue strength ratio was less than 120%, and the surface fatigue strength ratio was less than 125%. As a result, both bending fatigue strength and surface fatigue strength were insufficient.
  • Test number 29 had too high a Si content. Therefore, the flank wear amount was 0.25 mm or more, and the machinability was low.
  • the Mn content was too low. Therefore, the bending fatigue strength ratio was less than 120%, and the surface fatigue strength ratio was less than 125%. As a result, the bending fatigue strength and the surface fatigue strength were low.
  • test number 31 the Mn content was too high. Therefore, the flank wear amount was 0.25 mm or more, and the machinability was low. Furthermore, F1 did not satisfy equation (1). Therefore, the bending fatigue strength ratio was less than 120%, and the bending fatigue strength was insufficient.
  • Test number 32 had an excessively high Mn content. Therefore, the flank wear amount was 0.25 mm or more, and the machinability was low.
  • Test number 33 had a Cr content that was too high. Therefore, the bending fatigue strength ratio was less than 120%, and the bending fatigue strength was low.
  • Test number 34 had too high Mo content. Therefore, the flank wear amount was 0.25 mm or more, and the machinability was low.
  • Test number 35 had too high Nb content. Therefore, the bending fatigue strength ratio was less than 120%, and the bending fatigue strength was low.

Abstract

Provided is a steel material that has excellent machinability, that has excellent bending fatigue strength and surface fatigue strength even after having a vacuum carburization process or the like performed thereon, and that can suppress heat treatment deformation. The steel material according to an embodiment of the present invention has a chemical composition that contains, in mass%, 0.18-0.25% of C, 0.70-2.00% of Si, 0.70-1.50% of Mn, 0.005-0.050% of S, 0.0050-0.0200% of N, 0.001-0.100% of Al, not more than 0.0050% of O, and not more than 0.030% of P, the remaining portion being Fe and impurities, and that satisfies formula (1) and formula (2) described in the description. In the steel material, microstructures in a lateral cross-section and a longitudinal cross-section contain ferrite and the remaining portions are perlite and/or bainite. The arithmetic average value of the area percentage of the ferrite is 50-70%, the standard deviation of the area percentage of the ferrite is not more than 4.0%, and the average particle diameter ratio of the ferrite is not more than 2.00.

Description

鋼材Steel material
 本開示は、鋼材に関し、さらに詳しくは、真空浸炭処理を実施して製造される機械構造用部品の素材に適した、鋼材に関する。 This disclosure relates to steel materials, and more particularly to steel materials suitable for materials for machine structural parts manufactured by performing vacuum carburizing treatment.
 本明細書において、真空浸炭処理は、真空浸炭窒化処理も含む。また、本明細書において、真空浸炭処理とは、真空浸炭工程(真空浸炭窒化工程含む)と、真空浸炭工程後の焼入れ工程とを含む。 In the present specification, the vacuum carburizing treatment also includes the vacuum carburizing nitriding treatment. Further, in the present specification, the vacuum carburizing treatment includes a vacuum carburizing step (including a vacuum carburizing nitriding step) and a quenching step after the vacuum carburizing step.
 機械構造用部品は、例えば、自動車及び建設車両等の歯車及びシャフト等に代表される。機械構造用部品として、JIS G 4053(2016)に規定されたSCr420、SCM420、SNCM420に代表される機械構造用合金鋼鋼材が利用される。 Mechanical structural parts are represented by, for example, gears and shafts of automobiles and construction vehicles. As machine structural parts, alloy steel materials for machine structure represented by SCr420, SCM420, and SNCM420 specified in JIS G4053 (2016) are used.
 これらの鋼材は、例えば、次の製造工程により機械構造用部品に製造される。鋼材に対して鍛造(熱間鍛造、又は、冷間鍛造)及び/又は切削加工等を実施して、所望の形状の中間品を製造する。中間品に対して、熱処理(焼入れ及び焼戻し、浸炭処理、又は、浸炭窒化処理等)を実施して、中間品の硬さ及びミクロ組織を調整する。以上の製造工程により、機械構造用部品が製造される。 These steel materials are manufactured into machine structural parts by, for example, the following manufacturing process. Forging (hot forging or cold forging) and / or cutting is performed on the steel material to produce an intermediate product having a desired shape. The intermediate product is subjected to heat treatment (quenching and tempering, carburizing treatment, carburizing nitriding treatment, etc.) to adjust the hardness and microstructure of the intermediate product. Machine structural parts are manufactured by the above manufacturing process.
 上述のとおり、機械構造用部品の製造工程中において、鋼材に対して切削加工が実施される場合がある。したがって、機械構造用部品の素材となる鋼材には、高い被削性が求められる。 As mentioned above, cutting may be performed on steel materials during the manufacturing process of machine structural parts. Therefore, the steel material used as the material for machine structural parts is required to have high machinability.
 近年、自動車及び建設車両等の燃費向上を目的として、機械構造用部品の軽量化及び小型化が進んでいる。そのため、機械構造用部品には、優れた曲げ疲労強度及び面疲労強度が求められる。 In recent years, the weight and size of mechanical structural parts have been reduced for the purpose of improving fuel efficiency of automobiles and construction vehicles. Therefore, excellent bending fatigue strength and surface fatigue strength are required for mechanical structural parts.
 機械構造用部品の曲げ疲労強度及び面疲労強度を高める方法として、真空浸炭処理が知られている。真空浸炭処理では、機械構造用部品の表層に硬化層(浸炭層又は浸炭窒化層)が形成される。この硬化層により、機械構造用部品の曲げ疲労強度及び面疲労強度が向上する。 Vacuum carburizing treatment is known as a method for increasing the bending fatigue strength and surface fatigue strength of mechanical structural parts. In the vacuum carburizing treatment, a hardened layer (carburized layer or carburized nitrided layer) is formed on the surface layer of the mechanical structural component. This hardened layer improves bending fatigue strength and surface fatigue strength of mechanical structural parts.
 ところで、真空浸炭処理(真空浸炭処理及び真空浸炭窒化処理)を実施した場合、機械構造用部品が変形しやすい。本明細書では、真空浸炭処理時の機械構造用部品の変形を、熱処理変形という。熱処理変形により、機械構造用部品の形状が歪む。機械構造用部品の形状の歪みは、自動車及び建設車両等の運転時の騒音及び振動を引き起こす。したがって、真空浸炭処理を実施した場合に、熱処理変形を抑制できる鋼材が求められる。 By the way, when vacuum carburizing treatment (vacuum carburizing treatment and vacuum carburizing nitriding treatment) is performed, mechanical structural parts are easily deformed. In the present specification, the deformation of the mechanical structural parts during the vacuum carburizing process is referred to as heat treatment deformation. Due to heat treatment deformation, the shape of mechanical structural parts is distorted. Distortion of the shape of mechanical structural parts causes noise and vibration when driving automobiles, construction vehicles, and the like. Therefore, there is a need for a steel material that can suppress heat treatment deformation when vacuum carburizing treatment is performed.
 熱処理変形の抑制に関する技術が、特開2016-191151号公報(特許文献1)、特開2018-028130号公報(特許文献2)、特開2007-291486号公報(特許文献3)及び特開2010-150566号公報(特許文献4)に開示されている。 Techniques for suppressing heat treatment deformation include JP-A-2016-191151 (Patent Document 1), JP-A-2018-028130 (Patent Document 2), JP-A-2007-291486 (Patent Document 3), and JP-A-2010. -150566 is disclosed in Japanese Patent Application Laid-Open No. 4 (Patent Document 4).
 特許文献1に開示された浸炭部品は、質量%で、C:0.10~0.30%、Si:0.16~1.40%、Mn:1.40~3.00%、P:0.030%以下、S:0.060%以下、Cr:0.01~0.29%、Al:0.010~0.300%、及び、N:0.003~0.030%を含有し、残部がFe及び不純物からなる。この浸炭部品は、表面が平坦部とエッジ部とを有する。平坦部の表面から深さ0.05mmの位置までの平坦部表層領域の炭素濃度が0.70~0.89%であり、エッジ部の表面から深さ0.05mmの位置までのエッジ部表層領域の炭素濃度が1.20%以下である。さらに、粒界酸化層深さが1μm以下であり、芯部のビッカース硬さが260以上である。これにより、特許文献1の浸炭部品は、エッジ部を含む形状を有する浸炭部品であっても、曲げ疲労強度に優れる、と特許文献1には記載されている。 The carburized parts disclosed in Patent Document 1 are C: 0.10 to 0.30%, Si: 0.16 to 1.40%, Mn: 1.40 to 3.00%, P: in mass%. Contains 0.030% or less, S: 0.060% or less, Cr: 0.01 to 0.29%, Al: 0.010 to 0.300%, and N: 0.003 to 0.030%. The balance is composed of Fe and impurities. This carburized part has a flat surface portion and an edge portion on the surface. The carbon concentration of the flat portion surface layer region from the surface of the flat portion to the position of 0.05 mm is 0.70 to 0.89%, and the edge portion surface layer from the surface of the edge portion to the position of 0.05 mm in depth. The carbon concentration in the region is 1.20% or less. Further, the grain boundary oxide layer depth is 1 μm or less, and the Vickers hardness of the core portion is 260 or more. As a result, Patent Document 1 describes that the carburized parts of Patent Document 1 are excellent in bending fatigue strength even if the carburized parts have a shape including an edge portion.
 特許文献2に開示された浸炭部品は、質量%で、C:0.10~0.30%、Si:0.16~1.40%、Mn:1.40~3.00%、P:0.030%以下、S:0.060%以下、Cr:0.01~0.29%、Al:0.010~0.100%、及び、N:0.003~0.030%を含有し、残部がFe及び不純物からなる。この浸炭部品は、表面が平坦部とエッジ部とを有する。平坦部の表面から深さ0.05mmの位置までの平坦部表層領域の炭素濃度が0.70~0.89%であり、エッジ部の表面から深さ0.05mmの位置までのエッジ部表層領域の炭素濃度が1.20%以下である。さらに、平坦部の表面から深さ0.3mmの位置のビッカース硬さが650以上であり、粒界酸化層深さが1μm以下であり、芯部のビッカース硬さが260以上である。これにより、特許文献2の浸炭部品は、エッジ部を含む形状を有する浸炭部品であっても、曲げ疲労強度に優れる、と特許文献2には記載されている。 The carburized parts disclosed in Patent Document 2 are C: 0.10 to 0.30%, Si: 0.16 to 1.40%, Mn: 1.40 to 3.00%, P: in mass%. Contains 0.030% or less, S: 0.060% or less, Cr: 0.01 to 0.29%, Al: 0.010 to 0.100%, and N: 0.003 to 0.030%. The balance is composed of Fe and impurities. This carburized part has a flat surface portion and an edge portion on the surface. The carbon concentration of the flat portion surface layer region from the surface of the flat portion to the position of 0.05 mm is 0.70 to 0.89%, and the edge portion surface layer from the surface of the edge portion to the position of 0.05 mm in depth. The carbon concentration in the region is 1.20% or less. Further, the Vickers hardness at a depth of 0.3 mm from the surface of the flat portion is 650 or more, the grain boundary oxide layer depth is 1 μm or less, and the Vickers hardness of the core portion is 260 or more. As a result, Patent Document 2 describes that the carburized parts of Patent Document 2 are excellent in bending fatigue strength even if the carburized parts have a shape including an edge portion.
 特許文献3に開示された浸炭部品は、質量%で、C:0.1~0.3%、Si:0.5~3.0%、Mn:0.3~3.0%、P:0.03%以下、S:0.03%以下、Cu:0.01~1.00%、Ni:0.01~3.00%、Cr:0.3~1.0%、Al:0.20%以下及びN:0.05%以下を含有し、残部が不可避な不純物及びFeからなり、[Si%]+[Ni%]+[Cu%]-[Cr%]>0.5の条件を満たす合金組成を有する。さらに、この浸炭部品は、真空浸炭により浸炭処理を実施することにより得られる。これにより、特許文献3の浸炭部品は、エッジ部の靭性が低くならない上に、表面炭素濃度が最も低い部分で0.6%以上あるから、浸炭不足により強度が低い部分も生じない、と特許文献3には記載されている。 The carburized parts disclosed in Patent Document 3 are, in mass%, C: 0.1 to 0.3%, Si: 0.5 to 3.0%, Mn: 0.3 to 3.0%, P:. 0.03% or less, S: 0.03% or less, Cu: 0.01 to 1.00%, Ni: 0.01 to 3.00%, Cr: 0.3 to 1.0%, Al: 0 .20% or less and N: 0.05% or less, the balance is composed of unavoidable impurities and Fe, [Si%] + [Ni%] + [Cu%]-[Cr%]> 0.5 It has an alloy composition that meets the conditions. Further, this carburized part is obtained by carrying out a carburizing treatment by vacuum carburizing. As a result, in the carburized parts of Patent Document 3, the toughness of the edge portion is not lowered, and since the portion having the lowest surface carbon concentration is 0.6% or more, the portion having low strength due to insufficient carburizing does not occur. It is described in Document 3.
 特許文献4に開示された真空浸炭又は真空浸炭窒化用の鋼材は、質量%で、C:0.10~0.25%、Si:0.35~1.5%、Mn:0.4~1.5%、P:0.025%以下、S:0.015~0.05%、Cr:0.50~2.0%、Al:0.010~0.050%及びN:0.012~0.025%を含有し、残部はFe及び不純物からなり、不純物中のO(酸素):0.0012%以下及びTi:0.003%以下、かつ、式(1)~(3)を満たす化学組成を有する。ここで、式(1)は、910-203×C0.5+44.7×Si≦860であり、式(2)は、2.0≦(0.31×C0.5)×(0.7×Si+1.00)×(3.33×Mn+1.00)×(2.16×Cr+1.00)≦3.5であり、式(3)は、0.2×(S/Mn)+P≦0.030である。さらに、長手方向に平行な断面において、介在物の長径をL(μm)、短径をW(μm)とし、所定の条件のとき、(πLW/4)0.5で表される酸化物等の介在物の最大等価円直径が35μm以下である。特許文献4の鋼材は、C及びSi含有量を調整することにより、焼入れの際の熱処理ひずみのばらつきを低減し、面疲労強度及び曲げ疲労強度を高める、と特許文献4には記載されている。 The steel material for vacuum carburizing or vacuum carburizing nitriding disclosed in Patent Document 4 has a mass% of C: 0.10 to 0.25%, Si: 0.35 to 1.5%, Mn: 0.4 to 1.5%, P: 0.025% or less, S: 0.015 to 0.05%, Cr: 0.50 to 2.0%, Al: 0.010 to 0.050% and N: 0. It contains 012 to 0.025%, the balance is Fe and impurities, O (oxygen) in the impurities: 0.0012% or less and Ti: 0.003% or less, and the formulas (1) to (3). Has a chemical composition that satisfies. Here, the formula (1) is 910-203 × C 0.5 + 44.7 × Si ≦ 860, and the formula (2) is 2.0 ≦ (0.31 × C 0.5 ) × (0). .7 × Si + 1.00) × (3.33 × Mn + 1.00) × (2.16 × Cr + 1.00) ≦ 3.5, and the formula (3) is 0.2 × (S / Mn) + P. ≦ 0.030. Further, in a cross section parallel to the longitudinal direction, the major axis of the inclusion is L (μm) and the minor axis is W (μm), and under predetermined conditions, an oxide represented by (πLW / 4) 0.5 , etc. The maximum equivalent circle diameter of the inclusions is 35 μm or less. Patent Document 4 describes that the steel material of Patent Document 4 reduces variations in heat treatment strain during quenching and enhances surface fatigue strength and bending fatigue strength by adjusting the C and Si contents. ..
特開2016-191151号公報Japanese Unexamined Patent Publication No. 2016-191151 特開2018-028130号公報Japanese Unexamined Patent Publication No. 2018-028130 特開2007-291486号公報Japanese Unexamined Patent Publication No. 2007-291486 特開2010-150566号公報Japanese Unexamined Patent Publication No. 2010-150566
 特許文献1~4は、疲労強度を向上させる技術について開示した文献であり、熱処理変形の抑制に関する技術は何ら開示されていない。 Patent Documents 1 to 4 disclose techniques for improving fatigue strength, and do not disclose any technique for suppressing heat treatment deformation.
 本開示の目的は、優れた被削性を有し、真空浸炭処理を実施した後において、優れた曲げ疲労強度及び面疲労強度を有し、かつ、真空浸炭処理後の熱処理変形を抑制できる鋼材を提供することである。 An object of the present disclosure is a steel material having excellent machinability, having excellent bending fatigue strength and surface fatigue strength after vacuum carburizing treatment, and capable of suppressing heat treatment deformation after vacuum carburizing treatment. Is to provide.
 本実施形態の鋼材は、
 化学組成が、質量%で、
 C:0.18~0.25%、
 Si:0.70~2.00%、
 Mn:0.70~1.50%、
 S:0.005~0.050%、
 N:0.0050~0.0200%、
 Al:0.001~0.100%、
 O:0.0050%以下、及び、
 P:0.030%以下を含有し、
 残部がFe及び不純物からなり、かつ、式(1)及び式(2)を満たし、
 前記鋼材の長手方向に垂直な断面であって半径Rの円形状である横断面において、
 前記横断面の中心位置、及び、前記横断面の中心から径方向にR/2の位置であって前記横断面の中心周りに45°ピッチで配置される8箇所の前記R/2位置を、9箇所の横断面観察位置と定義したとき、
 前記各横断面観察位置でのミクロ組織は、フェライトを含有し、残部はパーライト及び/又はベイナイトからなり、
 前記9箇所の横断面観察位置でのフェライトの面積分率の算術平均値は50~70%であり、かつ、前記フェライトの面積分率の標準偏差は4.0%以下であり、
 前記9箇所の横断面観察位置でのフェライトの平均粒径のうち、最小の平均粒径に対する最大の平均粒径の比が2.00以下であり、
 前記鋼材の長手方向に平行な断面であって前記鋼材の中心軸を含む縦断面において、
 前記中心軸上にR/2ピッチで配置される3箇所の中心軸位置、及び、前記各中心軸位置から前記径方向にR/2の位置に配置される6箇所の前記R/2位置を、9箇所の縦断面観察位置と定義したとき、
 前記各縦断面観察位置でのミクロ組織は、フェライトを含有し、残部はパーライト及び/又はベイナイトからなり、
 前記9箇所の縦断面観察位置でのフェライトの面積分率の算術平均値は50~70%であり、かつ、前記フェライトの面積分率の標準偏差は4.0%以下であり、
 前記9箇所の縦断面観察位置でのフェライトの平均粒径のうち、最小の平均粒径に対する最大の平均粒径の比が2.00以下である。
 Si/Mn≧1.00 (1)
 1-(0.5C+0.03Si+0.06Mn+0.01Cr+0.05Mo)<0.800 (2)
 ここで、式(1)及び式(2)中の各元素記号には、対応する元素の含有量(質量%)が代入される。対応する元素が含有されていない場合、その元素記号には「0」が代入される。
The steel material of this embodiment is
The chemical composition is by mass%,
C: 0.18 to 0.25%,
Si: 0.70 to 2.00%,
Mn: 0.70 to 1.50%,
S: 0.005 to 0.050%,
N: 0.0050-0.0200%,
Al: 0.001 to 0.100%,
O: 0.0050% or less, and
P: Contains 0.030% or less,
The balance consists of Fe and impurities, and the formulas (1) and (2) are satisfied.
In a cross section perpendicular to the longitudinal direction of the steel material and having a circular shape with a radius R,
The center position of the cross section and the eight R / 2 positions arranged at a pitch of 45 ° around the center of the cross section at R / 2 positions in the radial direction from the center of the cross section. When defined as 9 cross-sectional observation positions,
The microstructure at each cross-sectional observation position contains ferrite and the rest consists of pearlite and / or bainite.
The arithmetic mean value of the area fraction of the ferrite at the nine cross-sectional observation positions is 50 to 70%, and the standard deviation of the area fraction of the ferrite is 4.0% or less.
Of the average grain sizes of ferrites at the nine cross-sectional observation positions, the ratio of the maximum average grain size to the minimum average grain size is 2.00 or less.
In a vertical cross section parallel to the longitudinal direction of the steel material and including the central axis of the steel material.
Three central axis positions arranged at R / 2 pitch on the central axis, and six R / 2 positions arranged at R / 2 positions in the radial direction from each central axis position. , When defined as 9 vertical cross-sectional observation positions,
The microstructure at each longitudinal section observation position contains ferrite and the rest consists of pearlite and / or bainite.
The arithmetic mean value of the area fraction of ferrite at the nine vertical cross-sectional observation positions is 50 to 70%, and the standard deviation of the area fraction of the ferrite is 4.0% or less.
Among the average particle diameters of ferrites at the nine vertical cross-sectional observation positions, the ratio of the maximum average particle size to the minimum average particle size is 2.00 or less.
Si / Mn ≧ 1.00 (1)
1- (0.5C + 0.03Si + 0.06Mn + 0.01Cr + 0.05Mo) <0.800 (2)
Here, the content (mass%) of the corresponding element is substituted for each element symbol in the formula (1) and the formula (2). If the corresponding element is not contained, "0" is substituted for the element symbol.
 本開示による鋼材は、優れた被削性を有し、真空浸炭処理を実施した後において、優れた曲げ疲労強度及び面疲労強度を有し、かつ、真空浸炭処理後の熱処理変形を抑制できる。 The steel material according to the present disclosure has excellent machinability, has excellent bending fatigue strength and surface fatigue strength after vacuum carburizing treatment, and can suppress heat treatment deformation after vacuum carburizing treatment.
図1は、F2(=1-(0.5C+0.03Si+0.06Mn+0.01Cr+0.05Mo))値と最大変形量比(%)との関係を示す図である。FIG. 1 is a diagram showing the relationship between the F2 (= 1- (0.5C + 0.03Si + 0.06Mn + 0.01Cr + 0.05Mo)) value and the maximum deformation amount ratio (%). 図2は、本実施形態の鋼材の長手方向に垂直な横断面において、ミクロ組織観察が実施される横断面観察位置を説明するための模式図である。FIG. 2 is a schematic view for explaining a cross-sectional observation position where microstructure observation is carried out in a cross section perpendicular to the longitudinal direction of the steel material of the present embodiment. 図3は、本実施形態の鋼材の長手方向に平行であって、中心軸を含む縦断面において、ミクロ組織観察が実施される縦断面観察位置を説明するための模式図である。FIG. 3 is a schematic view for explaining a vertical cross-sectional observation position in which microstructure observation is carried out in a vertical cross section including the central axis, which is parallel to the longitudinal direction of the steel material of the present embodiment. 図4はバンド組織の模式図である。FIG. 4 is a schematic diagram of the band structure. 図5は、真空浸炭工程及び焼入れ工程のヒートパターンの一例を示す図である。FIG. 5 is a diagram showing an example of heat patterns in the vacuum carburizing step and the quenching step. 図6は、実施例で作製した小野式回転曲げ試験片の平面図である。FIG. 6 is a plan view of the Ono-type rotary bending test piece produced in the example. 図7は、ガス浸炭工程及び焼入れ工程のヒートパターンの一例を示す図である。FIG. 7 is a diagram showing an example of heat patterns in the gas carburizing step and the quenching step. 図8は、実施例で作製したローラーピッチング疲労試験用試験片の平面図である。FIG. 8 is a plan view of the test piece for the roller pitching fatigue test produced in the example. 図9は、ローラーピッチング疲労試験を説明するための模式図である。FIG. 9 is a schematic diagram for explaining a roller pitching fatigue test. 図10は、実施例で作製した大ローラー試験片の正面図である。FIG. 10 is a front view of the large roller test piece produced in the example. 図11Aは、実施例で作製した歯車模擬試験片の斜視図である。FIG. 11A is a perspective view of the gear simulated test piece produced in the example. 図11Bは、図11A中の貫通孔の斜視図である。11B is a perspective view of the through hole in FIG. 11A.
 本発明者らは、優れた被削性を有し、真空浸炭処理を実施して機械構造用部品とした場合に、優れた曲げ疲労強度及び面疲労強度を有し、かつ、真空浸炭処理後の熱処理変形を抑制できる鋼材について、調査及び検討を行った。 The present inventors have excellent machinability, have excellent bending fatigue strength and surface fatigue strength when subjected to vacuum carburizing treatment to obtain mechanical structural parts, and after vacuum carburizing treatment. We investigated and examined steel materials that can suppress heat treatment deformation.
 本発明者らは、優れた被削性を有し、さらに、真空浸炭処理後に優れた曲げ疲労強度及び面疲労強度を有する鋼材について、化学組成の観点から検討を行った。 The present inventors examined a steel material having excellent machinability and further having excellent bending fatigue strength and surface fatigue strength after vacuum carburizing treatment from the viewpoint of chemical composition.
 検討の結果、化学組成が、質量%で、C:0.18~0.25%、Si:0.70~2.00%、Mn:0.70~1.50%、S:0.005~0.050%、N:0.0050~0.0200%、Al:0.001~0.100%、O:0.0050%以下、P:0.030%以下、Mo:0~0.50%、Nb:0~0.050%、Cr:0~0.60%、Ti:0~0.020%、Cu:0~0.50%、Ni:0~0.80%、V:0~0.30%、Mg:0~0.0035%、Ca:0~0.0030%、及び、希土類元素:0~0.0050%を含有し、残部がFe及び不純物からなる鋼材であれば、優れた被削性を有し、さらに、真空浸炭処理後に優れた曲げ疲労強度及び面疲労強度を有する可能性があると考えた。 As a result of the examination, the chemical composition was C: 0.18 to 0.25%, Si: 0.70 to 2.00%, Mn: 0.70 to 1.50%, S: 0.005 in mass%. ~ 0.050%, N: 0.0050 to 0.0200%, Al: 0.001 to 0.100%, O: 0.0050% or less, P: 0.030% or less, Mo: 0 to 0. 50%, Nb: 0 to 0.050%, Cr: 0 to 0.60%, Ti: 0 to 0.020%, Cu: 0 to 0.50%, Ni: 0 to 0.80%, V: A steel material containing 0 to 0.30%, Mg: 0 to 0.0035%, Ca: 0 to 0.0030%, and rare earth elements: 0 to 0.0050%, with the balance being Fe and impurities. For example, it is considered that it has excellent machinability and may have excellent bending fatigue strength and surface fatigue strength after vacuum carburizing treatment.
 本発明者らはさらに、化学組成中の各元素含有量が上記範囲内であることを前提として、さらに、次の式(1)を満たせば、真空浸炭処理後に、優れた曲げ疲労強度を有する可能性があると考えた。
 Si/Mn≧1.00 (1)
 ここで、式(1)中の各元素記号には、対応する元素の含有量(質量%)が代入される。
The present inventors further assume that the content of each element in the chemical composition is within the above range, and further satisfy the following formula (1) to have excellent bending fatigue strength after vacuum carburizing treatment. I thought there was a possibility.
Si / Mn ≧ 1.00 (1)
Here, the content (mass%) of the corresponding element is substituted for each element symbol in the formula (1).
 本実施形態の鋼材では、Si含有量のMn含有量に対する比を1.00以上とすれば、つまり、式(1)を満たせば、介在物が軟質なMnO-SiOとなる。この介在物は、熱間加工(熱間圧延)中にガラス化して延伸及び分断され、微細化される。そのため、曲げ疲労強度を低下させる粗大な介在物が減らすことができ、曲げ疲労強度が高まる。 In the steel material of the present embodiment, if the ratio of the Si content to the Mn content is 1.00 or more, that is, if the formula (1) is satisfied, the inclusions are soft MnO-SiO 2 . The inclusions are vitrified during hot working (hot rolling), stretched and fragmented, and refined. Therefore, coarse inclusions that reduce the bending fatigue strength can be reduced, and the bending fatigue strength is increased.
 本発明者らはさらに、真空浸炭処理での熱処理変形を抑制する手段について、検討を行った。本発明者らは、鋼材のミクロ組織に注目した。鋼材中の各部位でのミクロ組織がなるべく均一であれば、具体的には、鋼材中の各部位でのミクロ組織の相構成のばらつき、及び、結晶粒のばらつきが抑えられていれば、真空浸炭焼入れ時のマルテンサイト変態の発生タイミングのばらつきが抑えられる。その結果、熱処理変形を抑えることができる。そこで、本発明者らは、鋼材の各部位での相構成及び結晶粒径について検討を行った。 The present inventors further investigated means for suppressing heat treatment deformation in vacuum carburizing treatment. The present inventors focused on the microstructure of steel materials. If the microstructure at each part of the steel material is as uniform as possible, specifically, if the variation in the phase composition of the microstructure at each part in the steel material and the variation in the crystal grains are suppressed, the vacuum Variations in the timing of martensitic transformation during carburizing and quenching can be suppressed. As a result, heat treatment deformation can be suppressed. Therefore, the present inventors investigated the phase composition and the crystal grain size at each part of the steel material.
 本発明者らは初めに、鋼材の長手方向に垂直な断面である横断面でのミクロ組織のばらつきに注目した。横断面でのミクロ組織のばらつきを定量化するために、横断面におけるミクロ組織の観察位置である横断面観察位置を、次のとおり定義した。 The present inventors first focused on the variation in microstructure in the cross section, which is the cross section perpendicular to the longitudinal direction of the steel material. In order to quantify the variation of the microstructure in the cross section, the cross-sectional observation position, which is the observation position of the microstructure in the cross section, was defined as follows.
 鋼材の横断面の半径をRとした場合、横断面の中心位置、及び、横断面の中心から径方向にR/2の位置であって横断面の中心周りに45°ピッチで配置される8箇所のR/2位置を、9箇所の横断面観察位置と定義する。 When the radius of the cross section of the steel material is R, the center position of the cross section and the position of R / 2 in the radial direction from the center of the cross section are arranged at a pitch of 45 ° around the center of the cross section 8 The R / 2 position of the location is defined as the cross-sectional observation position of 9 locations.
 本発明者らは、各横断面観察位置でのミクロ組織を調査及び検討した。検討の結果、横断面観察位置でのミクロ組織が、次の要件を満たせば、浸炭処理後の熱処理変形が抑制されることが判明した。
 (1)各横断面観察位置でのミクロ組織が、フェライトを含有し、残部がパーライト及び/又はベイナイトからなる。
 (2)9箇所の横断面観察位置でのフェライトの面積分率の算術平均値が50~70%であり、かつ、フェライトの面積分率の標準偏差が4.0%以下である。
 (3)9箇所の横断面観察位置でのフェライトの平均粒径のうち、最小の平均粒径に対する最大の平均粒径の比が2.00以下である。
The present inventors investigated and examined the microstructure at each cross-sectional observation position. As a result of the examination, it was found that the heat treatment deformation after the carburizing treatment is suppressed if the microstructure at the cross-sectional observation position meets the following requirements.
(1) The microstructure at each cross-sectional observation position contains ferrite, and the balance consists of pearlite and / or bainite.
(2) The arithmetic mean value of the area fraction of ferrite at nine cross-sectional observation positions is 50 to 70%, and the standard deviation of the area fraction of ferrite is 4.0% or less.
(3) Of the average particle diameters of ferrites at nine cross-sectional observation positions, the ratio of the maximum average particle size to the minimum average particle size is 2.00 or less.
 しかしながら、上述の化学組成を有し、かつ、上述のミクロ組織を満足する鋼材であっても、依然として、熱処理変形を十分に抑制されず、特に、自動車及び建設車両等の運転時の騒音及び振動が十分に抑制できない場合があることが判明した。そこで、本発明者らは、さらに検討を行った。 However, even a steel material having the above-mentioned chemical composition and satisfying the above-mentioned microstructure still does not sufficiently suppress heat treatment deformation, and particularly noise and vibration during operation of automobiles and construction vehicles. It turned out that there are cases where it cannot be sufficiently suppressed. Therefore, the present inventors further investigated.
 その結果、次の事項が判明した。運転時の騒音及び振動を抑制するためには、3次元的に鋼材の熱処理変形を抑制することが有効である。上述のとおり、鋼材の横断面のミクロ組織の相構成及び結晶粒のばらつきを抑制すれば、鋼材の長手方向に垂直な方向の熱処理変形を抑制することはできる。 As a result, the following items were found. In order to suppress noise and vibration during operation, it is effective to three-dimensionally suppress heat treatment deformation of steel materials. As described above, if the phase composition of the microstructure of the cross section of the steel material and the variation of the crystal grains are suppressed, the heat treatment deformation in the direction perpendicular to the longitudinal direction of the steel material can be suppressed.
 しかしながら、鋼材の横断面のミクロ組織のばらつきを抑制するだけでは、2次元的な熱処理変形の抑制に留まる。つまり、鋼材の横断面のミクロ組織のばらつきを抑制していても、鋼材の長手方向に平行であって鋼材の中心軸を含む断面である縦断面のミクロ組織がばらつく場合がある。この場合、熱処理変形にばらつきが生じる。その結果、運転時の騒音及び振動を十分に抑制できない。 However, simply suppressing the variation in the microstructure of the cross section of the steel material only suppresses the two-dimensional heat treatment deformation. That is, even if the variation in the microstructure of the cross section of the steel material is suppressed, the microstructure of the vertical cross section which is parallel to the longitudinal direction of the steel material and includes the central axis of the steel material may vary. In this case, the heat treatment deformation varies. As a result, noise and vibration during operation cannot be sufficiently suppressed.
 そこで、本発明者らは、鋼材の横断面のミクロ組織のばらつきだけでなく、鋼材の縦断面のミクロ組織のばらつきにも注目した。そして、縦断面でのミクロ組織のばらつきを定量化するために、縦断面におけるミクロ組織の観察位置である縦断面観察位置を、次のとおり定義した。 Therefore, the present inventors paid attention not only to the variation in the microstructure of the cross section of the steel material but also to the variation of the microstructure of the vertical cross section of the steel material. Then, in order to quantify the variation of the microstructure in the vertical section, the vertical section observation position, which is the observation position of the microstructure in the vertical section, is defined as follows.
 鋼材の中心軸上にR/2ピッチで配置される3箇所の中心軸位置、及び、各中心軸位置から径方向にR/2の位置に配置される6箇所のR/2位置を、9箇所の縦断面観察位置と定義する。 9 are the 3 central axis positions arranged at R / 2 pitch on the central axis of the steel material and the 6 R / 2 positions arranged at R / 2 positions in the radial direction from each central axis position. It is defined as the vertical cross-sectional observation position of the location.
 本発明者らは、各縦断面観察位置でのミクロ組織を調査及び検討した。検討の結果、横断面観察位置でのミクロ組織が上記要件を満たし、さらに、縦断面観察位置でのミクロ組織が次の要件を満たせば、ガス浸炭処理後の熱処理変形が十分に抑制されることが判明した。
 (4)各縦断面観察位置でのミクロ組織がフェライトを含有し、残部がパーライト及び/又はベイナイトからなる。
 (5)9箇所の縦断面観察位置でのフェライトの面積分率の算術平均値が50~70%であり、かつ、フェライトの面積分率の標準偏差が4.0%以下である。
 (6)9箇所の縦断面観察位置でのフェライトの平均粒径のうち、最小の平均粒径に対する最大の平均粒径の比が2.00以下である。
The present inventors investigated and examined the microstructure at each vertical cross-sectional observation position. As a result of the examination, if the microstructure at the cross-sectional observation position meets the above requirements and the microstructure at the vertical cross-section observation position meets the following requirements, the heat treatment deformation after the gas carburizing treatment is sufficiently suppressed. There was found.
(4) The microstructure at each vertical cross-sectional observation position contains ferrite, and the balance consists of pearlite and / or bainite.
(5) The arithmetic mean value of the area fraction of ferrite at nine vertical cross-sectional observation positions is 50 to 70%, and the standard deviation of the area fraction of ferrite is 4.0% or less.
(6) Of the average particle diameters of ferrites at nine vertical cross-sectional observation positions, the ratio of the maximum average particle size to the minimum average particle size is 2.00 or less.
 しかしながら、上述の化学組成を有し、かつ、横断面観察位置及び縦断面観察位置でのミクロ組織が上記要件(1)~(6)を満たす鋼材であっても、依然として、熱処理変形を十分に抑制できない場合があった。そこで、本発明者らはさらに検討を行った。 However, even if the steel material has the above-mentioned chemical composition and the microstructure at the cross-sectional observation position and the vertical cross-section observation position satisfies the above requirements (1) to (6), the heat treatment deformation is still sufficient. In some cases, it could not be suppressed. Therefore, the present inventors further investigated.
 ここで、本発明者らは、真空浸炭処理後のマルテンサイト変態に着目した。そして、本発明者らは、真空浸炭焼入れ時のマルテンサイト変態の発生メカニズムについて、詳細に検討を行った。 Here, the present inventors focused on martensitic transformation after vacuum carburizing. Then, the present inventors investigated in detail the mechanism of occurrence of martensitic transformation during vacuum carburizing and quenching.
 本発明者らは初めに、上述の化学組成を有する鋼材を用いて、機械構造用部品の各部位でのマルテンサイト変態時期をなるべく同じにすることにより、熱処理変形を抑制することを試みた。具体的には、鋼材の各部位(横断面観察位置、縦断面観察位置)でのミクロ組織のばらつきを抑え、かつ、各部位のMs点のばらつきもなるべく抑えることにより、熱処理変形を抑えることを試みた。 The present inventors first attempted to suppress heat treatment deformation by using a steel material having the above-mentioned chemical composition and making the martensitic transformation time at each part of the mechanical structural parts as similar as possible. Specifically, it is possible to suppress heat treatment deformation by suppressing variations in the microstructure at each part of the steel material (cross-section observation position, vertical cross-section observation position) and by suppressing variations in the Ms point of each part as much as possible. I tried.
 しかしながら、本発明者らの調査の結果、上述の化学組成の鋼材の各部位でのミクロ組織のばらつきを抑えても、鋼材の各部位でマルテンサイト変態時期がどうしても微小にずれてしまい、各部位で同一時期にマルテンサイト変態させることは極めて困難であることが判明した。具体的には、真空浸炭処理での急冷時の時間を微小時間に区切った場合、たとえ、鋼材の横断面観察位置及び縦断面観察位置でのミクロ組織のばらつきを極限まで抑えても、鋼材内において、マルテンサイト変態をしている部分(以下、「マルテンサイト変態部分」ともいう)と、マルテンサイト変態していない部分(以下、「マルテンサイト未変態部分」ともいう)とが混在する微小時間帯がどうしても発生してしまうことが判明した。 However, as a result of the investigation by the present inventors, even if the variation in the microstructure in each part of the steel material having the above-mentioned chemical composition is suppressed, the martensitic transformation time is inevitably slightly deviated in each part of the steel material, and each part. It turned out to be extremely difficult to transform martensite at the same time. Specifically, when the time for quenching in the vacuum carburizing treatment is divided into minute times, even if the variation in the microstructure at the cross-sectional observation position and the vertical cross-sectional observation position of the steel material is suppressed to the utmost limit, the inside of the steel material In a minute time in which a portion having undergone martensitic transformation (hereinafter, also referred to as “martensite transformation portion”) and a portion not undergoing martensitic transformation (hereinafter, also referred to as “martensite untransformed portion”) coexist. It turned out that the band was inevitably generated.
 真空浸炭処理時における鋼材のミクロ組織変化は次のとおりに発生すると考えられる。
 焼入れ時間(急冷時間)を微小時間に区切った場合、初めに、鋼材内部の一部でマルテンサイト変態が開始する。その後、時間の進行と共に、中心部分から表層部分方向へ、マルテンサイト変態が進行する。つまり、マルテンサイト変態は、鋼材の表層からではなく、鋼材の内部から発生する。
It is considered that the microstructural changes of the steel material during the vacuum carburizing treatment occur as follows.
When the quenching time (quenching time) is divided into minute times, martensitic transformation starts in a part of the inside of the steel material first. After that, as time progresses, martensitic transformation progresses from the central part toward the surface layer part. That is, the martensitic transformation occurs not from the surface layer of the steel material but from the inside of the steel material.
 真空浸炭処理により、鋼材表層の炭素濃度は鋼材内部の炭素濃度よりも高くなっている。そのため、鋼材表層のMs点は、鋼材内部のMs点よりも低い。さらに、仮に、鋼材内部の各部位でMs点を均一にすることが可能であっても、鋼材の形状に起因して、各部位の冷却速度は完全に同一にはならない。そのため、焼入れ時間を微小時間に区切った場合、鋼材の各部位のうち、鋼材内部の冷却速度が速い部位からマルテンサイト変態が開始する。そのため、ガス浸炭処理の焼入れ時において、マルテンサイト変態部分とマルテンサイト未変態部分とが混在する微小時間帯が必ず発生する。 Due to the vacuum carburizing treatment, the carbon concentration on the surface layer of the steel material is higher than the carbon concentration inside the steel material. Therefore, the Ms point on the surface layer of the steel material is lower than the Ms point inside the steel material. Further, even if it is possible to make the Ms points uniform in each part inside the steel material, the cooling rates of each part are not completely the same due to the shape of the steel material. Therefore, when the quenching time is divided into minute times, the martensitic transformation starts from each part of the steel material where the cooling rate inside the steel material is high. Therefore, at the time of quenching of the gas carburizing treatment, a minute time zone in which the martensitic transformed portion and the martensitic untransformed portion coexist always occurs.
 以上の知見に基づいて、本発明者らは、マルテンサイト変態時期をなるべく同じにして熱処理変形を抑制するのではなく、真空浸炭処理時において、マルテンサイト変態部分とマルテンサイト未変態部分とが混在する微小時間帯が必ず存在することを前提として、熱処理変形の抑制手段を検討した。 Based on the above findings, the present inventors do not suppress the heat treatment deformation by setting the martensitic transformation time as much as possible, but during the vacuum carburizing treatment, the martensitic transformed portion and the martensitic untransformed portion are mixed. On the premise that there is always a minute time zone, the means for suppressing heat treatment deformation was investigated.
 焼入れ時において、マルテンサイト未変態部分はマルテンサイト変態部分よりも軟質である。さらに、体心立方格子構造を有するマルテンサイト変態部分は、面心立方格子構造を有するマルテンサイト未変態部分に比べて体積が大きい。そのため、焼入れ時において、鋼材の一部がマルテンサイト変態することにより、マルテンサイト変態部分とマルテンサイト未変態部分が混在する場合、マルテンサイト未変態部分に歪みが生じる。この歪みが、熱処理変形を引き起こすと考えられる。 At the time of quenching, the untransformed part of martensite is softer than the transformed part of martensite. Further, the martensitic transformational portion having a body-centered cubic lattice structure has a larger volume than the martensitic untransformed portion having a face-centered cubic lattice structure. Therefore, when a part of the steel material undergoes martensitic transformation during quenching, and the martensitic transformed portion and the martensitic untransformed portion coexist, the martensitic untransformed portion is distorted. It is considered that this strain causes heat treatment deformation.
 そこで、本発明者らは、真空浸炭処理時において、マルテンサイト変態部分とマルテンサイト未変態部分とが混在する微小時間帯が存在することを前提とした場合、マルテンサイト変態部分が生成した時点でのマルテンサイト未変態部分の強度を高く保つことができれば、マルテンサイト未変態部分の歪みの発生を抑制でき、その結果、熱処理変形を抑制できると考えた。 Therefore, the present inventors assume that there is a minute time zone in which the martensitic transformed portion and the martensitic untransformed portion coexist during the vacuum carburizing treatment, and when the martensitic transformed portion is generated, It was considered that if the strength of the untransformed martensite portion could be kept high, the occurrence of distortion in the untransformed martensite portion could be suppressed, and as a result, the heat treatment deformation could be suppressed.
 そこで、本発明者らは、真空浸炭処理の焼入れ時にマルテンサイト変態部分が生成したときのマルテンサイト未変態部分の強度を高く保持する手段について、さらに検討を行った。上述の化学組成を有する鋼材において、マルテンサイト変態部分が生成する温度域でのマルテンサイト未変態部分の強度を高めるためには、マルテンサイト変態部分が生成する温度域でマルテンサイト未変態部分を強化する元素を適切に含有することが有効である。 Therefore, the present inventors further investigated a means for maintaining high strength of the martensitic untransformed portion when the martensitic transformed portion is generated during quenching in the vacuum carburizing treatment. In the steel material having the above-mentioned chemical composition, in order to increase the strength of the martensitic untransformed portion in the temperature range where the martensitic transformed portion is generated, the martensitic untransformed portion is strengthened in the temperature range where the martensitic transformed portion is generated. It is effective to appropriately contain the elements to be used.
 上述の化学組成において、マルテンサイト変態部分が生成する温度域でのマルテンサイト未変態部分の強度を高める元素として、C、Si、Mn、Cr及びMoが有効であると本発明者らは考えた。そこで、これらの元素と、ガス浸炭処理の焼入れ時での熱処理変形量との関係について、さらに検討を行った。その結果、上述の化学組成の鋼材においてさらに、次の式(2)を満たすことにより、熱処理変形が顕著に抑制されることが判明した。
 1-(0.5C+0.03Si+0.06Mn+0.01Cr+0.05Mo)<0.800 (2)
 ここで、式(2)中の各元素記号には、対応する元素の含有量(質量%)が代入される。対応する元素が含有されていない場合、その元素記号には「0」が代入される。
In the above chemical composition, the present inventors considered that C, Si, Mn, Cr and Mo are effective as elements for increasing the strength of the martensitic untransformed portion in the temperature range where the martensitic transformed portion is generated. .. Therefore, the relationship between these elements and the amount of heat treatment deformation during quenching of the gas carburizing treatment was further investigated. As a result, it was found that the heat treatment deformation was remarkably suppressed by further satisfying the following formula (2) in the steel material having the above-mentioned chemical composition.
1- (0.5C + 0.03Si + 0.06Mn + 0.01Cr + 0.05Mo) <0.800 (2)
Here, the content (mass%) of the corresponding element is substituted for each element symbol in the formula (2). If the corresponding element is not contained, "0" is substituted for the element symbol.
 F2=1-(0.5C+0.03Si+0.06Mn+0.01Cr+0.05Mo)と定義する。図1は、化学組成中の各元素含有量が上述の範囲内であり、かつ、横断面観察位置及び縦断面観察位置でのミクロ組織のばらつきが上述の要件を満たす鋼材における、F2値と最大変形量比(%)との関係を示す図である。最大変形量比は熱処理変形の指標である。最大変形量比が大きいほど、鋼材の熱処理変形が大きいことを示す。最大変形量比は、後述する方法により求めた。 It is defined as F2 = 1- (0.5C + 0.03Si + 0.06Mn + 0.01Cr + 0.05Mo). FIG. 1 shows the F2 value and the maximum in a steel material in which the content of each element in the chemical composition is within the above range and the variation in microstructure at the cross-sectional observation position and the vertical cross-sectional observation position satisfies the above-mentioned requirements. It is a figure which shows the relationship with the deformation amount ratio (%). The maximum deformation ratio is an index of heat treatment deformation. The larger the maximum deformation amount ratio, the larger the heat treatment deformation of the steel material. The maximum deformation amount ratio was determined by the method described later.
 図1を参照して、化学組成中の各元素含有量が上述の範囲内であり、かつ、横断面観察位置及び縦断面観察位置でのミクロ組織が上述の条件(1)~(6)を満たす鋼材では、F2の低下に伴い、最大変形量比が低下する。そして、F2が0.800未満となった場合、最大変形量比が顕著に低下する。つまり、F2に対する最大変形量比は、F2=0.800付近で変曲点を有する。したがって、F2が0.800未満であれば、浸炭焼入れ時の鋼材の熱処理変形を十分に抑制することができる。 With reference to FIG. 1, the content of each element in the chemical composition is within the above range, and the microstructure at the cross-sectional observation position and the vertical cross-sectional observation position satisfies the above-mentioned conditions (1) to (6). In the satisfied steel material, the maximum deformation amount ratio decreases as F2 decreases. When F2 is less than 0.800, the maximum deformation amount ratio is remarkably lowered. That is, the maximum deformation amount ratio with respect to F2 has an inflection point near F2 = 0.800. Therefore, if F2 is less than 0.800, heat treatment deformation of the steel material during carburizing and quenching can be sufficiently suppressed.
 以上のとおり、本発明者らは、上述の化学組成を有する鋼材において、横断面観察位置及び縦断面観察位置のミクロ組織のばらつきを抑えて焼入れ時のマルテンサイト変態の発生タイミングのばらつきをある程度抑えつつ、焼入れ時においてマルテンサイト変態部分とマルテンサイト未変態部分とが混在する微小時間帯がどうしても発生することを前提として、F2を0.800未満とすることにより、優れた被削性を有し、真空浸炭処理後に優れた曲げ疲労強度及び優れた面疲労強度を有し、かつ、真空浸炭処理後の熱処理変形を十分に抑制できることを見出した。 As described above, the present inventors suppress the variation in the microstructure at the cross-sectional observation position and the vertical section observation position in the steel material having the above-mentioned chemical composition, and suppress the variation in the timing of martensitic transformation during quenching to some extent. On the other hand, it has excellent machinability by setting F2 to less than 0.800 on the premise that a minute time zone in which martensite transformed portion and martensite untransformed portion coexist is inevitably generated at the time of quenching. It has been found that it has excellent bending fatigue strength and excellent surface fatigue strength after vacuum carburizing treatment, and can sufficiently suppress heat treatment deformation after vacuum carburizing treatment.
 以上の知見に基づいて完成した本実施形態による鋼材は、次の構成を有する。 The steel material according to the present embodiment completed based on the above knowledge has the following constitution.
 [1]
 鋼材であって、
 化学組成が、質量%で、
 C:0.18~0.25%、
 Si:0.70~2.00%、
 Mn:0.70~1.50%、
 S:0.005~0.050%、
 N:0.0050~0.0200%、
 Al:0.001~0.100%、
 O:0.0050%以下、及び、
 P:0.030%以下を含有し、
 残部がFe及び不純物からなり、かつ、式(1)及び式(2)を満たし、
 前記鋼材の長手方向に垂直な断面であって半径Rの円形状である横断面において、
 前記横断面の中心位置、及び、前記横断面の中心から径方向にR/2の位置であって前記横断面の中心周りに45°ピッチで配置される8箇所の前記R/2位置を、9箇所の横断面観察位置と定義したとき、
 前記各横断面観察位置でのミクロ組織は、フェライトを含有し、残部はパーライト及び/又はベイナイトからなり、
 前記9箇所の横断面観察位置でのフェライトの面積分率の算術平均値は50~70%であり、かつ、前記フェライトの面積分率の標準偏差は4.0%以下であり、
 前記9箇所の横断面観察位置でのフェライトの平均粒径のうち、最小の平均粒径に対する最大の平均粒径の比が2.00以下であり、
 前記鋼材の長手方向に平行な断面であって前記鋼材の中心軸を含む縦断面において、
 前記中心軸上にR/2ピッチで配置される3箇所の中心軸位置、及び、前記各中心軸位置から前記径方向にR/2の位置に配置される6箇所の前記R/2位置を、9箇所の縦断面観察位置と定義したとき、
 前記各縦断面観察位置でのミクロ組織は、フェライトを含有し、残部はパーライト及び/又はベイナイトからなり、
 前記9箇所の縦断面観察位置でのフェライトの面積分率の算術平均値は50~70%であり、かつ、前記フェライトの面積分率の標準偏差は4.0%以下であり、
 前記9箇所の縦断面観察位置でのフェライトの平均粒径のうち、最小の平均粒径に対する最大の平均粒径の比が2.00以下である、
 鋼材。
 Si/Mn≧1.00 (1)
 1-(0.5C+0.03Si+0.06Mn+0.01Cr+0.05Mo)<0.800 (2)
 ここで、式(1)及び式(2)中の各元素記号には、対応する元素の含有量(質量%)が代入される。対応する元素が含有されていない場合、その元素記号には「0」が代入される。
[1]
It's a steel material
The chemical composition is by mass%,
C: 0.18 to 0.25%,
Si: 0.70 to 2.00%,
Mn: 0.70 to 1.50%,
S: 0.005 to 0.050%,
N: 0.0050-0.0200%,
Al: 0.001 to 0.100%,
O: 0.0050% or less, and
P: Contains 0.030% or less,
The balance consists of Fe and impurities, and the formulas (1) and (2) are satisfied.
In a cross section perpendicular to the longitudinal direction of the steel material and having a circular shape with a radius R,
The center position of the cross section and the eight R / 2 positions arranged at a pitch of 45 ° around the center of the cross section at R / 2 positions in the radial direction from the center of the cross section. When defined as 9 cross-sectional observation positions,
The microstructure at each cross-sectional observation position contains ferrite and the rest consists of pearlite and / or bainite.
The arithmetic mean value of the area fraction of the ferrite at the nine cross-sectional observation positions is 50 to 70%, and the standard deviation of the area fraction of the ferrite is 4.0% or less.
Of the average grain sizes of ferrites at the nine cross-sectional observation positions, the ratio of the maximum average grain size to the minimum average grain size is 2.00 or less.
In a vertical cross section parallel to the longitudinal direction of the steel material and including the central axis of the steel material.
Three central axis positions arranged at R / 2 pitch on the central axis, and six R / 2 positions arranged at R / 2 positions in the radial direction from each central axis position. , When defined as 9 vertical cross-sectional observation positions,
The microstructure at each longitudinal section observation position contains ferrite and the rest consists of pearlite and / or bainite.
The arithmetic mean value of the area fraction of ferrite at the nine vertical cross-sectional observation positions is 50 to 70%, and the standard deviation of the area fraction of the ferrite is 4.0% or less.
Among the average particle diameters of ferrites at the nine vertical cross-sectional observation positions, the ratio of the maximum average particle size to the minimum average particle size is 2.00 or less.
Steel material.
Si / Mn ≧ 1.00 (1)
1- (0.5C + 0.03Si + 0.06Mn + 0.01Cr + 0.05Mo) <0.800 (2)
Here, the content (mass%) of the corresponding element is substituted for each element symbol in the formula (1) and the formula (2). If the corresponding element is not contained, "0" is substituted for the element symbol.
 [2]
 [1]に記載の鋼材であって、
 前記化学組成はさらに、前記Feの一部に代えて、
 Mo:0.50%以下、
 Nb:0.050%以下、
 Cr:0.60%以下
 Ti:0.020%以下、
 Cu:0.50%以下、
 Ni:0.80%以下、
 V:0.30%以下、
 Mg:0.0035%以下、
 Ca:0.0030%以下、及び、
 希土類元素:0.0050%以下からなる群から選択される1元素以上を含有する、
 鋼材。
[2]
The steel material according to [1].
The chemical composition further replaces a portion of the Fe.
Mo: 0.50% or less,
Nb: 0.050% or less,
Cr: 0.60% or less Ti: 0.020% or less,
Cu: 0.50% or less,
Ni: 0.80% or less,
V: 0.30% or less,
Mg: 0.0035% or less,
Ca: 0.0030% or less, and
Rare earth element: Contains one or more elements selected from the group consisting of 0.0050% or less.
Steel material.
 以下、本実施形態の鋼材について詳述する。元素に関する「%」は、特に断りがない限り、質量%を意味する。 Hereinafter, the steel material of this embodiment will be described in detail. Unless otherwise specified, "%" for an element means mass%.
 [鋼材の化学組成]
 鋼材の化学組成は、次の元素を含有する。
[Chemical composition of steel]
The chemical composition of steel contains the following elements.
 C:0.18~0.25%
 炭素(C)は、鋼材の強度を高める。C含有量が0.18%未満であれば、他の元素含有量が本実施形態の範囲内であっても、上記効果が十分に得られない。
 一方、C含有量が0.25%を超えれば、他の元素含有量が本実施形態の範囲内であっても、焼入れ性が過剰に高くなる。この場合、真空浸炭処理後の機械構造用部品の硬さが過剰に高くなる。その結果、機械構造用部品の被削性が顕著に低下する。
 したがって、C含有量は0.18~0.25%である。C含有量の好ましい下限は0.19%であり、さらに好ましくは0.20%であり、さらに好ましくは0.21%である。C含有量の好ましい上限は0.24%であり、さらに好ましくは0.23%であり、さらに好ましくは0.22%である。
C: 0.18 to 0.25%
Carbon (C) increases the strength of the steel material. If the C content is less than 0.18%, the above effect cannot be sufficiently obtained even if the content of other elements is within the range of the present embodiment.
On the other hand, if the C content exceeds 0.25%, the hardenability becomes excessively high even if the content of other elements is within the range of the present embodiment. In this case, the hardness of the mechanical structural parts after the vacuum carburizing treatment becomes excessively high. As a result, the machinability of mechanical structural parts is significantly reduced.
Therefore, the C content is 0.18 to 0.25%. The lower limit of the C content is preferably 0.19%, more preferably 0.20%, still more preferably 0.21%. The preferred upper limit of the C content is 0.24%, more preferably 0.23%, still more preferably 0.22%.
 Si:0.70~2.00%
 シリコン(Si)は、鋼材の焼入れ性を高め、鋼材の強度を高める。Siはさらに、鋼材を機械構造用部品としたときの硬化層の焼戻し軟化抵抗を高める。そのため、機械構造用部品の面疲労強度が高まる。Si含有量が0.70%未満であれば、他の元素含有量が本実施形態の範囲内であっても、上記効果が十分に得られない。
 一方、Si含有量が2.00%を超えれば、他の元素含有量が本実施形態の範囲内であっても、焼入れ性が高まりすぎる。そのため、真空浸炭処理後の鋼材の硬さが高くなる。そのため、鋼材の被削性が顕著に低下する。
 したがって、Si含有量は0.70~2.00%である。Si含有量の好ましい下限は0.71%であり、さらに好ましくは0.72%であり、さらに好ましくは0.75%である。Si含有量の好ましい上限は1.90%であり、さらに好ましくは1.70%であり、さらに好ましくは1.50%であり、さらに好ましくは1.47%であり、さらに好ましくは1.45%である。
Si: 0.70 to 2.00%
Silicon (Si) enhances the hardenability of the steel material and enhances the strength of the steel material. Si further enhances the temper softening resistance of the hardened layer when steel is used as a mechanical structural component. Therefore, the surface fatigue strength of the mechanical structural parts is increased. If the Si content is less than 0.70%, the above effect cannot be sufficiently obtained even if the content of other elements is within the range of the present embodiment.
On the other hand, if the Si content exceeds 2.00%, the hardenability is too high even if the content of other elements is within the range of the present embodiment. Therefore, the hardness of the steel material after the vacuum carburizing treatment becomes high. Therefore, the machinability of the steel material is significantly reduced.
Therefore, the Si content is 0.70 to 2.00%. The lower limit of the Si content is preferably 0.71%, more preferably 0.72%, still more preferably 0.75%. The preferred upper limit of the Si content is 1.90%, more preferably 1.70%, still more preferably 1.50%, still more preferably 1.47%, still more preferably 1.45%. %.
 Mn:0.70~1.50%
 マンガン(Mn)は、鋼材の焼入れ性を高め、機械構造用部品の曲げ疲労強度及び面疲労強度を高める。Mn含有量が0.70%未満であれば、他の元素含有量が本実施形態の範囲内であっても、上記効果が十分に得られない。
 一方、Mn含有量が1.50%を超えれば、他の元素含有量が本実施形態の範囲内であっても、鋼材が硬くなりすぎる。この場合、鋼材の被削性が低下する。
 したがって、Mn含有量は0.70~1.50%である。Mn含有量の好ましい下限は0.70%超であり、さらに好ましくは0.75%であり、さらに好ましくは0.80%である。Mn含有量の好ましい上限は1.50%未満であり、さらに好ましくは1.45%であり、さらに好ましくは1.40%であり、さらに好ましくは1.35%である。
Mn: 0.70 to 1.50%
Manganese (Mn) enhances the hardenability of steel materials and enhances the bending fatigue strength and surface fatigue strength of mechanical structural parts. If the Mn content is less than 0.70%, the above effect cannot be sufficiently obtained even if the content of other elements is within the range of the present embodiment.
On the other hand, if the Mn content exceeds 1.50%, the steel material becomes too hard even if the content of other elements is within the range of the present embodiment. In this case, the machinability of the steel material is reduced.
Therefore, the Mn content is 0.70 to 1.50%. The preferred lower limit of the Mn content is more than 0.70%, more preferably 0.75%, still more preferably 0.80%. The preferred upper limit of the Mn content is less than 1.50%, more preferably 1.45%, still more preferably 1.40%, still more preferably 1.35%.
 S:0.005~0.050%
 硫黄(S)は、Mnと結合してMnSを形成する。MnSは、鋼材の被削性を高める。S含有量が0.005%未満であれば、他の元素含有量が本実施形態の範囲内であっても、上記効果が十分に得られない。
 一方、S含有量が0.050%を超えれば、他の元素含有量が本実施形態の範囲内であっても、MnSが過剰に形成される。この場合、機械構造用部品の曲げ疲労強度及び面疲労強度が低下する。
 したがって、S含有量は0.005~0.050%である。S含有量の好ましい下限は0.010%であり、さらに好ましくは0.013%であり、さらに好ましくは0.015%である。S含有量の好ましい上限は0.050%未満であり、さらに好ましくは0.035%であり、さらに好ましくは0.025%である。
S: 0.005 to 0.050%
Sulfur (S) combines with Mn to form MnS. MnS enhances the machinability of steel materials. If the S content is less than 0.005%, the above effect cannot be sufficiently obtained even if the content of other elements is within the range of the present embodiment.
On the other hand, if the S content exceeds 0.050%, MnS is excessively formed even if the content of other elements is within the range of the present embodiment. In this case, the bending fatigue strength and the surface fatigue strength of the mechanical structural parts are reduced.
Therefore, the S content is 0.005 to 0.050%. The lower limit of the S content is preferably 0.010%, more preferably 0.013%, still more preferably 0.015%. The preferred upper limit of the S content is less than 0.050%, more preferably 0.035%, still more preferably 0.025%.
 N:0.0050~0.0200%
 窒素(N)は、Al及びNbと結合して、AlN及びNbNを形成する。AlN及びNbNは、ピンニング効果により、真空浸炭処理の加熱時における結晶粒の粗大化を抑制する。N含有量が0.0050%未満であれば、他の元素含有量が本実施形態の範囲内であっても、上記効果が十分に得られない。
 一方、N含有量が0.0200%を超えれば、他の元素含有量が本実施形態の範囲内であっても、製鋼工程において、製造した鋳片又はインゴットの表面に疵が発生しやすくなる。
 したがって、N含有量は0.0050~0.0200%である。N含有量の好ましい下限は0.0100%であり、さらに好ましくは0.0120%であり、さらに好ましくは0.0130%である。N含有量の好ましい上限は0.0200%未満であり、さらに好ましくは0.0190%であり、さらに好ましくは0.0180%であり、さらに好ましくは0.0150%である。
N: 0.0050-0.0200%
Nitrogen (N) combines with Al and Nb to form AlN and NbN. AlN and NbN suppress the coarsening of crystal grains during heating in the vacuum carburizing treatment due to the pinning effect. If the N content is less than 0.0050%, the above effect cannot be sufficiently obtained even if the content of other elements is within the range of the present embodiment.
On the other hand, if the N content exceeds 0.0200%, scratches are likely to occur on the surface of the manufactured slab or ingot in the steelmaking process even if the content of other elements is within the range of the present embodiment. ..
Therefore, the N content is 0.0050 to 0.0200%. The lower limit of the N content is preferably 0.0100%, more preferably 0.0120%, still more preferably 0.0130%. The preferred upper limit of the N content is less than 0.0200%, more preferably 0.0190%, still more preferably 0.0180%, still more preferably 0.0150%.
 Al:0.001~0.100%
 アルミニウム(Al)は、鋼を脱酸する。Alはさらに、Nと結合してAlNを形成する。AlNは、ピンニング効果により、真空浸炭処理の加熱時における結晶粒の粗大化を抑制する。Al含有量が0.001%未満であれば、他の元素含有量が本実施形態の範囲内であっても、上記効果が十分に得られない。
 一方、Al含有量が0.100%を超えれば、他の元素含有量が本実施形態の範囲内であっても、粗大なAl酸化物の形成が促進される。粗大なAl酸化物は、機械構造用部品の曲げ疲労強度を低下させる。
 したがって、Al含有量は0.001~0.100%である。Al含有量の好ましい下限は0.010%であり、さらに好ましくは0.020%であり、さらに好ましくは0.025%であり、さらに好ましくは0.027%であり、さらに好ましくは0.030%である。Al含有量の好ましい上限は0.090%であり、さらに好ましくは0.070%であり、さらに好ましくは0.050%であり、さらに好ましくは0.045%であり、さらに好ましくは0.040%であり、さらに好ましくは0.035%である。
Al: 0.001 to 0.100%
Aluminum (Al) deoxidizes steel. Al further combines with N to form AlN. AlN suppresses the coarsening of crystal grains during heating in the vacuum carburizing treatment due to the pinning effect. If the Al content is less than 0.001%, the above effect cannot be sufficiently obtained even if the content of other elements is within the range of the present embodiment.
On the other hand, if the Al content exceeds 0.100%, the formation of a coarse Al oxide is promoted even if the content of other elements is within the range of the present embodiment. The coarse Al oxide reduces the bending fatigue strength of mechanical structural parts.
Therefore, the Al content is 0.001 to 0.100%. The preferred lower limit of the Al content is 0.010%, more preferably 0.020%, still more preferably 0.025%, still more preferably 0.027%, still more preferably 0.030. %. The preferred upper limit of the Al content is 0.090%, more preferably 0.070%, still more preferably 0.050%, still more preferably 0.045%, still more preferably 0.040. %, More preferably 0.035%.
 O(酸素):0.0050%以下
 酸素(O)は不純物である。Oは鋼材中の他の元素と結合して粗大な酸化物系介在物を形成する。粗大な酸化物系介在物は、機械構造用部品の曲げ疲労強度を低下する。O含有量が0.0050%を超えれば、他の元素含有量が本実施形態の範囲内であっても、機械構造用部品の曲げ疲労強度が顕著に低下する。
 したがって、O含有量は0.0050%以下である。O含有量の好ましい上限は0.0040%であり、さらに好ましくは0.0030%であり、さらに好ましくは0.0020%であり、さらに好ましくは0.0015%である。
 O含有量はなるべく低い方が好ましい。しかしながら、O含有量の過剰な低減は、製造コストを引き上げる。したがって、通常の工業生産を考慮した場合、O含有量の好ましい下限は0%超であり、さらに好ましくは0.0001%であり、さらに好ましくは0.0005%であり、さらに好ましくは0.0010%である。
O (oxygen): 0.0050% or less Oxygen (O) is an impurity. O combines with other elements in the steel to form coarse oxide inclusions. Coarse oxide-based inclusions reduce the bending fatigue strength of mechanical structural parts. If the O content exceeds 0.0050%, the bending fatigue strength of the mechanical structural parts is significantly reduced even if the content of other elements is within the range of the present embodiment.
Therefore, the O content is 0.0050% or less. The preferred upper limit of the O content is 0.0040%, more preferably 0.0030%, still more preferably 0.0020%, still more preferably 0.0015%.
It is preferable that the O content is as low as possible. However, excessive reduction of O content raises manufacturing costs. Therefore, when considering normal industrial production, the preferred lower limit of the O content is more than 0%, more preferably 0.0001%, still more preferably 0.0005%, still more preferably 0.0010. %.
 P:0.030%以下
 リン(P)は不純物である。Pは粒界に偏析して粒界強度を低下する。P含有量が0.030%を超えれば、他の元素含有量が本実施形態の範囲内であっても、Pが粒界に過剰に偏析して粒界強度を低下させ、その結果、機械構造用部品の曲げ疲労強度及び面疲労強度が低下する。
 したがって、P含有量は0.030%以下である。P含有量の好ましい上限は0.025%であり、さらに好ましくは0.020%であり、さらに好ましくは0.015%である。
 P含有量はなるべく低い方が好ましい。しかしながら、P含有量の過剰な低減は製造コストを引き上げる。したがって、通常の工業生産を考慮した場合、P含有量の好ましい下限は0%超であり、さらに好ましくは0.001%であり、さらに好ましくは0.005%であり、さらに好ましくは0.010%である。
P: 0.030% or less Phosphorus (P) is an impurity. P segregates at the grain boundaries and lowers the grain boundary strength. If the P content exceeds 0.030%, even if the content of other elements is within the range of the present embodiment, P is excessively segregated at the grain boundaries to reduce the grain boundary strength, and as a result, the machine. Bending fatigue strength and surface fatigue strength of structural parts are reduced.
Therefore, the P content is 0.030% or less. The preferred upper limit of the P content is 0.025%, more preferably 0.020%, still more preferably 0.015%.
It is preferable that the P content is as low as possible. However, excessive reduction of P content raises manufacturing costs. Therefore, when considering normal industrial production, the preferred lower limit of the P content is more than 0%, more preferably 0.001%, still more preferably 0.005%, still more preferably 0.010. %.
 本実施形態による鋼材の化学組成の残部は、Fe及び不純物からなる。ここで、不純物とは、鋼材を工業的に製造する際に、原料としての鉱石、スクラップ、又は、製造環境などから混入されるものであって、本実施形態の鋼材に悪影響を与えない範囲で許容されるものを意味する。ここでいう不純物は、B、Pb、W、Sb、Bi、Co、Ta、Sn、In、Zr、Te、Se、及びZn等である。O及びP以外の不純物の合計含有量は0.01%以下である。なお、上記不純物のうち、B含有量は0.0003%以下である。 The balance of the chemical composition of the steel material according to this embodiment consists of Fe and impurities. Here, the impurities are mixed from ore, scrap, or the manufacturing environment as a raw material when the steel material is industrially manufactured, and are within a range that does not adversely affect the steel material of the present embodiment. Means what is acceptable. The impurities referred to here are B, Pb, W, Sb, Bi, Co, Ta, Sn, In, Zr, Te, Se, Zn and the like. The total content of impurities other than O and P is 0.01% or less. Of the above impurities, the B content is 0.0003% or less.
 [任意元素(optional elements)について]
 本実施形態の鋼材の化学組成はさらに、Feの一部に代えて、
 Mo:0.50%以下、
 Nb:0.050%以下、
 Cr:0.60%以下、
 Ti:0.020%以下、
 Cu:0.50%以下、
 Ni:0.80%以下、
 V:0.30%以下、
 Mg:0.0035%以下、
 Ca:0.0030%以下、及び、
 希土類元素:0.0050%以下からなる群から選択される1元素以上を含有してもよい。これらの元素は任意元素であり、いずれも、機械構造用部品の曲げ疲労強度及び面疲労強度を高める。
[About optional elements]
Further, the chemical composition of the steel material of the present embodiment is replaced with a part of Fe.
Mo: 0.50% or less,
Nb: 0.050% or less,
Cr: 0.60% or less,
Ti: 0.020% or less,
Cu: 0.50% or less,
Ni: 0.80% or less,
V: 0.30% or less,
Mg: 0.0035% or less,
Ca: 0.0030% or less, and
Rare earth element: It may contain one or more elements selected from the group consisting of 0.0050% or less. These elements are arbitrary elements, and all of them enhance the bending fatigue strength and the surface fatigue strength of mechanical structural parts.
 Mo:0.50%以下
 モリブデン(Mo)は任意元素であり、含有されなくてもよい。つまり、Mo含有量は0%であってもよい。含有される場合、Moは鋼材の焼入れ性を高め、機械構造用部品の曲げ疲労強度及び面疲労強度を高める。Moが少しでも含有されれば、上記効果がある程度得られる。
 しかしながら、Mo含有量が0.50%を超えれば、他の元素含有量が本実施形態の範囲内であっても、鋼材が硬くなりすぎる。この場合、鋼材の被削性が低下する。
 したがって、Mo含有量は0~0.50%であり、含有される場合、0.50%以下(つまり、0超~0.50%)である。
 Mo含有量の好ましい下限は0.01%であり、さらに好ましくは0.02%であり、さらに好ましくは0.05%であり、さらに好ましくは0.10%である。Mo含有量の好ましい上限は0.50%未満であり、さらに好ましくは0.45%であり、さらに好ましくは0.40%であり、さらに好ましくは0.35%である。
Mo: 0.50% or less Molybdenum (Mo) is an optional element and may not be contained. That is, the Mo content may be 0%. When contained, Mo enhances the hardenability of steel materials and enhances bending fatigue strength and surface fatigue strength of mechanical structural parts. If Mo is contained even in a small amount, the above effect can be obtained to some extent.
However, if the Mo content exceeds 0.50%, the steel material becomes too hard even if the content of other elements is within the range of the present embodiment. In this case, the machinability of the steel material is reduced.
Therefore, the Mo content is 0 to 0.50%, and when it is contained, it is 0.50% or less (that is, more than 0 to 0.50%).
The lower limit of the Mo content is preferably 0.01%, more preferably 0.02%, still more preferably 0.05%, still more preferably 0.10%. The preferred upper limit of the Mo content is less than 0.50%, more preferably 0.45%, still more preferably 0.40%, still more preferably 0.35%.
 Nb:0.050%以下
 ニオブ(Nb)は、任意元素であり、含有されなくてもよい。つまり、Nb含有量は0%であってもよい。含有される場合、NbはC及び/又はNと結合してNb析出物(NbC、NbN、Nb(CN)等)を形成する。Nb析出物は、AlNと同様に、ピンニング効果により、ガス浸炭処理での結晶粒の粗大化を抑制する。そのため、機械構造用部品の曲げ疲労強度及び面疲労強度が高まる。Nbが少しでも含有されれば、上記効果がある程度得られる。
 しかしながら、Nb含有量が0.050%を超えれば、他の元素含有量が本実施形態の範囲内であっても、Nb析出物が粗大化する。この場合、ガス浸炭処理での結晶粒の粗大化を十分に抑制できない。そのため、機械構造用部品の曲げ疲労強度及び面疲労強度が低下する。
 したがって、Nb含有量は0~0.050%であり、含有される場合、0.050%以下(つまり、0超~0.050%)である。
 Nb含有量の好ましい下限は0.001%であり、さらに好ましくは0.010%であり、さらに好ましくは0.015%であり、さらに好ましくは0.020%であり、さらに好ましくは0.025%である。Nb含有量の好ましい上限は0.050%未満であり、さらに好ましくは0.045%であり、さらに好ましくは0.040%であり、さらに好ましくは0.035%である。
Nb: 0.050% or less Niobium (Nb) is an optional element and may not be contained. That is, the Nb content may be 0%. When contained, Nb binds to C and / or N to form Nb precipitates (NbC, NbN, Nb (CN), etc.). Similar to AlN, the Nb precipitate suppresses the coarsening of crystal grains in the gas carburizing treatment due to the pinning effect. Therefore, the bending fatigue strength and the surface fatigue strength of the mechanical structural parts are increased. If even a small amount of Nb is contained, the above effect can be obtained to some extent.
However, if the Nb content exceeds 0.050%, the Nb precipitate will be coarsened even if the content of other elements is within the range of this embodiment. In this case, the coarsening of crystal grains in the gas carburizing treatment cannot be sufficiently suppressed. Therefore, the bending fatigue strength and the surface fatigue strength of the mechanical structural parts are lowered.
Therefore, the Nb content is 0 to 0.050%, and when it is contained, it is 0.050% or less (that is, more than 0 to 0.050%).
The preferred lower limit of the Nb content is 0.001%, more preferably 0.010%, still more preferably 0.015%, still more preferably 0.020%, still more preferably 0.025. %. The preferred upper limit of the Nb content is less than 0.050%, more preferably 0.045%, still more preferably 0.040%, still more preferably 0.035%.
 Cr:0.60%以下
 クロム(Cr)は、任意元素であり、含有されなくてもよい。つまり、Cr含有量は0%であってもよい。含有される場合、Crは、鋼材の焼入れ性を高め、機械構造用部品の曲げ疲労強度及び面疲労強度を高める。Crが少しでも含有されれば、上記効果がある程度得られる。
 しかしながら、Cr含有量が0.60%を超えれば、他の元素含有量が本実施形態の範囲内であっても、真空浸炭処理時に機械構造用部品の表層において、過剰浸炭が起こりやすくなる。この場合、粗大なセメンタイトが粒界に生成する。そのため、機械構造用部品の曲げ疲労強度が低下する。
 したがって、Cr含有量は0~0.60%であり、含有される場合、0.60%以下(つまり、0超~0.60%)である。Cr含有量の好ましい下限は0.01%であり、さらに好ましくは0.05%であり、さらに好ましくは0.10%である。Cr含有量の好ましい上限は0.60%未満であり、さらに好ましくは0.55%であり、さらに好ましくは0.50%であり、さらに好ましくは0.45%であり、さらに好ましくは0.40%である。
Cr: 0.60% or less Chromium (Cr) is an optional element and may not be contained. That is, the Cr content may be 0%. When contained, Cr enhances the hardenability of steel materials and enhances bending fatigue strength and surface fatigue strength of mechanical structural parts. If even a small amount of Cr is contained, the above effect can be obtained to some extent.
However, if the Cr content exceeds 0.60%, excessive carburizing is likely to occur on the surface layer of the mechanical structural parts during the vacuum carburizing treatment even if the other element content is within the range of the present embodiment. In this case, coarse cementite is formed at the grain boundaries. Therefore, the bending fatigue strength of the mechanical structural parts is reduced.
Therefore, the Cr content is 0 to 0.60%, and when it is contained, it is 0.60% or less (that is, more than 0 to 0.60%). The lower limit of the Cr content is preferably 0.01%, more preferably 0.05%, still more preferably 0.10%. The preferred upper limit of the Cr content is less than 0.60%, more preferably 0.55%, still more preferably 0.50%, still more preferably 0.45%, still more preferably 0. It is 40%.
 Ti:0.020%以下
 チタン(Ti)は任意元素であり、含有されなくてもよい。つまり、Ti含有量は0%であってもよい。含有される場合、TiはNbと同様に、Ti析出物(TiC、TiN、Ti(CN)等)を形成する。Ti析出物は、ピンニング効果により、ガス浸炭処理での結晶粒の粗大化を抑制する。そのため、機械構造用部品の曲げ疲労強度及び面疲労強度が高まる。Tiが少しでも含有されれば、上記効果がある程度得られる。
 しかしながら、Ti含有量が0.020%を超えれば、他の元素含有量が本実施形態の範囲内であっても、Ti析出物が粗大化する。この場合、ガス浸炭処理での結晶粒の粗大化を十分に抑制できない。そのため、機械構造用部品の曲げ疲労強度及び面疲労強度が低下する。
 したがって、Ti含有量は0~0.020%であり、含有される場合、0.020%以下(つまり、0超~0.020%)である。
 Ti含有量の好ましい下限は0.001%であり、さらに好ましくは0.005%であり、さらに好ましくは0.010%である。Ti含有量の好ましい上限は0.019%であり、さらに好ましくは0.017%であり、さらに好ましくは0.015%である。
Ti: 0.020% or less Titanium (Ti) is an optional element and may not be contained. That is, the Ti content may be 0%. When contained, Ti forms Ti precipitates (TiC, TiN, Ti (CN), etc.) as well as Nb. The Ti precipitate suppresses the coarsening of crystal grains in the gas carburizing treatment due to the pinning effect. Therefore, the bending fatigue strength and the surface fatigue strength of the mechanical structural parts are increased. If even a small amount of Ti is contained, the above effect can be obtained to some extent.
However, if the Ti content exceeds 0.020%, the Ti precipitate will be coarsened even if the content of other elements is within the range of this embodiment. In this case, the coarsening of crystal grains in the gas carburizing treatment cannot be sufficiently suppressed. Therefore, the bending fatigue strength and the surface fatigue strength of the mechanical structural parts are lowered.
Therefore, the Ti content is 0 to 0.020%, and when it is contained, it is 0.020% or less (that is, more than 0 to 0.020%).
The lower limit of the Ti content is preferably 0.001%, more preferably 0.005%, still more preferably 0.010%. The preferred upper limit of the Ti content is 0.019%, more preferably 0.017%, still more preferably 0.015%.
 Cu:0.50%以下
 銅(Cu)は任意元素であり、含有されなくてもよい。つまり、Cu含有量は0%であってもよい。含有される場合、Cuは鋼材の焼入れ性を高め、機械構造用部品の曲げ疲労強度及び面疲労強度を高める。Cuが少しでも含有されれば、上記効果がある程度得られる。
 しかしながら、Cu含有量が0.50%を超えれば、他の元素含有量が本実施形態の範囲内であっても、鋼材が硬くなりすぎる。この場合、鋼材の被削性が低下する。
 したがって、Cu含有量は0~0.50%であり、含有される場合、0.50%以下(つまり、0超~0.50%)である。
 Cu含有量の好ましい下限は0.01%であり、さらに好ましくは0.05%であり、さらに好ましくは0.10%である。Cu含有量の好ましい上限は0.45%であり、さらに好ましくは0.40%であり、さらに好ましくは0.30%であり、さらに好ましくは0.25%である。
Cu: 0.50% or less Copper (Cu) is an optional element and may not be contained. That is, the Cu content may be 0%. When contained, Cu enhances the hardenability of steel materials and enhances bending fatigue strength and surface fatigue strength of mechanical structural parts. If even a small amount of Cu is contained, the above effect can be obtained to some extent.
However, if the Cu content exceeds 0.50%, the steel material becomes too hard even if the content of other elements is within the range of this embodiment. In this case, the machinability of the steel material is reduced.
Therefore, the Cu content is 0 to 0.50%, and when it is contained, it is 0.50% or less (that is, more than 0 to 0.50%).
The lower limit of the Cu content is preferably 0.01%, more preferably 0.05%, still more preferably 0.10%. The preferred upper limit of the Cu content is 0.45%, more preferably 0.40%, still more preferably 0.30%, still more preferably 0.25%.
 Ni:0.80%以下
 ニッケル(Ni)は任意元素であり、含有されなくてもよい。つまり、Ni含有量は0%であってもよい。含有される場合、Niは鋼材の焼入れ性を高め、機械構造用部品の曲げ疲労強度及び面疲労強度を高める。Niが少しでも含有されれば、上記効果がある程度得られる。
 しかしながら、Ni含有量が0.80%を超えれば、他の元素含有量が本実施形態の範囲内であっても、鋼材が硬くなりすぎる。この場合、鋼材の被削性が低下する。
 したがって、Ni含有量は0~0.80%であり、含有される場合、0.80%以下(つまり、0超~0.80%)である。
 Ni含有量の好ましい下限は0.01%であり、さらに好ましくは0.05%であり、さらに好ましくは0.10%である。Ni含有量の好ましい上限は0.70%であり、さらに好ましくは0.60%であり、さらに好ましくは0.40%であり、さらに好ましくは0.20%である。
Ni: 0.80% or less Nickel (Ni) is an optional element and may not be contained. That is, the Ni content may be 0%. When contained, Ni enhances the hardenability of steel materials and enhances the bending fatigue strength and surface fatigue strength of mechanical structural parts. If even a small amount of Ni is contained, the above effect can be obtained to some extent.
However, if the Ni content exceeds 0.80%, the steel material becomes too hard even if the content of other elements is within the range of the present embodiment. In this case, the machinability of the steel material is reduced.
Therefore, the Ni content is 0 to 0.80%, and when it is contained, it is 0.80% or less (that is, more than 0 to 0.80%).
The lower limit of the Ni content is preferably 0.01%, more preferably 0.05%, still more preferably 0.10%. The preferred upper limit of the Ni content is 0.70%, more preferably 0.60%, still more preferably 0.40%, still more preferably 0.20%.
 V:0.30%以下
 バナジウム(V)は任意元素であり、含有されなくてもよい。つまり、V含有量は0%であってもよい。含有される場合、VはNbと同様に、V析出物(VC、VN、V(CN)等)を形成する。V析出物は、ピンニング効果により、ガス浸炭処理での結晶粒の粗大化を抑制する。そのため、機械構造用部品の曲げ疲労強度及び面疲労強度が高まる。Vが少しでも含有されれば、上記効果がある程度得られる。
 しかしながら、V含有量が0.30%を超えれば、他の元素含有量が本実施形態の範囲内であっても、鋼材が硬くなりすぎる。この場合、鋼材の被削性が低下する。
 したがって、V含有量は0~0.30%であり、含有される場合、0.30%以下(つまり、0超~0.30%)である。
 V含有量の好ましい下限は0.01%であり、さらに好ましくは0.03%であり、さらに好ましくは0.04%である。V含有量の好ましい上限は0.20%であり、さらに好ましくは0.15%であり、さらに好ましくは0.10%である。
V: 0.30% or less Vanadium (V) is an optional element and may not be contained. That is, the V content may be 0%. When contained, V forms V precipitates (VC, VN, V (CN), etc.), similar to Nb. The V precipitate suppresses the coarsening of crystal grains in the gas carburizing treatment due to the pinning effect. Therefore, the bending fatigue strength and the surface fatigue strength of the mechanical structural parts are increased. If V is contained even in a small amount, the above effect can be obtained to some extent.
However, if the V content exceeds 0.30%, the steel material becomes too hard even if the content of other elements is within the range of the present embodiment. In this case, the machinability of the steel material is reduced.
Therefore, the V content is 0 to 0.30%, and when it is contained, it is 0.30% or less (that is, more than 0 to 0.30%).
The lower limit of the V content is preferably 0.01%, more preferably 0.03%, still more preferably 0.04%. The preferred upper limit of the V content is 0.20%, more preferably 0.15%, still more preferably 0.10%.
 Mg:0.0035%以下
 マグネシウム(Mg)は任意元素であり、含有されなくてもよい。つまり、Mg含有量は0%であってもよい。含有される場合、MgはAlと同様に、鋼を脱酸する。この場合、粗大な酸化物の生成が抑制される。そのため、機械構造用部品の曲げ疲労強度及び面疲労強度が高まる。Mgが少しでも含有されれば、上記効果がある程度得られる。
 しかしながら、Mg含有量が0.0035%を超えれば、他の元素含有量が本実施形態の範囲内であっても、鋼材中に粗大なMg酸化物の形成が促進される。この場合、熱間加工時の限界加工率が低下する。
 したがって、Mg含有量は0~0.0035%であり、含有される場合、0.0035%以下(つまり、0超~0.0035%)である。
 Mg含有量の好ましい下限は0.0001%であり、さらに好ましくは0.0003%であり、さらに好ましくは0.0005%である。Mg含有量の好ましい上限は0.0030%であり、さらに好ましくは0.0028%であり、さらに好ましくは0.0025%であり、さらに好ましくは0.0020%である。
Mg: 0.0035% or less Magnesium (Mg) is an optional element and may not be contained. That is, the Mg content may be 0%. When contained, Mg deoxidizes steel, similar to Al. In this case, the formation of coarse oxides is suppressed. Therefore, the bending fatigue strength and the surface fatigue strength of the mechanical structural parts are increased. If even a small amount of Mg is contained, the above effect can be obtained to some extent.
However, if the Mg content exceeds 0.0035%, the formation of coarse Mg oxides in the steel material is promoted even if the content of other elements is within the range of the present embodiment. In this case, the limit machining rate during hot machining decreases.
Therefore, the Mg content is 0 to 0.0035%, and when it is contained, it is 0.0035% or less (that is, more than 0 to 0.0035%).
The preferable lower limit of the Mg content is 0.0001%, more preferably 0.0003%, still more preferably 0.0005%. The preferred upper limit of the Mg content is 0.0030%, more preferably 0.0028%, still more preferably 0.0025%, still more preferably 0.0020%.
 Ca:0.0030%以下
 カルシウム(Ca)は任意元素であり、含有されなくてもよい。つまり、Ca含有量は0%であってもよい。含有される場合、Caは鋼材中の硫化物を微細化する。Caはさらに、鋼材中の硫化物の球状化を促進する。そのため、機械構造用部品の曲げ疲労強度及び面疲労強度が高まる。Caが少しでも含有されれば、上記効果がある程度得られる。
 しかしながら、Ca含有量が0.0030%を超えれば、他の元素含有量が本実施形態の範囲内であっても、鋼材中に粗大なCa酸化物が生成する。この場合、機械構造用部品の曲げ疲労強度及び面疲労強度が低下する。
 したがって、Ca含有量は0~0.0030%であり、含有される場合、0.0030%以下(つまり、0超~0.0030%)である。
 Ca含有量の好ましい下限は0.0001%であり、さらに好ましくは0.0002%であり、さらに好ましくは0.0005%であり、さらに好ましくは0.0007%であり、さらに好ましくは0.0010%である。Ca含有量の好ましい上限は0.0025%であり、さらに好ましくは0.0022%であり、さらに好ましくは0.0020%である。
Ca: 0.0030% or less Calcium (Ca) is an optional element and may not be contained. That is, the Ca content may be 0%. When contained, Ca refines sulfides in steel. Ca further promotes spheroidization of sulfides in steel. Therefore, the bending fatigue strength and the surface fatigue strength of the mechanical structural parts are increased. If even a small amount of Ca is contained, the above effect can be obtained to some extent.
However, if the Ca content exceeds 0.0030%, coarse Ca oxides are formed in the steel material even if the content of other elements is within the range of this embodiment. In this case, the bending fatigue strength and the surface fatigue strength of the mechanical structural parts are reduced.
Therefore, the Ca content is 0 to 0.0030%, and when it is contained, it is 0.0030% or less (that is, more than 0 to 0.0030%).
The preferred lower limit of the Ca content is 0.0001%, more preferably 0.0002%, still more preferably 0.0005%, still more preferably 0.0007%, still more preferably 0.0010. %. The preferred upper limit of the Ca content is 0.0025%, more preferably 0.0022%, still more preferably 0.0020%.
 希土類元素(REM):0.0050%以下
 希土類元素(REM)は任意元素であり、含有されなくてもよい。つまり、REM含有量は0%であってもよい。含有される場合、REMは、鋼材中の硫化物に固溶して、MnSが延伸するのを抑制する。その結果、機械構造用部品の曲げ疲労強度及び面疲労強度が高まる。REMが少しでも含有されれば、上記効果がある程度得られる。
 しかしながら、REM含有量が0.0050%を超えれば、他の元素含有量が本実施形態の範囲内であっても、粗大な酸化物が生成する。この場合、機械構造用部品の曲げ疲労強度及び面疲労強度が低下する。
 したがって、REM含有量は0~0.0050%であり、含有される場合、0.0050%以下(つまり、0超~0.0050%)である。
 REM含有量の好ましい下限は0.0001%であり、さらに好ましくは0.0010%であり、さらに好ましくは0.0020%である。REM含有量の好ましい上限は0.0045%であり、さらに好ましくは0.0040%であり、さらに好ましくは0.0035%であり、さらに好ましくは0.0030%である。
Rare earth element (REM): 0.0050% or less Rare earth element (REM) is an optional element and may not be contained. That is, the REM content may be 0%. When contained, the REM dissolves in the sulfide in the steel material and suppresses the stretching of MnS. As a result, the bending fatigue strength and the surface fatigue strength of the mechanical structural parts are increased. If even a small amount of REM is contained, the above effect can be obtained to some extent.
However, if the REM content exceeds 0.0050%, coarse oxides will be produced even if the content of other elements is within the range of this embodiment. In this case, the bending fatigue strength and the surface fatigue strength of the mechanical structural parts are reduced.
Therefore, the REM content is 0 to 0.0050%, and when contained, it is 0.0050% or less (that is, more than 0 to 0.0050%).
The preferred lower limit of the REM content is 0.0001%, more preferably 0.0010%, still more preferably 0.0020%. The preferred upper limit of the REM content is 0.0045%, more preferably 0.0040%, still more preferably 0.0035%, still more preferably 0.0030%.
 本明細書におけるREMとは、原子番号21番のスカンジウム(Sc)、原子番号39番のイットリウム(Y)、及び、ランタノイドである原子番号57番のランタン(La)~原子番号71番のルテチウム(Lu)からなる群から選択される1元素以上の元素である。本明細書におけるREM含有量とは、これらの元素の合計含有量である。 In the present specification, the REMs are scandium (Sc) having an atomic number of 21, yttrium (Y) having an atomic number of 39, and lanthanum (La) having an atomic number of 57 to lutetium having an atomic number of 71 (Lutetium). It is one or more elements selected from the group consisting of Lu). The REM content in the present specification is the total content of these elements.
 [式(1)について]
 本実施形態の鋼材の化学組成はさらに、各元素含有量が本実施形態の範囲内であることを前提として、式(1)を満たす。
 Si/Mn≧1.00 (1)
 ここで、式(1)の各元素記号には、対応する元素の含有量(質量%)が代入される。
[About equation (1)]
The chemical composition of the steel material of the present embodiment further satisfies the formula (1) on the premise that the content of each element is within the range of the present embodiment.
Si / Mn ≧ 1.00 (1)
Here, the content (mass%) of the corresponding element is substituted for each element symbol of the formula (1).
 F1=Si/Mnと定義する。Si及びMnは、脱酸の過程でMnO-SiOを生成する。MnO-SiOは、融点が1250℃程度である。そのため、凝固前の溶湯中では液体であるが、凝固後の鋼片中では固体となり、ガラス化した軟質の介在物となる。 It is defined as F1 = Si / Mn. Si and Mn form MnO-SiO 2 in the process of deoxidation. MnO-SiO 2 has a melting point of about 1250 ° C. Therefore, it is liquid in the molten metal before solidification, but becomes solid in the steel pieces after solidification, and becomes vitrified soft inclusions.
 この介在物は、熱間加工(熱間圧延)中に延伸及び分断されて微細化される。そのため、機械構造用部品の曲げ疲労強度が向上する。微細なMnO-SiOを得るためには、SiのMnに対する比率を適正に制御する必要がある。この指標がF1である。 The inclusions are stretched and fragmented during hot working (hot rolling) to be refined. Therefore, the bending fatigue strength of the mechanical structural parts is improved. In order to obtain fine MnO-SiO 2 , it is necessary to appropriately control the ratio of Si to Mn. This index is F1.
 F1が増加するほど、本実施形態の鋼材を素材として製造される機械構造用部品の曲げ疲労強度が高まる。そして、F1が1.00以上の場合、JIS G 4052(2016)に規定されているSCM420Hよりも曲げ疲労強度が高まる。したがって、F1が式(1)を満たす場合、つまり、F1が1.00以上の場合、各元素含有量が本実施形態の範囲内であり、F2が式(2)を満たすことを前提として、本実施形態の鋼材を用いて製造された機械構造用部品の曲げ疲労強度が十分に高まる。 As F1 increases, the bending fatigue strength of the mechanical structural parts manufactured from the steel material of the present embodiment increases. When F1 is 1.00 or more, the bending fatigue strength is higher than that of SCM420H specified in JIS G4052 (2016). Therefore, when F1 satisfies the formula (1), that is, when F1 is 1.00 or more, it is assumed that the content of each element is within the range of the present embodiment and F2 satisfies the formula (2). The bending fatigue strength of the mechanical structural parts manufactured using the steel material of the present embodiment is sufficiently increased.
 F1の好ましい下限は1.05であり、さらに好ましくは1.07であり、さらに好ましくは1.10である。F1の上限は特に制限されない。しかしながら、本実施形態の化学組成の各元素含有量を考慮すれば、F1の好ましい上限は2.10であり、さらに好ましくは2.00であり、さらに好ましくは1.70である。 The preferred lower limit of F1 is 1.05, more preferably 1.07, and even more preferably 1.10. The upper limit of F1 is not particularly limited. However, considering the content of each element in the chemical composition of the present embodiment, the preferred upper limit of F1 is 2.10, more preferably 2.00, and even more preferably 1.70.
 [鋼材のミクロ組織について]
 本実施形態の鋼材のミクロ組織はフェライトを含有し、残部はパーライト及び/又はベイナイトであり、フェライトの面積分率は50~70%である。
[About the microstructure of steel materials]
The microstructure of the steel material of the present embodiment contains ferrite, the balance is pearlite and / or bainite, and the surface integral of ferrite is 50 to 70%.
 フェライトの面積分率が50%未満であれば、鋼材中において、パーライト及び/又はベイナイトの面積分率が高すぎる。この場合、鋼材の硬さが過剰に高まる。その結果、鋼材の被削性が低下する。
 一方、フェライトの面積分率が70%を超えれば、ガス浸炭処理時に結晶粒径がばらつきやすくなる。そのため、ガス浸炭処理時に熱処理変形が過剰に発生する。
If the surface integral of ferrite is less than 50%, the surface integral of pearlite and / or bainite is too high in the steel material. In this case, the hardness of the steel material is excessively increased. As a result, the machinability of the steel material is reduced.
On the other hand, if the surface integral of the ferrite exceeds 70%, the crystal grain size tends to vary during the gas carburizing treatment. Therefore, heat treatment deformation occurs excessively during the gas carburizing treatment.
 フェライトの面積分率が50~70%であり、ミクロ組織中のフェライト以外の残部がパーライト及び/又はベイナイトである場合、鋼材の被削性が十分に高まる。さらに、ガス浸炭処理時の熱処理変形を抑えることができる。 When the surface integral of ferrite is 50 to 70% and the balance other than ferrite in the microstructure is pearlite and / or bainite, the machinability of the steel material is sufficiently enhanced. Further, heat treatment deformation during gas carburizing treatment can be suppressed.
 本実施形態の鋼材では、各横断面観察位置、及び、各縦断面観察位置におけるミクロ組織が、面積分率で50~70%のフェライトを含有し、残部がパーライト及び/又はベイナイトからなる。 In the steel material of the present embodiment, the microstructure at each cross-sectional observation position and each vertical cross-sectional observation position contains 50 to 70% ferrite in area fraction, and the balance is composed of pearlite and / or bainite.
 各観察位置におけるフェライトの面積分率の好ましい下限は52%であり、さらに好ましくは55%であり、さらに好ましくは57%である。各観察位置におけるフェライトの面積分率の好ましい上限は68%であり、さらに好ましくは65%であり、さらに好ましくは63%である。 The preferable lower limit of the surface integral of ferrite at each observation position is 52%, more preferably 55%, still more preferably 57%. The preferred upper limit of the surface integral of ferrite at each observation position is 68%, more preferably 65%, still more preferably 63%.
 [鋼材の横断面でのミクロ組織のばらつきについて]
 本実施形態の鋼材ではさらに、鋼材の長手方向に垂直な断面である横断面において、ミクロ組織のばらつきが十分に抑制されている。以下、この点について説明する。
[Variation of microstructure in cross section of steel material]
Further, in the steel material of the present embodiment, the variation of the microstructure is sufficiently suppressed in the cross section which is the cross section perpendicular to the longitudinal direction of the steel material. This point will be described below.
 図2は、本実施形態の鋼材の長手方向に垂直な断面である横断面の模式図である。図2を参照して、鋼材の横断面CSは半径Rの円形状である。この横断面CSにおいて、横断面CSの中心位置C1、及び、横断面CSの中心位置C1から径方向にR/2の位置であって横断面CSの中心周りに45°ピッチで配置される8箇所のR/2位置C2~C9を、9箇所の「横断面観察位置」C1~C9と定義する。 FIG. 2 is a schematic cross-sectional view of the steel material of the present embodiment, which is a cross section perpendicular to the longitudinal direction. With reference to FIG. 2, the cross-sectional CS of the steel material has a circular shape with a radius R. In this cross-section CS, the center position C1 of the cross-section CS and the position of R / 2 in the radial direction from the center position C1 of the cross-section CS are arranged around the center of the cross-section CS at a pitch of 45 °. The R / 2 positions C2 to C9 at the locations are defined as the "cross-sectional observation positions" C1 to C9 at the nine locations.
 横断面観察位置C1~C9でのミクロ組織は、以下の(A)及び(B)を満足する。
 (A)横断面観察位置C1~C9でのフェライトの面積分率の算術平均値は50~70%であり、かつ、フェライトの面積分率の標準偏差は4.0%以下である。
 (B)横断面観察位置C1~C9でのフェライトの平均粒径のうち、最小の平均粒径に対する最大の平均粒径の比は2.00以下である。
 以下、(A)及び(B)について詳述する。
The microstructure at the cross-sectional observation positions C1 to C9 satisfies the following (A) and (B).
(A) The arithmetic mean value of the area fraction of ferrite at the cross-sectional observation positions C1 to C9 is 50 to 70%, and the standard deviation of the area fraction of ferrite is 4.0% or less.
(B) Among the average particle diameters of ferrites at the cross-sectional observation positions C1 to C9, the ratio of the maximum average particle diameter to the minimum average particle diameter is 2.00 or less.
Hereinafter, (A) and (B) will be described in detail.
 [(A)について]
 上記(A)のとおり、本実施形態の鋼材では、横断面観察位置C1~C9でのフェライトの面積分率の算術平均値が50~70%であり、かつ、フェライトの面積分率の標準偏差が4.0%以下である。
[About (A)]
As described in (A) above, in the steel material of the present embodiment, the arithmetic mean value of the area fraction of ferrite at the cross-sectional observation positions C1 to C9 is 50 to 70%, and the standard deviation of the area fraction of ferrite. Is 4.0% or less.
 フェライト面積分率の標準偏差が4.0%以下であるため、各横断面観察位置C1~C9でのミクロ組織の相分率のばらつきは十分に抑制されている。そのため、ガス浸炭処理時において、各横断面観察位置C1~C9でのマルテンサイト変態の発生タイミングのばらつきを抑制することができる。 Since the standard deviation of the ferrite area fraction is 4.0% or less, the variation in the phase fraction of the microstructure at each cross-sectional observation position C1 to C9 is sufficiently suppressed. Therefore, it is possible to suppress variations in the occurrence timing of martensitic transformation at each cross-sectional observation positions C1 to C9 during the gas carburizing treatment.
 横断面観察位置C1~C9におけるフェライトの面積分率の標準偏差が4.0%を超えれば、各横断面観察位置C1~C9での相分率のばらつきが大きい。この場合、ガス浸炭処理時の熱処理変形を十分に抑制できない。
 したがって、横断面観察位置C1~C9でのフェライトの面積分率の標準偏差は4.0%以下である。
 フェライトの面積分率の標準偏差の好ましい上限は3.8%であり、さらに好ましくは3.5%であり、さらに好ましくは3.0%である。フェライトの面積分率の標準偏差の下限は特に限定されない。フェライトの面積分率の標準偏差の好ましい下限は0.1%であり、さらに好ましくは0.5%であり、さらに好ましくは1.0%であり、さらに好ましくは1.5%である。
If the standard deviation of the area fraction of ferrite at the cross-sectional observation positions C1 to C9 exceeds 4.0%, the phase fraction varies greatly at each of the cross-sectional observation positions C1 to C9. In this case, the heat treatment deformation during the gas carburizing treatment cannot be sufficiently suppressed.
Therefore, the standard deviation of the surface integral of ferrite at the cross-sectional observation positions C1 to C9 is 4.0% or less.
The preferred upper limit of the standard deviation of the surface integral of ferrite is 3.8%, more preferably 3.5%, still more preferably 3.0%. The lower limit of the standard deviation of the surface integral of ferrite is not particularly limited. The preferred lower limit of the standard deviation of the surface integral of ferrite is 0.1%, more preferably 0.5%, still more preferably 1.0%, still more preferably 1.5%.
 [(B)について]
 横断面観察位置C1~C9でのフェライトの平均粒径のうち、最小の平均粒径に対する最大の平均粒径の比を「フェライト平均粒径比」と称する。横断面におけるフェライト平均粒径比は次の式で定義される。
 フェライト平均粒径比=(C1~C9でのフェライト平均粒径の最大値)/(C1~C9でのフェライト平均粒径の最小値)
[About (B)]
Of the average grain sizes of ferrites at the cross-sectional observation positions C1 to C9, the ratio of the maximum average grain size to the smallest average grain size is referred to as "ferrite average grain size ratio". The ferrite average particle size ratio in the cross section is defined by the following equation.
Ferrite average particle size ratio = (maximum value of ferrite average particle size in C1 to C9) / (minimum value of ferrite average particle size in C1 to C9)
 本実施形態の鋼材では、横断面観察位置C1~C9でのフェライト平均粒径比は2.00以下である。この場合、各横断面観察位置C1~C9でのフェライトの平均粒径のばらつきが十分に抑制されている。つまり、各位置でのフェライト粒が揃っている。そのため、浸炭処理時におけるマルテンサイト変態の発生のばらつきを十分に抑制できる。そのため、浸炭処理時の鋼材の熱処理変形を抑制することができる。 In the steel material of the present embodiment, the ferrite average particle size ratio at the cross-sectional observation positions C1 to C9 is 2.00 or less. In this case, the variation in the average particle size of the ferrite at each of the cross-sectional observation positions C1 to C9 is sufficiently suppressed. That is, the ferrite grains at each position are aligned. Therefore, it is possible to sufficiently suppress the variation in the occurrence of martensitic transformation during the carburizing treatment. Therefore, it is possible to suppress heat treatment deformation of the steel material during the carburizing treatment.
 フェライト平均粒径比が2.00を超える場合、各横断面観察位置C1~C9でのフェライト粒がばらついている。この場合、ガス浸炭処理時の鋼材の熱処理変形を十分に抑制できない。したがって、フェライト平均粒径比は2.00以下である。 When the ferrite average particle size ratio exceeds 2.00, the ferrite grains at each cross-sectional observation position C1 to C9 are scattered. In this case, the heat treatment deformation of the steel material during the gas carburizing treatment cannot be sufficiently suppressed. Therefore, the ferrite average particle size ratio is 2.00 or less.
 フェライト平均粒径比の好ましい上限は1.95であり、さらに好ましくは1.90であり、さらに好ましくは1.80である。フェライト平均粒径比の下限は特に限定されない。フェライト平均粒径比の好ましい下限は1.10であり、さらに好ましくは1.20であり、さらに好ましくは1.30であり、さらに好ましくは1.40である。 The preferred upper limit of the ferrite average particle size ratio is 1.95, more preferably 1.90, and even more preferably 1.80. The lower limit of the ferrite average particle size ratio is not particularly limited. The preferred lower limit of the ferrite average particle size ratio is 1.10, more preferably 1.20, still more preferably 1.30, and even more preferably 1.40.
 [鋼材中の縦断面でのミクロ組織のばらつきについて]
 本実施形態の鋼材ではさらに、上述の横断面だけでなく、鋼材の長手方向と平行であって鋼材の中心軸を含む断面である縦断面においても、ミクロ組織のばらつきが十分に抑制されている。本実施形態の鋼材では、横断面だけでなく縦断面のミクロ組織のばらつきも十分に抑制されているため、3次元的に発生する熱処理変形を十分に抑制することができる。以下、縦断面でのミクロ組織のばらつき抑制について説明する。
[Variation of microstructure in vertical section in steel material]
Further, in the steel material of the present embodiment, the variation in microstructure is sufficiently suppressed not only in the above-mentioned cross section but also in the vertical cross section which is parallel to the longitudinal direction of the steel material and includes the central axis of the steel material. .. In the steel material of the present embodiment, the variation in the microstructure not only in the cross section but also in the vertical section is sufficiently suppressed, so that the heat treatment deformation generated three-dimensionally can be sufficiently suppressed. Hereinafter, the suppression of the variation in the microstructure in the vertical cross section will be described.
 図3は、本実施形態の鋼材の長手方向に平行であって、中心軸を含む断面である縦断面の模式図である。図3を参照して、鋼材の縦断面LSにおいて、鋼材の中心軸CL1上にR/2ピッチで配置される3箇所の中心軸位置L1~L3、及び、各中心軸位置から径方向にR/2の位置に配置される6箇所のR/2位置L4~L9を、9箇所の「縦断面観察位置」L1~L9と定義する。 FIG. 3 is a schematic view of a vertical cross section that is parallel to the longitudinal direction of the steel material of the present embodiment and is a cross section including the central axis. With reference to FIG. 3, in the vertical cross-sectional LS of the steel material, the three central axis positions L1 to L3 arranged at the R / 2 pitch on the central axis CL1 of the steel material, and R in the radial direction from each central axis position. The six R / 2 positions L4 to L9 arranged at the / 2 position are defined as the nine “longitudinal section observation positions” L1 to L9.
 上述の合計9箇所の縦断面観察位置L1~L9でのミクロ組織では、以下の(C)及び(D)を満足する。
 (C)縦断面観察位置L1~L9でのフェライトの面積分率の算術平均値は50~70%であり、かつ、フェライトの面積分率の標準偏差は4.0%以下である。
 (D)縦断面観察位置L1~L9でのフェライトの平均粒径のうち、最小の平均粒径に対する最大の平均粒径の比(フェライト平均粒径比)は2.00以下である。
 以下、(C)及び(D)について詳述する。
The microstructures at the above-mentioned nine vertical cross-sectional observation positions L1 to L9 satisfy the following (C) and (D).
(C) The arithmetic mean value of the area fraction of ferrite at the vertical cross-sectional observation positions L1 to L9 is 50 to 70%, and the standard deviation of the area fraction of ferrite is 4.0% or less.
(D) Among the average particle diameters of ferrites at the vertical cross-sectional observation positions L1 to L9, the ratio of the maximum average particle size to the minimum average particle size (ferrite average particle size ratio) is 2.00 or less.
Hereinafter, (C) and (D) will be described in detail.
 [(C)について]
 上記(C)のとおり、本実施形態の鋼材では、縦断面観察位置L1~L9でのフェライトの面積分率の算術平均値が50~70%であり、かつ、フェライトの面積分率の標準偏差が4.0%以下である。
[About (C)]
As described in (C) above, in the steel material of the present embodiment, the arithmetic mean value of the area fraction of ferrite at the vertical cross-sectional observation positions L1 to L9 is 50 to 70%, and the standard deviation of the area fraction of ferrite. Is 4.0% or less.
 フェライトの面積分率の標準偏差が4.0%以下であるため、各縦断面観察位置L1~L9でのミクロ組織の相分率のばらつきが十分に抑制されている。そのため、ガス浸炭処理時において、各縦断面観察位置L1~L9でのマルテンサイト変態の発生タイミングのばらつきを抑制することができる。 Since the standard deviation of the area fraction of ferrite is 4.0% or less, the variation in the phase fraction of the microstructure at each vertical section observation position L1 to L9 is sufficiently suppressed. Therefore, it is possible to suppress variations in the occurrence timing of martensitic transformation at each vertical cross-sectional observation positions L1 to L9 during the gas carburizing treatment.
 縦断面観察位置L1~L9におけるフェライトの面積分率の標準偏差が4.0%を超えれば、各縦断面観察位置L1~L9での相分率のばらつきが大きい。この場合、ガス浸炭処理時の熱処理変形を十分に抑制できない。
 したがって、縦断面観察位置L1~L9でのフェライトの面積分率の標準偏差は4.0%以下である。
 フェライトの面積分率の標準偏差の好ましい上限は3.8%であり、さらに好ましくは3.5%であり、さらに好ましくは3.0%である。フェライトの面積分率の標準偏差の下限は特に限定されない。フェライトの面積分率の標準偏差の好ましい下限は0.1%であり、さらに好ましくは0.5%であり、さらに好ましくは1.0%であり、さらに好ましくは1.5%である。
If the standard deviation of the area fraction of ferrite at the vertical section observation positions L1 to L9 exceeds 4.0%, the phase fraction varies greatly at each vertical section observation positions L1 to L9. In this case, the heat treatment deformation during the gas carburizing treatment cannot be sufficiently suppressed.
Therefore, the standard deviation of the surface integral of ferrite at the vertical cross-sectional observation positions L1 to L9 is 4.0% or less.
The preferred upper limit of the standard deviation of the surface integral of ferrite is 3.8%, more preferably 3.5%, still more preferably 3.0%. The lower limit of the standard deviation of the surface integral of ferrite is not particularly limited. The preferred lower limit of the standard deviation of the surface integral of ferrite is 0.1%, more preferably 0.5%, still more preferably 1.0%, still more preferably 1.5%.
 [(D)について]
 縦断面観察位置L1~L9でのフェライトの平均粒径のうち、最小の平均粒径に対する最大の平均粒径の比を「フェライト平均粒径比」と称する。縦断面におけるフェライト平均粒径比は次の式で定義される。
 フェライト平均粒径比=(L1~L9でのフェライト平均粒径の最大値)/(L1~L9でのフェライト平均粒径の最小値)
[About (D)]
Of the average grain sizes of ferrites at the vertical cross-sectional observation positions L1 to L9, the ratio of the maximum average grain size to the smallest average grain size is referred to as "ferrite average grain size ratio". The ferrite average particle size ratio in the vertical section is defined by the following equation.
Ferrite average particle size ratio = (maximum value of ferrite average particle size in L1 to L9) / (minimum value of ferrite average particle size in L1 to L9)
 本実施形態の鋼材では、縦断面観察位置L1~L9でのフェライト平均粒径比は2.00以下である。この場合、各縦断面観察位置L1~L9でのフェライトの平均粒径のばらつきが十分に抑制されている。つまり、各位置のフェライト粒が揃っている。そのため、浸炭処理時におけるマルテンサイト変態の発生のばらつきを十分に抑制できる。そのため、浸炭処理時の鋼材の熱処理変形を抑制することができる。 In the steel material of the present embodiment, the ferrite average particle size ratio at the vertical cross-sectional observation positions L1 to L9 is 2.00 or less. In this case, the variation in the average particle size of the ferrite at each of the vertical cross-sectional observation positions L1 to L9 is sufficiently suppressed. That is, the ferrite grains at each position are aligned. Therefore, it is possible to sufficiently suppress the variation in the occurrence of martensitic transformation during the carburizing treatment. Therefore, it is possible to suppress heat treatment deformation of the steel material during the carburizing treatment.
 フェライト平均粒径比が2.00を超える場合、各縦断面観察位置L1~L9でのフェライト粒がばらついている。この場合、ガス浸炭処理時の鋼材の熱処理変形を十分に抑制できない。したがって、9箇所の縦断面観察位置L1~L9でのフェライト平均粒径比は2.00以下である。 When the ferrite average particle size ratio exceeds 2.00, the ferrite grains at each vertical cross-sectional observation position L1 to L9 are scattered. In this case, the heat treatment deformation of the steel material during the gas carburizing treatment cannot be sufficiently suppressed. Therefore, the ferrite average particle size ratio at the nine vertical cross-sectional observation positions L1 to L9 is 2.00 or less.
 フェライト平均粒径比の好ましい上限は1.95であり、さらに好ましくは1.90であり、さらに好ましくは1.80である。フェライト平均粒径比の下限は特に限定されない。フェライト平均粒径比の好ましい下限は1.10であり、さらに好ましくは1.20であり、さらに好ましくは1.30であり、さらに好ましくは1.40である。 The preferred upper limit of the ferrite average particle size ratio is 1.95, more preferably 1.90, and even more preferably 1.80. The lower limit of the ferrite average particle size ratio is not particularly limited. The preferred lower limit of the ferrite average particle size ratio is 1.10, more preferably 1.20, still more preferably 1.30, and even more preferably 1.40.
 [各観察位置でのミクロ組織の観察方法、フェライトの面積分率及びフェライト平均粒径比の測定方法]
 本実施形態の鋼材の横断面観察位置C1~C9、及び、縦断面観察位置L1~L9でのミクロ組織の観察方法、フェライトの面積分率及びフェライト平均粒径比の測定方法は以下のとおりである。
[Method of observing microstructure at each observation position, method of measuring surface integral of ferrite and average grain size ratio of ferrite]
The method for observing the microstructure at the cross-sectional observation positions C1 to C9 and the vertical cross-sectional observation positions L1 to L9 of the steel material of the present embodiment, and the method for measuring the area fraction of ferrite and the average grain size ratio of ferrite are as follows. be.
 [横断面CSのミクロ組織の観察方法]
 横断面CSのミクロ組織の観察方法は以下のとおりである。鋼材から、各横断面観察位置C1~C9を含むサンプルを採取する。サンプルの表面のうち、横断面CSに相当する表面を観察面とする。観察面において、横断面観察位置を含む観察視野を0.5mm×1.0mmとする。
[Method of observing microstructure of cross-sectional CS]
The method of observing the microstructure of the cross-sectional CS is as follows. A sample including each cross-sectional observation position C1 to C9 is collected from the steel material. Of the surfaces of the sample, the surface corresponding to the cross section CS is used as the observation surface. On the observation surface, the observation field of view including the cross-sectional observation position is 0.5 mm × 1.0 mm.
 サンプルの観察面を研磨した後、3%硝酸アルコール(ナイタール腐食液)を用いて観察面をエッチングする。エッチングされた観察面の観察視野(0.5mm×1.0mm)を、100倍の光学顕微鏡にて観察する。 After polishing the observation surface of the sample, etch the observation surface with 3% alcohol nitrate (Nital corrosive liquid). The observation field of view (0.5 mm × 1.0 mm) of the etched observation surface is observed with a 100x optical microscope.
 観察視野において、フェライト、パーライト及びベイナイト等の各相は、相ごとにコントラストが異なる。具体的には、観察視野において、フェライトは白く、ベイナイト及びパーライトはフェライトよりも黒く観察される。したがって、フェライトは、他の相(パーライト及びベイナイト)と容易に区別できる。コントラストに基づいて、フェライトを特定する。 In the observation field of view, the contrast of each phase such as ferrite, pearlite, and bainite is different for each phase. Specifically, in the observation field of view, ferrite is observed to be white, and bainite and pearlite are observed to be blacker than ferrite. Therefore, ferrite can be easily distinguished from other phases (pearlite and bainite). Identify ferrite based on contrast.
 [(A)について]
 各観察視野(各横断面観察位置)でのフェライトの面積(μm)を求める。フェライトの面積と、観察視野の面積とを用いて、各観察視野(各横断面観察位置)でのフェライトの面積分率(%)を求める。
[About (A)]
The area of ferrite (μm 2 ) in each observation field (each cross-section observation position) is obtained. Using the area of the ferrite and the area of the observation field of view, the surface integral (%) of the ferrite in each observation field of view (each cross-sectional observation position) is obtained.
 [フェライト面積分率の算術平均値の求め方]
 9個の観察視野(横断面観察位置)でのフェライト面積分率(%)の算術平均値を、9箇所の横断面観察位置C1~C9でのフェライト面積分率の算術平均値(%)と定義する。
[How to calculate the arithmetic mean value of ferrite surface integral]
The arithmetic mean value of the ferrite area fraction (%) at the nine observation fields (cross-section observation positions) is the arithmetic mean value (%) of the ferrite area fraction at the nine cross-section observation positions C1 to C9. Define.
 [フェライトの面積分率の標準偏差の求め方]
 9個の観察視野(横断面観察位置)でのフェライト面積分率(%)から、9箇所の横断面観察位置C1~C9でのフェライト面積分率の標準偏差(%)を算出する。ここでいう標準偏差は、標本標準偏差である。
[How to find the standard deviation of the surface integral of ferrite]
The standard deviation (%) of the ferrite area fractions at the nine cross-sectional observation positions C1 to C9 is calculated from the ferrite area fractions (%) at the nine observation fields (cross-section observation positions). The standard deviation here is the sample standard deviation.
 [(B)について]
 上述の各観察視野(各横断面観察位置C1~C9)で観察された各フェライト粒の面積(μm)を測定する。各フェライト粒の面積の算術平均値を求める。得られた面積の算術平均値の円相当径を、各横断面観察位置C1~C9でのフェライトの平均粒径(μm)と定義する。ここで、円相当径とは、フェライト粒の面積の算術平均値と同一の面積の円における直径(μm)を意味する。
[About (B)]
The area (μm 2 ) of each ferrite grain observed in each of the above-mentioned observation fields (each cross-sectional observation position C1 to C9) is measured. Obtain the arithmetic mean value of the area of each ferrite grain. The circle-equivalent diameter of the arithmetic mean value of the obtained area is defined as the average particle size (μm) of ferrite at each cross-sectional observation position C1 to C9. Here, the equivalent circle diameter means the diameter (μm) of a circle having the same area as the arithmetic mean value of the area of the ferrite grains.
 9箇所の横断面観察位置C1~C9のフェライトの平均粒径を求める。そして、これらのフェライトの平均粒径のうち、フェライトの最大の平均粒径(μm)及び最小の平均粒径(μm)を特定する。特定された最小の平均粒径に対する最大の平均粒径の比(フェライト平均粒径比)を求める。 Obtain the average particle size of the ferrites at the cross-sectional observation positions C1 to C9 at 9 locations. Then, among the average particle diameters of these ferrites, the maximum average particle diameter (μm) and the minimum average particle diameter (μm) of the ferrites are specified. The ratio of the maximum average particle size to the specified minimum average particle size (ferrite average particle size ratio) is obtained.
 [縦断面LSのミクロ組織の観察方法]
 縦断面LSのミクロ組織の観察方法は以下のとおりである。鋼材から、各縦断面観察位置L1~L9を含むサンプルを採取する。サンプルの表面のうち、縦断面LSに相当する表面を観察面とする。観察面において、縦断面観察位置を含む観察視野を0.5mm×1.0mmとする。より具体的には、観察視野の0.5mm長さを鋼材の径方向とし、1.0mmを鋼材の長手方向とする。
[Method of observing microstructure of longitudinal section LS]
The method of observing the microstructure of the vertical cross section LS is as follows. A sample including each vertical cross-sectional observation position L1 to L9 is taken from the steel material. Of the surface of the sample, the surface corresponding to the vertical cross section LS is used as the observation surface. On the observation surface, the observation field of view including the vertical cross-sectional observation position is 0.5 mm × 1.0 mm. More specifically, the length of 0.5 mm of the observation field of view is defined as the radial direction of the steel material, and 1.0 mm is defined as the longitudinal direction of the steel material.
 サンプルの観察面を研磨した後、3%硝酸アルコール(ナイタール腐食液)を用いて観察面をエッチングする。エッチングされた観察面の観察視野(0.5mm×1.0mm)を、100倍の光学顕微鏡にて観察する。横断面CSのミクロ組織観察と同じ方法で、観察視野中の各相を特定する。 After polishing the observation surface of the sample, etch the observation surface with 3% alcohol nitrate (Nital corrosive liquid). The observation field of view (0.5 mm × 1.0 mm) of the etched observation surface is observed with a 100x optical microscope. Each phase in the observation field is identified by the same method as the microstructure observation of the cross-sectional CS.
 [(C)について]
 上述の方法で特定された相のうち、各観察視野(各縦断面観察位置)でのフェライトの面積(μm)を求める。フェライトの面積と、観察視野の面積とを用いて、各観察視野(各縦断面観察位置)でのフェライトの面積分率(%)を求める。
[About (C)]
Among the phases specified by the above method, the area of ferrite (μm 2 ) in each observation field (each vertical cross-section observation position) is obtained. Using the area of the ferrite and the area of the observation field of view, the surface integral (%) of the ferrite in each observation field of view (each vertical cross-sectional observation position) is obtained.
 [フェライトの面積分率の算術平均値の求め方]
 9個の観察視野(縦断面観察位置)でのフェライト面積分率(%)の算術平均値を、9箇所の縦断面観察位置L1~L9でのフェライト面積分率の算術平均値(%)と定義する。
[How to find the arithmetic mean value of the surface integral of ferrite]
The arithmetic mean value of the ferrite area fraction (%) in the nine observation fields (vertical cross-section observation positions) is the arithmetic mean value (%) of the ferrite area fraction in the nine vertical cross-section observation positions L1 to L9. Define.
 [フェライトの面積分率の標準偏差の求め方]
 9個の観察視野(縦断面観察位置)でのフェライト面積分率(%)から、9箇所の縦断面観察位置L1~L9でのフェライト面積分率の標準偏差(%)を算出する。
[How to find the standard deviation of the surface integral of ferrite]
The standard deviation (%) of the ferrite area fractions at the nine vertical cross-sectional observation positions L1 to L9 is calculated from the ferrite area fractions (%) at the nine observation fields (vertical cross-sectional observation positions).
 [(D)について]
 上述の各観察視野(各縦断面観察位置L1~L9)で観察された各フェライト粒の面積(μm)を測定する。各フェライト粒の面積の算術平均値を求める。得られた面積の算術平均値の円相当径を、各縦断面観察位置L1~L9でのフェライトの平均粒径(μm)と定義する。
[About (D)]
The area (μm 2 ) of each ferrite grain observed in each of the above-mentioned observation fields (each vertical cross-sectional observation position L1 to L9) is measured. Obtain the arithmetic mean value of the area of each ferrite grain. The circle-equivalent diameter of the arithmetic mean value of the obtained area is defined as the average particle size (μm) of ferrite at each vertical cross-sectional observation position L1 to L9.
 9箇所の縦断面観察位置L1~L9のフェライトの平均粒径を求める。そして、これらのフェライトの平均粒径のうち、フェライトの最大の平均粒径(μm)及び最小の平均粒径(μm)を特定する。特定された最小の平均粒径に対する最大の平均粒径の比(フェライト平均粒径比)を求める。 Obtain the average particle size of ferrites at 9 vertical cross-sectional observation positions L1 to L9. Then, among the average particle diameters of these ferrites, the maximum average particle diameter (μm) and the minimum average particle diameter (μm) of the ferrites are specified. The ratio of the maximum average particle size to the specified minimum average particle size (ferrite average particle size ratio) is obtained.
 [式(2)について]
 本実施形態の鋼材の化学組成はさらに、次の式(2)を満たす。
 1-(0.5C+0.03Si+0.06Mn+0.01Cr+0.05Mo)<0.800 (2)
 ここで、式(2)中の各元素記号には、対応する元素の含有量(質量%)が代入される。対応する元素が含有されていない場合、その元素記号には「0」が代入される。
[About equation (2)]
The chemical composition of the steel material of the present embodiment further satisfies the following formula (2).
1- (0.5C + 0.03Si + 0.06Mn + 0.01Cr + 0.05Mo) <0.800 (2)
Here, the content (mass%) of the corresponding element is substituted for each element symbol in the formula (2). If the corresponding element is not contained, "0" is substituted for the element symbol.
 本実施形態の鋼材では、横断面CSだけでなく、縦断面LSのミクロ組織も均一にする。しかしながら、横断面CSでの横断面観察位置C1~C9のミクロ組織が(A)及び(B)を満たし、かつ、縦断面LSでの縦断面観察位置L1~L9のミクロ組織が(C)及び(D)を満たすことにより、ミクロ組織を均一にしても、上述のとおり、真空浸炭処理の焼入れ時において、マルテンサイト変態部分とマルテンサイト未変態部分とが混在する微小時間帯が必ず発生する。この微小時間帯でマルテンサイト未変態部分での熱処理歪み量が多ければ、熱処理変形が発生してしまう。そこで、本実施形態の鋼材ではさらに、式(2)を満たす。 In the steel material of the present embodiment, not only the cross-sectional CS but also the microstructure of the vertical cross-sectional LS is made uniform. However, the microstructures of the cross-sectional observation positions C1 to C9 in the cross-section CS satisfy (A) and (B), and the microstructures of the vertical cross-section observation positions L1 to L9 in the vertical cross-section LS satisfy (C) and. By satisfying (D), even if the microstructure is made uniform, as described above, a minute time zone in which the martensitic transformed portion and the martensitic untransformed portion coexist always occurs at the time of quenching of the vacuum carburizing treatment. If the amount of heat treatment strain in the martensite untransformed portion is large in this minute time zone, heat treatment deformation will occur. Therefore, the steel material of the present embodiment further satisfies the formula (2).
 F2=1-(0.5C+0.03Si+0.06Mn+0.01Cr+0.05Mo)と定義する。F2は、鋼材に対してガス浸炭処理での鋼材の熱処理変形量に関する指標である。上述の化学組成中の元素のうち、F2に含まれるC、Si、Mn、Cr及びMoは特に、焼入れ時のマルテンサイト変態部分とマルテンサイト未変態部分とが混在する微小時間帯において、マルテンサイト未変態部分の強度を高める。 It is defined as F2 = 1- (0.5C + 0.03Si + 0.06Mn + 0.01Cr + 0.05Mo). F2 is an index relating to the amount of heat treatment deformation of the steel material in the gas carburizing treatment with respect to the steel material. Among the elements in the above-mentioned chemical composition, C, Si, Mn, Cr and Mo contained in F2 are particularly martensite in a minute time zone in which a martensitic transformed portion and a martensitic untransformed portion are mixed at the time of quenching. Increases the strength of untransformed parts.
 図1を参照して、F2の低下に伴い、最大変形量比が低下し、熱処理変形量が低下する。そして、F2が0.800未満となった場合、最大変形量比が顕著に低下する。つまり、F2に対する最大変形量比は、F2=0.800付近で変曲点を有する。 With reference to FIG. 1, as F2 decreases, the maximum deformation amount ratio decreases, and the heat treatment deformation amount decreases. When F2 is less than 0.800, the maximum deformation amount ratio is remarkably lowered. That is, the maximum deformation amount ratio with respect to F2 has an inflection point near F2 = 0.800.
 したがって、各元素含有量が本実施形態の範囲内であることを前提として、さらに、F2が式(2)を満たす場合、つまり、F2が0.800未満の場合、ガス浸炭処理時での鋼材の熱処理変形を十分に抑制することができる。 Therefore, on the premise that the content of each element is within the range of the present embodiment, further, when F2 satisfies the formula (2), that is, when F2 is less than 0.800, the steel material at the time of gas carburizing treatment. The heat treatment deformation of the above can be sufficiently suppressed.
 F2の好ましい上限は0.799であり、さらに好ましくは0.797であり、さらに好ましくは0.795である。F2の下限は特に制限されない。しかしながら、本実施形態の化学組成の各元素含有量の上限を考慮すれば、F2の好ましい下限は0.765であり、さらに好ましくは0.770であり、さらに好ましくは0.775である。F2の数値は、小数第4位を四捨五入して得られた値とする。 The preferred upper limit of F2 is 0.799, more preferably 0.797, and even more preferably 0.795. The lower limit of F2 is not particularly limited. However, considering the upper limit of the content of each element in the chemical composition of the present embodiment, the preferable lower limit of F2 is 0.765, more preferably 0.770, and even more preferably 0.775. The numerical value of F2 is a value obtained by rounding off to the fourth decimal place.
 以上の構成を有する本実施形態の鋼材は、化学組成中の各元素含有量が本実施形態の範囲内であり、かつ、F1及びF2が式(1)及び式(2)を満たし、横断面観察位置C1~C9及び縦断面観察位置L1~L9でのミクロ組織が、本実施形態の範囲内である。そのため、本実施形態の鋼材に対して熱間加工を実施した後の被削性が優れる。さらに、本実施形態の鋼材に対して真空浸炭処理を実施した場合、機械構造用部品は、優れた曲げ疲労強度及び面疲労強度を有し、熱処理変形を十分に抑制することができる。 The steel material of the present embodiment having the above structure has a cross section in which the content of each element in the chemical composition is within the range of the present embodiment, and F1 and F2 satisfy the formulas (1) and (2). The microstructures at the observation positions C1 to C9 and the vertical cross-sectional observation positions L1 to L9 are within the scope of the present embodiment. Therefore, the machinability after hot working on the steel material of the present embodiment is excellent. Further, when the steel material of the present embodiment is subjected to the vacuum carburizing treatment, the mechanical structural parts have excellent bending fatigue strength and surface fatigue strength, and can sufficiently suppress heat treatment deformation.
 [鋼材のミクロ組織について]
 本実施形態の鋼材は、いわゆる圧延まま材(アズロール材)である。したがって、本実施形態の鋼材では、縦断面観察位置L1~L9の上記観察視野において、いわゆるバンド組織が観察される。ここで、バンド組織とは、周知のミクロ組織であり、図4に示すとおり、鋼材の長手方向に延びるフェライト(フェライトバンド)Fと、鋼材の長手方向に延びる非フェライト(非フェライトバンド)NFとが、径方向に交互に積層された組織をいう。非フェライトは、パーライト及び/又はベイナイトである。
[About the microstructure of steel materials]
The steel material of the present embodiment is a so-called as-rolled material (azurol material). Therefore, in the steel material of the present embodiment, a so-called band structure is observed in the above observation fields of the vertical cross-sectional observation positions L1 to L9. Here, the band structure is a well-known microstructure, and as shown in FIG. 4, a ferrite (ferrite band) F extending in the longitudinal direction of the steel material and a non-ferrite (non-ferrite band) NF extending in the longitudinal direction of the steel material are used. However, it means a structure that is alternately laminated in the radial direction. Non-ferrites are pearlite and / or bainite.
 [鋼材の用途]
 本実施形態の鋼材は、上述のとおり、機械構造用部品の素材に適する。本実施形態の鋼材は特に、自動車用途、建設機械、産業機械等の歯車又はシャフト等の用途に適する。
[Use of steel materials]
As described above, the steel material of the present embodiment is suitable as a material for mechanical structural parts. The steel material of the present embodiment is particularly suitable for applications such as gears or shafts of automobile applications, construction machinery, industrial machinery and the like.
 [鋼材の製造方法]
 本実施形態の鋼材の製造方法の一例を説明する。以降に説明する鋼材の製造方法は、本実施形態の鋼材を製造するための一例である。したがって、上述の構成を有する鋼材は、以降に説明する製造方法以外の他の製造方法により製造されてもよい。しかしながら、以降に説明する製造方法は、本実施形態の鋼材の製造方法の好ましい一例である。
[Manufacturing method of steel materials]
An example of the method for manufacturing a steel material of the present embodiment will be described. The method for manufacturing a steel material described below is an example for manufacturing the steel material of the present embodiment. Therefore, the steel material having the above-mentioned structure may be manufactured by a manufacturing method other than the manufacturing method described below. However, the manufacturing method described below is a preferable example of the manufacturing method of the steel material of the present embodiment.
 本実施形態の鋼材の製造方法の一例は、次の工程を含む。
 (工程1)素材を準備する工程(素材準備工程)
 (工程2)素材を熱間加工して鋼材を製造する工程(熱間加工工程)
 以下、各工程について説明する。
An example of the method for producing a steel material of the present embodiment includes the following steps.
(Process 1) Process of preparing materials (Material preparation process)
(Process 2) A process of hot-working a material to manufacture a steel material (hot-working process)
Hereinafter, each step will be described.
 [(工程1)素材準備工程]
 素材準備工程では、本実施形態の鋼材の素材を準備する。具体的には、化学組成中の各元素含有量が本実施形態の範囲内であり、かつ、F1が式(1)を満たし、F2が式(2)を満たす溶鋼を製造する。精錬方法は特に限定されず、周知の方法を用いればよい。たとえば、周知の方法で製造された溶銑に対して転炉での精錬(一次精錬)を実施する。転炉から出鋼した溶鋼に対して、周知の二次精錬を実施する。二次精錬において、溶鋼中の合金元素の含有量を調整して、各元素含有量が本実施形態の範囲内であり、かつ、F1が式(1)を満たし、F2が式(2)を満たす化学組成を有する溶鋼を製造する。
[(Process 1) Material preparation process]
In the material preparation process, the steel material of the present embodiment is prepared. Specifically, a molten steel in which the content of each element in the chemical composition is within the range of the present embodiment, F1 satisfies the formula (1), and F2 satisfies the formula (2) is produced. The refining method is not particularly limited, and a well-known method may be used. For example, refining in a converter (primary refining) is performed on hot metal produced by a well-known method. Well-known secondary refining will be carried out on the molten steel discharged from the converter. In the secondary refining, the content of the alloying elements in the molten steel is adjusted so that the content of each element is within the range of the present embodiment, F1 satisfies the formula (1), and F2 satisfies the formula (2). Manufacture molten steel with a chemical composition that meets the requirements.
 上述の精錬方法により製造された溶鋼を用いて、周知の鋳造法により素材を製造する。たとえば、溶鋼を用いて造塊法によりインゴットを製造してもよい。また、溶鋼を用いて連続鋳造法によりブルーム又はビレットを製造してもよい。以上の方法により、素材(インゴット、ブルーム又はビレット)を製造する。連続鋳造法を用いる場合、凝固途中の鋳片に対して圧下を加えてもよい。 Using the molten steel produced by the above-mentioned refining method, the material is manufactured by a well-known casting method. For example, an ingot may be manufactured by an ingot method using molten steel. Further, bloom or billet may be produced by a continuous casting method using molten steel. The material (ingot, bloom or billet) is manufactured by the above method. When the continuous casting method is used, reduction may be applied to the slab in the middle of solidification.
 [(工程2)熱間加工工程]
 熱間加工工程では、素材準備工程にて準備された素材(インゴット、ブルーム又はビレット)に対して、熱間加工を実施して、本実施形態の鋼材を製造する。鋼材の形状は特に限定されないが、たとえば、棒鋼又は線材である。以下の説明では、一例として鋼材が棒鋼である場合について説明する。しかしながら、鋼材が棒鋼以外の他の形状であっても同様の熱間加工工程で製造可能である。
[(Step 2) Hot working process]
In the hot working step, the material (ingot, bloom or billet) prepared in the material preparing step is hot-worked to produce the steel material of the present embodiment. The shape of the steel material is not particularly limited, but is, for example, steel bar or wire rod. In the following description, a case where the steel material is steel bar will be described as an example. However, even if the steel material has a shape other than that of steel bar, it can be manufactured by the same hot working process.
 熱間加工工程は、次の工程を含む。
 (工程21)分塊圧延工程
 加熱温度            :1250~1300℃
 保持時間            :10時間以上
 (工程22)仕上げ圧延工程
 加熱温度            :1150~1200℃
 保持時間            :1.5~3.0時間
 仕上げ温度           :950~1000℃
 (工程23)温度保持工程
 900~800℃での平均冷却速度:0.05℃/秒以下
 (工程24)冷却工程
 800~300℃での平均冷却速度:0.10~1.00℃/秒
 以下、各工程について説明する。
The hot working process includes the following steps.
(Step 21) Ingot rolling step Heating temperature: 1250 to 1300 ° C
Holding time: 10 hours or more (process 22) Finish rolling process Heating temperature: 1150 to 1200 ° C
Holding time: 1.5 to 3.0 hours Finishing temperature: 950 to 1000 ° C
(Step 23) Temperature holding step Average cooling rate at 900 to 800 ° C .: 0.05 ° C / sec or less (Step 24) Cooling step Average cooling rate at 800 to 300 ° C: 0.10 to 1.00 ° C / sec Hereinafter, each step will be described.
 [(工程21)分塊圧延工程]
 分塊圧延工程では、素材を熱間圧延してビレットを製造する。具体的には、分塊圧延工程では、分塊圧延機により素材に対して熱間圧延(分塊圧延)を実施して、ビレットを製造する。分塊圧延機の下流に連続圧延機が配置されている場合、分塊圧延後のビレットに対してさらに、連続圧延機を用いて熱間圧延を実施して、さらにサイズの小さいビレットを製造してもよい。連続圧延機では、一対の水平ロールを有する水平スタンドと、一対の垂直ロールを有する垂直スタンドとが交互に一列に配列される。以上のとおり、分塊圧延工程では、分塊圧延機を用いて、又は、分塊圧延機と連続圧延機とを用いて、素材をビレットに製造する。
[(Step 21) Ingot rolling step]
In the lump rolling process, the material is hot-rolled to produce billets. Specifically, in the lump-rolling step, the material is hot-rolled (bulk-rolled) by a lump-rolling machine to manufacture billets. When a continuous rolling mill is located downstream of the lump rolling mill, hot rolling is further performed on the billet after lump rolling using the continuous rolling mill to produce a smaller billet. You may. In a continuous rolling mill, horizontal stands having a pair of horizontal rolls and vertical stands having a pair of vertical rolls are alternately arranged in a row. As described above, in the slab rolling process, the material is produced in billets using a slab rolling mill or using a shunt rolling mill and a continuous rolling mill.
 分塊圧延工程での条件は次のとおりである。
 加熱温度:1250~1300℃
 保持時間:10時間以上
 分塊圧延工程での加熱炉での加熱温度は、1250~1300℃である。加熱温度(1250~1300℃)での保持時間は、10時間以上である。分塊圧延工程での加熱炉での加熱温度が1250~1300℃であり、さらに、加熱温度(1250~1300℃)での保持時間が10時間以上であれば、他の製造条件を満たすことを前提として、素材準備工程中に生じた素材中の凝固偏析を十分に緩和することができる。そのため、各横断面観察位置C1~C9及び各縦断面観察位置L1~L9でのフェライトの面積分率の標準偏差が4.0%以下となる。加熱温度での保持時間の上限は特に限定されない。しかしながら、製造コストを考慮すれば、加熱温度での保持時間の好ましい上限は30時間である。
The conditions in the lump rolling process are as follows.
Heating temperature: 1250 to 1300 ° C
Holding time: 10 hours or more The heating temperature in the heating furnace in the lump rolling process is 1250 to 1300 ° C. The holding time at the heating temperature (1250-1300 ° C.) is 10 hours or more. If the heating temperature in the heating furnace in the lump rolling process is 1250-1300 ° C. and the holding time at the heating temperature (1250-1300 ° C.) is 10 hours or more, other production conditions must be satisfied. As a premise, the solidification segregation in the material generated during the material preparation process can be sufficiently alleviated. Therefore, the standard deviation of the surface integral of the ferrite at each of the cross-sectional observation positions C1 to C9 and each of the vertical section observation positions L1 to L9 is 4.0% or less. The upper limit of the holding time at the heating temperature is not particularly limited. However, considering the manufacturing cost, the preferable upper limit of the holding time at the heating temperature is 30 hours.
 なお、分塊圧延工程により製造されたビレットは、仕上げ圧延工程前に、常温まで放冷(空冷)される。 The billet manufactured by the lump-rolling process is allowed to cool (air-cooled) to room temperature before the finish rolling process.
 なお、分塊圧延工程における減面率は30%以上である。ここで、減面率(%)は以下の式で定義される。
 減面率(%)=(1-分塊圧延後の鋼材の横断面(長手方向に垂直な断面)の面積/分塊圧延前の素材の横断面(長手方向に垂直な断面)の面積)×100
The surface reduction rate in the ingot rolling process is 30% or more. Here, the reduction rate (%) is defined by the following equation.
Surface reduction rate (%) = (1-Area of cross section (cross section perpendicular to longitudinal direction) of steel material after lump rolling / Area of cross section (cross section perpendicular to longitudinal direction) of material before lump rolling) × 100
 分塊圧延工程での減面率が30%以上であれば、他の製造条件を満たすことを前提として、各横断面観察位置C1~C9及び各縦断面観察位置L1~L9でのフェライトの面積分率の標準偏差が4.0%以下となる。 If the surface reduction rate in the ingot rolling process is 30% or more, the area of ferrite at each cross-section observation position C1 to C9 and each longitudinal cross-section observation position L1 to L9, assuming that other manufacturing conditions are satisfied. The standard deviation of the fraction is 4.0% or less.
 [(工程22)仕上げ圧延工程]
 仕上げ圧延工程では、初めに、常温まで冷却されたビレットを、加熱炉を用いて加熱する。加熱後のビレットに対して、連続圧延機を用いて熱間圧延を実施して、鋼材である棒鋼を製造する。
[(Process 22) Finish rolling process]
In the finish rolling process, first, the billet cooled to room temperature is heated using a heating furnace. The billet after heating is hot-rolled using a continuous rolling mill to produce steel bars, which are steel materials.
 仕上げ圧延工程での条件は次のとおりである。
 加熱温度 :1150~1200℃
 保持時間 :1.5~3.0時間
 仕上げ温度:950~1000℃
The conditions in the finish rolling process are as follows.
Heating temperature: 1150-1200 ° C
Holding time: 1.5 to 3.0 hours Finishing temperature: 950 to 1000 ° C
 [加熱温度及び保持時間]
 仕上げ圧延工程での加熱炉での加熱温度は、1150~1200℃である。加熱温度(1150~1200℃)での保持時間は、1.5~3.0時間である。仕上げ圧延工程での加熱炉の加熱温度が1150~1200℃であり、加熱温度(1150~1200℃)での保持時間が1.5~3.0時間であれば、他の製造条件を満たすことを前提として、鋼材(棒鋼)内の温度のばらつきを十分に抑制できる。そのため、横断面観察位置C1~C9及び縦断面観察位置L1~L9でのフェライト平均粒径比が2.00以下となる。
[Heating temperature and holding time]
The heating temperature in the heating furnace in the finish rolling step is 1150 to 1200 ° C. The holding time at the heating temperature (1150 to 1200 ° C.) is 1.5 to 3.0 hours. If the heating temperature of the heating furnace in the finish rolling process is 1150 to 1200 ° C. and the holding time at the heating temperature (1150-1200 ° C.) is 1.5 to 3.0 hours, other manufacturing conditions are satisfied. Assuming that, the temperature variation in the steel material (steel bar) can be sufficiently suppressed. Therefore, the ferrite average particle size ratio at the cross-sectional observation positions C1 to C9 and the vertical cross-sectional observation positions L1 to L9 is 2.00 or less.
 [仕上げ温度]
 仕上げ圧延工程では、一列に配列された複数の圧延スタンドを備える連続圧延機により熱間圧延(仕上げ圧延)を実施する。連続圧延機を用いた熱間圧延において、最後に鋼材を圧下したスタンドの出側での鋼材温度を、仕上げ温度(℃)と定義する。なお、鋼材温度とは、鋼材の表面温度を意味する。
[Finishing temperature]
In the finish rolling process, hot rolling (finish rolling) is carried out by a continuous rolling machine equipped with a plurality of rolling stands arranged in a row. In hot rolling using a continuous rolling mill, the temperature of the steel material on the outlet side of the stand where the steel material is finally rolled is defined as the finishing temperature (° C.). The steel material temperature means the surface temperature of the steel material.
 仕上げ温度は950~1000℃である。仕上げ温度が950~1000℃であれば、他の製造条件を満たすことを前提として、鋼材(棒鋼)におけるオーステナイト粒径のばらつきが十分に抑制される。そのため、後述する温度保持工程及び冷却工程でオーステナイトからフェライトに変態する時に、フェライトの平均粒径のばらつきが十分に抑制される。そのため、横断面観察位置C1~C9及び縦断面観察位置L1~L9でのフェライト平均粒径比が2.00以下となる。 The finishing temperature is 950 to 1000 ° C. When the finishing temperature is 950 to 1000 ° C., the variation in the austenite particle size in the steel material (steel bar) is sufficiently suppressed on the premise that other production conditions are satisfied. Therefore, when the austenite is transformed into ferrite in the temperature holding step and the cooling step described later, the variation in the average particle size of ferrite is sufficiently suppressed. Therefore, the ferrite average particle size ratio at the cross-sectional observation positions C1 to C9 and the vertical cross-sectional observation positions L1 to L9 is 2.00 or less.
 [(工程23)温度保持工程]
 温度保持工程では、仕上げ圧延工程後であって、冷却工程の前に、鋼材の温度を保持する。温度保持工程での条件は次のとおりである。
 鋼材温度が900~800℃での平均冷却速度:0.05℃/秒以下
 仕上げ圧延工程後、鋼材温度が900~800℃での平均冷却速度を0.05℃/秒以下に抑制する。例えば、仕上げ圧延工程後であって、鋼材温度が900~800℃である鋼材に対して、徐冷カバー、保温カバー、又は、温度保持炉を用いて、平均冷却速度を0.05℃/秒以下に抑える。
[(Step 23) Temperature holding step]
In the temperature holding step, the temperature of the steel material is held after the finish rolling step and before the cooling step. The conditions in the temperature holding process are as follows.
Average cooling rate when the steel material temperature is 900 to 800 ° C: 0.05 ° C / sec or less After the finish rolling process, the average cooling rate when the steel material temperature is 900 to 800 ° C is suppressed to 0.05 ° C / sec or less. For example, after the finish rolling process, the average cooling rate of the steel material having a steel material temperature of 900 to 800 ° C. is 0.05 ° C./sec using a slow cooling cover, a heat retaining cover, or a temperature holding furnace. Keep it below.
 鋼材温度が900~800℃での平均冷却速度が0.05℃/秒以下であれば、他の製造条件を満たすことを前提として、鋼材の軸方向(長手方向)の温度ばらつきを抑制できる。そのため、鋼材の軸方向のフェライト変態タイミングのばらつきを抑制できる。そのため、特に、鋼材の軸方向(縦断面)でのフェライト粒の成長ばらつきを抑えることができる。具体的には、次のメカニズムが作用する。 If the average cooling rate at a steel material temperature of 900 to 800 ° C. is 0.05 ° C./sec or less, temperature variation in the axial direction (longitudinal direction) of the steel material can be suppressed on the premise that other manufacturing conditions are satisfied. Therefore, it is possible to suppress variations in the ferrite transformation timing in the axial direction of the steel material. Therefore, in particular, it is possible to suppress the growth variation of the ferrite grains in the axial direction (longitudinal section) of the steel material. Specifically, the following mechanism works.
 仕上げ圧延工程後の鋼材では、鋼材温度の低下に伴って、オーステナイトは徐々にフェライトに変態する。鋼材温度が900~800℃の範囲において、鋼材の軸方向で温度ばらつきがあれば、仕上げ圧延工程後、比較的早い段階で生成したフェライトと、比較的遅い段階で生成したフェライトとが混在してしまう。この場合、早い段階で生成したフェライト粒は、遅い段階で変態したフェライト粒よりも粗大になりやすい。その結果、特に、鋼材の軸方向(縦断面)でフェライト粒のばらつき大きくなる。 In the steel material after the finish rolling process, austenite gradually transforms into ferrite as the steel material temperature decreases. If the temperature of the steel material varies in the axial direction in the range of 900 to 800 ° C., ferrite produced at a relatively early stage after the finish rolling process and ferrite produced at a relatively late stage coexist. It ends up. In this case, the ferrite grains produced at an early stage tend to be coarser than the ferrite grains transformed at a later stage. As a result, in particular, the variation of ferrite grains becomes large in the axial direction (longitudinal section) of the steel material.
 鋼材温度が900~800℃での平均冷却速度が速ければ、鋼材の軸方向(縦断面)での温度ばらつきが大きくなる。そのため、縦断面観察位置L1~L9でのフェライト平均粒径比が大きくなってしまう。 If the average cooling rate at a steel material temperature of 900 to 800 ° C. is high, the temperature variation in the axial direction (longitudinal section) of the steel material becomes large. Therefore, the ferrite average particle size ratio at the vertical cross-sectional observation positions L1 to L9 becomes large.
 そこで、本実施形態では、鋼材温度が900~800℃での平均冷却速度を0.05℃/秒以下に抑える。この場合、鋼材の軸方向(縦断面)での温度ばらつきを抑制することができる。そのため、鋼材の縦断面でのフェライトの生成(変態)タイミングのずれが抑制される。その結果、他の製造条件を満たすことを条件として、縦断面観察位置L1~L9でのフェライト平均粒径比を2.00以下にすることができる。 Therefore, in the present embodiment, the average cooling rate when the steel material temperature is 900 to 800 ° C. is suppressed to 0.05 ° C./sec or less. In this case, temperature variation in the axial direction (longitudinal cross section) of the steel material can be suppressed. Therefore, the deviation of the ferrite formation (transformation) timing in the vertical cross section of the steel material is suppressed. As a result, the ferrite average particle size ratio at the vertical cross-sectional observation positions L1 to L9 can be set to 2.00 or less, provided that other manufacturing conditions are satisfied.
 [(工程24)冷却工程]
 冷却工程では、温度保持工程後の鋼材温度を冷却する。冷却工程での条件は次のとおりである。
 鋼材温度が800~300℃での平均冷却速度:0.10~1.00℃/秒
 鋼材温度が800~300℃の鋼材に対して、0.10~1.00℃/秒の平均冷却速度で冷却する。鋼材温度が800~300℃での平均冷却速度を0.10~1.00℃/秒とすれば、他の製造条件を満たすことを前提として、横断面観察位置C1~C9及び縦断面観察位置L1~L9でのフェライトの面積分率の算術平均値が50~70%となる。
[(Step 24) Cooling step]
In the cooling step, the temperature of the steel material after the temperature holding step is cooled. The conditions in the cooling process are as follows.
Average cooling rate at a steel temperature of 800 to 300 ° C: 0.10 to 1.00 ° C / sec An average cooling rate of 0.10 to 1.00 ° C / sec for a steel with a steel temperature of 800 to 300 ° C. Cool with. Assuming that the average cooling rate at a steel material temperature of 800 to 300 ° C. is 0.10 to 1.00 ° C./sec, the cross-sectional observation positions C1 to C9 and the vertical cross-sectional observation positions are assumed to satisfy other manufacturing conditions. The arithmetic mean value of the area fraction of the ferrite in L1 to L9 is 50 to 70%.
 以上の製造工程により、上述の構成を有する本実施形態の鋼材を製造できる。なお、上述のとおり、本実施形態の鋼材は圧延まま材である。 By the above manufacturing process, the steel material of the present embodiment having the above-mentioned configuration can be manufactured. As described above, the steel material of the present embodiment is a rolled material.
 本実施形態の鋼材は、真空浸炭処理を実施して製造される機械構造用部品の素材に適する。ただし、本実施形態の鋼材は、真空浸炭処理以外の他の表面硬化熱処理を実施して、機械構造用部品に製造されてもよい。他の表面硬化熱処理とはたとえば、焼入れ及び焼戻し、高周波焼入れ焼戻し、浸窒処理(浸窒焼入れ及び焼戻し)等である。 The steel material of this embodiment is suitable as a material for mechanical structural parts manufactured by performing vacuum carburizing treatment. However, the steel material of the present embodiment may be manufactured as a mechanical structural part by subjecting a surface hardening heat treatment other than the vacuum carburizing treatment. Other surface hardening heat treatments include, for example, quenching and tempering, induction hardening and tempering, and soaking treatment (quenching quenching and tempering).
 [機械構造用部品について]
 機械構造用部品はたとえば、自動車及び建設車両等に用いられる。機械構造用部品はたとえば、ステアリング機構に用いられる歯車や、シャフト等である。
[About machine structural parts]
Mechanical structural parts are used, for example, in automobiles, construction vehicles, and the like. Mechanical structural parts are, for example, gears and shafts used in steering mechanisms.
 本実施形態の鋼材を素材とする機械構造用部品は、周知の製造方法で製造される。たとえば、次の方法により、機械構造用部品が製造される。 The mechanical structural parts made of the steel material of this embodiment are manufactured by a well-known manufacturing method. For example, mechanical structural parts are manufactured by the following method.
 機械構造用部品の製造方法の一例は、次の工程を含む。
 ・熱間加工工程
 ・切削加工工程
 ・熱処理工程
 以下、各工程を説明する。
An example of a method for manufacturing mechanical structural parts includes the following steps.
-Hot working process-Cutting process-Heat treatment process Each process will be described below.
 [熱間加工工程]
 熱間加工工程では、本実施形態の鋼材に対して熱間加工を実施する。熱間加工はたとえば、周知の熱間鍛造である。熱間加工工程での加熱温度はたとえば、1000~1300℃である。熱間加工後の鋼材は放冷(空冷)される。放冷後の鋼材に対して、必要に応じて、焼鈍処理を実施してもよい。
[Hot working process]
In the hot working step, hot working is performed on the steel material of the present embodiment. Hot working is, for example, well-known hot forging. The heating temperature in the hot working step is, for example, 1000 to 1300 ° C. The steel material after hot working is allowed to cool (air cooling). If necessary, the steel material after allowing to cool may be annealed.
 [切削加工工程]
 熱間加工工程後の鋼材に対して、切削加工工程を実施して、所定形状の中間品を製造する。この切削加工工程時において、鋼材の高い被削性が求められる。切削加工工程では、周知の切削加工を実施する。切削加工により、熱間加工工程だけでは困難な、精密形状の機械構造用部品を製造できる。
[Cutting process]
A cutting process is performed on the steel material after the hot working process to manufacture an intermediate product having a predetermined shape. During this cutting process, high machinability of steel materials is required. In the cutting process, well-known cutting is performed. By cutting, it is possible to manufacture precision-shaped machine structural parts, which is difficult only with the hot working process.
 [熱処理工程]
 切削加工後の中間品に対して、熱処理を実施する。ここで、「熱処理」とは、周知の真空浸炭処理と、周知の焼戻し工程とを含む。なお、上述のとおり、真空浸炭処理は、真空浸炭窒化処理も含む。
[Heat treatment process]
Heat treatment is performed on the intermediate product after cutting. Here, the "heat treatment" includes a well-known vacuum carburizing treatment and a well-known tempering step. As described above, the vacuum carburizing treatment also includes the vacuum carburizing nitriding treatment.
 真空浸炭処理工程は、真空浸炭工程及び焼入れ工程を含む。真空浸炭処理において、周知の条件を適宜調整して、機械構造用部品の表面硬さ、芯部硬さ、表面炭素濃度を適宜調整できることは、当業者に周知の技術事項である。
 以下、熱処理工程の一例として、周知の真空浸炭処理を説明する。なお、周知の真空浸炭窒化処理も、真空浸炭処理と同様の工程で実施されることは当業者に周知である。
The vacuum carburizing process includes a vacuum carburizing step and a quenching step. It is a well-known technical matter to those skilled in the art that in the vacuum carburizing treatment, well-known conditions can be appropriately adjusted to appropriately adjust the surface hardness, core hardness, and surface carbon concentration of mechanical structural parts.
Hereinafter, a well-known vacuum carburizing process will be described as an example of the heat treatment step. It is well known to those skilled in the art that the well-known vacuum carburizing nitriding treatment is also carried out in the same process as the vacuum carburizing treatment.
 [真空浸炭焼入れ処理]
 真空浸炭焼入れ処理は、真空浸炭工程と、焼入れ工程とを含む。以下、真空浸炭工程、焼入れ工程について説明する。
[Vacuum carburizing and quenching]
The vacuum carburizing and quenching process includes a vacuum carburizing step and a quenching step. Hereinafter, the vacuum carburizing process and the quenching process will be described.
 [真空浸炭工程]
 図5は、真空浸炭工程S10及び焼入れ工程S20でのヒートパターンの一例を示す図である。図5の縦軸は真空浸炭処理時における処理温度(℃)であり、横軸は時間(分)である。図5を参照して、真空浸炭工程S10は、加熱工程S0と、均熱工程S1と、浸炭工程S2と、拡散工程S3とを含む。
[Vacuum carburizing process]
FIG. 5 is a diagram showing an example of a heat pattern in the vacuum carburizing step S10 and the quenching step S20. The vertical axis of FIG. 5 is the treatment temperature (° C.) during the vacuum carburizing treatment, and the horizontal axis is the time (minutes). With reference to FIG. 5, the vacuum carburizing step S10 includes a heating step S0, a soaking step S1, a carburizing step S2, and a diffusion step S3.
 加熱工程S0では、炉内に装入された中間品を浸炭温度Tcまで加熱する。この時、炉内の圧力を10Pa以下とする。加熱工程S0での浸炭温度Tcは、たとえば900~1100℃である。 In the heating step S0, the intermediate product charged in the furnace is heated to the carburizing temperature Tc. At this time, the pressure in the furnace is set to 10 Pa or less. The carburizing temperature Tc in the heating step S0 is, for example, 900 to 1100 ° C.
 均熱工程S1では、浸炭温度Tcで中間品を所定時間(保持時間t1)保持して、均熱処理を実施する。均熱工程S1における浸炭温度Tcでの保持時間t1は、たとえば5~120分である。均熱工程S1における炉内の圧力は10Pa以下であってもよく、又は、窒素ガスの導入と真空ポンプによる真空排気を同時に行い、1000Pa以下の窒素ガス雰囲気としてもよい。 In the soaking step S1, the intermediate product is held for a predetermined time (holding time t1) at the carburizing temperature Tc, and the soaking heat treatment is carried out. The holding time t1 at the carburizing temperature Tc in the soaking step S1 is, for example, 5 to 120 minutes. The pressure in the furnace in the soaking step S1 may be 10 Pa or less, or the nitrogen gas may be introduced and evacuated by a vacuum pump at the same time to create a nitrogen gas atmosphere of 1000 Pa or less.
 浸炭工程S2では、浸炭温度Tcで中間品を所定時間(保持時間t2)保持する。浸炭工程S2における浸炭温度Tcでの保持時間t2は、適宜調整すればよい。浸炭温度Tcでの保持時間t2はたとえば20~60分である。 In the carburizing step S2, the intermediate product is held for a predetermined time (holding time t2) at the carburizing temperature Tc. The holding time t2 at the carburizing temperature Tc in the carburizing step S2 may be appropriately adjusted. The holding time t2 at the carburizing temperature Tc is, for example, 20 to 60 minutes.
 浸炭工程S2における浸炭ガスは、周知の浸炭ガスを用いる。浸炭ガスはたとえば、アセチレン、プロパン又はエチレン等の炭化水素ガスである。 As the carburizing gas in the carburizing step S2, a well-known carburizing gas is used. The carburized gas is, for example, a hydrocarbon gas such as acetylene, propane or ethylene.
 浸炭工程S2における浸炭ガス圧は、浸炭ガスの種類に応じて所定のガス圧とする。浸炭ガスとしてアセチレンを用いた場合、浸炭ガス圧はたとえば、10~1000Paとする。浸炭ガスがプロパンである場合、浸炭ガス圧はたとえば、200~3000Paとする。 The carburized gas pressure in the carburizing step S2 is set to a predetermined gas pressure according to the type of carburized gas. When acetylene is used as the carburizing gas, the carburizing gas pressure is, for example, 10 to 1000 Pa. When the carburized gas is propane, the carburized gas pressure is, for example, 200 to 3000 Pa.
 拡散工程S3では、上記浸炭温度Tcで中間品を所定時間(保持時間t3)保持する。ここで、拡散工程S3における浸炭温度Tcでの保持時間t3は、適宜調整する。浸炭温度Tcでの保持時間t3はたとえば40~90分である。 In the diffusion step S3, the intermediate product is held for a predetermined time (holding time t3) at the carburizing temperature Tc. Here, the holding time t3 at the carburizing temperature Tc in the diffusion step S3 is appropriately adjusted. The holding time t3 at the carburizing temperature Tc is, for example, 40 to 90 minutes.
 拡散工程S3での炉内の圧力は、浸炭工程における残留ガスを除去するため、100Pa以下であってもよい。又は、窒素ガスの導入と真空ポンプによる真空排気を同時に行って、1000Pa以下の窒素ガス雰囲気としてもよい。 The pressure in the furnace in the diffusion step S3 may be 100 Pa or less in order to remove the residual gas in the carburizing step. Alternatively, the introduction of nitrogen gas and the vacuum exhaust by a vacuum pump may be performed at the same time to create a nitrogen gas atmosphere of 1000 Pa or less.
 [焼入れ工程]
 真空浸炭工程S10後の中間品に対して焼入れ工程S20を実施する。真空浸炭工程S10後、焼入れ工程S20における焼入れ温度Tsまでの冷却方法は、周知の冷却方法を用いればよい。上記冷却方法はたとえば、真空下での空冷であってもよく、ガス冷却であってもよく、又は、その他の方法であってもよい。真空化での冷却を実施する場合、たとえば、100Pa以下の圧力で放冷する。ガス冷却を実施する場合、冷却ガスとして窒素ガス及び/又はヘリウムガス等の不活化ガスを使用してもよい。
[Quenching process]
The quenching step S20 is carried out on the intermediate product after the vacuum carburizing step S10. As a cooling method up to the quenching temperature Ts in the quenching step S20 after the vacuum carburizing step S10, a well-known cooling method may be used. The cooling method may be, for example, air cooling under vacuum, gas cooling, or any other method. When cooling by vacuuming is performed, for example, cooling is performed at a pressure of 100 Pa or less. When gas cooling is carried out, an inactivated gas such as nitrogen gas and / or helium gas may be used as the cooling gas.
 焼入れ工程S20は、均熱工程S4を含む。均熱工程S4は、真空浸炭工程S10後の中間品を焼入れ温度で保持する。焼入れ工程S20では、均熱工程S4の後、中間品を急冷して焼入れする。焼入れ温度Tsは特に限定されないが、たとえば800~880℃である。焼入れ温度Tsでの保持時間t4は特に限定されないが、たとえば、10~80分である。焼入れ温度Tsでの保持中の雰囲気は特に限定されないが、たとえば窒素ガス雰囲気である。炉内の圧力は大気圧以下であってもよく、たとえば、400hPa以下であってもよい。焼入れ処理における冷却方法は、油冷又は水冷である。具体的には、冷却媒体である油又は水を入れた冷却浴に、焼入れ温度に保持された中間品を浸漬して急冷する。冷却媒体である油又は水の温度は、たとえば、60~200℃である。また、必要に応じて、サブゼロ処理を実施してもよい。 The quenching step S20 includes a heat soaking step S4. In the soaking step S4, the intermediate product after the vacuum carburizing step S10 is held at the quenching temperature. In the quenching step S20, after the soaking step S4, the intermediate product is rapidly cooled and quenched. The quenching temperature Ts is not particularly limited, but is, for example, 800 to 880 ° C. The holding time t4 at the quenching temperature Ts is not particularly limited, but is, for example, 10 to 80 minutes. The atmosphere during holding at the quenching temperature Ts is not particularly limited, but is, for example, a nitrogen gas atmosphere. The pressure in the furnace may be atmospheric pressure or less, for example, 400 hPa or less. The cooling method in the quenching treatment is oil cooling or water cooling. Specifically, an intermediate product maintained at a quenching temperature is immersed in a cooling bath containing oil or water as a cooling medium and rapidly cooled. The temperature of the oil or water that is the cooling medium is, for example, 60 to 200 ° C. Further, if necessary, sub-zero processing may be carried out.
 [焼戻し工程]
 焼入れ工程後の中間品に対して、周知の焼戻し工程を実施する。焼戻し温度はたとえば、100~200℃である。焼戻し温度での保持時間はたとえば、90~150分である。
[Tempering process]
A well-known tempering process is carried out for intermediate products after the quenching process. The tempering temperature is, for example, 100 to 200 ° C. The holding time at the tempering temperature is, for example, 90 to 150 minutes.
 [その他の工程]
 必要に応じて、上記焼戻し工程後の中間品に対してさらに、研削加工を実施したり、ショットピーニング処理を実施したりしてもよい。研削加工を実施する場合、切削加工を施して鋼材に形状を付与する。切削加工を行うことにより、さらに精密な形状を鋼材に付与することができる。また、ショットピーニング処理を実施する場合、真空浸炭処理後の中間品の表層部に圧縮残留応力が導入される。圧縮残留応力は疲労亀裂の発生及び進展を抑制する。そのため、機械構造用部品の曲げ疲労強度及び面疲労強度が高まる。ショットピーニング処理は、周知の方法で実施すればよい。ショットピーニング処理はたとえば、直径が0.7mm以下のショット粒を用い、アークハイトが0.4mm以上の条件で行うことが望ましい。
[Other processes]
If necessary, the intermediate product after the tempering step may be further subjected to a grinding process or a shot peening process. When grinding is performed, cutting is performed to give the steel material a shape. By cutting, a more precise shape can be given to the steel material. Further, when the shot peening treatment is carried out, the compressive residual stress is introduced into the surface layer portion of the intermediate product after the vacuum carburizing treatment. Compressive residual stress suppresses the generation and growth of fatigue cracks. Therefore, the bending fatigue strength and the surface fatigue strength of the mechanical structural parts are increased. The shot peening process may be carried out by a well-known method. For example, it is desirable that the shot peening treatment is performed using shot grains having a diameter of 0.7 mm or less and having an arc height of 0.4 mm or more.
 表1に示す化学組成を有する鋼材を準備した。なお、鋼種番号AはJIS G 4052(2016)に規定されているSCM420Hに相当した。 A steel material having the chemical composition shown in Table 1 was prepared. The steel type number A corresponds to SCM420H specified in JIS G4052 (2016).
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1中の「-」は、対応する元素含有量が、実施形態に規定の有効数字(最小桁までの数値)において、0%であることを意味する。換言すれば、対応する元素含有量において、上述の実施形態で規定の有効数字(最小桁までの数値)での端数を四捨五入した場合に0%であることを意味する。
 例えば、本実施形態で規定されたMo含有量は小数第二位までの数値で規定されている。したがって、表1中の鋼種番号Cでは、測定されたMo含有量を小数第三位で四捨五入した場合に、0%であったことを意味する。
 また、本実施形態で規定されたNb含有量は小数第三位までの数値で規定されている。したがって、表1中の鋼種番号Aでは、測定されたNb含有量を小数第四位で四捨五入した場合に、0%であったことを意味する。
 なお、四捨五入とは、規定された最小桁の下の桁(端数)が5未満であれば切り捨て、5以上であれば切り上げることを意味する。
"-" In Table 1 means that the corresponding element content is 0% in the significant figures (values up to the smallest digit) specified in the embodiment. In other words, it means that the corresponding element content is 0% when the fractions of the specified significant figures (values up to the smallest digit) in the above-described embodiment are rounded off.
For example, the Mo content specified in this embodiment is specified by a numerical value up to the second decimal place. Therefore, the steel type number C in Table 1 means that the measured Mo content was 0% when rounded to the third decimal place.
In addition, the Nb content specified in this embodiment is specified by a numerical value up to the third decimal place. Therefore, the steel grade number A in Table 1 means that the measured Nb content was 0% when rounded to the fourth decimal place.
In addition, rounding means that if the digit (fraction) below the specified minimum digit is less than 5, it is rounded down, and if it is 5 or more, it is rounded up.
 次の方法により、鋼材を製造した。溶鋼を連続鋳造して、素材となる鋳片(ブルーム)を製造した。素材であるブルームに対して、表2に示す条件で熱間加工工程を実施した。 Steel materials were manufactured by the following method. The molten steel was continuously cast to produce a slab (bloom) as a raw material. The hot working process was carried out on the bloom material, which is the material, under the conditions shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 「分塊圧延工程」及び「仕上げ圧延工程」欄の「加熱温度(℃)」欄に記載の温度は、加熱温度(℃)である。「分塊圧延工程」及び「仕上げ圧延工程」欄の「保持時間(時間)」欄に記載の時間は、加熱温度での保持時間(時間)である。「仕上げ圧延工程」欄の「仕上げ温度(℃)」欄の温度は、仕上げ圧延工程での連続圧延機において、最後に圧下したスタンドの出側での鋼材温度(鋼材の表面温度)(℃)である。「温度保持工程」欄の「冷却速度(℃/秒)」欄に記載の速度は、鋼材温度が900~800℃での平均冷却速度(℃/秒)である。「冷却工程」欄の「冷却速度(℃/秒)」欄に記載の速度は、鋼材温度が800~300℃での平均冷却速度(℃/秒)である。 The temperature described in the "heating temperature (° C.)" column of the "bulk rolling process" and the "finish rolling process" column is the heating temperature (° C.). The time described in the "holding time (time)" column of the "lump rolling process" and the "finish rolling process" column is the holding time (hour) at the heating temperature. The temperature in the "Finishing temperature (° C)" column in the "Finish rolling process" column is the steel material temperature (surface temperature of the steel material) (° C) on the outlet side of the last rolled stand in the continuous rolling mill in the finish rolling process. Is. The speed described in the "cooling rate (° C./sec)" column of the "temperature holding step" column is the average cooling rate (° C./sec) when the steel material temperature is 900 to 800 ° C. The speed described in the "cooling rate (° C./sec)" column of the "cooling step" column is the average cooling rate (° C./sec) when the steel material temperature is 800 to 300 ° C.
 熱間加工工程の分塊圧延工程では、製造されたブルームを表2に示す加熱温度及び保持時間で加熱した。その後、分塊圧延機を用いてブルームを分塊圧延して、ビレットを製造した。製造されたビレットを常温(25℃)まで水冷した。ビレットの長手方向に垂直な断面は162mm×162mmの矩形であった。分塊圧延工程での加熱温度及び保持時間は表2に示すとおりであった。なお、分塊圧延工程での減面率はいずれの製造条件においても、30%以上であった。 In the slab rolling process of the hot working process, the produced bloom was heated at the heating temperature and holding time shown in Table 2. Then, bloom was lump-rolled using a lump-rolling machine to produce billets. The manufactured billet was water-cooled to room temperature (25 ° C.). The cross section perpendicular to the longitudinal direction of the billet was a rectangle of 162 mm × 162 mm. The heating temperature and holding time in the lump rolling process are as shown in Table 2. The surface reduction rate in the bulk rolling process was 30% or more under all manufacturing conditions.
 分塊圧延工程後のビレットに対して、表2に示す条件で仕上げ圧延工程を実施して、直径50mmの鋼材(棒鋼)を製造した。具体的には、表2の仕上げ圧延工程欄に示す加熱温度(℃)及び保持時間(時間)でビレットを加熱した。加熱後のビレットに対して、仕上げ圧延を実施して、棒鋼を製造した。このとき仕上げ温度(℃)は表2に示すとおりであった。 The billet after the ingot rolling process was subjected to a finishing rolling process under the conditions shown in Table 2 to produce a steel material (steel bar) having a diameter of 50 mm. Specifically, the billet was heated at the heating temperature (° C.) and holding time (hours) shown in the finish rolling process column of Table 2. Finish rolling was carried out on the billets after heating to produce steel bars. At this time, the finishing temperature (° C.) was as shown in Table 2.
 仕上げ圧延工程後の鋼材(棒鋼)に対して、温度保持工程を実施した。製造条件a~iは、鋼材温度900~800℃の鋼材に対して、徐冷カバーを用いることにより、平均冷却速度が0.05℃/秒以下となるように調整した。一方、製造条件jは、鋼材温度が900~800℃の鋼材に対して、徐冷カバーを用いずに放冷した。そのため、鋼材温度が900~800℃での平均冷却速度が0.05℃/秒超となった。 A temperature holding process was carried out on the steel material (steel bar) after the finish rolling process. The production conditions a to i were adjusted so that the average cooling rate was 0.05 ° C./sec or less by using a slow cooling cover for the steel material having a steel material temperature of 900 to 800 ° C. On the other hand, under the production condition j, the steel material having a steel material temperature of 900 to 800 ° C. was allowed to cool without using a slow cooling cover. Therefore, the average cooling rate at a steel material temperature of 900 to 800 ° C. was over 0.05 ° C./sec.
 温度保持工程後、冷却工程を実施した。具体的には、各製造条件において、鋼材温度が800~300℃での平均冷却速度(℃/秒)が、表2の冷却工程欄に示すとおりであった。 After the temperature holding process, the cooling process was carried out. Specifically, under each manufacturing condition, the average cooling rate (° C./sec) when the steel material temperature was 800 to 300 ° C. was as shown in the cooling process column of Table 2.
 鋼材温度が300℃以下の鋼材に対しては、常温まで放冷(空冷)した。以上の製造工程により、表3に示す試験番号1~22の鋼材(棒鋼)を製造した。なお、試験番号1は、基準鋼であるSCM420Hを用いた実施例であり、SCM420Hの化学組成を有する鋼材に一般的に使用されている製造方法の一つである製造条件aを用いた。 For steel materials with a steel material temperature of 300 ° C or less, it was allowed to cool (air-cooled) to room temperature. Through the above manufacturing process, the steel materials (steel bars) of test numbers 1 to 22 shown in Table 3 were manufactured. Note that Test No. 1 is an example using SCM420H, which is a reference steel, and uses manufacturing condition a, which is one of the manufacturing methods generally used for steel materials having a chemical composition of SCM420H.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 [評価試験]
 以上の製造工程で製造された各試験番号の鋼材(棒鋼)に対して、次の事項を求めた。
 (A1)横断面のミクロ組織観察
 (A11)横断面のフェライトの面積分率の算術平均値
 (A12)横断面のフェライトの面積分率の標準偏差
 (A13)横断面のフェライト平均粒径比
 (B1)縦断面のミクロ組織観察
 (B11)縦断面のフェライトの面積分率の算術平均値
 (B12)縦断面のフェライトの面積分率の標準偏差
 (B13)縦断面のフェライト平均粒径比
 さらに、各試験番号の鋼材に対して、次の評価試験を実施した。
 (C1)被削性評価試験
 (C2)曲げ疲労強度評価試験
 (C3)面疲労強度評価試験
 (C4)熱処理変形量評価試験
 以下、詳細を説明する。
[Evaluation test]
The following items were sought for the steel materials (steel bars) of each test number manufactured in the above manufacturing process.
(A1) Observation of microstructure in cross section (A11) Arithmetic mean value of area fraction of ferrite in cross section (A12) Standard deviation of area fraction of ferrite in cross section (A13) Ferrite average particle size ratio in cross section (A13) B1) Observation of microstructure in vertical section (B11) Arithmetic mean value of area fraction of ferrite in vertical section (B12) Standard deviation of area fraction of ferrite in vertical section (B13) Ferrite average particle size ratio in vertical section The following evaluation tests were carried out on the steel materials of each test number.
(C1) Machinability evaluation test (C2) Bending fatigue strength evaluation test (C3) Surface fatigue strength evaluation test (C4) Heat treatment deformation amount evaluation test The details will be described below.
 [(A1)横断面のミクロ組織観察]
 各試験番号の鋼材から、各横断面観察位置C1~C9を含む9つのサンプルを採取した。各サンプルの表面のうち、横断面CSに相当する表面を観察面とした。観察面において、横断面観察位置を含む観察視野を0.5mm×1.0mmとした。
[(A1) Observation of microstructure in cross section]
Nine samples including the respective cross-sectional observation positions C1 to C9 were taken from the steel material of each test number. Of the surfaces of each sample, the surface corresponding to the cross-sectional CS was used as the observation surface. On the observation surface, the observation field of view including the cross-sectional observation position was set to 0.5 mm × 1.0 mm.
 サンプルの観察面を研磨した後、3%硝酸アルコール(ナイタール腐食液)を用いて観察面をエッチングした。エッチングされた観察面の観察視野(0.5mm×1.0mm)を、100倍の光学顕微鏡にて観察した。観察視野において、コントラストにより相を特定した。 After polishing the observation surface of the sample, the observation surface was etched with 3% alcohol nitrate (Nital corrosive liquid). The observation field of view (0.5 mm × 1.0 mm) of the etched observation surface was observed with a 100x optical microscope. In the observation field, the phase was identified by contrast.
 観察された相を表3の「横断面」欄の「相」欄に示す。表3の「横断面」欄の「相」欄において、全ての横断面観察位置でのミクロ組織が、フェライトを含有し、残部がパーライト及び/又はベイナイトからなる場合、「○」を示す。いずれの試験番号においても、横断面のミクロ組織は、フェライトを含有し、残部はパーライト及び/又はベイナイトであった。 The observed phases are shown in the "Phase" column of the "Cross section" column of Table 3. In the "Phase" column of the "Cross section" column of Table 3, when the microstructure at all the cross section observation positions contains ferrite and the balance consists of pearlite and / or bainite, "◯" is indicated. In all test numbers, the microstructure of the cross section contained ferrite and the balance was pearlite and / or bainite.
 [(A11)横断面のフェライトの面積分率の算術平均値]
 各観察視野(各横断面観察位置)でのフェライトの面積(μm)を求めた。フェライトの面積と、観察視野の面積とを用いて、各観察視野(各横断面観察位置)でのフェライトの面積分率(%)を求めた。
[(A11) Arithmetic mean value of surface integral of ferrite in cross section]
The area of ferrite (μm 2 ) in each observation field (each cross-section observation position) was determined. Using the area of the ferrite and the area of the observation field of view, the surface integral (%) of the ferrite in each observation field of view (each cross-sectional observation position) was obtained.
 9個の観察視野(横断面観察位置)でのフェライト面積分率(%)の算術平均値を、9箇所の横断面観察位置C1~C9でのフェライト面積分率の算術平均値(%)と定義した。得られたフェライト面積分率の算術平均値を、表3の「横断面」欄の「フェライト面積分率(%)」欄に示す。 The arithmetic mean value of the ferrite area fraction (%) at the nine observation fields (cross-section observation positions) is the arithmetic mean value (%) of the ferrite area fraction at the nine cross-section observation positions C1 to C9. Defined. The arithmetic mean value of the obtained ferrite surface integral is shown in the "ferrite surface integral (%)" column of the "cross section" column of Table 3.
 [(A12)横断面のフェライトの面積分率の標準偏差]
 9個の観察視野(横断面観察位置)でのフェライト面積分率(%)から、9箇所の横断面観察位置C1~C9でのフェライト面積分率の標準偏差(%)を算出した。得られた標準偏差を、表3の「横断面」欄の「フェライト面積分率の標準偏差(%)」欄に示す。
[(A12) Standard deviation of surface integral of ferrite in cross section]
The standard deviation (%) of the ferrite area fractions at the nine cross-sectional observation positions C1 to C9 was calculated from the ferrite area fractions (%) at the nine observation fields (cross-sectional observation positions). The obtained standard deviation is shown in the "Standard deviation (%) of ferrite surface integral" column in the "Cross section" column of Table 3.
 [(A13)横断面のフェライト平均粒径比]
 さらに、上述の各観察視野(各横断面観察位置C1~C9)で観察された各フェライト粒の面積(μm)を測定した。各横断面観察位置C1~C9で、各フェライト粒の面積の算術平均値を求めた。得られた面積の算術平均値の円相当径を、各横断面観察位置C1~C9でのフェライトの平均粒径(μm)と定義した。
[(A13) Ferrite average particle size ratio in cross section]
Further, the area (μm 2 ) of each ferrite grain observed in each of the above-mentioned observation fields (each cross-sectional observation position C1 to C9) was measured. Arithmetic mean values of the areas of each ferrite grain were obtained at each cross-sectional observation positions C1 to C9. The circle-equivalent diameter of the arithmetic mean value of the obtained area was defined as the average particle size (μm) of ferrite at each cross-sectional observation position C1 to C9.
 9箇所の横断面観察位置C1~C9のフェライトの平均粒径を求めた。そして、これらのフェライトの平均粒径のうち、フェライトの最大の平均粒径(μm)及び最小の平均粒径(μm)を特定した。特定された最小の平均粒径に対する最大の平均粒径の比(フェライト平均粒径比)を求めた。得られたフェライト平均粒径比を、表3の「横断面」欄の「フェライト粒径比」欄に示す。 The average particle size of the ferrites at the cross-sectional observation positions C1 to C9 at 9 locations was determined. Then, among the average particle diameters of these ferrites, the maximum average particle diameter (μm) and the minimum average particle diameter (μm) of ferrite were specified. The ratio of the maximum average particle size to the specified minimum average particle size (ferrite average particle size ratio) was determined. The obtained ferrite average particle size ratio is shown in the "ferrite particle size ratio" column of the "cross section" column of Table 3.
 [(B1)縦断面のミクロ組織の観察]
 各試験番号の鋼材から、各縦断面観察位置L1~L9を含む9つのサンプルを採取した。各サンプルの表面のうち、縦断面LSに相当する表面を観察面とした。観察面において、縦断面観察位置を含む観察視野を0.5mm×1.0mmとした。
[(B1) Observation of microstructure in vertical section]
Nine samples including the vertical cross-sectional observation positions L1 to L9 were taken from the steel materials of each test number. Of the surfaces of each sample, the surface corresponding to the vertical cross section LS was used as the observation surface. On the observation surface, the observation field of view including the vertical cross-sectional observation position was set to 0.5 mm × 1.0 mm.
 サンプルの観察面を研磨した後、3%硝酸アルコール(ナイタール腐食液)を用いて観察面をエッチングした。エッチングされた観察面の観察視野(0.5mm×1.0mm)を、100倍の光学顕微鏡にて観察した。観察視野において、コントラストにより相を特定した。 After polishing the observation surface of the sample, the observation surface was etched with 3% alcohol nitrate (Nital corrosive liquid). The observation field of view (0.5 mm × 1.0 mm) of the etched observation surface was observed with a 100x optical microscope. In the observation field, the phase was identified by contrast.
 観察された相を表3の「縦断面」欄の「相」欄に示す。表3の「縦断面」欄の「相」欄において、全ての縦断面観察位置でのミクロ組織が、フェライトを含有し、残部がパーライト及び/又はベイナイトからなる場合、「○」を示す。いずれの試験番号においても、縦断面のミクロ組織は、フェライトを含有し、残部はパーライト及び/又はベイナイトであった。 The observed phase is shown in the "Phase" column of the "Vertical section" column of Table 3. In the "Phase" column of the "Vertical section" column of Table 3, when the microstructure at all the vertical section observation positions contains ferrite and the balance consists of pearlite and / or bainite, "◯" is indicated. In all test numbers, the microstructure of the longitudinal section contained ferrite and the balance was pearlite and / or bainite.
 [(B11)縦断面のフェライトの面積分率の算術平均値]
 各観察視野(各縦断面観察位置)でのフェライトの面積(μm)を求めた。フェライトの面積と、観察視野の面積とを用いて、各観察視野(各縦断面観察位置)でのフェライトの面積分率(%)を求めた。
[(B11) Arithmetic mean value of surface integral of ferrite in vertical section]
The area of ferrite (μm 2 ) in each observation field (each vertical cross-section observation position) was determined. Using the area of the ferrite and the area of the observation field of view, the surface integral (%) of the ferrite in each observation field of view (each vertical cross-sectional observation position) was obtained.
 9個の観察視野(縦断面観察位置)でのフェライト面積分率(%)の算術平均値を、9箇所の縦断面観察位置L1~L9でのフェライト面積分率の算術平均値(%)と定義した。得られたフェライト面積分率の算術平均値を、表3の「縦断面」欄の「フェライト面積分率(%)」欄に示す。 The arithmetic mean value of the ferrite area fraction (%) in the nine observation fields (vertical cross-section observation positions) is the arithmetic mean value (%) of the ferrite area fraction in the nine vertical cross-section observation positions L1 to L9. Defined. The arithmetic mean value of the obtained ferrite surface integral is shown in the "ferrite surface integral (%)" column of the "longitudinal section" column of Table 3.
 [(B12)縦断面のフェライトの面積分率の標準偏差]
 9個の観察視野(縦断面観察位置)でのフェライト面積分率(%)から、9箇所の縦断面観察位置L1~L9でのフェライト面積分率の標準偏差(%)を算出した。得られた標準偏差を、表3の「縦断面」欄の「フェライト面積分率の標準偏差(%)」欄に示す。
[(B12) Standard deviation of surface integral of ferrite in vertical section]
From the ferrite area fractions (%) at the nine observation fields (vertical cross-sectional observation positions), the standard deviation (%) of the ferrite area fractions at the nine vertical cross-sectional observation positions L1 to L9 was calculated. The obtained standard deviation is shown in the "Standard deviation (%) of ferrite surface integral" column in the "Vertical section" column of Table 3.
 [(B13)縦断面のフェライト平均粒径比]
 さらに、上述の各観察視野(各縦断面観察位置L1~L9)で観察された各フェライト粒の面積(μm)を測定した。各縦断面観察位置L1~L9で、各フェライト粒の面積の算術平均値を求めた。得られた面積の算術平均値の円相当径を、各縦断面観察位置L1~L9でのフェライトの平均粒径(μm)と定義した。
[(B13) Ferrite average particle size ratio in vertical section]
Further, the area (μm 2 ) of each ferrite grain observed in each of the above-mentioned observation fields (each vertical cross-sectional observation position L1 to L9) was measured. Arithmetic mean values of the areas of each ferrite grain were obtained at each vertical cross-sectional observation positions L1 to L9. The circle-equivalent diameter of the arithmetic mean value of the obtained area was defined as the average particle size (μm) of ferrite at each vertical cross-sectional observation position L1 to L9.
 9箇所の縦断面観察位置L1~L9のフェライトの平均粒径を求めた。そして、これらのフェライトの平均粒径のうち、フェライトの最大の平均粒径(μm)及び最小の平均粒径(μm)を特定した。特定された最小の平均粒径に対する最大の平均粒径の比(フェライト平均粒径比)を求めた。得られたフェライト平均粒径比を、表3の「縦断面」欄の「フェライト粒径比」欄に示す。 The average particle size of ferrites at 9 vertical cross-sectional observation positions L1 to L9 was determined. Then, among the average particle diameters of these ferrites, the maximum average particle diameter (μm) and the minimum average particle diameter (μm) of ferrite were specified. The ratio of the maximum average particle size to the specified minimum average particle size (ferrite average particle size ratio) was determined. The obtained ferrite average particle size ratio is shown in the "ferrite particle size ratio" column of the "longitudinal section" column of Table 3.
 [評価試験]
 [(C1)被削性評価試験]
 被削性評価試験を次の方法で実施した。直径50mmの棒鋼に対して、熱間鍛造を模擬した熱処理、及び、恒温焼鈍処理を実施した。具体的には、棒鋼を1200℃で加熱し、1200℃で30分保持した。その後、棒鋼を室温まで放冷した。さらに、950℃で加熱し、950℃で1時間保持した。さらに、650℃で2時間保持した後、室温まで放冷した。放冷後の棒鋼に対して、機械加工(切削加工)を実施し、直径45mm、長さ400mmの被削性評価用の試験片を作製した。
[Evaluation test]
[(C1) Machinability evaluation test]
The machinability evaluation test was carried out by the following method. A heat treatment simulating hot forging and a constant temperature annealing treatment were carried out on a steel bar having a diameter of 50 mm. Specifically, the steel bar was heated at 1200 ° C. and held at 1200 ° C. for 30 minutes. Then, the steel bar was allowed to cool to room temperature. Further, it was heated at 950 ° C. and kept at 950 ° C. for 1 hour. Further, after holding at 650 ° C. for 2 hours, the mixture was allowed to cool to room temperature. Machining (cutting) was carried out on the steel bar after cooling to prepare a test piece for machinability evaluation having a diameter of 45 mm and a length of 400 mm.
 各試験番号の試験片に対して、外周旋削加工を実施して、工具寿命を評価した。具体的には、各試験番号の試験片に対して、次の条件で外周旋削加工を実施した。使用した切削工具は、JIS B 4053(2013)に規定のP20に相当する無コーティングの超硬合金とした。切削速度を250m/分、送り速度を0.35mm/revとし、切込み量を1.0mmとした。旋削時には、水溶性切削油を使用した。 The outer circumference of the test piece of each test number was turned and the tool life was evaluated. Specifically, the test piece of each test number was subjected to outer peripheral lathe processing under the following conditions. The cutting tool used was an uncoated cemented carbide equivalent to P20 specified in JIS B 4053 (2013). The cutting speed was 250 m / min, the feed rate was 0.35 mm / rev, and the depth of cut was 1.0 mm. At the time of turning, water-soluble cutting oil was used.
 上述の切削条件にて20分間、外周旋削加工を実施した。その後、切削工具の逃げ面摩耗量(mm)を測定した。 The outer circumference was turned for 20 minutes under the above-mentioned cutting conditions. Then, the flank wear amount (mm) of the cutting tool was measured.
 得られた逃げ面摩耗量(mm)を表3の「摩耗量(mm)」欄に示す。逃げ面摩耗量(mm)が0.25mm未満である場合、鋼材の被削性が高いと判断した。得られた逃げ面摩耗量(mm)が0.25mm以上である場合、鋼材の被削性は低いと判断した。 The obtained flank wear amount (mm) is shown in the "wear amount (mm)" column of Table 3. When the flank wear amount (mm) was less than 0.25 mm, it was judged that the machinability of the steel material was high. When the obtained flank wear amount (mm) was 0.25 mm or more, it was judged that the machinability of the steel material was low.
 [(C2)曲げ疲労強度評価試験]
 各試験番号の鋼材(直径50mmの棒鋼)から、図6に示す曲げ疲労強度評価のための小野式回転曲げ試験片の中間品を加工した。図6中の数値は、寸法(単位はmm)を示す。図6中の「φ」は直径を意味する。「R1」は、切欠き底の曲率半径が1mmであることを意味する。
[(C2) Bending fatigue strength evaluation test]
From the steel material (steel bar with a diameter of 50 mm) of each test number, an intermediate product of the Ono type rotary bending test piece for evaluation of bending fatigue strength shown in FIG. 6 was processed. The numerical values in FIG. 6 indicate dimensions (unit: mm). “Φ” in FIG. 6 means a diameter. "R1" means that the radius of curvature of the notch bottom is 1 mm.
 具体的には、各試験番号の鋼材(直径50mmの棒鋼)を、加熱温度1200℃、保持時間30分の条件で加熱した。その後、仕上げ温度を950℃以上として熱間加工(熱間鍛造)し、直径35mmの棒鋼を製造した。直径35mmの棒鋼を機械加工(切削加工)して、小野式回転曲げ試験片の中間品を加工した。切り欠き底での中間品の横断面の直径は8mmであった。中間品に対して、浸炭処理(ガス浸炭焼入れ及び焼戻し又は真空浸炭焼入れ及び焼戻し)を実施して、図6に示す小野式回転曲げ試験片を作製した。 Specifically, the steel material (steel bar with a diameter of 50 mm) of each test number was heated under the conditions of a heating temperature of 1200 ° C. and a holding time of 30 minutes. Then, hot working (hot forging) was performed at a finishing temperature of 950 ° C. or higher to produce a steel bar having a diameter of 35 mm. A steel bar having a diameter of 35 mm was machined (cut) to process an intermediate product of the Ono type rotary bending test piece. The diameter of the cross section of the intermediate product at the notched bottom was 8 mm. Carburizing treatment (gas carburizing quenching and tempering or vacuum carburizing quenching and tempering) was carried out on the intermediate product to prepare the Ono type rotary bending test piece shown in FIG.
 試験番号1の試験片に対して、SCM420Hの化学組成を有する鋼に一般的に使用される浸炭処理方法の一つであるガス浸炭処理及び焼戻しを実施した。
 一方、試験番号2~22の試験片に対して、真空浸炭焼入れ及び焼戻しを実施した。実施したガス浸炭処理及び真空浸炭処理の条件は、以下のとおりであった。
The test piece of Test No. 1 was subjected to gas carburizing treatment and tempering, which is one of the carburizing treatment methods generally used for steel having a chemical composition of SCM420H.
On the other hand, the test pieces of test numbers 2 to 22 were vacuum carburized and quenched. The conditions of the gas carburizing treatment and the vacuum carburizing treatment carried out were as follows.
 [ガス浸炭処理及び焼戻し:試験番号1]
 図7は、ガス浸炭処理(ガス浸炭工程及び焼入れ工程)のヒートパターンの一例を示す図である。試験番号1の試験片に対し、図7に示す条件でガス浸炭処理及び焼戻しを実施した。ガス浸炭処理では、ガス浸炭工程S30と、焼入れ工程S20とを実施した。
[Gas carburizing and tempering: test number 1]
FIG. 7 is a diagram showing an example of a heat pattern of gas carburizing treatment (gas carburizing step and quenching step). The test piece of test number 1 was subjected to gas carburizing treatment and tempering under the conditions shown in FIG. In the gas carburizing treatment, the gas carburizing step S30 and the quenching step S20 were carried out.
 具体的には、ガス浸炭工程S30では、試験片に対し、加熱工程S0と、浸炭工程S2と、拡散工程S3とを実施した。加熱工程S0では、試験番号1の丸棒を、浸炭温度Tc:950℃に加熱した。浸炭工程S2では、カーボンポテンシャルCp2が0.80%の雰囲気中で、浸炭温度Tc:950℃、保持時間t2:240分とした。 Specifically, in the gas carburizing step S30, the heating step S0, the carburizing step S2, and the diffusion step S3 were carried out on the test piece. In the heating step S0, the round bar of test number 1 was heated to a carburizing temperature Tc: 950 ° C. In the carburizing step S2, the carburizing temperature Tc: 950 ° C. and the holding time t2: 240 minutes were set in an atmosphere where the carbon potential Cp2 was 0.80%.
 拡散工程S3では、カーボンポテンシャルCp3が0.80%の雰囲気中で、浸炭温度Tc:950℃、保持時間t3:60分とした。 In the diffusion step S3, the carburizing temperature Tc: 950 ° C. and the holding time t3: 60 minutes were set in an atmosphere where the carbon potential Cp3 was 0.80%.
 拡散工程S3後、焼入れ工程S20を実施した。焼入れ工程S20では、均熱工程S4を実施した。850℃まで炉冷した後、均熱工程S4では、焼入れ温度Ts:850℃、保持時間t4:30分とした。その後、130℃の油で焼入れを実施した。 After the diffusion step S3, the quenching step S20 was carried out. In the quenching step S20, the soaking step S4 was carried out. After cooling to 850 ° C., in the soaking step S4, the quenching temperature was Ts: 850 ° C. and the holding time was t4: 30 minutes. Then, quenching was carried out with oil at 130 ° C.
 焼入れ後、試験片に対して焼戻しを実施した。焼戻し温度は180℃であり、焼戻し温度での保持時間は120分であった。保持時間経過後は空冷した。 After quenching, the test piece was tempered. The tempering temperature was 180 ° C., and the holding time at the tempering temperature was 120 minutes. After the holding time had elapsed, it was air-cooled.
 以上のガス浸炭方法により、鋼材(丸棒)の表面のC濃度を0.80質量%に調整した。 By the above gas carburizing method, the C concentration on the surface of the steel material (round bar) was adjusted to 0.80% by mass.
 [真空浸炭焼入れ及び焼戻し]
 試験番号2~22の試験片に対しては、図5に示す真空浸炭処理及び焼戻しを実施した。具体的には、炉内の圧力を10Pa以下に保持した。加熱工程S0では、各試験番号の丸棒を、浸炭温度Tc:950℃に加熱した。加熱工程S0後、均熱工程S1を実施した。均熱工程S1では、浸炭温度Tc:950℃で鋼材(丸棒)を保持時間t1:60分保持した。
[Vacuum carburizing quenching and tempering]
The test pieces of test numbers 2 to 22 were subjected to vacuum carburizing treatment and tempering as shown in FIG. Specifically, the pressure in the furnace was kept below 10 Pa. In the heating step S0, the round bar of each test number was heated to a carburizing temperature Tc: 950 ° C. After the heating step S0, the soaking step S1 was carried out. In the soaking step S1, the steel material (round bar) was held at a carburizing temperature Tc: 950 ° C. for a holding time t1: 60 minutes.
 均熱工程S1後、浸炭工程S2を実施した。浸炭工程S2では、真空浸炭炉内に、浸炭ガスとしてアセチレンを供給した。浸炭工程S2での浸炭ガス圧は、1kPa以下に保持した。浸炭工程S2では、浸炭温度Tc:950℃での保持時間t2が40分であった。拡散工程S3での浸炭ガス圧は5hPa以下に保持した。拡散工程S3では、浸炭温度Tc:950℃での保持時間t3は70分であった。 After the soaking step S1, the carburizing step S2 was carried out. In the carburizing step S2, acetylene was supplied as a carburizing gas into the vacuum carburizing furnace. The carburized gas pressure in the carburizing step S2 was kept below 1 kPa. In the carburizing step S2, the holding time t2 at the carburizing temperature Tc: 950 ° C. was 40 minutes. The carburized gas pressure in the diffusion step S3 was kept below 5 hPa. In the diffusion step S3, the holding time t3 at the carburizing temperature Tc: 950 ° C. was 70 minutes.
 拡散工程S3後の均熱工程S4では、鋼材温度を850℃まで炉冷した後、試験片を焼入れ温度Ts:850℃で保持時間t4:30分均熱した。その後、130℃の油で焼入れを実施した。 In the heat equalizing step S4 after the diffusion step S3, the temperature of the steel material was cooled to 850 ° C., and then the test piece was equalized at a quenching temperature Ts: 850 ° C. and a holding time t4: 30 minutes. Then, quenching was carried out with oil at 130 ° C.
 焼入れ後、試験片に対して焼戻しを実施した。焼戻し温度は180℃であり、焼戻し温度での保持時間は120分であった。保持時間経過後は空冷した。 After quenching, the test piece was tempered. The tempering temperature was 180 ° C., and the holding time at the tempering temperature was 120 minutes. After the holding time had elapsed, it was air-cooled.
 以上の真空浸炭方法により、鋼材(丸棒)の表面のC濃度を0.80質量%に調整した。 By the above vacuum carburizing method, the C concentration on the surface of the steel material (round bar) was adjusted to 0.80% by mass.
 浸炭処理(ガス浸炭焼入れ及び焼戻し又は真空浸炭焼入れ及び焼戻し)後の小野式回転曲げ試験片を用いて、小野式回転曲げ疲労試験を行った。各試験番号ごとに複数の試験片を準備した。各試験片ごとに加える応力を変えて疲労試験を実施し、1000万回(10回)繰り返した後、破断しなかった最も高い応力を曲げ疲労強度(MPa)とした。小野式回転曲げ疲労試験では、回転速度を3000rpmとし、応力比を両振りとした。 An Ono-type rotary bending fatigue test was performed using an Ono-type rotary bending test piece after carburizing (gas carburizing and tempering or vacuum carburizing and tempering and tempering). Multiple test pieces were prepared for each test number. A fatigue test was carried out by changing the stress applied to each test piece, and after repeating 10 million times ( 107 times), the highest stress that did not break was taken as the bending fatigue strength (MPa). In the Ono-type rotary bending fatigue test, the rotational speed was 3000 rpm and the stress ratio was double swing.
 試験番号1の鋼材を用いた試験片を基準鋼とした。各試験番号の曲げ疲労強度の、基準鋼の曲げ疲労強度に対する比を曲げ疲労強度比と定義した。つまり、次式により、曲げ疲労強度比(%)を求めた。
 曲げ疲労強度比(%)=(各試験番号の曲げ疲労強度(MPa)/基準鋼の曲げ疲労強度(MPa))×100
The test piece using the steel material of test number 1 was used as the reference steel. The ratio of the bending fatigue strength of each test number to the bending fatigue strength of the reference steel was defined as the bending fatigue strength ratio. That is, the bending fatigue strength ratio (%) was obtained by the following equation.
Bending fatigue strength ratio (%) = (Bending fatigue strength (MPa) of each test number / Bending fatigue strength of standard steel (MPa)) x 100
 得られた曲げ疲労強度比(%)を表3の「曲げ疲労強度比(%)」欄に示す。得られた曲げ疲労強度比が120%以上であれば、十分な曲げ疲労強度が得られると判断した。一方、曲げ疲労強度比が120%未満であれば、曲げ疲労強度が低いと判断した。 The obtained bending fatigue strength ratio (%) is shown in the "Bending fatigue strength ratio (%)" column of Table 3. When the obtained bending fatigue strength ratio was 120% or more, it was judged that sufficient bending fatigue strength could be obtained. On the other hand, if the bending fatigue strength ratio is less than 120%, it is determined that the bending fatigue strength is low.
 [(C3)面疲労強度評価試験]
 各試験番号の鋼材(直径50mmの棒鋼)から、図8に示す面疲労強度評価試験のためのローラーピッチング疲労試験用試験片の中間品を加工した。図8中の数値は、寸法(単位はmm)を示す。図中の「φ」は直径を意味する。
[(C3) Surface fatigue strength evaluation test]
From the steel material (steel bar having a diameter of 50 mm) of each test number, an intermediate product of a test piece for a roller pitching fatigue test for a surface fatigue strength evaluation test shown in FIG. 8 was processed. The numerical values in FIG. 8 indicate the dimensions (unit: mm). “Φ” in the figure means the diameter.
 具体的には、各試験番号の鋼材(直径50mmの棒鋼)を、加熱温度1200℃、保持時間30分の条件で加熱した。その後、仕上げ温度を950℃以上として熱間加工(熱間鍛造)し、直径35mmの棒鋼を製造した。直径35mmの棒鋼を機械加工(切削加工)して、ローラーピッチング疲労試験用試験片の中間品を加工した。試験番号1の中間品に対して、上述の条件のガス浸炭処理及び焼戻しを実施した。試験番号2~22の中間品に対して、上述の条件の真空浸炭処理及び焼戻しを実施した。以上の工程により、図8に示すローラーピッチング疲労試験用試験片(小ローラー試験片)を作製した。 Specifically, the steel material (steel bar with a diameter of 50 mm) of each test number was heated under the conditions of a heating temperature of 1200 ° C. and a holding time of 30 minutes. Then, hot working (hot forging) was performed at a finishing temperature of 950 ° C. or higher to produce a steel bar having a diameter of 35 mm. A steel bar having a diameter of 35 mm was machined (cut) to process an intermediate product of a test piece for a roller pitching fatigue test. The intermediate product of Test No. 1 was subjected to gas carburizing treatment and tempering under the above conditions. The intermediate products of test numbers 2 to 22 were vacuum carburized and tempered under the above conditions. Through the above steps, the roller pitching fatigue test test piece (small roller test piece) shown in FIG. 8 was produced.
 図9は、ローラーピッチング疲労試験の模式図である。図9に示すとおり、小ローラー試験片200に大ローラー試験片100を後述する面圧で押し当てながら小ローラー試験片200を回転させた。小ローラー試験片200は上記試験片の方法で作製したローラーピッチング疲労試験用試験片であった。大ローラー試験片は図10に示す形状を有した。図10中の数値は、寸法(単位はmm)を示す。図中の「R700」は外周面の曲率半径が700mmであったことを示す。 FIG. 9 is a schematic diagram of a roller pitching fatigue test. As shown in FIG. 9, the small roller test piece 200 was rotated while pressing the large roller test piece 100 against the small roller test piece 200 with a surface pressure described later. The small roller test piece 200 was a test piece for a roller pitching fatigue test produced by the method of the above test piece. The large roller test piece had the shape shown in FIG. The numerical values in FIG. 10 indicate the dimensions (unit: mm). “R700” in the figure indicates that the radius of curvature of the outer peripheral surface was 700 mm.
 大ローラー試験片100はJIS G 4053(2016)に規定のSCM420Hに相当する化学組成を有する鋼を用いて、基準鋼である試験番号1の小ローラー試験片200と同じ条件のガス浸炭処理後に表面研磨したものを使用した。大ローラー試験片100の直径は130mmであった。 The large roller test piece 100 uses a steel having a chemical composition equivalent to SCM420H specified in JIS G4053 (2016), and has a surface after gas carburizing treatment under the same conditions as the small roller test piece 200 of test number 1 which is a standard steel. The polished one was used. The diameter of the large roller test piece 100 was 130 mm.
 ローラーピッチング疲労試験では、小ローラー試験片200に種々のヘルツ応力の面圧で大ローラー試験片100を押し付けた。接触部での両ローラー試験片の周速方向を同一方向とし、滑り率を-40%(小ローラー試験片200よりも大ローラー試験片100の方が接触部の周速が40%大きい)として回転させて試験を行った。上記接触部に潤滑油として供給するATF(AT用潤滑油)の油温は90℃であり、大ローラー試験片100と小ローラー試験片200との接触応力の最大面圧は4000MPaであった。試験打ち切り回数を2000万回(2.0×10回)とした。各試験番号当たり、複数の試験片に対して、2.0×10回繰り返した後、ピッチングが発生しなかった最も高い応力を面疲労強度(MPa)とした。 In the roller pitching fatigue test, the large roller test piece 100 was pressed against the small roller test piece 200 at a surface pressure of various Hertz stresses. The peripheral speed direction of both roller test pieces at the contact portion is the same, and the slip ratio is -40% (the peripheral speed of the contact portion is 40% higher for the large roller test piece 100 than for the small roller test piece 200). The test was performed by rotating. The oil temperature of ATF (lubricating oil for AT) supplied to the contact portion as lubricating oil was 90 ° C., and the maximum surface pressure of the contact stress between the large roller test piece 100 and the small roller test piece 200 was 4000 MPa. The number of test terminations was set to 20 million (2.0 × 107 ). For each test number, the highest stress at which pitching did not occur after repeating 2.0 × 10 7 times for a plurality of test pieces was defined as the surface fatigue strength (MPa).
 試験番号1の鋼材を用いた試験片を基準鋼とした。各試験番号の面疲労強度の、基準鋼の面疲労強度に対する比を面疲労強度比と定義した。つまり、次式により、面疲労強度比(%)を求めた。
 面疲労強度比(%)=(各試験番号の面疲労強度(MPa)/基準鋼の面疲労強度(MPa))×100
The test piece using the steel material of test number 1 was used as the reference steel. The ratio of the surface fatigue strength of each test number to the surface fatigue strength of the reference steel was defined as the surface fatigue strength ratio. That is, the surface fatigue strength ratio (%) was obtained by the following equation.
Surface fatigue strength ratio (%) = (surface fatigue strength (MPa) of each test number / surface fatigue strength of standard steel (MPa)) × 100
 得られた面疲労強度比(%)を表3の「面疲労強度比(%)」欄に示す。得られた面疲労強度比が125%以上であれば、十分な面疲労強度が得られると判断した。一方、面疲労強度比が125%未満であれば、面疲労強度が低いと判断した。 The obtained surface fatigue intensity ratio (%) is shown in the "surface fatigue intensity ratio (%)" column of Table 3. When the obtained surface fatigue strength ratio was 125% or more, it was judged that sufficient surface fatigue strength could be obtained. On the other hand, if the surface fatigue strength ratio is less than 125%, it is determined that the surface fatigue strength is low.
 [(C4)熱処理変形量評価試験]
 各試験番号の鋼材(直径50mmの棒鋼)から、図11Aに示す歯車模擬試験片を作製した。具体的には、各試験番号の鋼材(直径50mmの棒鋼)を、加熱温度1200℃、保持時間30分の条件で加熱した。その後、仕上げ温度を950℃以上として熱間加工(熱間鍛造)し、直径35mmの棒鋼を製造した。直径35mmの棒鋼を機械加工(切削加工)して、浸炭処理(ガス浸炭処理、真空浸炭処理)前の歯車模擬試験片を作製した。
[(C4) Heat treatment deformation amount evaluation test]
The gear simulation test piece shown in FIG. 11A was produced from the steel material (steel bar having a diameter of 50 mm) of each test number. Specifically, the steel material (steel bar having a diameter of 50 mm) of each test number was heated under the conditions of a heating temperature of 1200 ° C. and a holding time of 30 minutes. Then, hot working (hot forging) was performed at a finishing temperature of 950 ° C. or higher to produce a steel bar having a diameter of 35 mm. A steel bar having a diameter of 35 mm was machined (cut) to prepare a gear simulation test piece before carburizing (gas carburizing, vacuum carburizing).
 図11A中で「mm」が付随した数値は、寸法(単位はmm)を示す。図中の「φ」は直径を意味する。歯車模擬試験片は、円錐台形状を有した。歯車模擬試験片は、直径22mmの円形状の上面と、直径34mmの円形状の下面とを備えた。歯車模擬試験片は、中心軸CL2を含む円柱状の貫通孔THを有した。貫通孔THの直径(内径)は15mmであり、貫通孔THの中心軸は、歯車模擬試験片の中心軸と一致した。 The numerical value accompanied by "mm" in FIG. 11A indicates the dimension (unit is mm). “Φ” in the figure means the diameter. The gear simulation test piece had a truncated cone shape. The gear simulation test piece includes a circular upper surface having a diameter of 22 mm and a circular lower surface having a diameter of 34 mm. The gear simulation test piece had a columnar through hole TH including the central axis CL2. The diameter (inner diameter) of the through hole TH was 15 mm, and the central axis of the through hole TH coincided with the central axis of the gear simulation test piece.
 作製した浸炭処理前の歯車模擬試験片の貫通孔THの長手方向の各位置での内径(直径)を、3次元測定機で測定した。3次元測定機として、株式会社ミツトヨ製のCNC三次元測定機(商品名:Crysta-Apex)を用いた。 The inner diameter (diameter) of the prepared gear simulation test piece before carburizing treatment at each position in the longitudinal direction of the through hole TH was measured with a three-dimensional measuring machine. As a three-dimensional measuring machine, a CNC three-dimensional measuring machine (trade name: Crysta-Apex) manufactured by Mitutoyo Co., Ltd. was used.
 具体的には、図11Bに示すとおり、貫通孔THの長手方向の上端から下端に向かって、上端から1.0~16.0mmの範囲では、1.0mmピッチ位置で合計16個の内径を測定した。さらに、貫通孔THの長手方向の上端から下端に向かって、上端から0.5mm位置、及び、上端から16.5mm位置での内径を測定した。つまり、貫通孔THの長手方向の18測定位置で、貫通孔THの内径を測定した。さらに、各測定位置では、中心軸CL2周りに10°ピッチで合計18箇所(図11B中の点P1~P18)の内径を測定した。したがって、貫通孔THにおいて、18測定位置×18箇所=324点の内径を測定した。 Specifically, as shown in FIG. 11B, a total of 16 inner diameters are formed at 1.0 mm pitch positions in the range of 1.0 to 16.0 mm from the upper end toward the lower end in the longitudinal direction of the through hole TH. It was measured. Further, the inner diameter was measured at a position 0.5 mm from the upper end and a position 16.5 mm from the upper end toward the lower end from the upper end in the longitudinal direction of the through hole TH. That is, the inner diameter of the through hole TH was measured at 18 measurement positions in the longitudinal direction of the through hole TH. Further, at each measurement position, the inner diameters of a total of 18 points (points P1 to P18 in FIG. 11B) were measured at a pitch of 10 ° around the central axis CL2. Therefore, in the through hole TH, the inner diameter of 18 measurement positions × 18 points = 324 points was measured.
 上記内径測定後の歯車模擬試験片に対して、上述の浸炭処理条件で浸炭処理(ガス浸炭焼入れ及び焼戻し、又は、真空浸炭焼入れ及び焼戻し)を実施して、浸炭処理後の歯車模擬試験片を作製した。具体的には、試験番号1の歯車模擬試験片に対して、上述の条件のガス浸炭処理及び焼戻しを実施した。試験番号2~22の歯車模擬試験片に対して、上述の条件の真空浸炭処理及び焼戻しを実施した。浸炭処理後の各試験番号の歯車模擬試験片に対して、浸炭処理前の歯車模擬試験片の貫通孔THの内径測定方法と同じ方法で、貫通孔THの内径を測定した。 The gear simulated test piece after the inner diameter measurement is subjected to carburizing treatment (gas carburizing quenching and tempering, or vacuum carburizing quenching and tempering) under the above carburizing treatment conditions, and the gear simulated test piece after the carburizing treatment is obtained. Made. Specifically, the gear simulated test piece of test number 1 was subjected to gas carburizing treatment and tempering under the above-mentioned conditions. The gear simulated test pieces of test numbers 2 to 22 were subjected to vacuum carburizing treatment and tempering under the above conditions. The inner diameter of the through hole TH was measured for the gear simulated test piece of each test number after the carburizing treatment by the same method as the method for measuring the inner diameter of the through hole TH of the gear simulated test piece before the carburizing treatment.
 [熱処理の最大変形量比]
 貫通孔THの各測定位置の各点P1~P18において、浸炭処理前の内径(μm)から浸炭処理後の内径(μm)を減じた値を、各測定位置の各点P1~P18での熱処理変形量とした。各試験番号において、合計324点の測定結果における最大の熱処理変形量を求めた。
[Maximum deformation ratio of heat treatment]
At each point P1 to P18 of each measurement position of the through hole TH, the value obtained by subtracting the inner diameter (μm) after the carburizing treatment from the inner diameter (μm) before the carburizing treatment is the heat treatment at each point P1 to P18 at each measurement position. The amount of deformation was used. For each test number, the maximum amount of heat treatment deformation in the measurement results of a total of 324 points was determined.
 各試験番号の最大の熱処理変形量の、基準鋼(試験番号1)の最大の熱処理変形量に対する比を「最大変形量比」と定義した。つまり、次式により、最大変形量比(%)を求めた。
 最大変形量比(%)=(各試験番号の最大の熱処理変形量(mm)/基準鋼の最大の熱処理変形量(mm))×100
The ratio of the maximum heat treatment deformation amount of each test number to the maximum heat treatment deformation amount of the reference steel (test number 1) was defined as "maximum deformation amount ratio". That is, the maximum deformation amount ratio (%) was obtained by the following equation.
Maximum deformation amount ratio (%) = (maximum heat treatment deformation amount (mm) of each test number / maximum heat treatment deformation amount (mm) of reference steel) × 100
 得られた最大変形量比(%)を表3の「最大変形量比(%)」欄に示す。得られた最大変形量比が90%以下であれば、最大変形量比が小さいと判断した。一方、最大変形量比が90%を超える場合、最大変形量比が大きいと判断した。 The obtained maximum deformation amount ratio (%) is shown in the "maximum deformation amount ratio (%)" column of Table 3. If the obtained maximum deformation amount ratio is 90% or less, it is determined that the maximum deformation amount ratio is small. On the other hand, when the maximum deformation amount ratio exceeds 90%, it is determined that the maximum deformation amount ratio is large.
 [熱処理の変形量差比]
 各試験番号において、合計324点の測定結果における最大の熱処理変形量及び最小の熱処理変形量を求めた。得られた最大の熱処理変形量から最小の熱処理変形量を減じた値を変形量差(μm)と定義した。
[Ratio of deformation amount of heat treatment]
In each test number, the maximum heat treatment deformation amount and the minimum heat treatment deformation amount in the measurement results of a total of 324 points were determined. The value obtained by subtracting the minimum heat treatment deformation amount from the obtained maximum heat treatment deformation amount was defined as the deformation amount difference (μm).
 各試験番号の変形量差の、基準鋼(試験番号1)の変形量差に対する比を変形量差比と定義した。つまり、次式により、変形量差比を求めた。
 変形量差比(%)=(各試験番号の変形量差(μm)/基準鋼の変形量差(μm))×100
The ratio of the deformation amount difference of each test number to the deformation amount difference of the reference steel (test number 1) was defined as the deformation amount difference ratio. That is, the deformation amount difference ratio was obtained by the following equation.
Deformation amount difference ratio (%) = (deformation amount difference of each test number (μm) / deformation amount difference of reference steel (μm)) × 100
 得られた変形量差比(%)を表3の「変形量差比(%)」欄に示す。得られた変形量差比が90%以下であれば、変形量差比が小さいと判断した。一方、変形量差比が90%を超える場合、変形量差比が大きいと判断した。 The obtained deformation amount difference ratio (%) is shown in the "deformation amount difference ratio (%)" column of Table 3. If the obtained deformation amount difference ratio is 90% or less, it is determined that the deformation amount difference ratio is small. On the other hand, when the deformation amount difference ratio exceeds 90%, it is determined that the deformation amount difference ratio is large.
 最大変形量比及び変形量差比がいずれも90%以下であれば、熱処理変形が三次元的に十分に抑制できていると判断した。最大変形量比及び/又は変形量差比が90%を超える場合、熱処理変形が十分に抑制できていないと判断した。 If both the maximum deformation amount ratio and the deformation amount difference ratio were 90% or less, it was judged that the heat treatment deformation could be sufficiently suppressed three-dimensionally. When the maximum deformation amount ratio and / or the deformation amount difference ratio exceeds 90%, it is judged that the heat treatment deformation cannot be sufficiently suppressed.
 [試験結果]
 表3に試験結果を示す。表3を参照して、試験番号4~6の鋼材では、化学組成中の各元素含有量は適切であり、F1及びF2が式(1)及び式(2)を満たした。さらに、試験番号4~6の鋼材は、製造条件も適切であった。そのため、鋼材のミクロ組織が適切であった。具体的には、試験番号4~6の横断面のミクロ組織は、フェライトを含有し、残部がパーライト及び/又はベイナイトからなる組織であった。さらに、フェライトの面積分率の算術平均値は50~70%であり、フェライトの面積分率の標準偏差は4.0%以下であり、フェライト平均粒径比は2.00以下であった。さらに、試験番号4~6の縦断面のミクロ組織は、フェライトを含有し、残部がパーライト及び/又はベイナイトからなる組織であった。さらに、フェライトの面積分率の算術平均値は50~70%であり、フェライトの面積分率の標準偏差は4.0%以下であり、フェライト平均粒径比は2.00以下であった。
[Test results]
Table 3 shows the test results. With reference to Table 3, in the steel materials of test numbers 4 to 6, the content of each element in the chemical composition was appropriate, and F1 and F2 satisfied the formulas (1) and (2). Furthermore, the production conditions of the steel materials of test numbers 4 to 6 were also appropriate. Therefore, the microstructure of the steel material was appropriate. Specifically, the microstructure of the cross section of Test Nos. 4 to 6 contained ferrite and the balance was a structure composed of pearlite and / or bainite. Further, the arithmetic mean value of the area fraction of ferrite was 50 to 70%, the standard deviation of the area fraction of ferrite was 4.0% or less, and the ferrite average particle size ratio was 2.00 or less. Further, the microstructure of the vertical cross section of Test Nos. 4 to 6 contained ferrite, and the balance was a structure composed of pearlite and / or bainite. Further, the arithmetic mean value of the area fraction of ferrite was 50 to 70%, the standard deviation of the area fraction of ferrite was 4.0% or less, and the ferrite average particle size ratio was 2.00 or less.
 そのため、被削性評価試験において、逃げ面摩耗量が0.25mm未満であり、被削性が高かった。さらに、曲げ疲労強度比が120%以上であり、面疲労強度比が125%以上であり、曲げ疲労強度及び面疲労強度が共に優れていた。さらに、熱処理における最大変形量比及び変形量差比が90%以下であり、熱処理変形が三次元的に十分に抑制されていた。 Therefore, in the machinability evaluation test, the flank wear amount was less than 0.25 mm, and the machinability was high. Further, the bending fatigue strength ratio was 120% or more, the surface fatigue strength ratio was 125% or more, and both the bending fatigue strength and the surface fatigue strength were excellent. Further, the maximum deformation amount ratio and the deformation amount difference ratio in the heat treatment were 90% or less, and the heat treatment deformation was sufficiently suppressed three-dimensionally.
 一方、試験番号2及び3では、分塊圧延工程の保持時間が10時間未満であった。そのため、横断面及び縦断面の鋼材のフェライトの面積分率の標準偏差が4.0%を超えた。その結果、熱処理における変形量差比が90%を超え、熱処理変形が十分に抑制されなかった。 On the other hand, in test numbers 2 and 3, the holding time of the lump rolling process was less than 10 hours. Therefore, the standard deviation of the surface integral of the ferrite of the steel material in the cross section and the vertical section exceeded 4.0%. As a result, the deformation amount difference ratio in the heat treatment exceeded 90%, and the heat treatment deformation was not sufficiently suppressed.
 試験番号7及び8では、分塊圧延工程の加熱温度が低すぎた。そのため、横断面及び縦断面のフェライトの面積分率の標準偏差が4.0%を超えた。その結果、熱処理における変形量差比が90%を超え、熱処理変形が十分に抑制されなかった。 In test numbers 7 and 8, the heating temperature in the lump rolling process was too low. Therefore, the standard deviation of the surface integral of the ferrite in the cross section and the vertical section exceeded 4.0%. As a result, the deformation amount difference ratio in the heat treatment exceeded 90%, and the heat treatment deformation was not sufficiently suppressed.
 試験番号9及び10では、仕上げ圧延工程の加熱温度が低すぎた。そのため、横断面及び縦断面のフェライト平均粒径比が2.00を超えた。その結果、熱処理における変形量差比が90%を超え、熱処理変形が十分に抑制されなかった。 In test numbers 9 and 10, the heating temperature in the finish rolling process was too low. Therefore, the ferrite average particle size ratio in the cross section and the vertical section exceeded 2.00. As a result, the deformation amount difference ratio in the heat treatment exceeded 90%, and the heat treatment deformation was not sufficiently suppressed.
 試験番号11及び12では、仕上げ圧延工程の保持時間が短すぎた。そのため、横断面及び縦断面のフェライト平均粒径比が2.00を超えた。その結果、熱処理における変形量差比が90%を超え、熱処理変形が十分に抑制されなかった。 In test numbers 11 and 12, the holding time of the finish rolling process was too short. Therefore, the ferrite average particle size ratio in the cross section and the vertical section exceeded 2.00. As a result, the deformation amount difference ratio in the heat treatment exceeded 90%, and the heat treatment deformation was not sufficiently suppressed.
 試験番号13及び14では、仕上げ圧延工程の仕上げ温度が高すぎた。そのため、横断面及び縦断面のフェライト平均粒径比が2.00を超えた。その結果、熱処理における変形量差比が90%を超え、熱処理変形が十分に抑制されなかった。 In test numbers 13 and 14, the finishing temperature of the finishing rolling process was too high. Therefore, the ferrite average particle size ratio in the cross section and the vertical section exceeded 2.00. As a result, the deformation amount difference ratio in the heat treatment exceeded 90%, and the heat treatment deformation was not sufficiently suppressed.
 試験番号15及び16では、仕上げ圧延工程の仕上げ温度が低すぎた。そのため、横断面及び縦断面のフェライト平均粒径比が2.00を超えた。その結果、熱処理における変形量差比が90%を超え、熱処理変形が十分に抑制されなかった。 In test numbers 15 and 16, the finish temperature of the finish rolling process was too low. Therefore, the ferrite average particle size ratio in the cross section and the vertical section exceeded 2.00. As a result, the deformation amount difference ratio in the heat treatment exceeded 90%, and the heat treatment deformation was not sufficiently suppressed.
 試験番号17及び18では、冷却工程の冷却速度が遅すぎた。そのため、横断面及び縦断面のフェライトの面積分率の算術平均値が70%を超えた。そのため、熱処理における変形量差比が90%を超え、熱処理変形が十分に抑制されなかった。 In test numbers 17 and 18, the cooling rate in the cooling process was too slow. Therefore, the arithmetic mean value of the surface integral of the ferrite in the cross section and the vertical section exceeded 70%. Therefore, the deformation amount difference ratio in the heat treatment exceeded 90%, and the heat treatment deformation was not sufficiently suppressed.
 試験番号19及び20では、冷却工程の冷却速度が速すぎた。そのため、横断面及び縦断面のフェライトの面積分率の算術平均値が50%未満であった。そのため、逃げ面摩耗量が0.25mm以上であった。その結果、鋼材の被削性が低かった。 In test numbers 19 and 20, the cooling rate in the cooling process was too fast. Therefore, the arithmetic mean value of the surface integral of the ferrite in the cross section and the vertical section was less than 50%. Therefore, the amount of flank wear was 0.25 mm or more. As a result, the machinability of the steel material was low.
 試験番号21及び22では、温度保持工程の冷却速度が速すぎた。そのため、縦断面のミクロ組織において、フェライト平均粒径比が2.00を超えた。そのため、熱処理における変形量差比が90%を超え、熱処理変形が十分に抑制されなかった。 In test numbers 21 and 22, the cooling rate in the temperature holding process was too fast. Therefore, the ferrite average particle size ratio exceeded 2.00 in the microstructure of the vertical cross section. Therefore, the deformation amount difference ratio in the heat treatment exceeded 90%, and the heat treatment deformation was not sufficiently suppressed.
 実施例1と同様に、表4に示す化学組成を有する鋼材を準備した。 Similar to Example 1, a steel material having the chemical composition shown in Table 4 was prepared.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 次の方法により、鋼材を製造した。溶鋼に対して、表2の製造条件bを用いて、実施例1と同様に、表5に示す試験番号1~35の鋼材(棒鋼)を製造した。 Steel materials were manufactured by the following method. With respect to the molten steel, the steel materials (steel bars) of the test numbers 1 to 35 shown in Table 5 were produced in the same manner as in Example 1 using the production condition b in Table 2.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 [評価試験]
 以上の製造工程で製造された鋼材(棒鋼)に対して、実施例1と同じ方法で、実施例1と同じ測定及び評価試験を実施した。なお、(C2)曲げ疲労強度評価試験、(C3)面疲労強度評価試験、及び、(C4)熱処理変形量評価試験では、基準鋼として、表1の試験番号1の鋼材を用いた。
[Evaluation test]
The same measurement and evaluation test as in Example 1 was carried out on the steel material (steel bar) manufactured in the above manufacturing process by the same method as in Example 1. In the (C2) bending fatigue strength evaluation test, (C3) surface fatigue strength evaluation test, and (C4) heat treatment deformation amount evaluation test, the steel material of test number 1 in Table 1 was used as the reference steel.
 [試験結果]
 表5に試験結果を示す。表5を参照して、試験番号1~18の鋼材の化学組成において、各元素含有量は適切であり、F1が式(1)を満たし、F2が式(2)を満たした。さらに、試験番号1~18の鋼材は、製造条件も適切であった。そのため、鋼材のミクロ組織が適切であった。具体的には、試験番号1~18の横断面のミクロ組織は、フェライト、パーライト及び/又はベイナイトからなり、フェライトの面積分率の算術平均値は50~70%であり、フェライトの面積分率の標準偏差は4.0%以下であり、フェライト平均粒径比は2.00以下であった。試験番号1~18の縦断面のミクロ組織は、フェライト、パーライト及び/又はベイナイトからなり、フェライトの面積分率の算術平均値は50~70%であり、フェライトの面積分率の標準偏差は4.0%以下であり、フェライト平均粒径比は2.00以下であった。そのため、逃げ面摩耗量が0.25mm未満であり、被削性が高かった。さらに、曲げ疲労強度比が120%以上であり、面疲労強度比が125%以上であり、曲げ疲労強度及び面疲労強度が共に優れていた。さらに、熱処理における最大変形量比及び変形量差比が90%以下であり、熱処理変形が十分に抑制されていた。
[Test results]
Table 5 shows the test results. With reference to Table 5, in the chemical composition of the steel materials of Test Nos. 1 to 18, the content of each element was appropriate, F1 satisfied the formula (1), and F2 satisfied the formula (2). Further, the steel materials of test numbers 1 to 18 had appropriate manufacturing conditions. Therefore, the microstructure of the steel material was appropriate. Specifically, the microstructure of the cross section of test numbers 1 to 18 is composed of ferrite, pearlite and / or bainite, and the arithmetic mean value of the area fraction of ferrite is 50 to 70%, and the area fraction of ferrite. The standard deviation of was 4.0% or less, and the ferrite average particle size ratio was 2.00 or less. The microstructure of the vertical cross section of test numbers 1 to 18 consists of ferrite, pearlite and / or bainite, the arithmetic mean value of the area fraction of ferrite is 50 to 70%, and the standard deviation of the area fraction of ferrite is 4. It was 0.0% or less, and the ferrite average particle size ratio was 2.00 or less. Therefore, the flank wear amount was less than 0.25 mm, and the machinability was high. Further, the bending fatigue strength ratio was 120% or more, the surface fatigue strength ratio was 125% or more, and both the bending fatigue strength and the surface fatigue strength were excellent. Further, the maximum deformation amount ratio and the deformation amount difference ratio in the heat treatment were 90% or less, and the heat treatment deformation was sufficiently suppressed.
 一方、試験番号19~23では、F2が高すぎた。そのため、熱処理における最大変形量比が90%を超え、熱処理変形が十分に抑制されなかった。 On the other hand, in test numbers 19-23, F2 was too high. Therefore, the maximum deformation amount ratio in the heat treatment exceeded 90%, and the heat treatment deformation was not sufficiently suppressed.
 試験番号24及び25では、F1が低すぎた。そのため、曲げ疲労強度比が120%未満であり、曲げ疲労強度が低かった。 In test numbers 24 and 25, F1 was too low. Therefore, the bending fatigue strength ratio was less than 120%, and the bending fatigue strength was low.
 試験番号26は、C含有量が高すぎた。そのため、逃げ面摩耗量が0.25mm以上であり、被削性が低かった。 Test number 26 had too high a C content. Therefore, the flank wear amount was 0.25 mm or more, and the machinability was low.
 試験番号27は、Si含有量が低すぎた。そのため、F1が式(1)を満たさなかった。そのため、曲げ疲労強度比が120%未満であり、面疲労強度比が125%未満であった。その結果、曲げ疲労強度及び面疲労強度が低かった。 Test number 27 had a Si content that was too low. Therefore, F1 did not satisfy the formula (1). Therefore, the bending fatigue strength ratio was less than 120%, and the surface fatigue strength ratio was less than 125%. As a result, the bending fatigue strength and the surface fatigue strength were low.
 試験番号28は、Si及びMn含有量が低すぎた。そのため、曲げ疲労強度比が120%未満であり、面疲労強度比が125%未満であった。その結果、曲げ疲労強度及び面疲労強度が共に不十分であった。 Test number 28 had too low Si and Mn contents. Therefore, the bending fatigue strength ratio was less than 120%, and the surface fatigue strength ratio was less than 125%. As a result, both bending fatigue strength and surface fatigue strength were insufficient.
 試験番号29は、Si含有量が高すぎた。そのため、逃げ面摩耗量が0.25mm以上であり、被削性が低かった。 Test number 29 had too high a Si content. Therefore, the flank wear amount was 0.25 mm or more, and the machinability was low.
 試験番号30は、Mn含有量が低すぎた。そのため、曲げ疲労強度比が120%未満であり、面疲労強度比が125%未満であった。その結果、曲げ疲労強度及び面疲労強度が低かった。 In test number 30, the Mn content was too low. Therefore, the bending fatigue strength ratio was less than 120%, and the surface fatigue strength ratio was less than 125%. As a result, the bending fatigue strength and the surface fatigue strength were low.
 試験番号31は、Mn含有量が高すぎた。そのため、逃げ面摩耗量が0.25mm以上であり、被削性が低かった。さらに、F1が式(1)を満たさなかった。そのため、曲げ疲労強度比が120%未満であり、曲げ疲労強度が不十分であった。 In test number 31, the Mn content was too high. Therefore, the flank wear amount was 0.25 mm or more, and the machinability was low. Furthermore, F1 did not satisfy equation (1). Therefore, the bending fatigue strength ratio was less than 120%, and the bending fatigue strength was insufficient.
 試験番号32は、Mn含有量が高すぎた。そのため、逃げ面摩耗量が0.25mm以上であり、被削性が低かった。 Test number 32 had an excessively high Mn content. Therefore, the flank wear amount was 0.25 mm or more, and the machinability was low.
 試験番号33は、Cr含有量が高すぎた。そのため、曲げ疲労強度比が120%未満であり、曲げ疲労強度が低かった。 Test number 33 had a Cr content that was too high. Therefore, the bending fatigue strength ratio was less than 120%, and the bending fatigue strength was low.
 試験番号34は、Mo含有量が高すぎた。そのため、逃げ面摩耗量が0.25mm以上であり、被削性が低かった。 Test number 34 had too high Mo content. Therefore, the flank wear amount was 0.25 mm or more, and the machinability was low.
 試験番号35は、Nb含有量が高すぎた。そのため、曲げ疲労強度比が120%未満であり、曲げ疲労強度が低かった。 Test number 35 had too high Nb content. Therefore, the bending fatigue strength ratio was less than 120%, and the bending fatigue strength was low.
 以上、本開示の実施の形態を説明した。しかしながら、上述した実施の形態は本開示を実施するための例示に過ぎない。したがって、本開示は上述した実施の形態に限定されることなく、その趣旨を逸脱しない範囲内で上述した実施の形態を適宜変更して実施することができる。 The embodiment of the present disclosure has been described above. However, the embodiments described above are merely examples for carrying out the present disclosure. Therefore, the present disclosure is not limited to the above-described embodiment, and the above-mentioned embodiment can be appropriately modified and implemented without departing from the spirit of the present disclosure.

Claims (2)

  1.  鋼材であって、
     化学組成が、質量%で、
     C:0.18~0.25%、
     Si:0.70~2.00%、
     Mn:0.70~1.50%、
     S:0.005~0.050%、
     N:0.0050~0.0200%、
     Al:0.001~0.100%、
     O:0.0050%以下、及び、
     P:0.030%以下を含有し、
     残部がFe及び不純物からなり、かつ、式(1)及び式(2)を満たし、
     前記鋼材の長手方向に垂直な断面であって半径Rの円形状である横断面において、
     前記横断面の中心位置、及び、前記横断面の中心から径方向にR/2の位置であって前記横断面の中心周りに45°ピッチで配置される8箇所の前記R/2位置を、9箇所の横断面観察位置と定義したとき、
     前記各横断面観察位置でのミクロ組織は、フェライトを含有し、残部はパーライト及び/又はベイナイトからなり、
     前記9箇所の横断面観察位置でのフェライトの面積分率の算術平均値は50~70%であり、かつ、前記フェライトの面積分率の標準偏差は4.0%以下であり、
     前記9箇所の横断面観察位置でのフェライトの平均粒径のうち、最小の平均粒径に対する最大の平均粒径の比が2.00以下であり、
     前記鋼材の長手方向に平行な断面であって前記鋼材の中心軸を含む縦断面において、
     前記中心軸上にR/2ピッチで配置される3箇所の中心軸位置、及び、前記各中心軸位置から前記径方向にR/2の位置に配置される6箇所の前記R/2位置を、9箇所の縦断面観察位置と定義したとき、
     前記各縦断面観察位置でのミクロ組織は、フェライトを含有し、残部はパーライト及び/又はベイナイトからなり、
     前記9箇所の縦断面観察位置でのフェライトの面積分率の算術平均値は50~70%であり、かつ、前記フェライトの面積分率の標準偏差は4.0%以下であり、
     前記9箇所の縦断面観察位置でのフェライトの平均粒径のうち、最小の平均粒径に対する最大の平均粒径の比が2.00以下である、
     鋼材。
     Si/Mn≧1.00 (1)
     1-(0.5C+0.03Si+0.06Mn+0.01Cr+0.05Mo)<0.800 (2)
     ここで、式(1)及び式(2)中の各元素記号には、対応する元素の含有量(質量%)が代入される。対応する元素が含有されていない場合、その元素記号には「0」が代入される。
    It's a steel material
    The chemical composition is by mass%,
    C: 0.18 to 0.25%,
    Si: 0.70 to 2.00%,
    Mn: 0.70 to 1.50%,
    S: 0.005 to 0.050%,
    N: 0.0050-0.0200%,
    Al: 0.001 to 0.100%,
    O: 0.0050% or less, and
    P: Contains 0.030% or less,
    The balance consists of Fe and impurities, and the formulas (1) and (2) are satisfied.
    In a cross section perpendicular to the longitudinal direction of the steel material and having a circular shape with a radius R,
    The center position of the cross section and the eight R / 2 positions arranged at a pitch of 45 ° around the center of the cross section at R / 2 positions in the radial direction from the center of the cross section. When defined as 9 cross-sectional observation positions,
    The microstructure at each cross-sectional observation position contains ferrite and the rest consists of pearlite and / or bainite.
    The arithmetic mean value of the area fraction of the ferrite at the nine cross-sectional observation positions is 50 to 70%, and the standard deviation of the area fraction of the ferrite is 4.0% or less.
    Of the average grain sizes of ferrites at the nine cross-sectional observation positions, the ratio of the maximum average grain size to the minimum average grain size is 2.00 or less.
    In a vertical cross section parallel to the longitudinal direction of the steel material and including the central axis of the steel material.
    Three central axis positions arranged at R / 2 pitch on the central axis, and six R / 2 positions arranged at R / 2 positions in the radial direction from each central axis position. , When defined as 9 vertical cross-sectional observation positions,
    The microstructure at each longitudinal section observation position contains ferrite and the rest consists of pearlite and / or bainite.
    The arithmetic mean value of the area fraction of ferrite at the nine vertical cross-sectional observation positions is 50 to 70%, and the standard deviation of the area fraction of the ferrite is 4.0% or less.
    Among the average particle diameters of ferrites at the nine vertical cross-sectional observation positions, the ratio of the maximum average particle size to the minimum average particle size is 2.00 or less.
    Steel material.
    Si / Mn ≧ 1.00 (1)
    1- (0.5C + 0.03Si + 0.06Mn + 0.01Cr + 0.05Mo) <0.800 (2)
    Here, the content (mass%) of the corresponding element is substituted for each element symbol in the formula (1) and the formula (2). If the corresponding element is not contained, "0" is substituted for the element symbol.
  2.  請求項1に記載の鋼材であって、
     前記化学組成はさらに、前記Feの一部に代えて、
     Mo:0.50%以下、
     Nb:0.050%以下、
     Cr:0.60%以下、
     Ti:0.020%以下、
     Cu:0.50%以下、
     Ni:0.80%以下、
     V:0.30%以下、
     Mg:0.0035%以下、
     Ca:0.0030%以下、及び、
     希土類元素:0.0050%以下からなる群から選択される1元素以上を含有する、
     鋼材。
    The steel material according to claim 1.
    The chemical composition further replaces a portion of the Fe.
    Mo: 0.50% or less,
    Nb: 0.050% or less,
    Cr: 0.60% or less,
    Ti: 0.020% or less,
    Cu: 0.50% or less,
    Ni: 0.80% or less,
    V: 0.30% or less,
    Mg: 0.0035% or less,
    Ca: 0.0030% or less, and
    Rare earth element: Contains one or more elements selected from the group consisting of 0.0050% or less.
    Steel material.
PCT/JP2021/035934 2020-09-30 2021-09-29 Steel material WO2022071419A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020237013781A KR20230072500A (en) 2020-09-30 2021-09-29 steel
JP2022554053A JP7417171B2 (en) 2020-09-30 2021-09-29 steel material
DE112021005117.2T DE112021005117T5 (en) 2020-09-30 2021-09-29 steel material
CN202180066500.3A CN116209782A (en) 2020-09-30 2021-09-29 Steel material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020164591 2020-09-30
JP2020-164591 2020-09-30

Publications (1)

Publication Number Publication Date
WO2022071419A1 true WO2022071419A1 (en) 2022-04-07

Family

ID=80950651

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/035934 WO2022071419A1 (en) 2020-09-30 2021-09-29 Steel material

Country Status (5)

Country Link
JP (1) JP7417171B2 (en)
KR (1) KR20230072500A (en)
CN (1) CN116209782A (en)
DE (1) DE112021005117T5 (en)
WO (1) WO2022071419A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011055651A1 (en) * 2009-11-05 2011-05-12 住友金属工業株式会社 Hot-rolled steel bar or wire rod
WO2013031587A1 (en) * 2011-08-31 2013-03-07 新日鐵住金株式会社 Rolled steel bar or wire for hot forging
WO2013111407A1 (en) * 2012-01-26 2013-08-01 新日鐵住金株式会社 Case hardening steel material with little heat-treatment strain
JP2013151719A (en) * 2012-01-25 2013-08-08 Nippon Steel & Sumitomo Metal Corp Rolled steel bar or wire rod for hot forging
WO2019182054A1 (en) * 2018-03-23 2019-09-26 日本製鉄株式会社 Steel material

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4254816B2 (en) 2005-08-24 2009-04-15 大同特殊鋼株式会社 Carburized parts
JP5182067B2 (en) 2008-12-24 2013-04-10 新日鐵住金株式会社 Steel for vacuum carburizing or carbonitriding
JP6720643B2 (en) 2015-03-30 2020-07-08 日本製鉄株式会社 Carburized parts
JP6690464B2 (en) 2016-08-18 2020-04-28 日本製鉄株式会社 Carburized parts

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011055651A1 (en) * 2009-11-05 2011-05-12 住友金属工業株式会社 Hot-rolled steel bar or wire rod
WO2013031587A1 (en) * 2011-08-31 2013-03-07 新日鐵住金株式会社 Rolled steel bar or wire for hot forging
JP2013151719A (en) * 2012-01-25 2013-08-08 Nippon Steel & Sumitomo Metal Corp Rolled steel bar or wire rod for hot forging
WO2013111407A1 (en) * 2012-01-26 2013-08-01 新日鐵住金株式会社 Case hardening steel material with little heat-treatment strain
WO2019182054A1 (en) * 2018-03-23 2019-09-26 日本製鉄株式会社 Steel material

Also Published As

Publication number Publication date
DE112021005117T5 (en) 2023-07-20
CN116209782A (en) 2023-06-02
JPWO2022071419A1 (en) 2022-04-07
KR20230072500A (en) 2023-05-24
JP7417171B2 (en) 2024-01-18

Similar Documents

Publication Publication Date Title
US9200354B2 (en) Rolled steel bar or wire for hot forging
WO2018016505A1 (en) Steel for induction hardening
JP6384627B2 (en) Induction hardening steel
JP5660259B2 (en) Carburized parts
WO2020145325A1 (en) Steel material
WO2018016506A1 (en) Steel for induction hardening
JP5561436B2 (en) Rolled steel bar or wire rod for hot forging
WO2019244503A1 (en) Mechanical component
WO2018016504A1 (en) Steel for induction hardening
JP5617798B2 (en) Rolled steel bar or wire rod for hot forging
JP6414385B2 (en) Carburized parts
CN107429359B (en) Hot-rolled rod and wire material, component, and method for producing hot-rolled rod and wire material
WO2022071419A1 (en) Steel material
WO2022071420A1 (en) Steel material
JP2013108144A (en) Rolled steel bar or wire rod for hot forging
WO2020138432A1 (en) Steel material
JP6838508B2 (en) Vacuum carburizing steel and carburized parts
JP2016074951A (en) Manufacturing method of case hardened steel
WO2021171494A1 (en) Steel material
JP2013112826A (en) Induction hardening gear excellent in wear resistance and surface fatigue characteristic, and manufacturing method therefor
WO2021260954A1 (en) Steel material and carburized steel part
JP2022080398A (en) Steel, and carburized steel component
JP2022080369A (en) Steel, and carburized steel component
JP2024007540A (en) Steel material, and component for vacuum carburization machine structure
JP2023056778A (en) Steel, and carburized steel part

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21875717

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022554053

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20237013781

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 21875717

Country of ref document: EP

Kind code of ref document: A1