WO2022070846A1 - Precursor mixture of in situ polymerization type thermoplastic epoxy resin, epoxy resin composition, epoxy resin composition sheet, prepreg, and in situ polymerization type thermoplastic fiber-reinforced plastic using same - Google Patents

Precursor mixture of in situ polymerization type thermoplastic epoxy resin, epoxy resin composition, epoxy resin composition sheet, prepreg, and in situ polymerization type thermoplastic fiber-reinforced plastic using same Download PDF

Info

Publication number
WO2022070846A1
WO2022070846A1 PCT/JP2021/033404 JP2021033404W WO2022070846A1 WO 2022070846 A1 WO2022070846 A1 WO 2022070846A1 JP 2021033404 W JP2021033404 W JP 2021033404W WO 2022070846 A1 WO2022070846 A1 WO 2022070846A1
Authority
WO
WIPO (PCT)
Prior art keywords
epoxy resin
less
resin composition
weight
precursor mixture
Prior art date
Application number
PCT/JP2021/033404
Other languages
French (fr)
Japanese (ja)
Inventor
哲也 中西
敬一 林
亮 山田
修一郎 長谷
Original Assignee
日鉄ケミカル&マテリアル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日鉄ケミカル&マテリアル株式会社 filed Critical 日鉄ケミカル&マテリアル株式会社
Priority to CN202180062111.3A priority Critical patent/CN116096793A/en
Priority to JP2022553760A priority patent/JPWO2022070846A1/ja
Publication of WO2022070846A1 publication Critical patent/WO2022070846A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/22Di-epoxy compounds
    • C08G59/24Di-epoxy compounds carbocyclic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs

Definitions

  • the present invention relates to a field-polymerized thermoplastic epoxy resin and a thermoplastic fiber reinforced plastic.
  • the on-site polymerization type thermoplastic resin has a low molecular weight at the time of shipment from the factory, but after being impregnated with the reinforced fiber at the fiber reinforced thermoplastic (FRTP) manufacturing site, it is rapidly polymerized by hot melt (heat melting).
  • FRTP fiber reinforced thermoplastic
  • Thermoplastic resin is a material that has plasticity when heated and can be easily molded.
  • thermoplastic resins generally have a high molecular weight and a high melt viscosity, high temperature and high pressure are required for molding. It is not easy to combine with a narrow space or a material that is difficult to heat or pressurize.
  • Patent Document 1 proposes a method for producing a field-polymerized thermoplastic epoxy resin using a bifunctional epoxy resin and a bifunctional curing agent.
  • Both the bifunctional epoxy resin and the bifunctional curing agent are monomers or oligomers, and have lower viscosities than general thermoplastic resins. Further, since it can be dissolved even with an organic solvent having a low boiling point, it can be reliably impregnated and can be easily dried. By in-situ polymerization, a thermoplastic resin with voids reduced to a sufficient level can be obtained.
  • Non-Patent Document 1 discloses that the glass transition temperature (Tg) of a polymer is controlled by changing the skeleton of the main chain depending on the type of the epoxy resin or the phenol compound in the field-polymerized thermoplastic epoxy resin.
  • Tg glass transition temperature
  • Patent Document 2 describes that a specific catalyst is used as a method for obtaining a high-molecular-weight epoxy resin having excellent storage stability, and the storage stability disclosed in the examples means that an organic solvent is used.
  • the storage stability disclosed in the examples means that an organic solvent is used.
  • Patent Document 3 discloses a method for producing a crystalline adduct having a lower melting point by heating and cooling a mixture of bisphenol A and bisphenol TMC. This bisphenol crystalline adduct is only disclosed with respect to its melting point, and there is no description regarding its application to epoxy resins, especially field-polymerized thermoplastic epoxy resins.
  • the present invention relates to a field-polymerized thermoplastic epoxy resin, which has excellent heat resistance and produces little gel, a field-polymerized thermoplastic epoxy resin, a thermoplastic fiber-reinforced plastic, an epoxy resin composition obtained thereof, and a precursor thereof.
  • the subject is to provide a body mixture.
  • the present invention is a precursor mixture used for a field-polymerized thermoplastic epoxy resin obtained by addition polymerization of an epoxy resin (A) and a bifunctional phenol compound (B).
  • the epoxy resin (A) containing 50% by weight or more of the bifunctional epoxy resin (a) represented by the following formula (1) and the bifunctional phenol compound (B) are contained as essential components in 1 mol of the epoxy resin (A).
  • the bifunctional phenol compound (B) is 0.9 to 1.1 mol, and is a precursor mixture characterized by having a viscosity at 60 ° C. of 1 Pa ⁇ s or more and 50 Pa ⁇ s or less.
  • a in the formula (1) is the formula (2), n is the number of repetitions, and the average value thereof is 0 to 5.
  • X is a single bond, an alkylene group having 1 to 9 carbon atoms, -O-, -CO-, -COO-, -S-, or -SO 2-
  • Y 1 is independently 1 to 9 carbon atoms. It is either an alkyl group of 4 or an aryl group having 6 to 10 carbon atoms
  • Y 2 and Y 3 are independently of a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, and an aryl group having 6 to 10 carbon atoms. Either.
  • the haze value in the thickness direction is preferably less than 30%
  • the weight average molecular weight of the precursor mixture according to the standard polystyrene calibration curve is preferably 300 or more and 500 or less.
  • the bifunctional phenol compound (B) is preferably a bisphenol compound and / or a biphenol compound, and the ratio of the most abundant component in the bifunctional phenol compound (B) is preferably 90% by weight or less.
  • the present invention is an epoxy resin composition in which a polymerization catalyst is blended with the precursor mixture and the mixture is compatible with each other.
  • the epoxy resin composition preferably has a haze value in the thickness direction of less than 30% when the thickness is 2 mm, and the viscosity at 60 ° C. is preferably 3 Pa ⁇ s or more and 150 Pa ⁇ s or less.
  • the present invention is an epoxy resin composition sheet in which the epoxy resin composition has a thickness of 10 ⁇ m or more and 300 ⁇ m or less.
  • the present invention is a field-polymerized thermoplastic epoxy resin obtained by polymerizing the epoxy resin composition, or a sheet-shaped field-polymerized thermoplastic epoxy resin obtained by polymerizing the epoxy resin composition sheet. ..
  • These field-polymerized thermoplastic epoxy resins and sheet-shaped field-polymerized thermoplastic epoxy resins preferably have a gel fraction of 0% by weight or more and 10% by weight or less.
  • the present invention is a prepreg obtained from the epoxy resin composition and / or the epoxy resin composition sheet and the reinforcing fiber, and is a field-polymerized thermoplastic fiber reinforced plastic obtained by polymerizing the prepreg. ..
  • the precursor mixture for the field-polymerized thermoplastic epoxy resin of the present invention does not precipitate crystals, and an epoxy resin composition or prepreg having excellent handleability can be obtained by a hot melt method.
  • the field-polymerized thermoplastic epoxy resin is obtained by addition polymerization of the epoxy resin (A) and the bifunctional phenol compound (B), and is a precursor mixture (with a precursor) used in the field-polymerized thermoplastic epoxy resin of the present invention.
  • (May be referred to as) contains, as the epoxy resin (A), the bifunctional epoxy resin (a) represented by the formula (1) as an essential component in an amount of 50% by weight or more. It is preferably 66% by weight or more, more preferably 75% by weight or more, and further preferably 80% by weight or more.
  • the epoxy equivalent of the epoxy resin (A) is preferably 150 to 350 g / eq.
  • Equation (1) A is equation (2).
  • n is the number of repetitions, and the average value thereof is 0 to 5, preferably 0 to 1.
  • X is any one of a single bond, an alkylene group having 1 to 9 carbon atoms, -O-, -CO-, -COO-, -S-, and -SO 2- .
  • alkylene group having 1 to 9 carbon atoms include -CH 2- , -CH (CH 3 )-, -C (CH 3 ) 2- , -C (CF 3 ) 2- , -CHPh-, and -C.
  • Ph represents a phenyl group.
  • single bond, -O-, -CO-, -COO-, -S-, -SO 2- , -CH 2- , -CH (CH 3 )-, -C (CH 3 ) 2- , -CHPh-, -C (CH 3 ) Ph-, 1,1-cyclohexylene group, 4-methyl-1,1-cyclohexylene group, 3,3,5-trimethyl-1,1-cyclohexylene group, 1 , 4-Cyclohexylene group, 1,4-phenylene group are preferable, single bond, -O-, -CO-, -COO-, -S-, -SO 2- , -CH 2- , -CH (CH 3 ).
  • Ph represents a phenyl group.
  • Y 1 in the formula (2) is independently one of an alkyl group having 1 to 4 carbon atoms and an aryl group having 6 to 10 carbon atoms.
  • alkyl group having 1 to 4 carbon atoms include a methyl group, an ethyl group, an n-propyl group, an iso-propyl group, an n-butyl group, a sec-butyl group, an iso-butyl group and a t-butyl group. Can be mentioned.
  • Examples of the aryl group having 6 to 10 carbon atoms include a phenyl group, a tolyl group, an ethylphenyl group, a xsilyl group, an n-propylphenyl group, an isopropylphenyl group, a mesityl group and a naphthyl group.
  • methyl group, ethyl group, n-propyl group, n-butyl group, t-butyl group, phenyl group, tolyl group, xylyl group and naphthyl group are preferable, and methyl group, ethyl group and n-propyl group are preferable.
  • Y 2 in the formula (2) is independently any one of a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, and an aryl group having 6 to 10 carbon atoms, and a substituent other than the hydrogen atom is preferable.
  • the substituent is the same as the substituent exemplified in Y1.
  • Preferred Y 2 is similar to Y 1 .
  • Y3 in the formula ( 2 ) is independently one of a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, and an aryl group having 6 to 10 carbon atoms.
  • the substituent is the same as the substituent exemplified in Y1.
  • Preferred Y 3 is similar to a hydrogen atom or Y 1 .
  • bifunctional epoxy resin (a) examples include a tetramethylbisphenol F type epoxy resin (for example, YSLV-80XY (manufactured by Nittetsu Chemical & Materials Co., Ltd.)) and a tetramethylbiphenol type epoxy resin (for example, YX-4000). (Made by Mitsubishi Chemical Co., Ltd.), etc.), biscresol fluorene type epoxy resin (for example, OGSOL CG-500 (manufactured by Osaka Gas Chemical Co., Ltd.), etc.) and the like.
  • a tetramethylbisphenol F type epoxy resin for example, YSLV-80XY (manufactured by Nittetsu Chemical & Materials Co., Ltd.)
  • a tetramethylbiphenol type epoxy resin for example, YX-4000.
  • biscresol fluorene type epoxy resin for example, OGSOL CG-500 (manufactured by Osaka Gas Chemical Co
  • an epoxy resin other than the bifunctional epoxy resin (a) can be used in combination as long as it is a bifunctional epoxy resin, and its purity is preferably 95% or more. Then, as long as the purity as a bifunctional compound is high, positional isomers and oligomers may be contained.
  • the epoxy resin that can be used together include bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, bisphenol acetophenone type epoxy resin, diphenyl sulfide type epoxy resin, diphenyl ether type epoxy resin, bisphenol fluorene type epoxy resin, and the like.
  • Examples thereof include, but are not limited to, bisphenol type epoxy resin, biphenol type epoxy resin, diphenyldicyclopentadiene type epoxy resin, alkylene glycol type epoxy resin, dihydroxynaphthalene type epoxy resin, and dihydroxybenzene type epoxy resin.
  • the monofunctional impurities are preferably 2% by weight or less with respect to the bifunctional epoxy resin.
  • the amount of trifunctional or higher impurities is preferably 1% by weight or less with respect to the bifunctional epoxy resin.
  • the molecular weight after polymerization may decrease as the amount increases. Therefore, it is preferably 2% by weight or less with respect to the bifunctional epoxy resin.
  • the other essential component, the bifunctional phenol compound (B), is a compound having two phenolic hydroxyl groups in one molecule, and its purity is preferably 95% by weight or more. Then, as long as the purity as a bifunctional compound is high, the positional isomer may be contained. That is, it is preferable that impurities and impurity components are as follows. When monofunctional impurities are contained, the molecular weight after polymerization does not increase, so that the mechanical properties of the produced thermoplastic resin may deteriorate. Therefore, the monofunctional impurities are preferably 2% by weight or less with respect to the bifunctional phenol compound.
  • the amount of trifunctional or higher impurities is preferably 1% by weight or less with respect to the bifunctional phenol compound. It should be noted that even for an impurity component that does not have an active group that reacts with either an epoxy resin or a phenolic hydroxyl group and that does not inhibit the polymerization reaction by itself, the molecular weight after polymerization may decrease as the amount increases. Therefore, the impurity component is preferably 2% by weight or less with respect to the bifunctional phenol compound.
  • the bifunctional phenol compound (B) is exemplified below, but if it is bifunctional, it is not limited to the following.
  • Bisphenol A Bisphenol F (above, manufactured by Nittetsu Chemical & Materials Co., Ltd.), Bisphenol Fluolene, Bisphenol Fluolen (above, manufactured by Osaka Gas Chemical Co., Ltd.), Bis-E, Bis-Z, BisOC-FL, BisP-AP , BisP-CDE, BisP-HTG, BisP-MIBK, BisP-3MZ, S-BOC, Bis25X-F (all manufactured by Honshu Kagaku Kogyo Co., Ltd.), bisphenols such as bisphenol S, hydroquinone, methylhydroquinone, dibutylhydroquinone.
  • Resolcin methylresorcin
  • catechol methylcatechol and other benzenediols
  • naphthalenediol and other naphthalenediols biphenols, dimethylbiphenols, tetramethylbiphenols and other biphenols and the like.
  • bisphenol compounds or biphenol compounds are preferable.
  • Two or more kinds of the bifunctional phenol compound (B) may be used.
  • the ratio of the most abundant component is preferably 90% by weight or less, more preferably 80% by weight or less.
  • the melting point of the bifunctional phenol compound (B) is preferably 150 ° C. or higher.
  • the organic solvent is not an essential component in the precursor mixture.
  • the total amount of the epoxy resin (A) and the bifunctional phenol compound (B) is preferably 10 parts by weight or less with respect to 100 parts by weight. It is more preferably 5 parts by weight or less, and preferably not contained.
  • the boiling point of the organic solvent at 1 atm is preferably 200 ° C. or lower.
  • the melting conditions of the precursor mixture depend on the melting point of the bifunctional phenol compound (B) used, but it is preferably melted at 200 ° C. or lower.
  • the epoxy resin (A) may be added to a place where the bifunctional phenol compound (B) is previously melted at 300 ° C. or lower, preferably 200 ° C. or lower, rapidly cooled, and mixed at 150 ° C. or lower.
  • the blending ratio of the epoxy resin (A) and the bifunctional phenol compound (B) is 0.9 to 1.1 mol of the bifunctional phenol compound (B) with respect to 1 mol of the epoxy resin (A). There are, preferably 0.95 to 1.05 mol, more preferably 0.96 to 1.04 mol, still more preferably 0.97 to 1.03 mol.
  • the blending ratio of the bifunctional phenol compound (B) is within this range, the molecular weight of the obtained field-polymerized thermoplastic epoxy resin is sufficiently extended, which is preferable.
  • the melt mixture is completely melted, but for example, when the melt mixture is placed in a glass petri dish so as to have a thickness of 2 mm and the haze value in the thickness direction is measured, the haze value is measured. If the haze value in the thickness direction is less than 30%, it is determined that the mixture has been dissolved to a level that does not affect the polymerization reaction.
  • the haze value is more preferably less than 20%, still more preferably less than 10%.
  • the viscosity of the precursor mixture at 60 ° C. is 1 Pa ⁇ s or more and 50 Pa ⁇ s or less. If the viscosity is less than 1 Pa ⁇ s, the precursor mixture of the thermoplastic epoxy resin and the material after that become too soft, and the handleability at around room temperature may deteriorate. Further, if the viscosity exceeds 50 Pa ⁇ s, the workability when blending the polymerization catalyst in the next step may deteriorate, or the storage stability may deteriorate because the treatment at a high temperature is required. There is.
  • a more preferable viscosity is 3 Pa ⁇ s or more and 40 Pa ⁇ s or less, and preferably 5 Pa ⁇ s or more and 30 Pa ⁇ s or less.
  • the weight average molecular weight of the precursor mixture according to the standard polystyrene calibration curve is preferably 300 or more and 500 or less.
  • a more preferable weight average molecular weight is 300 or more and 450 or less, and preferably 300 or more and 400 or less.
  • the epoxy resin composition of the present invention is obtained by mixing a precursor mixture and a polymerization catalyst.
  • the polymerization catalyst that can be used include phosphine compounds, quaternary phosphonium salts, imidazoles, and tertiary amines.
  • phosphine compounds are particularly preferable, and triphenylphosphine, tris (o-tolyl) phosphine, tris (p-tolyl) phosphine, tris (p-methoxyphenyl) phosphine, and tris (2,6-dimethoxyphenyl) phosphine ( (Made by Hokuko Chemical Industry Co., Ltd.) is particularly preferable.
  • the quaternary phosphonium salt Hishikorin PX-4MP and Hishikorin PX-4ET (both manufactured by Nippon Chemical Industrial Co., Ltd.) are preferable. Further, as imidazoles, 2-phenylimidazole and 2,3-dihydro-1H-pyrrolo- [1,2-a] benzimidazole (both manufactured by Shikoku Chemicals Corporation) are preferable.
  • the blending amount of the polymerization catalyst is 0.05% by weight or more and 10% by weight or less with respect to the sum of the epoxy resin (A) and the phenol compound (B). More preferably, it is 0.1% by weight or more and 5% by weight or less.
  • the amount of the catalyst is less than 0.05% by weight, the molecular weight does not increase sufficiently, or the polymerization takes time and the productivity is impaired. On the other hand, when it is used in excess of 10% by weight, not only the storage stability is impaired but also the molecular weight does not increase sufficiently.
  • the epoxy resin composition of the present invention is a mixture containing an epoxy resin, a phenol compound, and a polymerization catalyst, and can be polymerized by heating.
  • a small amount of organic solvent may be used for the purpose of uniform mixing.
  • the amount of the organic solvent used is 10% by weight or less of the sum of the epoxy resin and the phenol compound, preferably 5% by weight or less, and further preferably 1% by weight or less.
  • the organic solvent is used in an amount of more than 10% by weight, there is a problem that the molecular weight of the polymer does not increase sufficiently.
  • the viscosity of the epoxy resin composition at 60 ° C. is preferably 3 Pa ⁇ s or more and 150 Pa ⁇ s or less. If the viscosity is less than 3 Pa ⁇ s, the resin component in the resin sheet or prepreg, which will be described later, becomes too soft, which may result in poor handleability near room temperature. Further, when the viscosity exceeds 150 Pa ⁇ s, it is necessary to raise the temperature of the step of applying to the film and the step of impregnating the reinforcing fiber to a high temperature, which may affect the storage stability.
  • a more preferable viscosity is 10 Pa ⁇ s or more and 140 Pa ⁇ s or less, and preferably 20 Pa ⁇ s or more and 130 Pa ⁇ s or less.
  • the haze value in the thickness direction when the thickness is set to 2 mm is preferably less than 30%, more preferably less than 20%, still more preferably. Should be less than 10%.
  • the epoxy resin composition sheet is a base film coated with an epoxy resin composition. It can be sandwiched between cover films if necessary.
  • As the base film polyimide, polyethylene terephthalate, polybutylene terephthalate, polyethylene, paper and the like are generally used.
  • the base film may or may not be mold-released, but in the case of paper, mold-release treatment is required.
  • a cover film a polyethylene film or paper that has undergone mold release treatment is generally used.
  • the coating thickness is 10 ⁇ m or more and 300 ⁇ m or less, preferably 15 ⁇ m or more and 150 ⁇ m or less, and more preferably 20 ⁇ m or more and 100 ⁇ m or less.
  • this may be attached to an adherend and thermally polymerized, or may be impregnated into reinforcing fibers or the like.
  • the thermal polymerization at that time is usually carried out in the range of 100 ° C to 200 ° C.
  • the thermal polymerization temperature is less than 100 ° C.
  • the glass transition temperature of the polymer exceeds this during the polymerization, so that the reaction does not proceed sufficiently.
  • the reaction exceeds 200 ° C, an undesired side reaction may occur and gelation may occur.
  • the time required for polymerization is usually 5 minutes to 6 hours. If the reaction temperature is high, the time will be short, but if it is less than 5 minutes, the polymerization reaction will not proceed sufficiently. Further, if it exceeds 6 hours, the productivity is deteriorated, which is not preferable.
  • the thermoplastic epoxy resin is a thermoplastic epoxy resin obtained by polymerizing an epoxy resin composition or an epoxy resin composition sheet. When the epoxy resin composition sheet is used, a sheet-shaped thermoplastic epoxy resin can be obtained. In order to exhibit thermoplasticity, the solvent insoluble content (gel content) must be 0% by weight or more and 10% by weight or less. The solvent-insoluble component (gel fraction) can be measured by the method described in Examples.
  • the molecular weight of the thermoplastic epoxy resin is 5000 or more, preferably 7500 or more, and preferably 10000 or more in terms of number average molecular weight. When the number average molecular weight is less than 5000, it cannot be said that the degree of polymerization is sufficient to obtain sufficient mechanical strength, and the strength cannot be obtained.
  • the weight average molecular weight is 50,000 or more, preferably 300,000 or less.
  • the dispersion represented by the polymerization average molecular weight / number average molecular weight is preferably 1 or more and 20 or less, and preferably 2 or more and 15 or less. When the dispersion exceeds 20, it tends to be easy to gel. Also, the variance will never be less than 1.
  • the reinforcing fiber is a fiber for reinforcing the thermoplastic epoxy resin which is a matrix resin, and examples thereof include carbon fiber, glass fiber, and aramid fiber. Further, the form of these fibers is not limited, and any form such as long fibers, chopped fibers, non-woven fabrics, and cloths can be used.
  • the prepreg (epoxy resin prepreg) is a composite of an epoxy resin composition or an epoxy resin composition sheet and reinforcing fibers. If voids remain during impregnation, they may become defects in the final product and may not be able to develop the desired strength. Therefore, it is desirable to reduce voids during impregnation.
  • heat treatment can be performed. The heat treatment is generally performed at 50 ° C. or higher and 100 ° C. or lower. If the temperature is lower than 50 ° C., the viscosity of the resin cannot be sufficiently lowered, and impregnation failure may occur. If the temperature exceeds 100 ° C., the polymerization reaction may proceed.
  • the heat treatment time is usually 5 seconds or more and 3 minutes or less. If it is less than 5 seconds, sufficient low viscosity and impregnation may not proceed depending on the thickness. If it exceeds 3 minutes, the polymerization reaction may proceed slightly and the desired tackiness may not be obtained. Further, as a means for further improving the impregnation accuracy, thermocompression bonding by a thermal roll or the like can be mentioned.
  • the pressure depends on the substrate, but is 0.1 kgf / cm or more and 10 kgf / cm or less. If the linear pressure is less than 0.1 kgf / cm, the impregnation may be insufficient, and if it exceeds 10 kgf / cm, the reinforcing fibers may be damaged or the resin may flow out.
  • the volume ratio of the resin and the reinforcing fiber is 30:70 to 80:20. If the resin ratio is less than 30, there is a problem that the resin is insufficient and the number of voids increases. When the resin ratio exceeds 80, the amount of reinforcing fibers is small, so that sufficient characteristics cannot be obtained.
  • the field-polymerized thermoplastic fiber reinforced plastic is a heat-polymerized epoxy resin prepreg.
  • Its molecular weight is a number average molecular weight (Mn) of 5000 or more, preferably 7500 or more, and preferably 10000 or more.
  • Mn number average molecular weight
  • the weight average molecular weight (Mw) is 50,000 or more, preferably 300,000 or less.
  • the dispersion represented by the polymerization average molecular weight / number average molecular weight is preferably 1 or more and 20 or less, and preferably 2 or more and 15 or less. When the dispersion exceeds 20, it tends to be easy to gel. Also, the variance will never be less than 1.
  • Epoxy resin A1: Tetramethylbisphenol F type epoxy resin (manufactured by Nittetsu Chemical & Materials Co., Ltd., YSLV-80XY, epoxy equivalent 192 g / eq)
  • A2 Tetramethylbiphenol type epoxy resin (manufactured by Mitsubishi Chemical Corporation, YX4000, epoxy equivalent 188 g / eq)
  • A3 Bisphenol A type liquid epoxy resin (manufactured by Nittetsu Chemical & Materials Co., Ltd., YD-128, epoxy equivalent 188 g / eq)
  • [Phenol compound] B1 Bisphenol A (manufactured by Nittetsu Chemical & Materials Co., Ltd.)
  • B2 4,4'-(3,3,5-trimethylcyclohexylidene) bisphenol (manufactured by Honshu Chemical Industry Co., Ltd., BisP-HTG)
  • B3 9,9-bis (4-hydroxy-3-methylphenyl) fluorene (manufactured by Osaka Gas Chemical Co., Ltd., BCF)
  • E1 2,3-dihydro-1H-pyrrolo- [1,2-a] benzimidazole (manufactured by Shikoku Chemicals Corporation, TBZ)
  • E2 Tris (palatril) phosphine (manufactured by Hokuko Chemical Industry Co., Ltd., TPTP)
  • E3 Tris (paramethoxyphenyl) phosphine (manufactured by Hokuko Chemical Industry Co., Ltd., TPAP)
  • Example 1 278.1 parts of A1 and 50.0 parts of B1 and 150.0 parts of B2 were weighed and pulverized and mixed using a Henschel mixer. Subsequently, melt mixing was performed using an S1KRC kneader (manufactured by Kurimoto, Ltd.) whose barrel temperature was preheated to 170 ° C., the entire amount was recovered in a metal can, cooled with stirring, and a precursor of a thermoplastic epoxy resin. A mixture (D1) was obtained.
  • S1KRC kneader manufactured by Kurimoto, Ltd.
  • the obtained precursor mixture (D1) was placed in a colorless and transparent glass petri dish so as to have a thickness of 2 mm, and the haze value in the thickness direction was set to less than 5% (with reference to the haze standard plate manufactured by Murakami Color Technology Research Institute). ⁇ 5) ”“ 5% or more and less than 10% ( ⁇ 10) ”“ 10% or more and less than 20% ( ⁇ 20) ”“ 20% or more and less than 30% ( ⁇ 30) ”“ 30% or more (30 ⁇ ) ” As a result of evaluation on a 5-point scale, it was less than 10%.
  • the viscosity of the obtained precursor mixture (D1) at 60 ° C. was measured using CV-1s manufactured by Toa Kogyo Co., Ltd. and found to be 25 Pa ⁇ s.
  • the weight average molecular weight (Mw) of the obtained precursor mixture (D1) was 371.
  • the method for measuring Mw is as follows. Analysis was performed using HLC-8420GPC manufactured by Tosoh Corporation. The column was connected in series with TSKgel G4000HXL, TSKgel G3000HXL and TSKgel G2000HXL, and the column oven was set to 40 ° C. The eluent was tetrahydrofuran and the detector was an RI detector. The flow rate was 1 mL / min on the sample side and 0.5 mL / min on the reference side.
  • Example 2 to 6 Comparative Examples 1 to 3
  • a precursor mixture of a thermoplastic epoxy resin was obtained by the same operation as in Example 1 under the conditions shown in Table 1. However, in the operations of Example 5 and Comparative Examples 1 to 3, instead of mixing with a Henschel mixer, the mixture was mixed with a rotating / revolving centrifugal stirrer and then melt-mixed with a kneader. The haze value, viscosity and Mw of the obtained precursor mixture were measured in the same manner as in Example 1, and the measurement results are shown in Table 1.
  • Comparative Example 2 although the liquid discharged from the kneader was transparent, crystals were precipitated when the mixture was stirred in the cooling step, and the sample became turbid. Further, even during the measurement of the viscosity at 60 ° C., crystals continued to precipitate and were not stable, so the measurement was not possible.
  • Example 7 One part of E1 (polymerization catalyst) was previously dissolved in one part of C1 (organic solvent).
  • the precursor mixture (D1) obtained in Example 1 was placed in a planetary mixer set at 60 ° C., and the above polymerization catalyst solution was added and mixed. After mixing, the mixture was immediately extracted and immediately cooled to 40 ° C. or lower to obtain an epoxy resin composition (F1).
  • the viscosity of the obtained epoxy resin composition (F1) at 60 ° C. was measured using MCR102 manufactured by Anton Pearl Co., Ltd. and found to be 62 Pa ⁇ s.
  • the haze value of the epoxy resin composition was 5% or more and less than 10% ( ⁇ 10).
  • the obtained epoxy resin composition (F1) was heated and stirred at about 70 ° C., poured into an iron chrome-plated mold container having a clearance set to 4 mm in advance, and placed in a hot air circulation oven at 160 ° C. for 4 hours. Thermal polymerization was carried out to obtain a thermoplastic epoxy resin.
  • thermoplastic epoxy resin was measured according to JIS K7236 and found to be 18,000 g / eq.
  • the glass transition temperature (Tg) of the thermoplastic epoxy resin was 123 ° C.
  • the method for measuring Tg is as follows. According to JIS K 7121, DSC ⁇ Tmg (glass state and rubber state) when measured with a differential scanning calorimetry device (EXSTAR6000 DSC6200, manufactured by Hitachi High-Tech Science Co., Ltd.) under a temperature rise condition of 10 ° C./min. It was expressed as the temperature (intermediate temperature of the variation curve with respect to the tangent line).
  • the gel fraction of the thermoplastic epoxy resin was 1% by weight or less.
  • the method for measuring the gel fraction is as follows. About 1 g of the sample thermoplastic epoxy resin was precisely weighed in a 100 mL vial, 50 mL of tetrahydrofuran was added, ultrasonic diffusion was performed at room temperature for 1 hour, and then the sample was allowed to stand at room temperature for 23 hours or more to dissolve. Further, the wire mesh of 500 mesh was dried in an oven at 100 ° C. for 1 hour, and the weight thereof was measured. A 500-mesh wire mesh was folded into a funnel shape, and the entire sample solution was poured onto the funnel.
  • the sample was washed with tetrahydrofuran until no insoluble matter remained in the vial and poured into the funnel, and then the insoluble matter on the mesh and the mesh were washed with tetrahydrofuran and then dried in an oven at 100 ° C. for 4 hours or more. ..
  • the dry weight of the mesh was subtracted from the weight of the dried sample and mesh, and this was divided by the weight of the sample to determine the gel fraction in% by weight.
  • the number average molecular weight (Mn), weight average molecular weight (Mw), and peak top molecular weight (Mt) of the thermoplastic epoxy resin were 25,000, 62,000, and 35,000, respectively.
  • the method for measuring the molecular weight is as follows. Analysis was performed using HLC-8320GPC manufactured by Tosoh Corporation. The column was connected in series with TSKguardcolumnHXL, TSKgel GMHXL, TSKgel GMHXL and TSKgel G2000HXL, and the column oven was set to 40 ° C. The eluent was tetrahydrofuran and the detector was an RI detector. The flow rate was 1 mL / min on the sample side and 0.5 mL / min on the reference side.
  • thermoplastic epoxy resin Approximately 0.1 g of the thermoplastic epoxy resin as a sample was weighed, dissolved in 10 mL of tetrahydrofuran containing 5% cyclohexanone as an external standard substance, and filtered through a 0.45 ⁇ m PTFE membrane filter for analysis. The molecular weight was converted using a standard polystyrene calibration curve, and the elution time was corrected using cyclohexanone.
  • Examples 8-12, Comparative Examples 4-6 An epoxy resin composition and a thermoplastic epoxy resin were obtained in the same manner as in Example 7 under the conditions shown in Table 2. The melt viscosity and haze value of the obtained epoxy resin composition, the appearance of the thermoplastic epoxy resin, the epoxy equivalent, the gel fraction, Tg, Mn, Mw, and Mt were measured in the same manner as in Example 7, and the measurement results were obtained. Is shown in Table 2.
  • Example 13 The release paper that had been released from the mold was fixed on a hot plate preheated to 70 ° C. so that the release surface was facing up, and the epoxy resin composition (F1) obtained in Example 6 was placed on the release paper. After putting it on, it was coated to a thickness of 50 ⁇ m using a bar coater preheated to 70 ° C. Immediately after coating, it was removed from the hot plate and air-cooled to obtain an epoxy resin composition sheet. Subsequently, carbon fibers (I1) were laminated on the obtained epoxy resin composition sheet so as to have a strand density of 15 strands per 10 cm, and the surface pressure was 0.5 MPa using a hot press preheated to 90 ° C.
  • thermoplastic fiber reinforced plastic As a result of determining the gelation of the obtained thermoplastic fiber reinforced plastic, it was not gelled. To determine gelation, about 0.1 g of the test piece was dissolved in 10 mL of tetrahydrofuran by ultrasonic diffusion, and the loosened carbon fiber bundle was judged to be gel-free. Those in which the carbon fiber bundles were not loosened were judged to be gelled, and were judged to be "x".
  • the Mn, Mw, and Mt of the thermoplastic fiber reinforced plastic were 23000, 76000, and 33000, respectively.
  • the method for measuring the molecular weight is the method described in Example 7.
  • thermoplastic fiber reinforced plastic was obtained by the same operation as in Example 13 except that the epoxy resin composition shown in Table 3 was used. Judgment of gelation of the obtained thermoplastic fiber reinforced plastic, Mn, Mw, and Mt were measured in the same manner as in Example 13, and the measurement results are shown in Table 3.
  • the precursor mixture of the present invention can be used for an epoxy resin composition (sheet), and can be particularly preferably used for a field-polymerized thermoplastic epoxy resin, prepreg, thermoplastic fiber reinforced plastic, or the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Epoxy Resins (AREA)
  • Reinforced Plastic Materials (AREA)

Abstract

The present invention relates to an in situ polymerization type thermoplastic epoxy resin, and provides an in situ polymerization type thermoplastic epoxy resin or thermoplastic fiber-reinforced plastic, which has excellent heat resistance, while being suppressed in the formation of a gel fraction. A precursor mixture which is obtained by addition polymerization of an epoxy resin and a bifunctional phenolic compound, and which is used for an in situ polymerization type thermoplastic epoxy resin. This precursor mixture is characterized in that: an epoxy resin that contains 50% by weight or more of a bifunctional epoxy resin (a) represented by formula (1), and a bifunctional phenolic compound are contained as essential components; from 0.9 to 1.1 moles of the bifunctional phenolic compound is contained relative to 1 mole of the epoxy resin; and the viscosity at 60°C is from 1 Pa·s to 50 Pa·s. In formula (1), A is represented by formula (2); n is the number of repeating units, and the average value thereof is within the range of from 0 to 5; and X represents a single bond, an alkylene group having from 1 to 9 carbon atoms, -O-, -CO-, -COO-, -S- or -SO2-; each Y1 independently represents an alkyl group having from 1 to 4 carbon atoms or an aryl group having from 6 to 10 carbon atoms; each of Y2 and Y3 independently represents a hydrogen atom, an alkyl group having from 1 to 4 carbon atoms, or an aryl group having from 6 to 10 carbon atoms.

Description

現場重合型熱可塑性エポキシ樹脂の前駆体混合物、エポキシ樹脂組成物、エポキシ樹脂組成物シート、プリプレグ、及びこれらを用いた現場重合型の熱可塑性繊維強化プラスチックField-polymerized thermoplastic epoxy resin precursor mixture, epoxy resin composition, epoxy resin composition sheet, prepreg, and field-polymerized thermoplastic fiber reinforced plastic using these.
 本発明は、現場重合型の熱可塑性エポキシ樹脂及び熱可塑性繊維強化プラスチックに関する。ここで、現場重合型の熱可塑性樹脂とは、工場出荷時には低分子量である一方、繊維強化熱可塑性プラスチック(FRTP)製造現場で強化繊維に含浸した後、ホットメルト(加熱溶融)によって速やかに重合が進行して高分子量の熱可塑性樹脂へと変換され得るものをいう。 The present invention relates to a field-polymerized thermoplastic epoxy resin and a thermoplastic fiber reinforced plastic. Here, the on-site polymerization type thermoplastic resin has a low molecular weight at the time of shipment from the factory, but after being impregnated with the reinforced fiber at the fiber reinforced thermoplastic (FRTP) manufacturing site, it is rapidly polymerized by hot melt (heat melting). This refers to a resin that can be converted into a high-molecular-weight thermoplastic resin.
 熱可塑性樹脂は加熱によって可塑性を有し、容易に成形ができる材料である。しかしながら、一般的に熱可塑性樹脂は高分子量であり、高い溶融粘度となるため、成形するためには、高温・高圧を要する。狭い空間や加熱や加圧が難しい材料と複合化することは容易ではない。 Thermoplastic resin is a material that has plasticity when heated and can be easily molded. However, since thermoplastic resins generally have a high molecular weight and a high melt viscosity, high temperature and high pressure are required for molding. It is not easy to combine with a narrow space or a material that is difficult to heat or pressurize.
 この問題に対して、特許文献1において、2官能のエポキシ樹脂と2官能の硬化剤を用いた現場重合型熱可塑性エポキシ樹脂の製造方法が提案されている。2官能エポキシ樹脂と2官能硬化剤はいずれもモノマーないしオリゴマーであり、一般的な熱可塑性樹脂と比較して粘度が低い。また、低沸点の有機溶剤でも溶解できるため、確実に含浸することができ、容易に乾燥することもできる。現場重合により、十分なレベルまでボイドを低減した熱可塑性樹脂を得ることができる。 To solve this problem, Patent Document 1 proposes a method for producing a field-polymerized thermoplastic epoxy resin using a bifunctional epoxy resin and a bifunctional curing agent. Both the bifunctional epoxy resin and the bifunctional curing agent are monomers or oligomers, and have lower viscosities than general thermoplastic resins. Further, since it can be dissolved even with an organic solvent having a low boiling point, it can be reliably impregnated and can be easily dried. By in-situ polymerization, a thermoplastic resin with voids reduced to a sufficient level can be obtained.
 また、非特許文献1では、現場重合型熱可塑性エポキシ樹脂について、エポキシ樹脂やフェノール化合物の種類により主鎖の骨格を変えることによって重合物のガラス転移温度(Tg)を制御することを開示する。しかしながら、ここには主鎖の骨格を変えた材料に関して、それ以上の検討はされていない。
 本発明者らの検討によれば、耐熱性に優れる骨格を用いて機械強度を発現させるために十分に重合させようとするとゲル化して熱可塑性を発現できなくなり、これを両立することができなかった。
Further, Non-Patent Document 1 discloses that the glass transition temperature (Tg) of a polymer is controlled by changing the skeleton of the main chain depending on the type of the epoxy resin or the phenol compound in the field-polymerized thermoplastic epoxy resin. However, no further studies have been made here on materials with altered backbone skeletons.
According to the studies by the present inventors, if an attempt is made to sufficiently polymerize a skeleton having excellent heat resistance in order to develop mechanical strength, it gels and cannot exhibit thermoplasticity, and this cannot be achieved at the same time. rice field.
 特許文献2では、貯蔵安定性に優れる高分子量エポキシ樹脂を得るための手法として特定の触媒を用いることが記載されており、実施例で開示されている貯蔵安定性とは、有機溶剤を用いて、撹拌しながら重合した高分子量エポキシ樹脂に硬化剤としてイソホロンジイソシアネートアダクトを用いた場合ついて開示されているが、高分子量エポキシ樹脂そのものの特徴についてはエポキシ当量を除き、記載されていない。 Patent Document 2 describes that a specific catalyst is used as a method for obtaining a high-molecular-weight epoxy resin having excellent storage stability, and the storage stability disclosed in the examples means that an organic solvent is used. Although the case where isophorone diisocyanate adduct is used as a curing agent for the high molecular weight epoxy resin polymerized with stirring is disclosed, the characteristics of the high molecular weight epoxy resin itself are not described except for the epoxy equivalent.
 また、特許文献3ではビスフェノールAとビスフェノールTMCとの混合物を加熱冷却することにより、融点を下げた両者の結晶性付加物の製造方法が開示されている。このビスフェノール結晶性付加物は、融点について開示されているのみで、エポキシ樹脂、特に現場重合型熱可塑性エポキシ樹脂への適用に関しては何ら記載がない。 Further, Patent Document 3 discloses a method for producing a crystalline adduct having a lower melting point by heating and cooling a mixture of bisphenol A and bisphenol TMC. This bisphenol crystalline adduct is only disclosed with respect to its melting point, and there is no description regarding its application to epoxy resins, especially field-polymerized thermoplastic epoxy resins.
国際公開WO2004/060981International release WO2004 / 060981 特開2015-157907号公報JP-A-2015-157907 特開平9-059196号公報Japanese Unexamined Patent Publication No. 9-059196
 本発明は現場重合型の熱可塑性エポキシ樹脂に関して、耐熱性に優れ、ゲル分の生成が少ない現場重合型の熱可塑性エポキシ樹脂や熱可塑性繊維強化プラスチック、それらが得られるエポキシ樹脂組成物及びその前駆体混合物を提供することを課題とする。 The present invention relates to a field-polymerized thermoplastic epoxy resin, which has excellent heat resistance and produces little gel, a field-polymerized thermoplastic epoxy resin, a thermoplastic fiber-reinforced plastic, an epoxy resin composition obtained thereof, and a precursor thereof. The subject is to provide a body mixture.
 前記課題を解決するために鋭意検討を行った結果、用いるエポキシ樹脂のグリシドキシ基(グリシジルオキシ基)に対してオルト位にアルキル基などの置換基を有するものを用いた場合、その重合物は耐熱性に優れ、ゲル化することなく分子量が増大し、熱可塑性を有する高分子量エポキシ樹脂を得ることができることを見出した。この重合反応は炭素繊維に含浸した場合においても同様に進行するため熱可塑性繊維強化プラスチックとして提供することができる。 As a result of diligent studies to solve the above problems, when a epoxy resin having a substituent such as an alkyl group at the ortho position is used with respect to the glycidoxy group (glycidyloxy group), the polymer is heat resistant. It has been found that a high-molecular-weight epoxy resin having excellent properties, increasing the molecular weight without gelation, and having thermoplasticity can be obtained. Since this polymerization reaction proceeds in the same manner even when the carbon fiber is impregnated, it can be provided as a thermoplastic fiber reinforced plastic.
 すなわち本発明は、エポキシ樹脂(A)と2官能フェノール化合物(B)との付加重合によって得られる現場重合型熱可塑性エポキシ樹脂に用いる前駆体混合物であって、
 下記式(1)で示される2官能エポキシ樹脂(a)を50重量%以上含むエポキシ樹脂(A)と、2官能フェノール化合物(B)とを必須成分として含み、エポキシ樹脂(A)1モルに対して、2官能フェノール化合物(B)は0.9~1.1モルであり、60℃における粘度が1Pa・s以上50Pa・s以下であることを特徴とする前駆体混合物である。
Figure JPOXMLDOC01-appb-C000002
 ここで、式(1)中のAは式(2)であり、nは繰り返し数でその平均値は0~5である。Xは単結合、炭素数1~9のアルキレン基、-O-、-CO-、-COO-、-S-、-SO-のいずれかであり、Yは独立に、炭素数1~4のアルキル基、炭素数6~10のアリール基のいずれかであり、Y及びYはそれぞれ独立に、水素原子、炭素数1~4のアルキル基、炭素数6~10のアリール基のいずれかである。
That is, the present invention is a precursor mixture used for a field-polymerized thermoplastic epoxy resin obtained by addition polymerization of an epoxy resin (A) and a bifunctional phenol compound (B).
The epoxy resin (A) containing 50% by weight or more of the bifunctional epoxy resin (a) represented by the following formula (1) and the bifunctional phenol compound (B) are contained as essential components in 1 mol of the epoxy resin (A). On the other hand, the bifunctional phenol compound (B) is 0.9 to 1.1 mol, and is a precursor mixture characterized by having a viscosity at 60 ° C. of 1 Pa · s or more and 50 Pa · s or less.
Figure JPOXMLDOC01-appb-C000002
Here, A in the formula (1) is the formula (2), n is the number of repetitions, and the average value thereof is 0 to 5. X is a single bond, an alkylene group having 1 to 9 carbon atoms, -O-, -CO-, -COO-, -S-, or -SO 2- , and Y 1 is independently 1 to 9 carbon atoms. It is either an alkyl group of 4 or an aryl group having 6 to 10 carbon atoms, and Y 2 and Y 3 are independently of a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, and an aryl group having 6 to 10 carbon atoms. Either.
 前記前駆体混合物を厚さ2mmにしたとき、厚み方向のヘイズ値は30%未満であることが好ましく、前駆体混合物の標準ポリスチレン検量線による重量平均分子量は300以上500以下であることが好ましい。 When the precursor mixture has a thickness of 2 mm, the haze value in the thickness direction is preferably less than 30%, and the weight average molecular weight of the precursor mixture according to the standard polystyrene calibration curve is preferably 300 or more and 500 or less.
 前記2官能フェノール化合物(B)はビスフェノール化合物及び/又はビフェノール化合物であることが好ましく、2官能フェノール化合物(B)中の最も多い成分の比率は90重量%以下であることが好ましい。 The bifunctional phenol compound (B) is preferably a bisphenol compound and / or a biphenol compound, and the ratio of the most abundant component in the bifunctional phenol compound (B) is preferably 90% by weight or less.
 また本発明は、前記前駆体混合物に重合触媒を配合し、互いに相溶してなるエポキシ樹脂組成物である。 Further, the present invention is an epoxy resin composition in which a polymerization catalyst is blended with the precursor mixture and the mixture is compatible with each other.
 前記エポキシ樹脂組成物は、厚さ2mmにしたときの厚み方向のヘイズ値は30%未満であることが好ましく、60℃における粘度は3Pa・s以上150Pa・s以下であることが好ましい。 The epoxy resin composition preferably has a haze value in the thickness direction of less than 30% when the thickness is 2 mm, and the viscosity at 60 ° C. is preferably 3 Pa · s or more and 150 Pa · s or less.
 また本発明は、前記エポキシ樹脂組成物を厚さ10μm以上300μm以下にしてなるエポキシ樹脂組成物シートである。 Further, the present invention is an epoxy resin composition sheet in which the epoxy resin composition has a thickness of 10 μm or more and 300 μm or less.
 また本発明は、前記エポキシ樹脂組成物を重合してなる現場重合型熱可塑性エポキシ樹脂であるか、又は前記エポキシ樹脂組成物シートを重合してなるシート状の現場重合型熱可塑性エポキシ樹脂である。これらの現場重合型熱可塑性エポキシ樹脂、シート状の現場重合型熱可塑性エポキシ樹脂は、ゲル分率が0重量%以上10重量%以下であることが好ましい。 Further, the present invention is a field-polymerized thermoplastic epoxy resin obtained by polymerizing the epoxy resin composition, or a sheet-shaped field-polymerized thermoplastic epoxy resin obtained by polymerizing the epoxy resin composition sheet. .. These field-polymerized thermoplastic epoxy resins and sheet-shaped field-polymerized thermoplastic epoxy resins preferably have a gel fraction of 0% by weight or more and 10% by weight or less.
 また本発明は、前記エポキシ樹脂組成物及び/又は前記エポキシ樹脂組成物シートと、強化繊維とから得られるプリプレグであり、そのプリプレグを重合して得られる現場重合型の熱可塑性繊維強化プラスチックである。 The present invention is a prepreg obtained from the epoxy resin composition and / or the epoxy resin composition sheet and the reinforcing fiber, and is a field-polymerized thermoplastic fiber reinforced plastic obtained by polymerizing the prepreg. ..
 本発明の現場重合型熱可塑性エポキシ樹脂用の前駆体混合物は、結晶が析出せず、ホットメルト方式においてハンドリング性に優れるエポキシ樹脂組成物やプリプレグを得ることができる。また、十分に高い分子量を有する重合体におけるガラス転移温度を高めながらもゲルの生成は低減できる現場重合型の熱可塑性エポキシ樹脂を得ることができる。 The precursor mixture for the field-polymerized thermoplastic epoxy resin of the present invention does not precipitate crystals, and an epoxy resin composition or prepreg having excellent handleability can be obtained by a hot melt method. In addition, it is possible to obtain a field-polymerized thermoplastic epoxy resin capable of reducing gel formation while increasing the glass transition temperature in a polymer having a sufficiently high molecular weight.
 以下、本発明をその好適な実施形態に即して詳細に説明する。
 現場重合型の熱可塑性エポキシ樹脂は、エポキシ樹脂(A)と2官能フェノール化合物(B)との付加重合によって得られ、本発明の現場重合型熱可塑性エポキシ樹脂に用いる前駆体混合物(前駆体と称することがある)は、エポキシ樹脂(A)として、式(1)で示される2官能エポキシ樹脂(a)を、50重量%以上必須成分として含む。好ましくは66重量%以上であり、より好ましくは75重量%以上であり、さらに好ましくは80重量%以上である。
 また、エポキシ樹脂(A)のエポキシ当量は、150~350g/eqが好ましい。
Hereinafter, the present invention will be described in detail according to the preferred embodiment thereof.
The field-polymerized thermoplastic epoxy resin is obtained by addition polymerization of the epoxy resin (A) and the bifunctional phenol compound (B), and is a precursor mixture (with a precursor) used in the field-polymerized thermoplastic epoxy resin of the present invention. (May be referred to as) contains, as the epoxy resin (A), the bifunctional epoxy resin (a) represented by the formula (1) as an essential component in an amount of 50% by weight or more. It is preferably 66% by weight or more, more preferably 75% by weight or more, and further preferably 80% by weight or more.
The epoxy equivalent of the epoxy resin (A) is preferably 150 to 350 g / eq.
 式(1)においてAは式(2)である。nは繰り返し数でその平均値は0~5であり、好ましくは0~1である。 In equation (1), A is equation (2). n is the number of repetitions, and the average value thereof is 0 to 5, preferably 0 to 1.
 式(2)においてXは単結合、炭素数1~9のアルキレン基、-O-、-CO-、-COO-、-S-、-SO-のいずれかである。
 炭素数1~9のアルキレン基としては、例えば、-CH-、-CH(CH)-、-C(CH-、-C(CF-、-CHPh-、-C(CH)Ph-、1,1-シクロプロピレン基、1,1-シクロブチレン基、1,1-シクロペンチレン基、1,1-シクロヘキシレン基、4-メチル-1,1-シクロヘキシレン基、3,3,5-トリメチル-1,1-シクロヘキシレン基、1,1-シクロオクチレン基、1,1-シクロノニレン基、1,2-エチレン基、1,2-シクロプロピレン基、1,2-シクロブチレン基、1,2-シクロペンチレン基、1,2-シクロヘキシレン基、1,2-フェニレン基、1,3-プロピレン基、1,3-シクロブチレン基、1,3-シクロペンチレン基、1,3-シクロヘキシレン基、1,3-フェニレン基、1,4-ブチレン基、1,4-シクロヘキシレン基、1,4-フェニレン基などが挙げられる。なお、Phはフェニル基を表す。
 これらの内、単結合、-O-、-CO-、-COO-、-S-、-SO-、-CH-、-CH(CH)-、-C(CH-、-CHPh-、-C(CH)Ph-、1,1-シクロヘキシレン基、4-メチル-1,1-シクロヘキシレン基、3,3,5-トリメチル-1,1-シクロヘキシレン基、1,4-シクロヘキシレン基、1,4-フェニレン基が好ましく、単結合、-O-、-CO-、-COO-、-S-、-SO-、-CH-、-CH(CH)-、-C(CH-、-C(CH)Ph-、1,1-シクロヘキシレン基、3,3,5-トリメチル-1,1-シクロヘキシレン基がより好ましい。なお、Phはフェニル基を表す。
In the formula (2), X is any one of a single bond, an alkylene group having 1 to 9 carbon atoms, -O-, -CO-, -COO-, -S-, and -SO 2- .
Examples of the alkylene group having 1 to 9 carbon atoms include -CH 2- , -CH (CH 3 )-, -C (CH 3 ) 2- , -C (CF 3 ) 2- , -CHPh-, and -C. (CH 3 ) Ph-, 1,1-cyclopropylene group, 1,1-cyclobutylene group, 1,1-cyclopentylene group, 1,1-cyclohexylene group, 4-methyl-1,1-cyclohexylene Group, 3,3,5-trimethyl-1,1-cyclohexylene group, 1,1-cyclooctylene group, 1,1-cyclononylene group, 1,2-ethylene group, 1,2-cyclopropylene group, 1 , 2-Cyclobutylene group, 1,2-cyclopentylene group, 1,2-cyclohexylene group, 1,2-phenylene group, 1,3-propylene group, 1,3-cyclobutylene group, 1,3- Cyclopentylene group, 1,3-cyclohexylene group, 1,3-phenylene group, 1,4-butylene group, 1,4-cyclohexylene group, 1,4-phenylene group and the like can be mentioned. In addition, Ph represents a phenyl group.
Of these, single bond, -O-, -CO-, -COO-, -S-, -SO 2- , -CH 2- , -CH (CH 3 )-, -C (CH 3 ) 2- , -CHPh-, -C (CH 3 ) Ph-, 1,1-cyclohexylene group, 4-methyl-1,1-cyclohexylene group, 3,3,5-trimethyl-1,1-cyclohexylene group, 1 , 4-Cyclohexylene group, 1,4-phenylene group are preferable, single bond, -O-, -CO-, -COO-, -S-, -SO 2- , -CH 2- , -CH (CH 3 ). )-, -C (CH 3 ) 2- , -C (CH 3 ) Ph-, 1,1-cyclohexylene group, 3,3,5-trimethyl-1,1-cyclohexylene group are more preferable. In addition, Ph represents a phenyl group.
 式(2)におけるYは独立に、炭素数1~4のアルキル基、炭素数6~10のアリール基のいずれかである。
 炭素数1~4のアルキル基としては、例えば、メチル基、エチル基、n-プロピル基、iso-プロピル基、n-ブチル基、sec-ブチル基、iso-ブチル基、t-ブチル基などが挙げられる。
 炭素数6~10のアリール基としては、例えば、フェニル基、トリル基、エチルフェニル基、キシリル基、n-プロピルフェニル基、イソプロピルフェニル基、メシチル基、ナフチル基などが挙げられる。
 これらの内、メチル基、エチル基、n-プロピル基、n-ブチル基、t-ブチル基、フェニル基、トリル基、キシリル基、ナフチル基が好ましく、メチル基、エチル基、n-プロピル基、n-ブチル基、t-ブチル基、フェニル基、トリル基がより好ましい。
 式(2)におけるYは独立に、水素原子、炭素数1~4のアルキル基、炭素数6~10のアリール基のいずれかであり、水素原子以外の置換基が好ましい。置換基としては、前記Yで例示した置換基と同様である。好ましいYはYと同様である。
 式(2)におけるYは独立に、水素原子、炭素数1~4のアルキル基、炭素数6~10のアリール基のいずれかである。置換基としては、Yで例示した置換基と同様である。好ましいYは水素原子又はYと同様である。
Y 1 in the formula (2) is independently one of an alkyl group having 1 to 4 carbon atoms and an aryl group having 6 to 10 carbon atoms.
Examples of the alkyl group having 1 to 4 carbon atoms include a methyl group, an ethyl group, an n-propyl group, an iso-propyl group, an n-butyl group, a sec-butyl group, an iso-butyl group and a t-butyl group. Can be mentioned.
Examples of the aryl group having 6 to 10 carbon atoms include a phenyl group, a tolyl group, an ethylphenyl group, a xsilyl group, an n-propylphenyl group, an isopropylphenyl group, a mesityl group and a naphthyl group.
Of these, methyl group, ethyl group, n-propyl group, n-butyl group, t-butyl group, phenyl group, tolyl group, xylyl group and naphthyl group are preferable, and methyl group, ethyl group and n-propyl group are preferable. More preferably, n-butyl group, t-butyl group, phenyl group and tolyl group.
Y 2 in the formula (2) is independently any one of a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, and an aryl group having 6 to 10 carbon atoms, and a substituent other than the hydrogen atom is preferable. The substituent is the same as the substituent exemplified in Y1. Preferred Y 2 is similar to Y 1 .
Y3 in the formula ( 2 ) is independently one of a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, and an aryl group having 6 to 10 carbon atoms. The substituent is the same as the substituent exemplified in Y1. Preferred Y 3 is similar to a hydrogen atom or Y 1 .
 2官能エポキシ樹脂(a)としては、例えば、テトラメチルビスフェノールF型エポキシ樹脂(例えば、YSLV-80XY(日鉄ケミカル&マテリアル株式会社製)など)、テトラメチルビフェノール型エポキシ樹脂(例えば、YX-4000(三菱ケミカル株式会社製)など)、ビスクレゾールフルオレン型エポキシ樹脂(例えば、OGSOL CG-500(大阪ガスケミカル株式会社製)など)などが挙げられる。 Examples of the bifunctional epoxy resin (a) include a tetramethylbisphenol F type epoxy resin (for example, YSLV-80XY (manufactured by Nittetsu Chemical & Materials Co., Ltd.)) and a tetramethylbiphenol type epoxy resin (for example, YX-4000). (Made by Mitsubishi Chemical Co., Ltd.), etc.), biscresol fluorene type epoxy resin (for example, OGSOL CG-500 (manufactured by Osaka Gas Chemical Co., Ltd.), etc.) and the like.
 また、2官能エポキシ樹脂(a)以外のエポキシ樹脂でも2官能エポキシ樹脂であれば併用でき、その純度は95%以上であることが好ましい。そして、2官能化合物としての純度が高ければ、位置異性体やオリゴマーについては含まれてもよい。併用できるエポキシ樹脂として、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ビスフェノールアセトフェノン型エポキシ樹脂、ジフェニルスルフィド型エポキシ樹脂、ジフェニルエーテル型エポキシ樹脂、ビスフェノールフルオレン型エポキシ樹脂、などのビスフェノール型エポキシ樹脂や、ビフェノール型エポキシ樹脂、ジフェニルジシクロペンタジエン型エポキシ樹脂、アルキレングリコール型エポキシ樹脂、ジヒドロキシナフタレン型エポキシ樹脂、ジヒドロキシベンゼン型エポキシ樹脂などが挙げられるが、これらに限りではない。 Further, an epoxy resin other than the bifunctional epoxy resin (a) can be used in combination as long as it is a bifunctional epoxy resin, and its purity is preferably 95% or more. Then, as long as the purity as a bifunctional compound is high, positional isomers and oligomers may be contained. Examples of the epoxy resin that can be used together include bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, bisphenol acetophenone type epoxy resin, diphenyl sulfide type epoxy resin, diphenyl ether type epoxy resin, bisphenol fluorene type epoxy resin, and the like. Examples thereof include, but are not limited to, bisphenol type epoxy resin, biphenol type epoxy resin, diphenyldicyclopentadiene type epoxy resin, alkylene glycol type epoxy resin, dihydroxynaphthalene type epoxy resin, and dihydroxybenzene type epoxy resin.
 1官能の不純物が含まれている場合には重合後の分子量が上がらなくなるために製造された熱可塑性樹脂の機械物性が悪くなる恐れがある。そのため、1官能の不純物は2官能エポキシ樹脂に対して2重量%以下であることが好ましい。
 3官能以上の不純物が含まれている場合には、その不純物を起点に架橋構造を形成しやすくなるため、重合物の分散が大きくなるほか、ゲル化して熱可塑性を損なう恐れがある。そのため、3官能以上の不純物については2官能エポキシ樹脂に対して1重量%以下であることが好ましい。
 なお、エポキシ樹脂、フェノール性水酸基のいずれとも反応する活性基を持たず、また、単体では重合反応を阻害しない不純物成分についても、量が多くなると重合後の分子量が小さくなる恐れがある。そのため、2官能エポキシ樹脂に対して2重量%以下であることが好ましい。
When monofunctional impurities are contained, the molecular weight after polymerization does not increase, so that the mechanical properties of the produced thermoplastic resin may deteriorate. Therefore, the monofunctional impurities are preferably 2% by weight or less with respect to the bifunctional epoxy resin.
When impurities having trifunctionality or higher are contained, it becomes easy to form a crosslinked structure starting from the impurities, so that the dispersion of the polymer becomes large and there is a possibility that gelation may occur and the thermoplasticity may be impaired. Therefore, the amount of trifunctional or higher impurities is preferably 1% by weight or less with respect to the bifunctional epoxy resin.
It should be noted that even for an impurity component that does not have an active group that reacts with either an epoxy resin or a phenolic hydroxyl group and that does not inhibit the polymerization reaction by itself, the molecular weight after polymerization may decrease as the amount increases. Therefore, it is preferably 2% by weight or less with respect to the bifunctional epoxy resin.
 また、もう一方の必須成分である2官能フェノール化合物(B)は、1分子中に2つのフェノール性水酸基を有する化合物であり、その純度は95重量%以上であることが好ましい。そして、2官能化合物としての純度が高ければ、位置異性体については含まれていてもよい。すなわち、不純物、不純物成分が以下のとおりであることが好ましい。
 1官能の不純物が含まれている場合には重合後の分子量が上がらなくなるために製造された熱可塑性樹脂の機械物性が悪くなる恐れがある。そのため、1官能の不純物は、2官能フェノール化合物に対して2重量%以下であることが好ましい。
 3官能以上の不純物が含まれている場合には、その不純物を起点に架橋構造を形成しやすくなるため、重合物の分散が大きくなるほか、ゲル化して熱可塑性を損なう恐れがある。そのため、3官能以上の不純物は、2官能フェノール化合物に対して1重量%以下であることが好ましい。
 なお、エポキシ樹脂、フェノール性水酸基のいずれとも反応する活性基を持たず、また、単体では重合反応を阻害しない不純物成分についても、量が多くなると重合後の分子量が小さくなる恐れがある。そのため、当該不純物成分は、2官能フェノール化合物に対して2重量%以下であることが好ましい。
The other essential component, the bifunctional phenol compound (B), is a compound having two phenolic hydroxyl groups in one molecule, and its purity is preferably 95% by weight or more. Then, as long as the purity as a bifunctional compound is high, the positional isomer may be contained. That is, it is preferable that impurities and impurity components are as follows.
When monofunctional impurities are contained, the molecular weight after polymerization does not increase, so that the mechanical properties of the produced thermoplastic resin may deteriorate. Therefore, the monofunctional impurities are preferably 2% by weight or less with respect to the bifunctional phenol compound.
When impurities having trifunctionality or higher are contained, it becomes easy to form a crosslinked structure starting from the impurities, so that the dispersion of the polymer becomes large and there is a possibility that gelation may occur and the thermoplasticity may be impaired. Therefore, the amount of trifunctional or higher impurities is preferably 1% by weight or less with respect to the bifunctional phenol compound.
It should be noted that even for an impurity component that does not have an active group that reacts with either an epoxy resin or a phenolic hydroxyl group and that does not inhibit the polymerization reaction by itself, the molecular weight after polymerization may decrease as the amount increases. Therefore, the impurity component is preferably 2% by weight or less with respect to the bifunctional phenol compound.
 2官能フェノール化合物(B)としては、以下に例示するが、2官能であれば下記に示す限りではない。ビスフェノールA、ビスフェノールF(以上、日鉄ケミカル&マテリアル株式会社製)、ビスフェノールフルオレン、ビスクレゾ-ルフルオレン(以上、大阪ガスケミカル株式会社製)、Bis-E、Bis-Z、BisOC-FL、BisP-AP、BisP-CDE、BisP-HTG、BisP-MIBK、BisP-3MZ、S-BOC、Bis25X-F(以上、本州化学工業株式会社製)、ビスフェノールSなどのビスフェノール類や、ハイドロキノン、メチルハイドロキノン、ジブチルハイドロキノン、レゾルシン、メチルレゾルシン、カテコール、メチルカテコールなどのベンゼンジオール類や、ナフタレンジオールなどのナフタレンジオール類や、ビフェノール、ジメチルビフェノール、テトラメチルビフェノールなどのビフェノール類などがある。これらの内、ビスフェノール化合物類又はビフェノール化合物類が好ましい。 The bifunctional phenol compound (B) is exemplified below, but if it is bifunctional, it is not limited to the following. Bisphenol A, Bisphenol F (above, manufactured by Nittetsu Chemical & Materials Co., Ltd.), Bisphenol Fluolene, Bisphenol Fluolen (above, manufactured by Osaka Gas Chemical Co., Ltd.), Bis-E, Bis-Z, BisOC-FL, BisP-AP , BisP-CDE, BisP-HTG, BisP-MIBK, BisP-3MZ, S-BOC, Bis25X-F (all manufactured by Honshu Kagaku Kogyo Co., Ltd.), bisphenols such as bisphenol S, hydroquinone, methylhydroquinone, dibutylhydroquinone. , Resolcin, methylresorcin, catechol, methylcatechol and other benzenediols, naphthalenediol and other naphthalenediols, biphenols, dimethylbiphenols, tetramethylbiphenols and other biphenols and the like. Of these, bisphenol compounds or biphenol compounds are preferable.
 2官能フェノール化合物(B)は、2種以上使用してもよい。複数の2官能フェノール化合物を使用する場合、最も多い成分の比率が90重量%以下であることが好ましく、80重量%以下がより好ましい。
 また、2官能フェノール化合物(B)の融点は、150℃以上であることが好ましい。
Two or more kinds of the bifunctional phenol compound (B) may be used. When a plurality of bifunctional phenol compounds are used, the ratio of the most abundant component is preferably 90% by weight or less, more preferably 80% by weight or less.
The melting point of the bifunctional phenol compound (B) is preferably 150 ° C. or higher.
 前駆体混合物において有機溶剤は必須成分ではない。エポキシ樹脂(A)と2官能フェノール化合物(B)の合計量100重量部に対して、10重量部以下であることが好ましい。より好ましくは5重量部以下であり、望ましくは含有しないことである。また、有機溶剤を使用する場合、有機溶媒の1気圧における沸点は200℃以下であることが好ましい。 The organic solvent is not an essential component in the precursor mixture. The total amount of the epoxy resin (A) and the bifunctional phenol compound (B) is preferably 10 parts by weight or less with respect to 100 parts by weight. It is more preferably 5 parts by weight or less, and preferably not contained. When an organic solvent is used, the boiling point of the organic solvent at 1 atm is preferably 200 ° C. or lower.
 前駆体混合物の溶融条件は、用いる2官能フェノール化合物(B)の融点に依存するが200℃以下で溶解することが好ましい。又は2官能フェノール化合物(B)をあらかじめ300℃以下、好ましくは200℃以下で溶融したところにエポキシ樹脂(A)を加えて急冷し、150℃以下で混合してもよい。 The melting conditions of the precursor mixture depend on the melting point of the bifunctional phenol compound (B) used, but it is preferably melted at 200 ° C. or lower. Alternatively, the epoxy resin (A) may be added to a place where the bifunctional phenol compound (B) is previously melted at 300 ° C. or lower, preferably 200 ° C. or lower, rapidly cooled, and mixed at 150 ° C. or lower.
 ここで、エポキシ樹脂(A)と2官能フェノール化合物(B)との配合割合は、エポキシ樹脂(A)1モルに対して、2官能フェノール化合物(B)は0.9~1.1モルであり、0.95~1.05モルが好ましく、0.96~1.04モルがより好ましく、0.97~1.03モルが更に好ましい。2官能フェノール化合物(B)の配合割合がこの範囲内であれば、得られる場重合型熱可塑性エポキシ樹脂の分子量が十分伸長するので好ましい。 Here, the blending ratio of the epoxy resin (A) and the bifunctional phenol compound (B) is 0.9 to 1.1 mol of the bifunctional phenol compound (B) with respect to 1 mol of the epoxy resin (A). There are, preferably 0.95 to 1.05 mol, more preferably 0.96 to 1.04 mol, still more preferably 0.97 to 1.03 mol. When the blending ratio of the bifunctional phenol compound (B) is within this range, the molecular weight of the obtained field-polymerized thermoplastic epoxy resin is sufficiently extended, which is preferable.
 溶融混合物は完全に溶解していることが望ましいが、例えば、気泡を含まない状態でガラス製シャーレに厚さ2mmになるように溶融混合物を入れて厚み方向のヘイズ値を測定した場合において、その厚み方向のヘイズ値が30%未満であれば、重合反応に影響しない水準まで溶解したものと判断する。ヘイズ値についてより好ましくは20%未満、さらに好ましくは10%未満である。 It is desirable that the melt mixture is completely melted, but for example, when the melt mixture is placed in a glass petri dish so as to have a thickness of 2 mm and the haze value in the thickness direction is measured, the haze value is measured. If the haze value in the thickness direction is less than 30%, it is determined that the mixture has been dissolved to a level that does not affect the polymerization reaction. The haze value is more preferably less than 20%, still more preferably less than 10%.
 また、前駆体混合物の60℃における粘度は1Pa・s以上50Pa・s以下である。粘度が1Pa・s未満である場合には熱可塑性エポキシ樹脂の前駆体混合物及びそれ以降の材料が柔らかくなりすぎるため、室温付近でのハンドリング性が悪くなってしまう恐れがある。また、粘度が50Pa・sを超える場合には、次の工程で重合触媒を配合する際の作業性が悪くなってしまう恐れや、高温での処理が必要となるため貯蔵安定性が悪化する恐れがある。より好ましい粘度は3Pa・s以上40Pa・s以下であり、望ましくは5Pa・s以上30Pa・s以下である。 Further, the viscosity of the precursor mixture at 60 ° C. is 1 Pa · s or more and 50 Pa · s or less. If the viscosity is less than 1 Pa · s, the precursor mixture of the thermoplastic epoxy resin and the material after that become too soft, and the handleability at around room temperature may deteriorate. Further, if the viscosity exceeds 50 Pa · s, the workability when blending the polymerization catalyst in the next step may deteriorate, or the storage stability may deteriorate because the treatment at a high temperature is required. There is. A more preferable viscosity is 3 Pa · s or more and 40 Pa · s or less, and preferably 5 Pa · s or more and 30 Pa · s or less.
 また、前駆体混合物の標準ポリスチレン検量線による重量平均分子量は300以上500以下であることが好ましい。より好ましい重量平均分子量は300以上450以下であり、望ましくは300以上400以下である。重量平均分子量を範囲内にすることで前駆体混合物の60℃における粘度を好ましい範囲にすることが容易である。 Further, the weight average molecular weight of the precursor mixture according to the standard polystyrene calibration curve is preferably 300 or more and 500 or less. A more preferable weight average molecular weight is 300 or more and 450 or less, and preferably 300 or more and 400 or less. By keeping the weight average molecular weight within the range, it is easy to set the viscosity of the precursor mixture at 60 ° C. in a preferable range.
 本発明のエポキシ樹脂組成物は、前駆体混合物と重合触媒とを混合して得られる。使用できる重合触媒としては、例えば、ホスフィン系化合物、4級ホスホニウム塩、イミダゾール類、3級アミン類などが挙げられる。この中では特にホスフィン系化合物が好ましく、トリフェニルホスフィン、トリス(o-トリル)ホスフィン、トリス(p-トリル)ホスフィン、トリス(p-メトキシフェニル)ホスフィン、トリス(2,6-ジメトキシフェニル)ホスフィン(いずれも北興化学工業社製)が特に好ましい。また、4級ホスホニウム塩ではヒシコーリンPX-4MP,ヒシコーリンPX-4ET(いずれも日本化学工業社製)が好ましい。さらにイミダゾール類では2-フェニルイミダゾール、2,3-ジヒドロ-1H-ピロロ-[1,2-a]ベンズイミダゾール(いずれも四国化成工業社製)が好ましい。重合触媒の配合量はエポキシ樹脂(A)とフェノール化合物(B)の和に対して、0.05重量%以上10重量%以下である。より好ましくは0.1重量%以上5重量%以下である。触媒量が0.05重量%未満である場合には十分に分子量が増大しないか、重合に時間を要して生産性を損なう結果となる。一方で10重量%を超えて用いる場合には貯蔵安定性を損なうばかりか分子量が十分に増大しなくなる問題も生じる。 The epoxy resin composition of the present invention is obtained by mixing a precursor mixture and a polymerization catalyst. Examples of the polymerization catalyst that can be used include phosphine compounds, quaternary phosphonium salts, imidazoles, and tertiary amines. Among these, phosphine compounds are particularly preferable, and triphenylphosphine, tris (o-tolyl) phosphine, tris (p-tolyl) phosphine, tris (p-methoxyphenyl) phosphine, and tris (2,6-dimethoxyphenyl) phosphine ( (Made by Hokuko Chemical Industry Co., Ltd.) is particularly preferable. As the quaternary phosphonium salt, Hishikorin PX-4MP and Hishikorin PX-4ET (both manufactured by Nippon Chemical Industrial Co., Ltd.) are preferable. Further, as imidazoles, 2-phenylimidazole and 2,3-dihydro-1H-pyrrolo- [1,2-a] benzimidazole (both manufactured by Shikoku Chemicals Corporation) are preferable. The blending amount of the polymerization catalyst is 0.05% by weight or more and 10% by weight or less with respect to the sum of the epoxy resin (A) and the phenol compound (B). More preferably, it is 0.1% by weight or more and 5% by weight or less. If the amount of the catalyst is less than 0.05% by weight, the molecular weight does not increase sufficiently, or the polymerization takes time and the productivity is impaired. On the other hand, when it is used in excess of 10% by weight, not only the storage stability is impaired but also the molecular weight does not increase sufficiently.
 本発明のエポキシ樹脂組成物は、エポキシ樹脂、フェノール化合物、及び重合触媒を含む混合物であって、加熱することによって重合することができるものである。重合触媒を添加する際、均一に混合することを目的に、少量の有機溶剤を使うことがある。有機溶剤の使用量はエポキシ樹脂とフェノール化合物の和の10重量%以下であり、5重量%以下であることが好ましく、1重量%以下であることがさらに好ましい。有機溶剤が10重量%を超えて使用される場合、重合物の分子量が十分に上がらなくなる問題がある。 The epoxy resin composition of the present invention is a mixture containing an epoxy resin, a phenol compound, and a polymerization catalyst, and can be polymerized by heating. When adding the polymerization catalyst, a small amount of organic solvent may be used for the purpose of uniform mixing. The amount of the organic solvent used is 10% by weight or less of the sum of the epoxy resin and the phenol compound, preferably 5% by weight or less, and further preferably 1% by weight or less. When the organic solvent is used in an amount of more than 10% by weight, there is a problem that the molecular weight of the polymer does not increase sufficiently.
 また、エポキシ樹脂組成物の60℃における粘度は3Pa・s以上150Pa・s以下であることが好ましい。粘度が3Pa・s未満である場合には後述する樹脂シートやプリプレグにおける樹脂成分が柔らかくなりすぎるため、室温付近でのハンドリング性が悪くなってしまう恐れがある。また、粘度が150Pa・sを超える場合には、フィルムに塗布する工程や強化繊維に含浸する工程を高温にする必要が出てくるため、貯蔵安定性に影響を与える恐れがある。より好ましい粘度は10Pa・s以上140Pa・s以下であり、望ましくは20Pa・s以上130Pa・s以下である。
 なお、エポキシ樹脂組成物についても、前駆体混合物と同様に、厚さ2mmになるようにした場合における厚み方向のヘイズ値が30%未満であることが好ましく、より好ましくは20%未満、さらに好ましくは10%未満であることがよい。
Further, the viscosity of the epoxy resin composition at 60 ° C. is preferably 3 Pa · s or more and 150 Pa · s or less. If the viscosity is less than 3 Pa · s, the resin component in the resin sheet or prepreg, which will be described later, becomes too soft, which may result in poor handleability near room temperature. Further, when the viscosity exceeds 150 Pa · s, it is necessary to raise the temperature of the step of applying to the film and the step of impregnating the reinforcing fiber to a high temperature, which may affect the storage stability. A more preferable viscosity is 10 Pa · s or more and 140 Pa · s or less, and preferably 20 Pa · s or more and 130 Pa · s or less.
As for the epoxy resin composition, similarly to the precursor mixture, the haze value in the thickness direction when the thickness is set to 2 mm is preferably less than 30%, more preferably less than 20%, still more preferably. Should be less than 10%.
 エポキシ樹脂組成物シートとは、エポキシ樹脂組成物をベースフィルムに塗布したものである。必要に応じてカバーフィルムで挟み込むことができる。ベースフィルムはポリイミド、ポリエチレンテレフタラート、ポリブチレンテレフタラート、ポリエチレン、紙などが一般的に使用される。ベースフィルムは離型処理されていてもされていなくてもよいが、紙の場合は離型処理が必要である。カバーフィルムを使用する場合には離型処理がなされたポリエチレンフィルムや紙が一般的に用いられる。塗布厚さは10μm以上300μm以下であるが、好ましくは15μm以上150μm以下であり、より好ましくは20μm以上100μm以下である。
 本発明においては後述のとおり、これを被着体に貼り合わせて熱重合してもよいし、強化繊維などに含浸してもよい。その際の熱重合は通常、100℃から200℃の範囲でおこなわれる。熱重合温度が100℃未満である場合、重合の途中で重合物のガラス転移温度がこれを上回ってしまうため反応が十分に進行しない。200℃を超えて反応する場合は所望しない副反応が起こってゲル化してしまうことがある。重合に要する時間は通常、5分から6時間である。反応温度が高ければ時間は短くなるが、5分未満では十分に重合反応が進行しない。また、6時間を超える場合は生産性が悪くなるため好ましくない。
The epoxy resin composition sheet is a base film coated with an epoxy resin composition. It can be sandwiched between cover films if necessary. As the base film, polyimide, polyethylene terephthalate, polybutylene terephthalate, polyethylene, paper and the like are generally used. The base film may or may not be mold-released, but in the case of paper, mold-release treatment is required. When a cover film is used, a polyethylene film or paper that has undergone mold release treatment is generally used. The coating thickness is 10 μm or more and 300 μm or less, preferably 15 μm or more and 150 μm or less, and more preferably 20 μm or more and 100 μm or less.
In the present invention, as will be described later, this may be attached to an adherend and thermally polymerized, or may be impregnated into reinforcing fibers or the like. The thermal polymerization at that time is usually carried out in the range of 100 ° C to 200 ° C. When the thermal polymerization temperature is less than 100 ° C., the glass transition temperature of the polymer exceeds this during the polymerization, so that the reaction does not proceed sufficiently. If the reaction exceeds 200 ° C, an undesired side reaction may occur and gelation may occur. The time required for polymerization is usually 5 minutes to 6 hours. If the reaction temperature is high, the time will be short, but if it is less than 5 minutes, the polymerization reaction will not proceed sufficiently. Further, if it exceeds 6 hours, the productivity is deteriorated, which is not preferable.
 熱可塑性エポキシ樹脂とは、エポキシ樹脂組成物又はエポキシ樹脂組成物シートを重合してなる熱可塑性エポキシ樹脂である。エポキシ樹脂組成物シートを用いた場合はシート状の熱可塑性エポキシ樹脂が得られる。熱可塑性を発現するためには、溶剤不溶解分(ゲル分率)が0重量%以上10重量%以下でなければならない。この溶剤不溶解分(ゲル分率)については、実施例に記載の方法で測定することができる。
 また、当該熱可塑性エポキシ樹脂の分子量は数平均分子量で5000以上、好ましくは7500以上、望ましくは10000以上である。数平均分子量が5000未満である場合、十分な機械強度を得られる重合度とは言えず、強度が得られない。上限に特段の制限はないが、一般的には数平均分子量が30000を超えると重合が進行しにくく50000以下のものを得ることができる。重量平均分子量は50000以上であり、300000以下であることが好ましい。重合平均分子量/数平均分子量で示される分散は1以上、20以下であることが好ましく、2以上15以下であることが望ましい。分散が20を超える場合はゲル化しやすくなる傾向にある。また、分散が1未満となることはない。
The thermoplastic epoxy resin is a thermoplastic epoxy resin obtained by polymerizing an epoxy resin composition or an epoxy resin composition sheet. When the epoxy resin composition sheet is used, a sheet-shaped thermoplastic epoxy resin can be obtained. In order to exhibit thermoplasticity, the solvent insoluble content (gel content) must be 0% by weight or more and 10% by weight or less. The solvent-insoluble component (gel fraction) can be measured by the method described in Examples.
The molecular weight of the thermoplastic epoxy resin is 5000 or more, preferably 7500 or more, and preferably 10000 or more in terms of number average molecular weight. When the number average molecular weight is less than 5000, it cannot be said that the degree of polymerization is sufficient to obtain sufficient mechanical strength, and the strength cannot be obtained. There is no particular limitation on the upper limit, but in general, when the number average molecular weight exceeds 30,000, polymerization does not proceed easily, and a product of 50,000 or less can be obtained. The weight average molecular weight is 50,000 or more, preferably 300,000 or less. The dispersion represented by the polymerization average molecular weight / number average molecular weight is preferably 1 or more and 20 or less, and preferably 2 or more and 15 or less. When the dispersion exceeds 20, it tends to be easy to gel. Also, the variance will never be less than 1.
 強化繊維とは、マトリックス樹脂である熱可塑性エポキシ樹脂を強化するための繊維であって、炭素繊維、ガラス繊維、アラミド繊維などが挙げられる。また、これら繊維の形態に限りはなく、長繊維、チョップド繊維、不織布、クロスなど、いずれの形態のものも用いることができる。 The reinforcing fiber is a fiber for reinforcing the thermoplastic epoxy resin which is a matrix resin, and examples thereof include carbon fiber, glass fiber, and aramid fiber. Further, the form of these fibers is not limited, and any form such as long fibers, chopped fibers, non-woven fabrics, and cloths can be used.
 本発明において、プリプレグ(エポキシ樹脂プリプレグ)とは、エポキシ樹脂組成物又はエポキシ樹脂組成物シートと強化繊維とを複合したものである。含浸時にボイドが残存すると、最終製品中の欠陥となり、所望の強度を発現できない可能性があるため、含浸時にボイドを削減することが望ましい。その手段として、加熱処理をおこなうことができる。加熱処理は一般的に50℃以上、100℃以下でおこなわれる。50℃未満である場合には樹脂の粘度を十分に下げることができず、含浸不良が発生することがある。100℃を超える場合には重合反応が進行するおそれがある。加熱処理の時間は通常、5秒以上3分以下である。5秒に満たない場合には厚みにより十分な低粘度化と含浸が進行しない場合がある。3分を超えると重合反応がわずかに進行し、所望のタック性が得られなくなる場合がある。また、含浸精度をさらに高める手段として、熱ロールなどによる熱圧着が挙げられる。圧力は基材にもよるが0.1kgf/cm以上10kgf/cm以下である。線圧力が0.1kgf/cmに満たない場合には含浸が不十分になる場合があり、10kgf/cmを超える場合は強化繊維が損傷する場合や樹脂が流れ出してしまう場合がある。樹脂と強化繊維の体積比率は30:70~80:20である。樹脂比率が30未満である場合には樹脂が不足し、ボイドが多くなる問題がある。樹脂比率が80を超える場合には強化繊維の量が少なくなることから十分な特性を得ることができない。 In the present invention, the prepreg (epoxy resin prepreg) is a composite of an epoxy resin composition or an epoxy resin composition sheet and reinforcing fibers. If voids remain during impregnation, they may become defects in the final product and may not be able to develop the desired strength. Therefore, it is desirable to reduce voids during impregnation. As a means for that, heat treatment can be performed. The heat treatment is generally performed at 50 ° C. or higher and 100 ° C. or lower. If the temperature is lower than 50 ° C., the viscosity of the resin cannot be sufficiently lowered, and impregnation failure may occur. If the temperature exceeds 100 ° C., the polymerization reaction may proceed. The heat treatment time is usually 5 seconds or more and 3 minutes or less. If it is less than 5 seconds, sufficient low viscosity and impregnation may not proceed depending on the thickness. If it exceeds 3 minutes, the polymerization reaction may proceed slightly and the desired tackiness may not be obtained. Further, as a means for further improving the impregnation accuracy, thermocompression bonding by a thermal roll or the like can be mentioned. The pressure depends on the substrate, but is 0.1 kgf / cm or more and 10 kgf / cm or less. If the linear pressure is less than 0.1 kgf / cm, the impregnation may be insufficient, and if it exceeds 10 kgf / cm, the reinforcing fibers may be damaged or the resin may flow out. The volume ratio of the resin and the reinforcing fiber is 30:70 to 80:20. If the resin ratio is less than 30, there is a problem that the resin is insufficient and the number of voids increases. When the resin ratio exceeds 80, the amount of reinforcing fibers is small, so that sufficient characteristics cannot be obtained.
 本発明において、現場重合型の熱可塑性繊維強化プラスチックとは、エポキシ樹脂プリプレグを熱重合したものである。その分子量は数平均分子量(Mn)で5000以上、好ましくは7500以上、望ましくは10000以上である。数平均分子量が5000未満である場合、十分な機械強度を得られる重合度とは言えず、強度が得られない。上限に特段の制限はないが、一般的には数平均分子量が30000を超えると重合が進行しにくく50000以下のものが得られる。重量平均分子量(Mw)は50000以上であり、300000以下であることが好ましい。重合平均分子量/数平均分子量で示される分散は1以上20以下であることが好ましく、2以上15以下であることが望ましい。分散が20を超える場合はゲル化しやすくなる傾向にある。また、分散が1未満となることはない。 In the present invention, the field-polymerized thermoplastic fiber reinforced plastic is a heat-polymerized epoxy resin prepreg. Its molecular weight is a number average molecular weight (Mn) of 5000 or more, preferably 7500 or more, and preferably 10000 or more. When the number average molecular weight is less than 5000, it cannot be said that the degree of polymerization is sufficient to obtain sufficient mechanical strength, and the strength cannot be obtained. There is no particular limitation on the upper limit, but in general, when the number average molecular weight exceeds 30,000, the polymerization is difficult to proceed and a product of 50,000 or less can be obtained. The weight average molecular weight (Mw) is 50,000 or more, preferably 300,000 or less. The dispersion represented by the polymerization average molecular weight / number average molecular weight is preferably 1 or more and 20 or less, and preferably 2 or more and 15 or less. When the dispersion exceeds 20, it tends to be easy to gel. Also, the variance will never be less than 1.
 以下、本発明を実施例により具体的に説明するが、本発明はこれらの実施例によって何ら限定されるものではない。特に断りがない限り「部」は重量部を表し、「%」は重量%を表す。なお、以下の実施例で使用した原材料は以下の通りである。 Hereinafter, the present invention will be specifically described with reference to Examples, but the present invention is not limited to these Examples. Unless otherwise specified, "parts" represents parts by weight and "%" represents% by weight. The raw materials used in the following examples are as follows.
[エポキシ樹脂]
A1:テトラメチルビスフェノールF型エポキシ樹脂(日鉄ケミカル&マテリアル株式会社製、YSLV-80XY、エポキシ当量192g/eq)
A2:テトラメチルビフェノール型エポキシ樹脂(三菱ケミカル株式会社製、YX4000、エポキシ当量188g/eq)
A3:ビスフェノールA型液状エポキシ樹脂(日鉄ケミカル&マテリアル株式会社製、YD-128、エポキシ当量188g/eq)
[Epoxy resin]
A1: Tetramethylbisphenol F type epoxy resin (manufactured by Nittetsu Chemical & Materials Co., Ltd., YSLV-80XY, epoxy equivalent 192 g / eq)
A2: Tetramethylbiphenol type epoxy resin (manufactured by Mitsubishi Chemical Corporation, YX4000, epoxy equivalent 188 g / eq)
A3: Bisphenol A type liquid epoxy resin (manufactured by Nittetsu Chemical & Materials Co., Ltd., YD-128, epoxy equivalent 188 g / eq)
[フェノール化合物]
B1:ビスフェノールA(日鉄ケミカル&マテリアル株式会社製)
B2:4,4’-(3,3,5-トリメチルシクロヘキシリデン)ビスフェノール(本州化学工業株式会社製、BisP-HTG)
B3:9,9-ビス(4-ヒドロキシ-3-メチルフェニル)フルオレン(大阪ガスケミカル株式会社製、BCF)
[Phenol compound]
B1: Bisphenol A (manufactured by Nittetsu Chemical & Materials Co., Ltd.)
B2: 4,4'-(3,3,5-trimethylcyclohexylidene) bisphenol (manufactured by Honshu Chemical Industry Co., Ltd., BisP-HTG)
B3: 9,9-bis (4-hydroxy-3-methylphenyl) fluorene (manufactured by Osaka Gas Chemical Co., Ltd., BCF)
[有機溶剤]
C1:シクロヘキサノン(試薬一級、富士フィルム和光純薬株式会社製)
[Organic solvent]
C1: Cyclohexanone (first-class reagent, manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.)
[重合触媒]
E1:2,3-ジヒドロ-1H-ピロロ-[1,2-a]ベンズイミダゾール(四国化成工業株式会社製、TBZ)
E2:トリス(パラトリル)ホスフィン(北興化学工業株式会社製、TPTP)
E3:トリス(パラメトキシフェニル)ホスフィン(北興化学工業株式会社製、TPAP)
[Polymerization catalyst]
E1: 2,3-dihydro-1H-pyrrolo- [1,2-a] benzimidazole (manufactured by Shikoku Chemicals Corporation, TBZ)
E2: Tris (palatril) phosphine (manufactured by Hokuko Chemical Industry Co., Ltd., TPTP)
E3: Tris (paramethoxyphenyl) phosphine (manufactured by Hokuko Chemical Industry Co., Ltd., TPAP)
[強化繊維]
I1:PAN系炭素繊維(東レ株式会社製、T700SC-12K-60E)
[Reinforcing fiber]
I1: PAN-based carbon fiber (manufactured by Toray Industries, Inc., T700SC-12K-60E)
実施例1
 A1 278.1部、B1 50.0部、B2 150.0部をそれぞれはかりとり、ヘンシェルミキサーを用いて粉砕混合した。続いてバレル温度を170℃に予熱したS1KRCニーダー(株式会社栗本鐵工所製)を用いて溶融混合を行い、金属缶に全量回収し、撹拌しながら冷却して、熱可塑性エポキシ樹脂の前駆体混合物(D1)を得た。
Example 1
278.1 parts of A1 and 50.0 parts of B1 and 150.0 parts of B2 were weighed and pulverized and mixed using a Henschel mixer. Subsequently, melt mixing was performed using an S1KRC kneader (manufactured by Kurimoto, Ltd.) whose barrel temperature was preheated to 170 ° C., the entire amount was recovered in a metal can, cooled with stirring, and a precursor of a thermoplastic epoxy resin. A mixture (D1) was obtained.
 得られた前駆体混合物(D1)を無色透明のガラス製シャーレに厚み2mmになるように入れ、村上色彩技術研究所製のヘイズ標準板を参考に、厚み方向のヘイズ値を「5%未満(<5)」「5%以上10%未満(<10)」「10%以上20%未満(<20)」「20%以上30%未満(<30)」「30%以上(30≦)」の5段階で評価した結果、10%未満であった。 The obtained precursor mixture (D1) was placed in a colorless and transparent glass petri dish so as to have a thickness of 2 mm, and the haze value in the thickness direction was set to less than 5% (with reference to the haze standard plate manufactured by Murakami Color Technology Research Institute). <5) ”“ 5% or more and less than 10% (<10) ”“ 10% or more and less than 20% (<20) ”“ 20% or more and less than 30% (<30) ”“ 30% or more (30 ≦) ” As a result of evaluation on a 5-point scale, it was less than 10%.
 得られた前駆体混合物(D1)の60℃での粘度を、東亜工業株式会社製CV-1sを用いて測定した結果、25Pa・sであった。 The viscosity of the obtained precursor mixture (D1) at 60 ° C. was measured using CV-1s manufactured by Toa Kogyo Co., Ltd. and found to be 25 Pa · s.
 得られた前駆体混合物(D1)の重量平均分子量(Mw)は371であった。なお、Mwの測定方法は以下のとおりである。
 東ソー株式会社製HLC-8420GPCを用いて分析した。カラムはTSKgel G4000HXLとTSKgel G3000HXLとTSKgel G2000HXLを直列で接続し、カラムオーブンは40℃とした。溶離液はテトラヒドロフランとして、検出器はRI検出器とした。流量はサンプル側を1mL/min、リファレンス側を0.5mL/minとした。試料約0.05gをはかりとり、外部標準物質としてシクロヘキサノンを5%含有するテトラヒドロフラン10mLに溶解し、0.45μmのPTFEメンブレンフィルターでろ過したものを分析に供した。Mwは標準ポリスチレン検量線を用いて換算し、シクロヘキサノンを用いて溶出時間の補正を行った。
The weight average molecular weight (Mw) of the obtained precursor mixture (D1) was 371. The method for measuring Mw is as follows.
Analysis was performed using HLC-8420GPC manufactured by Tosoh Corporation. The column was connected in series with TSKgel G4000HXL, TSKgel G3000HXL and TSKgel G2000HXL, and the column oven was set to 40 ° C. The eluent was tetrahydrofuran and the detector was an RI detector. The flow rate was 1 mL / min on the sample side and 0.5 mL / min on the reference side. Approximately 0.05 g of the sample was weighed, dissolved in 10 mL of tetrahydrofuran containing 5% cyclohexanone as an external standard substance, and filtered through a 0.45 μm PTFE membrane filter for analysis. Mw was converted using a standard polystyrene calibration curve, and the elution time was corrected using cyclohexanone.
実施例2~6、比較例1~3
 表1に記載の条件で実施例1と同様の操作で熱可塑性エポキシ樹脂の前駆体混合物を得た。但し、実施例5及び比較例1~3の操作についてはヘンシェルミキサーで混合する代わりに自転公転式遠心撹拌装置にて混合した後ニーダーにより溶融混合した。得られた前駆体混合物のヘイズ値、粘度及びMwを実施例1と同様の測定を行い、その測定結果を表1に示した。なお、比較例2についてはニーダーから吐出されてきた液体は透明であったものの、冷却工程において撹拌していたところ結晶が析出し、試料に濁りが生じた。また、60℃で粘度を測定する最中にも結晶が継続して析出し、安定しなかったので測定不可とした。
Examples 2 to 6, Comparative Examples 1 to 3
A precursor mixture of a thermoplastic epoxy resin was obtained by the same operation as in Example 1 under the conditions shown in Table 1. However, in the operations of Example 5 and Comparative Examples 1 to 3, instead of mixing with a Henschel mixer, the mixture was mixed with a rotating / revolving centrifugal stirrer and then melt-mixed with a kneader. The haze value, viscosity and Mw of the obtained precursor mixture were measured in the same manner as in Example 1, and the measurement results are shown in Table 1. In Comparative Example 2, although the liquid discharged from the kneader was transparent, crystals were precipitated when the mixture was stirred in the cooling step, and the sample became turbid. Further, even during the measurement of the viscosity at 60 ° C., crystals continued to precipitate and were not stable, so the measurement was not possible.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表1について以下に述べる。実施例1~6、比較例1~3についてはいずれも均一に溶解し、60℃において液状、室温において半固形から液状である前駆体混合物を得ることができた。比較例2はビスフェノールA(BPA)が再結晶を起こしたものと考えられる。比較例1でもBPAが再結晶を起こしてもよさそうであるが、今回の実験ではみられなかった。比較例1は熱履歴が厳しく、樹脂成分の一部が劣化し、結晶化を阻害した可能性が考えられる。また、フェノール化合物を2種類以上混合することによって効果的に室温での結晶の析出を抑制できることが示された。 Table 1 is described below. All of Examples 1 to 6 and Comparative Examples 1 to 3 were uniformly dissolved, and a precursor mixture which was liquid at 60 ° C. and semi-solid to liquid at room temperature could be obtained. In Comparative Example 2, it is considered that bisphenol A (BPA) recrystallized. It seems that BPA may recrystallize in Comparative Example 1, but this was not seen in this experiment. In Comparative Example 1, the thermal history is severe, and it is possible that a part of the resin component deteriorates and inhibits crystallization. It was also shown that the precipitation of crystals at room temperature can be effectively suppressed by mixing two or more kinds of phenol compounds.
実施例7
 予めE1(重合触媒)1部をC1(有機溶剤)1部に溶解した。60℃に設定したプラネタリーミキサーに実施例1で得られた前駆体混合物(D1)を入れ、先の重合触媒溶液を加えて混合した。混合後は速やかに抜き出して、直ちに40℃以下に冷却して、エポキシ樹脂組成物(F1)を得た。
Example 7
One part of E1 (polymerization catalyst) was previously dissolved in one part of C1 (organic solvent). The precursor mixture (D1) obtained in Example 1 was placed in a planetary mixer set at 60 ° C., and the above polymerization catalyst solution was added and mixed. After mixing, the mixture was immediately extracted and immediately cooled to 40 ° C. or lower to obtain an epoxy resin composition (F1).
 得られたエポキシ樹脂組成物(F1)の60℃での粘度を、アントンパール社製MCR102を用いて測定した結果、62Pa・sであった。また、エポキシ樹脂組成物のヘイズ値は5%以上10%未満(<10)であった。 The viscosity of the obtained epoxy resin composition (F1) at 60 ° C. was measured using MCR102 manufactured by Anton Pearl Co., Ltd. and found to be 62 Pa · s. The haze value of the epoxy resin composition was 5% or more and less than 10% (<10).
 また、得られたエポキシ樹脂組成物(F1)を70℃程度に加温撹拌して、あらかじめクリアランスを4mmにセットした鉄製クロムメッキ金型容器に流し込み、熱風循環式オーブン内で160℃、4時間熱重合を行い、熱可塑性エポキシ樹脂を得た。 Further, the obtained epoxy resin composition (F1) was heated and stirred at about 70 ° C., poured into an iron chrome-plated mold container having a clearance set to 4 mm in advance, and placed in a hot air circulation oven at 160 ° C. for 4 hours. Thermal polymerization was carried out to obtain a thermoplastic epoxy resin.
 得られた熱可塑性エポキシ樹脂のエポキシ当量を、JIS K 7236に従って測定した結果、18000g/eqであった。 The epoxy equivalent of the obtained thermoplastic epoxy resin was measured according to JIS K7236 and found to be 18,000 g / eq.
 また、熱可塑性エポキシ樹脂のガラス転移温度(Tg)は123℃であった。なお、Tgの測定方法は以下のとおりである。
 JIS K 7121に準じて、示差走査熱量測定装置(株式会社日立ハイテクサイエンス製、EXSTAR6000 DSC6200)にて10℃/分の昇温条件で測定を行った時のDSC・Tmg(ガラス状態とゴム状態の接線に対して変異曲線の中間温度)の温度で表した。
The glass transition temperature (Tg) of the thermoplastic epoxy resin was 123 ° C. The method for measuring Tg is as follows.
According to JIS K 7121, DSC · Tmg (glass state and rubber state) when measured with a differential scanning calorimetry device (EXSTAR6000 DSC6200, manufactured by Hitachi High-Tech Science Co., Ltd.) under a temperature rise condition of 10 ° C./min. It was expressed as the temperature (intermediate temperature of the variation curve with respect to the tangent line).
 また、熱可塑性エポキシ樹脂のゲル分率は1重量%以下であった。なお、ゲル分率の測定方法は以下のとおりである。
 100mLのバイアル瓶に試料である熱可塑性エポキシ樹脂を約1g精秤し、50mLのテトラヒドロフランを加え、室温で超音波拡散を1時間行った後、23時間以上室温で静置して溶解した。また、500メッシュの金網を100℃のオーブンで1時間乾燥し、その重量を測定した。500メッシュの金網を漏斗形状に折り、試料溶液を全量漏斗の上に流し込んだ。バイアル瓶に試料の不溶解物が残らなくなるまでテトラヒドロフランで洗浄して漏斗に流し込んだ後、さらにメッシュ上の不溶解物とメッシュをテトラヒドロフランで洗浄してから100℃のオーブンで4時間以上乾燥させた。乾燥した試料とメッシュの重量からメッシュの乾燥重量を引き、これを試料重量で除してゲル分率を重量%で求めた。
The gel fraction of the thermoplastic epoxy resin was 1% by weight or less. The method for measuring the gel fraction is as follows.
About 1 g of the sample thermoplastic epoxy resin was precisely weighed in a 100 mL vial, 50 mL of tetrahydrofuran was added, ultrasonic diffusion was performed at room temperature for 1 hour, and then the sample was allowed to stand at room temperature for 23 hours or more to dissolve. Further, the wire mesh of 500 mesh was dried in an oven at 100 ° C. for 1 hour, and the weight thereof was measured. A 500-mesh wire mesh was folded into a funnel shape, and the entire sample solution was poured onto the funnel. The sample was washed with tetrahydrofuran until no insoluble matter remained in the vial and poured into the funnel, and then the insoluble matter on the mesh and the mesh were washed with tetrahydrofuran and then dried in an oven at 100 ° C. for 4 hours or more. .. The dry weight of the mesh was subtracted from the weight of the dried sample and mesh, and this was divided by the weight of the sample to determine the gel fraction in% by weight.
 また、熱可塑性エポキシ樹脂の数平均分子量(Mn)、重量平均分子量(Mw)、ピークトップ分子量(Mt)は、それぞれ25000、62000、35000であった。
 なお、分子量の測定方法は以下のとおりである。
 東ソー株式会社製HLC-8320GPCを用いて分析した。カラムはTSKguardcolumnHXLとTSKgel GMHXLとTSKgel GMHXLとTSKgel G2000HXLを直列で接続し、カラムオーブンは40℃とした。溶離液はテトラヒドロフランとして、検出器はRI検出器とした。流量はサンプル側を1mL/min、リファレンス側を0.5mL/minとした。試料である熱可塑性エポキシ樹脂約0.1gをはかりとり、外部標準物質としてシクロヘキサノンを5%含有するテトラヒドロフラン10mLに溶解し、0.45μmのPTFEメンブレンフィルターでろ過したものを分析に供した。分子量は標準ポリスチレン検量線を用いて換算し、シクロヘキサノンを用いて溶出時間の補正を行った。
The number average molecular weight (Mn), weight average molecular weight (Mw), and peak top molecular weight (Mt) of the thermoplastic epoxy resin were 25,000, 62,000, and 35,000, respectively.
The method for measuring the molecular weight is as follows.
Analysis was performed using HLC-8320GPC manufactured by Tosoh Corporation. The column was connected in series with TSKguardcolumnHXL, TSKgel GMHXL, TSKgel GMHXL and TSKgel G2000HXL, and the column oven was set to 40 ° C. The eluent was tetrahydrofuran and the detector was an RI detector. The flow rate was 1 mL / min on the sample side and 0.5 mL / min on the reference side. Approximately 0.1 g of the thermoplastic epoxy resin as a sample was weighed, dissolved in 10 mL of tetrahydrofuran containing 5% cyclohexanone as an external standard substance, and filtered through a 0.45 μm PTFE membrane filter for analysis. The molecular weight was converted using a standard polystyrene calibration curve, and the elution time was corrected using cyclohexanone.
 なお、表2中の外観は、熱可塑性エポキシ樹脂の重合後の冷却工程において試験片端部に亀裂が確認されたものを×とし、変化の無いものを〇とした。 As for the appearance in Table 2, those in which cracks were confirmed at the end of the test piece in the cooling step after the polymerization of the thermoplastic epoxy resin were marked with x, and those without change were marked with 〇.
実施例8~12、比較例4~6
 表2に記載の条件で実施例7と同様の操作でエポキシ樹脂組成物及び熱可塑性エポキシ樹脂を得た。得られたエポキシ樹脂組成物の溶融粘度とヘイズ値、熱可塑性エポキシ樹脂の外観、エポキシ当量、ゲル分率、Tg、Mn、Mw、及びMtを実施例7と同様の測定を行い、その測定結果を表2に示した。
Examples 8-12, Comparative Examples 4-6
An epoxy resin composition and a thermoplastic epoxy resin were obtained in the same manner as in Example 7 under the conditions shown in Table 2. The melt viscosity and haze value of the obtained epoxy resin composition, the appearance of the thermoplastic epoxy resin, the epoxy equivalent, the gel fraction, Tg, Mn, Mw, and Mt were measured in the same manner as in Example 7, and the measurement results were obtained. Is shown in Table 2.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表2について述べる。実施例7~12まで、いずれもホットメルトプロセスに適する粘度の樹脂組成物を得ることができた。また、その重合物において、ゲル化をほとんど確認できなかった。比較例4と比較例5については熱可塑性エポキシ樹脂においていずれも明確にゲル成分が発生していた。グリシジル基周辺の立体障害が小さい比較例4と比較例5は、加熱溶解工程や熱重合工程において熱劣化成分が発生し、重合時にゲル化を引き起こした可能性がある一方で、グリシジル基周辺の立体障害が大きい実施例7~12ではゲル化が起こりにくかったのではないかと考察した。また、比較例6については重合が十分に進行していなかったためにゲル化しなかったものと考えられる。 Table 2 is described. From Examples 7 to 12, it was possible to obtain a resin composition having a viscosity suitable for the hot melt process. In addition, almost no gelation could be confirmed in the polymer. In Comparative Example 4 and Comparative Example 5, the gel component was clearly generated in the thermoplastic epoxy resin. In Comparative Example 4 and Comparative Example 5 in which the steric hindrance around the glycidyl group is small, a heat-deteriorating component may be generated in the heat dissolution step or the thermal polymerization step, which may cause gelation during the polymerization, while the glycidyl group around the periphery. It was considered that gelation was unlikely to occur in Examples 7 to 12 in which the steric hindrance was large. Further, it is probable that Comparative Example 6 did not gel because the polymerization did not proceed sufficiently.
実施例13
 70℃に予熱したホットプレートの上に離型処理された離型紙を、離型面が上になるように固定し、実施例6で得られたエポキシ樹脂組成物(F1)を離型紙上に乗せてから、70℃に予熱したバーコーターを用いて厚さ50μmになるように塗工した。塗工後直ちにホットプレート上から取り外し空冷して、エポキシ樹脂組成物シートを得た。
 続いて、得られたエポキシ樹脂組成物シート上に、10cm当たり15本のストランド密度となるように炭素繊維(I1)を貼り合わせ、90℃に予熱したホットプレスを用いて面圧が0.5MPaになるように圧力を加え、1分後に取り出して空冷して、Rc=33%のエポキシ樹脂プリプレグを得た。
 さらに、得られたエポキシ樹脂プリプレグを9枚積層した後、離型フィルムで挟み込み、真空プレスにより現場重合型の熱可塑性繊維強化プラスチックを得た。なお、真空プレスの条件は160℃、0.5MPa、4時間とした。
Example 13
The release paper that had been released from the mold was fixed on a hot plate preheated to 70 ° C. so that the release surface was facing up, and the epoxy resin composition (F1) obtained in Example 6 was placed on the release paper. After putting it on, it was coated to a thickness of 50 μm using a bar coater preheated to 70 ° C. Immediately after coating, it was removed from the hot plate and air-cooled to obtain an epoxy resin composition sheet.
Subsequently, carbon fibers (I1) were laminated on the obtained epoxy resin composition sheet so as to have a strand density of 15 strands per 10 cm, and the surface pressure was 0.5 MPa using a hot press preheated to 90 ° C. After 1 minute, the pressure was applied so as to be the same, and the mixture was taken out and air-cooled to obtain an epoxy resin prepreg having Rc = 33%.
Further, nine of the obtained epoxy resin prepregs were laminated, sandwiched between release films, and vacuum-pressed to obtain a field-polymerized thermoplastic fiber reinforced plastic. The conditions for vacuum pressing were 160 ° C., 0.5 MPa, and 4 hours.
 得られた熱可塑性繊維強化プラスチックのゲル化の判定を行った結果、ゲル化はしていなかった。なお、ゲル化の判定は、試験片約0.1gをテトラヒドロフラン10mLにて超音波拡散により樹脂分を溶解させて、炭素繊維束がほぐれたものをゲルがないものと判断して「〇」、炭素繊維束がほぐれなかったものをゲル化していると判断し「×」と判定した。 As a result of determining the gelation of the obtained thermoplastic fiber reinforced plastic, it was not gelled. To determine gelation, about 0.1 g of the test piece was dissolved in 10 mL of tetrahydrofuran by ultrasonic diffusion, and the loosened carbon fiber bundle was judged to be gel-free. Those in which the carbon fiber bundles were not loosened were judged to be gelled, and were judged to be "x".
 また、熱可塑性繊維強化プラスチックのMn、Mw、Mtは、それぞれ23000、76000、33000であった。なお、分子量の測定方法は実施例7に記載の方法による。 The Mn, Mw, and Mt of the thermoplastic fiber reinforced plastic were 23000, 76000, and 33000, respectively. The method for measuring the molecular weight is the method described in Example 7.
実施例14~18、比較例7~9
 エポキシ樹脂組成物として、表3に記載のものを使用した以外は実施例13と同様の操作で熱可塑性繊維強化プラスチックを得た。得られた熱可塑性繊維強化プラスチックのゲル化の判断、Mn、Mw、及びMtを実施例13と同様の測定を行い、その測定結果を表3に示した。
Examples 14-18, Comparative Examples 7-9
A thermoplastic fiber reinforced plastic was obtained by the same operation as in Example 13 except that the epoxy resin composition shown in Table 3 was used. Judgment of gelation of the obtained thermoplastic fiber reinforced plastic, Mn, Mw, and Mt were measured in the same manner as in Example 13, and the measurement results are shown in Table 3.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 表3について述べる。実施例13~18まではいずれも硬化物が重合し、かつ、テトラヒドロフランに溶解した際に繊維がばらけることを確認した。一方で、比較例7と比較例8はテトラヒドロフランにほとんど溶解せず、繊維がばらけることもなかった。比較例9はテトラヒドロフランに溶解したが、重合度は十分でなく、構造材料としての機能が十分とは言えない。 Table 3 is described. In Examples 13 to 18, it was confirmed that the cured product was polymerized and that the fibers were disintegrated when dissolved in tetrahydrofuran. On the other hand, Comparative Example 7 and Comparative Example 8 were hardly dissolved in tetrahydrofuran, and the fibers did not come apart. Comparative Example 9 was dissolved in tetrahydrofuran, but the degree of polymerization was not sufficient, and the function as a structural material could not be said to be sufficient.
 本発明の前駆体混合物は、エポキシ樹脂組成物(シート)に使用でき、特に現場重合型の熱可塑性エポキシ樹脂、プリプレグ及び熱可塑性繊維強化プラスチック等に好適に用いることができる。
 
The precursor mixture of the present invention can be used for an epoxy resin composition (sheet), and can be particularly preferably used for a field-polymerized thermoplastic epoxy resin, prepreg, thermoplastic fiber reinforced plastic, or the like.

Claims (15)

  1.  エポキシ樹脂と2官能フェノール化合物との付加重合によって得られる現場重合型熱可塑性エポキシ樹脂に用いる前駆体混合物であって、
     下記式(1)で示される2官能エポキシ樹脂(a)を50重量%以上含むエポキシ樹脂と、2官能フェノール化合物とを必須成分として含み、前記エポキシ樹脂1モルに対して、前記2官能フェノール化合物は0.9~1.1モルであり、60℃における粘度が1Pa・s以上50Pa・s以下であることを特徴とする前駆体混合物。
    Figure JPOXMLDOC01-appb-C000001
    (ここで、式(1)中のAは式(2)であり、nは繰り返し数でその平均値は0~5である。Xは単結合、炭素数1~9のアルキレン基、-O-、-CO-、-COO-、-S-、-SO-のいずれかであり、Yは独立に、炭素数1~4のアルキル基、炭素数6~10のアリール基のいずれかであり、Y及びYはそれぞれ独立に、水素原子、炭素数1~4のアルキル基、炭素数6~10のアリール基のいずれかである。)
    A precursor mixture used in a field-polymerized thermoplastic epoxy resin obtained by addition polymerization of an epoxy resin and a bifunctional phenol compound.
    An epoxy resin containing 50% by weight or more of the bifunctional epoxy resin (a) represented by the following formula (1) and a bifunctional phenol compound are contained as essential components, and the bifunctional phenol compound is contained in 1 mol of the epoxy resin. Is 0.9 to 1.1 mol, and the precursor mixture has a viscosity at 60 ° C. of 1 Pa · s or more and 50 Pa · s or less.
    Figure JPOXMLDOC01-appb-C000001
    (Here, A in the formula (1) is the formula (2), n is the number of repetitions and the average value is 0 to 5. X is a single bond, an alkylene group having 1 to 9 carbon atoms, —O. -, -CO-, -COO-, -S-, -SO 2- , and Y 1 is independently an alkyl group having 1 to 4 carbon atoms or an aryl group having 6 to 10 carbon atoms. Y 2 and Y 3 are each independently a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, or an aryl group having 6 to 10 carbon atoms.)
  2.  厚さ2mmにしたときの厚み方向のヘイズ値が30%未満である請求項1に記載の前駆体混合物。 The precursor mixture according to claim 1, wherein the haze value in the thickness direction when the thickness is 2 mm is less than 30%.
  3.  標準ポリスチレン検量線による重量平均分子量が300以上500以下である請求項1又は2に記載の前駆体混合物。 The precursor mixture according to claim 1 or 2, wherein the weight average molecular weight according to a standard polystyrene calibration curve is 300 or more and 500 or less.
  4.  前記2官能フェノール化合物がビスフェノール化合物及び/又はビフェノール化合物である請求項1~3のいずれか1項に記載の前駆体混合物。 The precursor mixture according to any one of claims 1 to 3, wherein the bifunctional phenol compound is a bisphenol compound and / or a biphenol compound.
  5.  前記2官能フェノール化合物中の最も多い成分の比率が90重量%以下である請求項1~4のいずれか1項に記載の前駆体混合物。 The precursor mixture according to any one of claims 1 to 4, wherein the ratio of the most abundant component in the bifunctional phenol compound is 90% by weight or less.
  6.  請求項1~5のいずれか1項に記載の前駆体混合物に重合触媒を配合し、互いに相溶してなるエポキシ樹脂組成物。 An epoxy resin composition obtained by blending a polymerization catalyst with the precursor mixture according to any one of claims 1 to 5 and dissolving them together.
  7.  厚さ2mmにしたときの厚み方向のヘイズ値が30%未満である請求項6に記載のエポキシ樹脂組成物。 The epoxy resin composition according to claim 6, wherein the haze value in the thickness direction when the thickness is 2 mm is less than 30%.
  8.  60℃における粘度が3Pa・s以上150Pa・s以下である請求項6又は7に記載のエポキシ樹脂組成物。 The epoxy resin composition according to claim 6 or 7, wherein the viscosity at 60 ° C. is 3 Pa · s or more and 150 Pa · s or less.
  9.  請求項6~8のいずれか1項に記載のエポキシ樹脂組成物を重合して得られる現場重合型熱可塑性エポキシ樹脂。 A field-polymerized thermoplastic epoxy resin obtained by polymerizing the epoxy resin composition according to any one of claims 6 to 8.
  10.  ゲル分率が0重量%以上10重量%以下であることを特徴とする請求項9に記載の現場重合型熱可塑性エポキシ樹脂。 The field-polymerized thermoplastic epoxy resin according to claim 9, wherein the gel content is 0% by weight or more and 10% by weight or less.
  11.  請求項6~8のいずれか1項に記載のエポキシ樹脂組成物を厚さ10μm以上300μm以下にしてなるエポキシ樹脂組成物シート。 An epoxy resin composition sheet obtained from the epoxy resin composition according to any one of claims 6 to 8 having a thickness of 10 μm or more and 300 μm or less.
  12.  請求項11に記載のエポキシ樹脂組成物シートを重合して得られるシート状の現場重合型熱可塑性エポキシ樹脂。 A sheet-shaped field-polymerized thermoplastic epoxy resin obtained by polymerizing the epoxy resin composition sheet according to claim 11.
  13.  ゲル分率が0重量%以上10重量%以下であることを特徴とする請求項12に記載のシート状の現場重合型熱可塑性エポキシ樹脂。 The sheet-shaped in-situ polymerization type thermoplastic epoxy resin according to claim 12, wherein the gel fraction is 0% by weight or more and 10% by weight or less.
  14.  請求項6~8のいずれか1項に記載のエポキシ樹脂組成物及び/又は請求項11に記載のエポキシ樹脂組成物シートと、強化繊維とから得られるプリプレグ。 A prepreg obtained from the epoxy resin composition according to any one of claims 6 to 8 and / or the epoxy resin composition sheet according to claim 11 and a reinforcing fiber.
  15.  請求項14に記載のプリプレグを重合して得られる現場重合型の熱可塑性繊維強化プラスチック。
     
    A field-polymerized thermoplastic fiber reinforced plastic obtained by polymerizing the prepreg according to claim 14.
PCT/JP2021/033404 2020-09-30 2021-09-10 Precursor mixture of in situ polymerization type thermoplastic epoxy resin, epoxy resin composition, epoxy resin composition sheet, prepreg, and in situ polymerization type thermoplastic fiber-reinforced plastic using same WO2022070846A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180062111.3A CN116096793A (en) 2020-09-30 2021-09-10 Precursor mixture for in-situ polymerization type thermoplastic epoxy resin, epoxy resin composition sheet, prepreg, and in-situ polymerization type thermoplastic fiber-reinforced plastic using the same
JP2022553760A JPWO2022070846A1 (en) 2020-09-30 2021-09-10

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-164510 2020-09-30
JP2020164510 2020-09-30

Publications (1)

Publication Number Publication Date
WO2022070846A1 true WO2022070846A1 (en) 2022-04-07

Family

ID=80951362

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/033404 WO2022070846A1 (en) 2020-09-30 2021-09-10 Precursor mixture of in situ polymerization type thermoplastic epoxy resin, epoxy resin composition, epoxy resin composition sheet, prepreg, and in situ polymerization type thermoplastic fiber-reinforced plastic using same

Country Status (4)

Country Link
JP (1) JPWO2022070846A1 (en)
CN (1) CN116096793A (en)
TW (1) TW202214739A (en)
WO (1) WO2022070846A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005232385A (en) * 2004-02-20 2005-09-02 Sumitomo Bakelite Co Ltd Hardening accelerator, epoxy resin composition and semiconductor device
JP2010047728A (en) * 2008-08-25 2010-03-04 Nippon Steel Chem Co Ltd Epoxy resin composition and molding
JP2010195854A (en) * 2009-02-23 2010-09-09 Nippon Steel Chem Co Ltd Epoxy resin composition and molded item
JP2016213391A (en) * 2015-05-13 2016-12-15 日東電工株式会社 Sealing resin sheet
JP2017171802A (en) * 2016-03-24 2017-09-28 新日鉄住金化学株式会社 Bisphenol f skeleton-containing phenoxy resin, manufacturing method therefor and resin composition using the same
WO2020100513A1 (en) * 2018-11-12 2020-05-22 東レ株式会社 Epoxy resin composition for fiber-reinforced composite materials, epoxy resin cured product, preform and fiber-reinforced composite material
JP2020097694A (en) * 2018-12-19 2020-06-25 東レ株式会社 Epoxy resin composition for fiber-reinforced composite material and preform for fiber-reinforced composite material and fiber-reinforced composite material
JP2021066805A (en) * 2019-10-23 2021-04-30 日鉄ケミカル&マテリアル株式会社 Phenoxy resin and method for producing the same, and resin composition and cured product thereof

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005232385A (en) * 2004-02-20 2005-09-02 Sumitomo Bakelite Co Ltd Hardening accelerator, epoxy resin composition and semiconductor device
JP2010047728A (en) * 2008-08-25 2010-03-04 Nippon Steel Chem Co Ltd Epoxy resin composition and molding
JP2010195854A (en) * 2009-02-23 2010-09-09 Nippon Steel Chem Co Ltd Epoxy resin composition and molded item
JP2016213391A (en) * 2015-05-13 2016-12-15 日東電工株式会社 Sealing resin sheet
JP2017171802A (en) * 2016-03-24 2017-09-28 新日鉄住金化学株式会社 Bisphenol f skeleton-containing phenoxy resin, manufacturing method therefor and resin composition using the same
WO2020100513A1 (en) * 2018-11-12 2020-05-22 東レ株式会社 Epoxy resin composition for fiber-reinforced composite materials, epoxy resin cured product, preform and fiber-reinforced composite material
JP2020097694A (en) * 2018-12-19 2020-06-25 東レ株式会社 Epoxy resin composition for fiber-reinforced composite material and preform for fiber-reinforced composite material and fiber-reinforced composite material
JP2021066805A (en) * 2019-10-23 2021-04-30 日鉄ケミカル&マテリアル株式会社 Phenoxy resin and method for producing the same, and resin composition and cured product thereof

Also Published As

Publication number Publication date
CN116096793A (en) 2023-05-09
TW202214739A (en) 2022-04-16
JPWO2022070846A1 (en) 2022-04-07

Similar Documents

Publication Publication Date Title
US10865272B2 (en) Thermosetting resin composition
TWI540150B (en) Benzoxazine resins
US20080200636A1 (en) Epoxy Resin, Hardenable Resin Composition Containing the Same and Use Thereof
TWI810164B (en) Epoxy resin, epoxy resin composition, cured epoxy resin and composite material
EP1852451A1 (en) Epoxy resin, hardenable resin composition containing the same and use thereof
TWI751299B (en) Epoxy resin, epoxy resin composition, cured epoxy resin and composite material
JP2013512988A (en) Epoxy resin composition
EP2386587B1 (en) Process for production of thermoplastic cured epoxy resin with transparency to visible light, and thermoplastic epoxy resin composition
TWI577735B (en) Maleimide resins
KR20120000103A (en) Epoxy resin, epoxy resin composition, and cured object
JPWO2017170844A1 (en) Thermosetting resin composition, prepreg and cured product thereof
WO2022070846A1 (en) Precursor mixture of in situ polymerization type thermoplastic epoxy resin, epoxy resin composition, epoxy resin composition sheet, prepreg, and in situ polymerization type thermoplastic fiber-reinforced plastic using same
JPH09278867A (en) Epoxy resin composition
JP2016138205A (en) Prepreg and fiber-reinforced composite material
JP2020023630A (en) Epoxy compound, epoxy resin, epoxy resin composition, resin cured product, prepreg, fiber-reinforced composite material, and method for producing the same
JP5170724B2 (en) Epoxy resin, epoxy resin composition and cured product thereof
TWI805693B (en) Epoxy resin, epoxy resin composition, cured epoxy resin and composite material
KR100611613B1 (en) Epoxy resin composition and use thereof
CN111148777B (en) Epoxy resin, epoxy resin composition, epoxy resin cured product, and composite material
WO2022070849A1 (en) Precursor mixture of in situ polymerization type thermoplastic epoxy resin, epoxy resin composition, epoxy resin composition sheet, prepreg, and in situ polymerization type thermoplastic fiber-reinforced plastic using same
WO2022209715A1 (en) Epoxy resin composition, prepreg, and fiber-reinforced plastic obtained using these
JP4521934B2 (en) Polyhydric phenol compound, epoxy resin, thermosetting resin composition and cured product thereof
WO2024106523A1 (en) Benzoxazine compound, resin material composition containing same, curable resin composition, and cured product of same
TW202330694A (en) Epoxy resin, curable resin composition, cured product and carbon-fiber-reinforced composite material having excellent thermal resistance, mechanical strength, and low water absorption
CN111133025B (en) Epoxy resin, epoxy resin composition, epoxy resin cured product, and composite material

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21875148

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022553760

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21875148

Country of ref document: EP

Kind code of ref document: A1