WO2022070952A1 - Substrate processing apparatus, conveyance mechanism and substrate processing method - Google Patents

Substrate processing apparatus, conveyance mechanism and substrate processing method Download PDF

Info

Publication number
WO2022070952A1
WO2022070952A1 PCT/JP2021/034114 JP2021034114W WO2022070952A1 WO 2022070952 A1 WO2022070952 A1 WO 2022070952A1 JP 2021034114 W JP2021034114 W JP 2021034114W WO 2022070952 A1 WO2022070952 A1 WO 2022070952A1
Authority
WO
WIPO (PCT)
Prior art keywords
articulated arm
horizontal
vertical
arm
substrate
Prior art date
Application number
PCT/JP2021/034114
Other languages
French (fr)
Japanese (ja)
Inventor
真士 若林
Original Assignee
東京エレクトロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京エレクトロン株式会社 filed Critical 東京エレクトロン株式会社
Publication of WO2022070952A1 publication Critical patent/WO2022070952A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J19/00Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations

Definitions

  • This disclosure relates to a substrate processing apparatus, a transport mechanism, and a substrate processing method.
  • Patent Document 1 discloses a vacuum processing apparatus that processes a substrate in a vacuum atmosphere.
  • the load lock modules are also configured to be arranged side by side in a plan view in the same manner as the processing modules.
  • Patent Document 2 discloses a vacuum processing apparatus that transports an object to be processed in a vacuum atmosphere and performs vacuum processing.
  • the transfer mechanism is configured by providing two transfer arms that are rotatable and flexible on a transfer base that is movable along the longitudinal direction of the vacuum transfer chamber.
  • the technology according to the present disclosure optimizes a substrate processing device having a substrate transport mechanism inside.
  • One aspect of the present disclosure is a substrate processing apparatus for processing a substrate, which includes a housing whose inside is in a normal pressure atmosphere, a transport mechanism provided inside the housing and transporting the substrate, and the transport. It has a load lock module for transferring the substrate to and from the mechanism, and the transport mechanism has a holding arm for holding the substrate and a horizontal portion whose tip is connected to the holding arm and moves in a horizontal plane.
  • the load lock module comprises an articulated arm and a vertical articulated arm whose tip is connected to the proximal end of the horizontal articulated arm and moves in a vertical plane including one horizontal and one vertical direction. At least a part thereof is arranged inside the housing, and inside the housing, a loading / unloading port for the substrate is formed on the side surface of the load lock module on the horizontal unidirectional side.
  • a processing module containing a semiconductor wafer base; hereinafter referred to as “wafer”
  • the wafer is put into a reduced pressure (vacuum) state, and the wafer is subjected to a predetermined process.
  • the processing process is being performed.
  • These processing steps are performed using a wafer processing apparatus equipped with a plurality of processing modules.
  • the decompression unit and the normal pressure unit are integrally connected via a load lock module.
  • the decompression unit includes a plurality of decompression modules (the processing modules) that perform desired processing on the wafer in a decompression atmosphere, and a transfer mechanism that conveys the wafer to the decompression module in a decompression atmosphere.
  • the normal pressure unit includes a plurality of normal pressure modules that perform desired processing on the wafer under a normal pressure atmosphere, and a transfer mechanism that conveys the wafer to the normal pressure module under a normal pressure atmosphere.
  • the load lock module is configured so that the inside can be switched between a decompression atmosphere and a normal pressure atmosphere, and wafers are transferred between the decompression section and the normal pressure section.
  • the load lock modules are configured to be arranged side by side in a plan view.
  • the normal pressure transfer chamber is provided so as to extend the lower side of the load lock module from the left and right unidirectional sides of the load lock module so as to straddle the other side of the left and right, and the wafer transfer region and the load lock module in the normal pressure transfer chamber. And are overlapped up and down.
  • the atmospheric pressure transfer mechanism enables the transfer of wafers to and from the carriers of the import / output ports on the left and right sides of the load lock module.
  • Patent Document 1 discloses a configuration in which two transfer mechanisms are provided so that wafers can be transferred to the left and right in the normal pressure transfer chamber.
  • a configuration has the following disadvantages. That is, the layout of the normal pressure transfer chamber and the layout of the processing module connected to the normal pressure transfer chamber are inconvenient due to the two transfer mechanisms, the cost is high, and it is necessary to transfer the wafer between the transfer mechanisms. Will occur, and so on.
  • the transfer mechanism is provided on two transfer bases that are movable along the longitudinal direction of the vacuum transfer chamber, and are rotatable and flexible. It is configured by providing a transfer arm. One end of a duct arm that bends and stretches in response to the movement of the transfer base is connected to the transfer base, and the other end of the duct arm is connected to the base member of the vacuum transfer chamber.
  • the inside of the duct arm can accommodate cables, and is a cable accommodating part with a normal pressure atmosphere.
  • Patent Document 2 has the following disadvantages. That is, because the stroke limit of the slider provided for the movement of the transport base in the longitudinal direction is short and the slide portion of the slider is exposed in vacuum, particles are generated when the transport base is moved. And contamination due to the lubricant used in the slide part.
  • FIG. 1 is a plan view showing an outline of the configuration of the wafer processing apparatus according to the present embodiment.
  • the X-axis, Y-axis, and Z-axis that are orthogonal to each other in the three-dimensional space are defined.
  • the X-axis and the Y-axis are horizontal axes, respectively, and the Z-axis is a vertical axis.
  • the wafer processing apparatus 1 includes various processing modules for performing COR (Chemical Oxide Removal) processing, PHT (Post Heat Treatment) processing, and CST (Cooling Storage) processing on the wafer W as a substrate.
  • COR Chemical Oxide Removal
  • PHT Post Heat Treatment
  • CST Cooling Storage
  • the wafer processing apparatus 1 has a configuration in which the normal pressure unit 2 and the decompression unit 3 are integrally connected.
  • the load lock modules 10a and 10b that transfer the wafer W between the normal pressure atmosphere and the depressurized atmosphere are installed in the normal pressure portion 2.
  • the load lock modules 10a and 10b may be provided in two or more stages so as to overlap each other in a plan view, that is, to overlap in the Z-axis direction.
  • the normal pressure unit 2 includes a housing 11 whose inside is in a normal pressure atmosphere, and includes a plurality of normal pressure modules that perform desired processing on the wafer W in the normal pressure atmosphere. Further, the load lock modules 10a and 10b are arranged inside the housing 11. Therefore, in the present embodiment, unless otherwise specified, the load lock modules 10a and 10b are treated as components of the normal pressure unit 2.
  • a transfer mechanism 20 for transporting the wafer W is provided inside the housing 11 of the normal pressure unit 2.
  • the transport mechanism 20 has holding arms 21a and 21b, a horizontal articulated arm 22 and a vertical articulated arm 23.
  • the holding arms 21a and 21b hold and move the wafer W.
  • the tip of the horizontal articulated arm 22 is connected to the holding arms 21a and 21b, the proximal end is connected to the vertical articulated arm 23, and the horizontal articulated arm 22 moves in a horizontal plane.
  • the tip of the vertical articulated arm 23 is connected to the base end of the horizontal articulated arm 22, and the base end is supported by a support member (not shown) in one horizontal direction (X-axis direction in the illustrated example). ) And move in a vertical plane including the vertical direction.
  • the details of the transport mechanism 20 will be described later.
  • the load lock module 10a is formed with a carry-in outlet 30a for passing the transfer mechanism 20 and the wafer W inside the normal pressure unit 2.
  • the carry-in outlet 30a is provided with a door valve 31a that seals the inside of the load lock module 10a at a time other than when the wafer W is delivered, in order to maintain the airtightness inside the load lock module 10a.
  • the carry-in outlet 30a is provided on the side surface of the load lock module 10a on the horizontal one-way side (X-axis direction side) inside the housing 11.
  • the load lock module 10a has a carry-in outlet 32a and a door valve 33a having the same functions as the carry-in outlet 30a and the door valve 31a on the side surface connected to the decompression unit 3 (the side surface on the positive direction side of the Y-axis in the illustrated example). It is formed.
  • An air supply section (not shown) for supplying gas and an exhaust section (not shown) for discharging gas are connected to the load lock module 10a, and the intake section and the exhaust section create a normal pressure atmosphere and a depressurization atmosphere inside. It is configured to be switchable. That is, the load lock module 10a is configured so that the wafer W can be appropriately transferred between the normal pressure unit 2 in the normal pressure atmosphere and the decompression unit 3 in the decompression atmosphere.
  • the load lock module 10b has the same configuration as the load lock module 10a. That is, the load lock module 10b has an carry-in outlet 30b and a door valve 31b on the normal pressure portion 2 side, a carry-in outlet 32b and a door valve 33b on the decompression section 3 side, and an air supply section and an exhaust section.
  • the load lock modules 10a and 10b may be provided inside the housing 11, and other arrangements and numbers are not limited to this embodiment and can be set arbitrarily.
  • a part of the load lock modules 10a and 10b may be provided inside the housing 11, and the other part may be provided outside the housing 11 and between the decompression unit 3.
  • a hoop 40 capable of storing the wafer W is placed outside the housing 11. It has a load port 41, a CST module 42 for cooling the wafer W, and an orienter module 43 for adjusting the horizontal orientation of the wafer W.
  • the housing 11 has a substantially rectangular parallelepiped shape, and the inside is maintained in a normal pressure atmosphere.
  • a plurality of, for example, five load ports 41 are provided on one side surface (outer surface) constituting the long side of the housing 11.
  • Load lock modules 10a and 10b are attached to the other side surface (inner side surface) constituting the long side of the housing 11.
  • a CST module 42 is provided on one side surface (outer surface) constituting the short side of the housing 11.
  • An oriental module 43 is provided on the other side surface (outer surface) constituting the short side of the housing 11.
  • the number and arrangement of the load port 41, the CST module 42, and the oriental module 43 are not limited to this embodiment and can be set arbitrarily.
  • the hoop 40 accommodates a plurality of wafers W, for example, 25 wafers per lot so as to be stacked in multiple stages at equal intervals. Further, the inside of the hoop 40 placed on the load port 41 is filled with, for example, the atmosphere or nitrogen gas and sealed.
  • the CST module 42 can accommodate a plurality of wafers W, for example, more than the number of wafers W accommodated in the hoop 40 in multiple stages at equal intervals, and cools the plurality of wafers W.
  • the oriental module 43 rotates the wafer W to adjust the orientation in the horizontal direction. Specifically, the oriental module 43 is adjusted so that the horizontal orientation from the reference position (for example, the notch position) is the same for each wafer W processing when the wafer processing is performed on each of the plurality of wafers W. Ru.
  • the decompression unit 3 includes a housing 50 whose inside is under a decompression atmosphere (vacuum atmosphere), and includes a plurality of decompression modules that perform desired processing on the wafer W under the decompression atmosphere.
  • a decompression atmosphere vacuum atmosphere
  • a transfer mechanism 60 for transporting the wafer W is provided inside the housing 50 of the decompression unit 3.
  • the transport mechanism 60 has the same configuration as the transport mechanism 20. That is, the transport mechanism 60 has a holding arms 61a and 61b that hold and move the wafer W, a horizontal articulated arm 62 whose tip is connected to the holding arms 61a and 61b and moves in a horizontal plane, and a tip that is horizontal. It has a vertical articulated arm 63 that is connected to the proximal end of the articulated arm 62 and moves in a vertical plane including one horizontal direction and one vertical direction.
  • the decompression unit 3 includes a COR module 70 that performs COR processing on the wafer W transferred from the transfer mechanism 60, and a PHT module 71 that performs PHT processing. are doing.
  • the insides of the housing 50, the COR module 70, and the PHT module 71 are each maintained in a reduced pressure atmosphere.
  • a plurality of COR modules 70 and PHT modules 71 are provided for the transport mechanism 60, for example, four each.
  • the decompression unit 3 is connected to the load lock modules 10a and 10b via the carry-in outlets 32a and 32b as described above.
  • the wafer W carried into the load lock module 10a is sequentially carried into one COR module 70 and one PHT module 71, subjected to COR treatment and PHT treatment, and then carried out to the normal pressure unit 2 via the load lock module 10b. do.
  • the wafer processing apparatus 1 described above is provided with a control unit 80.
  • the control unit 80 is, for example, a computer equipped with a CPU, a memory, or the like, and has a program storage unit (not shown).
  • the program storage unit stores a program that controls the processing of the wafer W in the wafer processing apparatus 1. Further, in the program storage unit, the operation of the drive system such as the various processing modules and the transfer mechanism described above is controlled, and the wafer W is transferred by the transfer mechanism 20 of the normal pressure unit 2 and the transfer mechanism 60 of the decompression unit 3, which will be described later.
  • the program for realizing the above is also stored.
  • the program may be recorded on a storage medium H readable by a computer and may be installed on the control unit 80 from the storage medium H.
  • FIG. 2 is a perspective view schematically showing an outline of the configuration of the normal pressure unit 2.
  • the transport mechanism 20 is provided below the load lock modules 10a and 10b (in the negative direction of the Z axis).
  • the load lock modules 10a and 10b and the transport mechanism 20 overlap each other.
  • the transport mechanism 20 moves below the load lock modules 10a and 10b, and holds arms at the carry-in outlets 30a and 30b provided on the horizontal unidirectional side of the load lock modules 10a and 10b, that is, on the side surface on the X-axis direction side.
  • the wafer W is transferred to and from the load lock modules 10a and 10b.
  • the configuration and function of the transport mechanism 20 that moves as described above will be described in detail below.
  • FIG. 3 is a perspective view schematically showing an outline of the configuration of the transport mechanism 20 according to the present embodiment. Since the transport mechanism 60 has the same configuration as the transport mechanism 20, detailed description and illustration will be omitted.
  • the transport mechanism 20 has holding arms 21a and 21b, a horizontal articulated arm 22 and a vertical articulated arm 23.
  • the holding arms 21a and 21b hold and move the wafer W.
  • the tip of the horizontal articulated arm 22 is connected to the holding arms 21a and 21b, and the base end is connected to the vertical articulated arm 23, in a horizontal plane (in the XY plane, hereinafter simply referred to as in the horizontal plane).
  • the tip of the vertical articulated arm 23 is connected to the base end of the horizontal articulated arm 22 and is in a vertical plane (ZX plane) including one horizontal direction (X-axis direction) and a vertical direction (Z-axis direction).
  • horizontal plane in the present disclosure includes a substantially horizontal plane, that is, a plane slightly inclined from the horizontal plane.
  • vertical plane shall also include a substantially vertical plane, i.e., a plane slightly inclined from the vertical plane.
  • the holding arms 21a and 21b are connected to one end of the upper pick 100a and the lower pick 100b as holding portions for holding the wafer W, respectively.
  • the horizontal articulated arm 22 includes first horizontal joints 109 and 110, second horizontal joints 111, and third horizontal joints 112 as rotation axes. Further, the horizontal articulated arm 22 includes a first horizontal arm 120 and a second horizontal arm 121.
  • the first horizontal joints 109 and 110 connect the holding arms 21a and 21b and the first horizontal arm 120 independently and rotatably in a horizontal plane.
  • the second horizontal joint 111 rotatably connects the first horizontal arm 120 and the second horizontal arm 121 in the horizontal direction.
  • the third horizontal joint 112 connects the second horizontal arm 121 and the tip of the vertical articulated arm 23 so as to be rotatable in the horizontal direction.
  • the vertical articulated arm 23 includes a first vertical joint 130, a second vertical joint 131, and a third vertical joint 132 as rotation axes. Further, the vertical articulated arm 23 includes a first vertical arm 140, a second vertical arm 141, and a third vertical arm 142.
  • the first vertical joint 130 rotatably connects the first vertical arm 140, which is the tip to which the second horizontal arm 121 is connected, and the second vertical arm 141 in a vertical plane.
  • the second vertical joint 131 rotatably connects the second vertical arm 141 and the third vertical arm 142 in a vertical plane.
  • the third vertical joint 132 rotatably connects the third vertical arm 142 to another structure, such as a support member (not shown), in a vertical plane.
  • the horizontal articulated arm 22 moves in the horizontal plane, but the first vertical arm 140 to which the second horizontal arm 121, which is the base end portion, is connected moves in the vertical direction (Z-axis direction). As a result, the horizontal plane moves in the vertical direction.
  • the horizontal articulated arm 22 and the vertical articulated arm 23 move in cooperation with each other, so that the holding arms 21a and 21b, which are the tips of the transport mechanism 20, are in the three-dimensional space (XYZ space) of each arm. You can move freely as long as the length allows. As a result, the wafer W can be freely transported in any device. Further, both the horizontal articulated arm 22 and the vertical articulated arm 23 are responsible for movement in the same direction (X-axis direction), so that a sufficient distance (device in the X-axis direction) in any device is sufficient. The wafer W can be transported from one end to the other end of the inside.
  • FIG. 4 is a vertical cross-sectional view (YZ cross-sectional view) schematically showing an outline of the configuration of each joint and each arm of the transport mechanism 20.
  • the first to third horizontal joints 109 to 112 and the first to third vertical joints 130 to 132 each include a motor A for driving rotation.
  • Each motor A is provided inside the first to third horizontal joints 109 to 112 and the first to third vertical joints 130 to 132, and is not exposed to the outside.
  • the first to second horizontal arms 120 to 121 and the first to third vertical arms 140 to 142 each have a hollow portion V having a hollow inside.
  • the cable C for transmitting power to the motor A is housed in the hollow portion V, and the cable C is not exposed to the outside.
  • the transport mechanism 20 is a link mechanism configured by a rotating shaft and does not have a slide shaft.
  • the mechanism using the slide shaft is a link capable of linear movement in a direction parallel to the slide shaft of the two link members, for example, by connecting the two link members so as to slide against each other on the slide shaft.
  • a mechanism using a two-stage telescopic piston which is a mechanism using a slide shaft, is used for conveying the wafer in the vertical direction.
  • it is difficult to seal the slide portion (maintain the airtightness inside and outside the mechanism) because the slide portion moves relatively when the link member moves linearly.
  • the transfer base disclosed in Patent Document 2 is configured to slide the inner wall of the vacuum processing chamber along the longitudinal direction of the vacuum transfer chamber. There is concern that similar problems will arise.
  • the transport mechanism according to the present embodiment does not have a slide shaft, but is configured by a mechanism using a rotation shaft. Unlike the slide shaft, the rotating shaft does not move relatively during driving, and it is technically easy to completely seal the rotating shaft by, for example, O-ring. By sealing the rotation shaft, the inside of the housing 11 and the hollow portion V are separated from each other, and the transport mechanism 20 is worn due to the ingress and egress of air (corrosive atmosphere) in the joint portion, and particles from the joint portion to the system are collected. It is possible to prevent the release and the like.
  • air corrosive atmosphere
  • FIG. 5A and 5B are a plan view (FIG. 5A) and a perspective view (FIG. 5B) schematically showing an outline when the horizontal articulated arm 22 moves in a horizontal plane
  • FIG. 6 is a vertical articulated arm. It is a side view schematically showing the outline when 23 moves in a vertical plane.
  • FIG. 7 is a side view schematically showing the operation of the transport mechanism 20 due to the coordinated movement of the horizontal articulated arm 22 and the vertical articulated arm 23.
  • the horizontal articulated arm 22 moves in the horizontal plane by changing the angles ⁇ 1a, ⁇ 1b, ⁇ 2, and ⁇ 3 in the first to third horizontal joints 109 to 112, respectively.
  • the angles ⁇ 1a and ⁇ 1b are angles formed by the holding arms 21a and 21b and the first horizontal arm 120, respectively, and these angles can change independently.
  • the angle ⁇ 2 is an angle formed by the first horizontal arm 120 and the second horizontal arm 121.
  • the angle ⁇ 3 is an angle formed by the second horizontal arm 121 and the first vertical arm 140.
  • FIGS. 5A (a) and 5B (a) show the horizontal articulated arm 22 in which each arm is folded and in a shortened posture.
  • the vertical articulated arm 23 moves in the vertical plane by changing the angles ⁇ 1 to ⁇ 3 of the first to third vertical joints 130 to 132, respectively.
  • the angle ⁇ 1 is an angle formed by the first vertical arm 140 and the second vertical arm 141.
  • the angle ⁇ 2 is an angle formed by the second vertical arm 141 and the third vertical arm 142.
  • the angle ⁇ 3 is an angle formed by the third vertical arm 142 and the horizontal plane.
  • the rotation of each joint is driven by the motor A so that the angle ⁇ 1 decreases, the angle ⁇ 2 does not change, and the angle ⁇ 3 increases.
  • the posture shown in 6 (b) that is, the posture in which the first vertical arm 140 is moved in the horizontal direction (X-axis direction) can be set.
  • the rotation of each joint is driven by the motor A so that the angle ⁇ 1 does not change and the angles ⁇ 2 and ⁇ 3 increase, so that FIG. 6 (c) shows.
  • the posture shown that is, the posture in which the first vertical arm 140 is moved in the vertical direction (Z-axis direction) can be set.
  • the vertical articulated arm 23 according to the present disclosure has a first vertical arm 140 rather than a connection portion between the third vertical arm, which is a proximal end portion, and another structure, for example, a support member (not shown). May be configured to be movable downward (Z-axis negative direction).
  • the transport mechanism 20 has a control unit that controls the operation of the vertical articulated arm 23, and has an angle ⁇ 1 so as to rotate in a direction for correcting the own weight deflection of the horizontal articulated arm 22. It may be configured to control.
  • the horizontal articulated arm 22 connected to the first vertical arm 140 which is the tip of the vertical articulated arm 23, is always substantially horizontal (almost parallel to the XY plane). Can be maintained to move with.
  • substantially horizontal means that the holding arms 21a and 21b connected to the first horizontal arm 120 of the horizontal articulated arm 22 are sufficiently close to horizontal in order to safely hold the wafer W.
  • FIGS. 5 and 6 are side views schematically showing the movement of the holding arms 21a and 21b, the horizontal articulated arm 22, and the vertical articulated arm 23 shown in FIGS. 5 and 6.
  • the transport mechanism 20 quickly changes the posture from the posture shown by the solid line in FIG. 7A to the posture shown by the two-dot chain line by moving both the horizontal articulated arm 22 and the vertical articulated arm 23 in the negative direction of the X-axis. It can be carried out. That is, in the transport mechanism 20 according to the present embodiment, both the horizontal articulated arm 22 and the vertical articulated arm 23 are configured to be movable in the X-axis direction, so that both of them are in the same direction in the X-axis direction. Can be responsible for movement. By coordinating and moving in the same direction, the holding arms 21a and 21b, which are the tips of the transport mechanism 20, can be moved in the same direction at a sufficient distance.
  • the vertical articulated arm 23 is more than a connection portion between the third vertical arm, which is the proximal end portion, and another structure, for example, a support member (not shown). Since the first vertical arm 140 is configured to be movable downward (Z-axis negative direction), as shown in FIG. 7B, the horizontal articulated arm 22 connected to the first vertical arm 140 is connected to the connection portion. Can also move downwards. As a result, the wafer W can be conveyed even with a sufficient height difference (distance in the Z-axis direction) in any device.
  • the rotation of each joint of the horizontal articulated arm 22 and the vertical articulated arm 23 is configured to be driven by the motor A, but the configuration of each joint is not limited to this and is arbitrary. It can be configured.
  • a rotation mechanism connected via a drive belt and, for example, a pulley may be provided to drive the rotation of each joint.
  • the horizontal articulated arm 22 is composed of the first to third horizontal joints 109 to 112 and the first to second horizontal arms 120 to 121
  • the vertical articulated arm 23 is composed of the first to third horizontal joints.
  • the configuration of the transport mechanism 20 is not limited to this, and may have more arms and joints.
  • the horizontal articulated arm 22 and the vertical articulated arm 23 when each arm is folded can be made compact, and as a result, the footprint of the wafer processing device 1 can be reduced. can.
  • the number of arms and joints is extremely large, the thickness when folded increases, which may lead to an increase in footprint.
  • the number of arms and the number of joints are determined in consideration of these balances.
  • Such a normal pressure unit 2 may be, for example, a so-called EFEM (Epuipment Front End Module) shown in FIGS. 8A to 8C and FIGS. 9A to 9C.
  • EFEM Epuipment Front End Module
  • FIGS. 9A to 9C show the operation of the transfer mechanism 20 when the wafer W is transferred between the load lock modules 10a and 10b and the load port 41 in the EFEM which is the normal pressure unit 2, respectively. It is a side view (FIGS. 8A-FIG. 8C) and a plan view (FIGS. 9A-FIG. 9C) schematically shown. In FIGS. 8A to 8C and FIGS. 9A to 9C, only the holding arm 21a is shown and the holding arm 21b is omitted in order to facilitate the understanding of the technique.
  • the transport mechanism 20 is housed inside the housing 11 so that the horizontal one direction (X-axis direction) in which the vertical articulated arm 23 moves is the longitudinal direction of the housing 11. Further, the transport mechanism 20 is provided below the load lock modules 10a and 10b. Then, in the transport mechanism 20 shown in FIGS. 8A and 9A, the holding arm 21a or 21b is made to enter the carry-in outlet 30a provided on the side surface of the load lock module 10a on the X-axis direction side, and the wafer W is delivered. Further, the transport mechanism 20 refracts the vertical articulated arm 23 as shown by the two-dot chain line in FIG. 8B, and the horizontal articulated arm 22 moves so as to pass under the load lock modules 10a and 10b.
  • the transfer mechanism 20 delivers the wafer W to the carry-in outlet 30b of the load lock module 10b as shown in the solid line of FIG. 8B and FIG. 9B, and transfers the wafer W to the load port 41 as shown in FIGS. 8C and 9C. Move to deliver the wafer W.
  • the transport mechanism 20 is provided below the load lock modules 10a and 10b, passes under the load lock modules 10a and 10b, and is provided on the side surface of the load lock modules 10a and 10b on the X-axis direction side. , 30b is arranged so as to transfer the wafer W.
  • the normal pressure unit 2 can be arranged so that the load lock modules 10a and 10b and the transport mechanism 20 overlap each other in a plan view as shown in FIGS. 9A to 9C, and the load lock modules 10a and 10b can be arranged.
  • the wafer processing apparatus 1 can be provided as small as the amount. Therefore, it is possible to reduce the footprint in the depth direction (Y-axis direction) of the wafer processing apparatus 1 having such a normal pressure portion 2.
  • both the horizontal articulated arm 22 and the vertical articulated arm 23 are responsible for movement in the same direction in the X-axis direction, whereby a sufficient X-axis direction is sufficient in any device.
  • the wafer W can be transported in the same direction at a distance (from one end to the other end, etc.).
  • the transfer mechanism 20 can transfer the wafer W by one transfer mechanism 20 without lengthening the arm length of the transfer mechanism 20, which raises the above-mentioned concerns.
  • the footprint can be reduced without doing so.
  • the footprint is reduced by providing all of the load lock modules 10a and 10b inside the housing 11, but the present invention is not limited to this example.
  • the present invention is not limited to this example.
  • 10 and 11 are plan views schematically showing an outline of the wafer processing apparatus 1 according to another embodiment, and as described above, a part of the load lock modules 10a and 10b is provided inside the housing 11.
  • a part of the load lock modules 10a and 10b is provided inside the housing 11.
  • the transport mechanism 20 can move below the load lock modules 10a and 10b to access both the carry-in outlets 30a and 30b. Therefore, it is sufficient to provide one inside the housing 11 of the normal pressure unit 2, and it is not necessary to provide two transfer mechanisms for transferring the wafer W to each of the two load lock modules 10a and 10b. As a result, it is possible to reduce the equipment cost and footprint due to the provision of the two transport mechanisms.
  • VTM Volt Transfer Module
  • FIG. 12 is a perspective view schematically showing an outline of the configuration of the decompression unit 3.
  • 13 and 14 schematically show the arrangement and operation of the transfer mechanism 60 when the wafer W is transferred between the load lock modules 10a and 10b and the COR module 70 and the PHT module 71 in the VTM which is the decompression unit 3, respectively. It is a side view (FIG. 13) and a plan view (FIG. 14) which are shown.
  • FIGS. 12 to 14 only the holding arm 61a is shown and the holding arm 61b is not shown in order to facilitate the understanding of the technique.
  • the transport mechanism 60 is provided inside the housing 50 under a reduced pressure atmosphere.
  • the housing 50 has a first accommodating portion 200 in which the vertical articulated arm 63 moves internally, and a second accommodating portion 201 in which the horizontal articulated arm 62 moves internally.
  • the upper part of the first accommodating portion 200 communicates with the second accommodating portion 201.
  • the transport mechanism 60 has a posture (solid line) in which the horizontal articulated arm 62 and the vertical articulated arm 63 are extended to the right end (the end on the positive side of the X-axis) of the housing 50.
  • the horizontal articulated arm 62 and the vertical articulated arm 63 are extended to the left end (end in the negative direction of the X-axis) of the housing 50 to move to a posture (two-point chain line).
  • the first accommodating portion 200 is configured so that the range of movement of the vertical articulated arm 63 is accommodated inside the first accommodating portion 200.
  • the horizontal articulated arm 62 includes a first horizontal arm 120 and a second horizontal arm 121, similarly to the horizontal articulated arm 22.
  • the horizontal articulated arm 62 is connected to the tip of the vertical articulated arm 63.
  • the horizontal articulated arm 62 moves inside the second accommodating portion 201 with the movement of the vertical articulated arm 63 in the X-axis direction, and the holding arms 61a and 61b are moved to the COR module 70, the PHT module 71 or the load lock module 10a. Move to 10b or the like.
  • the second accommodating portion 201 has a sufficient depth for the length of the holding arms 61a and 61b so that the holding arms 61a and 61b can enter the COR module 70 and the PHT module 71 straight. (Y-axis direction).
  • the vertical articulated arm 63 includes a first vertical arm 140, a second vertical arm 141, and a third vertical arm 142, similarly to the vertical articulated arm 23.
  • the vertical articulated arm 63 mainly moves inside the first accommodating portion 200, but by moving the second accommodating portion 201 as needed, the horizontal articulated arm 62 can be moved to an arbitrary height (Z). It can be moved in the axial direction). Further, the horizontal articulated arm 62 moves mainly inside the second accommodating portion 201, but moves inside the first accommodating portion 200 as the height of the vertical articulated arm 63 moves as needed. Can be done.
  • the horizontal arm (holding arm) that moves in a polar coordinate system is accessed by the COR module 70 and the PHT module 71 connected to the right end of the housing according to the example of FIG.
  • the mechanism using a slide axis it is necessary for the mechanism using a slide axis to move to the right end of the housing, and an accommodating portion for accommodating this is provided to the right end of the housing. You need to be.
  • the first accommodating portion 200 and the second accommodating portion 201 accommodating the transport mechanism 60 are configured as described above, the first accommodating portion 200 is as shown in FIG.
  • the plan view area of the accommodating portion 200 (the area when the XY plane is viewed from the Z axis direction) can be configured to be smaller than the plan view area of the second accommodating portion 201. This can reduce the footprint.
  • FIGS. 13 and 14 an example in which the transport mechanism 60 accesses the COR module 70, the PHT module 71, and the load lock modules 10a and 10b provided at the same height is shown, but the vertical articulated arm The movement of 63 in the Z-axis direction makes it easy to access arbitrary modules provided at different heights in the housing 50.

Abstract

This substrate processing apparatus is for processing a substrate, and comprises: a chassis, the inside of which is under normal atmospheric pressure; a conveyance mechanism that is for conveying the substrate and that is provided inside the chassis; and a load lock module for passing the substrate to/from the conveyance mechanism. The conveyance mechanism includes: a holding arm for holding the substrate; a horizontal multiple-joint arm that is connected, at the leading end thereof, to the holding arm and that moves within a horizontal plane; and a vertical multiple-joint arm that is connected, at the leading end thereof, to the base end of the horizontal multiple-joint arm and that moves within a vertical plane that includes one horizontal direction and the vertical direction. At least a portion of the load lock module is disposed inside the chassis. Inside the chassis, an opening for substrate carrying-in/carrying-out is formed on a lateral surface, in the one horizontal direction, of the load lock module.

Description

基板処理装置、搬送機構及び基板処理方法Board processing equipment, transfer mechanism and board processing method
 本開示は、基板処理装置、搬送機構及び基板処理方法に関する。 This disclosure relates to a substrate processing apparatus, a transport mechanism, and a substrate processing method.
 特許文献1には、真空雰囲気下で基板に処理を行う真空処理装置が開示されている。この真空処理装置では、ロードロックモジュールについても処理モジュールと同様に平面視左右に並べて配置するように構成している。 Patent Document 1 discloses a vacuum processing apparatus that processes a substrate in a vacuum atmosphere. In this vacuum processing apparatus, the load lock modules are also configured to be arranged side by side in a plan view in the same manner as the processing modules.
 特許文献2には、真空雰囲気内で被処理物を搬送し、真空処理を施す真空処理装置が開示されている。この真空処理装置において搬送機構は、真空搬送チャンバの長手方向に沿って移動可能とされた搬送基台の上に、回転及び屈伸自在とされた2つの搬送アームを設けて構成されている。 Patent Document 2 discloses a vacuum processing apparatus that transports an object to be processed in a vacuum atmosphere and performs vacuum processing. In this vacuum processing apparatus, the transfer mechanism is configured by providing two transfer arms that are rotatable and flexible on a transfer base that is movable along the longitudinal direction of the vacuum transfer chamber.
特開2020-053418号公報Japanese Unexamined Patent Publication No. 2020-053418 特開2005-317656号公報Japanese Unexamined Patent Publication No. 2005-317656
 本開示にかかる技術は、基板の搬送機構を内部に有する基板処理装置を最適化する。 The technology according to the present disclosure optimizes a substrate processing device having a substrate transport mechanism inside.
 本開示の一態様は、基板を処理する基板処理装置であって、内部が常圧雰囲気下にある筐体と、前記筐体の内部に設けられ、前記基板を搬送する搬送機構と、前記搬送機構との間で前記基板の受け渡しを行うロードロックモジュールと、を有し、前記搬送機構は、前記基板を保持する保持アームと、先端部が前記保持アームに接続され、水平面内で移動する水平多関節アームと、先端部が前記水平多関節アームの基端部に接続され、水平一方向と垂直方向を含む垂直面内で移動する垂直多関節アームと、を有し、前記ロードロックモジュールの少なくとも一部は前記筐体の内部に配置され、前記筐体の内部において、前記ロードロックモジュールの前記水平一方向側の側面には、前記基板の搬入出口が形成されている。 One aspect of the present disclosure is a substrate processing apparatus for processing a substrate, which includes a housing whose inside is in a normal pressure atmosphere, a transport mechanism provided inside the housing and transporting the substrate, and the transport. It has a load lock module for transferring the substrate to and from the mechanism, and the transport mechanism has a holding arm for holding the substrate and a horizontal portion whose tip is connected to the holding arm and moves in a horizontal plane. The load lock module comprises an articulated arm and a vertical articulated arm whose tip is connected to the proximal end of the horizontal articulated arm and moves in a vertical plane including one horizontal and one vertical direction. At least a part thereof is arranged inside the housing, and inside the housing, a loading / unloading port for the substrate is formed on the side surface of the load lock module on the horizontal unidirectional side.
 本開示によれば、基板の搬送機構を内部に有する基板処理装置を最適化することができる。 According to the present disclosure, it is possible to optimize a substrate processing apparatus having a substrate transport mechanism inside.
本実施形態にかかるウェハ処理装置の構成の概略を模式的に示す平面図である。It is a top view schematically showing the outline of the structure of the wafer processing apparatus which concerns on this embodiment. 常圧部の構成の概略を模式的に示す斜視図である。It is a perspective view which shows the outline of the structure of the normal pressure part schematically. 搬送機構の構成の概略を模式的に示す斜視図である。It is a perspective view which shows the outline of the structure of the transport mechanism schematically. 搬送機構の各関節及び各アームの構成の概略を模式的に示す縦断面図である。It is a vertical sectional view schematically showing the outline of the structure of each joint and each arm of a transport mechanism. 水平多関節アームが水平面内を移動するときの概略を模式的に示す平面図である。It is a top view which shows the outline when the horizontal articulated arm moves in a horizontal plane. 水平多関節アームが水平面内を移動するときの概略を模式的に示す斜視図である。It is a perspective view which shows the outline when the horizontal articulated arm moves in a horizontal plane. 垂直多関節アームが垂直面内を移動するときの概略を模式的に示す側面図である。It is a side view which shows the outline when the vertical articulated arm moves in a vertical plane. 水平多関節アーム及び垂直多関節アームが協調して移動することによる搬送機構の動作の一例を模式的に示す側面図である。It is a side view schematically showing an example of the operation of the transport mechanism by moving the horizontal articulated arm and the vertical articulated arm in coordination. 水平多関節アーム及び垂直多関節アームが協調して移動することによる搬送機構の動作の他の一例を模式的に示す側面図である。It is a side view schematically showing another example of the operation of the transport mechanism by the coordinated movement of a horizontal articulated arm and a vertical articulated arm. 常圧部における搬送機構の動作の一例を模式的に示す側面図である。It is a side view schematically showing an example of the operation of the transport mechanism in a normal pressure part. 常圧部における搬送機構の動作の他の一例を模式的に示す側面図である。It is a side view schematically showing another example of the operation of the transport mechanism in a normal pressure part. 常圧部における搬送機構の動作の他の一例を模式的に示す側面図である。It is a side view schematically showing another example of the operation of the transport mechanism in a normal pressure part. 常圧部における搬送機構の動作の一例を模式的に示す平面図である。It is a top view which shows an example of the operation of the transport mechanism in a normal pressure part schematically. 常圧部における搬送機構の動作の他の一例を模式的に示す平面図である。It is a top view schematically showing another example of the operation of the transport mechanism in a normal pressure part. 常圧部における搬送機構の動作の他の一例を模式的に示す平面図である。It is a top view schematically showing another example of the operation of the transport mechanism in a normal pressure part. 他の実施形態にかかるウェハ処理装置の概略を模式的に示す平面図である。It is a top view which shows the outline of the wafer processing apparatus which concerns on other embodiment. 他の実施形態にかかるウェハ処理装置の概略を模式的に示す平面図である。It is a top view which shows the outline of the wafer processing apparatus which concerns on other embodiment. 減圧部の構成の概略を模式的に示す斜視図である。It is a perspective view which shows the outline of the structure of the decompression part schematically. 減圧部における搬送機構の動作及び配置を模式的に示す側面図である。It is a side view which shows typically the operation and arrangement of the transport mechanism in a decompression part. 減圧部における搬送機構の動作及び配置を模式的に示す平面図である。It is a top view which shows typically the operation and arrangement of the transport mechanism in a decompression part.
 例えば半導体デバイスの製造プロセスにおいては、半導体ウェハ(基板;以下、「ウェハ」という。)を収納した処理モジュールの内部を減圧(真空)状態にし、当該ウェハに予め決められた処理を施す、様々な処理工程が行われている。これら処理工程は、処理モジュールを複数備えたウェハ処理装置を用いて行われる。 For example, in the manufacturing process of a semiconductor device, the inside of a processing module containing a semiconductor wafer (base; hereinafter referred to as “wafer”) is put into a reduced pressure (vacuum) state, and the wafer is subjected to a predetermined process. The processing process is being performed. These processing steps are performed using a wafer processing apparatus equipped with a plurality of processing modules.
 例えば、ウェハ処理装置は、減圧部と常圧部がロードロックモジュールを介して一体に接続されている。減圧部は、減圧雰囲気下においてウェハに所望の処理を行う複数の減圧モジュール(上記処理モジュール)と、減圧雰囲気下において減圧モジュールにウェハを搬送する搬送機構とを備える。常圧部は、常圧雰囲気下においてウェハに所望の処理を行う複数の常圧モジュールと、常圧雰囲気下において常圧モジュールにウェハを搬送する搬送機構とを備える。ロードロックモジュールは、内部が減圧雰囲気と常圧雰囲気に切り替え可能に構成され、減圧部と常圧部の間でウェハの受け渡しを行う。 For example, in the wafer processing device, the decompression unit and the normal pressure unit are integrally connected via a load lock module. The decompression unit includes a plurality of decompression modules (the processing modules) that perform desired processing on the wafer in a decompression atmosphere, and a transfer mechanism that conveys the wafer to the decompression module in a decompression atmosphere. The normal pressure unit includes a plurality of normal pressure modules that perform desired processing on the wafer under a normal pressure atmosphere, and a transfer mechanism that conveys the wafer to the normal pressure module under a normal pressure atmosphere. The load lock module is configured so that the inside can be switched between a decompression atmosphere and a normal pressure atmosphere, and wafers are transferred between the decompression section and the normal pressure section.
 上述した特許文献1に開示の真空処理装置(ウェハ処理装置)では、ロードロックモジュールを平面視左右に並べて配置するように構成している。そして、常圧搬送室を、このロードロックモジュールの左右の一方向側からロードロックモジュールの下方側を伸び左右の他方側に跨るように設け、常圧搬送室におけるウェハの搬送領域とロードロックモジュールとを上下にオーバーラップさせている。さらに常圧搬送機構により、ロードロックモジュールの左右で、搬入出ポートのキャリアに対してのウェハの受け渡しが行えるようにしている。 In the vacuum processing apparatus (wafer processing apparatus) disclosed in Patent Document 1 described above, the load lock modules are configured to be arranged side by side in a plan view. Then, the normal pressure transfer chamber is provided so as to extend the lower side of the load lock module from the left and right unidirectional sides of the load lock module so as to straddle the other side of the left and right, and the wafer transfer region and the load lock module in the normal pressure transfer chamber. And are overlapped up and down. Furthermore, the atmospheric pressure transfer mechanism enables the transfer of wafers to and from the carriers of the import / output ports on the left and right sides of the load lock module.
 特許文献1には、常圧搬送室において左右にウェハの受け渡しが行えるようにするために搬送機構を2つ設けた構成が開示されている。しかしながら、このような構成には次のようなデメリットがある。すなわち、2つ設けた搬送機構によって常圧搬送室内のレイアウト並びに常圧搬送室に接続する処理モジュールのレイアウトが不自由になること、コストが高くなること、搬送機構間でウェハの受け渡しをする必要が生じること、などである。 Patent Document 1 discloses a configuration in which two transfer mechanisms are provided so that wafers can be transferred to the left and right in the normal pressure transfer chamber. However, such a configuration has the following disadvantages. That is, the layout of the normal pressure transfer chamber and the layout of the processing module connected to the normal pressure transfer chamber are inconvenient due to the two transfer mechanisms, the cost is high, and it is necessary to transfer the wafer between the transfer mechanisms. Will occur, and so on.
 特許文献2に開示の真空処理装置(ウェハ処理装置)において、搬送機構は、真空搬送チャンバの長手方向に沿って移動可能とされた搬送基台の上に、回転及び屈伸自在とされた2つの搬送アームを設けて構成されている。搬送基台には、この搬送基台の動きに応じて屈伸するダクトアームの一端が接続されており、このダクトアームの他端は、真空搬送チャンバのベース部材に接続されている。ダクトアームの内部は、ケーブル類を収容可能とされ、常圧雰囲気とされたケーブル類収容部となっている。 In the vacuum processing apparatus (wafer processing apparatus) disclosed in Patent Document 2, the transfer mechanism is provided on two transfer bases that are movable along the longitudinal direction of the vacuum transfer chamber, and are rotatable and flexible. It is configured by providing a transfer arm. One end of a duct arm that bends and stretches in response to the movement of the transfer base is connected to the transfer base, and the other end of the duct arm is connected to the base member of the vacuum transfer chamber. The inside of the duct arm can accommodate cables, and is a cable accommodating part with a normal pressure atmosphere.
 特許文献2に開示の真空処理装置には次のようなデメリットがある。すなわち、上記長手方向の搬送基台の移動のために設けられるスライダのストローク限界が短いこと、上記スライダのスライド部分が真空中に露出していることに起因して、搬送基台の移動時にパーティクルが発生すること、並びにスライド部分で用いられる潤滑材によるコンタミネーションが発生すること、などである。 The vacuum processing device disclosed in Patent Document 2 has the following disadvantages. That is, because the stroke limit of the slider provided for the movement of the transport base in the longitudinal direction is short and the slide portion of the slider is exposed in vacuum, particles are generated when the transport base is moved. And contamination due to the lubricant used in the slide part.
 本開示にかかる技術は、上記事情に鑑みてなされたものであり、搬送機構を内部に有する基板処理装置を最適化する。以下、本実施形態にかかる基板処理装置としてのウェハ処理装置、搬送機構、及び基板処理方法としてのウェハ処理方法について、図面を参照しながら説明する。なお、本明細書において、実質的に同一の機能構成を有する要素においては、同一の符号を付することにより重複説明を省略する。 The technology according to the present disclosure was made in view of the above circumstances, and optimizes the substrate processing apparatus having a transport mechanism inside. Hereinafter, the wafer processing apparatus as the substrate processing apparatus, the transfer mechanism, and the wafer processing method as the substrate processing method according to the present embodiment will be described with reference to the drawings. In the present specification, elements having substantially the same functional configuration are designated by the same reference numerals, so that duplicate description will be omitted.
<ウェハ処理装置>
 図1は、本実施形態にかかるウェハ処理装置の構成の概略を示す平面図である。なお、以下においては、位置関係を明確にするために、3次元空間において互いに直交するX軸、Y軸及びZ軸を規定する。X軸及びY軸はそれぞれ水平軸であり、Z軸は鉛直軸である。
<Wafer processing equipment>
FIG. 1 is a plan view showing an outline of the configuration of the wafer processing apparatus according to the present embodiment. In the following, in order to clarify the positional relationship, the X-axis, Y-axis, and Z-axis that are orthogonal to each other in the three-dimensional space are defined. The X-axis and the Y-axis are horizontal axes, respectively, and the Z-axis is a vertical axis.
 本実施形態においては、ウェハ処理装置1が、基板としてのウェハWにCOR(Chemical Oxide Removal)処理、PHT(Post Heat Treatment)処理、及びCST(Cooling Storage)処理を行うための各種処理モジュールを備える場合について説明する。なお、本開示のウェハ処理装置1のモジュール構成はこれに限られず、任意に選択され得る。 In the present embodiment, the wafer processing apparatus 1 includes various processing modules for performing COR (Chemical Oxide Removal) processing, PHT (Post Heat Treatment) processing, and CST (Cooling Storage) processing on the wafer W as a substrate. The case will be described. The module configuration of the wafer processing apparatus 1 of the present disclosure is not limited to this, and can be arbitrarily selected.
 図1に示すようにウェハ処理装置1は、常圧部2と減圧部3が一体に接続された構成を有している。なお、本実施形態では後述するように、常圧雰囲気と減圧雰囲気の間でウェハWを受け渡すロードロックモジュール10a、10bは常圧部2に入り込んで設置されている。なお、ロードロックモジュール10a、10bは例えば平面視において重なるように、すなわちZ軸方向に重なるように2段以上ずつ設けられていても良い。 As shown in FIG. 1, the wafer processing apparatus 1 has a configuration in which the normal pressure unit 2 and the decompression unit 3 are integrally connected. In this embodiment, as will be described later, the load lock modules 10a and 10b that transfer the wafer W between the normal pressure atmosphere and the depressurized atmosphere are installed in the normal pressure portion 2. The load lock modules 10a and 10b may be provided in two or more stages so as to overlap each other in a plan view, that is, to overlap in the Z-axis direction.
 常圧部2は、内部が常圧雰囲気下にある筐体11を備え、常圧雰囲気下においてウェハWに所望の処理を行う複数の常圧モジュールを備える。また、ロードロックモジュール10a、10bは筐体11の内部に配置されている。このため本実施形態においては、特に断らない限り、ロードロックモジュール10a、10bは常圧部2の構成要素として扱う。 The normal pressure unit 2 includes a housing 11 whose inside is in a normal pressure atmosphere, and includes a plurality of normal pressure modules that perform desired processing on the wafer W in the normal pressure atmosphere. Further, the load lock modules 10a and 10b are arranged inside the housing 11. Therefore, in the present embodiment, unless otherwise specified, the load lock modules 10a and 10b are treated as components of the normal pressure unit 2.
 常圧部2の筐体11の内部には、ウェハWを搬送する搬送機構20が設けられている。搬送機構20は、保持アーム21a、21b、水平多関節アーム22及び垂直多関節アーム23を有する。保持アーム21a、21bは、ウェハWを保持して移動する。水平多関節アーム22は、先端部が保持アーム21a、21bに接続され、基端部が垂直多関節アーム23に接続され、水平面内で移動する。垂直多関節アーム23は、先端部が水平多関節アーム22の基端部に接続され、基端部が支持部材(図示せず)によって支持され、水平一方向(図示の例においてはX軸方向)と垂直方向を含む垂直面内で移動する。なお、搬送機構20の詳細は後述する。 A transfer mechanism 20 for transporting the wafer W is provided inside the housing 11 of the normal pressure unit 2. The transport mechanism 20 has holding arms 21a and 21b, a horizontal articulated arm 22 and a vertical articulated arm 23. The holding arms 21a and 21b hold and move the wafer W. The tip of the horizontal articulated arm 22 is connected to the holding arms 21a and 21b, the proximal end is connected to the vertical articulated arm 23, and the horizontal articulated arm 22 moves in a horizontal plane. The tip of the vertical articulated arm 23 is connected to the base end of the horizontal articulated arm 22, and the base end is supported by a support member (not shown) in one horizontal direction (X-axis direction in the illustrated example). ) And move in a vertical plane including the vertical direction. The details of the transport mechanism 20 will be described later.
 ロードロックモジュール10aは、常圧部2の内部において搬送機構20とウェハWの受け渡しを行う搬入出口30aが形成されている。搬入出口30aには、ロードロックモジュール10aの内部の気密性を維持するため、ウェハWの受け渡し時以外の時にロードロックモジュール10aの内部を密閉するドアバルブ31aを備える。搬入出口30aは、筐体11の内部におけるロードロックモジュール10aの水平一方向側(X軸方向側)の側面に設けられている。 The load lock module 10a is formed with a carry-in outlet 30a for passing the transfer mechanism 20 and the wafer W inside the normal pressure unit 2. The carry-in outlet 30a is provided with a door valve 31a that seals the inside of the load lock module 10a at a time other than when the wafer W is delivered, in order to maintain the airtightness inside the load lock module 10a. The carry-in outlet 30a is provided on the side surface of the load lock module 10a on the horizontal one-way side (X-axis direction side) inside the housing 11.
 ロードロックモジュール10aは、減圧部3に接続される側面(図示の例においてはY軸正方向側の側面)において、上記搬入出口30a及びドアバルブ31aと同様の機能を有する搬入出口32a及びドアバルブ33aが形成されている。 The load lock module 10a has a carry-in outlet 32a and a door valve 33a having the same functions as the carry-in outlet 30a and the door valve 31a on the side surface connected to the decompression unit 3 (the side surface on the positive direction side of the Y-axis in the illustrated example). It is formed.
 ロードロックモジュール10aにはガスを供給する給気部(図示せず)とガスを排出する排気部(図示せず)が接続され、当該吸気部と排気部によって内部が常圧雰囲気と減圧雰囲気に切り替え可能に構成されている。すなわちロードロックモジュール10aは、常圧雰囲気の常圧部2と、減圧雰囲気の減圧部3との間で、適切にウェハWの受け渡しができるように構成されている。 An air supply section (not shown) for supplying gas and an exhaust section (not shown) for discharging gas are connected to the load lock module 10a, and the intake section and the exhaust section create a normal pressure atmosphere and a depressurization atmosphere inside. It is configured to be switchable. That is, the load lock module 10a is configured so that the wafer W can be appropriately transferred between the normal pressure unit 2 in the normal pressure atmosphere and the decompression unit 3 in the decompression atmosphere.
 なお、ロードロックモジュール10bはロードロックモジュール10aと同様の構成を有している。すなわち、ロードロックモジュール10bは、常圧部2側の搬入出口30bとドアバルブ31b、減圧部3側の搬入出口32bとドアバルブ33b、及び給気部と排気部を有している。 The load lock module 10b has the same configuration as the load lock module 10a. That is, the load lock module 10b has an carry-in outlet 30b and a door valve 31b on the normal pressure portion 2 side, a carry-in outlet 32b and a door valve 33b on the decompression section 3 side, and an air supply section and an exhaust section.
 なお、ロードロックモジュール10a、10bは、少なくとも一部が筐体11の内部に設けられていればよく、その他の配置や数は、本実施形態に限定されるものではなく、任意に設定できる。例えば、ロードロックモジュール10a、10bは、その一部が筐体11の内部に設けられ、他部が筐体11の外部であって減圧部3との間に設けられていてもよい。 It should be noted that at least a part of the load lock modules 10a and 10b may be provided inside the housing 11, and other arrangements and numbers are not limited to this embodiment and can be set arbitrarily. For example, a part of the load lock modules 10a and 10b may be provided inside the housing 11, and the other part may be provided outside the housing 11 and between the decompression unit 3.
 常圧部2は、筐体11の内部に設けられた上述のロードロックモジュール10a、10bと搬送機構20の他に、筐体11の外部に、ウェハWを保管可能なフープ40を載置するロードポート41と、ウェハWを冷却するCSTモジュール42と、ウェハWの水平方向の向きを調節するオリエンタモジュール43とを有している。 In the normal pressure section 2, in addition to the load lock modules 10a and 10b provided inside the housing 11 and the transport mechanism 20, a hoop 40 capable of storing the wafer W is placed outside the housing 11. It has a load port 41, a CST module 42 for cooling the wafer W, and an orienter module 43 for adjusting the horizontal orientation of the wafer W.
 筐体11は略直方体形状であり、内部は常圧雰囲気に維持されている。筐体11の長辺を構成する一側面(外側面)には、複数、例えば5つのロードポート41が併設されている。筐体11の長辺を構成する他側面(内側面)には、ロードロックモジュール10a、10bが併設されている。筐体11の短辺を構成する一側面(外側面)には、CSTモジュール42が設けられている。筐体11の短辺を構成する他側面(外側面)には、オリエンタモジュール43が設けられている。 The housing 11 has a substantially rectangular parallelepiped shape, and the inside is maintained in a normal pressure atmosphere. A plurality of, for example, five load ports 41 are provided on one side surface (outer surface) constituting the long side of the housing 11. Load lock modules 10a and 10b are attached to the other side surface (inner side surface) constituting the long side of the housing 11. A CST module 42 is provided on one side surface (outer surface) constituting the short side of the housing 11. An oriental module 43 is provided on the other side surface (outer surface) constituting the short side of the housing 11.
 なお、ロードポート41、CSTモジュール42、オリエンタモジュール43の数や配置は、本実施形態に限定されるものではなく、任意に設定できる。 The number and arrangement of the load port 41, the CST module 42, and the oriental module 43 are not limited to this embodiment and can be set arbitrarily.
 フープ40は複数、例えば1ロット25枚のウェハWを等間隔で多段に重なるようにして収容する。また、ロードポート41に載置されたフープ40の内部は、例えば、大気や窒素ガスなどで満たされて密閉されている。 The hoop 40 accommodates a plurality of wafers W, for example, 25 wafers per lot so as to be stacked in multiple stages at equal intervals. Further, the inside of the hoop 40 placed on the load port 41 is filled with, for example, the atmosphere or nitrogen gas and sealed.
 CSTモジュール42は、複数、例えばフープ40に収容される枚数以上のウェハWを等しい間隔で多段に収容することができ、当該複数のウェハWの冷却処理を行う。 The CST module 42 can accommodate a plurality of wafers W, for example, more than the number of wafers W accommodated in the hoop 40 in multiple stages at equal intervals, and cools the plurality of wafers W.
 オリエンタモジュール43は、ウェハWを回転させて水平方向の向きの調節を行う。具体的に、オリエンタモジュール43は、複数のウェハWのそれぞれにウェハ処理を行うにあたり、当該ウェハW処理毎に、基準位置(例えばノッチ位置)からの水平方向の向きが同じになるように調節される。 The oriental module 43 rotates the wafer W to adjust the orientation in the horizontal direction. Specifically, the oriental module 43 is adjusted so that the horizontal orientation from the reference position (for example, the notch position) is the same for each wafer W processing when the wafer processing is performed on each of the plurality of wafers W. Ru.
 減圧部3は、内部が減圧雰囲気(真空雰囲気)下にある筐体50を備え、減圧雰囲気下においてウェハWに所望の処理を行う複数の減圧モジュールを備える。 The decompression unit 3 includes a housing 50 whose inside is under a decompression atmosphere (vacuum atmosphere), and includes a plurality of decompression modules that perform desired processing on the wafer W under the decompression atmosphere.
 減圧部3の筐体50の内部には、ウェハWを搬送する搬送機構60が設けられている。搬送機構60は、搬送機構20と同様の構成を有している。すなわち、搬送機構60は、ウェハWを保持して移動する保持アーム61a、61bと、先端部が保持アーム61a、61bに接続され、水平面内で移動する水平多関節アーム62と、先端部が水平多関節アーム62の基端部に接続され、水平一方向と垂直方向とを含む垂直面内で移動する垂直多関節アーム63とを有する。 A transfer mechanism 60 for transporting the wafer W is provided inside the housing 50 of the decompression unit 3. The transport mechanism 60 has the same configuration as the transport mechanism 20. That is, the transport mechanism 60 has a holding arms 61a and 61b that hold and move the wafer W, a horizontal articulated arm 62 whose tip is connected to the holding arms 61a and 61b and moves in a horizontal plane, and a tip that is horizontal. It has a vertical articulated arm 63 that is connected to the proximal end of the articulated arm 62 and moves in a vertical plane including one horizontal direction and one vertical direction.
 減圧部3は、筐体50の内部に設けられた搬送機構60の他に、搬送機構60から搬送されたウェハWにCOR処理を行うCORモジュール70と、PHT処理を行うPHTモジュール71とを有している。筐体50、CORモジュール70、PHTモジュール71の内部は、それぞれ減圧雰囲気に維持される。搬送機構60に対し、CORモジュール70及びPHTモジュール71は複数、例えば4つずつ設けられている。 In addition to the transfer mechanism 60 provided inside the housing 50, the decompression unit 3 includes a COR module 70 that performs COR processing on the wafer W transferred from the transfer mechanism 60, and a PHT module 71 that performs PHT processing. are doing. The insides of the housing 50, the COR module 70, and the PHT module 71 are each maintained in a reduced pressure atmosphere. A plurality of COR modules 70 and PHT modules 71 are provided for the transport mechanism 60, for example, four each.
 減圧部3は、上述したように搬入出口32a、32bを介してロードロックモジュール10a、10bに接続されている。ロードロックモジュール10aに搬入されたウェハWを一のCORモジュール70、一のPHTモジュール71に順次搬入してCOR処理とPHT処理を施した後、ロードロックモジュール10bを介して常圧部2に搬出する。 The decompression unit 3 is connected to the load lock modules 10a and 10b via the carry-in outlets 32a and 32b as described above. The wafer W carried into the load lock module 10a is sequentially carried into one COR module 70 and one PHT module 71, subjected to COR treatment and PHT treatment, and then carried out to the normal pressure unit 2 via the load lock module 10b. do.
 以上のウェハ処理装置1には、図1に示すように制御部80が設けられている。制御部80は、例えばCPUやメモリ等を備えたコンピュータであり、プログラム格納部(図示せず)を有している。プログラム格納部には、ウェハ処理装置1におけるウェハWの処理を制御するプログラムが格納されている。また、プログラム格納部には、上述の各種処理モジュールや搬送機構などの駆動系の動作を制御して、後述する常圧部2の搬送機構20、減圧部3の搬送機構60によるウェハWの搬送を実現させるためのプログラムも格納されている。なお、上記プログラムは、コンピュータに読み取り可能な記憶媒体Hに記録されていたものであって、当該記憶媒体Hから制御部80にインストールされたものであってもよい。 As shown in FIG. 1, the wafer processing apparatus 1 described above is provided with a control unit 80. The control unit 80 is, for example, a computer equipped with a CPU, a memory, or the like, and has a program storage unit (not shown). The program storage unit stores a program that controls the processing of the wafer W in the wafer processing apparatus 1. Further, in the program storage unit, the operation of the drive system such as the various processing modules and the transfer mechanism described above is controlled, and the wafer W is transferred by the transfer mechanism 20 of the normal pressure unit 2 and the transfer mechanism 60 of the decompression unit 3, which will be described later. The program for realizing the above is also stored. The program may be recorded on a storage medium H readable by a computer and may be installed on the control unit 80 from the storage medium H.
<常圧部>
 図2は、常圧部2の構成の概略を模式的に示す斜視図である。図2に示すように搬送機構20はロードロックモジュール10a、10bの下方(Z軸負方向)に設けられている。これによって、図1の平面視においては、ロードロックモジュール10a、10bと搬送機構20が重なる。搬送機構20は、ロードロックモジュール10a、10bの下方を移動するとともに、ロードロックモジュール10a、10bの水平一方向側、すなわち、X軸方向側の側面に設けられた搬入出口30a、30bに保持アーム21a、21bを進入させることで、ロードロックモジュール10a、10bとの間でウェハWの受け渡しを行う。上記のように移動する搬送機構20の構成及び機能について、以下に詳述する。
<Normal pressure part>
FIG. 2 is a perspective view schematically showing an outline of the configuration of the normal pressure unit 2. As shown in FIG. 2, the transport mechanism 20 is provided below the load lock modules 10a and 10b (in the negative direction of the Z axis). As a result, in the plan view of FIG. 1, the load lock modules 10a and 10b and the transport mechanism 20 overlap each other. The transport mechanism 20 moves below the load lock modules 10a and 10b, and holds arms at the carry-in outlets 30a and 30b provided on the horizontal unidirectional side of the load lock modules 10a and 10b, that is, on the side surface on the X-axis direction side. By allowing 21a and 21b to enter, the wafer W is transferred to and from the load lock modules 10a and 10b. The configuration and function of the transport mechanism 20 that moves as described above will be described in detail below.
<搬送機構>
 図3は、本実施形態にかかる搬送機構20の構成の概略を模式的に示す斜視図である。なお、搬送機構60は搬送機構20と同様の構成を有しているため、詳細な説明及び図示を省略する。
<Transport mechanism>
FIG. 3 is a perspective view schematically showing an outline of the configuration of the transport mechanism 20 according to the present embodiment. Since the transport mechanism 60 has the same configuration as the transport mechanism 20, detailed description and illustration will be omitted.
 搬送機構20は、上述したように保持アーム21a、21b、水平多関節アーム22及び垂直多関節アーム23を有する。保持アーム21a、21bは、ウェハWを保持して移動する。水平多関節アーム22は、先端部が保持アーム21a、21bに接続され、基端部が垂直多関節アーム23に接続され、水平面内(X-Y平面内、以下、単に水平面内という。)で移動する。垂直多関節アーム23は、先端部が水平多関節アーム22の基端部に接続され、水平一方向(X軸方向)と垂直方向(Z軸方向)を含む垂直面内(Z-X平面内、以下、単に垂直面内という。)で移動する。なお、本開示における「水平面」の語には、略水平面、すなわち、水平面より若干傾斜した面も含むものとする。同様に、「垂直面」の語には、略垂直面、すなわち、垂直面より若干傾斜した面も含むものとする。 As described above, the transport mechanism 20 has holding arms 21a and 21b, a horizontal articulated arm 22 and a vertical articulated arm 23. The holding arms 21a and 21b hold and move the wafer W. The tip of the horizontal articulated arm 22 is connected to the holding arms 21a and 21b, and the base end is connected to the vertical articulated arm 23, in a horizontal plane (in the XY plane, hereinafter simply referred to as in the horizontal plane). Moving. The tip of the vertical articulated arm 23 is connected to the base end of the horizontal articulated arm 22 and is in a vertical plane (ZX plane) including one horizontal direction (X-axis direction) and a vertical direction (Z-axis direction). , Hereinafter referred to simply as in the vertical plane.) The term "horizontal plane" in the present disclosure includes a substantially horizontal plane, that is, a plane slightly inclined from the horizontal plane. Similarly, the term "vertical plane" shall also include a substantially vertical plane, i.e., a plane slightly inclined from the vertical plane.
 保持アーム21a、21bは、一端にそれぞれウェハWを保持するための保持部としての上部ピック100aと下部ピック100bが接続されている。 The holding arms 21a and 21b are connected to one end of the upper pick 100a and the lower pick 100b as holding portions for holding the wafer W, respectively.
 水平多関節アーム22は、回動軸としての第1水平関節109、110、第2水平関節111及び第3水平関節112を備えている。また水平多関節アーム22は、第1水平アーム120及び第2水平アーム121を備えている。第1水平関節109、110は、保持アーム21a、21bと第1水平アーム120とを、水平面内においてそれぞれ独立に回動自在に接続する。第2水平関節111は、第1水平アーム120と第2水平アーム121とを水平方向において回動自在に接続する。第3水平関節112は、第2水平アーム121と垂直多関節アーム23の先端部とを水平方向に回動自在に接続する。 The horizontal articulated arm 22 includes first horizontal joints 109 and 110, second horizontal joints 111, and third horizontal joints 112 as rotation axes. Further, the horizontal articulated arm 22 includes a first horizontal arm 120 and a second horizontal arm 121. The first horizontal joints 109 and 110 connect the holding arms 21a and 21b and the first horizontal arm 120 independently and rotatably in a horizontal plane. The second horizontal joint 111 rotatably connects the first horizontal arm 120 and the second horizontal arm 121 in the horizontal direction. The third horizontal joint 112 connects the second horizontal arm 121 and the tip of the vertical articulated arm 23 so as to be rotatable in the horizontal direction.
 垂直多関節アーム23は、回動軸としての第1垂直関節130、第2垂直関節131及び第3垂直関節132を備えている。また垂直多関節アーム23は、第1垂直アーム140、第2垂直アーム141及び第3垂直アーム142を備えている。第1垂直関節130は、第2水平アーム121が接続される先端部である第1垂直アーム140と、第2垂直アーム141とを、垂直面内において回動自在に接続する。第2垂直関節131は、第2垂直アーム141と第3垂直アーム142とを垂直面内において回動自在に接続する。第3垂直関節132は、第3垂直アーム142と他の構造体、例えば支持部材(図示せず)とを垂直面内において回動自在に接続する。 The vertical articulated arm 23 includes a first vertical joint 130, a second vertical joint 131, and a third vertical joint 132 as rotation axes. Further, the vertical articulated arm 23 includes a first vertical arm 140, a second vertical arm 141, and a third vertical arm 142. The first vertical joint 130 rotatably connects the first vertical arm 140, which is the tip to which the second horizontal arm 121 is connected, and the second vertical arm 141 in a vertical plane. The second vertical joint 131 rotatably connects the second vertical arm 141 and the third vertical arm 142 in a vertical plane. The third vertical joint 132 rotatably connects the third vertical arm 142 to another structure, such as a support member (not shown), in a vertical plane.
 ここで、本実施形態において水平多関節アーム22は水平面内で移動するが、基端部である第2水平アーム121が接続される第1垂直アーム140が垂直方向(Z軸方向)に移動することで、当該水平面は垂直方向に移動する。 Here, in the present embodiment, the horizontal articulated arm 22 moves in the horizontal plane, but the first vertical arm 140 to which the second horizontal arm 121, which is the base end portion, is connected moves in the vertical direction (Z-axis direction). As a result, the horizontal plane moves in the vertical direction.
 上記のように水平多関節アーム22と垂直多関節アーム23が協調して移動することにより、搬送機構20の先端である保持アーム21a、21bは3次元空間(XYZ空間)内を、各アームの長さが許す範囲において自由に移動することができる。これにより、任意の装置内でウェハWを自由に搬送することができる。また、水平多関節アーム22と垂直多関節アーム23とがともに同方向(X軸方向)への移動を担うことによって、任意の装置内で十分な当該同方向(X軸方向)の距離(装置内の一端から他端など)におけるウェハWの搬送を行うことができる。 As described above, the horizontal articulated arm 22 and the vertical articulated arm 23 move in cooperation with each other, so that the holding arms 21a and 21b, which are the tips of the transport mechanism 20, are in the three-dimensional space (XYZ space) of each arm. You can move freely as long as the length allows. As a result, the wafer W can be freely transported in any device. Further, both the horizontal articulated arm 22 and the vertical articulated arm 23 are responsible for movement in the same direction (X-axis direction), so that a sufficient distance (device in the X-axis direction) in any device is sufficient. The wafer W can be transported from one end to the other end of the inside.
 図4は、搬送機構20の各関節及び各アームの構成の概略を模式的に示す縦断面図(Y-Z断面図)である。 FIG. 4 is a vertical cross-sectional view (YZ cross-sectional view) schematically showing an outline of the configuration of each joint and each arm of the transport mechanism 20.
 第1~第3水平関節109~112及び第1~第3垂直関節130~132は、それぞれにおける回動を駆動するモータAを備えている。各モータAは、第1~第3水平関節109~112及び第1~第3垂直関節130~132の内部に設けられ、外部に露出しない。また、第1~第2水平アーム120~121及び第1~第3垂直アーム140~142はそれぞれ、内部が中空に設けられた中空部Vを有する。中空部VにはモータAに動力を伝えるためのケーブルCが収容され、ケーブルCは外部に露出しない。これによって、モータAやケーブルCが腐食性雰囲気によって損耗することを防ぐためにこれらを覆うケーブルダクトなどを搬送機構20の外部に別途用意する必要がなく、例えば搬送機構20の下方に、装置メンテナンスのためのスペースを広くとることができる。 The first to third horizontal joints 109 to 112 and the first to third vertical joints 130 to 132 each include a motor A for driving rotation. Each motor A is provided inside the first to third horizontal joints 109 to 112 and the first to third vertical joints 130 to 132, and is not exposed to the outside. Further, the first to second horizontal arms 120 to 121 and the first to third vertical arms 140 to 142 each have a hollow portion V having a hollow inside. The cable C for transmitting power to the motor A is housed in the hollow portion V, and the cable C is not exposed to the outside. As a result, in order to prevent the motor A and the cable C from being worn by the corrosive atmosphere, it is not necessary to separately prepare a cable duct or the like for covering them outside the transport mechanism 20, for example, under the transport mechanism 20 for equipment maintenance. You can take a lot of space for it.
 上記のとおり、本実施形態にかかる搬送機構20は、回動軸によって構成されたリンク機構であり、スライド軸を有さない。 As described above, the transport mechanism 20 according to the present embodiment is a link mechanism configured by a rotating shaft and does not have a slide shaft.
 従来の搬送機構では、特に高さ方向の移動についてはスライド軸を用いた機構が知られている。ここで、スライド軸を用いた機構とは、例えば二つのリンク部材がスライド軸上で互いに滑り合うように接続されることで、これらリンク部材のスライド軸に平行な方向における直動が可能なリンク機構を言う。これについて、例えば特許文献1に開示の真空処理装置では、垂直方向のウェハの搬送のために、スライド軸を用いた機構である2段のテレスコピックなピストンを用いた機構を用いている。このようなスライド軸を用いた機構においては、リンク部材の直動時にスライド部分が相対的に移動するためスライド部分のシール(機構の内外の気密性維持)が困難である。シールが不十分な場合、スライド部分で空気(腐食性雰囲気)の出入りが発生し、リンク部材の損耗を招く場合がある。また、スライド部分が擦れ合うことにより系にパーティクルを発生する発塵源となったり、スライド部分で使用される潤滑材を原因とする有機コンタミなどが発生したりする場合がある。これに対しては、スライド軸を用いた機構の内部をラビリンス構造としたり、搬送機構内部を陰圧にして外部にパーティクルを出さないようにしたりするなどによる対策が考えられる。しかしながら、この場合はスライド部分から機構内部に、より多くの空気(腐食性雰囲気)を呼び込むこととなり、リンク部材のさらなる損耗を招く懸念がある。 In the conventional transport mechanism, a mechanism using a slide shaft is known, especially for movement in the height direction. Here, the mechanism using the slide shaft is a link capable of linear movement in a direction parallel to the slide shaft of the two link members, for example, by connecting the two link members so as to slide against each other on the slide shaft. Say the mechanism. Regarding this, for example, in the vacuum processing apparatus disclosed in Patent Document 1, a mechanism using a two-stage telescopic piston, which is a mechanism using a slide shaft, is used for conveying the wafer in the vertical direction. In a mechanism using such a slide shaft, it is difficult to seal the slide portion (maintain the airtightness inside and outside the mechanism) because the slide portion moves relatively when the link member moves linearly. If the seal is inadequate, air (corrosive atmosphere) will flow in and out of the slide portion, which may lead to wear of the link member. Further, when the slide portions rub against each other, it may become a dust generation source for generating particles in the system, or organic contamination due to the lubricating material used in the slide portions may be generated. Countermeasures can be considered for this, such as making the inside of the mechanism using the slide shaft a labyrinth structure, or making the inside of the transport mechanism negative pressure to prevent particles from being emitted to the outside. However, in this case, more air (corrosive atmosphere) is drawn from the slide portion to the inside of the mechanism, and there is a concern that the link member may be further worn.
 また、例えば特許文献2に開示の搬送基台は、真空搬送チャンバの長手方向に沿って、真空処理チャンバの内壁をスライドするように構成されているため、上記のとおりスライド軸を用いた機構と同様の問題が生じる懸念がある。 Further, for example, the transfer base disclosed in Patent Document 2 is configured to slide the inner wall of the vacuum processing chamber along the longitudinal direction of the vacuum transfer chamber. There is concern that similar problems will arise.
 これに対し、本実施形態にかかる搬送機構はスライド軸を有さず、回動軸を用いた機構によって構成されている。回動軸はスライド軸と異なり駆動時に相対的に移動することがなく、例えばO-ringなどによって完全にシールすることが技術的に容易である。回動軸をシールすることで、筐体11の内部と中空部Vとを隔離し、関節部分における空気(腐食雰囲気)の出入りによる搬送機構20の損耗や、関節部分からの系へのパーティクルの放出などを防ぐことが可能となる。 On the other hand, the transport mechanism according to the present embodiment does not have a slide shaft, but is configured by a mechanism using a rotation shaft. Unlike the slide shaft, the rotating shaft does not move relatively during driving, and it is technically easy to completely seal the rotating shaft by, for example, O-ring. By sealing the rotation shaft, the inside of the housing 11 and the hollow portion V are separated from each other, and the transport mechanism 20 is worn due to the ingress and egress of air (corrosive atmosphere) in the joint portion, and particles from the joint portion to the system are collected. It is possible to prevent the release and the like.
 図5A及び図5Bは、水平多関節アーム22が水平面内を移動するときの概略を模式的に示す平面図(図5A)及び斜視図(図5B)であり、図6は、垂直多関節アーム23が垂直面内を移動するときの概略を模式的に示す側面図である。図7は、水平多関節アーム22及び垂直多関節アーム23が協調して移動することによる搬送機構20の動作を模式的に示す側面図である。 5A and 5B are a plan view (FIG. 5A) and a perspective view (FIG. 5B) schematically showing an outline when the horizontal articulated arm 22 moves in a horizontal plane, and FIG. 6 is a vertical articulated arm. It is a side view schematically showing the outline when 23 moves in a vertical plane. FIG. 7 is a side view schematically showing the operation of the transport mechanism 20 due to the coordinated movement of the horizontal articulated arm 22 and the vertical articulated arm 23.
 水平多関節アーム22は、図5A及び図5Bに示すように、第1~第3水平関節109~112における角θ1a、θ1b、θ2、θ3がそれぞれ変化することにより、水平面内を移動する。角θ1a、θ1bは、それぞれ保持アーム21a、21bと第1水平アーム120とのなす角であり、これらは独立に変化し得る。角θ2は、第1水平アーム120と第2水平アーム121とのなす角である。角θ3は、第2水平アーム121と第1垂直アーム140とのなす角である。例えば図5A(a)及び図5B(a)は、各アーム同士が折りたたまれ、短縮姿勢にある水平多関節アーム22を示す。この姿勢から、角θ1a及び角θ2が増加し、角θ3が減少するようにモータAによってそれぞれの関節の回動が駆動されることによって、図5A(b)及び図5B(b)又は図5A(c)及び図5B(c)に示すように、保持アーム21aを伸長させることができる。 As shown in FIGS. 5A and 5B, the horizontal articulated arm 22 moves in the horizontal plane by changing the angles θ1a, θ1b, θ2, and θ3 in the first to third horizontal joints 109 to 112, respectively. The angles θ1a and θ1b are angles formed by the holding arms 21a and 21b and the first horizontal arm 120, respectively, and these angles can change independently. The angle θ2 is an angle formed by the first horizontal arm 120 and the second horizontal arm 121. The angle θ3 is an angle formed by the second horizontal arm 121 and the first vertical arm 140. For example, FIGS. 5A (a) and 5B (a) show the horizontal articulated arm 22 in which each arm is folded and in a shortened posture. From this posture, the rotation of each joint is driven by the motor A so that the angle θ1a and the angle θ2 increase and the angle θ3 decreases, so that FIGS. 5A (b) and 5B (b) or 5A As shown in (c) and FIG. 5B (c), the holding arm 21a can be extended.
 垂直多関節アーム23は、図6に示すように、第1~第3垂直関節130~132における角φ1~φ3がそれぞれ変化することにより、垂直面内を移動する。角φ1は、第1垂直アーム140と第2垂直アーム141とのなす角である。角φ2は、第2垂直アーム141と第3垂直アーム142とのなす角である。角φ3は、第3垂直アーム142と水平面とのなす角である。例えば、図6(a)で示す状態から、角φ1が減少し、角φ2が変化せず、角φ3が増加するように、モータAによってそれぞれの関節の回動が駆動されることで、図6(b)に示す姿勢、すなわち第1垂直アーム140が水平方向(X軸方向)に移動した姿勢にすることができる。 As shown in FIG. 6, the vertical articulated arm 23 moves in the vertical plane by changing the angles φ1 to φ3 of the first to third vertical joints 130 to 132, respectively. The angle φ1 is an angle formed by the first vertical arm 140 and the second vertical arm 141. The angle φ2 is an angle formed by the second vertical arm 141 and the third vertical arm 142. The angle φ3 is an angle formed by the third vertical arm 142 and the horizontal plane. For example, from the state shown in FIG. 6A, the rotation of each joint is driven by the motor A so that the angle φ1 decreases, the angle φ2 does not change, and the angle φ3 increases. The posture shown in 6 (b), that is, the posture in which the first vertical arm 140 is moved in the horizontal direction (X-axis direction) can be set.
 また例えば図6(b)からさらに、角φ1が変化せず、角φ2及び角φ3が増加するように、モータAによってそれぞれの関節の回動が駆動されることで、図6(c)に示す姿勢、すなわち第1垂直アーム140が垂直方向(Z軸方向)に移動した姿勢にすることができる。このように、本開示にかかる垂直多関節アーム23は、基端部である第3垂直アームと他の構造体、例えば支持部材(図示せず)との接続部分よりも、第1垂直アーム140が下方(Z軸負方向)を移動可能に構成されていてもよい。 Further, for example, from FIG. 6 (b), the rotation of each joint is driven by the motor A so that the angle φ1 does not change and the angles φ2 and φ3 increase, so that FIG. 6 (c) shows. The posture shown, that is, the posture in which the first vertical arm 140 is moved in the vertical direction (Z-axis direction) can be set. As described above, the vertical articulated arm 23 according to the present disclosure has a first vertical arm 140 rather than a connection portion between the third vertical arm, which is a proximal end portion, and another structure, for example, a support member (not shown). May be configured to be movable downward (Z-axis negative direction).
 ここで、本開示にかかる搬送機構20は、垂直多関節アーム23の動作を制御する制御部を有し、水平多関節アーム22の自重たわみを補正する方向に回動するように、角φ1を制御するように構成されていてもよい。上記のように角φ1を制御することで、垂直多関節アーム23の先端部である第1垂直アーム140に接続される水平多関節アーム22を、常に略水平(X-Y平面と略平行)で移動するように維持することができる。なお略水平とは、水平多関節アーム22の第1水平アーム120に接続された保持アーム21a、21bが、ウェハWを安全に保持するために十分に水平に近いことを指す。 Here, the transport mechanism 20 according to the present disclosure has a control unit that controls the operation of the vertical articulated arm 23, and has an angle φ1 so as to rotate in a direction for correcting the own weight deflection of the horizontal articulated arm 22. It may be configured to control. By controlling the angle φ1 as described above, the horizontal articulated arm 22 connected to the first vertical arm 140, which is the tip of the vertical articulated arm 23, is always substantially horizontal (almost parallel to the XY plane). Can be maintained to move with. Note that substantially horizontal means that the holding arms 21a and 21b connected to the first horizontal arm 120 of the horizontal articulated arm 22 are sufficiently close to horizontal in order to safely hold the wafer W.
 図7A及び図7Bは、図5、図6に示した保持アーム21a、21b、水平多関節アーム22、垂直多関節アーム23の移動を模式的に示す側面図である。 7A and 7B are side views schematically showing the movement of the holding arms 21a and 21b, the horizontal articulated arm 22, and the vertical articulated arm 23 shown in FIGS. 5 and 6.
 搬送機構20は、図7Aの実線で示す姿勢から、水平多関節アーム22と垂直多関節アーム23とがともにX軸負方向へ移動することで、2点鎖線で示す姿勢への姿勢変更を早く行うことができる。すなわち、本実施形態に係る搬送機構20は、水平多関節アーム22と垂直多関節アーム23とがともにX軸方向に移動可能に構成されているため、これらがともにX軸方向の同方向への移動を担うことができる。これらが協調して当該同方向へ移動することによって、搬送機構20の先端である保持アーム21a、21bの十分な距離の当該同方向への移動を行うことができる。 The transport mechanism 20 quickly changes the posture from the posture shown by the solid line in FIG. 7A to the posture shown by the two-dot chain line by moving both the horizontal articulated arm 22 and the vertical articulated arm 23 in the negative direction of the X-axis. It can be carried out. That is, in the transport mechanism 20 according to the present embodiment, both the horizontal articulated arm 22 and the vertical articulated arm 23 are configured to be movable in the X-axis direction, so that both of them are in the same direction in the X-axis direction. Can be responsible for movement. By coordinating and moving in the same direction, the holding arms 21a and 21b, which are the tips of the transport mechanism 20, can be moved in the same direction at a sufficient distance.
 また、図6(c)で示したように、垂直多関節アーム23が、基端部である第3垂直アームと他の構造体、例えば支持部材(図示せず)との接続部よりも、第1垂直アーム140が下方(Z軸負方向)を移動可能に構成されていることで、図7Bに示すように、第1垂直アーム140に接続される水平多関節アーム22が上記接続部よりも下方に移動することができる。これによって、任意の装置内で十分な高低差(Z軸方向距離)においてもウェハWの搬送を行うことができる。 Further, as shown in FIG. 6 (c), the vertical articulated arm 23 is more than a connection portion between the third vertical arm, which is the proximal end portion, and another structure, for example, a support member (not shown). Since the first vertical arm 140 is configured to be movable downward (Z-axis negative direction), as shown in FIG. 7B, the horizontal articulated arm 22 connected to the first vertical arm 140 is connected to the connection portion. Can also move downwards. As a result, the wafer W can be conveyed even with a sufficient height difference (distance in the Z-axis direction) in any device.
 なお上記実施形態においては、水平多関節アーム22及び垂直多関節アーム23の各関節の回動はモータAにより駆動されるよう構成されたが、各関節の構成はこれに限定されず、任意の構成をとり得る。例えばモータAに代えて、駆動ベルト及び例えばプーリなどを介して接続される回転機構を設けて各関節の回動を駆動させてもよい。 In the above embodiment, the rotation of each joint of the horizontal articulated arm 22 and the vertical articulated arm 23 is configured to be driven by the motor A, but the configuration of each joint is not limited to this and is arbitrary. It can be configured. For example, instead of the motor A, a rotation mechanism connected via a drive belt and, for example, a pulley may be provided to drive the rotation of each joint.
 また、上記実施形態においては、水平多関節アーム22は第1~第3水平関節109~112、第1~第2水平アーム120~121によって構成され、垂直多関節アーム23は第1~第3垂直関節130~132、第1~第3垂直アーム140~142によって構成されているが、搬送機構20の構成はこれに限定されず、より多くのアーム及び関節を有していてもよい。アーム及び関節の数が多いほど、各アームを折りたたんだ際の水平多関節アーム22、垂直多関節アーム23をコンパクトにすることができ、その結果、ウェハ処理装置1のフットプリントを削減することができる。一方、アームおよび関節数が著しく多い場合、折りたたんだ時の厚みが増すためかえってフットプリントの増加を招く懸念がある。また、モータAの数を関節数だけ設ける必要があるため、コストの増加を招く懸念がある。したがってアーム数および関節数は、これらのバランスを考慮して決定する。 Further, in the above embodiment, the horizontal articulated arm 22 is composed of the first to third horizontal joints 109 to 112 and the first to second horizontal arms 120 to 121, and the vertical articulated arm 23 is composed of the first to third horizontal joints. Although it is composed of vertical joints 130 to 132 and first to third vertical arms 140 to 142, the configuration of the transport mechanism 20 is not limited to this, and may have more arms and joints. As the number of arms and joints increases, the horizontal articulated arm 22 and the vertical articulated arm 23 when each arm is folded can be made compact, and as a result, the footprint of the wafer processing device 1 can be reduced. can. On the other hand, if the number of arms and joints is extremely large, the thickness when folded increases, which may lead to an increase in footprint. Further, since it is necessary to provide the number of motors A as many as the number of joints, there is a concern that the cost will increase. Therefore, the number of arms and the number of joints are determined in consideration of these balances.
<EFEM>
 次に、上記のような搬送機構20を有する、常圧雰囲気下の常圧部2について詳述する。このような常圧部2は、例えば図8A~図8C、図9A~図9Cに示す、いわゆるEFEM(Epuipment Front End Module)であってもよい。
<EFEM>
Next, the normal pressure portion 2 under a normal pressure atmosphere having the above-mentioned transport mechanism 20 will be described in detail. Such a normal pressure unit 2 may be, for example, a so-called EFEM (Epuipment Front End Module) shown in FIGS. 8A to 8C and FIGS. 9A to 9C.
 図8A~図8C、図9A~図9Cはそれぞれ、常圧部2であるEFEMにおける、ロードロックモジュール10a、10bとロードポート41との間におけるウェハWの受け渡しに際する搬送機構20の動作を模式的に示す側面図(図8A~図8C)及び平面図(図9A~図9C)である。なお、図8A~図8C、図9A~図9Cにおいては、技術の理解を容易にするため、保持アーム21aのみ図示し、保持アーム21bの図示を省略する。 8A to 8C and FIGS. 9A to 9C show the operation of the transfer mechanism 20 when the wafer W is transferred between the load lock modules 10a and 10b and the load port 41 in the EFEM which is the normal pressure unit 2, respectively. It is a side view (FIGS. 8A-FIG. 8C) and a plan view (FIGS. 9A-FIG. 9C) schematically shown. In FIGS. 8A to 8C and FIGS. 9A to 9C, only the holding arm 21a is shown and the holding arm 21b is omitted in order to facilitate the understanding of the technique.
 搬送機構20は、垂直多関節アーム23が移動する水平一方向(X軸方向)が、筐体11の長手方向となるように、筐体11の内部に収容される。さらに、搬送機構20は、ロードロックモジュール10a、10bの下方に設けられる。そして、図8A、図9Aに示す搬送機構20では、ロードロックモジュール10aのX軸方向側の側面に設けられた搬入出口30aに対し保持アーム21aまたは21bを進入させ、ウェハWの受け渡しを行う。さらに、搬送機構20は図8Bの2点鎖線で示すように、垂直多関節アーム23を屈折させ、水平多関節アーム22がロードロックモジュール10a、10bの下方を通るように移動する。その後、図8Bの実線及び図9Bに示すように搬送機構20は、ロードロックモジュール10bの搬入出口30bに対してウェハWを受け渡し、図8C、図9Cに示すように、ロードポート41に対してウェハWを受け渡すように移動する。 The transport mechanism 20 is housed inside the housing 11 so that the horizontal one direction (X-axis direction) in which the vertical articulated arm 23 moves is the longitudinal direction of the housing 11. Further, the transport mechanism 20 is provided below the load lock modules 10a and 10b. Then, in the transport mechanism 20 shown in FIGS. 8A and 9A, the holding arm 21a or 21b is made to enter the carry-in outlet 30a provided on the side surface of the load lock module 10a on the X-axis direction side, and the wafer W is delivered. Further, the transport mechanism 20 refracts the vertical articulated arm 23 as shown by the two-dot chain line in FIG. 8B, and the horizontal articulated arm 22 moves so as to pass under the load lock modules 10a and 10b. After that, the transfer mechanism 20 delivers the wafer W to the carry-in outlet 30b of the load lock module 10b as shown in the solid line of FIG. 8B and FIG. 9B, and transfers the wafer W to the load port 41 as shown in FIGS. 8C and 9C. Move to deliver the wafer W.
 上述したとおり搬送機構20は、ロードロックモジュール10a、10bの下方に設けられ、かつこれらの下方を通過し、ロードロックモジュール10a、10bに対してX軸方向側の側面に設けられた搬入出口30a、30bからウェハWの受け渡しを行うように配置される。これにより常圧部2は、図9A~図9Cに示したようにロードロックモジュール10a、10bと搬送機構20とが平面視において重なるように配置することが可能となり、ロードロックモジュール10a、10bの分だけ、ウェハ処理装置1を小さく設けることができる。したがって、このような常圧部2を有するウェハ処理装置1の奥行き方向(Y軸方向)のフットプリントを削減することができる。 As described above, the transport mechanism 20 is provided below the load lock modules 10a and 10b, passes under the load lock modules 10a and 10b, and is provided on the side surface of the load lock modules 10a and 10b on the X-axis direction side. , 30b is arranged so as to transfer the wafer W. As a result, the normal pressure unit 2 can be arranged so that the load lock modules 10a and 10b and the transport mechanism 20 overlap each other in a plan view as shown in FIGS. 9A to 9C, and the load lock modules 10a and 10b can be arranged. The wafer processing apparatus 1 can be provided as small as the amount. Therefore, it is possible to reduce the footprint in the depth direction (Y-axis direction) of the wafer processing apparatus 1 having such a normal pressure portion 2.
 また、本開示にかかる搬送機構20によると、水平多関節アーム22と垂直多関節アーム23とがともにX軸方向の同方向への移動を担うことによって、任意の装置内で十分なX軸方向の距離(一端から他端など)における当該同方向へのウェハWの搬送を行うことができる。 Further, according to the transport mechanism 20 according to the present disclosure, both the horizontal articulated arm 22 and the vertical articulated arm 23 are responsible for movement in the same direction in the X-axis direction, whereby a sufficient X-axis direction is sufficient in any device. The wafer W can be transported in the same direction at a distance (from one end to the other end, etc.).
 ここで、従来において例えばX軸方向に長い装置内においてウェハWをX軸方向に長距離搬送することを考えると、水平多関節アームのリンク長を伸ばすことなどが考えられる。しかしこのような場合、アーム長の奥行きが長くなることで装置内でのアームの転回(ひじの入れ替え)などに不都合が生じる懸念がある。また、このような不都合を回避するためには装置の奥行きを長くとる必要があり、フットプリントを増加させる懸念がある。 Here, in consideration of transporting the wafer W over a long distance in the X-axis direction in a device that is long in the X-axis direction in the past, it is conceivable to extend the link length of the horizontal articulated arm. However, in such a case, there is a concern that the arm may rotate (replace the elbow) in the device due to the increase in the depth of the arm length. Further, in order to avoid such inconvenience, it is necessary to increase the depth of the device, and there is a concern that the footprint may be increased.
 これに対して本開示にかかる搬送機構20は、搬送機構20のアーム長を長くすることなく、かつ、1つの搬送機構20によって、ウェハWを搬送することができ、上記のような懸念を生じさせずフットプリントを削減することができる。 On the other hand, the transfer mechanism 20 according to the present disclosure can transfer the wafer W by one transfer mechanism 20 without lengthening the arm length of the transfer mechanism 20, which raises the above-mentioned concerns. The footprint can be reduced without doing so.
 なお、本実施形態にかかるウェハ処理装置1においては、ロードロックモジュール10a、10bの全部を筐体11の内部に設けることでフットプリントを削減したが、かかる例に限定されない。例えば、ロードロックモジュール10a、10bの少なくとも一部を筐体11の内部に設けることで、ロードロックモジュール10a、10bと筐体11が重なった部分だけウェハ処理装置1の奥行き(Y軸方向の長さ)を小さく設け、フットプリントを削減することができる。図10及び図11はそれぞれ、他の実施形態にかかるウェハ処理装置1の概略を模式的に示す平面図であり、上記のとおりロードロックモジュール10a、10bの一部が筐体11の内部に設けられた例を示す。 In the wafer processing apparatus 1 according to the present embodiment, the footprint is reduced by providing all of the load lock modules 10a and 10b inside the housing 11, but the present invention is not limited to this example. For example, by providing at least a part of the load lock modules 10a and 10b inside the housing 11, only the portion where the load lock modules 10a and 10b and the housing 11 overlap is the depth (length in the Y-axis direction) of the wafer processing device 1. It is possible to reduce the footprint by providing a small module. 10 and 11 are plan views schematically showing an outline of the wafer processing apparatus 1 according to another embodiment, and as described above, a part of the load lock modules 10a and 10b is provided inside the housing 11. Here is an example.
 また、搬送機構20はロードロックモジュール10a、10bの下方を移動して搬入出口30a、30bの両方にアクセスすることができる。このため、常圧部2の筐体11内部において1つ設ければ足り、2つのロードロックモジュール10a、10bのそれぞれとウェハWの受け渡しを行うような2つの搬送機構を設ける必要がない。その結果、2つの搬送機構を設ける分の装置コストやフットプリントを節減することができる。 Further, the transport mechanism 20 can move below the load lock modules 10a and 10b to access both the carry-in outlets 30a and 30b. Therefore, it is sufficient to provide one inside the housing 11 of the normal pressure unit 2, and it is not necessary to provide two transfer mechanisms for transferring the wafer W to each of the two load lock modules 10a and 10b. As a result, it is possible to reduce the equipment cost and footprint due to the provision of the two transport mechanisms.
 <VTM>
 次に、上記のような搬送機構20と同様に構成される搬送機構60を有する、減圧雰囲気下の減圧部3について詳述する。このような減圧部3は、例えば図12~図14に示す、いわゆるVTM(Vacuum Transfer Module)であってもよい。
<VTM>
Next, the decompression unit 3 under a decompression atmosphere, which has a transfer mechanism 60 configured in the same manner as the transfer mechanism 20 as described above, will be described in detail. Such a decompression unit 3 may be, for example, a so-called VTM (Vacuum Transfer Module) shown in FIGS. 12 to 14.
 図12は、減圧部3の構成の概略を模式的に示す斜視図である。図13、図14はそれぞれ、減圧部3であるVTMにおける、ロードロックモジュール10a、10bとCORモジュール70、PHTモジュール71との間におけるウェハWの受け渡しに際する搬送機構60の配置及び動作を模式的に示す側面図(図13)及び平面図(図14)である。なお、図12~14においては、技術の理解を容易にするため、保持アーム61aのみ図示し、保持アーム61bの図示を省略する。 FIG. 12 is a perspective view schematically showing an outline of the configuration of the decompression unit 3. 13 and 14 schematically show the arrangement and operation of the transfer mechanism 60 when the wafer W is transferred between the load lock modules 10a and 10b and the COR module 70 and the PHT module 71 in the VTM which is the decompression unit 3, respectively. It is a side view (FIG. 13) and a plan view (FIG. 14) which are shown. In FIGS. 12 to 14, only the holding arm 61a is shown and the holding arm 61b is not shown in order to facilitate the understanding of the technique.
 図12に示すように、搬送機構60は減圧雰囲気下の筐体50の内部に設けられている。筐体50は、垂直多関節アーム63が内部で移動する第1の収容部200と、水平多関節アーム62が内部で移動する第2の収容部201とを有する。 As shown in FIG. 12, the transport mechanism 60 is provided inside the housing 50 under a reduced pressure atmosphere. The housing 50 has a first accommodating portion 200 in which the vertical articulated arm 63 moves internally, and a second accommodating portion 201 in which the horizontal articulated arm 62 moves internally.
 第1の収容部200の上部は、第2の収容部201に連通している。図13、図14に示すように搬送機構60は、筐体50の右端(X軸正方向側の端部)に水平多関節アーム62と垂直多関節アーム63を伸ばした姿勢(実線)から、筐体50の左端(X軸負方向の端部)に水平多関節アーム62と垂直多関節アーム63を伸ばした姿勢(2点鎖線)の姿勢に移動する。第1の収容部200は、この垂直多関節アーム63の移動範囲が第1の収容部200の内部に収容されるように構成される。 The upper part of the first accommodating portion 200 communicates with the second accommodating portion 201. As shown in FIGS. 13 and 14, the transport mechanism 60 has a posture (solid line) in which the horizontal articulated arm 62 and the vertical articulated arm 63 are extended to the right end (the end on the positive side of the X-axis) of the housing 50. The horizontal articulated arm 62 and the vertical articulated arm 63 are extended to the left end (end in the negative direction of the X-axis) of the housing 50 to move to a posture (two-point chain line). The first accommodating portion 200 is configured so that the range of movement of the vertical articulated arm 63 is accommodated inside the first accommodating portion 200.
 水平多関節アーム62は、水平多関節アーム22と同様に、第1水平アーム120及び第2水平アーム121を備えている。水平多関節アーム62は、垂直多関節アーム63の先端部に接続される。そして水平多関節アーム62は、垂直多関節アーム63のX軸方向の移動とともに第2の収容部201の内部を移動し、保持アーム61a、61bをCORモジュール70、PHTモジュール71またはロードロックモジュール10a、10bなどに移動させる。第2の収容部201は、保持アーム61a、61bをCORモジュール70、PHTモジュール71に対して真っ直ぐに進入させることが可能なように、保持アーム61a、61bの長さに対して十分な奥行き(Y軸方向)があるように構成される。 The horizontal articulated arm 62 includes a first horizontal arm 120 and a second horizontal arm 121, similarly to the horizontal articulated arm 22. The horizontal articulated arm 62 is connected to the tip of the vertical articulated arm 63. Then, the horizontal articulated arm 62 moves inside the second accommodating portion 201 with the movement of the vertical articulated arm 63 in the X-axis direction, and the holding arms 61a and 61b are moved to the COR module 70, the PHT module 71 or the load lock module 10a. Move to 10b or the like. The second accommodating portion 201 has a sufficient depth for the length of the holding arms 61a and 61b so that the holding arms 61a and 61b can enter the COR module 70 and the PHT module 71 straight. (Y-axis direction).
 垂直多関節アーム63は、垂直多関節アーム23と同様に、第1垂直アーム140、第2垂直アーム141及び第3垂直アーム142を備えている。なお、垂直多関節アーム63は主として第1の収容部200の内部で移動するが、必要に応じて第2の収容部201を移動することで、水平多関節アーム62を任意の高さ(Z軸方向)に移動させることができる。また、水平多関節アーム62は主として第2の収容部201の内部で移動するが、必要に応じて垂直多関節アーム63の高さの移動に伴い第1の収容部200の内部を移動することができる。 The vertical articulated arm 63 includes a first vertical arm 140, a second vertical arm 141, and a third vertical arm 142, similarly to the vertical articulated arm 23. The vertical articulated arm 63 mainly moves inside the first accommodating portion 200, but by moving the second accommodating portion 201 as needed, the horizontal articulated arm 62 can be moved to an arbitrary height (Z). It can be moved in the axial direction). Further, the horizontal articulated arm 62 moves mainly inside the second accommodating portion 201, but moves inside the first accommodating portion 200 as the height of the vertical articulated arm 63 moves as needed. Can be done.
 従来、例えば特開2008-053737に記載される搬送機構では、図14の例により筐体右端に接続されるCORモジュール70、PHTモジュール71に極座標系で移動する水平アーム(保持アーム)をアクセスさせるにあたり、スライド軸を用いた機構によりX軸方向を移動させるため、スライド軸を用いた機構が筐体右端まで移動する必要があり、これを収容するための収容部が筐体右端まで設けられている必要がある。 Conventionally, for example, in the transport mechanism described in Japanese Patent Application Laid-Open No. 2008-057373, the horizontal arm (holding arm) that moves in a polar coordinate system is accessed by the COR module 70 and the PHT module 71 connected to the right end of the housing according to the example of FIG. In order to move in the X-axis direction by a mechanism using a slide axis, it is necessary for the mechanism using a slide axis to move to the right end of the housing, and an accommodating portion for accommodating this is provided to the right end of the housing. You need to be.
 これに対して、本開示にかかるVTMでは搬送機構60を収容する第1の収容部200及び第2の収容部201が上記のように構成されているため、図14に示すように第1の収容部200の平面視面積(X-Y平面をZ軸方向からみた場合の面積)が、前記第2の収容部201の平面視面積より小さいように構成することができる。これによって、フットプリントを削減することができる。 On the other hand, in the VTM according to the present disclosure, since the first accommodating portion 200 and the second accommodating portion 201 accommodating the transport mechanism 60 are configured as described above, the first accommodating portion 200 is as shown in FIG. The plan view area of the accommodating portion 200 (the area when the XY plane is viewed from the Z axis direction) can be configured to be smaller than the plan view area of the second accommodating portion 201. This can reduce the footprint.
 また、図13、図14の例では、搬送機構60が同一の高さに設けられたCORモジュール70、PHTモジュール71やロードロックモジュール10a、10bにアクセスする例を示したが、垂直多関節アーム63のZ軸方向の移動によって、筐体50において異なる高さに設けられた任意のモジュールにアクセスすることが容易である。 Further, in the examples of FIGS. 13 and 14, an example in which the transport mechanism 60 accesses the COR module 70, the PHT module 71, and the load lock modules 10a and 10b provided at the same height is shown, but the vertical articulated arm The movement of 63 in the Z-axis direction makes it easy to access arbitrary modules provided at different heights in the housing 50.
 今回開示された実施形態はすべての点で例示であって制限的なものではないと考えられるべきである。上記の実施形態は、添付の請求の範囲及びその主旨を逸脱することなく、様々な形態で省略、置換、変更されてもよい。 The embodiments disclosed this time should be considered to be exemplary in all respects and not restrictive. The above embodiments may be omitted, replaced or modified in various embodiments without departing from the scope of the appended claims and their gist.
  1   ウェハ処理装置
  10a、10b ロードロックモジュール
  11  筐体
  20  搬送機構
  21a、21b 保持アーム
  22  水平多関節アーム
  23  垂直多関節アーム
  50  筐体
  60  搬送機構
  61a、61b 保持アーム
  62  水平多関節アーム
  63  垂直多関節アーム
  W   ウェハ
1 Wafer processing device 10a, 10b Load lock module 11 Housing 20 Transport mechanism 21a, 21b Holding arm 22 Horizontal articulated arm 23 Vertical articulated arm 50 Housing 60 Transport mechanism 61a, 61b Holding arm 62 Horizontal articulated arm 63 Vertical multi Joint arm W wafer

Claims (16)

  1. 基板を処理する基板処理装置であって、
    内部が常圧雰囲気下にある筐体と、
    前記筐体の内部に設けられ、前記基板を搬送する搬送機構と、
    前記搬送機構との間で前記基板の受け渡しを行うロードロックモジュールと、
    を有し、
    前記搬送機構は、
    前記基板を保持する保持アームと、
    先端部が前記保持アームに接続され、水平面内で移動する水平多関節アームと、
    先端部が前記水平多関節アームの基端部に接続され、水平一方向と垂直方向を含む垂直面内で移動する垂直多関節アームと、
    を有し、
    前記ロードロックモジュールの少なくとも一部は前記筐体の内部に配置され、前記筐体の内部において、前記ロードロックモジュールの前記水平一方向側の側面には、前記基板の搬入出口が形成されている、基板処理装置。
    It is a board processing device that processes boards.
    The case where the inside is under normal pressure atmosphere and
    A transport mechanism provided inside the housing and transporting the substrate,
    A load lock module that transfers the board to and from the transport mechanism,
    Have,
    The transport mechanism is
    A holding arm for holding the substrate and
    A horizontal articulated arm whose tip is connected to the holding arm and moves in a horizontal plane,
    A vertical articulated arm whose tip is connected to the base end of the horizontal articulated arm and moves in a vertical plane including one horizontal direction and one vertical direction.
    Have,
    At least a part of the load lock module is arranged inside the housing, and inside the housing, a loading / unloading port of the substrate is formed on the side surface of the load lock module on the horizontal unidirectional side. , Board processing equipment.
  2. 前記搬送機構は、前記筐体の内部において前記ロードロックモジュールの下方に設けられる、請求項1に記載の基板処理装置。 The substrate processing apparatus according to claim 1, wherein the transport mechanism is provided below the load lock module inside the housing.
  3. 前記搬送機構の少なくとも一部と、前記筐体の内部において前記ロードロックモジュールとが、平面視において重なるよう配置される、請求項1または2に記載の基板処理装置。 The substrate processing apparatus according to claim 1 or 2, wherein at least a part of the transport mechanism and the load lock module are arranged so as to overlap each other in a plan view.
  4. 前記搬送機構の少なくとも一部と、前記筐体の内部において前記ロードロックモジュールとが、側面視において重なるよう配置される、請求項1~3のいずれか一項に記載の基板処理装置。 The substrate processing apparatus according to any one of claims 1 to 3, wherein at least a part of the transport mechanism and the load lock module are arranged so as to overlap each other in a side view.
  5. 前記ロードロックモジュールの全部が前記筐体の内部に配置されている、請求項1~4のいずれか一項に記載の基板処理装置。 The substrate processing apparatus according to any one of claims 1 to 4, wherein the entire load lock module is arranged inside the housing.
  6. 基板を処理する基板処理装置であって、
    内部が減圧雰囲気下にある筐体と、
    前記筐体の内部に設けられ、前記基板を搬送する搬送機構と、
    前記筐体に対して水平一方向に並べて設けられ、前記基板を処理する複数の処理モジュールと、
    を有し、
    前記搬送機構は、
    前記基板を保持する保持アームと、
    先端部が前記保持アームに接続され、水平面内で移動する水平多関節アームと、
    先端部が前記水平多関節アームの基端部に接続され、前記水平一方向と垂直方向を含む垂直面内で移動する垂直多関節アームと、
    を有する、基板処理装置。
    It is a board processing device that processes boards.
    The case where the inside is under a decompressed atmosphere and
    A transport mechanism provided inside the housing and transporting the substrate,
    A plurality of processing modules that are arranged horizontally in one direction with respect to the housing and process the substrate, and
    Have,
    The transport mechanism is
    A holding arm for holding the substrate and
    A horizontal articulated arm whose tip is connected to the holding arm and moves in a horizontal plane,
    A vertical articulated arm whose tip is connected to the base end of the horizontal articulated arm and moves in a vertical plane including the horizontal one direction and the vertical direction.
    Has a substrate processing device.
  7. 前記筐体は、
    前記垂直多関節アームが内部で移動する第1の収容部と、
    前記水平多関節アームが内部で移動する第2の収容部と、を有し、
    前記第1の収容部の平面視面積が、前記第2の収容部の平面視面積より小さい、請求項6に記載の基板処理装置。
    The housing is
    A first housing in which the vertical articulated arm moves internally,
    The horizontal articulated arm has a second accommodating portion that moves internally, and has.
    The substrate processing apparatus according to claim 6, wherein the planar view area of the first accommodating portion is smaller than the planar view area of the second accommodating portion.
  8. 前記垂直多関節アームの少なくとも一部は、当該垂直多関節アームの基端部よりも下方を移動可能に構成される、請求項1~7のいずれか一項に記載の基板処理装置。 The substrate processing apparatus according to any one of claims 1 to 7, wherein at least a part of the vertical articulated arm is configured to be movable below the proximal end portion of the vertical articulated arm.
  9. 前記基板処理装置において、前記搬送機構は1つ設けられる、請求項1~8のいずれか一項に記載の基板処理装置。 The substrate processing apparatus according to any one of claims 1 to 8, wherein the substrate processing apparatus is provided with one transfer mechanism.
  10. 前記水平多関節アームと前記垂直多関節アームの各関節の内部には、前記関節の回動を駆動するモータが設けられる、請求項1~9のいずれか一項に記載の基板処理装置。 The substrate processing apparatus according to any one of claims 1 to 9, wherein a motor for driving the rotation of the joint is provided inside each joint of the horizontal articulated arm and the vertical articulated arm.
  11. 前記搬送機構は、
    前記水平多関節アームまたは前記垂直多関節アームの内部が中空に設けられた中空部を有し、
    前記モータを駆動させるためのケーブルが、
    少なくとも前記水平多関節アームまたは前記垂直多関節アームの中空部に収容される、請求項10に記載の基板処理装置。
    The transport mechanism is
    The horizontal articulated arm or the vertical articulated arm has a hollow portion provided inside the hollow portion.
    The cable for driving the motor
    The substrate processing apparatus according to claim 10, which is housed in at least the horizontal articulated arm or the hollow portion of the vertical articulated arm.
  12. 前記水平多関節アームと前記垂直多関節アームの各関節において、前記筐体の内部と前記中空部を隔離するためのシールを設け、
    前記水平多関節アームと前記垂直多関節アームの内部を常圧雰囲気とする、請求項11に記載の基板処理装置。
    In each joint of the horizontal articulated arm and the vertical articulated arm, a seal for separating the inside of the housing and the hollow portion is provided.
    The substrate processing apparatus according to claim 11, wherein the inside of the horizontal articulated arm and the vertical articulated arm has a normal pressure atmosphere.
  13. 前記垂直多関節アームの動作を制御する制御部を有し、
    前記制御部は、前記垂直多関節アームの先端部が、前記水平多関節アームの自重たわみを補正する方向に回動するように、当該垂直多関節アームを制御する、請求項1~12のいずれか一項に記載の基板処理装置。
    It has a control unit that controls the operation of the vertical articulated arm.
    The control unit controls the vertical articulated arm so that the tip of the vertical articulated arm rotates in a direction for compensating for its own weight deflection of the horizontal articulated arm, according to any one of claims 1 to 12. The substrate processing apparatus according to item 1.
  14. 基板を搬送する搬送機構であって、
    前記基板を保持する保持アームと、
    水平面内で移動する水平多関節アームと、
    水平一方向と垂直方向を含む垂直面内で移動する垂直多関節アームと、
    を有し、
    前記水平多関節アームの先端部は、前記保持アームに接続され、
    前記水平多関節アームの基端部は、前記垂直多関節アームの先端部に接続される、搬送機構。
    It is a transport mechanism that transports the board.
    A holding arm for holding the substrate and
    A horizontal articulated arm that moves in a horizontal plane,
    A vertical articulated arm that moves in a vertical plane, including one horizontal direction and one vertical direction,
    Have,
    The tip of the horizontal articulated arm is connected to the holding arm and
    The base end portion of the horizontal articulated arm is a transport mechanism connected to the tip end portion of the vertical articulated arm.
  15. 基板処理装置における基板搬送方法であって、
    前記基板処理装置は、
    内部が常圧雰囲気下にある筐体と、
    前記筐体の内部に設けられ、前記基板を搬送する搬送機構と、
    前記搬送機構との間で前記基板の受け渡しを行うロードロックモジュールと、
    を有し、
    前記搬送機構は、
    前記基板を保持する保持アームと、
    先端部が前記保持アームに接続され、水平面内で移動する水平多関節アームと、
    先端部が前記水平多関節アームの基端部に接続され、水平一方向と垂直方向を含む垂直面内で移動する垂直多関節アームと、
    を有し、
    前記ロードロックモジュールの少なくとも一部は前記筐体の内部に配置され、前記筐体の内部において、前記ロードロックモジュールの前記水平一方向側の側面には、前記基板の搬入出口が形成されており、前記基板搬送方法は、
    前記保持アームによって前記基板を保持することと、
    前記垂直多関節アームによって、前記垂直面内で前記水平多関節アームを移動させることと、
    前記水平多関節アームによって、前記水平面内で前記保持アームを移動させることと、
    前記搬入出口に対して前記保持アームを進入させることと、
    前記保持アームから前記ロードロックモジュールに前記基板を受け渡すことと、
    を含む、基板搬送方法。
    It is a substrate transfer method in a substrate processing device.
    The substrate processing device is
    The case where the inside is under normal pressure atmosphere and
    A transport mechanism provided inside the housing and transporting the substrate,
    A load lock module that transfers the board to and from the transport mechanism,
    Have,
    The transport mechanism is
    A holding arm for holding the substrate and
    A horizontal articulated arm whose tip is connected to the holding arm and moves in a horizontal plane,
    A vertical articulated arm whose tip is connected to the base end of the horizontal articulated arm and moves in a vertical plane including one horizontal direction and one vertical direction.
    Have,
    At least a part of the load lock module is arranged inside the housing, and inside the housing, an inlet / outlet for the substrate is formed on the side surface of the load lock module on the horizontal unidirectional side. , The substrate transfer method is
    Holding the substrate by the holding arm
    By moving the horizontal articulated arm in the vertical plane by the vertical articulated arm,
    By moving the holding arm in the horizontal plane by the horizontal articulated arm,
    To allow the holding arm to enter the carry-in outlet,
    Passing the board from the holding arm to the load lock module,
    Substrate transfer method, including.
  16. 基板処理装置における基板搬送方法であって、
    前記基板処理装置は、
    内部が減圧雰囲気下にある筐体と、
    前記筐体の内部に設けられ、前記基板を搬送する搬送機構と、
    前記筐体に対して水平一方向に並べて設けられ、前記基板を処理する複数の処理モジュールと、
    を有し、
    前記搬送機構は、
    前記基板を保持する保持アームと、
    先端部が前記保持アームに接続され、水平面内で移動する水平多関節アームと、
    先端部が前記水平多関節アームの基端部に接続され、前記水平一方向と垂直方向を含む垂直面内で移動する垂直多関節アームと、を有し、
    前記基板搬送方法は、
    前記保持アームによって前記基板を保持することと、
    前記垂直多関節アームによって、前記垂直面内で前記水平多関節アームを移動させることと、
    前記水平多関節アームによって、前記水平面内で前記保持アームを移動させることと、
    前記保持アームから前記処理モジュールに前記基板を受け渡すことと、
    を含む、基板搬送方法。
     
    It is a substrate transfer method in a substrate processing device.
    The substrate processing device is
    The case where the inside is under a decompressed atmosphere and
    A transport mechanism provided inside the housing and transporting the substrate,
    A plurality of processing modules that are arranged horizontally in one direction with respect to the housing and process the substrate, and
    Have,
    The transport mechanism is
    A holding arm for holding the substrate and
    A horizontal articulated arm whose tip is connected to the holding arm and moves in a horizontal plane,
    With a vertical articulated arm, the tip of which is connected to the proximal end of the horizontal articulated arm and moves in a vertical plane including the horizontal unidirectional and vertical directions.
    The substrate transfer method is
    Holding the substrate by the holding arm
    By moving the horizontal articulated arm in the vertical plane by the vertical articulated arm,
    By moving the holding arm in the horizontal plane by the horizontal articulated arm,
    Passing the substrate from the holding arm to the processing module and
    Substrate transfer method, including.
PCT/JP2021/034114 2020-09-29 2021-09-16 Substrate processing apparatus, conveyance mechanism and substrate processing method WO2022070952A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-163852 2020-09-29
JP2020163852A JP2022056064A (en) 2020-09-29 2020-09-29 Substrate processing device, conveying mechanism, and substrate processing method

Publications (1)

Publication Number Publication Date
WO2022070952A1 true WO2022070952A1 (en) 2022-04-07

Family

ID=80950330

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/034114 WO2022070952A1 (en) 2020-09-29 2021-09-16 Substrate processing apparatus, conveyance mechanism and substrate processing method

Country Status (2)

Country Link
JP (1) JP2022056064A (en)
WO (1) WO2022070952A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0982780A (en) * 1995-09-18 1997-03-28 Kokusai Electric Co Ltd Wafer transfer device
JP2000512082A (en) * 1996-06-13 2000-09-12 ブルックス オートメーション インコーポレイテッド Multi-level substrate processing equipment
JP2000277586A (en) * 1999-03-23 2000-10-06 Kobe Steel Ltd Substrate carrier
JP2004265947A (en) * 2003-02-24 2004-09-24 Tokyo Electron Ltd Transport system, vacuum processing device and normal pressure transport
JP2007283436A (en) * 2006-04-17 2007-11-01 Nachi Fujikoshi Corp Robot, robot system, and attitude control method of hand device
JP2018174186A (en) * 2017-03-31 2018-11-08 東京エレクトロン株式会社 Substrate processing apparatus

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0982780A (en) * 1995-09-18 1997-03-28 Kokusai Electric Co Ltd Wafer transfer device
JP2000512082A (en) * 1996-06-13 2000-09-12 ブルックス オートメーション インコーポレイテッド Multi-level substrate processing equipment
JP2000277586A (en) * 1999-03-23 2000-10-06 Kobe Steel Ltd Substrate carrier
JP2004265947A (en) * 2003-02-24 2004-09-24 Tokyo Electron Ltd Transport system, vacuum processing device and normal pressure transport
JP2007283436A (en) * 2006-04-17 2007-11-01 Nachi Fujikoshi Corp Robot, robot system, and attitude control method of hand device
JP2018174186A (en) * 2017-03-31 2018-11-08 東京エレクトロン株式会社 Substrate processing apparatus

Also Published As

Publication number Publication date
JP2022056064A (en) 2022-04-08

Similar Documents

Publication Publication Date Title
JP6898403B2 (en) Substrate transfer system, substrate processing device, and substrate transfer method
JP4493955B2 (en) Substrate processing apparatus and transfer case
JP2023033330A (en) Substrate processing apparatus and substrate transport device
JP6843493B2 (en) Board processing equipment
US8562275B2 (en) Transfer device and semiconductor processing system
KR100657055B1 (en) Semiconductor processing system and semiconductor carrying mechanism
KR102430107B1 (en) Substrate transport apparatus
US20120128450A1 (en) Coaxial drive vacuum robot
KR102592340B1 (en) Method And Apparatus For Substrate Transport
JP2008258650A (en) Multi-level substrate processing apparatus
KR102244352B1 (en) Substrate transfer mechanism, substrate processing apparatus, and substrate transfer method
WO2017154639A1 (en) Substrate processing device
JP2005521268A (en) Flat panel handling equipment in vacuum
TWI586500B (en) Robotic transport apparatus and substrate processing apparatus
WO2022070952A1 (en) Substrate processing apparatus, conveyance mechanism and substrate processing method
US11894252B2 (en) Substrate transport apparatus
CN108695202A (en) Processing system
US9962840B2 (en) Substrate conveyance apparatus
JP7240980B2 (en) SUBSTRATE PROCESSING APPARATUS AND SUBSTRATE CONVEYING METHOD
TWI813479B (en) Method and apparatus for substrate transport
WO2021206071A1 (en) Two-armed robot for use in vacuum
TW202412162A (en) Method and apparatus for substrate transport

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21875254

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21875254

Country of ref document: EP

Kind code of ref document: A1