WO2022070798A1 - Combined markers for differentiating pathological conditions of alzheimer's disease and method of differentiating pathological conditions of alzheimer's disease using same - Google Patents

Combined markers for differentiating pathological conditions of alzheimer's disease and method of differentiating pathological conditions of alzheimer's disease using same Download PDF

Info

Publication number
WO2022070798A1
WO2022070798A1 PCT/JP2021/032787 JP2021032787W WO2022070798A1 WO 2022070798 A1 WO2022070798 A1 WO 2022070798A1 JP 2021032787 W JP2021032787 W JP 2021032787W WO 2022070798 A1 WO2022070798 A1 WO 2022070798A1
Authority
WO
WIPO (PCT)
Prior art keywords
protein
sugar chain
mci
man
fragment
Prior art date
Application number
PCT/JP2021/032787
Other languages
French (fr)
Japanese (ja)
Inventor
康弘 橋本
Original Assignee
康弘 橋本
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 康弘 橋本 filed Critical 康弘 橋本
Priority to JP2022553732A priority Critical patent/JPWO2022070798A1/ja
Publication of WO2022070798A1 publication Critical patent/WO2022070798A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/47Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/79Transferrins, e.g. lactoferrins, ovotransferrins
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/115Aptamers, i.e. nucleic acids binding a target molecule specifically and with high affinity without hybridising therewith ; Nucleic acids binding to non-nucleic acids, e.g. aptamers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/90Isomerases (5.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids

Definitions

  • the present invention presents Alzheimer's disease and a combination biomarker for early identification of cognitive disorders that may progress to Alzheimer's disease from other central nervous system diseases, a kit for detecting them, and an Alzheimer's disease using the combination biomarker. Regarding the method of distinguishing the pathological condition.
  • AD Alzheimer's disease
  • a cognitive dysfunction accompanied by memory impairment and thinking disorder.
  • Behavioral disorders or personality changes. It is the most common dementia disease and accounts for about 60-80% of all dementia patients. It generally develops in the elderly aged 65 and over, but some also develop in the age of 64 and under, and is called juvenile Alzheimer's disease.
  • AD hydrophobic peptide amyloid ⁇ protein
  • APP amyloid precursor protein
  • PSEN1 presenilin 1
  • Non-Patent Document 1 Currently, based on the pathogenic mechanism of AD, many AD therapeutic agents that inhibit the pathogenic process are being developed. However, most of them have not yet been shown to be sufficiently effective in clinical trials. It is hypothesized that this is not because the investigational drug is ineffective, but because the study group is not appropriate.
  • the target group for which clinical trials have been conducted in the past was late-stage patients with advanced brain lesions due to AD and massive neuronal cell death. However, even if treatment is started at this stage, recovery of nerve function cannot be expected. That is, it is considered that an effective therapeutic effect could not be obtained because the administration time of the therapeutic agent was too late (Non-Patent Document 1).
  • Non-Patent Document 2 a monoclonal antibody against soluble A ⁇ aggregates was approved by the FDA for the first time in the world as a treatment for AD.
  • this therapeutic agent improves amyloid pathology, it does not improve cognitive symptoms (Non-Patent Document 2). This means that the effect of this therapeutic agent is limited to suppressing the progression of AD pathology. Therefore, if the AD therapeutic agent can be administered at an appropriate timing, that is, at an early stage in which nerve cell death can be avoided, its effectiveness can be expected. For that purpose, it is necessary to distinguish the AD pathological condition with higher accuracy.
  • MCI mini-mental state examination
  • NC Normal Control: often abbreviated as "NC” in the present specification
  • a method using a causative factor of AD as a marker for AD diagnosis is known.
  • biomarkers include tau protein, overly phosphorylated tau (p-tau) protein, amyloid ⁇ 42 (A ⁇ 42) peptide, amyloid ⁇ 40 (A ⁇ 40) peptide or cytokines in inflammatory diseases (Non-Patent Document 3).
  • p-tau overly phosphorylated tau
  • a ⁇ 42 amyloid ⁇ 42
  • a ⁇ 40 amyloid ⁇ 40
  • cytokines in inflammatory diseases
  • Patent Document 1 a transferase sugar protein having a mannose non-reducing terminal sugar chain
  • tau protein is not an AD-specific biomarker because it also increases in dementia such as frontotemporal dementia and progressive supranuclear palsy.
  • the p-tau protein is an excellent marker for AD diagnosis, but the appearance of this protein means the death of nerve cells, and although it is appropriate for early diagnosis of AD in which nerve cell death should be avoided. I didn't.
  • the A ⁇ 42 peptide did not change until after the disease had progressed.
  • cytokines can be measured with high sensitivity, they have the drawback of poor disease specificity.
  • the terminal Man-Tf has high specificity, it cannot be said that it is sufficient in terms of sensitivity.
  • the present invention develops a biomarker capable of specifically and accurately distinguishing the presence or absence of AD pathological condition from before the onset of the disease to the late stage of the onset of the disease and the risk of the onset of the disease, and a kit for detecting the biomarker, and a kit for detecting them.
  • An object of the present invention is to provide a highly accurate method for differentiating the AD pathological condition used.
  • the present inventors have conducted intensive studies, and conducted in situ hybridization in the human cerebrum, mass analysis of mannose sugar chains bound to Tf in the brain, and immunohistochemical analysis of AD patients.
  • the hippocampus we found that both terminal Man-Tf and p-tau, which are markers for AD diagnosis, are co-localized in neurons. This result suggests that terminal Man-Tf secretion and tau phosphorylation may be correlated. Therefore, as a result of investigating the relationship between sensitivity and specificity by combining the amounts of terminal Man-Tf protein and p-tau protein or tau protein in the cerebrospinal fluid collected from AD patients and MCI patients, the product of both was obtained, respectively.
  • AD pathology As compared with the case of using it alone.
  • AD diagnostic markers are available for transferase glycoproteins (terminal GlcNAc-Tf proteins) having N-acetylglucosamine non-reducing terminal sugar chains and prostaglandin-H2 D-isomerase (PGDS). It was found that when combined, they can be excellent biomarkers for differentiating AD pathology compared to the case of each alone.
  • a combination marker for differentiating Alzheimer's disease pathological condition consisting of any of the following (a) to (c).
  • Man-Tf protein Transtransferase glycoprotein
  • PGDS prostaglandin D2 synthase
  • the AD index is calculated from the formula (amyloid ⁇ 40 peptide / amyloid ⁇ 42 peptide) ⁇ p-tau protein.
  • Tf transtransferase
  • a sugar chain having mannose at the non-reducing end of the Man-Tf protein is added to the asparagine residue at position 432
  • the GlcNAc- The differential combination marker according to (1), wherein the sugar chain having N-acetylglucosamine at the non-reducing end of the Tf protein is added to the asparagine residues at positions 432 and 630.
  • AD Alzheimer's disease
  • MCI mild cognitive impairment
  • NC healthy control
  • the differential combination marker according to (3) which further differentiates the NC into an MCI transitional healthy control (pre-MCI) and an MCI non-transitional healthy control (non-pre-MCI).
  • a peptide-binding molecule and a sugar chain bond that are a kit for differentiating Alzheimer's pathology and specifically bind to each of the combination markers for differentiating Alzheimer's pathology according to any one of (1) to (4).
  • the polypeptide containing the molecule and specifically bound to the peptide bond molecule is at least one selected from the group consisting of Tf protein, PGDS, and tau protein, and the sugar chain binding molecule specifically binds to the polypeptide.
  • the above-mentioned discrimination kit wherein the sugar chain is a sugar chain having mannose at the non-reducing end and / or a sugar chain having N-acetylglucosamine at the non-reducing end.
  • the method for differentiating Alzheimer's disease pathology according to any one of (1) to (4), which is present in a predetermined amount of body fluid obtained from a subject suspected of having dementia.
  • the amount of each marker in the combination marker for use was measured using a peptide bond molecule that specifically binds to the polypeptide of the marker and a sugar chain binding molecule that specifically binds to the sugar chain of the marker, and the measured value thereof.
  • the discrimination method including a step of determining which of NC and NC can be applied.
  • the discrimination method including a step of determining whether the subject can correspond to pre-MCI or non-pre-MCI from the product value.
  • a combination marker for differentiating Alzheimer's disease pathological condition which comprises any of the following (a) to (c).
  • PGDS prostaglandin D2 synthase
  • This specification includes the disclosure content of Japanese Patent Application No. 2020-163105, which is the basis of the priority of the present application.
  • the AD pathological condition of the subject that is, the presence or absence of AD or MCI and the possibility of being affected can be discriminated with high accuracy.
  • A is a terminal Sia-Tf glycoprotein having two sialic acid non-reducing terminal sugar chains
  • B is a terminal GlcNAc-Tf glycoprotein having two GlcNAc non-reducing terminal sugar chains
  • C is a Man non-reducing terminal sugar chain.
  • GlcNAc show a terminal Man-Tf glycoprotein having one non-reducing terminal sugar chain each.
  • It is an immunohistochemical staining diagram showing the localization of Tf protein and phosphorylated tau (p-tau) protein in the hippocampus.
  • A indicates the hippocampus of a healthy body
  • B indicates the hippocampus of an AD patient.
  • merge is a diagram in which a staining diagram of Tf protein and p-tau protein is synthesized. It is a dot graph which shows the amount of Man-Tf protein in the cerebrospinal fluid in various dementia patients.
  • the black triangles indicate NC patients who have transitioned from NC to MCI by follow-up
  • the black squares indicate MCI patients who have transitioned from MCI to AD by follow-up. It is a dot graph in each AD pathological condition when two markers are combined.
  • A is a dot graph for comparison when only Man-Tf protein is used as a marker
  • B is a dot graph when a combination marker of Man-Tf protein and p-tau protein is used
  • C is Man-Tf protein.
  • the dot graph when the combination marker of tau protein is used is shown.
  • the broken line in the figure shows the cutoff value of each group when iNPH is used as a disease control.
  • a first aspect of the present invention is a combination marker for differentiating Alzheimer's disease (often referred to herein as "combination marker for AD pathology" or simply “combination marker”).
  • the combination marker of the present invention comprises a combination of two or more kinds of proteins or peptide fragments thereof, and can be used in the AD pathological condition differentiation method of the third aspect described later for a subject suspected of having dementia.
  • Alzheimer's disease state (often referred to as “AD condition” in the present specification) is a tauopathy whose pathogenic mechanism is abnormal accumulation of phosphorylated tau protein in nerve cells.
  • AD condition is a tauopathy whose pathogenic mechanism is abnormal accumulation of phosphorylated tau protein in nerve cells.
  • AD condition is a tauopathy whose pathogenic mechanism is abnormal accumulation of phosphorylated tau protein in nerve cells.
  • MCI mild cognitive impairment
  • AD Alzheimer's disease
  • MCI Mild cognitive impairment
  • NC normal control
  • patient with suspected dementia refers to all patients who have undergone a forgetfulness outpatient clinic.
  • Patients with suspected dementia include AD, MCI, progressive supranuclear palsy (abbreviated as “PSP” in this specification), and frontotemporal dementia; FTD ”), dementia with Lewy bodies (abbreviated as“ DLB ”in the present specification), Parkinson's disease (abbreviated as“ PD ”in the present specification) and NC. It falls under either category and is usually divided into either group according to the diagnosis of a doctor according to clinical diagnostic criteria.
  • the diagnostic criteria used in this case are well known to those skilled in the art, including the above-mentioned Dementia Score (MMSE) (see, for example, Dementia Disease Clinical Practice Guidelines 2017, Igaku-Shoin).
  • NC cognitive impairment transition type NC
  • pre-MCI refers to a pathological condition among NCs that is likely to eventually transition to MCI as the condition progresses without therapeutic intervention.
  • NC has been diagnosed as normal for dementia because it does not correspond to any dementia in the clinical diagnostic criteria for dementia.
  • the combination marker for AD pathological condition identification of the present invention has revealed that there may be a population in which a part of NC may be transferred to MCI in the future. Therefore, in the present specification, NC is considered to include two groups of pre-MCI and non-pre-MCI.
  • Non-pre-MCI is almost synonymous with conventional NC, and the possibility of transition to MCI in the future is low, and it may be normal for dementia. High NC.
  • diagnosis refers to the differentiation or possibility of morbidity of a disease, or the determination of the pathophysiology of a disease.
  • diagnosis act is the exclusive business of a doctor, a veterinarian, or a dentist, but the diagnosis in the present specification includes an auxiliary act of assisting the diagnosis by a doctor or the like without going through the act of the doctor or the like. ..
  • the term "affected () differentiation” refers to determining whether or not a person has a specific disease. It also includes distinguishing from other diseases with similar lesions and conditions.
  • the term "possibility of morbidity” refers to the probability of shifting from the current state to a specific disease in the future and suffering from that specific disease. As used herein, it means the probability of contracting AD when a specific disease is AD, and in particular, the probability of transition from MCI to AD.
  • the term "subject” refers to an object of application in each aspect of the present invention. Specifically, it refers to a subject to be subjected to the differentiation method of this embodiment for the purpose of differentiating the morbidity of AD pathology.
  • it is an individual animal, but it also includes its tissues and cells. Specific examples thereof include mammals, preferably humans, dogs, cats, horses and the like. It is preferably human.
  • the individual may be either an individual suffering from some kind of disease, such as a person undergoing a medical examination, an individual having a possibility of suffering from some kind of disease, or a healthy body.
  • the “disease-potential individual” is, for example, an individual having a possibility of transition from MCI to AD in the future or a pre-MCI individual having a possibility of transition from NC to MCI in the future.
  • the "healthy body” means an individual in a healthy state.
  • the term “healthy state” means at least a state not suffering from AD pathology or the like, preferably a healthy state without any disease or disorder.
  • the "disease control" described in Examples described later is an individual suffering from idiopathic normal pressure hydrocephalus (idiopathic Normal Pressure Hydrocephalus; often abbreviated as "iNPH” in the present specification). iNPH is clearly different from AD pathology. Therefore, the disease control corresponds to a healthy body herein.
  • a healthy body is mainly used as a control body as a reference for comparison with a subject. Therefore, in the present specification, the subject and the healthy body are the same species. Further, it is preferable that the conditions such as subspecies (including race), gender, age (including monthly and weekly age), height, and weight are the same.
  • body fluid refers to a liquid sample collected from a subject and a control body.
  • cerebrospinal fluid cerebrospinal fluid
  • blood including serum, plasma and interstitial fluid
  • urine urine
  • lymph digestive fluid
  • ascites pleural effusion
  • perineural fluid extracts of tissues or cells.
  • cerebrospinal fluid or blood more preferably cerebrospinal fluid.
  • Cerebrospinal fluid refers to a colorless and transparent extracellular fluid that exists only around the central nervous system (CNS: Central Nerve System) of the brain and spinal cord. It is separated from the blood by the hard membrane and by the blood-cerebrospinal and blood-cerebrospinal fluid barriers. Most of the cerebrospinal fluid exudes from the parenchyma of the brain and between brain cells and cerebrospinal fluid. Recent studies have shown that there are virtually no barriers (Wang C, et al., 2012, Cerebrospinal Fluid: Physiology, biomarker and methodology. In: V.S, Dolezal, T., editor.
  • Cerebrospinal Fluid Functions, Composition and Disorders. New York: Nova Science Publishers; pp.1-37.).
  • proteins derived from the central nervous system in this cerebrospinal fluid and they are associated with central nervous system diseases. It is known that the expression increases or decreases. For example, in AD pathology, it is suggested that the amount of cerebrospinal fluid increases and the waste products of the brain including A ⁇ are eliminated (Lliff, et al). ., Sci. Transl. Med., 2010, 4).
  • glycoprotein refers to a protein to which one or more sugar chains are added.
  • sugar chains are added as one of post-translational modifications, and are said to be present in more than 50% of proteins in vivo.
  • Sugar chains play an important role in imparting various functions to proteins, such as being involved in protein stabilization, protection, bioactivity, antigen-antibody reaction, viral infection, and pharmacokinetics.
  • the "peptide fragment (including the sugar chain)" is a peptide consisting of a part of the glycoprotein and containing an amino acid residue to which the target sugar chain is added.
  • a peptide consisting of a part of terminal Man-Tf and containing an asparagine residue at position 432 to which a mannose non-reducing terminal sugar chain is added can be mentioned.
  • the number of amino acids in the peptide fragment is not particularly limited. Since it is a part of glycoprotein, the lower limit may be a length that can include the epitope, for example, 8 amino acids or more, preferably 10 or 15 amino acids or more, more preferably 20 or 30 amino acids or more, and the upper limit is glycoprotein. It suffices to have amino acids less than the total length of.
  • the term "marker” refers to an index molecule for differentiating the onset or possibility of morbidity of a disease.
  • the marker corresponds to a biomarker targeting a molecule derived from a living body, particularly a polypeptide (including a glycoprotein and a fragment thereof). The marker is detected in the body tissue of the subject, but is preferably detected in body fluids herein.
  • the term “combination marker” refers to a marker that can achieve a predetermined purpose by combining a plurality of the markers.
  • predetermined purpose refers to the differentiation of Alzheimer's disease.
  • significant means statistically significant.
  • Statistically significant means that there is a significant difference between the measured and control values of the subject when statistically processed.
  • the significant difference between the measured value of the terminal Man-Tf amount of the subject and the healthy body group when statistically processed is applicable.
  • the risk factor (significance level) of the obtained value is small, specifically, when it is smaller than 5% (p ⁇ 0.05), when it is smaller than 1% (p ⁇ 0.01), and when it is smaller than 0.1% (p). ⁇ 0.001) can be mentioned.
  • the "p (value)” shown here indicates the probability that the test statistic will happen to be the value in the distribution based on the null hypothesis in the statistical test.
  • test method for statistical processing a known test method capable of determining the presence or absence of superiority may be appropriately used, and is not particularly limited. For example, Student's t-test method, covariate ANOVA, etc. can be used.
  • Composition The "Combination marker for differentiating Alzheimer's disease (combination marker for AD pathological condition)" of the present invention is composed of a combination of markers consisting of two or more types of protein or peptide fragments, and is intended for subjects suspected of having dementia. It is a biomarker capable of differentiating the susceptibility of AD or MCI in AD pathology.
  • the combination markers of the present invention are composed of two or more markers.
  • the combination markers of the present invention are a transferrin glycoprotein or a fragment thereof containing a predetermined sugar chain, a prostaglandin D2 synthase or a fragment thereof, a tau-related protein or a fragment thereof, and an AD index.
  • each marker will be described.
  • Transferrin glycoprotein (Tf glycoprotein)
  • transferrin glycoprotein is a transferrin protein to which an N-linked sugar chain has been added.
  • the transferrin (Tf) protein (often referred to herein as the "Tf protein") is a carrier with a molecular weight of approximately 80 KDa that reversibly binds to two iron (Fe) ions and is responsible for its in vivo transport. It is a protein.
  • Specific examples of the Tf protein include a human Tf protein composed of 698 amino acid residues and consisting of the amino acid sequence shown in SEQ ID NO: 1.
  • Tf glycoproteins there are three types of isoforms in which the protein part is common to Tf glycoproteins and only the structure of the added N-linked sugar chain is different. Specifically, it is a terminal Man-Tf protein, a terminal GlcNAc-Tf protein, and a terminal Sia-Tf protein. Of these, the Tf glycoproteins that can constitute the combination marker of the present invention are the terminal Man-Tf protein and the terminal GlcNAc-Tf protein. Each Tf glycoprotein will be specifically described below.
  • Terminal Man-Tf protein is an N-linked sugar chain having mannose (often referred to as "Man” in the present specification) at the non-reducing end, that is, the Man non-reducing end.
  • a Tf glycoprotein having a structure in which a Man non-reducing terminal sugar chain is added to one of the two sugar chains and a GlcNAc non-reducing terminal sugar chain is added to the other can be mentioned. ..
  • the terminal Man-Tf protein is considered to be biosynthesized in the brain because it is not detected in the cerebrospinal fluid in anencephaly in which most of the cerebrum is congenitally deleted.
  • the amount of terminal Man-Tf increases in AD pathology. That is, the amount of terminal Man-Tf in body fluid, mainly in cerebrospinal fluid, is increased as compared with a healthy body, and therefore, terminal Man-Tf alone can be a marker for differentiating AD pathological condition reflecting AD pathological condition.
  • iNPH patients cannot be used as a differential marker for iNPH because there is no significant difference in the amount of terminal Man-Tf in body fluids, mainly in cerebrospinal fluid, as compared with healthy bodies.
  • AD can be easily distinguished from DLB or FTD by measuring the amount of terminal Man-Tf in body fluid.
  • a peptide fragment of a terminal Man-Tf protein containing a Man non-reducing terminal sugar chain can also be a constituent marker of the combination marker of the present invention.
  • Terminal GlcNAc-Tf protein is an N-linked sugar chain having N-acetylglucosamine (often referred to as "GlcNAc" in the present specification) at the non-reducing end, that is, GlcNAc. It is a Tf glycoprotein containing only a non-reducing terminal sugar chain, and is a constituent marker of the combination marker of the present invention. For example, as shown in B of FIG. 1, a Tf glycoprotein to which two GlcNAc non-reducing terminal sugar chains are added can be mentioned.
  • the asparagine (Asn: N) residue at position 432 (denoted by "N432") and the asparagine residue at position 630 in the amino acid sequence shown in SEQ ID NO: 1
  • This is a Tf glycoprotein in which a GlcNAc non-reducing terminal sugar chain is added to the side chain of the group (denoted by "N630").
  • the terminal GlcNAc-Tf protein is produced in cells of the central nervous system such as the brain and / or spinal cord and is considered to be a brain-type glycoprotein found mainly in the cerebrospinal fluid. These brain-type glycoproteins are also known as biomarkers that reflect the production of cerebrospinal fluid (Murakami, et al., Proc. Jpn. Acad., Ser.B, 2019, 95, 198-210. ).
  • the terminal GlcNAc-Tf protein is known to be a marker for iNPH differentiation (Japanese Patent Laid-Open No. 2010-121980).
  • the amount of terminal GlcNAc-Tf protein in body fluids, mainly in cerebrospinal fluid was significantly reduced as compared with healthy bodies.
  • a peptide fragment of a terminal GlcNAc-Tf protein containing a GlcNAc non-reducing terminal sugar chain can also be a constituent marker of the combination marker of the present invention.
  • Terminal Sia-Tf protein is an N-linked glycoprotein having ⁇ 2,6 sialic acid at the non-reducing end, that is, a Tf glycoprotein containing only the Sia non-reducing terminal sugar chain. .. Although it is an isoform of Tf glycoprotein, it is not a constituent marker of the combination marker of the present invention.
  • Terminal Sia-Tf is present in both serum and cerebrospinal fluid, but is also referred to as "serum Tf (glycoprotein)" because it is present in a particularly large amount in serum.
  • Terminal Sia-Tf is considered to be a Tf glycoprotein biosynthesized in the liver due to its similarity in sugar chain structure to other glycoproteins.
  • the terminal GlcNAc-Tf protein is not detected in the cerebrospinal fluid in anencephaly, so it is considered to be biosynthesized in the brain.
  • Prostaglandin D2 synthase is an enzyme that catalyzes the reaction of prostaglandin endoperoxides to prostaglandin D2 (PGD 2 ) and is the present invention.
  • the PGDS protein include a human PGDS protein composed of 190 amino acid residues and composed of the amino acid sequence shown in SEQ ID NO: 2. It is known that PGDS has a relatively high content in cerebrospinal fluid, but a concentration of about 1% thereof can also be detected in blood.
  • PGDS is also known as a biomarker that reflects the production of cerebrospinal fluid (Murakami, et al., Proc. Jpn. Acad., Ser.B, 2019, 95, 198-210.).
  • tau-related protein refers to tau protein and phosphorylated tau protein (often referred to as "p-tau protein” in the present specification).
  • Tau protein is a microtubule-associated protein involved in axonal transport and is present in nerve cells and glial cells of the central and peripheral nervous systems.
  • tau protein is excessively phosphorylated to p-tau protein. It is thought that this p-tau protein inhibits the stability of microtubules and causes intracellular cell death by forming intracellular aggregates. Since both tau protein and p-tau protein are intracellular proteins, their detection in body fluid usually means neuronal cell death. It is known that tau-related proteins can be markers for dementia such as PSP and FTD in addition to AD and MCI, and are also used as AD markers in clinical practice.
  • constituent marker of the combination marker of the present invention As a specific example of a certain tau protein, there is a human tau protein composed of 441 amino acid residues and composed of the amino acid sequence shown in SEQ ID NO: 3.
  • the human tau protein in addition to the amino acid sequence shown in SEQ ID NO: 3, there are 6 types of isoforms consisting of 352 to 412 amino acid residues which are splicing variants thereof.
  • These isoforms can also be constituent markers of the combination markers of the present invention. Phosphorylation occurs at various locations in p-tau proteins, and usually in AD, excessive phosphorylation occurs, so that phosphorylation can occur at multiple amino acid residues.
  • Detection of p-tau can be performed, for example, by phosphorylation site-specific detection, site-non-specific phosphorylation detection, or a combination thereof.
  • AD index is a value usually calculated by (A ⁇ 40 / A ⁇ 42) ⁇ p-tau, and is a marker that reflects both metabolic changes of A ⁇ peptide and p-tau protein in AD. Further, for the calculation of the AD index, for example, (A ⁇ 42 / A ⁇ 40) ⁇ p-tau may be used, but in the present specification, the value calculated by any of the formulas is included.
  • the AD index is considered to have the highest AD diagnostic ability by itself among the AD markers currently used clinically.
  • (1) Combination of Man-Tf / GlcNAc-Tf / PGDS and tau / p-tau As the first combination pattern, it has Man-Tf protein or a fragment thereof containing a sugar chain having Man, GlcNAc-Tf protein or GlcNAc.
  • fragment containing a sugar chain having Man refers to a peptide fragment containing an asparagine residue to which a Man non-reducing terminal sugar chain is added in the Man-Tf protein.
  • a Man-Tf protein fragment containing N432 and / or N630 to which a Man non-reducing terminal sugar chain has been added is added.
  • a fragment containing a sugar chain having GlcNAc refers to a peptide fragment containing an asparagine residue to which a Man non-reducing terminal sugar chain is added in the GlcNAc-Tf protein.
  • a Man-Tf protein fragment containing N432 and N630 added with a Man non-reducing terminal sugar chain is added in the GlcNAc-Tf protein.
  • a more specific combination of constituent markers is a Man-Tf protein or a fragment thereof containing a sugar chain having Man and a tau protein or a fragment thereof, a Man-Tf protein or a fragment thereof containing a sugar chain having Man and a p-tau protein.
  • a fragment containing a phosphorylation site thereof a fragment thereof containing a sugar chain having GlcNAc-Tf protein or GlcNAc and a tau protein or a fragment thereof, a fragment thereof containing a sugar chain having GlcNAc-Tf protein or GlcNAc and a p-tau protein or A fragment containing the phosphorylation site, and a PGDS protein or a fragment thereof and a tau protein or a fragment thereof, a PGDS protein or a fragment thereof and a p-tau protein or a fragment containing the phosphorylation site thereof.
  • a fragment containing a Man-Tf protein or a sugar chain having Man, a GlcNAc-Tf protein or a sugar chain having GlcNAc is used. Included is a combination of at least two proteins selected from a constitutive marker consisting of the fragment comprising and any one polypeptide selected from the group consisting of PGDS or fragments thereof.
  • a more specific combination of constituent markers is a combination of two constituent markers, a fragment thereof containing a Man-Tf protein or a sugar chain having Man, and a fragment thereof containing a GlcNAc-Tf protein or a sugar chain having GlcNAc, Man-Tf.
  • any of the above combination markers can distinguish AD and MCI from NC as AD pathology. It is also possible to distinguish between pre-MCI and non-pre-MCI in NC.
  • the third combination pattern includes a Man-Tf protein or a fragment thereof containing a sugar chain having Man, and a sugar chain containing a GlcNAc-Tf protein or GlcNAc.
  • the combination of the fragment and the AD index can be mentioned.
  • a second aspect of the present invention is an Alzheimer's disease pathological differentiation kit.
  • the kit of the present invention can detect the marker for AD pathological condition according to the first aspect that can be contained in the sample, thereby distinguishing the morbidity or possibility of morbidity of AD pathological condition of the subject.
  • the AD diagnostic kit of the present invention contains a peptide bond molecule and a sugar chain bond molecule that specifically bind to each of the combination markers for AD pathological condition discrimination according to the first aspect as essential constituents.
  • a peptide bond molecule and a sugar chain bond molecule that specifically bind to each of the combination markers for AD pathological condition discrimination according to the first aspect as essential constituents.
  • Peptide bond molecule refers to a molecule that specifically binds to a polypeptide or a peptide fragment thereof in a constituent marker of a combination marker for AD pathological condition differentiation.
  • constituent marker polypeptide that is, the target polypeptide
  • tau protein examples include Tf protein, PGDS, and tau protein.
  • the AD diagnostic kit of the present invention contains one or more peptide bond molecules that bind to these polypeptides.
  • the peptide bond molecule may be any of a peptide, nucleic acid, small molecule compound, or a combination thereof.
  • the peptide bond molecule composed of a peptide include an antibody or an active fragment thereof.
  • the antibody may be either a polyclonal antibody, a monoclonal antibody or a recombinant antibody. Monoclonal or recombinant antibodies are preferred to allow for more specific detection.
  • the globulin type of the antibody is not particularly limited and may be any of IgG, IgM, IgA, IgE, IgD and IgY, but IgG and IgM are preferable.
  • the species from which the antibody of this embodiment is derived is not particularly limited. It can be of any animal origin, including mammals and birds. Examples include mice, rats, guinea pigs, rabbits, goats, donkeys, sheep, camels, horses, chickens, or humans.
  • the term "recombinant antibody” refers to, for example, a chimeric antibody, a humanized antibody, and a synthetic antibody.
  • a “chimeric antibody” is an antibody in which the constant region of a light chain and a heavy chain (C region: Constant region) is replaced with the C region of a light chain and a heavy chain of another antibody.
  • C region Constant region
  • an antibody in which the C region of the light chain and the heavy chain is replaced with the C region of an appropriate human antibody is applicable. That is, in this case, the variable region (V region: Variable region) including the CDR is derived from the mouse antibody, and the C region is derived from the human antibody.
  • a “humanized antibody” is also referred to as a reshaped human antibody, and is a mosaic antibody in which the CDR in an antibody derived from a non-human animal to a target antigen is replaced with the CDR of a human antibody.
  • a recombinant antibody gene was prepared by substituting a DNA sequence encoding each CDR region (CDR1 to CDR3) of a mouse anti-human Man-Tf antibody with a DNA sequence encoding each corresponding CDR derived from an appropriate human antibody. , Antibodies obtained by expressing it.
  • Synthetic antibody refers to an antibody synthesized by using a chemical method or a recombinant DNA method.
  • a monomeric polypeptide molecule in which one or more VLs and one or more VHs of a specific antibody are artificially linked via a linker peptide having an appropriate length and sequence, or a multimeric polypeptide thereof.
  • linker peptide having an appropriate length and sequence
  • Specific examples of such polypeptides include single-chain Fv (scFv: single chain Fragment of variable region) (Pierce Catalog and Handbook, 1994-1995, Pierce Chemical Co., Rockford, IL) and diabody. ), Triabody, tetrabody and the like.
  • Single-stranded Fv is a synthetic antibody fragment having a structure in which the V regions on these two polypeptide chains are linked by a flexible linker of sufficient length and contained in one polypeptide chain. Within a single-stranded Fv, both V regions can self-assemble with each other to form one functional antigen-binding site. Single-stranded Fv can be obtained by incorporating the recombinant DNA encoding it into the phage genome using a known technique and expressing it. Diabody is a molecule with a structure based on a single-stranded Fv dimer structure (Holliger et al., 1993, Proc.
  • the triabodies and tetrabodies have trimer and tetramer structures based on a single-stranded Fv structure, similar to diabodies. They are trivalent and tetravalent antibody fragments, respectively, and may be multispecific antibodies.
  • the antibody preferably has a high affinity with a target polypeptide having a dissociation constant of 10 -8 M or less, preferably 10 -9 M or less, more preferably 10 -10 M or less.
  • the dissociation constant can be measured using a technique known in the art. For example, it may be measured using the speed evaluation kit software by the BIAcore system (GE Healthcare).
  • the polyclonal antibody of this embodiment used in this step is known from immune animals in the art after immunizing a suitable animal with a polypeptide serving as an antigen, that is, Tf protein, PGDS, and tau protein, or a peptide fragment thereof. It can be recovered by the method.
  • a monoclonal antibody can also be obtained by a known method which is a conventional technique in the art. For example, after immunizing a mouse with the antigen, antibody-producing cells are collected from the immune mouse. Hybridomas may be identified that fuse the antibody-producing cells to a myeloma cell line, thereby producing hybridoma cells and producing monoclonal antibodies that bind to the target polypeptide.
  • the “antibody fragment” is a peptide fragment having the antigen-binding activity of the above-mentioned antibody, and examples thereof include Fab, F (ab') 2, Fv and the like.
  • the antibody or antibody fragment thereof used in this step may be modified.
  • modification includes a label required for antibody detection or a functional modification required for antigen-specific binding activation. Labeling includes, for example, the aforementioned fluorescent substances, fluorescent proteins (eg, PE, APC, GFP), enzymes (eg, horseradish peroxidase, alkaline phosphatase, glucose oxidase), or labeling with biotin or (streptavidin) avidin. ..
  • modifications include glycosylation of antibodies performed to adjust the affinity for the target polypeptide.
  • FR Framework region
  • the "active fragment thereof” refers to a partial fragment of an antibody that retains antigen-binding property and immune response activity.
  • Specific antibodies in the AD diagnostic kit of the present invention include, for example, anti-Tf antibody, anti-PGDS antibody, anti-tau antibody, anti-p-tau antibody, anti-A ⁇ 40 antibody, and anti-A ⁇ 42 antibody.
  • nucleic acid aptamers examples include nucleic acid aptamers.
  • a "nucleic acid aptamer” is an aptamer composed of nucleic acids, which is strong with a target substance due to the secondary structure of a single-stranded nucleic acid molecule via hydrogen bonds and the three-dimensional structure formed based on the tertiary structure.
  • a ligand molecule that has the ability to specifically bind.
  • the nucleic acid aptamer used in the present specification can be produced by a method known in the art.
  • an in vitro sorting method using a SELEX (systematic evolution of ligands by exponential enrichment) method can be mentioned.
  • the SELEX method is, for example, in the case of separating RNA aptamers, "selecting an RNA molecule bound to a target molecule from an RNA pool composed of a large number of RNA molecules having a random sequence region and primer binding regions at both ends thereof. After amplifying the recovered RNA molecule by RT-PCR reaction, transcription is performed using the obtained cDNA molecule as a template to obtain an amplification product of the selected RNA molecule, which is used as the RNA pool for the next round.
  • the base sequence lengths of the random sequence region and the primer binding region are not particularly limited. Generally, the random sequence region is preferably in the range of 20 to 80 bases, and the primer binding region is preferably in the range of 15 to 40 bases, respectively.
  • a molecule similar to the target molecule and an RNA pool or an RNA pool are mixed in advance, and a pool consisting of an RNA molecule or a DNA molecule that does not bind to a molecule similar to the target molecule is formed. It may be used.
  • the SELEX method is a known method, and the specific method may be, for example, according to Pan et al. (Proc. Natl. Acad. Sci. 1995, U.S.A. 92: 11509-11513).
  • the target molecule can be used as a sugar chain mannose
  • the nucleic acid molecule finally obtained by carrying out the above method can be used as a nucleic acid aptamer for mannose.
  • RNA aptamers and DNA aptamers are generally known, but the nucleic acids constituting the nucleic acid aptamers in the present specification are not particularly limited. For example, it includes a DNA aptamer, an RNA aptamer, an aptamer composed of a combination of DNA and RNA, and the like. Generally, RNA aptamers are frequently used, but DNA aptamers are superior in terms of stability, production cost in chemical synthesis, and the number of steps in aptamer production.
  • Nucleic acid aptamers used in this step include fluorescent substances (eg, FITC, Texas, Cy3, Cy5, Cy7, Cyanine3, Cyanine5, Cyanine7, FAM, HEX, VIC, fluoresamine and so on, as long as they do not inhibit the ability to bind to the target molecule. It can also be labeled with its derivatives, such as rhodamine and its derivatives), radioactive isotopes (eg, 32P, 33P, 35S), or labeling substances such as biotin or (streptavidin) avidin.
  • fluorescent substances eg, FITC, Texas, Cy3, Cy5, Cy7, Cyanine3, Cyanine5, Cyanine7, FAM, HEX, VIC, fluoresamine and so on, as long as they do not inhibit the ability to bind to the target molecule. It can also be labeled with its derivatives, such as rhodamine and its derivatives), radioactive isotopes (eg, 32P,
  • nucleic acid aptamer in the AD diagnostic kit of the present invention examples include Tf protein-binding RNA aptamer, PGD-binding RNA aptamer, tau protein-binding RNA aptamer, and p-tau protein-binding RNA aptamer.
  • the peptide bond molecule in the AD diagnostic kit of the present invention may be immobilized on a carrier or labeled with a fluorescent dye, a luminescent substance, or the like, if necessary.
  • the “sugar chain-binding molecule” refers to a molecule that specifically binds to the sugar chain of a glycoprotein in a constituent marker of a combination marker for AD pathological condition differentiation.
  • the constituent marker polypeptide that is, the target glycoprotein
  • the constituent marker polypeptide include Man-Tf protein and GlcNAc-Tf protein, which are Tf glycoproteins.
  • the AD diagnostic kit of the present invention contains one or more sugar chain-binding molecules that bind to the sugar chains of these Tf glycoproteins.
  • the sugar chain binding molecule may be any of a peptide, a nucleic acid, a small molecule compound, or a combination thereof.
  • sugar chain-binding molecule composed of a peptide examples include a lectin, an antibody, or an active fragment thereof.
  • Lectin refers to a protein or glycoprotein that binds to a sugar chain other than an immune response.
  • the lectins that can be included in the Alzheimer's disease pathological identification kit of the present invention include sugar chains containing Man or GlcNAc, preferably sugar chains containing terminal Man or terminal GlcNA, and more preferably Man non-reducing terminal sugar chains or GlcNA non-reducing terminals. Examples include lectins that bind to sugar chains.
  • Man non-reducing end sugar chain-binding lectin When the non-reducing end of the sugar chain is Man, a Man non-reducing end sugar chain-binding lectin can be mentioned.
  • Specific examples of Man non-reducing terminal sugar chain-binding lectins include 45 types of Man-binding lectins described in http://jcggdb.jp/rcmg/glycodb/LectinSearch including UDA lectins and BC2L-A lectins. Can be mentioned.
  • GlcNA non-reducing end sugar chain-binding lectin When the non-reducing end of the sugar chain is GlcNAc, GlcNA non-reducing end sugar chain-binding lectin can be mentioned.
  • Specific examples of the GlcNA non-reducing terminal sugar chain-binding lectin include, for example, the agglutinin GSL-II lectin derived from the mushroom family Griffonia simplicifolia, the agglutinin ABA lectin derived from Agaricus bisporus, and the agglutinin derived from the child body of Psathyrella velutina.
  • the agglutinin PVL lectin is known.
  • lectins there may be a difference in apparent sugar chain binding specificity between the case where the target molecule is a glycoprotein and the case where the target molecule is only a sugar chain.
  • UDA lectins derived from urtica UDA lectins derived from urtica (Urtica dioica) are classified as GlcNAc-binding lectins when the target molecule is a sugar chain, but when the target molecule is a glycoprotein, they do not bind to the terminal GlcNAc-Tf protein. It becomes specifically bound to the Man non-reduced end of the terminal Man-Tf protein.
  • the lectin constituting the kit of the present invention is Man of the terminal Man-Tf protein or GlcNac of the terminal GlcNAc-Tf protein, preferably terminal Man of the terminal Man-Tf protein or terminal GlcNAc of the terminal GlcNAc-Tf protein, more preferably.
  • the lectin constituting the kit of the present invention is Man of the terminal Man-Tf protein or GlcNac of the terminal GlcNAc-Tf protein, preferably terminal Man of the terminal Man-Tf protein or terminal GlcNAc of the terminal GlcNAc-Tf protein, more preferably.
  • lectin a commercially available lectin may be used.
  • biotinylated UDA lectin Cat No. BA-8005-1; EY
  • BC2L-A lectin derived from bacteria Backholderia cenocepacia lectin-A; Wako Pure Chemical Industries, Ltd.
  • the composition of the antibody or its active fragment is specifically described in "(1) Peptide bond molecule, (i) Peptide bond molecule composed of peptide" described above, and the same applies to this invention. Then, the explanation is omitted.
  • Specific examples of the antibody that binds to the sugar chain include a sugar chain containing Man, preferably a sugar chain containing a terminal Man, and more preferably an antibody that recognizes and binds to a sugar chain containing a non-reducing terminal Man.
  • Examples thereof include an antibody that recognizes and binds to a sugar chain containing GlcNAc, preferably a sugar chain containing a terminal GlcNAc, and more preferably a sugar chain containing a non-reducing terminal GlcNAc.
  • sugar chain-binding molecule composed of nucleic acid examples include nucleic acid aptamers.
  • the composition of the nucleic acid aptamer and the method for producing the same are specifically described in the above-mentioned "(1) Peptide bond molecule, (ii) Peptide bond molecule composed of nucleic acid", and the same applies to the present invention. Then, the explanation is omitted.
  • the nucleic acid-binding molecule in the AD diagnostic kit of the present invention may be immobilized on a carrier or labeled with a fluorescent dye, a luminescent substance, or the like, if necessary.
  • AD therapeutic agents especially monoclonal antibodies against A ⁇
  • these therapeutic agents may be most effective when administered to patients in the early stage of onset to suppress the progression of symptoms at an early stage. For this reason, it is most desirable to administer to pre-MCI patients with dementia.
  • the combination marker of the present invention is not only an excellent marker for differentiating AD pathology, but also enables differentiation of pre-MCI patients, and is expected to contribute to early diagnosis and treatment of AD in the future.
  • a third aspect of the present invention is a method for differentiating AD pathological conditions.
  • the amount of the combination marker for differentiating AD pathology of the first aspect present in the body fluid derived from a subject suspected of having dementia is measured, and the subject is AD or MCI based on the measured value.
  • NC can be determined.
  • the AD pathological condition discrimination method of the present invention includes a measurement step, a product value calculation step, and a determination step as essential steps. Hereinafter, each step will be specifically described.
  • Measurement step the amount of each marker in the combination marker for AD pathological condition discrimination according to the first aspect present in a predetermined amount of body fluid obtained from a subject suspected of having dementia is measured. , Is the process of obtaining the measured value.
  • the body fluid is preferably cerebrospinal fluid or blood.
  • the method for collecting cerebrospinal fluid and blood may be any known method and is not particularly limited. For example, if it is cerebrospinal fluid, it may be collected by lumbar puncture. Lumbar puncture is relatively less invasive because pain can be reduced to less than blood sampling by using a commercially available local anesthetic in advance, and side effects can be reduced by using a traumatic needle. This is a suitable method for collecting cerebrospinal fluid. If it is blood, it may be collected according to a known blood collection method. As a general rule, the body fluids of the subject and the control body should be the same kind of body fluids as if one is cerebrospinal fluid and the other is cerebrospinal fluid.
  • Predetermined amount means an amount predetermined by capacity or weight. Although the predetermined amount is not particularly limited, it is necessary that the marker for AD pathological condition discrimination according to the first aspect contained at least in the body fluid of the subject, preferably in the cerebrospinal fluid, is a measurable amount.
  • the amount of cerebrospinal fluid may be 5 ⁇ L to 1 mL, or the amount of cerebrospinal fluid protein may be 5 ⁇ g to 200 ⁇ g.
  • the "measured value” is a value indicating the amount of each marker in the combination marker for AD pathological condition discrimination measured in this step.
  • the measured value may be an absolute value such as volume or weight, or may be a relative value such as concentration, ionic strength, absorbance or fluorescence intensity.
  • the amount of the marker is determined by using a peptide-binding molecule that specifically binds to the polypeptide of each constituent marker of the combination marker for AD pathological condition differentiation and a sugar chain-binding molecule that specifically binds to the sugar chain of the constituent marker. Just measure. Since the configurations of the peptide bond molecule and the sugar chain bond molecule are described in detail in the second aspect, specific description thereof will be omitted here.
  • the measuring method may be any known protein or glycoprotein quantification method using a peptide bond molecule and a sugar chain binding molecule, and is not particularly limited.
  • an immunological detection method using an antibody a lectin detection method using a lectin, a mass spectrometry method or a combination method thereof can be mentioned.
  • Immunological detection methods include, for example, enzyme immunoassay (including ELISA and EIA methods), fluorescent immunoassay, radioimmunoassay (RIA), luminescence immunoassay, and surface plasmon resonance (SPR). , Crystal transducer microbalance (QCM) method, immunoturbidimetric method, latex agglutination immunoassay, latex turbidimetric method, hemagglutination reaction, particle agglutination reaction method, gold colloid method, capillary electrophoresis method, western blot method or immunity Histochemical method (immunostaining method) can be mentioned.
  • enzyme immunoassay including ELISA and EIA methods
  • fluorescent immunoassay including radioimmunoassay (RIA), luminescence immunoassay, and surface plasmon resonance (SPR).
  • QCM Crystal transducer microbalance
  • immunoturbidimetric method immunoturbidimetric method
  • Examples of the lectin detection method include a lectin blotting method.
  • High-speed liquid chromatograph mass spectrometry LC-MS
  • high-speed liquid chromatograph tandem mass spectrometry LC-MS / MS
  • gas chromatograph mass spectrometry GC-MS
  • gas chromatograph tandem mass spectrometry include mass spectrometry.
  • Analytical methods GC-MS / MS
  • capillary electromass spectrometry CE-MS
  • ICP mass spectrometry ICP mass spectrometry
  • the combination method for example, a sandwich ELISA method using a lectin and an antibody and an automated method using a similar principle, preferably a high-throughput lectin inhibition-automatic lattice aggregation method can be used.
  • the constituent marker of the combination marker for AD pathological condition identification is glycoprotein
  • the combination method of detecting each of the sugar chain and the protein as a target is preferable because the glycoprotein can be quantified with high accuracy.
  • a body fluid for example, spinal fluid
  • a carrier such as a plate on which an anti-Tf antibody is adsorbed.
  • a method of adsorbing the terminal Man-Tf protein and then detecting the terminal Man-Tf protein using the UDA lectin, which is a Man-binding molecule, as a probe can be mentioned.
  • a method of adsorbing the terminal Man-Tf protein through a body fluid (for example, cerebrospinal fluid) on a carrier such as a plate on which UDA lectin is adsorbed and then detecting the terminal Man-Tf protein with an anti-Tf antibody.
  • the “product value calculation step” is a step of obtaining a product value obtained by multiplying the measured values of the respective markers obtained in the measurement step.
  • the "judgment step” determines whether the subject can correspond to AD, MCI, or NC from the product value based on the preset AD cutoff value and MCI cutoff value. It is a process.
  • the "cutoff value” refers to a value that can determine the presence or absence of the risk of illness or the pathological condition based on the value.
  • the cutoff value indicates a sufficiently high value for both sensitivity and specificity.
  • it is derived from the ROC curves drawn based on a direct comparison between the control group and the disease group to be compared using a known method, but is not limited to this. It does not have to be a direct comparison between the control group and the disease group to be compared, and the cutoff value may be set without using the ROC curve.
  • ROC curve Receiveiver Operating Characteristic curve
  • TPF True Position Fraction
  • FPF False Position Fraction
  • the "AD cutoff value” is a cutoff that serves as a reference for determining whether or not a subject subject to the discrimination method of the present invention is likely to be affected by AD, based on the product value obtained in the product value calculation step. The value. If the product value is higher than the AD cutoff value, the subject is determined to be more likely to have AD. If the product value is lower than the AD cutoff value, the subject is determined to be less likely to have AD and more likely to be either MCI or NC.
  • the specific value of the AD cutoff value differs depending on the combination of constituent markers in the combination marker for AD discrimination.
  • the AD cutoff values for each combination are shown in Tables 1 to 4. For example, when the combination marker for AD discrimination is a combination of Man-Tf protein and p-tau protein, the AD cutoff value is 97.8 from Table 1.
  • the "MCI cutoff value” is a cutoff that serves as a reference for determining whether or not a subject subject to the discrimination method of the present invention is likely to be affected by MCI, based on the product value obtained in the product value calculation step. The value. If the product value is higher than the MCI cutoff value, the subject is determined to be more likely to have MCI. If the product value is lower than the AD cutoff value, it is determined that the subject is likely to be NC.
  • the specific value of the MCI cutoff value differs depending on the combination of constituent markers in the combination marker for AD pathological condition discrimination.
  • the MCI cutoff values for each combination are shown in Tables 1-4.
  • the MCI cutoff value is 110 from Table 1.
  • the AD pathological condition differentiation method of this embodiment can be carried out in place of or in combination with a known AD pathological condition discrimination method.
  • Known methods for differentiating AD pathology include, for example, measurement of dementia score, amyloid PET (positron emission tomography) using [ 11 C] Pittsburgh compound (PiB), and fluoro-2-. PET using deoxy-D-glucose (FDG) and the like can be mentioned.
  • a fourth aspect of the present invention is a method for differentiating a healthy control with MCI transfer (pre-MCI differentiating method).
  • the pre-MCI discrimination method of the present invention can determine whether the subject is NC or non-MCI or non-pre-MCI.
  • the pre-MCI discrimination method of the present invention includes a measurement step, a product value calculation step, a determination step, and a re-judgment step.
  • the measurement step, the product value calculation step, and the determination step are the same as the AD pathological condition discrimination method of the third aspect. That is, the pre-MCI differentiation method of the present invention is a differentiation method that follows the AD pathological condition differentiation method of the third aspect.
  • the re-determination step which is a feature of the present invention, will be described.
  • the "re-judgment step” is a subject who is determined to correspond to NC in the determination step in the AD pathological condition discrimination method of the third aspect based on a preset pre-MCI cutoff value. This is a step of determining whether the subject can correspond to pre-MCI or non-pre-MCI from the product value obtained in the product value calculation step.
  • pre-MCI cut-off value is a cut that serves as a criterion for determining whether an NC has a high possibility of MCI transition or an NC that does not, when the subject is determined to be NC by the AD pathological condition discrimination method of the third aspect. Off value.
  • Subjects determined to be AD or MCI in the determination step in the AD pathological condition differentiation method of the third aspect are not subject to the pre-MCI differentiation method of the present invention, and only subjects determined to be NC are targeted. If the product value obtained in the product value calculation process is higher than the pre-MCI cutoff value, it is determined that the subject is pre-MCI and is currently NC but is likely to move to MCI in the future. On the other hand, if the product value is lower than the pre-MCI cutoff value, the subject is determined to be non-pre-MCI, that is, true NC, which is unlikely to move to MCI.
  • the pre-MCI differentiation method of this embodiment can be used in combination with a known AD pathological condition differentiation method or the like.
  • Example 1 Localization of Tf protein and p-tau protein in the hippocampus> (Purpose) To verify the localization of the Man-Tf protein, known as an AD marker, in the hippocampus. (Method) Since the hippocampus, which controls short-term memory, is the site where nerve cell death and tissue atrophy progress at the earliest stage, AD patients and healthy hippocampus for control are double-stained with anti-Tf protein antibody and anti-p-tau antibody. Was done. 5 micron sections were made from formalin-fixed hippocampus and immunostained on glass slides.
  • Anti-Tf protein antibody (A0061, Dako Ltd.) and anti-p-tau protein antibody (AT8, Cosmo Bio Co., Ltd.) are used as the primary antibody, and Alexa Fluor 488 or 594 labeled antibody (Thermo Fisher Scientific) is used as the secondary antibody. ) was used. It is clear from the results of mass spectrometry that the Man-Tf protein occupies 85% or more of the sugar chain isoform in the Tf protein of the cerebral cortex.
  • Tf protein secretion increases with the progression of AD pathology, and that Tf protein and p-tau protein are co-localized.
  • Example 2 Measurement of Man-Tf protein in cerebrospinal fluid> (Purpose) The amount of Man-Tf protein in the cerebrospinal fluid was measured, and the effect of Man-Tf protein as a marker on various dementias was verified.
  • Method 1 Diagnosis of each disease For 316 patients who visited the outpatient department for dementia, diagnosis was made by the existing diagnostic method, and 5 mL of cerebrospinal fluid was collected from each patient by lumbar puncture. 1-1. Diagnosis of AD pathology and other neurodegenerative diseases Patients suspected of having outpatient AD were classified into MCI and AD according to the following AD diagnostic criteria, and the group of patients who did not belong to either was designated as NC. At the same time, tauopathy other than AD, which accumulates tau protein, which is a dementia with neurodegenerative disease, and synucleinopathy, which accumulates ⁇ -synuclein, were also classified according to the following diagnostic criteria.
  • tauopathy and synucleopathy are often referred to as "other neurodegenerative diseases”.
  • Idiopathic normal pressure hydrocephalus (iNPH) showed dementia and ventricular enlargement like AD, but did not show neurodegenerative disease, so it was used as a disease control.
  • Diagnosis of AD According to the clinical diagnostic criteria by the National Institute on Aging-Alzheimer's association workgroup (NIA-AA).
  • NIA-AA National Institute on Aging-Alzheimer's association workgroup
  • MCI The clinical diagnostic criteria of MCI against the background of AD recommended by the NIA-AA Diagnostic Guideline Development Workgroup were followed.
  • Diagnosis of tauopathy Specific diseases of tauopathy include progressive supranuclear palsy (PSP) and frontotemporal dementia (FTD). For these diagnoses, the dementia disease clinical practice guideline 2017 (Igaku-Shoin electronic version ISBN 978-4-260-62858-7) was followed.
  • (4) Diagnosis of synucleinopathy Specific diseases of synucleinopathy include Lewy body dementia (DLB) and Parkinson's disease (PD).
  • DLB Lewy body dementia
  • PD Parkinson's disease
  • Man-Tf protein in cerebrospinal fluid In the measurement of Man-Tf protein, rBC2L-A lectin was used as a sugar chain binding molecule.
  • the capture reaction was carried out by immobilizing an anti-human Tf antibody on a plate. Specifically, anti-human Tf antibody (A0061, Dako Ltd) was diluted to 1 ⁇ g / mL with 100 mM carbonate buffer (pH 9.5), 100 ⁇ L was added to a microtiter plate and incubated overnight at 4 ° C. After washing once with TBS, TBS containing 10% N101 (Fuji Film Wako Pure Chemical Industries, Ltd.) was added as a blocking agent and incubated at room temperature for 1 hour to prepare an antibody-immobilized plate.
  • anti-human Tf antibody A0061, Dako Ltd
  • 100 mM carbonate buffer pH 9.5
  • Cerebrospinal fluid (5-10 ⁇ L) of the sample is placed at 55 ° C. for 60 minutes before in PBST (phosphate-buffered saline / 0.05% Tween-20) containing 0.6% 2-mercaptoethanol and 0.003% SDS at a final concentration. Processing was performed. The blocked antibody-immobilized plate was washed once with TBST, then the pretreated sample was diluted with TBST (TBST-CaCl 2 ) containing 10 mM CaCl 2 and incubated overnight at 4 ° C.
  • PBST phosphate-buffered saline / 0.05% Tween-20
  • TBST-CaCl 2 After washing 3 times with TBST-CaCl 2 , 100 ⁇ L of TBST-CaCl 2 containing biotinylated rBC2L-A (50 ng / mL) was added, and the mixture was incubated at room temperature for 2 hours. rBC2L-A was previously biotinylated using Ez-link NHS-biotin (# 21336, Pierce) according to the attached protocol. TBST-CaCl 2 was added and washed twice, 100 ⁇ L of TBST-CaCl 2 containing HRP-labeled streptavidin (50 ng / mL) was added, and the mixture was incubated at room temperature for 2 hours.
  • HRP-labeled streptavidin 50 ng / mL
  • T1147 Sigma-Aldrich
  • sialic acid ⁇ 2,6 galactose ⁇ 1,4GlcNAc ⁇ 1, (3/6) -mannose residue at the end of the sugar chain was used as a sialidase.
  • SPSS version 26
  • multiple comparisons were performed by Turkey-Kramer comparison.
  • a ⁇ 42 peptide Human / rat ⁇ amyloid (42) ELISA Kit, Wako, High Sensitive (cat No. 292-64501, Wako Pure Chemical Industries, Ltd.)
  • the AD index was calculated by (A ⁇ 40 / A ⁇ 42) ⁇ p-tau based on the measured amount of p-tau protein, A ⁇ 40 peptide, and A ⁇ 40 peptide.
  • the cutoff value of the combination marker was obtained based on the product value obtained by multiplying the measured values of each marker.
  • the cutoff values for AD and MCI were set from the ROC curve using the Yoden method.
  • the cutoff value obtained based on the comparison between "patients with suspected AD (NC + MC + AD)" and “disease control (iNPH)” was used in a pseudo manner.
  • the sensitivity and specificity were calculated from the cutoff value, and the AUC (area under the curve) representing the reliability was calculated using the receiver operating characteristic (ROC) curve.
  • the sensitivity, specificity, and AUC were calculated from the combination of Man-Tf protein and p-tau protein.
  • the MCI group has an MCI cutoff value (110a.u .: dashed line) based on the product value (p-tau ⁇ Man-Tf) of the measured values of Man-Tf protein and p-tau protein.
  • the sensitivity was 83.9%
  • the specificity was 90.4%
  • the AUC was 0.919.
  • an AUC above 0.9 is considered to be extremely accurate.
  • the sensitivity was as high as 93.9%, the specificity was as high as 88.5%, and the AUC was also extremely high as 0.957. Therefore, it was shown that the combination of Man-Tf protein and p-tau protein provides extremely high accuracy for the differentiation of MCI and AD.
  • the sensitivity, specificity, and AUC were calculated for the combination of Man-Tf protein and tau protein.
  • the MCI group was verified with the MCI cutoff value (559 a.u .: broken line), and as shown in Table 1, both the sensitivity was 88.9% and the specificity was 88.5%, and the AUC was 0.907. there were.
  • the AD group as a result of verification with the AD cutoff value (615 a.u .: broken line), as shown in Table 1, the sensitivity is 100% and the specificity is 90.4%, both of which are extremely high, and the AUC is also extremely high at 0.962. showed that. Therefore, it was shown that the combination of Man-Tf protein and tau protein also provides extremely high accuracy for the differentiation of MCI and AD.
  • Example 4 Verification of AD discrimination accuracy using other combination markers> (Purpose) The accuracy of differentiating AD pathological conditions by a combination marker other than Example 3 will be verified.
  • the amount of GlcNAc-Tf protein and PGDS was measured by the following method.
  • the measurement of GlcNAc-Tf protein basically followed the method for detecting Man-Tf protein.
  • rPVL synthinant Psathyrella velutina lectin, Medical and Biological Laboratories Co., Ltd.
  • rPVL (1 ⁇ g / 0.1 mL) was added to the plate, and the mixture was incubated overnight at 4 ° C.
  • 50 mM TBS containing 10% Block Ace was added as a blocking agent, and blocking was performed at 4 ° C. for 4 hours.
  • the blocked biotin-immobilized plate was washed once with TBST, the pretreated sample was added, and the mixture was incubated overnight at 4 ° C. After washing twice with TBST, 100 ⁇ L of anti-Tf antibody (A0061, Dako Ltd.) solution (0.5 ⁇ g / mL) was added, and the mixture was incubated at room temperature for 2 hours. After washing twice with TBST, 100 ⁇ L of a 20,000-fold diluted Western wasabi peroxidase-labeled anti-rabbit IgG antibody (Promega, W4011) solution (0.1 ⁇ g / mL) was added, and the mixture was incubated at room temperature for 2 hours.
  • anti-Tf antibody A0061, Dako Ltd.
  • T1147 Sigma-Aldrich
  • sialic acid ⁇ 2,6 galactose ⁇ 1,4GlcNAc ⁇ 1, (3/6) -mannose residue at the end of the sugar chain was used as a sialidase and
  • a Tf sugar chain isomer having a ⁇ 1,4GlcNAc ⁇ 1, (3/6) -mannose residue at the end of the sugar chain prepared by sequential digestion with galactosidase was used.
  • a commercially available ELISA kit Human prostaglandin D synthase (Lipocalin-type) ELISA (Cat. No .: RD191113100R, BioVendor) was used to measure the amount of PGDS. The cutoff value was set, the sensitivity, specificity, and AUC were calculated according to Example 4.
  • GlcNAc-Tf protein and PGDS concentrations were measured in the cerebrospinal fluid and compared with the iNPH group. As shown in Table 3, in the case of GlcNAc-Tf protein alone, there was a significant increase in the NC, MCI and AD groups, but the sensitivity and specificity were not high. In the case of PGDS alone, a significant increase was observed only in the AD group, but the sensitivity and specificity were not high, and the AUC was less than 80%, so it was hard to say that it was a good marker.
  • Example 3 when the cutoff value based on the product value of the combination markers of the present embodiment is applied to other neurodegenerative disease groups (PSP + FTD + DLB + PD), the ratio of the cutoff value or more is any. It was as low as 26% to 37%, indicating that the increase in these product values is AD pathologically specific.
  • the serum PGDS concentration was measured in iNPH individuals and MCI individuals by the same method as in this example.
  • PGDS alone did not show a clear difference in the amount between iNPH and MCI. Therefore, the product of the measured value of p-tau used in the above analysis of the same individual and the PGDS concentration in serum was calculated and used as a pseudo combination marker. Then, when this product value was used, the marker value was higher in MCI than in iNPH, and a significant tendency was observed between the two. This suggests that the combination marker is useful even when the measurement results from samples other than cerebrospinal fluid are used.
  • Example 5 Verification of AD discrimination accuracy by different AD indexes> (Purpose) We will verify the accuracy of differentiating the AD pathology of the combination marker when the formula (A ⁇ 42 / A ⁇ 40) ⁇ p-tau is used for the AD index. (Method) The procedure was the same as in Example 3 except for the calculation of the AD index. As the AD index, the value calculated by the formula (A ⁇ 42 / A ⁇ 40) ⁇ p-tau was used in this example.
  • the sensitivity was 83.3%, the specificity was 79.3%, and the AUC was 0.826 in the MCI group.
  • the sensitivity was as high as 100%, but the specificity was as low as 65.5%. Therefore, it was suggested that the AD index alone does not have sufficient discrimination accuracy.
  • the sensitivity, specificity, and AUC were calculated from the combination of the Man-Tf protein and the above AD index.
  • the sensitivity was 100% and the specificity was 72.4% in the AD group, which could not be sufficiently differentiated by themselves, and the discrimination accuracy was improved.
  • AUC also showed 0.872.
  • the sensitivity was 88.9% and the AUC was 0.895, showing even higher values.
  • the combination marker of the present invention is a calculation formula of the AD index. Regardless, it was shown that it is a highly accurate differential marker for MCI and AD, and can be an excellent predictive differential marker before the onset of MCI. All publications, patents and patent applications cited herein are incorporated herein by reference in their entirety.

Abstract

The present invention addresses the problem of developing biomarkers, by which the occurrence or absence of AD and the onset risk thereof can be specifically and highly sensitively differentiated, and thus providing a kit for detecting the biomarkers and a method of differentiating the pathological conditions of AD using the same. The combined markers according to the present invention enable highly accurate differentiation of the pathological conditions of AD in a subject, namely, the occurrence or absence of AD or MCI and the onset risk thereof.

Description

アルツハイマー病病態鑑別用組み合わせマーカー及びそれを用いたアルツハイマー病病態鑑別方法Combination marker for differentiating Alzheimer's disease and method for differentiating Alzheimer's disease using it
 本発明は、アルツハイマー病、及びアルツハイマー病に進行し得る認知障害を他の中枢神経疾患と早期に識別するための組み合わせバイオマーカー、それらを検出するためのキット、及びその組み合わせバイオマーカーを用いたアルツハイマー病病態鑑別方法に関する。 The present invention presents Alzheimer's disease and a combination biomarker for early identification of cognitive disorders that may progress to Alzheimer's disease from other central nervous system diseases, a kit for detecting them, and an Alzheimer's disease using the combination biomarker. Regarding the method of distinguishing the pathological condition.
 アルツハイマー病(Alzheimer's disease:以下、本明細書においてはしばしば「AD」と略称する)は、不可逆的な進行性中枢神経疾患の一種であり、記憶障害や思考障害を伴う認知機能障害(認知症)、行動障害、又は人格変化等の症状を呈する。認知症の中では最も多い疾患であり、認知症患者全体の約60~80%を占めている。一般には65歳以上の高齢者で発症するが、一部は64歳以下でも発症し、若年性アルツハイマー病と呼ばれている。 Alzheimer's disease (hereinafter often abbreviated as "AD" in the present specification) is a type of irreversible progressive central nervous system disease, and is a cognitive dysfunction (dementia) accompanied by memory impairment and thinking disorder. , Behavioral disorders, or personality changes. It is the most common dementia disease and accounts for about 60-80% of all dementia patients. It generally develops in the elderly aged 65 and over, but some also develop in the age of 64 and under, and is called juvenile Alzheimer's disease.
 全世界における認知症の患者数は、2019年時点で5,000万人以上と推定されており、2050年には1億5千万人に達すると予想されている。このうち、約70%がAD患者と考えられている。特に先進諸国では、AD患者の増加に伴う医療費の増大や介護問題等で国や患者関係者達の経済的又は精神的負担が深刻化しており、大きな社会的問題となりつつある。AD患者の脳では、疎水性のペプチドであるアミロイドβタンパク質(Aβ)の脳内での凝集蓄積に始まり、その後、微小管タンパク質であるtauタンパク質が過リン酸化されて線維化した後に、神経細胞が破壊され、脳が萎縮することにより発症する。家族性(遺伝性)ADは、これらの代謝に関与するアミロイド前駆体タンパク質(APP)遺伝子やプレセニリン1(PSEN1)遺伝子の変異を原因とするため早期に発症し若年性ADとなる。 The number of dementia patients worldwide is estimated to be more than 50 million as of 2019, and is expected to reach 150 million by 2050. Of these, about 70% are considered to be AD patients. Especially in developed countries, the economic or mental burden on the national government and patients is becoming more serious due to the increase in medical expenses and long-term care problems due to the increase in AD patients, and it is becoming a big social problem. In the brains of AD patients, the hydrophobic peptide amyloid β protein (Aβ) begins to aggregate and accumulate in the brain, and then the microtubule protein tau protein is hyperphosphorylated and fibrotic, followed by nerve cells. Is destroyed and the brain is atrophic. Familial (hereditary) AD develops early and becomes juvenile AD due to mutations in the amyloid precursor protein (APP) gene and presenilin 1 (PSEN1) gene involved in these metabolisms.
 現在、ADの発症機序に基づき、その発症プロセスを阻害するAD治療薬が多数開発されている。しかし、そのほとんどは臨床治験での十分な有効性が未だに示されていない。これは、治験薬が無効なのではなく、治験対象群が適切でないためとの仮説が提唱されている。従来臨床治験が行われていた対象群は、ADによる脳病変が進行し、大量の神経細胞死が生じた病後期の患者であった。しかし、この段階で治療を開始しても神経機能の回復は望めない。つまり、治療薬の投与時期が遅すぎるために、有効な治療効果を得ることができなかったと考えられている(非特許文献1)。2021年になって、可溶性Aβ凝集体に対するモノクローナル抗体が世界で初めてFDAによりAD治療薬として承認された。しかし、この治療薬はアミロイド病理を改善するものの、認知症状の改善には至らなかった(非特許文献2)。このことは、この治療薬の効果はAD病理の進行の抑制に限られる。したがって、適切な投与時期、すなわち、神経細胞死を回避可能な早期段階でAD治療薬を投与することができれば、その有効性が期待し得る。それには、AD病態をより高い精度で鑑別する必要がある。 Currently, based on the pathogenic mechanism of AD, many AD therapeutic agents that inhibit the pathogenic process are being developed. However, most of them have not yet been shown to be sufficiently effective in clinical trials. It is hypothesized that this is not because the investigational drug is ineffective, but because the study group is not appropriate. The target group for which clinical trials have been conducted in the past was late-stage patients with advanced brain lesions due to AD and massive neuronal cell death. However, even if treatment is started at this stage, recovery of nerve function cannot be expected. That is, it is considered that an effective therapeutic effect could not be obtained because the administration time of the therapeutic agent was too late (Non-Patent Document 1). In 2021, a monoclonal antibody against soluble Aβ aggregates was approved by the FDA for the first time in the world as a treatment for AD. However, although this therapeutic agent improves amyloid pathology, it does not improve cognitive symptoms (Non-Patent Document 2). This means that the effect of this therapeutic agent is limited to suppressing the progression of AD pathology. Therefore, if the AD therapeutic agent can be administered at an appropriate timing, that is, at an early stage in which nerve cell death can be avoided, its effectiveness can be expected. For that purpose, it is necessary to distinguish the AD pathological condition with higher accuracy.
 一般に、物忘れ外来を受診した認知症が疑われる患者は、認知症スコア(mini-mental state examination: MMSE)等の検査に基づいて、AD、軽度認知障害(mild cognitive impairment(本明細書においては、しばしば「MCI」と略称する)、及びMCI及びADの診断基準に適合しなかった群(Normal Control:本明細書においては、しばしば「NC」と略称する)の3群に分類される。長期観察研究結果から、NC患者の一部は将来認知症であるMCIへと移行し、MCIの一部は将来より重症なADに移行し得ることが知られている。しかし、認知症スコアのみでは、客観性に乏しい診断法であり、また重症化の移行判断もできなかった。 In general, patients with suspected dementia who have visited the outpatient department for forgetfulness have AD, mild cognitive impairment (in the present specification) based on tests such as the mini-mental state examination (MMSE). It is divided into three groups: (often abbreviated as "MCI") and a group that does not meet the diagnostic criteria for MCI and AD (Normal Control: often abbreviated as "NC" in the present specification). Studies have shown that some NC patients may transition to MCI, which is dementia in the future, and some MCI may transition to more severe AD in the future, but dementia scores alone are not enough. It was a poorly objective diagnostic method, and it was not possible to judge the transition to aggravation.
 AD病態を客観的に、かつ早期に鑑別する方法として、ADの原因因子をAD診断用マーカーとして用いる方法が知られている。そのようなバイオマーカーとして、tauタンパク質、過剰にリン酸化されたtau(p-tau)タンパク質、アミロイドβ42(Aβ42)ペプチド、アミロイドβ40(Aβ40)ペプチド又は炎症性疾患におけるサイトカイン(非特許文献3)の他、マンノース非還元末端糖鎖を有するトランスフェリン糖タンパク質(末端Man-Tfタンパク質)(特許文献1)が知られている。 As a method for objectively and earlyly differentiating AD pathological conditions, a method using a causative factor of AD as a marker for AD diagnosis is known. Such biomarkers include tau protein, overly phosphorylated tau (p-tau) protein, amyloid β42 (Aβ42) peptide, amyloid β40 (Aβ40) peptide or cytokines in inflammatory diseases (Non-Patent Document 3). In addition, a transferase sugar protein having a mannose non-reducing terminal sugar chain (terminal Man-Tf protein) (Patent Document 1) is known.
 しかしながら、tauタンパク質は前頭側頭型認知症や進行性核上麻痺等の認知症でも増加するためAD特異的なバイオマーカーとは言い難かった。一方、p-tauタンパク質は優れたAD診断用マーカーではあるが、このタンパク質の出現は神経細胞の死を意味しており、神経細胞死を回避すべきADの早期診断用としては適切とはいえなかった。同様に、Aβ42ペプチドも病気が進行した後でなければ変化しないという問題があった。また、サイトカインは感度よく測定できるものの、疾患特異性に乏しいという欠点があった。さらに、末端Man-Tfは、特異性は高いものの感度の点で十分とは言い難かった。 However, tau protein is not an AD-specific biomarker because it also increases in dementia such as frontotemporal dementia and progressive supranuclear palsy. On the other hand, the p-tau protein is an excellent marker for AD diagnosis, but the appearance of this protein means the death of nerve cells, and although it is appropriate for early diagnosis of AD in which nerve cell death should be avoided. I didn't. Similarly, there was the problem that the Aβ42 peptide did not change until after the disease had progressed. In addition, although cytokines can be measured with high sensitivity, they have the drawback of poor disease specificity. Furthermore, although the terminal Man-Tf has high specificity, it cannot be said that it is sufficient in terms of sensitivity.
WO2017/195778WO2017 / 195778
 本発明は、疾患発症前から疾患発症後期にわたるAD病態の罹患の有無とその発症リスクを特異的に、かつ高精度で鑑別できるバイオマーカーを開発し、そのバイオマーカーを検出するキット、及びそれらを用いたAD病態の高精度な鑑別方法を提供することを課題とする。 The present invention develops a biomarker capable of specifically and accurately distinguishing the presence or absence of AD pathological condition from before the onset of the disease to the late stage of the onset of the disease and the risk of the onset of the disease, and a kit for detecting the biomarker, and a kit for detecting them. An object of the present invention is to provide a highly accurate method for differentiating the AD pathological condition used.
 上記課題を解決するために、本発明者らが鋭意研究を重ね、ヒト大脳におけるin situ hybridization、脳内のTfに結合するマンノース糖鎖の質量分析、及び免疫組織化学的解析により、AD患者の海馬において、共にAD診断用マーカーである末端Man-Tfとp-tauが神経細胞で共局在していることを見出した。この結果は、末端Man-Tfの分泌とtauのリン酸化が相関している可能性を示唆している。そこで、AD患者及びMCI患者から採取した髄液中の末端Man-Tfタンパク質及びp-tauタンパク質又はtauタンパク質の量を組み合わせて感度、特異度との関係を調べた結果、両者の積が、それぞれ単独の場合と比較して優れたAD病態の鑑別マーカーであることを見出した。さらに、N-アセチルグルコサミン非還元末端糖鎖を有するトランスフェリン糖タンパク質(末端GlcNAc-Tfタンパク質)及びプロスタグランジンD2合成酵素(prostaglandin-H2 D-isomerase:PGDS)に関しても他の既知AD診断用マーカーを組み合わせた時に、それぞれ単独の場合と比較してAD病態を鑑別する際の優れたバイオマーカーとなり得ることを見出した。 In order to solve the above problems, the present inventors have conducted intensive studies, and conducted in situ hybridization in the human cerebrum, mass analysis of mannose sugar chains bound to Tf in the brain, and immunohistochemical analysis of AD patients. In the hippocampus, we found that both terminal Man-Tf and p-tau, which are markers for AD diagnosis, are co-localized in neurons. This result suggests that terminal Man-Tf secretion and tau phosphorylation may be correlated. Therefore, as a result of investigating the relationship between sensitivity and specificity by combining the amounts of terminal Man-Tf protein and p-tau protein or tau protein in the cerebrospinal fluid collected from AD patients and MCI patients, the product of both was obtained, respectively. It was found that it is an excellent differential marker for AD pathology as compared with the case of using it alone. In addition, other known AD diagnostic markers are available for transferase glycoproteins (terminal GlcNAc-Tf proteins) having N-acetylglucosamine non-reducing terminal sugar chains and prostaglandin-H2 D-isomerase (PGDS). It was found that when combined, they can be excellent biomarkers for differentiating AD pathology compared to the case of each alone.
 本願発明は、これらの新たな知見に基づき開発されたものであって、以下を提供する。(1)以下の(a)~(c)のいずれかからなるアルツハイマー病病態の鑑別用組み合わせマーカー。
 (a)非還元末端にマンノースを有する糖鎖を少なくとも1つ含むトランスフェリン糖タンパク質(Man-Tfタンパク質)又は前記マンノースを有する糖鎖を含むその断片、非還元末端にN-アセチルグルコサミンを有する糖鎖のみを含むトランスフェリン糖タンパク質(GlcNAc-Tfタンパク質)又は前記N-アセチルグルコサミンを有する糖鎖を含むその断片、及びプロスタグランジンD2合成酵素(PGDS)又はその断片からなる群から選択されるいずれか一のポリペプチド、及びタウタンパク質(tauタンパク質)、リン酸化タウタンパク質(p-tauタンパク質)及びそれらの断片からなる群から選択されるいずれか一のポリペプチドの組み合わせ、
 (b)前記Man-Tfタンパク質又は前記マンノースを有する糖鎖を含むその断片、前記GlcNAc-Tfタンパク質又は前記糖鎖を含むその断片、及び前記PGDS又はその断片からなる群から選択される少なくとも2以上のタンパク質の組み合わせ、又は
 (c)前記Man-Tfタンパク質又は前記マンノースを有する糖鎖を含むその断片、又はGlcNAc-Tfタンパク質又は前記N-アセチルグルコサミンを有する糖鎖を含むその断片、及びAD indexの組み合わせであって、ここでAD index は、(アミロイドβ40ペプチド/アミロイドβ42ペプチド)×p-tauタンパク質の式から算出される。
(2)配列番号1で示すアミノ酸配列からなるトランスフェリン(Tf)タンパク質において、前記Man-Tfタンパク質の非還元末端にマンノースを有する糖鎖は432位のアスパラギン残基に付加されており、前記GlcNAc-Tfタンパク質の非還元末端にN-アセチルグルコサミンを有する糖鎖は432位及び630位のアスパラギン残基に付加されている、(1)に記載の鑑別用組み合わせマーカー。
(3)前記アルツハイマー病病態がアルツハイマー病(AD)、軽度認知障害(MCI)、及び健常対照(NC)からなる、(1)又は(2)に記載の鑑別用組み合わせマーカー。
(4)前記NCをMCI移行型健常対照(pre-MCI)及びMCI非移行型健常対照(non-pre-MCI)にさらに鑑別する、(3)に記載の鑑別用組み合わせマーカー。
(5)アルツハイマー病病態の鑑別キットであって、(1)~(4)のいずれかに記載のアルツハイマー病病態の鑑別用組み合わせマーカーのそれぞれに特異的に結合する、ペプチド結合分子及び糖鎖結合分子を含み、前記ペプチド結合分子が特異的に結合するポリペプチドがTfタンパク質、PGDS、及びtauタンパク質からなる群から選択されるいずれか一以上であり、前記糖鎖結合分子が特異的に結合する糖鎖が非還元末端にマンノースを有する糖鎖及び/又は非還元末端にN-アセチルグルコサミンを有する糖鎖である前記鑑別キット。
(6)前記ペプチド結合分子が抗体若しくはその活性断片、又はアプタマーである、(5)に記載の鑑別キット。
(7)前記糖鎖結合分子がレクチン、抗体若しくはその活性断片、及びアプタマーからなる群から選択される、(5)又は(6)に記載の鑑別キット。
(8)アルツハイマー病病態の鑑別方法であって、認知症の疑いのある被験者から得た所定量の体液中に存在する、(1)~(4)のいずれかに記載のアルツハイマー病病態の鑑別用組み合わせマーカーにおけるそれぞれのマーカーの量を、該マーカーのポリペプチドに特異的に結合するペプチド結合分子及び該マーカーの糖鎖に特異的に結合する糖鎖結合分子を用いて測定し、その測定値を得る工程、前記それぞれのマーカーの測定値を乗じて得られる積値を得る工程、及び予め設定されたADカットオフ値及びMCIカットオフ値に基づいて前記積値から前記被験者がAD、MCI、及びNCのいずれに該当し得るかを判定する工程
を含む前記鑑別方法。
(9)MCI移行型健常対照の鑑別方法であって、予め設定されたpre-MCIカットオフ値に基づいて(8)に記載のアルツハイマー病病態の鑑別方法でNCに該当すると判定された被験者の前記積値から前記被験者がpre-MCI及びnon-pre-MCIのいずれに該当し得るかを判定する工程を含む前記鑑別方法。
(10)以下の(a)~(c)のいずれかからなるアルツハイマー病病態の鑑別用組み合わせマーカー。
 (a)非還元末端にマンノースを有する糖鎖を少なくとも1つ含むトランスフェリン糖タンパク質(Man-Tfタンパク質)又は前記マンノースを有する糖鎖を含むその断片、非還元末端にN-アセチルグルコサミンを有する糖鎖のみを含むトランスフェリン糖タンパク質(GlcNAc-Tfタンパク質)又は前記N-アセチルグルコサミンを有する糖鎖を含むその断片、及びプロスタグランジンD2合成酵素(PGDS)又はその断片からなる群から選択されるいずれか一のポリペプチド、及びタウタンパク質(tauタンパク質)、リン酸化タウタンパク質(p-tauタンパク質)及びそれらの断片からなる群から選択されるいずれか一のポリペプチドの組み合わせ、
 (b)前記Man-Tfタンパク質又は前記マンノースを有する糖鎖を含むその断片、前記GlcNAc-Tfタンパク質又は前記糖鎖を含むその断片、及び前記PGDS又はその断片からなる群から選択される少なくとも2以上のタンパク質の組み合わせ、又は
 (c)前記Man-Tfタンパク質又は前記マンノースを有する糖鎖を含むその断片、又はGlcNAc-Tfタンパク質又は前記N-アセチルグルコサミンを有する糖鎖を含むその断片、及びAD indexの組み合わせである。
 本明細書は本願の優先権の基礎となる日本国特許出願番号2020-163105号の開示内容を包含する。
The present invention has been developed based on these new findings, and provides the following. (1) A combination marker for differentiating Alzheimer's disease pathological condition consisting of any of the following (a) to (c).
(A) Transtransferase glycoprotein (Man-Tf protein) containing at least one sugar chain having mannose at the non-reducing end, a fragment thereof containing the sugar chain having mannose, and a sugar chain having N-acetylglucosamine at the non-reducing end. Any one selected from the group consisting of a transferase (GlcNAc-Tf protein) containing only a fragment thereof or a fragment thereof containing the sugar chain having N-acetylglucosamine, and a prostaglandin D2 synthase (PGDS) or a fragment thereof. , And a combination of any one of the polypeptides selected from the group consisting of tau protein (tau protein), phosphorylated tau protein (p-tau protein) and fragments thereof.
(B) At least two or more selected from the group consisting of the Man-Tf protein or a fragment thereof containing a sugar chain having the mannose, the GlcNAc-Tf protein or a fragment thereof containing the sugar chain, and the PGDS or a fragment thereof. (C) The Man-Tf protein or a fragment thereof containing the sugar chain having the mannose, or the fragment thereof containing the GlcNAc-Tf protein or the sugar chain having the N-acetylglucosamine, and the AD index. In combination, the AD index is calculated from the formula (amyloid β40 peptide / amyloid β42 peptide) × p-tau protein.
(2) In the transtransferase (Tf) protein consisting of the amino acid sequence shown in SEQ ID NO: 1, a sugar chain having mannose at the non-reducing end of the Man-Tf protein is added to the asparagine residue at position 432, and the GlcNAc- The differential combination marker according to (1), wherein the sugar chain having N-acetylglucosamine at the non-reducing end of the Tf protein is added to the asparagine residues at positions 432 and 630.
(3) The differential combination marker according to (1) or (2), wherein the Alzheimer's disease condition comprises Alzheimer's disease (AD), mild cognitive impairment (MCI), and a healthy control (NC).
(4) The differential combination marker according to (3), which further differentiates the NC into an MCI transitional healthy control (pre-MCI) and an MCI non-transitional healthy control (non-pre-MCI).
(5) A peptide-binding molecule and a sugar chain bond that are a kit for differentiating Alzheimer's pathology and specifically bind to each of the combination markers for differentiating Alzheimer's pathology according to any one of (1) to (4). The polypeptide containing the molecule and specifically bound to the peptide bond molecule is at least one selected from the group consisting of Tf protein, PGDS, and tau protein, and the sugar chain binding molecule specifically binds to the polypeptide. The above-mentioned discrimination kit, wherein the sugar chain is a sugar chain having mannose at the non-reducing end and / or a sugar chain having N-acetylglucosamine at the non-reducing end.
(6) The differentiation kit according to (5), wherein the peptide bond molecule is an antibody or an active fragment thereof, or an aptamer.
(7) The discrimination kit according to (5) or (6), wherein the sugar chain-binding molecule is selected from the group consisting of lectins, antibodies or active fragments thereof, and aptamers.
(8) The method for differentiating Alzheimer's disease pathology according to any one of (1) to (4), which is present in a predetermined amount of body fluid obtained from a subject suspected of having dementia. The amount of each marker in the combination marker for use was measured using a peptide bond molecule that specifically binds to the polypeptide of the marker and a sugar chain binding molecule that specifically binds to the sugar chain of the marker, and the measured value thereof. The step of obtaining the product value obtained by multiplying the measured values of the respective markers, and the step of obtaining the AD, MCI, from the product value based on the preset AD cutoff value and MCI cutoff value. The discrimination method including a step of determining which of NC and NC can be applied.
(9) A subject who is determined to be NC by the method for differentiating Alzheimer's disease according to (8) based on a preset pre-MCI cutoff value, which is a method for differentiating a healthy control with MCI transition. The discrimination method including a step of determining whether the subject can correspond to pre-MCI or non-pre-MCI from the product value.
(10) A combination marker for differentiating Alzheimer's disease pathological condition, which comprises any of the following (a) to (c).
(A) Transtransferase glycoprotein (Man-Tf protein) containing at least one sugar chain having mannose at the non-reducing end, a fragment thereof containing the sugar chain having mannose, and a sugar chain having N-acetylglucosamine at the non-reducing end. Any one selected from the group consisting of a transferase (GlcNAc-Tf protein) containing only a fragment thereof or a fragment thereof containing the sugar chain having N-acetylglucosamine, and a prostaglandin D2 synthase (PGDS) or a fragment thereof. , And a combination of any one of the polypeptides selected from the group consisting of tau protein (tau protein), phosphorylated tau protein (p-tau protein) and fragments thereof.
(B) At least two or more selected from the group consisting of the Man-Tf protein or a fragment thereof containing a sugar chain having the mannose, the GlcNAc-Tf protein or a fragment thereof containing the sugar chain, and the PGDS or a fragment thereof. (C) The Man-Tf protein or a fragment thereof containing the sugar chain having the mannose, or the fragment thereof containing the GlcNAc-Tf protein or the sugar chain having the N-acetylglucosamine, and the AD index. It is a combination.
This specification includes the disclosure content of Japanese Patent Application No. 2020-163105, which is the basis of the priority of the present application.
 本発明の組み合わせマーカーによれば、被験体のAD病態、すなわちAD又はMCIの罹患の有無及び罹患可能性を高精度に鑑別できる。 According to the combination marker of the present invention, the AD pathological condition of the subject, that is, the presence or absence of AD or MCI and the possibility of being affected can be discriminated with high accuracy.
髄液中に存在するトランスフェリン糖タンパク質の3種のTf糖鎖アイソフォームの構造を示す概念図である。Aはシアル酸非還元末端糖鎖を2本有する末端Sia-Tf糖タンパク質を、BはGlcNAc非還元末端糖鎖を2本有する末端GlcNAc-Tf糖タンパク質を、そしてCはMan非還元末端糖鎖とGlcNAc非還元末端糖鎖をそれぞれ1本ずつ有する末端Man-Tf糖タンパク質を示す。It is a conceptual diagram showing the structure of three kinds of Tf sugar chain isoforms of transferrin glycoprotein present in cerebrospinal fluid. A is a terminal Sia-Tf glycoprotein having two sialic acid non-reducing terminal sugar chains, B is a terminal GlcNAc-Tf glycoprotein having two GlcNAc non-reducing terminal sugar chains, and C is a Man non-reducing terminal sugar chain. And GlcNAc show a terminal Man-Tf glycoprotein having one non-reducing terminal sugar chain each. 海馬におけるTfタンパク質とリン酸化tau(p-tau)タンパク質の局在を示した免疫組織化学染色図である。Aは健常体の海馬を、BはAD患者の海馬をそれぞれ示す。図中、mergeはTfタンパク質とp-tauタンパク質の染色図を合成した図である。It is an immunohistochemical staining diagram showing the localization of Tf protein and phosphorylated tau (p-tau) protein in the hippocampus. A indicates the hippocampus of a healthy body, and B indicates the hippocampus of an AD patient. In the figure, merge is a diagram in which a staining diagram of Tf protein and p-tau protein is synthesized. 様々な認知症患者における髄液中のMan-Tfタンパク質量を示すドットグラフである。図中、黒三角は、追跡調査によってNCからMCIに移行したNC患者を、また黒四角は追跡調査によってMCIからADに移行したMCI患者を示す。It is a dot graph which shows the amount of Man-Tf protein in the cerebrospinal fluid in various dementia patients. In the figure, the black triangles indicate NC patients who have transitioned from NC to MCI by follow-up, and the black squares indicate MCI patients who have transitioned from MCI to AD by follow-up. 2つのマーカーを組み合わせたときの各AD病態におけるドットグラフである。AはMan-Tfタンパク質のみをマーカーとしたときの比較用ドットグラフを、BはMan-Tfタンパク質とp-tauタンパク質の組み合わせマーカーを用いたときのドットグラフを、そしてCはMan-Tfタンパク質とtauタンパク質の組み合わせマーカーを用いたときのドットグラフを示す。図中の破線は、iNPHを疾患コントロールとした時の各群のカットオフ値を示している。It is a dot graph in each AD pathological condition when two markers are combined. A is a dot graph for comparison when only Man-Tf protein is used as a marker, B is a dot graph when a combination marker of Man-Tf protein and p-tau protein is used, and C is Man-Tf protein. The dot graph when the combination marker of tau protein is used is shown. The broken line in the figure shows the cutoff value of each group when iNPH is used as a disease control.
1.アルツハイマー病病態鑑別用組み合わせマーカー(AD病態鑑別用組み合わせマーカー)
1-1.概要
 本発明の第1の態様は、アルツハイマー病病態鑑別用組み合わせマーカー(本明細書では、しばしば「AD病態鑑別用組み合わせマーカー」又は単に「組み合わせマーカー」と表記する)である。本発明の組み合わせマーカーは、2種以上のタンパク質又はそのペプチド断片の組み合わせからなり、認知症の疑いのある被験者に対して後述する第3態様のAD病態鑑別方法において使用することができる。
1. 1. Combination marker for Alzheimer's disease pathology differentiation (combination marker for AD pathology discrimination)
1-1. Overview A first aspect of the present invention is a combination marker for differentiating Alzheimer's disease (often referred to herein as "combination marker for AD pathology" or simply "combination marker"). The combination marker of the present invention comprises a combination of two or more kinds of proteins or peptide fragments thereof, and can be used in the AD pathological condition differentiation method of the third aspect described later for a subject suspected of having dementia.
1-2.定義
 本明細書において「アルツハイマー病病態(Alzheimer's disease state)(本明細書では、しばしば「AD病態」と表記する)とは、リン酸化tauタンパク質の神経細胞内における異常蓄積を発症機序とするタウオパチーにおいて、アルツハイマー病の症状、又はそれに類する軽度な症状を呈する一群をいう。具体的には、アルツハイマー病、及び軽度認知障害(MCI)等が該当する。
1-2. Definition In the present specification, "Alzheimer's disease state" (often referred to as "AD condition" in the present specification) is a tauopathy whose pathogenic mechanism is abnormal accumulation of phosphorylated tau protein in nerve cells. In, refers to a group exhibiting symptoms of Alzheimer's disease or similar mild symptoms. Specifically, this includes Alzheimer's disease and mild cognitive impairment (MCI).
 「アルツハイマー病(Alzheimer's disease;AD)」とは、前述のように、認知症、行動障害、又は人格変化等の症状を呈する不可逆的な進行性中枢神経疾患である。 As mentioned above, "Alzheimer's disease (AD)" is an irreversible progressive central nervous system disease that presents with symptoms such as dementia, behavioral disorders, or personality changes.
 「軽度認知障害(mild cognitive impairment; MCI)」とは、認知機能(記憶、決定、理由付け、実行等)のうちの1つに機能障害を生じ、その結果、認知機能の軽微な低下が認められるものの、日常生活には支障がない状態をいう。本明細書においては、MCIを中枢神経疾患に含める。前述のように、MCI患者の一部は、病状の進行に伴いADに移行することが知られている。 "Mild cognitive impairment (MCI)" means that one of the cognitive functions (memory, decision, reasoning, execution, etc.) is impaired, and as a result, a slight decrease in cognitive function is observed. However, it is a condition that does not interfere with daily life. As used herein, MCI is included in central nervous system diseases. As mentioned above, some MCI patients are known to develop AD as their condition progresses.
 本明細書において「正常対照(normal control; NC)」とは、物忘れ外来を受診した認知症が疑われる患者のうち、認知症スコア等の認知症臨床診断基準によりADでもMCIでもないと診断されたものをいう。NCと診断された被験者を本明細書では「NC患者」と表記する。 In the present specification, "normal control (NC)" is a patient who is suspected of having dementia who has visited a memory outpatient clinic and is diagnosed as neither AD nor MCI according to dementia clinical diagnostic criteria such as dementia score. It means something. Subjects diagnosed with NC are referred to herein as "NC patients".
 本明細書において「認知症が疑われる患者」とは、物忘れ外来を受診した患者全体を指す。認知症が疑われる患者は、AD、MCI、進行性核上性麻痺(progressive supranuclear palsy:本明細書では「PSP」と略記する)、前頭側頭型認知症(frontotemporal dementia;本明細書では「FTD」と略記する)、レビー小体型認知症(dementia with Lewy bodies;本明細書では「DLB」と略記する)、パーキンソン病(Parkinson’s disease:本明細書では「PD」と略記する)及びNCのいずれかに該当し、通常、臨床診断基準に従った医師の診断により、いずれかの群に分けられる。この際に用いられる診断基準は、前述の認知症スコア(MMSE)をはじめとして当業者においてよく知られている(例えば、認知症疾患診療ガイドライン2017、医学書院を参照)。 In the present specification, "patient with suspected dementia" refers to all patients who have undergone a forgetfulness outpatient clinic. Patients with suspected dementia include AD, MCI, progressive supranuclear palsy (abbreviated as "PSP" in this specification), and frontotemporal dementia; FTD ”), dementia with Lewy bodies (abbreviated as“ DLB ”in the present specification), Parkinson's disease (abbreviated as“ PD ”in the present specification) and NC. It falls under either category and is usually divided into either group according to the diagnosis of a doctor according to clinical diagnostic criteria. The diagnostic criteria used in this case are well known to those skilled in the art, including the above-mentioned Dementia Score (MMSE) (see, for example, Dementia Disease Clinical Practice Guidelines 2017, Igaku-Shoin).
 本明細書において「軽度認知障害移行型NC(pre-MCI)」とは、NCのうち、治療的介入を伴わなければ、病状の進行によりいずれMCIに移行する可能性が高い病態をいう。従来NCは認知症の臨床診断基準において、いずれの認知症にも該当せず、それ故に認知症に関して正常であると診断されてきた。しかし、今回、本発明のAD病態鑑別用組み合わせマーカーにより、NCであっても、その一部は将来MCIに移行する可能性のある集団が存在し得ることが明らかとなった。そこで、本明細書では、NCをpre-MCIとnon-pre-MCIの2群を包含するものとして考える。 In the present specification, "mild cognitive impairment transition type NC (pre-MCI)" refers to a pathological condition among NCs that is likely to eventually transition to MCI as the condition progresses without therapeutic intervention. Conventionally, NC has been diagnosed as normal for dementia because it does not correspond to any dementia in the clinical diagnostic criteria for dementia. However, this time, the combination marker for AD pathological condition identification of the present invention has revealed that there may be a population in which a part of NC may be transferred to MCI in the future. Therefore, in the present specification, NC is considered to include two groups of pre-MCI and non-pre-MCI.
 「非軽度認知障害移行型NC(non-pre-MCI)」とは、従来のNCとほぼ同義であり、将来的にMCIへの移行の可能性が低く、認知症に関して正常である可能性の高いNCをいう。 "Non-pre-MCI" is almost synonymous with conventional NC, and the possibility of transition to MCI in the future is low, and it may be normal for dementia. High NC.
 本明細書において「診断」とは、疾患の罹患鑑別若しくは罹患可能性、又は疾患の病態を判断することをいう。通常、診断行為は、医師、獣医師、又は歯科医の専権業務であるが、本明細書における診断は、医師等の行為を介することなく、医師等による診断を補助する補助的行為を包含する。 As used herein, the term "diagnosis" refers to the differentiation or possibility of morbidity of a disease, or the determination of the pathophysiology of a disease. Usually, the diagnostic act is the exclusive business of a doctor, a veterinarian, or a dentist, but the diagnosis in the present specification includes an auxiliary act of assisting the diagnosis by a doctor or the like without going through the act of the doctor or the like. ..
 本明細書において「罹患(の)鑑別」とは、特定の疾患に罹患しているか、いないかを判断することをいう。病変や病状が類似する他の疾患との識別も含む。 As used herein, the term "affected () differentiation" refers to determining whether or not a person has a specific disease. It also includes distinguishing from other diseases with similar lesions and conditions.
 本明細書において「罹患(の)可能性」とは、現在の状態から、将来、特定の疾患に移行し、その特定の疾患に罹患する確率をいう。本明細書においては、特定の疾患をADとした場合に、ADに罹患する確率を意味し、特にMCIからADへの移行の確率を意味する。 As used herein, the term "possibility of morbidity" refers to the probability of shifting from the current state to a specific disease in the future and suffering from that specific disease. As used herein, it means the probability of contracting AD when a specific disease is AD, and in particular, the probability of transition from MCI to AD.
 本明細書において「被験体」とは、本発明の各態様における適用対象をいう。具体的には、AD病態の罹患鑑別を目的として本態様の鑑別方法に供される対象をいう。原則として動物個体であるが、その組織や細胞も包含する。具体例として、個体であれば哺乳動物個体、好ましくはヒト、イヌ、ネコ、ウマ等が挙げられる。好ましくはヒトである。個体の場合、生死は問わないが、生体であることが好ましい。個体は、例えば健康診断の受診者のように何らかの疾患に罹患した個体、又は何らかの疾患の罹患可能性のある個体、又は健常体のいずれであってもよい。「疾患の罹患可能性のある個体」とは、例えば、MCIから将来ADへの移行可能性のある個体やNCから将来MCIへの移行可能性のあるpre-MCI個体が該当する。 As used herein, the term "subject" refers to an object of application in each aspect of the present invention. Specifically, it refers to a subject to be subjected to the differentiation method of this embodiment for the purpose of differentiating the morbidity of AD pathology. In principle, it is an individual animal, but it also includes its tissues and cells. Specific examples thereof include mammals, preferably humans, dogs, cats, horses and the like. It is preferably human. In the case of an individual, it does not matter whether it is alive or dead, but it is preferably a living body. The individual may be either an individual suffering from some kind of disease, such as a person undergoing a medical examination, an individual having a possibility of suffering from some kind of disease, or a healthy body. The “disease-potential individual” is, for example, an individual having a possibility of transition from MCI to AD in the future or a pre-MCI individual having a possibility of transition from NC to MCI in the future.
 本明細書において「健常体」とは、健常状態にある個体をいう。本明細書において「健常状態」とは、少なくともAD病態等に罹患していない状態、好ましくはあらゆる疾患や障害のない健全な状態を意味する。また、後述の実施例に記載の「疾患対照」は、本明細書では特発性正常圧水頭症(idiopathic Normal Pressure Hydrocephalus;本明細書では、しばしば「iNPH」と略称する)罹患個体である。iNPHはAD病態とは明白に異なる。それ故に、疾患対照は、本明細書では健常体に該当する。本明細書において健常体は、主に被験体との比較基準である対照体として使用される。したがって、本明細書において被験体と健常体は同一種である。さらに、亜種(人種を含む)、性別、年齢(月例、週齢を含む)、身長、体重等の条件が同一であることが好ましい。 In the present specification, the "healthy body" means an individual in a healthy state. As used herein, the term "healthy state" means at least a state not suffering from AD pathology or the like, preferably a healthy state without any disease or disorder. In addition, the "disease control" described in Examples described later is an individual suffering from idiopathic normal pressure hydrocephalus (idiopathic Normal Pressure Hydrocephalus; often abbreviated as "iNPH" in the present specification). iNPH is clearly different from AD pathology. Therefore, the disease control corresponds to a healthy body herein. In the present specification, a healthy body is mainly used as a control body as a reference for comparison with a subject. Therefore, in the present specification, the subject and the healthy body are the same species. Further, it is preferable that the conditions such as subspecies (including race), gender, age (including monthly and weekly age), height, and weight are the same.
 本明細書において、「体液」とは、被験体及び対照体から採取される液状試料をいう。例えば、髄液(脳脊髄液)、血液(血清、血漿及び間質液を含む)、尿、リンパ液、消化液、腹水、胸水、神経根周囲液、各組織若しくは細胞の抽出液等が挙げられる。好ましくは髄液又は血液、より好ましくは髄液である。 As used herein, the term "body fluid" refers to a liquid sample collected from a subject and a control body. Examples thereof include cerebrospinal fluid (cerebrospinal fluid), blood (including serum, plasma and interstitial fluid), urine, lymph, digestive fluid, ascites, pleural effusion, perineural fluid, and extracts of tissues or cells. .. It is preferably cerebrospinal fluid or blood, more preferably cerebrospinal fluid.
 本明細書において、「髄液(cerebrospinal fluid:CSF)とは、脳と脊髄の中枢神経系(CNS:Central Nerve System)周囲にのみ存在する無色透明の細胞外液をいう。他の臓器とは硬膜によって、また血液とは血液脳関門や血液脳脊髄液関門によって、隔てられている。髄液は、その大部分が脳の実質より滲出することや、脳細胞と髄液との間には障壁が事実上存在しないことが近年の研究から明らかとなっている(Wang C, et al., 2012, Cerebrospinal Fluid: Physiology, biomarker and methodology. In: V. S, Dolezal, T., editor. Cerebrospinal Fluid: Functions, Composition and Disorders. New York: Nova Science Publishers; pp.1-37.)。この髄液中には、中枢神経系由来のタンパク質が多数存在し、中枢神経系疾患に伴い、その発現が増減することが知られている。例えば、AD病態においては、髄液の量が増加し、Aβを含む脳の老廃物の排除がなされること等が示唆されている(Lliff, et al., Sci. Transl. Med., 2010, 4)。 As used herein, the term "cerebrospinal fluid (CSF)" refers to a colorless and transparent extracellular fluid that exists only around the central nervous system (CNS: Central Nerve System) of the brain and spinal cord. It is separated from the blood by the hard membrane and by the blood-cerebrospinal and blood-cerebrospinal fluid barriers. Most of the cerebrospinal fluid exudes from the parenchyma of the brain and between brain cells and cerebrospinal fluid. Recent studies have shown that there are virtually no barriers (Wang C, et al., 2012, Cerebrospinal Fluid: Physiology, biomarker and methodology. In: V.S, Dolezal, T., editor. Cerebrospinal Fluid: Functions, Composition and Disorders. New York: Nova Science Publishers; pp.1-37.). There are many proteins derived from the central nervous system in this cerebrospinal fluid, and they are associated with central nervous system diseases. It is known that the expression increases or decreases. For example, in AD pathology, it is suggested that the amount of cerebrospinal fluid increases and the waste products of the brain including Aβ are eliminated (Lliff, et al). ., Sci. Transl. Med., 2010, 4).
 本明細書において「糖タンパク質」とは、一以上の糖鎖が付加したタンパク質をいう。糖タンパク質において糖鎖は、翻訳後修飾の一つとして付加され、生体内のタンパク質の50%以上に存在するとされている。糖鎖は、タンパク質の安定化、保護、生理活性、抗原抗体反応、ウイルス感染及び体内動態等に関与する等、様々な機能をタンパク質に付与する重要な役割を担う。 As used herein, the term "glycoprotein" refers to a protein to which one or more sugar chains are added. In glycoproteins, sugar chains are added as one of post-translational modifications, and are said to be present in more than 50% of proteins in vivo. Sugar chains play an important role in imparting various functions to proteins, such as being involved in protein stabilization, protection, bioactivity, antigen-antibody reaction, viral infection, and pharmacokinetics.
 本明細書において「(その糖鎖を含む)ペプチド断片」とは、前記糖タンパク質の一部からなり、かつ目的の糖鎖が付加されたアミノ酸残基を含むペプチドである。例えば、末端Man-Tfの一部からなり、かつマンノース非還元末端糖鎖が付加した432位のアスパラギン残基を含むペプチド等が挙げられる。ペプチド断片のアミノ酸数は特に限定はしない。糖タンパク質の一部であることから下限はエピトープを包含し得る長さ、例えば、8アミノ酸以上、好ましくは10又は15アミノ酸以上、より好ましくは20又は30アミノ酸以上であればよく、上限は糖タンパク質の全長未満のアミノ酸を有していればよい。 In the present specification, the "peptide fragment (including the sugar chain)" is a peptide consisting of a part of the glycoprotein and containing an amino acid residue to which the target sugar chain is added. For example, a peptide consisting of a part of terminal Man-Tf and containing an asparagine residue at position 432 to which a mannose non-reducing terminal sugar chain is added can be mentioned. The number of amino acids in the peptide fragment is not particularly limited. Since it is a part of glycoprotein, the lower limit may be a length that can include the epitope, for example, 8 amino acids or more, preferably 10 or 15 amino acids or more, more preferably 20 or 30 amino acids or more, and the upper limit is glycoprotein. It suffices to have amino acids less than the total length of.
 本明細書において「マーカー」とは、疾患の罹患又は罹患可能性を鑑別するための指標分子をいう。本明細書では、マーカーは、生体由来の分子、特にポリペプチド(糖タンパク質及びその断片を含む)を対象とするバイオマーカーが該当する。マーカーは、被験体の生体組織から検出されるが、本明細書においては、好ましくは体液から検出される。 As used herein, the term "marker" refers to an index molecule for differentiating the onset or possibility of morbidity of a disease. As used herein, the marker corresponds to a biomarker targeting a molecule derived from a living body, particularly a polypeptide (including a glycoprotein and a fragment thereof). The marker is detected in the body tissue of the subject, but is preferably detected in body fluids herein.
 本明細書において「組み合わせマーカー」とは、複数の前記マーカーを組み合わせることで、所定の目的を達成し得るマーカーをいう。ここで言う「所定の目的」とは、アルツハイマー病態の鑑別をいう。 As used herein, the term "combination marker" refers to a marker that can achieve a predetermined purpose by combining a plurality of the markers. The term "predetermined purpose" as used herein refers to the differentiation of Alzheimer's disease.
 本明細書において、「有意」とは、統計学的に有意であることをいう。統計学的に有意とは、被験対象の測定値と対照値の差異を統計学的に処理したときに、両者間に有意差があることをいう。本発明であれば、被験体と健常体群の末端Man-Tf量の測定値の差異を統計学的に処理したときの両者間の有意差が該当する。例えば、得られた値の危険率(有意水準)が小さい場合、具体的には5%より小さい場合(p<0.05)、1%より小さい場合(p<0.01)、0.1%より小さい場合(p<0.001)が挙げられる。ここに示す「p(値)」は、統計学的検定において、帰無仮説に基づいた分布の中で、検定統計量が偶然その値になる確率を示す。したがって「p」が小さいほど、検定統計量がその値となる確率は低く、帰無仮説が棄却されやすいことを意味する。統計学的処理の検定方法は、優位性の有無を判断可能な公知の検定方法を適宜使用すればよく、特に限定しない。例えば、スチューデントt検定法、共変量分散分析等を用いることができる。 In the present specification, "significant" means statistically significant. Statistically significant means that there is a significant difference between the measured and control values of the subject when statistically processed. In the present invention, the significant difference between the measured value of the terminal Man-Tf amount of the subject and the healthy body group when statistically processed is applicable. For example, when the risk factor (significance level) of the obtained value is small, specifically, when it is smaller than 5% (p <0.05), when it is smaller than 1% (p <0.01), and when it is smaller than 0.1% (p). <0.001) can be mentioned. The "p (value)" shown here indicates the probability that the test statistic will happen to be the value in the distribution based on the null hypothesis in the statistical test. Therefore, the smaller the "p", the lower the probability that the test statistic will be that value, and the more likely it is that the null hypothesis will be rejected. As the test method for statistical processing, a known test method capable of determining the presence or absence of superiority may be appropriately used, and is not particularly limited. For example, Student's t-test method, covariate ANOVA, etc. can be used.
1-3.構成
 本発明の「アルツハイマー病病態鑑別用組み合わせマーカー(AD病態鑑別用組み合わせマーカー)」は、2種以上のタンパク質又はペプチド断片からなるマーカーの組み合わせで構成され、認知症の疑いのある被験者に対してAD病態におけるAD又はMCIの罹患可能性を鑑別可能なバイオマーカーである。
1-3. Composition The "Combination marker for differentiating Alzheimer's disease (combination marker for AD pathological condition)" of the present invention is composed of a combination of markers consisting of two or more types of protein or peptide fragments, and is intended for subjects suspected of having dementia. It is a biomarker capable of differentiating the susceptibility of AD or MCI in AD pathology.
1-3-1.組み合わせマーカーを構成するマーカー
 本発明の組み合わせマーカーは2以上のマーカーで構成される。本発明の組み合わせマーカーは、トランスフェリン糖タンパク質又は所定の糖鎖を含むその断片、プロスタグランジンD2合成酵素又はその断片、tau関連タンパク質又はその断片、及びAD indexである。以下、それぞれのマーカーについて説明をする。
1-3-1. Markers Constituting Combination Markers The combination markers of the present invention are composed of two or more markers. The combination markers of the present invention are a transferrin glycoprotein or a fragment thereof containing a predetermined sugar chain, a prostaglandin D2 synthase or a fragment thereof, a tau-related protein or a fragment thereof, and an AD index. Hereinafter, each marker will be described.
(1)トランスフェリン糖タンパク質(Tf糖タンパク質)
 本明細書において「トランスフェリン糖タンパク質」(本明細書では、しばしば「Tf糖タンパク質」と表記する)とは、トランスフェリンタンパク質において、N結合型糖鎖が付加されたタンパク質である。
(1) Transferrin glycoprotein (Tf glycoprotein)
As used herein, "transferrin glycoprotein" (often referred to herein as "Tf glycoprotein") is a transferrin protein to which an N-linked sugar chain has been added.
 トランスフェリン(Transferrin;Tf)タンパク質(本明細書では、しばしば「Tfタンパク質」と表記する)は、2個の鉄(Fe)イオンと可逆的に結合し、その生体内輸送を担う分子量約80KDaのキャリアタンパク質である。Tfタンパク質の具体例として、698個のアミノ酸残基で構成され、配列番号1で示すアミノ酸配列からなるヒトTfタンパク質が挙げられる。 The transferrin (Tf) protein (often referred to herein as the "Tf protein") is a carrier with a molecular weight of approximately 80 KDa that reversibly binds to two iron (Fe) ions and is responsible for its in vivo transport. It is a protein. Specific examples of the Tf protein include a human Tf protein composed of 698 amino acid residues and consisting of the amino acid sequence shown in SEQ ID NO: 1.
 Tf糖タンパク質にはタンパク質部分が共通で、付加されるN結合型糖鎖の構造のみが異なる3種のアイソフォームが存在する。具体的には、末端Man-Tfタンパク質、末端GlcNAc-Tfタンパク質、そして末端Sia-Tfタンパク質である。このうち、本発明の組み合わせマーカーを構成し得るTf糖タンパク質は、末端Man-Tfタンパク質と末端GlcNAc-Tfタンパク質である。それぞれのTf糖タンパク質について、以下で具体的に説明をする。 There are three types of isoforms in which the protein part is common to Tf glycoproteins and only the structure of the added N-linked sugar chain is different. Specifically, it is a terminal Man-Tf protein, a terminal GlcNAc-Tf protein, and a terminal Sia-Tf protein. Of these, the Tf glycoproteins that can constitute the combination marker of the present invention are the terminal Man-Tf protein and the terminal GlcNAc-Tf protein. Each Tf glycoprotein will be specifically described below.
 (i)末端Man-Tfタンパク質
 「末端Man-Tfタンパク質」とは、非還元末端にマンノース(本明細書では、しばしば「Man」と表記する)を有するN結合型糖鎖、すなわちMan非還元末端糖鎖を少なくとも1つ含むTf糖タンパク質であって、本発明の組み合わせマーカーの構成マーカーある。例えば、図1のCに示すように、2本の糖鎖のうち一方にMan非還元末端糖鎖が、また他方にGlcNAc非還元末端糖鎖が付加された構造を有するTf糖タンパク質が挙げられる。より具体的には、ヒト末端Man-Tfタンパク質であれば、配列番号1で示すアミノ酸配列において、432位のアスパラギン(Asn:N)残基(「N432」で表記する)の側鎖にMan非還元末端糖鎖が付加され、同じく630位のアスパラギン残基(「N630」で表記する)の側鎖にGlcNAc非還元末端糖鎖が付加されたTf糖タンパク質が該当する。
(I) Terminal Man-Tf protein A "terminal Man-Tf protein" is an N-linked sugar chain having mannose (often referred to as "Man" in the present specification) at the non-reducing end, that is, the Man non-reducing end. A Tf glycoprotein containing at least one sugar chain, which is a constituent marker of the combination marker of the present invention. For example, as shown in C of FIG. 1, a Tf glycoprotein having a structure in which a Man non-reducing terminal sugar chain is added to one of the two sugar chains and a GlcNAc non-reducing terminal sugar chain is added to the other can be mentioned. .. More specifically, in the case of a human-terminal Man-Tf protein, in the amino acid sequence shown in SEQ ID NO: 1, the side chain of the asparagine (Asn: N) residue at position 432 (denoted by "N432") is not Man. A Tf glycoprotein to which a reduced terminal sugar chain is added and a GlcNAc non-reduced terminal sugar chain is added to the side chain of the asparagine residue at position 630 (denoted by "N630") corresponds to this.
 末端Man-Tfタンパク質は、大脳の大部分を先天的に欠損する無脳症では、髄液中で検出されないことから、脳内で生合成されると考えられている。 The terminal Man-Tf protein is considered to be biosynthesized in the brain because it is not detected in the cerebrospinal fluid in anencephaly in which most of the cerebrum is congenitally deleted.
 末端Man-Tf量は、AD病態で増加する。すなわち、体液中、主として髄液中の末端Man-Tf量が健常体と比較して増加し、それ故に、末端Man-Tfは、単独でもAD病態を反映するAD病態鑑別用マーカーとなり得る。一方、iNPH患者では、健常体と比較して体液中、主として髄液中の末端Man-Tf量に有意差が認められないことから、iNPHの鑑別用マーカーとはなり得ない。また、初期ADの症状と、DLB又はFTDの初期症状は、症候学的差異からの鑑別は容易ではないがDLBやFTDでも、健常体と比較して体液中、主として髄液中の末端Man-Tf量に有意差が認められない。したがって、体液中の末端Man-Tf量を測定することでADと、DLB又はFTDを容易に鑑別することができる。 The amount of terminal Man-Tf increases in AD pathology. That is, the amount of terminal Man-Tf in body fluid, mainly in cerebrospinal fluid, is increased as compared with a healthy body, and therefore, terminal Man-Tf alone can be a marker for differentiating AD pathological condition reflecting AD pathological condition. On the other hand, iNPH patients cannot be used as a differential marker for iNPH because there is no significant difference in the amount of terminal Man-Tf in body fluids, mainly in cerebrospinal fluid, as compared with healthy bodies. In addition, although it is not easy to distinguish the symptoms of early AD from the initial symptoms of DLB or FTD from symptomatic differences, even with DLB and FTD, the terminal Man- in body fluids, mainly in cerebrospinal fluid, is compared with that of healthy bodies. There is no significant difference in the amount of Tf. Therefore, AD can be easily distinguished from DLB or FTD by measuring the amount of terminal Man-Tf in body fluid.
 なお、Man非還元末端糖鎖を含む末端Man-Tfタンパク質のペプチド断片も本発明の組み合わせマーカーの構成マーカーとなり得る。 A peptide fragment of a terminal Man-Tf protein containing a Man non-reducing terminal sugar chain can also be a constituent marker of the combination marker of the present invention.
 (ii)末端GlcNAc-Tfタンパク質
 「末端GlcNAc-Tfタンパク質」とは、非還元末端にN-アセチルグルコサミン(本明細書では、しばしば「GlcNAc」と表記する)を有するN結合型糖鎖、すなわちGlcNAc非還元末端糖鎖のみを含むTf糖タンパク質であって、本発明の組み合わせマーカーの構成マーカーある。例えば、図1のBに示すように、2本のGlcNAc非還元末端糖鎖が付加されたTf糖タンパク質が挙げられる。より具体的には、ヒト末端GlcNAcn-Tfタンパク質であれば、配列番号1で示すアミノ酸配列において、432位のアスパラギン(Asn:N)残基(「N432」で表記する)と630位のアスパラギン残基(「N630」で表記する)の側鎖にGlcNAc非還元末端糖鎖が付加されたTf糖タンパク質が該当する。末端GlcNAc-Tfタンパク質は、脳及び/又は脊髄のような中枢神経系の細胞で産生され、主として髄液中に見られる脳型糖タンパク質と考えられている。これらの脳型糖タンパク質は、髄液の産生量を反映するバイオマーカーとしても知られている(Murakami, et al., Proc. Jpn. Acad., Ser.B, 2019, 95, 198-210.)。
(Ii) Terminal GlcNAc-Tf protein "Terminal GlcNAc-Tf protein" is an N-linked sugar chain having N-acetylglucosamine (often referred to as "GlcNAc" in the present specification) at the non-reducing end, that is, GlcNAc. It is a Tf glycoprotein containing only a non-reducing terminal sugar chain, and is a constituent marker of the combination marker of the present invention. For example, as shown in B of FIG. 1, a Tf glycoprotein to which two GlcNAc non-reducing terminal sugar chains are added can be mentioned. More specifically, in the case of the human terminal GlcNAcn-Tf protein, the asparagine (Asn: N) residue at position 432 (denoted by "N432") and the asparagine residue at position 630 in the amino acid sequence shown in SEQ ID NO: 1 This is a Tf glycoprotein in which a GlcNAc non-reducing terminal sugar chain is added to the side chain of the group (denoted by "N630"). The terminal GlcNAc-Tf protein is produced in cells of the central nervous system such as the brain and / or spinal cord and is considered to be a brain-type glycoprotein found mainly in the cerebrospinal fluid. These brain-type glycoproteins are also known as biomarkers that reflect the production of cerebrospinal fluid (Murakami, et al., Proc. Jpn. Acad., Ser.B, 2019, 95, 198-210. ).
 一般に末端GlcNAc-Tfタンパク質は、iNPH鑑別用マーカーであることが知られている(特開2010-121980号)。iNPH患者では、健常体と比較して体液中、主として髄液中の末端GlcNAc-Tfタンパク質量が有意に減少している。一方、AD患者やMCI患者では健常体と比較して体液中、主として髄液中の末端GlcNAc-Tfタンパク質量に有意差は認められない。したがって、末端GlcNAc-Tfタンパク質単独では、AD病態の鑑別用マーカーとはなり得ない。 Generally, the terminal GlcNAc-Tf protein is known to be a marker for iNPH differentiation (Japanese Patent Laid-Open No. 2010-121980). In iNPH patients, the amount of terminal GlcNAc-Tf protein in body fluids, mainly in cerebrospinal fluid, was significantly reduced as compared with healthy bodies. On the other hand, there is no significant difference in the amount of terminal GlcNAc-Tf protein in body fluids, mainly in cerebrospinal fluid, compared with healthy subjects in AD patients and MCI patients. Therefore, the terminal GlcNAc-Tf protein alone cannot be a marker for differentiating AD pathology.
 なお、GlcNAc非還元末端糖鎖を含む末端GlcNAc-Tfタンパク質のペプチド断片も本発明の組み合わせマーカーの構成マーカーとなり得る。 A peptide fragment of a terminal GlcNAc-Tf protein containing a GlcNAc non-reducing terminal sugar chain can also be a constituent marker of the combination marker of the present invention.
 (iii)末端Sia-Tfタンパク質
 「末端Sia-Tfタンパク質」とは、非還元末端にα2,6シアル酸を有するN結合型糖鎖、すなわちSia非還元末端糖鎖のみを含むTf糖タンパク質である。Tf糖タンパク質の1アイソフォームであるが、本発明の組み合わせマーカーの構成マーカーではない。例えば、図1のAに示すように、2本のSia非還元末端糖鎖が付加されたTf糖タンパク質が挙げられる。末端Sia-Tfは、血清及び髄液のいずれにも存在しているが、特に血清中に多量に存在することから、「血清Tf(糖タンパク質)」とも言われる。末端Sia-Tfは、他の糖タンパク質との糖鎖構造の類似性から肝臓で生合成されるTf糖タンパク質と考えられている。
(Iii) Terminal Sia-Tf protein The "terminal Sia-Tf protein" is an N-linked glycoprotein having α2,6 sialic acid at the non-reducing end, that is, a Tf glycoprotein containing only the Sia non-reducing terminal sugar chain. .. Although it is an isoform of Tf glycoprotein, it is not a constituent marker of the combination marker of the present invention. For example, as shown in A of FIG. 1, a Tf glycoprotein to which two Sia non-reducing terminal sugar chains are added can be mentioned. Terminal Sia-Tf is present in both serum and cerebrospinal fluid, but is also referred to as "serum Tf (glycoprotein)" because it is present in a particularly large amount in serum. Terminal Sia-Tf is considered to be a Tf glycoprotein biosynthesized in the liver due to its similarity in sugar chain structure to other glycoproteins.
 末端GlcNAc-Tfタンパク質も末端Man-Tfタンパク質と同様に、無脳症では髄液中で検出されないことから、脳内で生合成されると考えられている。 Like the terminal Man-Tf protein, the terminal GlcNAc-Tf protein is not detected in the cerebrospinal fluid in anencephaly, so it is considered to be biosynthesized in the brain.
(2)プロスタグランジンD2合成酵素(PGDS)
 「プロスタグランジンD2合成酵素(本明細書では、しばしば「PGDS」と表記する)は、プロスタグランジンエンドペルオキシドからプロスタグランジンD2(PGD2)への反応を触媒する酵素であって、本発明の組み合わせマーカーの構成マーカーある。PGDSタンパク質の具体例として、190個のアミノ酸残基で構成され、配列番号2で示すアミノ酸配列からなるヒトPGDSタンパク質が挙げられる。PGDSは、髄液中の含有量が比較的多いことが知られているが、その1%程度の濃度が血中からも検出され得る。PGDSはまた、髄液の産生量を反映するバイオマーカーとしても知られている(Murakami, et al., Proc. Jpn. Acad., Ser.B, 2019, 95, 198-210.)。
(2) Prostaglandin D2 synthase (PGDS)
"Prostaglandin D2 synthase (often referred to herein as" PGDS ") is an enzyme that catalyzes the reaction of prostaglandin endoperoxides to prostaglandin D2 (PGD 2 ) and is the present invention. There are constituent markers for the combination markers. Specific examples of the PGDS protein include a human PGDS protein composed of 190 amino acid residues and composed of the amino acid sequence shown in SEQ ID NO: 2. It is known that PGDS has a relatively high content in cerebrospinal fluid, but a concentration of about 1% thereof can also be detected in blood. PGDS is also known as a biomarker that reflects the production of cerebrospinal fluid (Murakami, et al., Proc. Jpn. Acad., Ser.B, 2019, 95, 198-210.).
(3)tau関連タンパク質
 本明細書において「tau関連タンパク質」とは、tauタンパク質、及びリン酸化tauタンパク質(本明細書では、しばしば「p-tauタンパク質」と表記する)をいう。tauタンパク質は、軸索輸送に関与する微小管結合タンパク質であり、中枢神経系及び末梢神経系の神経細胞内やグリア細胞内に存在する。ADではtauタンパク質が過剰にリン酸化され、p-tauタンパク質となる。このp-tauタンパク質が、微小管の安定を阻害し、細胞内凝集塊を作ることで神経細胞死を引き起こすと考えられている。tauタンパク質及びp-tauタンパク質はいずれも細胞内タンパク質であるため、通常、体液中でのこれらの検出は神経細胞死を意味する。tau関連タンパク質は、ADやMCIの他、PSPやFTD等の認知症マーカーとなり得ることが知られており、臨床においてもADマーカーとして使用されている。
(3) tau-related protein The term "tau-related protein" as used herein refers to tau protein and phosphorylated tau protein (often referred to as "p-tau protein" in the present specification). Tau protein is a microtubule-associated protein involved in axonal transport and is present in nerve cells and glial cells of the central and peripheral nervous systems. In AD, tau protein is excessively phosphorylated to p-tau protein. It is thought that this p-tau protein inhibits the stability of microtubules and causes intracellular cell death by forming intracellular aggregates. Since both tau protein and p-tau protein are intracellular proteins, their detection in body fluid usually means neuronal cell death. It is known that tau-related proteins can be markers for dementia such as PSP and FTD in addition to AD and MCI, and are also used as AD markers in clinical practice.
 本発明の組み合わせマーカーの構成マーカーあるtauタンパク質の具体例として、441個のアミノ酸残基で構成され、配列番号3で示すアミノ酸配列からなるヒトtauタンパク質が挙げられる。なお、ヒトtauタンパク質には、前記配列番号3で示すアミノ酸配列の他、そのスプライスバリアントである352~412個のアミノ酸残基からなる6種類のアイソフォームが存在する。これらのアイソフォームも本発明の組み合わせマーカーの構成マーカーとなり得る。p-tauタンパク質においてリン酸化が起こる位置は多様であり、通常、ADでは、過剰なリン酸化が起きるため、複数のアミノ酸残基においてリン酸化が起き得る。具体的には、例えば、配列番号3で示すアミノ酸配列における位置で表すと、181位のスレオニン残基、199位のセリン残基、202位のセリン残基、205位のスレオニン残基又は231位のスレオニン残基等を含むアミノ酸残基におけるリン酸化が挙げられる。p-tauの検出は、例えば、リン酸化部位特異的な検出、部位非特異的なリン酸化の検出、又はその組み合わせによって行うことができる。 Constituent marker of the combination marker of the present invention As a specific example of a certain tau protein, there is a human tau protein composed of 441 amino acid residues and composed of the amino acid sequence shown in SEQ ID NO: 3. In the human tau protein, in addition to the amino acid sequence shown in SEQ ID NO: 3, there are 6 types of isoforms consisting of 352 to 412 amino acid residues which are splicing variants thereof. These isoforms can also be constituent markers of the combination markers of the present invention. Phosphorylation occurs at various locations in p-tau proteins, and usually in AD, excessive phosphorylation occurs, so that phosphorylation can occur at multiple amino acid residues. Specifically, for example, expressed by the position in the amino acid sequence shown in SEQ ID NO: 3, the threonine residue at position 181, the threonine residue at position 199, the threonine residue at position 202, the threonine residue at position 205 or the position 231 Phosphorylation at amino acid residues including threonine residues and the like. Detection of p-tau can be performed, for example, by phosphorylation site-specific detection, site-non-specific phosphorylation detection, or a combination thereof.
(4)AD index
 「AD index」は、通常、(Aβ40/Aβ42)×p-tauで算出される値であり、ADにおけるAβペプチド及びp-tauタンパク質の代謝変化の両者を反映するマーカーである。また、AD indexの算出には、例えば、(Aβ42/Aβ40)×p-tauが使用される場合もあるが、本明細書においてはいずれの式で算出された値も包含する。AD indexは、現在、臨床で用いられているADマーカーでは、単独で最もAD診断能が高いとされている。
(4) AD index
The "AD index" is a value usually calculated by (Aβ40 / Aβ42) × p-tau, and is a marker that reflects both metabolic changes of Aβ peptide and p-tau protein in AD. Further, for the calculation of the AD index, for example, (Aβ42 / Aβ40) × p-tau may be used, but in the present specification, the value calculated by any of the formulas is included. The AD index is considered to have the highest AD diagnostic ability by itself among the AD markers currently used clinically.
1-3-2.構成マーカーの組み合わせ
 本発明のAD病態鑑別用組み合わせマーカーにおける構成マーカーの組み合わせとして以下が挙げられる。
1-3-2. Combination of constituent markers The following are examples of combinations of constituent markers in the combination marker for AD pathological condition identification of the present invention.
(1)Man-Tf/GlcNAc-Tf/PGDSとtau/p-tauの組み合わせ
 第1の組み合わせパターンとして、Man-Tfタンパク質又はManを有する糖鎖を含むその断片、GlcNAc-Tfタンパク質又はGlcNAcを有する糖鎖を含むその断片、及びPGDS又はその断片からなる群から選択されるいずれか一のポリペプチドからなる構成マーカーと、tauタンパク質、p-tauタンパク質及びそれらの断片からなる群から選択されるいずれか一のポリペプチドからなる構成マーカーとの組み合わせが挙げられる。
(1) Combination of Man-Tf / GlcNAc-Tf / PGDS and tau / p-tau As the first combination pattern, it has Man-Tf protein or a fragment thereof containing a sugar chain having Man, GlcNAc-Tf protein or GlcNAc. A constituent marker consisting of a fragment thereof containing a sugar chain and any one of the polypeptides selected from the group consisting of PGDS or a fragment thereof, and any of the constituent markers selected from the group consisting of tau protein, p-tau protein and fragments thereof. Examples include a combination with a constitutive marker consisting of one polypeptide.
 ここで「Manを有する糖鎖を含むその断片」とは、Man-Tfタンパク質において、Man非還元末端糖鎖が付加されたアスパラギン残基を含むペプチド断片を言う。例えば、Man非還元末端糖鎖が付加されたN432及び/又はN630を含むMan-Tfタンパク質断片が該当する。 Here, the "fragment containing a sugar chain having Man" refers to a peptide fragment containing an asparagine residue to which a Man non-reducing terminal sugar chain is added in the Man-Tf protein. For example, a Man-Tf protein fragment containing N432 and / or N630 to which a Man non-reducing terminal sugar chain has been added.
 また「GlcNAcを有する糖鎖を含むその断片」とは、GlcNAc-Tfタンパク質において、Man非還元末端糖鎖が付加されたアスパラギン残基を含むペプチド断片を言う。例えば、Man非還元末端糖鎖が付加されたN432とN630を含むMan-Tfタンパク質断片が該当する。 Further, "a fragment containing a sugar chain having GlcNAc" refers to a peptide fragment containing an asparagine residue to which a Man non-reducing terminal sugar chain is added in the GlcNAc-Tf protein. For example, a Man-Tf protein fragment containing N432 and N630 added with a Man non-reducing terminal sugar chain.
 より具体的な構成マーカーの組み合わせは、Man-Tfタンパク質又はManを有する糖鎖を含むその断片とtauタンパク質又はその断片、Man-Tfタンパク質又はManを有する糖鎖を含むその断片とp-tauタンパク質又はそのリン酸化部位を含む断片、GlcNAc -Tfタンパク質又はGlcNAcを有する糖鎖を含むその断片とtauタンパク質又はその断片、GlcNAc -Tfタンパク質又はGlcNAcを有する糖鎖を含むその断片とp-tauタンパク質又はそのリン酸化部位を含む断片、及びPGDSタンパク質又はその断片とtauタンパク質又はその断片、PGDSタンパク質又はその断片とp-tauタンパク質又はそのリン酸化部位を含む断片である。 A more specific combination of constituent markers is a Man-Tf protein or a fragment thereof containing a sugar chain having Man and a tau protein or a fragment thereof, a Man-Tf protein or a fragment thereof containing a sugar chain having Man and a p-tau protein. Or a fragment containing a phosphorylation site thereof, a fragment thereof containing a sugar chain having GlcNAc-Tf protein or GlcNAc and a tau protein or a fragment thereof, a fragment thereof containing a sugar chain having GlcNAc-Tf protein or GlcNAc and a p-tau protein or A fragment containing the phosphorylation site, and a PGDS protein or a fragment thereof and a tau protein or a fragment thereof, a PGDS protein or a fragment thereof and a p-tau protein or a fragment containing the phosphorylation site thereof.
(2)Man-Tf/GlcNAc-Tf/PGDSにおける2以上の組み合わせ
 第2の組み合わせパターンとして、Man-Tfタンパク質又はManを有する糖鎖を含むその断片、GlcNAc-Tfタンパク質又はGlcNAcを有する糖鎖を含むその断片、及びPGDS又はその断片からなる群から選択されるいずれか一のポリペプチドからなる構成マーカーから選択される少なくとも2以上のタンパク質の組み合わせが挙げられる。
(2) Two or more combinations in Man-Tf / GlcNAc-Tf / PGDS As the second combination pattern, a fragment containing a Man-Tf protein or a sugar chain having Man, a GlcNAc-Tf protein or a sugar chain having GlcNAc is used. Included is a combination of at least two proteins selected from a constitutive marker consisting of the fragment comprising and any one polypeptide selected from the group consisting of PGDS or fragments thereof.
 より具体的な構成マーカーの組み合わせは、Man-Tfタンパク質又はManを有する糖鎖を含むその断片及びGlcNAc-Tfタンパク質又はGlcNAcを有する糖鎖を含むその断片の2つの構成マーカーの組み合わせ、Man-Tfタンパク質又はManを有する糖鎖を含むその断片及びPGDS又はその断片の2つの構成マーカーの組み合わせ、GlcNAc-Tfタンパク質又はGlcNAcを有する糖鎖を含むその断片及びPGDS又はその断片の2つの構成マーカーの組み合わせ、及びMan-Tfタンパク質又はManを有する糖鎖を含むその断片、GlcNAc-Tfタンパク質又はGlcNAcを有する糖鎖を含むその断片及びPGDS又はその断片の3つの構成マーカーの組み合わせである。 A more specific combination of constituent markers is a combination of two constituent markers, a fragment thereof containing a Man-Tf protein or a sugar chain having Man, and a fragment thereof containing a GlcNAc-Tf protein or a sugar chain having GlcNAc, Man-Tf. A combination of a fragment thereof containing a sugar chain having a protein or Man and two constituent markers of PGDS or a fragment thereof, a combination of a fragment thereof containing a sugar chain having a GlcNAc-Tf protein or GlcNAc and a combination of two constituent markers of PGDS or a fragment thereof. , And a fragment thereof containing a Man-Tf protein or a sugar chain having Man, a fragment thereof containing a GlcNAc-Tf protein or a sugar chain having GlcNAc, and a combination of three constituent markers of PGDS or a fragment thereof.
 上記いずれの組み合わせマーカーもAD病態としてAD、MCIをNCと鑑別することができる。また、NCにおけるpre-MCIとnon-pre-MCIとを鑑別することもできる。 Any of the above combination markers can distinguish AD and MCI from NC as AD pathology. It is also possible to distinguish between pre-MCI and non-pre-MCI in NC.
(3)Man-Tf/GlcNAc-TfとAD indexの組み合わせ
 第3の組み合わせパターンとして、Man-Tfタンパク質又はManを有する糖鎖を含むその断片、及びGlcNAc-Tfタンパク質又はGlcNAcを有する糖鎖を含むその断片と、AD indexとの組み合わせが挙げられる。
(3) Combination of Man-Tf / GlcNAc-Tf and AD index The third combination pattern includes a Man-Tf protein or a fragment thereof containing a sugar chain having Man, and a sugar chain containing a GlcNAc-Tf protein or GlcNAc. The combination of the fragment and the AD index can be mentioned.
2.アルツハイマー病病態鑑別キット(AD病態鑑別キット)
2-1.概要
 本発明の第2の態様は、アルツハイマー病病態鑑別キットである。本発明のキットは、試料中に含まれ得る第1態様に記載のAD病態鑑別用マーカーの検出が可能であり、それによって被験体のAD病態の罹患又は罹患の可能性の鑑別ができる。
2. 2. Alzheimer's disease pathological differentiation kit (AD pathological condition discrimination kit)
2-1. Overview A second aspect of the present invention is an Alzheimer's disease pathological differentiation kit. The kit of the present invention can detect the marker for AD pathological condition according to the first aspect that can be contained in the sample, thereby distinguishing the morbidity or possibility of morbidity of AD pathological condition of the subject.
2-2.構成
 本発明のAD診断キットは、第1態様に記載のAD病態鑑別用組み合わせマーカーのそれぞれに特異的に結合するペプチド結合分子及び糖鎖結合分子を必須の構成物として含む。以下、それぞれについて具体的に説明をする。
2-2. Structure The AD diagnostic kit of the present invention contains a peptide bond molecule and a sugar chain bond molecule that specifically bind to each of the combination markers for AD pathological condition discrimination according to the first aspect as essential constituents. Hereinafter, each will be described in detail.
(1)ペプチド結合分子
 本明細書において「ペプチド結合分子」とは、AD病態鑑別用組み合わせマーカーの構成マーカーにおけるポリペプチド又はそのペプチド断片に特異的に結合する分子をいう。ここでいう構成マーカーのポリペプチド、すなわち標的ポリペプチドとして、Tfタンパク質、PGDS、及びtauタンパク質が挙げられる。
(1) Peptide bond molecule As used herein, the term "peptide bond molecule" refers to a molecule that specifically binds to a polypeptide or a peptide fragment thereof in a constituent marker of a combination marker for AD pathological condition differentiation. Examples of the constituent marker polypeptide, that is, the target polypeptide, include Tf protein, PGDS, and tau protein.
 本発明のAD診断キットは、これらのポリペプチドに結合するペプチド結合分子を一以上含む。ペプチド結合分子は、ペプチド、核酸、低分子化合物、又はそれらの組み合わせのいずれであってもよい。 The AD diagnostic kit of the present invention contains one or more peptide bond molecules that bind to these polypeptides. The peptide bond molecule may be any of a peptide, nucleic acid, small molecule compound, or a combination thereof.
 (i)ペプチドで構成されるペプチド結合分子
 ペプチドで構成されるペプチド結合分子には、抗体又はその活性断片が挙げられる。
 抗体は、ポリクローナル抗体、モノクローナル抗体又は組換え抗体のいずれであってもよい。より特異的な検出を可能にするためには、モノクローナル抗体又は組換え抗体が好ましい。抗体のグロブリンタイプは、特に限定されるものではなく、IgG、IgM、IgA、IgE、IgD、IgYのいずれであってもよいが、IgG及びIgMが好ましい。また、本態様の抗体の由来生物種は、特に限定はしない。哺乳動物及び鳥を含めたあらゆる動物由来とすることができる。例えば、マウス、ラット、モルモット、ウサギ、ヤギ、ロバ、ヒツジ、ラクダ、ウマ、ニワトリ、又はヒトなどが挙げられる。
(I) Peptide bond molecule composed of a peptide Examples of the peptide bond molecule composed of a peptide include an antibody or an active fragment thereof.
The antibody may be either a polyclonal antibody, a monoclonal antibody or a recombinant antibody. Monoclonal or recombinant antibodies are preferred to allow for more specific detection. The globulin type of the antibody is not particularly limited and may be any of IgG, IgM, IgA, IgE, IgD and IgY, but IgG and IgM are preferable. Further, the species from which the antibody of this embodiment is derived is not particularly limited. It can be of any animal origin, including mammals and birds. Examples include mice, rats, guinea pigs, rabbits, goats, donkeys, sheep, camels, horses, chickens, or humans.
 本明細書において前記「組換え抗体」とは、例えば、キメラ抗体、ヒト化抗体及び合成抗体をいう。 As used herein, the term "recombinant antibody" refers to, for example, a chimeric antibody, a humanized antibody, and a synthetic antibody.
 「キメラ抗体」とは、ある抗体において、軽鎖及び重鎖の定常領域(C領域:Constant region)を他の抗体の軽鎖及び重鎖のC領域で置換した抗体である。例えば、マウス抗ヒトモノクローナル抗体において、その軽鎖及び重鎖のC領域を適当なヒト抗体のC領域と置換した抗体が該当する。つまり、この場合、CDRを包含する可変領域(V領域:Variable region)はマウス抗体由来であり、C領域はヒト抗体由来となる。 A "chimeric antibody" is an antibody in which the constant region of a light chain and a heavy chain (C region: Constant region) is replaced with the C region of a light chain and a heavy chain of another antibody. For example, in a mouse anti-human monoclonal antibody, an antibody in which the C region of the light chain and the heavy chain is replaced with the C region of an appropriate human antibody is applicable. That is, in this case, the variable region (V region: Variable region) including the CDR is derived from the mouse antibody, and the C region is derived from the human antibody.
 「ヒト化抗体」とは、再構成(reshaped)ヒト抗体とも称され、標的抗原に対するヒト以外の哺乳動物由来の抗体中のCDRとヒト抗体のCDRとを置換したモザイク抗体である。例えば、マウス抗ヒトMan-Tf抗体の各CDR領域(CDR1~CDR3)をコードするDNA配列を、適当なヒト抗体由来の対応する各CDRをコードするDNA配列と置換した組換え抗体遺伝子を調製し、それを発現させることによって得られる抗体が該当する。 A "humanized antibody" is also referred to as a reshaped human antibody, and is a mosaic antibody in which the CDR in an antibody derived from a non-human animal to a target antigen is replaced with the CDR of a human antibody. For example, a recombinant antibody gene was prepared by substituting a DNA sequence encoding each CDR region (CDR1 to CDR3) of a mouse anti-human Man-Tf antibody with a DNA sequence encoding each corresponding CDR derived from an appropriate human antibody. , Antibodies obtained by expressing it.
 「合成抗体」とは、化学的方法又は組換えDNA法を用いることによって合成した抗体をいう。例えば、適当な長さと配列を有するリンカーペプチド等を介して、特定の抗体の一以上のVL及び一以上のVHを人工的に連結させた一量体ポリペプチド分子、又はその多量体ポリペプチドが該当する。このようなポリペプチドの具体例としては、一本鎖Fv(scFv :single chain Fragment of variable region)(Pierce Catalog and Handbook, 1994-1995, Pierce Chemical Co., Rockford, IL参照)、ダイアボディ(diabody)、トリアボディ(triabody)又はテトラボディ(tetrabody)等が挙げられる。免疫グロブリン分子において、VL及びVHは、通常別々のポリペプチド鎖(軽鎖と重鎖)上に位置する。一本鎖Fvは、これら2つのポリペプチド鎖上のV領域を十分な長さの柔軟性リンカーによって連結し、1本のポリペプチド鎖に包含した構造を有する合成抗体断片である。一本鎖Fv内において両V領域は、互いに自己集合して1つの機能的な抗原結合部位を形成することができる。一本鎖Fvは、それをコードする組換えDNAを、公知技術を用いてファージゲノムに組み込み、発現させることで得ることができる。ダイアボディは、一本鎖Fvの二量体構造を基礎とした構造を有する分子である(Holliger et al., 1993, Proc. Natl. Acad. Sci. USA 90:6444-6448)。トリアボディ、及びテトラボディは、ダイアボディと同様に一本鎖Fv構造を基本としたその三量体、及び四量体構造を有する。それぞれ、三価、及び四価の抗体断片であり、多重特異性抗体であってもよい。 "Synthetic antibody" refers to an antibody synthesized by using a chemical method or a recombinant DNA method. For example, a monomeric polypeptide molecule in which one or more VLs and one or more VHs of a specific antibody are artificially linked via a linker peptide having an appropriate length and sequence, or a multimeric polypeptide thereof. Applicable. Specific examples of such polypeptides include single-chain Fv (scFv: single chain Fragment of variable region) (Pierce Catalog and Handbook, 1994-1995, Pierce Chemical Co., Rockford, IL) and diabody. ), Triabody, tetrabody and the like. In immunoglobulin molecules, VL and VH are usually located on separate polypeptide chains (light chain and heavy chain). Single-stranded Fv is a synthetic antibody fragment having a structure in which the V regions on these two polypeptide chains are linked by a flexible linker of sufficient length and contained in one polypeptide chain. Within a single-stranded Fv, both V regions can self-assemble with each other to form one functional antigen-binding site. Single-stranded Fv can be obtained by incorporating the recombinant DNA encoding it into the phage genome using a known technique and expressing it. Diabody is a molecule with a structure based on a single-stranded Fv dimer structure (Holliger et al., 1993, Proc. Natl. Acad. Sci. USA 90: 6444-6448). The triabodies and tetrabodies have trimer and tetramer structures based on a single-stranded Fv structure, similar to diabodies. They are trivalent and tetravalent antibody fragments, respectively, and may be multispecific antibodies.
 抗体は、標的ポリペプチドとの解離定数が、10-8M以下、好ましくは10-9M以下、より好ましくは10-10M以下の高い親和性を有することが好ましい。上記解離定数は、当該分野で公知の技術を用いて測定することができる。例えば、BIAcoreシステム(GE Healthcare社)により速度評価キットソフトウェアを用いて測定してもよい。 The antibody preferably has a high affinity with a target polypeptide having a dissociation constant of 10 -8 M or less, preferably 10 -9 M or less, more preferably 10 -10 M or less. The dissociation constant can be measured using a technique known in the art. For example, it may be measured using the speed evaluation kit software by the BIAcore system (GE Healthcare).
 本工程で使用する本態様のポリクローナル抗体は、抗原となるポリペプチド、すなわちTfタンパク質、PGDS、及びtauタンパク質、又はそれらのペプチド断片を適当な動物に免疫した後、免疫動物から当該分野で公知の方法により回収ことができる。また、モノクローナル抗体も当該分野の慣用技術である公知の方法により得ることができる。例えば、前記抗原でマウスを免疫した後、免疫マウスから抗体産生細胞を採取する。その抗体産生細胞を骨髄腫(ミエローマ)細胞株に融合させ、それによりハイブリドーマ細胞を生成し、そして標的ポリペプチドに結合するモノクローナル抗体を産生するハイブリドーマを同定すればよい。 The polyclonal antibody of this embodiment used in this step is known from immune animals in the art after immunizing a suitable animal with a polypeptide serving as an antigen, that is, Tf protein, PGDS, and tau protein, or a peptide fragment thereof. It can be recovered by the method. In addition, a monoclonal antibody can also be obtained by a known method which is a conventional technique in the art. For example, after immunizing a mouse with the antigen, antibody-producing cells are collected from the immune mouse. Hybridomas may be identified that fuse the antibody-producing cells to a myeloma cell line, thereby producing hybridoma cells and producing monoclonal antibodies that bind to the target polypeptide.
 「抗体フラグメント」とは、前述の抗体の抗原結合活性を有するペプチド断片であって、例えば、Fab、F(ab’)2、Fv等が挙げられる。 The "antibody fragment" is a peptide fragment having the antigen-binding activity of the above-mentioned antibody, and examples thereof include Fab, F (ab') 2, Fv and the like.
 本工程で使用する抗体又はその抗体フラグメントは、修飾されていてもよい。ここでいう「修飾」とは、抗体検出に必要な標識、又は抗原特異的結合活性化に必要な機能上の修飾を含む。標識には、例えば、前述の蛍光物質、蛍光タンパク質(例えば、PE、APC、GFP)、酵素(例えば、西洋ワサビペルオキシダーゼ、アルカリフォスファターゼ、グルコースオキシダーゼ)、又はビオチン若しくは(ストレプト)アビジンによる標識が挙げられる。また、修飾には、標的ポリペプチドに対する親和性を調整するため行われる抗体のグリコシル化等が挙げられる。具体的には、例えば、抗体のフレームワーク領域(FR:Framework region)において、グリコシル化部位を構成するアミノ酸残基に、置換を導入してグリコシル化部位を除去し、それによって、その部位のグリコシル化を喪失させる改変等がある。 The antibody or antibody fragment thereof used in this step may be modified. The term "modification" as used herein includes a label required for antibody detection or a functional modification required for antigen-specific binding activation. Labeling includes, for example, the aforementioned fluorescent substances, fluorescent proteins (eg, PE, APC, GFP), enzymes (eg, horseradish peroxidase, alkaline phosphatase, glucose oxidase), or labeling with biotin or (streptavidin) avidin. .. In addition, modifications include glycosylation of antibodies performed to adjust the affinity for the target polypeptide. Specifically, for example, in the framework region (FR: Framework region) of an antibody, a substitution is introduced into an amino acid residue constituting a glycosylation site to remove the glycosylation site, whereby glycosylation at that site is removed. There are modifications that cause loss of glycosylation.
 「その活性断片」とは、抗原結合性や免疫応答活性を保持している抗体の部分断片をいう。 The "active fragment thereof" refers to a partial fragment of an antibody that retains antigen-binding property and immune response activity.
 本発明のAD診断キットにおける具体的な抗体として、例えば、抗Tf抗体、抗PGDS抗体、抗tau抗体、抗p-tau抗体、抗Aβ40抗体、及び抗Aβ42抗体が挙げられる。 Specific antibodies in the AD diagnostic kit of the present invention include, for example, anti-Tf antibody, anti-PGDS antibody, anti-tau antibody, anti-p-tau antibody, anti-Aβ40 antibody, and anti-Aβ42 antibody.
 (ii)核酸で構成されるペプチド結合分子
 核酸で構成されるペプチド結合分子には、例えば、核酸アプタマーが挙げられる。
 「核酸アプタマー」とは、核酸で構成されるアプタマーであって、水素結合等を介した一本鎖核酸分子の二次構造、及び三次構造に基づいて形成される立体構造によって標的物質と強固、かつ特異的に結合する能力を持つリガンド分子をいう。
(Ii) Peptide bond molecule composed of nucleic acid Examples of the peptide bond molecule composed of nucleic acid include nucleic acid aptamers.
A "nucleic acid aptamer" is an aptamer composed of nucleic acids, which is strong with a target substance due to the secondary structure of a single-stranded nucleic acid molecule via hydrogen bonds and the three-dimensional structure formed based on the tertiary structure. And a ligand molecule that has the ability to specifically bind.
 本明細書で使用する核酸アプタマーは、当該分野で公知の方法により作製することができる。例えば、SELEX(systematic evolution of ligands by exponential enrichment)法を用いた試験管内選別法が挙げられる。SELEX法とは、例えば、RNAアプタマーを分離する場合であれば、「ランダム配列領域とその両端にプライマー結合領域を有する多数のRNA分子によって構成されるRNAプールから標的分子に結合したRNA分子を選択する。回収したRNA分子をRT-PCR反応によって増幅した後、得られたcDNA分子を鋳型として転写を行い、選択されたRNA分子の増幅産物を得て、それを次のラウンドのRNAプールにする」という一連のサイクルを数~数十ラウンド繰り返して、標的分子に対して、より結合力の強いRNA分子を選択する方法である。一方、SELEX法で、DNAアプタマーを分離する場合も基本手順は同じであるが、回収したDNA分子を増幅する際にRT-PCR反応を経る必要がない。ランダム配列領域とプライマー結合領域の塩基配列長は特に限定はしない。一般的にランダム配列領域は、20~80塩基、プライマー結合領域は、それぞれ15~40塩基の範囲が好ましい。標的分子への特異性を高めるためには、予め標的分子に類似する分子とRNAプール又はRNAプールとを混合し、標的分子に類似する分子と結合しなかったRNA分子又はDNA分子からなるプールを用いればよい。なお、SELEX法は、公知の方法であり、具体的な方法は、例えば、Panら(Proc. Natl. Acad. Sci. 1995, U.S.A.92:11509-11513)に準じて行えばよい。本発明では、標的分子を糖鎖マンノースとして、上記の方法を実行することにより最終的に得られた核酸分子をマンノースに対する核酸アプタマーとして利用することができる。 The nucleic acid aptamer used in the present specification can be produced by a method known in the art. For example, an in vitro sorting method using a SELEX (systematic evolution of ligands by exponential enrichment) method can be mentioned. The SELEX method is, for example, in the case of separating RNA aptamers, "selecting an RNA molecule bound to a target molecule from an RNA pool composed of a large number of RNA molecules having a random sequence region and primer binding regions at both ends thereof. After amplifying the recovered RNA molecule by RT-PCR reaction, transcription is performed using the obtained cDNA molecule as a template to obtain an amplification product of the selected RNA molecule, which is used as the RNA pool for the next round. This is a method of selecting an RNA molecule having stronger binding force to a target molecule by repeating a series of cycles of "" for several to several tens of rounds. On the other hand, when the DNA aptamer is separated by the SELEX method, the basic procedure is the same, but it is not necessary to go through the RT-PCR reaction when amplifying the recovered DNA molecule. The base sequence lengths of the random sequence region and the primer binding region are not particularly limited. Generally, the random sequence region is preferably in the range of 20 to 80 bases, and the primer binding region is preferably in the range of 15 to 40 bases, respectively. In order to increase the specificity to the target molecule, a molecule similar to the target molecule and an RNA pool or an RNA pool are mixed in advance, and a pool consisting of an RNA molecule or a DNA molecule that does not bind to a molecule similar to the target molecule is formed. It may be used. The SELEX method is a known method, and the specific method may be, for example, according to Pan et al. (Proc. Natl. Acad. Sci. 1995, U.S.A. 92: 11509-11513). In the present invention, the target molecule can be used as a sugar chain mannose, and the nucleic acid molecule finally obtained by carrying out the above method can be used as a nucleic acid aptamer for mannose.
 核酸アプタマーは、一般に、RNAアプタマーとDNAアプタマーが知られているが、本明細書における核酸アプタマーを構成する核酸は特に限定はしない。例えば、DNAアプタマー、RNAアプタマー、DNAとRNAの組み合わせで構成されるアプタマー等を含む。一般的にはRNAアプタマーが頻用されるが、安定性、化学合成における製造コスト、及びアプタマー製造における工程数の点ではDNAアプタマーが優れている。 As nucleic acid aptamers, RNA aptamers and DNA aptamers are generally known, but the nucleic acids constituting the nucleic acid aptamers in the present specification are not particularly limited. For example, it includes a DNA aptamer, an RNA aptamer, an aptamer composed of a combination of DNA and RNA, and the like. Generally, RNA aptamers are frequently used, but DNA aptamers are superior in terms of stability, production cost in chemical synthesis, and the number of steps in aptamer production.
 本工程で使用する核酸アプタマーは、標的分子への結合能を阻害しない範囲において、蛍光物質(例えば、FITC、Texas、Cy3、Cy5、Cy7、Cyanine3、Cyanine5、Cyanine7、FAM、HEX、VIC、フルオレサミン及びその誘導体、及びローダミン及びその誘導体等)、放射性同位元素(例えば、32P、33P、35S)、又はビオチン若しくは(ストレプト)アビジン等の標識物質により標識することもできる。 Nucleic acid aptamers used in this step include fluorescent substances (eg, FITC, Texas, Cy3, Cy5, Cy7, Cyanine3, Cyanine5, Cyanine7, FAM, HEX, VIC, fluoresamine and so on, as long as they do not inhibit the ability to bind to the target molecule. It can also be labeled with its derivatives, such as rhodamine and its derivatives), radioactive isotopes (eg, 32P, 33P, 35S), or labeling substances such as biotin or (streptavidin) avidin.
 本発明のAD診断キットにおける具体的な核酸アプタマーとして、例えば、Tfタンパク質結合RNAアプタマー、PGD結合RNAアプタマー、tauタンパク質結合RNAアプタマー、及びp-tauタンパク質結合RNAアプタマーが挙げられる。 Specific examples of the nucleic acid aptamer in the AD diagnostic kit of the present invention include Tf protein-binding RNA aptamer, PGD-binding RNA aptamer, tau protein-binding RNA aptamer, and p-tau protein-binding RNA aptamer.
 なお、本発明のAD診断キットにおけるペプチド結合分子は、必要に応じて担体に固定化されているか、あるいは蛍光色素又は発光物質等で標識化されていてもよい。 The peptide bond molecule in the AD diagnostic kit of the present invention may be immobilized on a carrier or labeled with a fluorescent dye, a luminescent substance, or the like, if necessary.
(2)糖鎖結合分子
 本明細書において「糖鎖結合分子」とは、AD病態鑑別用組み合わせマーカーの構成マーカーにおける糖タンパク質の糖鎖に特異的に結合する分子をいう。ここでいう構成マーカーのポリペプチド、すなわち標的糖タンパク質として、Tf糖タンパク質であるMan-Tfタンパク質及びGlcNAc-Tfタンパク質が挙げられる。本発明のAD診断キットは、これらのTf糖タンパク質の糖鎖に結合する糖鎖結合分子を一以上含む。糖鎖結合分子は、ペプチド、核酸、低分子化合物、又はそれらの組み合わせのいずれであってもよい。
(2) Glycoprotein-binding molecule As used herein, the “sugar chain-binding molecule” refers to a molecule that specifically binds to the sugar chain of a glycoprotein in a constituent marker of a combination marker for AD pathological condition differentiation. Examples of the constituent marker polypeptide, that is, the target glycoprotein, include Man-Tf protein and GlcNAc-Tf protein, which are Tf glycoproteins. The AD diagnostic kit of the present invention contains one or more sugar chain-binding molecules that bind to the sugar chains of these Tf glycoproteins. The sugar chain binding molecule may be any of a peptide, a nucleic acid, a small molecule compound, or a combination thereof.
 (i)ペプチドで構成される糖鎖結合分子
 ペプチドで構成される糖鎖結合分子には、レクチン、又は抗体又はその活性断片が挙げられる。
(I) Sugar chain-binding molecule composed of a peptide Examples of the sugar chain-binding molecule composed of a peptide include a lectin, an antibody, or an active fragment thereof.
 (レクチン)
 「レクチン」とは、免疫反応以外で、糖鎖に結合するタンパク質又は糖タンパク質をいう。本発明のアルツハイマー病病態鑑別キットに含まれ得るレクチンには、Man又はGlcNAcを含む糖鎖、好ましくは末端Man又は末端GlcNAを含む糖鎖、より好ましくはMan非還元末端糖鎖又はGlcNA非還元末端糖鎖に結合するレクチンが挙げられる。
(Lectin)
"Lectin" refers to a protein or glycoprotein that binds to a sugar chain other than an immune response. The lectins that can be included in the Alzheimer's disease pathological identification kit of the present invention include sugar chains containing Man or GlcNAc, preferably sugar chains containing terminal Man or terminal GlcNA, and more preferably Man non-reducing terminal sugar chains or GlcNA non-reducing terminals. Examples include lectins that bind to sugar chains.
 糖鎖の非還元末端部がManの場合、Man非還元末端糖鎖結合性レクチンが挙げられる。Man非還元末端糖鎖結合性レクチンの具体例として、例えば、UDAレクチン又はBC2L-Aレクチンをはじめとしたhttp://jcggdb.jp/rcmg/glycodb/LectinSearchに記載の45種のMan結合レクチン等が挙げられる。また、堀らは藻類から得られた非還元末端Man結合性のレクチンを多数分離しており、これらの利用も考えられる(バイオサイエンスとインダストリー, 71, 129-133, 2013)。 When the non-reducing end of the sugar chain is Man, a Man non-reducing end sugar chain-binding lectin can be mentioned. Specific examples of Man non-reducing terminal sugar chain-binding lectins include 45 types of Man-binding lectins described in http://jcggdb.jp/rcmg/glycodb/LectinSearch including UDA lectins and BC2L-A lectins. Can be mentioned. In addition, Hori et al. Separated a large number of non-reducing terminal Man-binding lectins obtained from algae, and their use is also conceivable (Bioscience and Industry, 71, 129-133, 2013).
 糖鎖の非還元末端部がGlcNAcの場合、GlcNA非還元末端糖鎖結合性レクチンが挙げられる。GlcNA非還元末端糖鎖結合性レクチンの具体例として、例えば、マメ科Griffonia simplicifolia由来の凝集素GSL-IIレクチン及びツクリタケ(Agaricus bisporus)由来の凝集素ABAレクチン、ムジナタケ(Psathyrella velutina)子実体由来の凝集素PVLレクチンが知られている。 When the non-reducing end of the sugar chain is GlcNAc, GlcNA non-reducing end sugar chain-binding lectin can be mentioned. Specific examples of the GlcNA non-reducing terminal sugar chain-binding lectin include, for example, the agglutinin GSL-II lectin derived from the mushroom family Griffonia simplicifolia, the agglutinin ABA lectin derived from Agaricus bisporus, and the agglutinin derived from the child body of Psathyrella velutina. The agglutinin PVL lectin is known.
 ところで、レクチンには、標的分子が糖タンパク質の場合と、糖鎖のみの場合とでは、見かけ上の糖鎖結合特異性に差異を生じる場合がある。例えば、イラクサ(Urtica dioica)由来のUDAレクチンは、標的分子が糖鎖の場合にはGlcNAc結合レクチンに分類されるが、標的分子が糖タンパク質の場合、末端GlcNAc-Tfタンパク質には結合せず、末端Man-Tfタンパク質のMan非還元型末端に特異的に結合するようになる。したがって、レクチンの結合は糖鎖のみでなく標的分子である末端Man-Tfタンパク質又は末端GlcNAc-Tfタンパク質を用いて検討することが好ましい。つまり、本発明のキットを構成するレクチンは、末端Man-Tfタンパク質のMan又は末端GlcNAc-Tfタンパク質のGlcNac、好ましくは末端Man-Tfタンパク質の末端Man又は末端GlcNAc-Tfタンパク質の末端GlcNAc、より好ましくは末端Man-Tfタンパク質の非還元末端Man又は末端GlcNAc-Tfタンパク質の非還元末端GlcNAcに結合するレクチンである。レクチンは、市販のレクチンを利用してもよい。例えば、ビオチン化UDAレクチン(Cat No BA-8005-1;EY社)や、細菌由来のBC2L-Aレクチン(Burkholderia cenocepacia lectin-A;和光純薬工業)を利用することができる。 By the way, in lectins, there may be a difference in apparent sugar chain binding specificity between the case where the target molecule is a glycoprotein and the case where the target molecule is only a sugar chain. For example, UDA lectins derived from urtica (Urtica dioica) are classified as GlcNAc-binding lectins when the target molecule is a sugar chain, but when the target molecule is a glycoprotein, they do not bind to the terminal GlcNAc-Tf protein. It becomes specifically bound to the Man non-reduced end of the terminal Man-Tf protein. Therefore, it is preferable to examine the binding of the lectin using not only the sugar chain but also the terminal Man-Tf protein or the terminal GlcNAc-Tf protein which is a target molecule. That is, the lectin constituting the kit of the present invention is Man of the terminal Man-Tf protein or GlcNac of the terminal GlcNAc-Tf protein, preferably terminal Man of the terminal Man-Tf protein or terminal GlcNAc of the terminal GlcNAc-Tf protein, more preferably. Is a lectin that binds to the non-reducing terminal Man of the terminal Man-Tf protein or the non-reducing terminal GlcNAc of the terminal GlcNAc-Tf protein. As the lectin, a commercially available lectin may be used. For example, biotinylated UDA lectin (Cat No. BA-8005-1; EY) and BC2L-A lectin derived from bacteria (Burkholderia cenocepacia lectin-A; Wako Pure Chemical Industries, Ltd.) can be used.
 (抗体又はその活性断片)
 抗体又はその活性断片の構成については、前述の「(1)ペプチド結合分子,(i)ペプチドで構成されるペプチド結合分子」で具体的に記載しており、本発明でもそれに準じることから、ここではその説明を省略する。糖鎖に結合する抗体の具体的な例としては、Manを含む糖鎖、好ましくは末端Manを含む糖鎖、より好ましくは非還元型末端Manを含む糖鎖を認識して結合する抗体、及びGlcNAcを含む糖鎖、好ましくは末端GlcNAcを含む糖鎖、より好ましくは非還元型末端GlcNAcを含む糖鎖を認識して結合する抗体が挙げられる。
(Antibody or active fragment thereof)
The composition of the antibody or its active fragment is specifically described in "(1) Peptide bond molecule, (i) Peptide bond molecule composed of peptide" described above, and the same applies to this invention. Then, the explanation is omitted. Specific examples of the antibody that binds to the sugar chain include a sugar chain containing Man, preferably a sugar chain containing a terminal Man, and more preferably an antibody that recognizes and binds to a sugar chain containing a non-reducing terminal Man. Examples thereof include an antibody that recognizes and binds to a sugar chain containing GlcNAc, preferably a sugar chain containing a terminal GlcNAc, and more preferably a sugar chain containing a non-reducing terminal GlcNAc.
 (ii)核酸で構成される糖鎖結合分子
 核酸で構成される糖鎖結合分子には、例えば、核酸アプタマーが挙げられる。
 核酸アプタマーの構成やその作製方法については、前記「(1)ペプチド結合分子,(ii)核酸で構成されるペプチド結合分子」で具体的に記載しており、本発明でもそれに準じることから、ここではその説明を省略する。
 なお、本発明のAD診断キットにおける核酸結合分子は、必要に応じて担体に固定化されているか、あるいは蛍光色素又は発光物質等で標識化されていてもよい。
(Ii) Sugar chain-binding molecule composed of nucleic acid Examples of the sugar chain-binding molecule composed of nucleic acid include nucleic acid aptamers.
The composition of the nucleic acid aptamer and the method for producing the same are specifically described in the above-mentioned "(1) Peptide bond molecule, (ii) Peptide bond molecule composed of nucleic acid", and the same applies to the present invention. Then, the explanation is omitted.
The nucleic acid-binding molecule in the AD diagnostic kit of the present invention may be immobilized on a carrier or labeled with a fluorescent dye, a luminescent substance, or the like, if necessary.
 昨今開発が進んでいるAD治療薬(特にAβに対するモノクローナル抗体)の多くは認知の低下を抑制するものである。したがって、これら治療薬は、発症初期段階の患者に投与して、症状の進行を早期に抑制することにより最も効果を発揮し得る。このことから、認知症が顕在化するpre-MCI患者に投与することが最も望ましい。しかしながら、確立されたMCI発症前の予測鑑別マーカーは、従来存在しなかった。本発明の組み合わせマーカーは、優れたAD病態鑑別マーカーであるのみならず、pre-MCI患者の鑑別をも可能にするものであり、今後のAD早期診断及び治療へ貢献できるものと期待される。 Most of the AD therapeutic agents (especially monoclonal antibodies against Aβ) that are being developed these days suppress the decline in cognition. Therefore, these therapeutic agents may be most effective when administered to patients in the early stage of onset to suppress the progression of symptoms at an early stage. For this reason, it is most desirable to administer to pre-MCI patients with dementia. However, there has been no established predictive differential marker before the onset of MCI. The combination marker of the present invention is not only an excellent marker for differentiating AD pathology, but also enables differentiation of pre-MCI patients, and is expected to contribute to early diagnosis and treatment of AD in the future.
3.アルツハイマー病病態の鑑別方法(AD病態鑑別方法)
3-1.概要
 本発明の第3の態様は、AD病態鑑別方法である。本発明のAD罹患鑑別方法は、認知症の疑いのある被験者由来の体液中に存在する第1態様のAD病態鑑別用組み合わせマーカーの量を測定し、その測定値に基づいて被験者がAD、MCI、及びNCのいずれに該当し得るかを判定することができる。
3. 3. Alzheimer's disease pathological differentiation method (AD pathological condition discrimination method)
3-1. Overview A third aspect of the present invention is a method for differentiating AD pathological conditions. In the method for differentiating AD morbidity of the present invention, the amount of the combination marker for differentiating AD pathology of the first aspect present in the body fluid derived from a subject suspected of having dementia is measured, and the subject is AD or MCI based on the measured value. , And NC can be determined.
3-2.方法
 本発明のAD病態鑑別方法は、測定工程、積値算出工程、及び判定工程を必須の工程として含む。以下、各工程について具体的に説明をする。
3-2. Method The AD pathological condition discrimination method of the present invention includes a measurement step, a product value calculation step, and a determination step as essential steps. Hereinafter, each step will be specifically described.
(1)測定工程
 「測定工程」は、認知症の疑いのある被験者から得た所定量の体液中に存在する第1態様に記載のAD病態鑑別用組み合わせマーカーにおけるそれぞれのマーカーの量を測定し、その測定値を得る工程である。
(1) Measurement step In the “measurement step”, the amount of each marker in the combination marker for AD pathological condition discrimination according to the first aspect present in a predetermined amount of body fluid obtained from a subject suspected of having dementia is measured. , Is the process of obtaining the measured value.
 体液は、好ましくは髄液又は血液である。髄液及び血液の採取方法は、既知の方法であればよく、特に限定はしない。例えば、髄液であれば腰椎穿刺により採取すればよい。腰椎穿刺は、事前に市販の局所麻酔薬を用いることで、痛みを採血以下にすることが可能であり、また無外傷性針を用いることで、副作用を軽減できることから侵襲性が比較的低く、髄液を採取する場合には好適な方法である。血液であれば、公知の採血方法に従って採取すればよい。なお、被験体と対照体の体液は、一方が髄液であれば他方も髄液とするように、原則として互いに同種の体液とする。 The body fluid is preferably cerebrospinal fluid or blood. The method for collecting cerebrospinal fluid and blood may be any known method and is not particularly limited. For example, if it is cerebrospinal fluid, it may be collected by lumbar puncture. Lumbar puncture is relatively less invasive because pain can be reduced to less than blood sampling by using a commercially available local anesthetic in advance, and side effects can be reduced by using a traumatic needle. This is a suitable method for collecting cerebrospinal fluid. If it is blood, it may be collected according to a known blood collection method. As a general rule, the body fluids of the subject and the control body should be the same kind of body fluids as if one is cerebrospinal fluid and the other is cerebrospinal fluid.
 「所定量」は、容量又は重量により予め定められた量をいう。所定量は特に限定はしなが、少なくとも被験者の体液中、好ましくは髄液中に含まれる第1態様に記載のAD病態鑑別用マーカーが測定可能な量である必要がある。例えば、髄液が5μL~1mL、又は髄液タンパク質量として、5μg~200μgあればよい。 "Predetermined amount" means an amount predetermined by capacity or weight. Although the predetermined amount is not particularly limited, it is necessary that the marker for AD pathological condition discrimination according to the first aspect contained at least in the body fluid of the subject, preferably in the cerebrospinal fluid, is a measurable amount. For example, the amount of cerebrospinal fluid may be 5 μL to 1 mL, or the amount of cerebrospinal fluid protein may be 5 μg to 200 μg.
 本明細書において「測定値」とは、本工程で測定されるAD病態鑑別用組み合わせマーカーにおけるそれぞれのマーカーの量を示す値である。測定値は、容量又は重量のような絶対値であってもよく、また濃度、イオン強度、吸光度又は蛍光強度のような相対値であってもよい。 In the present specification, the "measured value" is a value indicating the amount of each marker in the combination marker for AD pathological condition discrimination measured in this step. The measured value may be an absolute value such as volume or weight, or may be a relative value such as concentration, ionic strength, absorbance or fluorescence intensity.
 前記マーカーの量は、AD病態鑑別用組み合わせマーカーのそれぞれの構成マーカーのポリペプチドに特異的に結合するペプチド結合分子、及び該構成マーカーの糖鎖に特異的に結合する糖鎖結合分子を用いて測定すればよい。ペプチド結合分子、及び糖鎖結合分子の構成については、第2態様で詳述していることから、ここでは具体的な説明を省略する。 The amount of the marker is determined by using a peptide-binding molecule that specifically binds to the polypeptide of each constituent marker of the combination marker for AD pathological condition differentiation and a sugar chain-binding molecule that specifically binds to the sugar chain of the constituent marker. Just measure. Since the configurations of the peptide bond molecule and the sugar chain bond molecule are described in detail in the second aspect, specific description thereof will be omitted here.
 測定方法は、ペプチド結合分子及び糖鎖結合分子を用いて測定する公知のタンパク質又は糖タンパク質の定量方法であればよく、特に限定はしない。例えば、抗体を用いた免疫学的検出法、レクチンを用いたレクチン検出法、質量分析法又はそれらの組み合わせ法が挙げられる。 The measuring method may be any known protein or glycoprotein quantification method using a peptide bond molecule and a sugar chain binding molecule, and is not particularly limited. For example, an immunological detection method using an antibody, a lectin detection method using a lectin, a mass spectrometry method or a combination method thereof can be mentioned.
 免疫学的検出法には、例えば、酵素免疫測定法(ELISA法、EIA法を含む)、蛍光免疫測定法、放射免疫測定法(RIA)、発光免疫測定法、表面プラズモン共鳴法(SPR法)、水晶振動子マイクロバランス(QCM)法、免疫比濁法、ラテックス凝集免疫測定法、ラテックス比濁法、赤血球凝集反応、粒子凝集反応法、金コロイド法、キャピラリー電気泳動法、ウェスタンブロット法又は免疫組織化学法(免疫染色法)が挙げられる。 Immunological detection methods include, for example, enzyme immunoassay (including ELISA and EIA methods), fluorescent immunoassay, radioimmunoassay (RIA), luminescence immunoassay, and surface plasmon resonance (SPR). , Crystal transducer microbalance (QCM) method, immunoturbidimetric method, latex agglutination immunoassay, latex turbidimetric method, hemagglutination reaction, particle agglutination reaction method, gold colloid method, capillary electrophoresis method, western blot method or immunity Histochemical method (immunostaining method) can be mentioned.
 レクチン検出法には、レクチンブロッティング法が挙げられる。
 質量分析法には、高速液体クロマトグラフ質量分析法(LC-MS)、高速液体クロマトグラフタンデム質量分析法(LC-MS/MS)、ガスクロマトグラフ質量分析法(GC-MS)、ガスクロマトグラフタンデム質量分析法(GC-MS/MS)、キャピラリー電気泳動質量分析法(CE-MS)及びICP質量分析法(ICP-MS)が挙げられる。
Examples of the lectin detection method include a lectin blotting method.
High-speed liquid chromatograph mass spectrometry (LC-MS), high-speed liquid chromatograph tandem mass spectrometry (LC-MS / MS), gas chromatograph mass spectrometry (GC-MS), gas chromatograph tandem mass spectrometry include mass spectrometry. Analytical methods (GC-MS / MS), capillary electromass spectrometry (CE-MS) and ICP mass spectrometry (ICP-MS) can be mentioned.
 組み合わせ法には、例えば、レクチンと抗体を用いたサンドイッチELISA法及びそれと同様の原理を用いた自動化法、好ましくは、ハイスループットレクチン阻害‐自動ラッテクス凝集法を利用することができる。AD病態鑑別用組み合わせマーカーの構成マーカーが糖タンパク質の場合、糖鎖とタンパク質のそれぞれを標的として検出する組み合わせ法が糖タンパク質を高い精度で定量することができるため好ましい。組み合わせ法の具体例として、末端Man-Tfタンパク質をAD病態鑑別用組み合わせマーカーにおける構成マーカーの一つとして測定する場合、抗Tf抗体を吸着させたプレート等の担体に体液(例えば、髄液)を通して末端Man-Tfタンパク質を吸着させ、その後、Man結合分子であるUDAレクチンをプローブとして末端Man-Tfタンパク質を検出する方法が挙げられる。また、逆にUDAレクチンを吸着させたプレート等の担体に体液(例えば、髄液)を通して末端Man-Tfタンパク質を吸着させ、その後、抗Tf抗体で末端Man-Tfタンパク質を検出する方法もある。 As the combination method, for example, a sandwich ELISA method using a lectin and an antibody and an automated method using a similar principle, preferably a high-throughput lectin inhibition-automatic lattice aggregation method can be used. When the constituent marker of the combination marker for AD pathological condition identification is glycoprotein, the combination method of detecting each of the sugar chain and the protein as a target is preferable because the glycoprotein can be quantified with high accuracy. As a specific example of the combination method, when the terminal Man-Tf protein is measured as one of the constituent markers in the combination marker for AD pathological condition differentiation, a body fluid (for example, spinal fluid) is passed through a carrier such as a plate on which an anti-Tf antibody is adsorbed. A method of adsorbing the terminal Man-Tf protein and then detecting the terminal Man-Tf protein using the UDA lectin, which is a Man-binding molecule, as a probe can be mentioned. On the contrary, there is also a method of adsorbing the terminal Man-Tf protein through a body fluid (for example, cerebrospinal fluid) on a carrier such as a plate on which UDA lectin is adsorbed, and then detecting the terminal Man-Tf protein with an anti-Tf antibody.
 上記分析法は、いずれも当該分野に公知の技術であって、それらの方法に準じて行えばよい。例えば、Green, M.R. and Sambrook, J., 2012, Molecular Cloning: A Laboratory Manual Fourth Ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York;Christopher J., et al., 2005, Chemical Review,105:1103-1169;Iijima Y. et al., 2008,.The Plant Journal, 54,949-962;Hirai M. et al.,2004, Proc Natl Acad Sci USA, 101(27) 10205-10210;Sato S, et al., 2004,,The Plant Journal, 40(1)151-163; Shimizu M. et al., 2005, Proteomics, 5,3919-3931に記載の方法に準じて行うことができる。また、各メーカーからタンパク質定量キットが市販されており、それらを利用することもできる。 All of the above analysis methods are techniques known in the art, and may be performed according to those methods. For example, Green, M.R. and Sambrook, J., 2012, Molecular Cloning: A Laboratory Manual Fourth Ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York; Christopher J., et al. : 1103-1169 ; Iijima Y. et al., 2008 ,. The Plant Journal, 54, 949-962 ; Hirai M. et al., 2004, Proc Natl Acad Sci USA, 101 (27) 10205-10210 ; Sato S, et It can be performed according to the method described in al., 2004 ,, The Plant Journal, 40 (1) 151-163; Shimizu M. et al., 2005, Proteomics, 5, 3919-3931. In addition, protein quantification kits are commercially available from each manufacturer, and they can also be used.
(2)積値算出工程
 「積値算出工程」は、前記測定工程で得られたそれぞれのマーカーの測定値を乗じて得られる積値を得る工程である。
(2) Product value calculation step The “product value calculation step” is a step of obtaining a product value obtained by multiplying the measured values of the respective markers obtained in the measurement step.
(3)判定工程
 「判定工程」は、予め設定されたADカットオフ値及びMCIカットオフ値に基づいて前記積値から前記被験者がAD、MCI、及びNCのいずれに該当し得るかを判定する工程である。
(3) Judgment step The "judgment step" determines whether the subject can correspond to AD, MCI, or NC from the product value based on the preset AD cutoff value and MCI cutoff value. It is a process.
 本明細書において「カットオフ値」とは、その値を基準として疾患の罹患リスクの有無又は病態の判定をし得る値を指す。好ましくは、カットオフ値によって、感度及び特異度の両方が十分に高い値を示す。一般に、比較する対照群と疾患群との直接の比較に基づいて描かれたROC曲線から公知の方法を用いて導かれるが、これに限定しない。比較する対照群と疾患群との直接の比較でなくてもよく、ROC曲線を用いずにカットオフ値を設定してもよい。 In the present specification, the "cutoff value" refers to a value that can determine the presence or absence of the risk of illness or the pathological condition based on the value. Preferably, the cutoff value indicates a sufficiently high value for both sensitivity and specificity. Generally, it is derived from the ROC curves drawn based on a direct comparison between the control group and the disease group to be compared using a known method, but is not limited to this. It does not have to be a direct comparison between the control group and the disease group to be compared, and the cutoff value may be set without using the ROC curve.
 「ROC曲線(Receiver Operating Characteristic curve、受信者動作特性曲線)」とは、縦軸を真の陽性率(TPF: True Position Fraction)、すなわち感度、横軸を偽陽性率(FPF: False Position Fraction)、すなわち(1-特異度)とし、検査結果のどの値を所見ありと判断するかの閾値、つまりカットオフポイント(cutoff point)を媒介変数として変化させてプロットしていくことで作成される。ここで特異度とは、陰性者を正確に陰性と判断する率である。 The "ROC curve (Receiver Operating Characteristic curve)" means that the vertical axis is the true positive rate (TPF: True Position Fraction), that is, the sensitivity and the horizontal axis is the false positive rate (FPF: False Position Fraction). That is, it is set to (1-specificity), and it is created by changing and plotting which value of the test result is judged to have a finding, that is, the cutoff point as a parameter. Here, the specificity is the rate at which a negative person is accurately judged to be negative.
 「ADカットオフ値」とは、積値算出工程で得られた積値に基づいて、本発明の鑑別方法の対象となった被験者のADに罹患可能性の有無を判定する基準となるカットオフ値をいう。積値がADカットオフ値よりも高い場合、その被験者はADの罹患可能性が高いと判定する。積値がADカットオフ値よりも低い場合、その被験者はADの罹患可能性は低く、MCI又はNCのいずれかである可能性が高いと判定する。 The "AD cutoff value" is a cutoff that serves as a reference for determining whether or not a subject subject to the discrimination method of the present invention is likely to be affected by AD, based on the product value obtained in the product value calculation step. The value. If the product value is higher than the AD cutoff value, the subject is determined to be more likely to have AD. If the product value is lower than the AD cutoff value, the subject is determined to be less likely to have AD and more likely to be either MCI or NC.
 ADカットオフ値の具体的な値は、AD鑑別用組み合わせマーカーにおける構成マーカーの組み合わせによって異なる。各組み合わせにおけるADカットオフ値は、表1~4に示している。例えば、AD鑑別用組み合わせマーカーがMan-Tfタンパク質とp-tauタンパク質の組み合わせの場合、表1からADカットオフ値は、97.8となる。 The specific value of the AD cutoff value differs depending on the combination of constituent markers in the combination marker for AD discrimination. The AD cutoff values for each combination are shown in Tables 1 to 4. For example, when the combination marker for AD discrimination is a combination of Man-Tf protein and p-tau protein, the AD cutoff value is 97.8 from Table 1.
 「MCIカットオフ値」とは、積値算出工程で得られた積値に基づいて、本発明の鑑別方法の対象となった被験者のMCIに罹患可能性の有無を判定する基準となるカットオフ値をいう。積値がMCIカットオフ値よりも高い場合、その被験者はMCIの罹患可能性が高いと判定する。積値がADカットオフ値よりも低い場合、その被験者はNCである可能性が高いと判定する。 The "MCI cutoff value" is a cutoff that serves as a reference for determining whether or not a subject subject to the discrimination method of the present invention is likely to be affected by MCI, based on the product value obtained in the product value calculation step. The value. If the product value is higher than the MCI cutoff value, the subject is determined to be more likely to have MCI. If the product value is lower than the AD cutoff value, it is determined that the subject is likely to be NC.
 MCIカットオフ値の具体的な値は、AD病態鑑別用組み合わせマーカーにおける構成マーカーの組み合わせによって異なる。各組み合わせにおけるMCIカットオフ値は、表1~4に示している。例えば、AD病態鑑別用組み合わせマーカーがMan-Tfタンパク質とp-tauタンパク質の組み合わせの場合、表1からMCIカットオフ値は、110となる。 The specific value of the MCI cutoff value differs depending on the combination of constituent markers in the combination marker for AD pathological condition discrimination. The MCI cutoff values for each combination are shown in Tables 1-4. For example, when the combination marker for AD pathological condition differentiation is a combination of Man-Tf protein and p-tau protein, the MCI cutoff value is 110 from Table 1.
 本態様のAD病態鑑別方法は、公知のAD病態鑑別方法の代わりに又はそれと組み合せて実施することができる。公知のAD病態鑑別方法としては、例えば、認知症スコアの測定、[11C]ピッツバーグ組成物(Pittsburgh compound:PiB)を使用したアミロイドPET(positron emission tomography:陽電子放出断層撮影)及びフルオロ-2-デオキシ-D-グルコース(FDG)を使用したPET等が挙げられる。 The AD pathological condition differentiation method of this embodiment can be carried out in place of or in combination with a known AD pathological condition discrimination method. Known methods for differentiating AD pathology include, for example, measurement of dementia score, amyloid PET (positron emission tomography) using [ 11 C] Pittsburgh compound (PiB), and fluoro-2-. PET using deoxy-D-glucose (FDG) and the like can be mentioned.
4.MCI移行型健常対照の鑑別方法(pre-MCI鑑別方法)
4-1.概要
 本発明の第4の態様は、MCI移行型健常対照の鑑別方法(pre-MCI鑑別方法)である。本発明のpre-MCI鑑別方法は、被験者がNCであった場合に、pre-MCI及びnon-pre-MCIのいずれに該当し得るかを判定することができる。
4. Differentiation method for MCI transition type healthy control (pre-MCI discrimination method)
4-1. Overview A fourth aspect of the present invention is a method for differentiating a healthy control with MCI transfer (pre-MCI differentiating method). The pre-MCI discrimination method of the present invention can determine whether the subject is NC or non-MCI or non-pre-MCI.
4-2.方法
 本発明のpre-MCI鑑別方法は、測定工程、積値算出工程、判定工程、及び再判定工程を含む。このうち測定工程、積値算出工程、及び判定工程は、前記第3態様のAD病態鑑別方法と同一である。すなわち、本発明のpre-MCI鑑別方法は、前記第3態様のAD病態鑑別方法に引き続き行われる鑑別方法である。以下、本発明の特徴である再判定工程について説明をする。
4-2. Method The pre-MCI discrimination method of the present invention includes a measurement step, a product value calculation step, a determination step, and a re-judgment step. Of these, the measurement step, the product value calculation step, and the determination step are the same as the AD pathological condition discrimination method of the third aspect. That is, the pre-MCI differentiation method of the present invention is a differentiation method that follows the AD pathological condition differentiation method of the third aspect. Hereinafter, the re-determination step, which is a feature of the present invention, will be described.
(4)再判定工程
 「再判定工程」は、予め設定されたpre-MCIカットオフ値に基づいて、前記第3態様のAD病態鑑別方法における前記判定工程でNCに該当すると判定された被験者の積値算出工程で得られた積値から前記被験者がpre-MCI及びnon-pre-MCIのいずれに該当し得るかを判定する工程である。
(4) Re-judgment step The "re-judgment step" is a subject who is determined to correspond to NC in the determination step in the AD pathological condition discrimination method of the third aspect based on a preset pre-MCI cutoff value. This is a step of determining whether the subject can correspond to pre-MCI or non-pre-MCI from the product value obtained in the product value calculation step.
 「pre-MCIカットオフ値」とは、被験者が第3態様のAD病態鑑別方法でNCと判定された場合に、MCI移行可能性の高いNCか、そうでないNCかを判定する基準となるカットオフ値をいう。 The "pre-MCI cut-off value" is a cut that serves as a criterion for determining whether an NC has a high possibility of MCI transition or an NC that does not, when the subject is determined to be NC by the AD pathological condition discrimination method of the third aspect. Off value.
 第3態様のAD病態鑑別方法における判定工程で、AD又はMCIと判定された被験者は、本発明のpre-MCI鑑別方法の対象外であり、NCと判定された被験者のみが対象となる。積値算出工程で得られた積値がpre-MCIカットオフ値よりも高い場合、その被験者はpre-MCIであり、現在はNCだが将来的にMCIに移行する可能性が高いと判定する。一方、積値がpre-MCIカットオフ値よりも低い場合、その被験者はMCIに移行する可能性が低いnon-pre-MCI、つまり真のNCであると判定する。
 本態様のpre-MCI鑑別方法は、公知のAD病態鑑別方法等と併用することができる。
Subjects determined to be AD or MCI in the determination step in the AD pathological condition differentiation method of the third aspect are not subject to the pre-MCI differentiation method of the present invention, and only subjects determined to be NC are targeted. If the product value obtained in the product value calculation process is higher than the pre-MCI cutoff value, it is determined that the subject is pre-MCI and is currently NC but is likely to move to MCI in the future. On the other hand, if the product value is lower than the pre-MCI cutoff value, the subject is determined to be non-pre-MCI, that is, true NC, which is unlikely to move to MCI.
The pre-MCI differentiation method of this embodiment can be used in combination with a known AD pathological condition differentiation method or the like.
<実施例1:海馬におけるTfタンパク質とp-tauタンパク質の局在>
(目的)
 ADマーカーとして知られるMan-Tfタンパク質の海馬における局在性を検証する。
(方法)
 短期記憶を司る海馬は、最も早期に神経細胞死、組織の萎縮が進行する部位であるため、AD患者、対照用の健常体の海馬を抗Tfタンパク質抗体及び抗p-tau抗体で二重染色を行った。ホルマリン固定された海馬から5ミクロンの切片を作製し、スライドグラス上で免疫染色した。一次抗体には、抗Tfタンパク質抗体(A0061, Dako Ltd.)及び抗p-tauタンパク質抗体(AT8, コスモバイオ株式会社)を、二次抗体にはAlexa Fluor 488又は594ラベル化抗体(Thermo Fisher Scientific)を用いた。なお、Man-Tfタンパク質は、大脳皮質のTfタンパク質における糖鎖アイソフォームの85%以上を占めることが質量分析の結果から明らかとなっている。
<Example 1: Localization of Tf protein and p-tau protein in the hippocampus>
(Purpose)
To verify the localization of the Man-Tf protein, known as an AD marker, in the hippocampus.
(Method)
Since the hippocampus, which controls short-term memory, is the site where nerve cell death and tissue atrophy progress at the earliest stage, AD patients and healthy hippocampus for control are double-stained with anti-Tf protein antibody and anti-p-tau antibody. Was done. 5 micron sections were made from formalin-fixed hippocampus and immunostained on glass slides. Anti-Tf protein antibody (A0061, Dako Ltd.) and anti-p-tau protein antibody (AT8, Cosmo Bio Co., Ltd.) are used as the primary antibody, and Alexa Fluor 488 or 594 labeled antibody (Thermo Fisher Scientific) is used as the secondary antibody. ) Was used. It is clear from the results of mass spectrometry that the Man-Tf protein occupies 85% or more of the sugar chain isoform in the Tf protein of the cerebral cortex.
(結果)
 図2に結果を示す。Tfタンパク質は、健常体(図2A)及びAD患者(図2B)のいずれでも検出されたが、健常体に比べてAD患者でやや強く検出された。一方、p-tauタンパク質は、健常体では検出されなかったが、AD患者では検出された。
 興味深いことに、Tfタンパク質陽性細胞のいくつかは、矢印で示すようにp-tauタンパク質陽性細胞でもあった(図2B)。これらの結果から、Tfタンパク質分泌はAD病態の進行と共に増加し、Tfタンパク質とp-tauタンパク質が共局在することが示唆された 。
(result)
The results are shown in FIG. The Tf protein was detected in both healthy subjects (FIG. 2A) and AD patients (FIG. 2B), but was detected slightly more strongly in AD patients than in healthy subjects. On the other hand, p-tau protein was not detected in healthy subjects, but was detected in AD patients.
Interestingly, some of the Tf protein-positive cells were also p-tau protein-positive cells, as indicated by the arrows (Fig. 2B). These results suggest that Tf protein secretion increases with the progression of AD pathology, and that Tf protein and p-tau protein are co-localized.
 細胞がストレスにさらされ、ミスホールドタンパク質が増加すると高マンノース糖鎖がタグとなりタンパク質の高次構造の再校正が起こることが知られている(Helenius A. and Aebi M., Ann. Rev. Biochem., 2004, 73:1019-1049)。このことから、Man-Tfタンパク質の増加はストレス応答に起因している可能性がある。 It is known that when cells are exposed to stress and the amount of mishold protein increases, high mannose sugar chains become tags and recalibration of the higher-order structure of the protein occurs (Helenius A. and Aebi M., Ann. Rev. Biochem. ., 2004, 73: 1019-1049). From this, the increase in Man-Tf protein may be due to the stress response.
<実施例2:髄液中Man-Tfタンパク質の測定>
(目的)
 髄液中Man-Tfタンパク質の量を測定し、様々な認知症に対するMan-Tfタンパク質のマーカーとしての効果を検証した。
<Example 2: Measurement of Man-Tf protein in cerebrospinal fluid>
(Purpose)
The amount of Man-Tf protein in the cerebrospinal fluid was measured, and the effect of Man-Tf protein as a marker on various dementias was verified.
(方法)
1.各疾患の診断
 認知症外来を受診した患者316名に対して、既存の診断方法により診断すると共に、試料として各患者から腰椎穿刺により5mLの髄液を採取した。
 1-1.AD病態及びその他の神経変性疾患の診断
 外来ADの罹患疑いのある患者を下記AD診断基準に従い、MCI及びADに分類し、いずれにも属さなかった患者群をNCとした。同時に、神経変性を伴う認知症であるtauタンパク質が蓄積するAD以外のタウオパチー及びαシヌクレインが蓄積するシヌクレイノパチーについても下記診断基準により、分類した。以下の実施例において、タウオパチー及びシヌクレオパチーについては、しばしば「その他の神経変性疾患」と称する。
 また、特発性正常圧水頭症(iNPH)は、ADと同様に認知症と脳室拡大を示すが、神経変性を示さないので、疾患対照とした。
(Method)
1. 1. Diagnosis of each disease For 316 patients who visited the outpatient department for dementia, diagnosis was made by the existing diagnostic method, and 5 mL of cerebrospinal fluid was collected from each patient by lumbar puncture.
1-1. Diagnosis of AD pathology and other neurodegenerative diseases Patients suspected of having outpatient AD were classified into MCI and AD according to the following AD diagnostic criteria, and the group of patients who did not belong to either was designated as NC. At the same time, tauopathy other than AD, which accumulates tau protein, which is a dementia with neurodegenerative disease, and synucleinopathy, which accumulates α-synuclein, were also classified according to the following diagnostic criteria. In the following examples, tauopathy and synucleopathy are often referred to as "other neurodegenerative diseases".
Idiopathic normal pressure hydrocephalus (iNPH) showed dementia and ventricular enlargement like AD, but did not show neurodegenerative disease, so it was used as a disease control.
 (1)ADの診断
 National Institute on Aging-Alzheimer s association workgroup(NIA-AA)による臨床診断基準に従った。
 (2)MCIの診断
 NIA-AA診断ガイドライン作成ワークグループから推奨されたADを背景にしたMCIの臨床診断基準に従った。
 (3)タウオパチーの診断
 タウオパチーの具体的疾患として進行性核上麻痺(PSP)及び前頭側頭型認知症(FTD)が挙げられる。これらの診断については、認知症疾患診療ガイドライン2017(医学書院 電子版ISBN 978-4-260-62858-7)に従った。
 (4)シヌクレイノパチーの診断
 シヌクレイノパチーの具体的疾患としてレビー小体型認知症(DLB)及びパーキンソン病(PD)が挙げられる。DLBについては、認知症疾患診療ガイドライン2017(前掲)に従った。また、PDについては、パーキンソン病診療ガイドライン2018(医学書院)に従った。
 (5)疾患対照の診断
 iNPHの診断は、特発性正常圧水頭症診療ガイドライン第3版(メディカルレビュー社)に従った。
(1) Diagnosis of AD According to the clinical diagnostic criteria by the National Institute on Aging-Alzheimer's association workgroup (NIA-AA).
(2) Diagnosis of MCI The clinical diagnostic criteria of MCI against the background of AD recommended by the NIA-AA Diagnostic Guideline Development Workgroup were followed.
(3) Diagnosis of tauopathy Specific diseases of tauopathy include progressive supranuclear palsy (PSP) and frontotemporal dementia (FTD). For these diagnoses, the dementia disease clinical practice guideline 2017 (Igaku-Shoin electronic version ISBN 978-4-260-62858-7) was followed.
(4) Diagnosis of synucleinopathy Specific diseases of synucleinopathy include Lewy body dementia (DLB) and Parkinson's disease (PD). For DLB, we followed the Dementia Disease Practice Guidelines 2017 (supra). For PD, the Parkinson's disease clinical practice guideline 2018 (Igaku-Shoin) was followed.
(5) Disease-controlled diagnosis The diagnosis of iNPH was in accordance with the 3rd edition of the Idiopathic Normal Pressure Hydrocephalus Clinical Practice Guideline (Medical Review).
2.髄液中のMan-Tfタンパク質の測定
 Man-Tfタンパク質の測定では、rBC2L-Aレクチンを糖鎖結合分子として用いた。捕捉反応は、プレート上に抗ヒトTf抗体を固相化して行った。具体的には、抗ヒトTf抗体(A0061, Dako Ltd)を100mMカーボネートバッファー(pH 9.5)で1μg/mLに希釈し、100μLをマイクロタイタープレートに加え、4℃で一晩インキュベートした。TBSで1回洗浄後、ブロッキング剤として10% N101(富士フィルム和光純薬)を含むTBSを加えて室温で1時間インキュベートし、抗体固相化プレートを作製した。
2. 2. Measurement of Man-Tf protein in cerebrospinal fluid In the measurement of Man-Tf protein, rBC2L-A lectin was used as a sugar chain binding molecule. The capture reaction was carried out by immobilizing an anti-human Tf antibody on a plate. Specifically, anti-human Tf antibody (A0061, Dako Ltd) was diluted to 1 μg / mL with 100 mM carbonate buffer (pH 9.5), 100 μL was added to a microtiter plate and incubated overnight at 4 ° C. After washing once with TBS, TBS containing 10% N101 (Fuji Film Wako Pure Chemical Industries, Ltd.) was added as a blocking agent and incubated at room temperature for 1 hour to prepare an antibody-immobilized plate.
 試料の髄液(5~10μL)は、終濃度で0.6%の2-メルカプトエタノール及び0.003%のSDSを含むPBST(phosphate-buffered saline/0.05% Tween-20)中で55℃で60分間の前処理を行なった。ブロッキングした前記抗体固相化プレートをTBSTで1回洗浄した後、前処理した試料を10mM CaCl2を含むTBST(TBST-CaCl2)で希釈して加え、4℃で一晩インキュベートした。TBST-CaCl2で3回洗浄後、ビオチン化rBC2L-A(50 ng/mL)を含むTBST-CaCl2を100μL加え、室温で2時間インキュベートした。rBC2L-Aは、予めEz-link NHS-biotin(#21336, Pierce)を使用して、添付のプロトコルに従ってビオチン化した。TBST-CaCl2を加えて2回洗浄し、HRP標識ストレプトアビジン(50ng/mL)を含むTBST-CaCl2を100μL加えた後、室温で2時間インキュベートした。TBST-CaCl2にて2回洗浄後、TMB Micro well Peroxidase substrate system(#50-76-11, Kirkegaard & Perry Laboratories, Inc.)試薬を100μL加え、発色反応を行った。1Mリン酸100μLにて反応を停止し、450nmで吸光度をVarioskan LUX multimode microplate reader(Thermo Fischer Scientific)を用いて測定した。この際、定量用の標準として、糖鎖末端にシアル酸α2,6ガラクトースβ1,4GlcNAcβ1,(3/6)-マンノース残基を有するヒト血清Tf(cat No. T1147, Sigma-Aldrich)をシアリダーゼ、ガラクトシダーゼ、及びへキソサミニダーゼで逐次消化を行うことで作製した、糖鎖末端にマンノース残基を持つTf糖鎖異性体を使用した。
 統計解析はSPSS(version 26)によって行なった。One factor ANOVA解析後、Turkey-Kramer comparisonにより多重比較を行なった。
Cerebrospinal fluid (5-10 μL) of the sample is placed at 55 ° C. for 60 minutes before in PBST (phosphate-buffered saline / 0.05% Tween-20) containing 0.6% 2-mercaptoethanol and 0.003% SDS at a final concentration. Processing was performed. The blocked antibody-immobilized plate was washed once with TBST, then the pretreated sample was diluted with TBST (TBST-CaCl 2 ) containing 10 mM CaCl 2 and incubated overnight at 4 ° C. After washing 3 times with TBST-CaCl 2 , 100 μL of TBST-CaCl 2 containing biotinylated rBC2L-A (50 ng / mL) was added, and the mixture was incubated at room temperature for 2 hours. rBC2L-A was previously biotinylated using Ez-link NHS-biotin (# 21336, Pierce) according to the attached protocol. TBST-CaCl 2 was added and washed twice, 100 μL of TBST-CaCl 2 containing HRP-labeled streptavidin (50 ng / mL) was added, and the mixture was incubated at room temperature for 2 hours. After washing twice with TBST-CaCl 2 , 100 μL of TMB Micro well Peroxidase substrate system (# 50-76-11, Kirkegaard & Perry Laboratories, Inc.) reagent was added and a color reaction was carried out. The reaction was stopped with 100 μL of 1 M phosphoric acid, and the absorbance was measured at 450 nm using a Varioskan LUX multimode microplate reader (Thermo Fischer Scientific). At this time, as a standard for quantification, human serum Tf (cat No. T1147, Sigma-Aldrich) having a sialic acid α2,6 galactose β1,4GlcNAcβ1, (3/6) -mannose residue at the end of the sugar chain was used as a sialidase. A Tf sugar chain isomer having a mannose residue at the end of the sugar chain, which was prepared by sequential digestion with galactosidase and hexosaminidase, was used.
Statistical analysis was performed by SPSS (version 26). After one factor ANOVA analysis, multiple comparisons were performed by Turkey-Kramer comparison.
(結果)
 図3に結果を示す。多重検定の結果、疾患対照であるiNPH(2.12+0.71μg/mL)に対してNC(3.56+1.46μg/mL)、MCI(3.72+1.54μg/mL)及びAD(2.99+1.01μg/mL)ではMan-Tfタンパク質が有意に増加していた。一方、その他の神経変性疾患(PSP+FTD及びDLB+PD)では増加は認められなかった。
 また、追跡調査によって、NC群の23症例のうち5症例がMCIに移行し(図中、黒三角)、MCI群の42症例のうち2症例がADへ移行した(図中、黒四角)。
 以上の結果により、Man-Tfタンパク質の測定値は、AD病態において特異的に上昇し、特にNCやMCIで、その上昇幅が大きいことが示唆された 。さらに、黒四角の分布からADに移行し得るMCI患者はMan-Tfタンパク質の測定値から予測し得ることが示唆された。一方、黒三角の分布からも明らかなようにMan-Tfタンパク質単独の測定値ではMCIに移行し得るNC患者(pre-MCI患者)の予測は困難であることが示唆された。 
(result)
The results are shown in FIG. As a result of multiple tests, NC (3.56 + 1.46 μg / mL), MCI (3.72 + 1.54 μg / mL) and AD (2.99 + 1.01 μg / mL) for the disease control iNPH (2.12 + 0.71 μg / mL) The Man-Tf protein was significantly increased in. On the other hand, no increase was observed in other neurodegenerative diseases (PSP + FTD and DLB + PD).
In addition, according to the follow-up survey, 5 of the 23 cases in the NC group were transferred to MCI (black triangle in the figure), and 2 of the 42 cases in the MCI group were transferred to AD (black square in the figure).
From the above results, it was suggested that the measured value of Man-Tf protein increased specifically in AD pathology, especially in NC and MCI. Furthermore, it was suggested that MCI patients who could transition to AD from the distribution of black squares could be predicted from the measured values of Man-Tf protein. On the other hand, as is clear from the distribution of the black triangle, it is suggested that it is difficult to predict NC patients (pre-MCI patients) who can migrate to MCI by the measured values of Man-Tf protein alone.
<実施例3:ADマーカーの組み合わせによる鑑別精度の向上>
(目的)
 二種類のADマーカーを組み合わせることでAD病態の鑑別精度を向上することができるかについて検証する。
<Example 3: Improvement of discrimination accuracy by combining AD markers>
(Purpose)
We will verify whether the accuracy of differentiating AD pathology can be improved by combining two types of AD markers.
(方法)
 実施例1の結果からp-tauタンパク質とTfタンパク質は同一神経細胞内に共局在することが示唆された。そこで、これら二種類のADマーカーを組み合わせて、それぞれの量を測定した。また、ADの発症では、まずAD発症の20年以上前にアミロイド斑(Aβタンパク質の沈着)が生じ、続いてその約10年後にp-tauタンパク質の沈着が発生することが想定されている。そこで、Aβペプチドとp-tauタンパク質より算出されるAD indexとTfタンパク質の組み合わせについても検証した。tauタンパク質、p-tauタンパク質、Aβ40ペプチド、及びAβ42ペプチドの測定には以下のELISA kitを用いた。
 ・tauタンパク質(181位のスレオニン残基におけるリン酸化を含む)の測定:
  FinoScholar・hTAU 10-992 フィノスカラー・pTAU(ニプロ) 
  メーカーの推奨により400 pg/mL以上を陽性とした。
 ・p-tauタンパク質の測定:
  FinoScholar・hTAU 10-994フィノスカラー・pTAU(ニプロ)
  メーカーの推奨により50 pg/mL以下を陰性とした。
 ・Aβ40ペプチドの測定:
  Human/rat βamyloid (40) ELISA Kit, Wako II (cat No. 294-64701, 富士フイルム和光純薬)
 ・Aβ42ペプチドの測定:
  Human/rat βamyloid (42) ELISA Kit, Wako, High Sensitive (cat No. 292-64501, 富士フイルム和光純薬)
 AD indexは、測定したp-tauタンパク質量、Aβ40ペプチド量、及びAβ40ペプチド量に基づいて、(Aβ40/Aβ42)×p-tauにより算出した。
(Method)
From the results of Example 1, it was suggested that the p-tau protein and the Tf protein co-localize in the same nerve cell. Therefore, these two types of AD markers were combined and the amount of each was measured. In the onset of AD, it is assumed that amyloid plaques (deposition of Aβ protein) first occur 20 years or more before the onset of AD, and then p-tau protein deposits occur about 10 years after that. Therefore, we also verified the combination of AD index and Tf protein calculated from Aβ peptide and p-tau protein. The following ELISA kit was used for the measurement of tau protein, p-tau protein, Aβ40 peptide, and Aβ42 peptide.
-Measurement of tau protein (including phosphorylation at the threonine residue at position 181):
FinoScholar ・ hTAU 10-992 FinoScholar ・ pTAU (Nipro)
According to the manufacturer's recommendation, 400 pg / mL or more was positive.
・ Measurement of p-tau protein:
FinoScholar / hTAU 10-994 FinoScholar / pTAU (Nipro)
According to the manufacturer's recommendation, 50 pg / mL or less was negative.
-Measurement of Aβ40 peptide:
Human / rat βamyloid (40) ELISA Kit, Wako II (cat No. 294-64701, Wako Pure Chemical Industries, Ltd.)
-Measurement of Aβ42 peptide:
Human / rat βamyloid (42) ELISA Kit, Wako, High Sensitive (cat No. 292-64501, Wako Pure Chemical Industries, Ltd.)
The AD index was calculated by (Aβ40 / Aβ42) × p-tau based on the measured amount of p-tau protein, Aβ40 peptide, and Aβ40 peptide.
 それぞれのマーカーの測定値を乗じて得られる積値に基づき、組み合わせマーカーのカットオフ値を得た。AD及びMCIのそれぞれのカットオフ値は、ROC曲線からYoden法を用いて設定した。一方、NCにおけるpre-MCIのカットオフ値については、「ADが疑われる患者(NC+MC+AD)」と「疾患コントロール(iNPH)」の比較に基づいて求めたカットオフ値を疑似的に用いた。感度及び特異度は、カットオフ値から算出し、信頼度を表すAUC(area under the curve)は、受信者動作特定(ROC)曲線を用いて算出した。 The cutoff value of the combination marker was obtained based on the product value obtained by multiplying the measured values of each marker. The cutoff values for AD and MCI were set from the ROC curve using the Yoden method. On the other hand, for the pre-MCI cutoff value in NC, the cutoff value obtained based on the comparison between "patients with suspected AD (NC + MC + AD)" and "disease control (iNPH)" was used in a pseudo manner. The sensitivity and specificity were calculated from the cutoff value, and the AUC (area under the curve) representing the reliability was calculated using the receiver operating characteristic (ROC) curve.
(結果)
 表1、表2、及び図4に結果を示す(感度及び特異度は70%以上を、AUCは0.75以上を太字で示した。)
(result)
The results are shown in Table 1, Table 2, and FIG. 4 (sensitivity and specificity are shown in bold at 70% or higher, and AUC is shown at 0.75 or higher in bold).
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
(1)組み合わせマーカーによるMCI及びADの鑑別精度
 図4A及び表1に示すように、Man-Tfタンパク質のみをマーカーとした場合には、MCI群では、2.67μg/mLのMCIカットオフ値により感度81.0%、特異度82.7%となった。また、ROC曲線の信頼度を評価するAUCは0.846であった。同様に、AD群では、2.62μg/mLのADカットオフ値により特異度82.7%となったが感度67.2%であった。また、AUCでは、MCIでは0.776であった。この結果から、Man-Tfタンパク質のみをマーカーとした場合AD病態の鑑別精度は十分ではないことが示唆された。
(1) Accuracy of discrimination between MCI and AD by combination marker As shown in Fig. 4A and Table 1, when only Man-Tf protein is used as a marker, the MCI group is more sensitive to the MCI cutoff value of 2.67 μg / mL. The specificity was 81.0% and the specificity was 82.7%. The AUC for evaluating the reliability of the ROC curve was 0.846. Similarly, in the AD group, the specificity was 82.7% but the sensitivity was 67.2% due to the AD cutoff value of 2.62 μg / mL. In AUC, it was 0.776 in MCI. From this result, it was suggested that the accuracy of differentiating AD pathology is not sufficient when only Man-Tf protein is used as a marker.
 p-tauタンパク質のみ、又はtauタンパク質のみをマーカーとした場合も、表1に示すように、AD群では感度(p-tau:87.5%、tau:84.8%)及び特異度(p-tau:96.2%、tau:96.2%)共に高く、AUCも0.9を超えていたが、MCI群では、特異度(p-tau:96.2%、tau:96.2%)は高いものの、感度がかなり低い値であった(p-tau:59.4%、tau:44.4%)。したがって、p-tauタンパク質又はtauタンパク質も、単独では鑑別精度が十分でないことが示唆された。 Even when only p-tau protein or only tau protein is used as a marker, as shown in Table 1, the sensitivity (p-tau: 87.5%, tau: 84.8%) and specificity (p-tau: 96.2) and specificity (p-tau: 96.2) in the AD group. %, Tau: 96.2%) and AUC exceeded 0.9, but in the MCI group, the specificity (p-tau: 96.2%, tau: 96.2%) was high, but the sensitivity was considerably low. (P-tau: 59.4%, tau: 44.4%). Therefore, it was suggested that the p-tau protein or tau protein alone does not have sufficient discrimination accuracy.
 そこで、Man-Tfタンパク質及びp-tauタンパク質の組み合わせで、感度、特異度、及びAUCを算出した。図4Bで示すように、MCI群は、Man-Tfタンパク質及びp-tauタンパク質の測定値の積値(p-tau×Man-Tf)に基づくMCIカットオフ値(110a.u.:破線)で検証した結果、表1に示すように、感度が83.9%、特異度は90.4%といずれも高く、AUCも0.919を示した。一般に、AUCが0.9を超える場合、極めて高い鑑別精度と見なされる。また、AD群でも前記積値に基づくADカットオフ値(98a.u.:破線)で検証した結果、感度93.9%、特異度が88.5%と共に高く、AUCも0.957と極めて高い値を示した。したがって、Man-Tfタンパク質及びp-tauタンパク質の組み合わせはMCI及びADの鑑別に対して極めて高い精度が得られることが示された。 Therefore, the sensitivity, specificity, and AUC were calculated from the combination of Man-Tf protein and p-tau protein. As shown in FIG. 4B, the MCI group has an MCI cutoff value (110a.u .: dashed line) based on the product value (p-tau × Man-Tf) of the measured values of Man-Tf protein and p-tau protein. As a result of the verification, as shown in Table 1, the sensitivity was 83.9%, the specificity was 90.4%, and the AUC was 0.919. Generally, an AUC above 0.9 is considered to be extremely accurate. In addition, as a result of verification using the AD cutoff value (98a.u .: broken line) based on the product value in the AD group, the sensitivity was as high as 93.9%, the specificity was as high as 88.5%, and the AUC was also extremely high as 0.957. Therefore, it was shown that the combination of Man-Tf protein and p-tau protein provides extremely high accuracy for the differentiation of MCI and AD.
 同様に、Man-Tfタンパク質及びtauタンパク質の組み合わせで、感度、特異度、及びAUCを算出した。図4Cで示すように、MCI群は、MCIカットオフ値(559 a.u.:破線)で検証した結果、表1に示すように、感度88.9%、特異度88.5%とどちらも高く、AUCは0.907であった。また、AD群では、ADカットオフ値(615 a.u.:破線)で検証した結果、表1に示すように、感度100%、特異度90.4%といずれも非常に高く、AUCも0.962と極めて高い値を示した。従って、Man-Tfタンパク質及びtauタンパク質の組み合わせもMCI及びADの鑑別に対して極めて高い精度が得られることが示された。 Similarly, the sensitivity, specificity, and AUC were calculated for the combination of Man-Tf protein and tau protein. As shown in FIG. 4C, the MCI group was verified with the MCI cutoff value (559 a.u .: broken line), and as shown in Table 1, both the sensitivity was 88.9% and the specificity was 88.5%, and the AUC was 0.907. there were. In the AD group, as a result of verification with the AD cutoff value (615 a.u .: broken line), as shown in Table 1, the sensitivity is 100% and the specificity is 90.4%, both of which are extremely high, and the AUC is also extremely high at 0.962. showed that. Therefore, it was shown that the combination of Man-Tf protein and tau protein also provides extremely high accuracy for the differentiation of MCI and AD.
(2)組み合わせマーカーのNC群への適用
 実施例2に記載したように、追跡調査によりNC群の一部はMCIに移行することが明らかになっている。しかし、Man-Tfタンパク質単独の測定値ではMCIに移行し得るNC患者(pre-MCI患者)と移行しないNC患者(non-pre-MCI)の予測鑑別は困難であった。そこで、組み合わせマーカーにおける各マーカー測定値に積値に基づいて設定したカットオフ値をNC群に適用した。
(2) Application of combination marker to NC group As described in Example 2, it has been clarified by follow-up survey that a part of NC group is transferred to MCI. However, it was difficult to predict and distinguish between NC patients (pre-MCI patients) who could migrate to MCI and NC patients (non-pre-MCI) who did not migrate to MCI by the measured values of Man-Tf protein alone. Therefore, the cutoff value set based on the product value was applied to each marker measured value in the combination marker to the NC group.
 p-tau×Man-Tf、又はtau×Man-Tfの組み合わせマーカーを用いたときのそれぞれの積値に基づきpre-MCIカットオフ値(それぞれ99.4、559)で検証した結果、表1に示すように、いずれの組み合わせでも感度(それぞれ86.6、及び91.9)及び特異度(それぞれ88.5、及び80.4)が80%を上回り、AUC(それぞれ0.931、及び0.918)も0.9を超える等、MCI発症前における優れた予測鑑別マーカーとなり得ることが示された。また、Man-Tfタンパク質又はGlcNAc-Tfタンパク質と、AD indexとの積値においても、同様にMCI及びADの鑑別に対して高い精度が得られ、MCI発症前における優れた予測鑑別マーカーとなり得ることが示された。 As a result of verification with pre-MCI cutoff values (99.4 and 559, respectively) based on the respective product values when using the combination marker of p-tau × Man-Tf or tau × Man-Tf, as shown in Table 1. In addition, the sensitivity (86.6 and 91.9, respectively) and specificity (88.5 and 80.4, respectively) exceeded 80%, and the AUC (0.931 and 0.918, respectively) exceeded 0.9 in each combination, which was excellent before the onset of MCI. It was shown that it can be a predictive discrimination marker. In addition, the product value of Man-Tf protein or GlcNAc-Tf protein and AD index also provides high accuracy for the differentiation of MCI and AD, and can be an excellent predictive differentiation marker before the onset of MCI. It has been shown.
 一方、その他の神経変性疾患群(PSP+FTD+DLB+PD)に対して、このカットオフ値を適用した場合、カットオフ値以上の割合が、p-tau×Man-Tfの場合は28%、tau×Man-Tfの場合は37%と、いずれも非常に低く、これらの積の値の増加はAD病態特異的であることが示された。 On the other hand, when this cutoff value is applied to other neurodegenerative disease groups (PSP + FTD + DLB + PD), the ratio above the cutoff value is 28% for p-tau x Man-Tf and tau x Man-Tf. In the case of 37%, both were very low, indicating that the increase in the value of these products was AD pathologically specific.
 以上から、Man-Tfタンパク質、p-tauタンパク質及びtauタンパク質の組み合わせマーカーは、AD病態及びpre-MCIの鑑別において、感度、及び特異度において極めて優れたマーカーとなることが示された。  From the above, it was shown that the combination marker of Man-Tf protein, p-tau protein and tau protein is an extremely excellent marker in sensitivity and specificity in the differentiation of AD pathology and pre-MCI. The
<実施例4:他の組み合わせマーカーによるAD鑑別精度の検証>
(目的)
 実施例3以外の組み合わせマーカーによるAD病態の鑑別精度について検証する。
<Example 4: Verification of AD discrimination accuracy using other combination markers>
(Purpose)
The accuracy of differentiating AD pathological conditions by a combination marker other than Example 3 will be verified.
(方法)
 実施例3の髄液試料の一部を用いて、GlcNAc-Tfタンパク質とPGDSの量を以下の方法で測定した。
 GlcNAc-Tfタンパク質の測定は、基本的にMan-Tfタンパク質の検出方法に準じた。まず、rPVL(recombinant Psathyrella velutina lectin、Medical and Biological Laboratories Co., Ltd.)を固定化したプレートを作製し、rPVL(1μg/0.1mL)をプレートに加え、4℃で一晩インキュベートした。次にブロッキング剤として10%ブロックエース(KAC Co., Ltd.)を含む50mM TBS加えて4℃で4時間ブロッキングを行った。
(Method)
Using a part of the cerebrospinal fluid sample of Example 3, the amount of GlcNAc-Tf protein and PGDS was measured by the following method.
The measurement of GlcNAc-Tf protein basically followed the method for detecting Man-Tf protein. First, a plate on which rPVL (recombinant Psathyrella velutina lectin, Medical and Biological Laboratories Co., Ltd.) was immobilized was prepared, rPVL (1 μg / 0.1 mL) was added to the plate, and the mixture was incubated overnight at 4 ° C. Next, 50 mM TBS containing 10% Block Ace (KAC Co., Ltd.) was added as a blocking agent, and blocking was performed at 4 ° C. for 4 hours.
 次に、ブロッキングしたビオチン固相化プレートをTBSTで1回洗浄後、前処理した試料を加え、4℃で一晩インキュベートした。TBSTで2回洗浄後、抗Tf抗体(A0061, Dako Ltd.)溶液(0.5μg/mL)を100μL加え、室温で2時間インキュベートした。TBSTで2回洗浄後、2万倍希釈した西洋ワサビぺルオキシダーゼ標識抗ウサギIgG抗体(Promega, W4011)溶液(0.1μg/mL)を100μL加え、室温で2時間インキュベートした。TBSTで2回洗浄後、2倍希釈のTMB Micro well Peroxidase substrate system(#50-76-11, Kirkegaard & Perry Laboratories, Inc., MD)試薬を100μL加えて発色反応を行った。1Mリン酸100μLを加えて反応を停止し、450 nmで吸光度をVarioskan LUX multimode microplate reader(Thermo Fischer Scientific, K.K., Tokyo)にて測定した。このとき、定量用の標準として、糖鎖末端にシアル酸α2,6ガラクトースβ1,4GlcNAcβ1,(3/6)-マンノース残基を持つヒト血清Tf(cat No. T1147, Sigma-Aldrich)をシアリダーゼ及びガラクトシダーゼで逐次消化を行うことで作製した、糖鎖末端にβ1,4GlcNAcβ1,(3/6)-マンノース残基を持つTf糖鎖異性体を使用した。 Next, the blocked biotin-immobilized plate was washed once with TBST, the pretreated sample was added, and the mixture was incubated overnight at 4 ° C. After washing twice with TBST, 100 μL of anti-Tf antibody (A0061, Dako Ltd.) solution (0.5 μg / mL) was added, and the mixture was incubated at room temperature for 2 hours. After washing twice with TBST, 100 μL of a 20,000-fold diluted Western wasabi peroxidase-labeled anti-rabbit IgG antibody (Promega, W4011) solution (0.1 μg / mL) was added, and the mixture was incubated at room temperature for 2 hours. After washing twice with TBST, 100 μL of a 2-fold diluted TMB Microwell Peroxidase substrate system (# 50-76-11, Kirkegaard & Perry Laboratories, Inc., MD) reagent was added to perform a color reaction. The reaction was stopped by adding 100 μL of 1M phosphoric acid, and the absorbance was measured at 450 nm with a Varioskan LUX multimode microplate reader (Thermo Fisher Scientific, K.K., Tokyo). At this time, as a standard for quantification, human serum Tf (cat No. T1147, Sigma-Aldrich) having a sialic acid α2,6 galactose β1,4GlcNAcβ1, (3/6) -mannose residue at the end of the sugar chain was used as a sialidase and A Tf sugar chain isomer having a β1,4GlcNAcβ1, (3/6) -mannose residue at the end of the sugar chain prepared by sequential digestion with galactosidase was used.
 PGDSの量を測定には、市販のELISAキット(Human prostaglandin D synthase(Lipocalin-type) ELISA(Cat. No.: RD191113100R, BioVendor))を用いた。
 カットオフ値の設定や感度、特異度、及びAUCの算出は実施例4に準じた。
A commercially available ELISA kit (Human prostaglandin D synthase (Lipocalin-type) ELISA (Cat. No .: RD191113100R, BioVendor)) was used to measure the amount of PGDS.
The cutoff value was set, the sensitivity, specificity, and AUC were calculated according to Example 4.
(結果)
 結果を表3及び4に示す。
(result)
The results are shown in Tables 3 and 4.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 髄液でGlcNAc-Tfタンパク質及びPGDS濃度を測定し、iNPH群との比較を行った。表3に示すように、GlcNAc-Tfタンパク質単独の場合は、NC、MCI及びAD群で有意に増加したが、感度及び特異度は高くはなかった。PGDS単独の場合は、AD群のみ有意な増加が見られたが、感度、特異度は高くなく、AUCも80%を下回り、良好なマーカーとは言い難かった。 GlcNAc-Tf protein and PGDS concentrations were measured in the cerebrospinal fluid and compared with the iNPH group. As shown in Table 3, in the case of GlcNAc-Tf protein alone, there was a significant increase in the NC, MCI and AD groups, but the sensitivity and specificity were not high. In the case of PGDS alone, a significant increase was observed only in the AD group, but the sensitivity and specificity were not high, and the AUC was less than 80%, so it was hard to say that it was a good marker.
 一方、GlcNAc-Tfタンパク質とp-tauタンパク質又はtauタンパク質との積値、及びPGDSとp-tauタンパク質又はtauタンパク質との積値に基づくカットオフ値の場合は、表3で示すように、実施例3と同様に、いずれのAD病態に関しても感度、及び特異度が高い値を示し、AUCも0.8を大きく上回る鑑別精度が得られた。よって、本発明の組み合わせマーカーによればAD病態を高い精度で鑑別できることが示された。 On the other hand, in the case of the cutoff value based on the product value of GlcNAc-Tf protein and p-tau protein or tau protein, and the product value of PGDS and p-tau protein or tau protein, it is carried out as shown in Table 3. Similar to Example 3, the sensitivity and specificity of all AD pathologies were high, and the AUC was significantly higher than 0.8. Therefore, it was shown that the combination marker of the present invention can discriminate AD pathological conditions with high accuracy.
 また、実施例3と同様に、その他の神経変性疾患群(PSP+FTD+DLB+PD)に対して、本実施形態の組み合わせマーカーの積値に基づくカットオフ値を適用した場合、カットオフ値以上の割合がいずれも26%~37%と低く、これらの積値の上昇がAD病態特異的であることが改めて示された。 Further, as in Example 3, when the cutoff value based on the product value of the combination markers of the present embodiment is applied to other neurodegenerative disease groups (PSP + FTD + DLB + PD), the ratio of the cutoff value or more is any. It was as low as 26% to 37%, indicating that the increase in these product values is AD pathologically specific.
 さらに、髄液以外の試料における組み合わせマーカーの有用性を調べるためにiNPHの個体とMCIの個体において、本実施例と同じ方法により血清中のPGDS濃度を測定した。従来知られていた通り、PGDS単独ではiNPHとMCIの間でその量に明確な差異は見られなかった。そこで、同一個体の上記解析で用いたp-tauの測定値と血清中のPGDS濃度の積値を算出し、疑似的な組み合わせマーカーとした。すると、この積値を用いた場合、マーカーの値がiNPHに比べてMCIで高く、両者の間に有意傾向が見られた。このことから、髄液以外の試料からの測定結果を用いた場合においても、組み合わせマーカーが有用であることが示唆された。 Furthermore, in order to investigate the usefulness of the combination marker in samples other than cerebrospinal fluid, the serum PGDS concentration was measured in iNPH individuals and MCI individuals by the same method as in this example. As previously known, PGDS alone did not show a clear difference in the amount between iNPH and MCI. Therefore, the product of the measured value of p-tau used in the above analysis of the same individual and the PGDS concentration in serum was calculated and used as a pseudo combination marker. Then, when this product value was used, the marker value was higher in MCI than in iNPH, and a significant tendency was observed between the two. This suggests that the combination marker is useful even when the measurement results from samples other than cerebrospinal fluid are used.
<実施例5:異なるAD indexによるAD鑑別精度の検証>
(目的)
 (Aβ42/Aβ40)×p-tauの式をAD indexに用いた場合における、組み合わせマーカーのAD病態の鑑別精度について検証する。
(方法)
 AD indexの算出以外は実施例3と同様に行った。
 AD indexとして、本実施例においては(Aβ42/Aβ40)×p-tauの式によって算出された値を用いた。
<Example 5: Verification of AD discrimination accuracy by different AD indexes>
(Purpose)
We will verify the accuracy of differentiating the AD pathology of the combination marker when the formula (Aβ42 / Aβ40) × p-tau is used for the AD index.
(Method)
The procedure was the same as in Example 3 except for the calculation of the AD index.
As the AD index, the value calculated by the formula (Aβ42 / Aβ40) × p-tau was used in this example.
(結果)
 結果を表5に示す(感度及び特異度は70%以上を、AUCは0.75以上を太字で示した。)。
(result)
The results are shown in Table 5 (sensitivity and specificity are shown in bold for 70% or higher, and AUC is shown in bold for 0.75 or higher).
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 上記AD indexのみをマーカーとした場合には、MCI群では、感度が83.3%、特異度が79.3%といずれも高く、AUCは0.826であった。しかし、AD群においては、感度は100%と高かったものの、特異度が65.5%と低い値であった。したがって、上記AD indexも、単独では鑑別精度が十分でないことが示唆された。 When only the above AD index was used as a marker, the sensitivity was 83.3%, the specificity was 79.3%, and the AUC was 0.826 in the MCI group. However, in the AD group, the sensitivity was as high as 100%, but the specificity was as low as 65.5%. Therefore, it was suggested that the AD index alone does not have sufficient discrimination accuracy.
 そこで、Man-Tfタンパク質と上記AD indexの組み合わせで感度、特異度、及びAUCを算出した。Man-Tfタンパク質及び上記AD indexの測定値の積値をマーカーとして用いた場合、それぞれ単独では十分な鑑別ができなかったAD群において、感度が100%、特異度が72.4%と鑑別精度が改善し、AUCも0.872を示した。さらに、もともと鑑別精度が高かったMCI群においても、感度が88.9%、AUCが0.895とさらに高い値を示した。 Therefore, the sensitivity, specificity, and AUC were calculated from the combination of the Man-Tf protein and the above AD index. When the product of the Man-Tf protein and the measured value of the above AD index was used as a marker, the sensitivity was 100% and the specificity was 72.4% in the AD group, which could not be sufficiently differentiated by themselves, and the discrimination accuracy was improved. However, AUC also showed 0.872. Furthermore, even in the MCI group, which originally had high discrimination accuracy, the sensitivity was 88.9% and the AUC was 0.895, showing even higher values.
 Man-Tfタンパク質及び上記AD indexの測定値の積値をNC群へ適用した場合も、同様にそれぞれ単独の場合と比較して優れた鑑別精度を示し、MCI発症前における優れた予測鑑別マーカーとなり得ることが示された。
 また、上記AD indexを使用した場合も、AD indexとして(Aβ40/Aβ42)×p-tauを使用した場合と同様の結果が得られたことから、本発明の組み合わせマーカーは、AD indexの計算式にかかわらず、MCI及びADの精度の高い鑑別マーカーであり、MCI発症前における優れた予測鑑別マーカーともなり得ることが示された。
 本明細書で引用した全ての刊行物、特許及び特許出願はそのまま引用により本明細書に組み入れられるものとする。
When the product of the measured values of the Man-Tf protein and the above AD index was applied to the NC group, it also showed excellent discrimination accuracy compared to the case of each alone, and became an excellent predictive discrimination marker before the onset of MCI. Shown to get.
In addition, when the above AD index was used, the same results as when (Aβ40 / Aβ42) × p-tau were used as the AD index were obtained. Therefore, the combination marker of the present invention is a calculation formula of the AD index. Regardless, it was shown that it is a highly accurate differential marker for MCI and AD, and can be an excellent predictive differential marker before the onset of MCI.
All publications, patents and patent applications cited herein are incorporated herein by reference in their entirety.

Claims (10)

  1.  以下の(a)~(c)のいずれかからなるアルツハイマー病病態の鑑別用組み合わせマーカー。
     (a)非還元末端にマンノースを有する糖鎖を少なくとも1つ含むトランスフェリン糖タンパク質(Man-Tfタンパク質)又は前記マンノースを有する糖鎖を含むその断片、非還元末端にN-アセチルグルコサミンを有する糖鎖のみを含むトランスフェリン糖タンパク質(GlcNAc-Tfタンパク質)又は前記N-アセチルグルコサミンを有する糖鎖を含むその断片、及びプロスタグランジンD2合成酵素(PGDS)又はその断片からなる群から選択されるいずれか一のポリペプチド、及びタウタンパク質(tauタンパク質)、リン酸化タウタンパク質(p-tauタンパク質)及びそれらの断片からなる群から選択されるいずれか一のポリペプチドの組み合わせ、
     (b)前記Man-Tfタンパク質又は前記マンノースを有する糖鎖を含むその断片、前記GlcNAc-Tfタンパク質又は前記糖鎖を含むその断片、及び前記PGDS又はその断片からなる群から選択される少なくとも2以上のタンパク質の組み合わせ、又は
     (c)前記Man-Tfタンパク質又は前記マンノースを有する糖鎖を含むその断片、又は前記GlcNAc-Tfタンパク質又は前記N-アセチルグルコサミンを有する糖鎖を含むその断片、及びAD indexの組み合わせである。
    A combination marker for differentiating Alzheimer's disease pathological condition consisting of any of the following (a) to (c).
    (A) Transtransferase glycoprotein (Man-Tf protein) containing at least one sugar chain having mannose at the non-reducing end, a fragment thereof containing the sugar chain having mannose, and a sugar chain having N-acetylglucosamine at the non-reducing end. Any one selected from the group consisting of a transferase (GlcNAc-Tf protein) containing only a fragment thereof or a fragment thereof containing the sugar chain having N-acetylglucosamine, and a prostaglandin D2 synthase (PGDS) or a fragment thereof. , And a combination of any one of the polypeptides selected from the group consisting of tau protein (tau protein), phosphorylated tau protein (p-tau protein) and fragments thereof.
    (B) At least two or more selected from the group consisting of the Man-Tf protein or a fragment thereof containing a sugar chain having the mannose, the GlcNAc-Tf protein or a fragment thereof containing the sugar chain, and the PGDS or a fragment thereof. (C) The Man-Tf protein or a fragment thereof containing the sugar chain having the mannose, or the fragment thereof containing the GlcNAc-Tf protein or the sugar chain having the N-acetylglucosamine, and the AD index. It is a combination of.
  2.  AD index は、(アミロイドβ40ペプチド/アミロイドβ42ペプチド)×p-tauタンパク質の式から算出される、請求項1に記載の鑑別用組み合わせマーカー。 AD index is the differential combination marker according to claim 1, which is calculated from the formula of (amyloid β40 peptide / amyloid β42 peptide) × p-tau protein.
  3.  配列番号1で示すアミノ酸配列からなるトランスフェリン(Tf)タンパク質において、前記Man-Tfタンパク質の非還元末端にマンノースを有する糖鎖は432位のアスパラギン残基に付加されており、前記GlcNAc-Tfタンパク質の非還元末端にN-アセチルグルコサミンを有する糖鎖は432位及び630位のアスパラギン残基に付加されている、請求項1又は2に記載の鑑別用組み合わせマーカー。 In the transferase (Tf) protein consisting of the amino acid sequence shown in SEQ ID NO: 1, a sugar chain having mannose at the non-reducing end of the Man-Tf protein is added to the asparagine residue at position 432, and the GlcNAc-Tf protein The differential combination marker according to claim 1 or 2, wherein the sugar chain having N-acetylglucosamine at the non-reducing end is added to the asparagine residues at positions 432 and 630.
  4.  前記アルツハイマー病病態がアルツハイマー病(AD)、軽度認知障害(MCI)、及び健常対照(NC)からなる、請求項1~3のいずれか1項に記載の鑑別用組み合わせマーカー。 The differential combination marker according to any one of claims 1 to 3, wherein the Alzheimer's disease condition comprises Alzheimer's disease (AD), mild cognitive impairment (MCI), and a healthy control (NC).
  5.  前記NCをMCI移行型健常対照(pre-MCI)及びMCI非移行型健常対照(non-pre-MCI)にさらに鑑別する、請求項4に記載の鑑別用組み合わせマーカー。 The differential combination marker according to claim 4, further differentiating the NC into an MCI transitional healthy control (pre-MCI) and an MCI non-transitional healthy control (non-pre-MCI).
  6.  アルツハイマー病病態の鑑別キットであって、
     請求項1~5のいずれか1項に記載のアルツハイマー病病態の鑑別用組み合わせマーカーのそれぞれに特異的に結合する、ペプチド結合分子及び糖鎖結合分子を含み、
     前記ペプチド結合分子が特異的に結合するポリペプチドがTfタンパク質、PGDS、及びtauタンパク質からなる群から選択されるいずれか一以上であり、
     前記糖鎖結合分子が特異的に結合する糖鎖が非還元末端にマンノースを有する糖鎖及び/又は非還元末端にN-アセチルグルコサミンを有する糖鎖である
    前記鑑別キット。
    A kit for differentiating Alzheimer's disease
    A peptide-binding molecule and a sugar chain-binding molecule that specifically bind to each of the combination markers for differentiating Alzheimer's disease according to any one of claims 1 to 5 are included.
    The polypeptide to which the peptide bond molecule specifically binds is at least one selected from the group consisting of Tf protein, PGDS, and tau protein.
    The above-mentioned discrimination kit, wherein the sugar chain to which the sugar chain-binding molecule specifically binds is a sugar chain having mannose at the non-reducing end and / or a sugar chain having N-acetylglucosamine at the non-reducing end.
  7.  前記ペプチド結合分子が抗体若しくはその活性断片、又はアプタマーである、請求項6に記載の鑑別キット。 The discrimination kit according to claim 6, wherein the peptide bond molecule is an antibody, an active fragment thereof, or an aptamer.
  8.  前記糖鎖結合分子がレクチン、抗体若しくはその活性断片、及びアプタマーからなる群から選択される、請求項6又は7に記載の鑑別キット。 The discrimination kit according to claim 6 or 7, wherein the sugar chain-binding molecule is selected from the group consisting of lectins, antibodies or active fragments thereof, and aptamers.
  9.  アルツハイマー病病態の鑑別方法であって、
     認知症の疑いのある被験者から得た所定量の体液中に存在する、請求項1~5のいずれか1項に記載のアルツハイマー病病態の鑑別用組み合わせマーカーにおけるそれぞれのマーカーの量を、該マーカーのポリペプチドに特異的に結合するペプチド結合分子及び該マーカーの糖鎖に特異的に結合する糖鎖結合分子を用いて測定し、その測定値を得る工程、 前記それぞれのマーカーの測定値を乗じて得られる積値を得る工程、及び
     予め設定されたADカットオフ値及びMCIカットオフ値に基づいて前記積値から前記被験者がAD、MCI、及びNCのいずれに該当し得るかを判定する工程
    を含む前記鑑別方法。
    It is a method of differentiating the pathological condition of Alzheimer's disease.
    The amount of each marker in the combination marker for differentiating Alzheimer's disease pathological condition according to any one of claims 1 to 5, which is present in a predetermined amount of body fluid obtained from a subject suspected of having dementia, is the marker. The step of measuring using a peptide bond molecule that specifically binds to the polypeptide of the above and a sugar chain binding molecule that specifically binds to the sugar chain of the marker and obtaining the measured value, and multiplying the measured value of each of the above markers. A step of obtaining the product value obtained from the product, and a step of determining whether the subject can correspond to AD, MCI, or NC from the product value based on the preset AD cutoff value and MCI cutoff value. The above-mentioned discrimination method including.
  10.  MCI移行型健常対照の鑑別方法であって、
     予め設定されたpre-MCIカットオフ値に基づいて請求項9に記載のアルツハイマー病病態の鑑別方法でNCに該当すると判定された被験者の前記積値から前記被験者がpre-MCI及びnon-pre-MCIのいずれに該当し得るかを判定する工程
    を含む前記鑑別方法。
    It is a method for differentiating MCI transition type healthy controls.
    Based on the preset pre-MCI cutoff value, the subject is pre-MCI and non-pre- The discrimination method including a step of determining which of the MCIs can be applied.
PCT/JP2021/032787 2020-09-29 2021-09-07 Combined markers for differentiating pathological conditions of alzheimer's disease and method of differentiating pathological conditions of alzheimer's disease using same WO2022070798A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022553732A JPWO2022070798A1 (en) 2020-09-29 2021-09-07

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020163105 2020-09-29
JP2020-163105 2020-09-29

Publications (1)

Publication Number Publication Date
WO2022070798A1 true WO2022070798A1 (en) 2022-04-07

Family

ID=80950150

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/032787 WO2022070798A1 (en) 2020-09-29 2021-09-07 Combined markers for differentiating pathological conditions of alzheimer's disease and method of differentiating pathological conditions of alzheimer's disease using same

Country Status (2)

Country Link
JP (1) JPWO2022070798A1 (en)
WO (1) WO2022070798A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007524847A (en) * 2003-11-07 2007-08-30 サイファージェン バイオシステムズ インコーポレイテッド Biomarkers for Alzheimer's disease
WO2008029886A1 (en) * 2006-09-06 2008-03-13 National University Corporation Tottori University Kit for diagnosis of alzheimer's disease, diagnostic marker, and method for detection of indicator for disease condition
US20140357525A1 (en) * 2013-03-26 2014-12-04 Duke University Markers for alzheimer's disease and mild cognitive impairment and methods of using the same
JP2015004664A (en) * 2013-06-18 2015-01-08 磁量生技股▲ふん▼有限公司 Method for detecting alzheimer disease affection risk
WO2017195778A1 (en) * 2016-05-10 2017-11-16 橋本 康弘 Diagnostic marker for dementia and method for identifying contraction of dementia using said marker
WO2019022064A1 (en) * 2017-07-25 2019-01-31 長谷川 亨 Diagnosis assistance method for determining neurodegenerative disease

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007524847A (en) * 2003-11-07 2007-08-30 サイファージェン バイオシステムズ インコーポレイテッド Biomarkers for Alzheimer's disease
WO2008029886A1 (en) * 2006-09-06 2008-03-13 National University Corporation Tottori University Kit for diagnosis of alzheimer's disease, diagnostic marker, and method for detection of indicator for disease condition
US20140357525A1 (en) * 2013-03-26 2014-12-04 Duke University Markers for alzheimer's disease and mild cognitive impairment and methods of using the same
JP2015004664A (en) * 2013-06-18 2015-01-08 磁量生技股▲ふん▼有限公司 Method for detecting alzheimer disease affection risk
WO2017195778A1 (en) * 2016-05-10 2017-11-16 橋本 康弘 Diagnostic marker for dementia and method for identifying contraction of dementia using said marker
WO2019022064A1 (en) * 2017-07-25 2019-01-31 長谷川 亨 Diagnosis assistance method for determining neurodegenerative disease

Also Published As

Publication number Publication date
JPWO2022070798A1 (en) 2022-04-07

Similar Documents

Publication Publication Date Title
Majbour et al. Oligomeric and phosphorylated alpha-synuclein as potential CSF biomarkers for Parkinson’s disease
US20210011032A1 (en) Methods and reagents for improved detection of amyloid beta peptides
Herskovits et al. A Luminex assay detects amyloid β oligomers in Alzheimer’s disease cerebrospinal fluid
US8354236B2 (en) Detection of neurodegenerative disease
JP2015514206A (en) Method and kit for detection of anti-beta amyloid antibody
US20200341011A1 (en) Astrocyte exosome complement-based assay for neuroinflammation in alzheimer&#39;s disease and uses thereof
JP2017504808A (en) Biomarkers and methods for early diagnosis of Alzheimer&#39;s disease
JP6680873B2 (en) Diagnostic marker for dementia and method for distinguishing dementia morbidity using the marker
WO2022070798A1 (en) Combined markers for differentiating pathological conditions of alzheimer&#39;s disease and method of differentiating pathological conditions of alzheimer&#39;s disease using same
JP5871279B2 (en) Method for detecting soluble amyloid β precursor protein 770β cleavage product for diagnosis of diseases associated with amyloid β peptide accumulation
JP5892169B2 (en) Diagnostic kit, diagnostic marker and detection method for Alzheimer type dementia by measuring sugar chain of complement C3 protein
JP6262727B2 (en) Tropomyosin isoforms associated with Alzheimer&#39;s disease and mild cognitive impairment
JPWO2012081701A1 (en) Method for enriching and separating cerebrospinal fluid glycoprotein, method for searching for marker for central nervous system disease using the method, and marker for central nervous system disease
US20220260593A1 (en) Targets and methods of diagnosing, monitoring and treating frontotemporal dementia
KR20190048788A (en) Diagnostic composition of alzheimer&#39;s disease severity comprising agents measuring expression level of tau protein and diagnostics method of alzheimer&#39;s disease severity using the same
JP2019530848A (en) Biomarkers of blood brain barrier dysfunction
KR102296346B1 (en) Application of α-synuclein for Diagnosing of Alzheimer&#39;s Disease and Improving Diagnosis of Alzheimer&#39;s Disease and Differential Diagnosis to Similar Degenerative Brain Diseases
JP2016017801A (en) Method for detecting mild cognitive impairment at risk of shifting to alzheimer-type dementia and kit for the same
JP2020204554A (en) Mild cognitive impairment diagnostic markers
JP2021162484A (en) Method of detecting brain n-acetylglucosamine-transferrin
WO2018212261A1 (en) Specific binding reagent for detecting qualitative difference of 4-repeat tau, and detection method, detection kit, and medication screening method using same
Riedel A novel highly-sensitive assay for the analysis of cerebrospinal fluid and blood Visinin-like protein 1 in Alzheimer’s and other neurodegenerative diseases
JP2015121415A (en) Method for detecting frontotemporal dementia or discriminating between frontotemporal dementia and alzheimer dementia, and kit for the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21875100

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022553732

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21875100

Country of ref document: EP

Kind code of ref document: A1