WO2022070783A1 - 画像処理装置、画像処理方法、プログラムおよび記録媒体 - Google Patents

画像処理装置、画像処理方法、プログラムおよび記録媒体 Download PDF

Info

Publication number
WO2022070783A1
WO2022070783A1 PCT/JP2021/032591 JP2021032591W WO2022070783A1 WO 2022070783 A1 WO2022070783 A1 WO 2022070783A1 JP 2021032591 W JP2021032591 W JP 2021032591W WO 2022070783 A1 WO2022070783 A1 WO 2022070783A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
pattern
measurement sheet
image signal
spectral sensitivity
Prior art date
Application number
PCT/JP2021/032591
Other languages
English (en)
French (fr)
Inventor
善朗 山崎
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to EP21875085.9A priority Critical patent/EP4224130A4/en
Priority to CN202180067393.6A priority patent/CN116324359A/zh
Priority to JP2022553725A priority patent/JPWO2022070783A1/ja
Publication of WO2022070783A1 publication Critical patent/WO2022070783A1/ja
Priority to US18/192,433 priority patent/US20230306708A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/20Image preprocessing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/46Measurement of colour; Colour measuring devices, e.g. colorimeters
    • G01J3/52Measurement of colour; Colour measuring devices, e.g. colorimeters using colour charts
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K11/00Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00
    • G01K11/12Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using changes in colour, translucency or reflectance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/24Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infrared, visible light, ultraviolet
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L5/00Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/10Image acquisition
    • G06V10/12Details of acquisition arrangements; Constructional details thereof
    • G06V10/14Optical characteristics of the device performing the acquisition or on the illumination arrangements
    • G06V10/143Sensing or illuminating at different wavelengths
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/10Image acquisition
    • G06V10/17Image acquisition using hand-held instruments

Definitions

  • the present invention relates to an image processing apparatus, an image processing method, a program, and a recording medium that estimate the surface distribution of the amount of external energy applied to the measuring sheet based on the color density of the measuring sheet.
  • a measurement sheet that develops color to a predetermined density according to the amount of external energy due to the addition of external energy is imaged by an imaging device such as a camera, and the image signal (density value) for each pixel of the captured image is used.
  • the surface distribution of the amount of external energy applied to the measuring sheet is estimated.
  • Patent Documents 1 and 2 Prior art documents that serve as a reference for the present invention include, for example, Patent Documents 1 and 2.
  • Patent Document 1 a measurement area of a color-developing sheet is photographed in a state where a sheet-shaped marker having a constant density region is superposed on the color-developing sheet, and the amount of light in the measurement area is obtained from the difference in density of the constant density region included in the photographed image. Described is an energy measurement system that acquires the fluctuation of the light intensity, corrects the color density in the measurement area based on this light intensity fluctuation, and converts the color density in the corrected measurement area into the energy value applied to the color development sheet. There is.
  • Patent Document 2 infrared light or ultraviolet light is irradiated on a medium surface on which a dot pattern generated by arranging key dots, information dots, and lattice dots according to a predetermined rule is printed.
  • a dot pattern reading system that reads reflected light by an optical reading means, recognizes a dot pattern, and outputs data corresponding to the dot pattern is described.
  • the direct light by the external lighting is converted into the indirect light by using a parasol or the like. Further, it is necessary to realize the intensity of the illumination light and its surface distribution suitable for imaging by superimposing the indirect light from multiple directions. However, it is complicated to install and adjust the lighting equipment for such external lighting, and it is overwhelming to take an image of the measurement sheet using only the lighting equipment of the ceiling and the lighting equipment of the desk light. It is very convenient.
  • the measurement sheet is imaged using only the lighting equipment of the ceiling and the lighting equipment of the desk light, in other words, the measurement sheet is imaged using a mixed light source in which a plurality of illumination lights of different colors are mixed.
  • the surface distribution of the intensity of the illumination light becomes non-uniform, and the illumination light from a plurality of different lighting fixtures overlaps with each other, so that the spectral distribution (spectrum) of the illumination light differs depending on the location on the captured image of the measurement sheet. It is known that this phenomenon occurs.
  • the measurement sheet When the measurement sheet is imaged in an environment where the surface distribution of the intensity of the illumination light becomes non-uniform and the spectral distribution of the illumination light differs depending on the location of the captured image of the measurement sheet, the measurement sheet develops the same density. In the region in the captured image of the measurement sheet corresponding to the region inside, the distribution of the image signal that should not be originally generated occurs. This distribution of the image signal, which should not be present, is due to the fact that the surface distribution of the intensity of the illumination light is non-uniform, and the spectral distribution of the illumination light differs depending on the location of the captured image of the measurement sheet.
  • An object of the present invention is image processing capable of accurately estimating the surface distribution of the amount of external energy applied to the measurement sheet from the image signal of the captured image of the measurement sheet captured under arbitrary illumination light. To provide equipment, image processing methods, programs and recording media.
  • the present invention has a measuring sheet that develops a color at a concentration corresponding to the amount of external energy by applying external energy, and a regular pattern provided on the measuring sheet. Acquires the image signal of the captured image of the imaged object including Based on the image signal of the pattern in the imaged object and the spectral characteristic value of the pattern, the process of canceling the influence of the spectral distribution of the illumination light at the time of imaging the imaged object is performed on the image signal of the measurement sheet in the imaged image. Provides an image processing method.
  • the image signal of the first captured image corresponding to the first spectral sensitivity of the imaged object captured by the sensor and the image signal of the second captured image corresponding to the second spectral sensitivity are acquired.
  • the first ratio of the first image signal corresponding to the first spectral sensitivity of the measurement sheet in the first captured image and the second image signal corresponding to the second spectral sensitivity of the measurement sheet in the second captured image is calculated for each pixel.
  • Calculate and The second ratio of the third image signal corresponding to the first spectral sensitivity of the pattern in the first captured image and the fourth image signal corresponding to the second spectral sensitivity of the pattern in the second captured image was calculated for each pixel.
  • the third ratio of the first spectral characteristic value corresponding to the first spectral sensitivity of the pattern and the second spectral characteristic value corresponding to the second spectral sensitivity of the pattern was calculated.
  • the third spectral characteristic value corresponding to the first spectral sensitivity of the measurement sheet in the first captured image and the second captured image It is preferable to calculate the fourth ratio for each pixel with the fourth spectral characteristic value corresponding to the second spectral sensitivity of the measurement sheet in the above.
  • the wavelength band corresponding to at least one of the first spectral sensitivity and the second spectral sensitivity has a full width at half maximum of 30 nm or less.
  • the surface distribution of the amount of external energy applied to the measuring sheet from the 4th ratio based on the relationship between the 4th ratio and the amount of external energy applied to the measuring sheet.
  • the pattern is formed on the measurement sheet.
  • the pattern is formed on the holding plate, and the region in which the holding plate pattern is formed is mainly composed of the reflected light component at least in the first and second spectral sensitivities, and the holding plate pattern is formed. It is preferable that the non-region has optical characteristics in which the transmitted light component is the main component, at least in the first and second spectral sensitivities, and the suppression plate is arranged so as to be overlapped on the measuring sheet.
  • the holding plate has a light scattering property on the surface directly irradiated with the illumination light and a pattern is formed on the surface in contact with the measuring sheet.
  • the measurement sheet is placed on the surface of the support plate having a uniform reflectance, and the image pickup target including the measurement sheet and the pattern is imaged with the holding plate placed on the measurement sheet. It is preferable to do so.
  • the position fixing mechanism to image the image pickup target including the measurement sheet and the pattern in a state where the positions of the support plate, the measurement sheet and the holding plate are fixed.
  • the color of the pattern has a hue different from the color of the color-developing portion of the measurement sheet.
  • a plurality of hue regions having different hues from each other are extracted from the captured image. Based on the pattern placement information, identify the pattern area from multiple hue areas, Using the two-dimensional interpolation technology, the image signal of the interpolated pattern is generated by interpolating the area where the pattern does not exist, and the processing is performed on the measurement sheet in the image pickup object based on the image signal of the interpolated pattern. It is preferable to carry out for the image signal.
  • a plurality of hue regions having different hues from each other are extracted from the captured image. Based on the pattern placement information, identify the area of the measurement sheet from multiple hue areas, It is preferable to generate an image signal of the measurement sheet after interpolation by interpolating the area where the pattern exists by using a two-dimensional interpolation technique, and perform the processing on the image signal of the measurement sheet after interpolation. ..
  • the present invention comprises a processor, wherein the processor A measurement sheet that develops color at a density corresponding to the amount of external energy due to the addition of external energy, and an image signal of an image of an image to be imaged including a regular pattern provided on the measurement sheet. Acquired, Based on the image signal of the pattern in the imaged object and the spectral characteristic value of the pattern, the process of canceling the influence of the spectral distribution of the illumination light at the time of imaging the imaged object is performed on the image signal of the measurement sheet in the imaged image. Provide an image processing apparatus.
  • the present invention also provides a program for causing a computer to execute each step of the above image processing method.
  • the present invention also provides a computer-readable recording medium in which a program for causing a computer to execute each step of the above image processing method is recorded.
  • the present invention it is possible to cancel the influence of the surface distribution of the illumination light intensity and the spectral distribution of the illumination light from the image signal of the measurement sheet in the captured image. Therefore, the user captures an object to be measured under arbitrary illumination light without considering the surface distribution of the intensity of the illumination light and the spectral distribution of the illumination light, and the image signal (color development) of the measurement sheet in the captured image.
  • the surface distribution of the amount of external energy applied to the measuring sheet can be accurately estimated from the concentration).
  • FIG. 1 is a block diagram of an embodiment showing the configuration of the image processing apparatus of the present invention.
  • the image processing apparatus 10 shown in FIG. 1 estimates the surface distribution of the amount of external energy applied to the measurement sheet based on the color development density of the measurement sheet.
  • the image processing device 10 of the present embodiment is a smartphone having a camera function, and as shown in FIG. 1, an image pickup unit 12, a display unit 14, an operation unit 16, a storage unit 18, a processor 20, and the like. It is equipped with.
  • the display unit 14, the operation unit 16, the image pickup unit 12, the storage unit 18, and the processor 20 are bidirectionally connected to each other via the internal bus 34, and data can be transmitted to and received from each other.
  • the image pickup unit 12 has a sensor, and under the control of the processor 20, under arbitrary illumination light, the image pickup object is imaged by the sensor, and the image signal of the captured image is output.
  • the image pickup unit 12 of the present embodiment corresponds to the camera function of a smartphone, and outputs an image signal of the captured image by capturing an image pickup target including a measurement sheet and a pattern using a sensor. More specifically, the image pickup unit 12 outputs the image signal of the first captured image and the image signal of the second captured image corresponding to the first spectral sensitivity and the second spectral sensitivity.
  • the image pickup unit 12 of the present embodiment simultaneously captures an image to be imaged by using two sensors including the first sensor having the first spectral sensitivity and the second sensor having the second spectral sensitivity, so that the first captured image is captured.
  • the image signal of the above and the image signal of the second captured image are output.
  • the image signal of the first captured image corresponding to the first spectral sensitivity and the image signal of the second captured image corresponding to the second spectral sensitivity can be simultaneously output by one imaging.
  • the image pickup unit 12 takes an image of the object to be imaged by using the sensor and the first optical filter that transmits light in the wavelength band corresponding to the first spectral sensitivity, so that the first captured image corresponding to the first spectral sensitivity is captured. 2. 2
  • the image signal of the captured image may be output. That is, the image signal of the first captured image corresponding to the first spectral sensitivity and the image signal of the second captured image corresponding to the second spectral sensitivity may be sequentially output by two times of imaging.
  • the wavelength band corresponding to at least one of the first spectral sensitivity and the second spectral sensitivity has a full width at half maximum of 30 nm or less. It is desirable that the wavelength bands of both the first spectral sensitivity and the second spectral sensitivity have a full width at half maximum of 30 nm or less. Further, the wavelength band corresponding to the first spectral sensitivity and the second spectral sensitivity is preferably a narrower band, for example, 20 nm or less is more desirable, and 10 nm or less is most desirable.
  • the density (color tint) corresponding to the spectral characteristic value of the coloring material of the measurement sheet looks different. This phenomenon is generally a color rendering problem.
  • the wavelength band corresponding to the spectral sensitivity at the time of imaging of the imaged object is a narrow band having a full width at half maximum of 30 nm or less, as will be described later, the spectral characteristic value of the measurement sheet in the captured image is the second.
  • the measuring sheet is in the form of a sheet such as paper, sheet, film, etc., and when external energy is applied, it develops a color in a predetermined shape and a predetermined density (color) according to the amount of external energy.
  • the colored portion is formed on at least one of the surfaces thereof.
  • the measurement sheet of the present embodiment has a donut-shaped coloring portion formed in the center thereof.
  • the measuring sheet is not particularly limited, and examples thereof include a pressure-sensitive sheet, a heat-sensitive sheet, and an ultraviolet (or near-infrared ray, mid-infrared ray) sheet.
  • the pressure-sensitive sheet, the heat-sensitive sheet, the ultraviolet sheet, etc. have a predetermined shape according to the amount of external energy applied due to the application of external energy such as pressure, temperature, and ultraviolet rays (or near-infrared rays and mid-infrared rays), respectively. And develops color to a predetermined density.
  • the measuring sheet can measure the surface distribution of the amount of external energy applied to the measuring sheet based on the shape and density of the color-developing portion formed on the surface of the measuring sheet.
  • the instantaneous pressure is the magnitude of the external energy instantaneously applied to the measuring sheet.
  • Sustained pressure is a time integral of the magnitude of external energy continuously applied to the measuring sheet.
  • the amount of external energy includes both the time integral of the magnitude of external energy due to instantaneous pressure and the magnitude of external energy due to sustained pressure.
  • the color development concentration when it is in contact with a heat source changes depending on the temperature of the heat source and the contact time (time-integrated energy amount of temperature).
  • the color development density when receiving ultraviolet rays corresponds to the amount of light of the received ultraviolet rays and the light receiving time (time-integrated energy amount of the amount of light).
  • the pattern is a regular repeating pattern provided on the measurement sheet, and the details will be described later. However, from the image signal of the measurement sheet, the influence of the spectral distribution of the illumination light at the time of imaging the imaged object is affected. Used to counteract.
  • the pattern of the present embodiment is a dot pattern in which a plurality of circular dots of a predetermined color are regularly arranged in the vertical direction and the horizontal direction of the measurement sheet, and is a dot pattern in advance. It is formed on a measuring sheet.
  • the color of the pattern may be the same as the color of the color-developing portion of the measurement sheet, but in the case of the present embodiment, it has a hue different from the color of the color-developing portion of the measurement sheet.
  • the color combination is not particularly limited, but for example, when the color of the color-developing portion of the measurement sheet is red, the color of the pattern is gray. Further, when the color of the color-developing portion of the measurement sheet is green, the color of the pattern may be yellow, and when the color of the color-developing portion of the measurement sheet is blue, the color of the pattern may be red.
  • the shape, size, arrangement interval, number, etc. of the dots constituting the dot pattern are not particularly limited.
  • it may be a dot pattern including a plurality of polygonal dots such as triangles and quadrangles, star-shaped dots, elliptical dots, and the like.
  • the pattern is not limited to the dot pattern, and may be a grid pattern composed of a plurality of straight lines extending in the left-right direction and a plurality of straight lines extending in the vertical direction orthogonal to the straight lines.
  • the display unit 14 displays various images, information, and the like under the control of the processor 20.
  • the display unit 14 is composed of, for example, an LCD (Liquid Crystal Display), an organic EL (Organic Electroluminescence) display, an LED (Light Emitting Diode) display, a display such as electronic paper, or the like.
  • the display unit 14 of the present embodiment is provided with a touch panel that receives a touch operation by the user of the image processing device 10.
  • the operation unit 16 receives the user's operation under the control of the processor 20.
  • the operation unit 16 includes a plurality of buttons provided on the outer surface of the housing of the image processing device 10, a graphical user interface of a touch panel provided on the display unit 14, and the like. When the user takes an image of an object to be imaged or sets various setting items, the user performs a corresponding operation through the operation unit 16.
  • the storage unit 18 stores an image captured by the image pickup unit 12, that is, an image signal thereof, etc., under the control of the processor 20.
  • the storage unit 18 of the present embodiment is a memory device or the like that stores an image captured by an image pickup object 12 captured by the image pickup unit 12. Further, the storage unit 18 stores a program executed by the processor 20 and various data and the like.
  • the processor 20 controls each part of the image processing device 10 and executes various processes including image pickup of an image pickup object, image storage, image display, and the like.
  • the processor 20 includes an image signal acquisition unit 22, a ratio calculation unit 24, an image signal processing unit 28, a surface distribution estimation unit 30, and a display processing unit 32.
  • the processor 20 functions as each processing unit.
  • the image signal acquisition unit 22, the ratio calculation unit 24, the image signal processing unit 28, the surface distribution estimation unit 30, and the display processing unit 32 are bidirectionally connected via the internal bus 34, and data can be transmitted and received to each other. be.
  • the image signal acquisition unit 22 controls the operation of the image pickup unit 12 in response to the user's operation (imaging instruction) through the operation unit 16 and acquires the image signal of the image captured image of the image pickup object captured by the sensor. ..
  • the image signal acquisition unit 22 of the present embodiment receives the image signal of the first captured image corresponding to the first spectral sensitivity of the imaged object captured by the sensor and the image signal of the second captured image corresponding to the second spectral sensitivity. get.
  • the ratio calculation unit 24 calculates the ratio of the image signals corresponding to the different spectral sensitivities of the captured images of the imaged object. Further, the ratio calculation unit 24 calculates the spectral characteristic value corresponding to the different spectral sensitivities of the pattern, that is, the ratio of the spectral reflectance or the spectral transmittance.
  • the ratio calculation unit 24 of the present embodiment has a first image signal corresponding to the first spectral sensitivity of the measurement sheet in the first captured image and a second image corresponding to the second spectral sensitivity of the measurement sheet in the second captured image. The first ratio with the signal is calculated for each pixel.
  • the ratio calculation unit 24 has a second ratio of the third image signal corresponding to the first spectral sensitivity of the pattern in the first captured image and the fourth image signal corresponding to the second spectral sensitivity of the pattern in the second captured image. Is calculated for each pixel. Further, the ratio calculation unit 24 calculates a third ratio between the first spectral characteristic value corresponding to the first spectral sensitivity of the pattern and the second spectral characteristic value corresponding to the second spectral sensitivity of the pattern.
  • the image signal processing unit 28 performs a process of canceling the influence of the spectral distribution of the illumination light at the time of imaging of the imaged object based on the image signal of the pattern in the imaged object and the spectral characteristic value of the pattern. It is carried out for the image signal of. More specifically, the image signal processing unit 28 determines the influence of the spectral distribution of the illumination light at the time of imaging the above-mentioned image pickup object based on the second ratio of the image signal of the pattern and the third ratio of the spectral characteristic value of the pattern. The canceling process is performed on the first ratio of the image signal of the measurement sheet.
  • the fourth ratio is calculated for each pixel.
  • the surface distribution estimation unit 30 has a fourth ratio calculated by the image signal processing unit 28 based on the relationship between the fourth ratio of the spectral characteristic values of the measurement sheet and the amount of external energy applied to the measurement sheet. From, the surface distribution of the amount of external energy applied to the measurement sheet is estimated.
  • the relationship between the 4th ratio of the spectral characteristic value of the measurement sheet and the amount of external energy applied to the measurement sheet is a mapping relationship in which the amount of external energy is uniquely determined based on the 4th ratio. Is known. Based on this mapping relationship, the relationship between the fourth ratio and the amount of external energy is obtained in advance.
  • the relationship between the fourth ratio and the amount of external energy can be expressed by, for example, a LUT (Look Up Table).
  • the display processing unit 32 causes the display unit 14 to display various images, information, and the like.
  • the display processing unit 32 causes the display unit 14 to display an image of the image pickup target when the image pickup target is imaged according to the user's operation (imaging instruction).
  • the user captures an image to be imaged under arbitrary illumination light.
  • the user holds the image processing device 10 which is a smartphone in his hand, and while viewing the image of the image pickup object displayed on the display unit 14, the user instructs the image capture object by the user's operation through the operation unit 16. ..
  • the image pickup unit 12 simultaneously images an image-imaging object using the first sensor having the first spectral sensitivity and the second sensor having the second spectral sensitivity, and the first image pickup corresponding to the first spectral sensitivity.
  • the image signal of the image and the image signal of the second captured image corresponding to the second spectral sensitivity are output.
  • the image signal acquisition unit 22 acquires the image signal of the first captured image and the image signal of the second captured image output from the image pickup unit 12 (step S1).
  • the ratio calculation unit 24 uses the first image signal corresponding to the first spectral sensitivity of the measurement sheet in the first captured image and the second image corresponding to the second spectral sensitivity of the measurement sheet in the second captured image.
  • the first ratio of the signal is calculated for each pixel (step S2).
  • the second ratio of the third image signal corresponding to the first spectral sensitivity of the pattern in the first captured image and the fourth image signal corresponding to the second spectral sensitivity of the pattern in the second captured image is pixel by pixel. Calculated (step S3).
  • a third ratio of the first spectral characteristic value corresponding to the first spectral sensitivity of the pattern and the second spectral characteristic value corresponding to the second spectral sensitivity of the pattern is calculated (step S4).
  • the image signal processing unit 28 performs a process of canceling the influence of the spectral distribution of the illumination light at the time of imaging the imaged object based on the second ratio of the image signal of the pattern and the third ratio of the spectral characteristic value of the pattern. , Is carried out for the first ratio of the image signal of the measurement sheet.
  • the fourth ratio is calculated for each pixel (step S5).
  • the fourth ratio is used.
  • the surface distribution of the amount of external energy applied to the measurement sheet is estimated (step S6).
  • the image signal G (x, y) of the measurement sheet in the captured image of the imaged object is represented by the following formula (1).
  • S (x, y) is the surface distribution of the intensity of the illumination light
  • SP (x, y, ⁇ ) is the spectral distribution of the illumination light
  • R (x, y, ⁇ ) is the spectroscopy of the measurement sheet.
  • the surface distribution of characteristic values, C ( ⁇ ) is the spectral sensitivity of the sensor.
  • (X, y) represents two-dimensional coordinates in the measurement sheet.
  • is the central wavelength of the wavelength band corresponding to the spectral sensitivity of the sensor.
  • the distribution of the image signal that should not be originally present in the image signal G (x, y) of the measurement sheet in the captured image of the imaged object that is, the surface distribution of the intensity of the illumination light S. (X, y) and the influence of the spectral distribution SP (x, y, ⁇ ) of the illumination light are included. Therefore, the amount of external energy applied to the measurement sheet cannot be accurately obtained from the image signal G (x, y) of the measurement sheet.
  • the first image signal G1 (x, y) is represented by the following equation (2).
  • the second image signal G2 (x, y) corresponding to the wavelength ⁇ 2 of the measurement sheet in the second captured image of the imaged object captured by the second sensor is represented by the following equation (3).
  • G1 (x, y) S (x, y) * SP (x, y, ⁇ 1) * R (x, y, ⁇ 1) * C ( ⁇ 1) ... Equation (2)
  • G2 (x, y) S (x, y) * SP (x, y, ⁇ 2) * R (x, y, ⁇ 2) * C ( ⁇ 2) ... Equation (3)
  • y) / G2 (x, y) (first ratio) is expressed by the following equation (4).
  • Equation (4) As described above, in the equation (4), the influence of the surface distribution S (x, y) of the intensity of the illumination light is canceled out. That is, it can be seen that the ratio G1 (x, y) / G2 (x, y) is a signal that does not depend on the surface distribution S (x, y) of the intensity of the illumination light.
  • the third image signal GP1 (x, y) corresponding to the wavelength ⁇ 1 of the pattern in the first captured image is represented by the following equation (5).
  • the fourth image signal GP2 (x, y) corresponding to the wavelength ⁇ 2 of the pattern in the second captured image is represented by the following equation (6).
  • GP1 (x, y) S (x, y) * SP (x, y, ⁇ 1) * P ( ⁇ 1) * C ( ⁇ 1) ... Equation (5)
  • GP2 (x, y) S (x, y) * SP (x, y, ⁇ 2) * P ( ⁇ 2) * C ( ⁇ 2) ...
  • Equation (6) P ( ⁇ 1) is the first spectral characteristic value corresponding to the wavelength ⁇ 1 of the pattern, P ( ⁇ 2) is the second spectral characteristic value corresponding to the wavelength ⁇ 2 of the pattern, and the first spectroscopy of these patterns.
  • the characteristic value and the second spectral characteristic value are known.
  • the color of the pattern when the color of the pattern has a hue different from the color of the color-developing portion of the measurement sheet, a plurality of hues having different hues from the captured image of the imaged object by a known technique are used. Regions can be extracted, and the region of the measurement sheet other than the region of the pattern and the region of the pattern can be specified from the plurality of hue regions extracted from the captured image based on the known pattern arrangement information. It is possible.
  • the pattern arrangement information includes information regarding the pattern arrangement. In the case of the present embodiment, the pattern arrangement information includes information such as the shape, size, arrangement interval, and number of dots constituting the pattern.
  • the interpolated pattern is interpolated by interpolating the region in which the pattern does not exist by using a known two-dimensional interpolation technique based on the image signal of the pattern in the captured image. Generate an image signal. Based on the image signal of the pattern after interpolation obtained in this way, a process of canceling the influence of the spectral distribution of the illumination light at the time of imaging the imaged object is performed on the image signal of the measurement sheet in the imaged object. can do.
  • the ratio GP1 (x, y) of the third image signal GP1 (x, y) of the pattern shown in the formula (5) and the fourth image signal GP2 (x, y) of the pattern shown in the formula (6). ) / GP2 (x, y) (second ratio) is expressed by the following equation (7).
  • the influence of the surface distribution S (x, y) of the intensity of the illumination light is canceled out.
  • the right side of the equation (4) can be decomposed into two terms A and B as follows.
  • R (x, y, ⁇ 1) / R (x, y, ⁇ 2) ... Item B By imaging the object to be imaged with the first sensor and the second sensor having spectral sensitivity corresponding to a narrow wavelength band having a full width at half maximum of 30 nm or less, such as wavelengths ⁇ 1 and ⁇ 2, the image is placed on the measurement sheet.
  • the surface distribution of the term A can be obtained from an image signal having a pattern in which the characteristic values are arranged substantially evenly and the characteristic value distributions are substantially equal. Therefore, the signal of only the term B can be obtained by erasing the obtained term A from the right side of the equation (4).
  • the ratio R (x, y, ⁇ 1) / R (x, y, ⁇ 2) (fourth ratio) is expressed by the following equation (10).
  • R (x, y, ⁇ 1) / R (x, y, ⁇ 2) G1 (x, y) / G2 (x, y) * GP2 (x, y) / GP1 (x, y) * P ( ⁇ 1) / P ( ⁇ 2)... Equation (10)
  • the illumination light at the time of imaging the imaged object is By performing the process of canceling the influence of the spectral distribution with respect to the ratio (first ratio) of the image signals G (x, y) of the measuring sheet, the ratio R (x, y) of the spectral characteristic values of the measuring sheet is performed.
  • ⁇ 1) / R (x, y) G1 (x, y) / G2 (x, y) * GP2 (x, y) / GP1 (x, y) * P ( ⁇ 1)
  • a plurality of hue regions having different hues from each other are extracted from the captured image of the imaged object, and the region of the measurement sheet, in other words, from the plurality of hue regions extracted from the captured image based on the pattern arrangement information.
  • the area where the pattern is not arranged on the measurement sheet is specified. In the region where the pattern exists, there is no region corresponding to the color-developing portion of the measurement sheet. Therefore, after the region of the measurement sheet in the captured image is specified, the pattern exists using a known two-dimensional interpolation technique based on the image signal of the measurement sheet in the vicinity of the region where the pattern exists in the captured image.
  • the image signal of the measurement sheet after interpolation is generated by interpolating the area to be interpolated.
  • a process of canceling the influence of the spectral distribution of the illumination light at the time of imaging the object to be imaged that is, the ratio R (x, y, ⁇ 1) / R (x, y, ⁇ 2) of the spectral characteristic values of the measurement sheet (x, y, ⁇ 2) ( The process of calculating the fourth ratio) is performed on the image signal of the measurement sheet after interpolation.
  • the relationship between the ratio R (x, y, ⁇ 1) / R (x, y, ⁇ 2) of the spectral characteristic values of the measurement sheet and the amount of external energy applied to the measurement sheet is obtained in advance. Therefore, based on this relationship, the surface distribution of the amount of external energy applied to the measuring sheet from the ratio R (x, y, ⁇ 1) / R (x, y, ⁇ 2) of the spectral characteristic values of the measuring sheet. Can be estimated.
  • the influence of the surface distribution of the intensity of the illumination light and the spectral distribution of the illumination light can be canceled from the image signal of the measurement sheet in the captured image. Therefore, the user captures an object to be measured under arbitrary illumination light without considering the surface distribution of the intensity of the illumination light and the spectral distribution of the illumination light, and the image signal (color development) of the measurement sheet in the captured image.
  • the surface distribution of the amount of external energy applied to the measuring sheet can be accurately estimated from the concentration).
  • the pattern is formed on the measurement sheet has been described as an example, but the present invention is not limited to this, and the pattern is formed on the holding plate for holding the measurement sheet from above.
  • the holding plate may be placed on top of the measuring sheet.
  • FIG. 5 is an example planar conceptual diagram showing the configuration of the measurement sheet.
  • a donut-shaped color-developing portion 42 that develops a color at a concentration corresponding to the amount of external energy is formed in the central portion thereof due to the application of external energy.
  • FIGS. 6A and 6B are an example plan conceptual diagram and side conceptual diagram showing the configuration of the holding plate.
  • the holding plate 44 is a transparent or substantially transparent plate. Therefore, the region where the pattern 46 of the suppression plate 44 is formed is mainly composed of the reflected light component at least in the first spectral sensitivity and the second spectral sensitivity, and the region where the pattern 46 of the suppression plate 44 is not formed is at least. In the first spectral sensitivity and the second spectral sensitivity, the transmitted light component has the main optical characteristics.
  • the holding plate 44 has a light scattering property on the surface directly irradiated with the illumination light. As shown in FIG.
  • the holding plate 44 of the present embodiment has an uneven surface on which the illumination light is directly irradiated. As a result, the surface reflection of the illumination light applied to the suppression plate 44 is prevented, and the scattered illumination light is transmitted through the suppression plate 44. Further, as shown in FIG. 7, the holding plate 44 has a pattern 46 formed on a surface in contact with the measuring sheet 40. In the case of this embodiment, the dot pattern 46 is formed as shown in FIG. 6A.
  • FIG. 8 is a side conceptual diagram of an example showing a configuration in the case of imaging an image-taking object.
  • the support plate 48 shown in FIG. 8 is a flat or substantially flat plate having a uniform reflectance.
  • the measurement sheet 40 is placed on a surface of the support plate 48 having a uniform reflectance, and the holding plate 44 on which the pattern 46 is formed is superposed on the measurement sheet 40.
  • the image pickup target including the measurement sheet 40 and the pattern 46 is imaged in the state of being arranged.
  • the position fixing mechanism is not particularly limited, but on one side of the support plate 48 and the holding plate 44, on a hinge connecting the support plate 48 and the holding plate 44, and on a side located at a position facing the one side. , A hook for fixing the positions of the support plate 48, the measuring sheet 40, and the holding plate 44 can be used.
  • the image processing device of the present invention is not limited to a smartphone, but may be a digital camera, a digital video camera, a scanner, or the like, and can be realized as an application program that operates in these devices.
  • the processor is a processor whose circuit configuration can be changed after manufacturing such as CPU (Central Processing Unit) and FPGA (Field Programmable Gate Array), which are general-purpose processors that execute software (programs) and function as various processing units. It includes a dedicated electric circuit which is a processor having a circuit configuration specially designed for performing a specific process such as a programmable logic device (PLD) and an ASIC (Application Specific Integrated Circuit).
  • CPU Central Processing Unit
  • FPGA Field Programmable Gate Array
  • PLD programmable logic device
  • ASIC Application Specific Integrated Circuit
  • One processing unit may be composed of one of these various processors, or a combination of two or more processors of the same type or different types, for example, a combination of a plurality of FPGAs, or a combination of an FPGA and a CPU. It may be configured by such as. Further, a plurality of processing units may be configured by one of various processors, or two or more of the plurality of processing units may be collectively configured by using one processor.
  • processors are configured by a combination of one or more CPUs and software, and this processor functions as a plurality of processing units.
  • SoC system on chip
  • a processor that realizes the functions of the entire system including a plurality of processing units with one IC (Integrated Circuit) chip is used.
  • circuitry that combines circuit elements such as semiconductor elements.
  • the method of the present invention can be carried out, for example, by a program for causing a computer (processor) to execute each step. It is also possible to provide a computer-readable recording medium on which this program is recorded.
  • Image processing device 10 Image processing device 12 Image processing unit 14 Display unit 16 Operation unit 18 Storage unit 20 Processor 22 Image signal acquisition unit 24 Ratio calculation unit 28 Image signal processing unit 30 Surface distribution estimation unit 32 Display processing unit 34 Internal bus 40 Measurement sheet 42 Color development Part 44 Retaining plate 46 Pattern 48 Support plate

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Theoretical Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Spectrometry And Color Measurement (AREA)
  • Facsimile Image Signal Circuits (AREA)
  • Image Processing (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

画像処理装置、画像処理方法、プログラムおよび記録媒体においては、外部エネルギーが加えられたことにより、外部エネルギー量に応じた濃度に発色した測定用シート、および、測定用シートの上に設けられた規則的なパターンを含む撮像対象物の撮像画像の画像信号を取得し、撮像対象物におけるパターンの画像信号およびパターンの分光特性値に基づいて、撮像対象物の撮像時の照明光の分光分布の影響を打ち消す処理を、撮像画像における測定用シートの画像信号に対して実施する。

Description

画像処理装置、画像処理方法、プログラムおよび記録媒体
 本発明は、測定用シートの発色濃度に基づいて、測定用シートに加えられた外部エネルギー量の面分布を推定する画像処理装置、画像処理方法、プログラムおよび記録媒体に関する。
 外部エネルギーが加えられたことにより、外部エネルギー量に応じた所定の濃度に発色した測定用シートを、カメラ等の撮像装置により撮像し、その撮像画像の画素毎の画像信号(濃度値)から、測定用シートに加えられた外部エネルギー量の面分布を推定することが行われている。
 本発明の参考となる先行技術文献として、例えば特許文献1および2等がある。
 特許文献1には、一定濃度領域を有するシート状のマーカを発色シートに重ねた状態で発色シートの測定領域を撮影し、撮影した画像に含まれる一定濃度領域の濃度の差から測定領域における光量の変動を取得し、この光量変動に基づいて測定領域内の色の濃度を補正し、補正した測定領域における色の濃度を、発色シートに印加したエネルギー値に変換するエネルギー測定システムが記載されている。
 特許文献2には、キードット、情報ドット、格子ドットを所定の規則に則って配列することにより生成されたドットパターンが印刷された媒体面上に赤外光または紫外光を照射して、その反射光を光学読取手段で読み取ってドットパターンを認識して、これに対応したデータを出力するドットパターン読取システムが記載されている。
特開2015-215291号公報 国際公開第2006/040832号
 ところで、外部照明による照明光の環境下で測定用シートを撮像する場合、測定用シートの発色濃度を正確に撮像するためには、パラソル等を使用して外部照明による直接光を間接光に変換し、更に多方向から間接光を重ねることにより、撮像に適した照明光の強度およびその面分布を実現する必要がある。しかし、このような外部照明のための照明設備を設置して調整することは煩雑であり、天井の照明具およびデスクライトの照明具等だけを使用して測定用シートを撮像する方が圧倒的に簡便である。
 ところが、天井の照明具およびデスクライトの照明具等だけを使用して測定用シートを撮像する場合、言い換えると、複数の互いに異なる色の照明光が混在するミックス光源を使用して測定シートを撮像する場合、照明光の強度の面分布が不均一となり、かつ、複数の互いに異なる照明具による照明光が重なり合うことにより、照明光の分光分布(スペクトル)が測定シートの撮像画像上の場所によって異なるという現象が発生することが知られている。
 このような照明光の強度の面分布が不均一となり、照明光の分光分布が測定用シートの撮像画像の場所によって異なるという環境下で測定用シートを撮像すると、同一濃度に発色した測定用シート内の領域に対応する測定用シートの撮像画像内の領域において、本来無いはずの画像信号の分布が生じる。この本来無いはずの画像信号の分布は、前述の照明光の強度の面分布が不均一であり、照明光の分光分布が測定用シートの撮像画像の場所によって異なることが原因である。
 このように、ミックス光源を使用して測定用シートを撮像する場合、本来無いはずの画像信号の分布が原因となり、測定用シートの画素毎の撮像画像から、測定用シートに加えられた外部エネルギー量の面分布を正確に推定することができないという問題がある。
 本発明の目的は、任意の照明光の下で撮像された測定用シートの撮像画像の画像信号から、測定用シートに加えられた外部エネルギー量の面分布を正確に推定することができる画像処理装置、画像処理方法、プログラムおよび記録媒体を提供することにある。
 上記目的を達成するために、本発明は、外部エネルギーが加えられたことにより、外部エネルギー量に応じた濃度に発色した測定用シート、および、測定用シートの上に設けられた規則的なパターンを含む撮像対象物の撮像画像の画像信号を取得し、
 撮像対象物におけるパターンの画像信号およびパターンの分光特性値に基づいて、撮像対象物の撮像時の照明光の分光分布の影響を打ち消す処理を、撮像画像における測定用シートの画像信号に対して実施する、画像処理方法を提供する。
 ここで、センサーによって撮像された撮像対象物の第1分光感度に対応した第1撮像画像の画像信号および第2分光感度に対応した第2撮像画像の画像信号を取得し、
 第1撮像画像における測定用シートの第1分光感度に対応した第1画像信号と第2撮像画像における測定用シートの第2分光感度に対応した第2画像信号との第1比を画素毎に算出し、
 第1撮像画像におけるパターンの第1分光感度に対応した第3画像信号と第2撮像画像におけるパターンの第2分光感度に対応した第4画像信号との第2比を画素毎に算出し、
 パターンの第1分光感度に対応した第1分光特性値とパターンの第2分光感度に対応した第2分光特性値との第3比を算出し、
 第2比および第3比に基づいて、処理を第1比に対して実施することにより、第1撮像画像における測定用シートの第1分光感度に対応した第3分光特性値と第2撮像画像における測定用シートの第2分光感度に対応した第4分光特性値との第4比を画素毎に算出することが好ましい。
 また、第1分光感度および第2分光感度の少なくとも一方に対応する波長帯域は、30nm以下の半値全幅を有することが好ましい。
 また、第4比と、測定用シートに加えられた外部エネルギー量と、の関係に基づいて、第4比から、測定用シートに加えられた外部エネルギー量の面分布を推定することが好ましい。
 また、パターンは、測定用シートの上に形成されていることが好ましい。
 また、パターンは、抑え板の上に形成され、抑え板のパターンが形成された領域は、少なくとも第1分光感度及び第2分光感度において、反射光成分が主となり、抑え板のパターンが形成されていない領域は、少なくとも第1分光感度及び第2分光感度において、透過光成分が主となる光学特性を有し、抑え板が測定用シートの上に重ねて配置されていることが好ましい。
 また、抑え板は、照明光が直接照射される面に光の散乱性を有し、測定用シートと接する面にパターンが形成されていることが好ましい。
 また、測定用シートを、支持板の均一な反射率を有する面の上に配置し、測定用シートの上に抑え板を重ねて配置した状態で測定用シートおよびパターンを含む撮像対象物を撮像することが好ましい。
 また、位置固定機構を用いて、支持板、測定用シートおよび抑え板の位置を固定した状態で測定用シートおよびパターンを含む撮像対象物を撮像することが好ましい。
 また、パターンの色は、測定用シートの発色部の色とは異なる色相を有することが好ましい。
 また、撮像画像から互いに色相が異なる複数の色相領域を抽出し、
 パターンの配置情報に基づいて、複数の色相領域の中からパターンの領域を特定し、
 2次元補間技術を用いて、パターンが存在しない領域を補間することにより補間後のパターンの画像信号を生成し、補間後のパターンの画像信号に基づいて、処理を撮像対象物における測定用シートの画像信号に対して実施することが好ましい。
 また、撮像画像から互いに色相が異なる複数の色相領域を抽出し、
 パターンの配置情報に基づいて、複数の色相領域の中から測定用シートの領域を特定し、
 2次元補間技術を用いて、パターンが存在する領域を補間することにより補間後の測定用シートの画像信号を生成し、処理を補間後の測定用シートの画像信号に対して実施することが好ましい。
 また、本発明は、プロセッサを備え、プロセッサが、
 外部エネルギーが加えられたことにより、外部エネルギー量に応じた濃度に発色した測定用シート、および、測定用シートの上に設けられた規則的なパターンを含む撮像対象物の撮像画像の画像信号を取得し、
 撮像対象物におけるパターンの画像信号およびパターンの分光特性値に基づいて、撮像対象物の撮像時の照明光の分光分布の影響を打ち消す処理を、撮像画像における測定用シートの画像信号に対して実施する、画像処理装置を提供する。
 また、本発明は、上記の画像処理方法の各々の工程をコンピュータに実行させるためのプログラムを提供する。
 また、本発明は、上記の画像処理方法の各々の工程をコンピュータに実行させるためのプログラムが記録されたコンピュータ読み取り可能な記録媒体を提供する。
 本発明によれば、撮像画像における測定用シートの画像信号から、照明光の強度の面分布および照明光の分光分布による影響を打ち消すことができる。従って、ユーザは、照明光の強度の面分布および照明光の分光分布を考慮することなく、任意の照明光の下で測定対象物を撮像し、その撮像画像における測定用シートの画像信号(発色濃度)から、測定用シートに加えられた外部エネルギー量の面分布を正確に推定することができる。
本発明の画像処理装置の構成を表す一実施形態のブロック図である。 プロセッサの内部構成を表す一実施形態のブロック図である。 画像処理装置の動作を表すフローチャートである。 撮像対象物の構成を表す一例の平面概念図である。 測定用シートの構成を表す一例の平面概念図である。 抑え板の構成を表す一例の平面概念図である。 抑え板の構成を表す一例の側面外面図である。 抑え板と測定用シートとの位置関係を表す一例の側面概念図である。 撮像対象物を撮像する場合の構成を表す一例の側面概念図である。
 以下に、添付の図面に示す好適実施形態に基づいて、本発明の画像処理装置、画像処理方法、プログラムおよび記録媒体を詳細に説明する。
 図1は、本発明の画像処理装置の構成を表す一実施形態のブロック図である。図1に示す画像処理装置10は、測定用シートの発色濃度に基づいて、測定用シートに加えられた外部エネルギー量の面分布を推定する。本実施形態の画像処理装置10は、カメラ機能を有するスマートフォンであって、図1に示すように、撮像部12と、表示部14と、操作部16と、記憶部18と、プロセッサ20と、を備えている。表示部14、操作部16、撮像部12、記憶部18およびプロセッサ20は、内部バス34を介して双方向に接続されており、互いにデータの送受信が可能である。
 撮像部12は、センサーを有し、プロセッサ20の制御により、任意の照明光の下で、センサーを用いて撮像対象物を撮像することにより、その撮像画像の画像信号を出力する。本実施形態の撮像部12は、スマートフォンのカメラ機能に相当し、センサーを用いて測定用シートおよびパターンを含む撮像対象物を撮像することにより、その撮像画像の画像信号を出力する。より詳しくは、撮像部12は、第1分光感度および第2分光感度に対応する第1撮像画像の画像信号および第2撮像画像の画像信号を出力する。
 本実施形態の撮像部12は、第1分光感度を有する第1センサーおよび第2分光感度を有する第2センサーを含む2つのセンサーを用いて撮像対象物を同時に撮像することにより、第1撮像画像の画像信号および第2撮像画像の画像信号を出力する。この場合、1回の撮像により、第1分光感度に対応する第1撮像画像の画像信号および第2分光感度に対応する第2撮像画像の画像信号を同時に出力することができる。
 なお、撮像部12は、センサーおよび第1分光感度に対応する波長帯域の光を透過させる第1光学フィルタを用いて撮像対象物を撮像することにより、第1分光感度に対応する第1撮像画像の画像信号を出力し、続いて、センサーおよび第2分光感度に対応する波長帯域の光を透過させる第2光学フィルタを用いて撮像対象物を撮像することにより、第2分光感度に対応する第2撮像画像の画像信号を出力してもよい。つまり、2回の撮像により、第1分光感度に対応する第1撮像画像の画像信号および第2分光感度に対応する第2撮像画像の画像信号を順次出力してもよい。
 第1分光感度および第2分光感度の少なくとも一方に対応する波長帯域は、30nm以下の半値全幅を有する。なお、第1分光感度および第2分光感度の両方の波長帯域が、30nm以下の半値全幅を有することが望ましい。また、第1分光感度および第2分光感度に対応する波長帯域は、より狭帯域であるのが望ましく、例えば20nm以下がより望ましく、10nm以下が最も望ましい。
 ここで、照明光の分光分布が変わると、測定用シートの色材の分光特性値に対応する濃度(色味)が異なって見える。この現象は、一般的には演色性の問題である。これに対し、撮像対象物の撮像時の分光感度に対応する波長帯域が、30nm以下の半値全幅を有する狭帯域であれば、後述するように、撮像画像における測定用シートの分光特性値の第4比に基づいて、測定用シートに加えられた外部エネルギー量の面分布を推定することにより、演色性の影響をほぼ無くすことができる。
 測定用シートは、紙、シートおよびフィルム等のようなシート状のものであって、外部エネルギーが加えられたことにより、外部エネルギー量に応じた所定の形状および所定の濃度(色味)に発色した発色部が、その少なくとも一方の表面に形成されている。本実施形態の測定用シートは、図4に示すように、ドーナツ状の発色部がその中央部に形成されている。測定用シートは、特に限定されないが、例えば感圧シート、感熱シート、および紫外線(あるいは近赤外線、中赤外線)シート等を例示することができる。
 感圧シート、感熱シートおよび紫外線シート等は、それぞれ、圧力、温度および紫外線(あるいは近赤外線、中赤外線)等の外部エネルギーが加えられたことにより、加えられた外部エネルギー量に応じた所定の形状および所定の濃度に発色する。測定用シートは、その表面に形成された発色部の形状および濃度に基づいて、その測定用シートに加えられた外部エネルギー量の面分布を計測することができる。
 なお、感圧シートに加えられた圧力には、瞬間圧力および持続圧力の2種類がある。瞬間圧力は、測定用シートに瞬間的に加えられた外部エネルギーの大きさである。一方、持続圧力は、測定用シートに持続的に加えられた外部エネルギーの大きさの時間積分である。外部エネルギー量とは、瞬間圧力による外部エネルギーの大きさおよび持続圧力による外部エネルギーの大きさの時間積分の両方を含む。感熱シートおよび紫外線シート等についても同様である。感熱シートの場合、熱源に接触させたときの発色濃度は熱源の温度と接触時間とによって変わる(温度の時間積分エネルギー量)。紫外線シートの場合、紫外線を受けたときの発色濃度は受けた紫外線の光量と受光時間とに対応する(光量の時間積分エネルギー量)。
 パターンは、測定用シートの上に設けられた規則的な繰り返しパターンであって、詳細は後述するが、測定用シートの画像信号から、撮像対象物の撮像時の照明光の分光分布の影響を打ち消すために使用される。本実施形態のパターンは、図4に示すように、所定の色の複数の円形のドットが、測定用シートの上下方向および左右方向に対して規則的に配列されたドットパターンであって、予め測定用シートの上に形成されている。
 パターンの色は、測定用シートの発色部の色と同じであってもよいが、本実施形態の場合、測定用シートの発色部の色とは異なる色相を有する。色の組み合わせは、特に限定されないが、例えば測定用シートの発色部の色が赤色の場合、パターンの色をグレーとする。また、測定用シートの発色部の色が緑色の場合、パターンの色を黄色とし、測定用シートの発色部の色が青色の場合、パターンの色を赤色としてもよい。
 ドットパターンを構成するドットの形状、大きさ、配置間隔および個数等は、特に限定されない。例えば、三角形および四角形等の複数の多角形のドット、星型のドットまたは楕円のドット等からなるドットパターンでもよい。あるいは、パターンは、ドットパターンに限定されず、左右方向に延びる複数の直線と、これと直交する上下方向に延びる複数の直線と、によって構成される格子パターン等でもよい。
 表示部14は、プロセッサ20の制御により、各種の画像および情報等を表示する。表示部14は、例えばLCD(Liquid Crystal Display)、有機EL(Organic Electroluminescence)ディスプレイ、LED(Light Emitting Diode)ディスプレイ又は電子ペーパー等のディスプレイ等によって構成される。本実施形態の表示部14には、画像処理装置10のユーザによるタッチ操作を受け付けるタッチパネルが設けられている。
 操作部16は、プロセッサ20の制御により、ユーザの操作を受け付ける。操作部16は、画像処理装置10の筐体の外表面に設けられた複数のボタン、および、表示部14に設けられているタッチパネルのグラフィカルユーザインタフェイス等を含む。ユーザは、撮像対象物を撮像したり、各種の設定項目を設定したりする場合に、操作部16を通じて、対応する操作を行う。
 記憶部18は、プロセッサ20の制御により、撮像部12によって撮像された撮像対象物の撮像画像、すなわち、その画像信号等を記憶する。本実施形態の記憶部18は、撮像部12によって撮像された撮像対象物の撮像画像を記憶するメモリ装置等である。また、記憶部18には、プロセッサ20によって実行されるプログラム及び各種のデータ等が格納されている。
 プロセッサ20は、画像処理装置10の各部を制御し、撮像対象物の撮像、画像の記憶、画像の表示等を含む各種の処理を実行する。プロセッサ20は、図2に示すように、画像信号取得部22と、比率算出部24と、画像信号処理部28と、面分布推定部30と、表示処理部32と、を備えている。記憶部18に記憶されたプログラムがプロセッサ20によって実行されることによって、プロセッサ20は、各々の処理部として機能する。画像信号取得部22、比率算出部24、画像信号処理部28、面分布推定部30および表示処理部32は、内部バス34を介して双方向に接続されており、互いにデータの送受信が可能である。
 画像信号取得部22は、操作部16を通じたユーザの操作(撮像の指示)に応じて、撮像部12の動作を制御し、センサーによって撮像された撮像対象物の撮像画像の画像信号を取得する。本実施形態の画像信号取得部22は、センサーによって撮像された撮像対象物の第1分光感度に対応した第1撮像画像の画像信号および第2分光感度に対応した第2撮像画像の画像信号を取得する。
 比率算出部24は、撮像対象物の撮像画像の互いに異なる分光感度に対応した画像信号の比率を算出する。また、比率算出部24は、パターンの互いに異なる分光感度に対応した分光特性値、すなわち、分光反射率または分光透過率の比率を算出する。
 本実施形態の比率算出部24は、第1撮像画像における測定用シートの第1分光感度に対応した第1画像信号と第2撮像画像における測定用シートの第2分光感度に対応した第2画像信号との第1比を画素毎に算出する。また、比率算出部24は、第1撮像画像におけるパターンの第1分光感度に対応した第3画像信号と第2撮像画像におけるパターンの第2分光感度に対応した第4画像信号との第2比を画素毎に算出する。さらに、比率算出部24は、パターンの第1分光感度に対応した第1分光特性値とパターンの第2分光感度に対応した第2分光特性値との第3比を算出する。
 画像信号処理部28は、撮像対象物におけるパターンの画像信号およびパターンの分光特性値に基づいて、撮像対象物の撮像時の照明光の分光分布の影響を打ち消す処理を、撮像画像における測定用シートの画像信号に対して実施する。より詳しくは、画像信号処理部28は、パターンの画像信号の第2比およびパターンの分光特性値の第3比に基づいて、前述の撮像対象物の撮像時の照明光の分光分布の影響を打ち消す処理を、測定用シートの画像信号の第1比に対して実施する。これにより、第1撮像画像における測定用シートの第1分光感度に対応した第3分光特性値と、第2撮像画像における測定用シートの第2分光感度に対応した第4分光特性値と、の第4比が画素毎に算出される。
 面分布推定部30は、測定用シートの分光特性値の第4比と、測定用シートに加えられた外部エネルギー量と、の関係に基づいて、画像信号処理部28によって算出された第4比から、測定用シートに加えられた外部エネルギー量の面分布を推定する。
 測定用シートの分光特性値の第4比と、測定用シートに加えられた外部エネルギー量と、の関係は、第4比に基づいて外部エネルギー量が一意に定まる写像関係にあり、この写像関係は既知である。この写像関係に基づいて、第4比と外部エネルギー量との関係が予め求められている。第4比と外部エネルギー量との関係は、例えばLUT(Look Up Table:ルックアップテーブル)によって表すことができる。
 表示処理部32は、各種の画像および情報等を表示部14に表示させる。表示処理部32は、本実施形態の場合、ユーザの操作(撮像の指示)に応じて、撮像対象物が撮像される場合等に、この撮像対象物の画像を表示部14に表示させる。
 次に、図3に示すフローチャートを参照しながら画像処理装置10の動作を説明する。
 ユーザは、任意の照明光の下で、撮像対象物を撮像する。例えば、ユーザは、スマートフォンである画像処理装置10を手に持ち、表示部14に表示された撮像対象物の画像を見ながら、操作部16を通じたユーザの操作によって撮像対象物の撮像を指示する。
 これに応じて、撮像部12により、第1分光感度を有する第1センサーおよび第2分光感度を有する第2センサーを用いて撮像対象物が同時に撮像され、第1分光感度に対応した第1撮像画像の画像信号および第2分光感度に対応した第2撮像画像の画像信号が出力される。
 そして、画像信号取得部22により、撮像部12から出力された第1撮像画像の画像信号および第2撮像画像の画像信号が取得される(ステップS1)。
 続いて、比率算出部24により、第1撮像画像における測定用シートの第1分光感度に対応した第1画像信号と、第2撮像画像における測定用シートの第2分光感度に対応した第2画像信号と、の第1比が画素毎に算出される(ステップS2)。
 また、第1撮像画像におけるパターンの第1分光感度に対応した第3画像信号と、第2撮像画像におけるパターンの第2分光感度に対応した第4画像信号と、の第2比が画素毎に算出される(ステップS3)。
 さらに、パターンの第1分光感度に対応した第1分光特性値と、パターンの第2分光感度に対応した第2分光特性値と、の第3比が算出される(ステップS4)。
 続いて、画像信号処理部28により、パターンの画像信号の第2比およびパターンの分光特性値の第3比に基づいて、撮像対象物の撮像時の照明光の分光分布の影響を打ち消す処理が、測定用シートの画像信号の第1比に対して実施される。これにより、第1撮像画像における測定用シートの第1分光感度に対応した第3分光特性値と、第2撮像画像における測定用シートの第2分光感度に対応した第4分光特性値と、の第4比が画素毎に算出される(ステップS5)。
 そして、面分布推定部30により、予め求められている、測定用シートの分光特性値の第4比と、測定用シートに加えられた外部エネルギー量と、の関係に基づいて、第4比から、測定用シートに加えられた外部エネルギー量の面分布が推定される(ステップS6)。
 次に、撮像対象物の撮像時の照明光の分光分布の影響を打ち消す処理について、より詳しく説明する。
 撮像対象物の撮像画像における測定用シートの画像信号G(x、y)は、下記式(1)により表される。
 G(x、y)∝S(x、y)*SP(x、y、λ)*R(x、y、λ)*C(λ) … 式(1)
 ここで、S(x、y)は、照明光の強度の面分布、SP(x、y、λ)は、照明光の分光分布、R(x、y、λ)は、測定用シートの分光特性値の面分布、C(λ)は、センサーの分光感度である。(x、y)は、測定用シートにおける2次元座標を表す。λは、センサーの分光感度に対応した波長帯域の中心波長である。
 式(1)に示すように、撮像対象物の撮像画像における測定用シートの画像信号G(x、y)には、本来無いはずの画像信号の分布、すなわち、照明光の強度の面分布S(x、y)および照明光の分光分布SP(x、y、λ)の影響が含まれている。このため、測定用シートの画像信号G(x、y)から、測定用シートに加えられた外部エネルギー量を正確に求めることができない。
 ここで、第1分光感度に対応した波長λ1および第2分光感度に対応した波長λ2に注目すると、第1センサーによって撮像された撮像対象物の第1撮像画像における測定用シートの波長λ1に対応した第1画像信号G1(x、y)は、下記式(2)により表される。また、第2センサーによって撮像された撮像対象物の第2撮像画像における測定用シートの波長λ2に対応した第2画像信号G2(x、y)は、下記式(3)により表される。
 G1(x、y)=S(x、y)*SP(x、y、λ1)*R(x、y、λ1)*C(λ1) … 式(2)
 G2(x、y)=S(x、y)*SP(x、y、λ2)*R(x、y、λ2)*C(λ2) … 式(3)
 式(2)に示す測定用シートの第1画像信号G1(x、y)と、式(3)に示す測定用シートの第2画像信号G2(x、y)と、の比G1(x、y)/G2(x、y)(第1比)は、下記式(4)により表される。
 G1(x、y)/G2(x、y)
={S(x、y)*SP(x、y、λ1)*R(x、y、λ1)*C(λ1)}/{S(x、y)*SP(x、y、λ2)*R(x、y、λ2)*C(λ2)}
=S(x、y)/S(x、y)*SP(x、y、λ1)/SP(x、y、λ2)*R(x、y、λ1)/R(x、y、λ2)*C(λ1)/C(λ2)
=SP(x、y、λ1)/SP(x、y、λ2)*R(x、y、λ1)/R(x、y、λ2)*C(λ1)/C(λ2) … 式(4)
 このように、式(4)においては、照明光の強度の面分布S(x、y)の影響が打ち消されている。つまり、比G1(x、y)/G2(x、y)は、照明光の強度の面分布S(x、y)に依存しない信号であることが分かる。
 続いて、第1撮像画像におけるパターンの波長λ1に対応した第3画像信号GP1(x、y)は、下記式(5)により表される。また、第2撮像画像におけるパターンの波長λ2に対応した第4画像信号GP2(x、y)は、下記式(6)により表される。
 GP1(x、y)=S(x、y)*SP(x、y、λ1)*P(λ1)*C(λ1) … 式(5)
 GP2(x、y)=S(x、y)*SP(x、y、λ2)*P(λ2)*C(λ2) … 式(6)
 ここで、P(λ1)は、パターンの波長λ1に対応した第1分光特性値、P(λ2)は、パターンの波長λ2に対応した第2分光特性値であり、これらのパターンの第1分光特性値および第2分光特性値は既知である。
 ここで、本実施形態のように、パターンの色が、測定用シートの発色部の色とは異なる色相を有する場合、公知の技術により、撮像対象物の撮像画像から互いに色相が異なる複数の色相領域を抽出し、更に既知であるパターンの配置情報に基づいて、撮像画像から抽出された複数の色相領域の中から、パターンの領域およびパターンの領域以外の測定用シートの領域を特定することが可能である。
 なお、パターンの配置情報には、パターンの配置に関する情報が含まれる。本実施形態の場合、パターンの配置情報には、パターンを構成するドットの形状、サイズ、配置間隔および個数等の情報が含まれる。
 撮像対象物の撮像画像の面内には、パターンが存在する領域と存在しない領域とがある。そのため、撮像画像におけるパターンの領域が特定された後、撮像画像におけるパターンの画像信号に基づいて、公知の2次元補間技術を用いて、パターンが存在しない領域を補間することにより補間後のパターンの画像信号を生成する。
 このようにして得られた補間後のパターンの画像信号に基づいて、撮像対象物の撮像時の照明光の分光分布の影響を打ち消す処理を撮像対象物における測定用シートの画像信号に対して実施することができる。
 続いて、式(5)に示すパターンの第3画像信号GP1(x、y)と、式(6)に示すパターンの第4画像信号GP2(x、y)と、の比GP1(x、y)/GP2(x、y)(第2比)は、下記式(7)により表される。
 GP1(x、y)/GP2(x、y)
={S(x、y)*SP(x、y、λ1)*P(λ1)*C(λ1)}/{S(x、y)*SP(x、y、λ2)*P(λ2)*C(λ2)}
=S(x、y)/S(x、y)*SP(x、y、λ1)/SP(x、y、λ2)*P(λ1)/P(λ2)*C(λ1)/C(λ2)
=SP(x、y、λ1)/SP(x、y、λ2)*P(λ1)/P(λ2)*C(λ1)/C(λ2) … 式(7)
 同様に、比GP1(x、y)/GP2(x、y)においては、照明光の強度の面分布S(x、y)の影響が打ち消されている。
 式(7)の右辺の比P(λ1)/P(λ2)(第3比)を左辺へ移動させると、下記式(8)で表される。
 GP1(x、y)/GP2(x、y)*P(λ2)/P(λ1)=SP(x、y、λ1)/SP(x、y、λ2)*C(λ1)/C(λ2) … 式(8)
 ここで、式(4)の右辺は、下記の通り、2つの項A、Bに分解することができる。
 SP(x、y、λ1)/SP(x、y、λ2)*C(λ1)/C(λ2) … 項A
 R(x、y、λ1)/R(x、y、λ2) … 項B
 波長λ1、λ2のように、半値全幅が、30nm以下の狭帯域の波長帯域に対応する分光感度を持つ第1センサーおよび第2センサーによって撮像対象物を撮像することにより、測定用シートの上に略均等に配置され、その特性値分布が略等しいパターンの画像信号から項Aの面分布を求めることができる。従って、式(4)の右辺から、求めた項Aを消去することにより項Bのみの信号を得ることができる。
 続いて、式(4)に示す比G1(x、y)/G2(x、y)に式(8)を代入すると、下記式(9)により表される。
 G1(x、y)/G2(x、y)=GP1(x、y)/GP2(x、y)*P(λ2)/P(λ1)*R(x、y、λ1)/R(x、y、λ2) … 式(9)
 このように、式(9)においては、照明光の分光分布SP(x、y、λ)およびセンサーの分光感度C(λ)の影響が打ち消されている。つまり、比G1(x、y)/G2(x、y)は、照明光の分光分布SP(x、y、λ)に依存しない信号であることが分かる。
 従って、式(9)から、比R(x、y、λ1)/R(x、y、λ2)(第4比)は、下記式(10)により表される。
 R(x、y、λ1)/R(x、y、λ2)=G1(x、y)/G2(x、y)*GP2(x、y)/GP1(x、y)*P(λ1)/P(λ2) … 式(10)
 このように、パターンの画像信号GP(x、y)の比(第2比)、および、パターンの特性値Pの比(第3比)に基づいて、撮像対象物の撮像時の照明光の分光分布の影響を打ち消す処理を、測定用シートの画像信号G(x、y)の比(第1比)に対して実施することにより、測定用シートの分光特性値の比R(x、y、λ1)/R(x、y、λ2)(第4比)を算出することができる。
 同様に、撮像対象物の撮像画像から互いに色相が異なる複数の色相領域を抽出し、パターンの配置情報に基づいて、撮像画像から抽出された複数の色相領域の中から測定用シートの領域、言い換えると、測定用シート上のパターンが配置されていない領域を特定する。
 パターンが存在する領域には、測定シートの発色部に対応する領域が存在しない。そのため、撮像画像における測定用シートの領域が特定された後、撮像画像におけるパターンが存在する領域の近傍の測定用シートの画像信号に基づいて、公知の2次元補間技術を用いて、パターンが存在する領域を補間することにより補間後の測定用シートの画像信号を生成する。
 続いて、撮像対象物の撮像時の照明光の分光分布の影響を打ち消す処理、つまり、測定用シートの分光特性値の比R(x、y、λ1)/R(x、y、λ2)(第4比)を算出する処理を、補間後の測定用シートの画像信号に対して実施する。
 そして、測定用シートの分光特性値の比R(x、y、λ1)/R(x、y、λ2)と、測定用シートに加えられた外部エネルギー量と、の関係を事前に求めておくことにより、この関係に基づいて、測定用シートの分光特性値の比R(x、y、λ1)/R(x、y、λ2)から、測定用シートに加えられた外部エネルギー量の面分布を推定することができる。
 このように、画像処理装置10においては、撮像画像における測定用シートの画像信号から、照明光の強度の面分布および照明光の分光分布による影響を打ち消すことができる。従って、ユーザは、照明光の強度の面分布および照明光の分光分布を考慮することなく、任意の照明光の下で測定対象物を撮像し、その撮像画像における測定用シートの画像信号(発色濃度)から、測定用シートに加えられた外部エネルギー量の面分布を正確に推定することができる。
 なお、パターンが測定用シートの上に形成されている場合を例に挙げて説明したが、これに限定されず、パターンが、測定用シートを上から抑えるための抑え板の上に形成され、この抑え板が測定用シートの上に重ねて配置されていてもよい。
 図5は、測定用シートの構成を表す一例の平面概念図である。図5に示す測定用シート40には、外部エネルギーが加えられたことにより、外部エネルギー量に応じた濃度に発色したドーナツ状の発色部42がその中央部に形成されている。
 続いて、図6Aおよび図6Bは、抑え板の構成を表す一例の平面概念図および側面概念図である。抑え板44は、透明または略透明な板である。従って、抑え板44のパターン46が形成された領域は、少なくとも第1分光感度及び第2の分光感度において、反射光成分が主となり、抑え板44のパターン46が形成されていない領域は、少なくとも第1分光感度及び第2分光感度において、透過光成分が主となる光学特性を有する。抑え板44は、照明光が直接照射される面に光の散乱性を有する。本実施形態の抑え板44は、図6Bに示すように、照明光が直接照射される面が凹凸状に形成されている。これにより、抑え板44に照射される照明光の表面反射を防止し、散乱された照明光が抑え板44を透過する。また、抑え板44は、図7に示すように、測定用シート40と接する面にパターン46が形成されている。本実施形態の場合、図6Aに示すように、ドットパターン46が形成されている。
 図8は、撮像対象物を撮像する場合の構成を表す一例の側面概念図である。図8に示す支持板48は、均一な反射率を有する平坦または略平坦な板である。撮像対象物を撮像する場合、測定用シート40を、支持板48の均一な反射率を有する面の上に配置し、測定用シート40の上に、パターン46が形成された抑え板44を重ねて配置した状態で測定用シート40およびパターン46を含む撮像対象物を撮像する。
 なお、位置固定機構を用いて、支持板48、測定用シート40および抑え板44の位置を固定した状態で測定用シート40およびパターン46を含む撮像対象物を撮像することが望ましい。位置固定機構は、特に限定されないが、支持板48および抑え板44の1つの辺において、支持板48と抑え板44とを接続するヒンジ、および、この1つの辺に対向する位置にある辺において、支持板48、測定用シート40および抑え板44の位置を固定するフック等を使用することができる。
 位置固定機構により、支持板48、測定用シート40および抑え板44の位置を固定した状態で撮像対象物を撮像することにより、測定用シート40とパターン46との間で位置ずれが生じることなく、撮像対象物を撮像することができる。
 なお、本発明の画像処理装置は、スマートフォンに限定されず、デジタルカメラ、デジタルビデオカメラまたはスキャナ等であってもよく、これらの装置において動作するアプリケーションプログラムとして実現することができる。
 プロセッサには、ソフトウェア(プログラム)を実行して各種の処理部として機能する汎用的なプロセッサであるCPU(Central Processing Unit)、FPGA(Field Programmable Gate Array)等の製造後に回路構成を変更可能なプロセッサであるプログラマブルロジックデバイス(Programmable Logic Device:PLD)、ASIC(Application Specific Integrated Circuit)等の特定の処理をさせるために専用に設計された回路構成を有するプロセッサである専用電気回路等が含まれる。
 1つの処理部を、これら各種のプロセッサのうちの1つで構成してもよいし、同種または異種の2つ以上のプロセッサの組み合わせ、例えば、複数のFPGAの組み合わせ、または、FPGAおよびCPUの組み合わせ等によって構成してもよい。また、複数の処理部を、各種のプロセッサのうちの1つで構成してもよいし、複数の処理部のうちの2以上をまとめて1つのプロセッサを用いて構成してもよい。
 例えば、サーバおよびクライアント等のコンピュータに代表されるように、1つ以上のCPUとソフトウェアの組み合わせで1つのプロセッサを構成し、このプロセッサが複数の処理部として機能する形態がある。また、システムオンチップ(System on Chip:SoC)等に代表されるように、複数の処理部を含むシステム全体の機能を1つのIC(Integrated Circuit)チップで実現するプロセッサを使用する形態がある。
 さらに、これらの各種のプロセッサのハードウェア的な構成は、より具体的には、半導体素子などの回路素子を組み合わせた電気回路(Circuitry)である。
 また、本発明の方法は、例えば、その各々のステップをコンピュータ(プロセッサ)に実行させるためのプログラムにより実施することができる。また、このプログラムが記録されたコンピュータ読み取り可能な記録媒体を提供することもできる。
 以上、本発明について詳細に説明したが、本発明は上記実施形態に限定されず、本発明の主旨を逸脱しない範囲において、種々の改良や変更をしてもよいのはもちろんである。
 10 画像処理装置
 12 撮像部
 14 表示部
 16 操作部
 18 記憶部
 20 プロセッサ
 22 画像信号取得部
 24 比率算出部
 28 画像信号処理部
 30 面分布推定部
 32 表示処理部
 34 内部バス
 40 測定用シート
 42 発色部
 44 抑え板
 46 パターン
 48 支持板

Claims (15)

  1.  外部エネルギーが加えられたことにより、外部エネルギー量に応じた濃度に発色した測定用シート、および、前記測定用シートの上に設けられた規則的なパターンを含む撮像対象物の撮像画像の画像信号を取得し、
     前記撮像対象物における前記パターンの画像信号および前記パターンの分光特性値に基づいて、前記撮像対象物の撮像時の照明光の分光分布の影響を打ち消す処理を、前記撮像画像における前記測定用シートの画像信号に対して実施する、画像処理方法。
  2.  センサーによって撮像された前記撮像対象物の第1分光感度に対応した第1撮像画像の画像信号および第2分光感度に対応した第2撮像画像の画像信号を取得し、
     前記第1撮像画像における前記測定用シートの前記第1分光感度に対応した第1画像信号と前記第2撮像画像における前記測定用シートの前記第2分光感度に対応した第2画像信号との第1比を画素毎に算出し、
     前記第1撮像画像における前記パターンの前記第1分光感度に対応した第3画像信号と前記第2撮像画像における前記パターンの前記第2分光感度に対応した第4画像信号との第2比を画素毎に算出し、
     前記パターンの前記第1分光感度に対応した第1分光特性値と前記パターンの前記第2分光感度に対応した第2分光特性値との第3比を算出し、
     前記第2比および前記第3比に基づいて、前記処理を前記第1比に対して実施することにより、前記第1撮像画像における前記測定用シートの前記第1分光感度に対応した第3分光特性値と前記第2撮像画像における前記測定用シートの前記第2分光感度に対応した第4分光特性値との第4比を画素毎に算出する、請求項1に記載の画像処理方法。
  3.  前記第1分光感度および前記第2分光感度の少なくとも一方に対応する波長帯域は、30nm以下の半値全幅を有する、請求項2に記載の画像処理方法。
  4.  前記第4比と、前記測定用シートに加えられた前記外部エネルギー量と、の関係に基づいて、前記第4比から、前記測定用シートに加えられた前記外部エネルギー量の面分布を推定する、請求項2または3に記載の画像処理方法。
  5.  前記パターンは、前記測定用シートの上に形成されている、請求項1ないし4のいずれか一項に記載の画像処理方法。
  6.  前記パターンは、抑え板の上に形成され、前記抑え板の前記パターンが形成された領域は、少なくとも前記第1分光感度及び前記第2分光感度において、反射光成分が主となり、前記抑え板の前記パターンが形成されていない領域は、少なくとも前記第1分光感度及び前記第2分光感度において、透過光成分が主となる光学特性を有し、前記抑え板が前記測定用シートの上に重ねて配置されている、請求項2ないし4のいずれか一項に記載の画像処理方法。
  7.  前記抑え板は、前記照明光が直接照射される面に光の散乱性を有し、前記測定用シートと接する面に前記パターンが形成されている、請求項6に記載の画像処理方法。
  8.  前記測定用シートを、支持板の均一な反射率を有する面の上に配置し、前記測定用シートの上に前記抑え板を重ねて配置した状態で前記測定用シートおよび前記パターンを含む前記撮像対象物を撮像する、請求項6または7に記載の画像処理方法。
  9.  位置固定機構を用いて、前記支持板、前記測定用シートおよび前記抑え板の位置を固定した状態で前記測定用シートおよび前記パターンを含む前記撮像対象物を撮像する、請求項8に記載の画像処理方法。
  10.  前記パターンの色は、前記測定用シートの発色部の色とは異なる色相を有する、請求項1ないし9のいずれか一項に記載の画像処理方法。
  11.  前記撮像画像から互いに前記色相が異なる複数の色相領域を抽出し、
     前記パターンの配置情報に基づいて、前記複数の色相領域の中から前記パターンの領域を特定し、
     2次元補間技術を用いて、前記パターンが存在しない領域を補間することにより補間後の前記パターンの画像信号を生成し、前記補間後のパターンの画像信号に基づいて、前記処理を前記撮像対象物における前記測定用シートの画像信号に対して実施する、請求項10に記載の画像処理方法。
  12.  前記撮像画像から互いに前記色相が異なる複数の色相領域を抽出し、
     前記パターンの配置情報に基づいて、前記複数の色相領域の中から前記測定用シートの領域を特定し、
     2次元補間技術を用いて、前記パターンが存在する領域を補間することにより補間後の前記測定用シートの画像信号を生成し、前記処理を前記補間後の測定用シートの画像信号に対して実施する、請求項10または11に記載の画像処理方法。
  13.  プロセッサを備え、前記プロセッサが、
     外部エネルギーが加えられたことにより、外部エネルギー量に応じた濃度に発色した測定用シート、および、前記測定用シートの上に設けられた規則的なパターンを含む撮像対象物の撮像画像の画像信号を取得し、
     前記撮像対象物における前記パターンの画像信号および前記パターンの分光特性値に基づいて、前記撮像対象物の撮像時の照明光の分光分布の影響を打ち消す処理を、前記撮像画像における前記測定用シートの画像信号に対して実施する、画像処理装置。
  14.  請求項1ないし12のいずれか一項に記載の画像処理方法の各々の工程をコンピュータに実行させるためのプログラム。
  15.  請求項1ないし12のいずれか一項に記載の画像処理方法の各々の工程をコンピュータに実行させるためのプログラムが記録されたコンピュータ読み取り可能な記録媒体。
PCT/JP2021/032591 2020-10-02 2021-09-06 画像処理装置、画像処理方法、プログラムおよび記録媒体 WO2022070783A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP21875085.9A EP4224130A4 (en) 2020-10-02 2021-09-06 IMAGE PROCESSING DEVICE, IMAGE PROCESSING METHOD, PROGRAM AND RECORDING MEDIUM
CN202180067393.6A CN116324359A (zh) 2020-10-02 2021-09-06 图像处理装置、图像处理方法、程序及记录介质
JP2022553725A JPWO2022070783A1 (ja) 2020-10-02 2021-09-06
US18/192,433 US20230306708A1 (en) 2020-10-02 2023-03-29 Image processing apparatus, image processing method, program, and recording medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-167413 2020-10-02
JP2020167413 2020-10-02

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/192,433 Continuation US20230306708A1 (en) 2020-10-02 2023-03-29 Image processing apparatus, image processing method, program, and recording medium

Publications (1)

Publication Number Publication Date
WO2022070783A1 true WO2022070783A1 (ja) 2022-04-07

Family

ID=80950333

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/032591 WO2022070783A1 (ja) 2020-10-02 2021-09-06 画像処理装置、画像処理方法、プログラムおよび記録媒体

Country Status (6)

Country Link
US (1) US20230306708A1 (ja)
EP (1) EP4224130A4 (ja)
JP (1) JPWO2022070783A1 (ja)
CN (1) CN116324359A (ja)
TW (1) TW202234033A (ja)
WO (1) WO2022070783A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6441828A (en) * 1987-08-07 1989-02-14 Mitsubishi Electric Corp Contact pressure measuring apparatus
JPH01180431A (ja) * 1988-01-12 1989-07-18 Fuji Photo Film Co Ltd 圧力分布測定装置
JPH0896060A (ja) * 1994-09-22 1996-04-12 Nippondenso Co Ltd バーコード検証機の出力補正方法
US20040179101A1 (en) * 2002-12-13 2004-09-16 Gary Bodnar Method for using an electronic imaging device to measure color
WO2006040832A1 (ja) 2004-10-15 2006-04-20 Kenji Yoshida ドットパターンを印刷形成した媒体面の印刷構造、印刷方法、およびその読取方法
JP2015215291A (ja) 2014-05-13 2015-12-03 イーシン インコーポレイテッド エネルギー測定システム、シートマーカ及び濃度測定システム
US20180104973A1 (en) * 2015-04-07 2018-04-19 Bryan Greener Pressure imaging and indicating materials and devices

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5288380A (en) * 1976-01-20 1977-07-23 Fuji Photo Film Co Ltd Pressure measuring device
GB0302489D0 (en) * 2003-02-04 2003-03-05 Bae Systems Plc Improvements relating to pressure sensitive paint
US7443508B1 (en) * 2005-05-18 2008-10-28 Vie Group, Llc Spectrophotometric scanner
US9076068B2 (en) * 2010-10-04 2015-07-07 Datacolor Holding Ag Method and apparatus for evaluating color in an image
US11338390B2 (en) * 2019-02-12 2022-05-24 Lawrence Livermore National Security, Llc Two-color high speed thermal imaging system for laser-based additive manufacturing process monitoring

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6441828A (en) * 1987-08-07 1989-02-14 Mitsubishi Electric Corp Contact pressure measuring apparatus
JPH01180431A (ja) * 1988-01-12 1989-07-18 Fuji Photo Film Co Ltd 圧力分布測定装置
JPH0896060A (ja) * 1994-09-22 1996-04-12 Nippondenso Co Ltd バーコード検証機の出力補正方法
US20040179101A1 (en) * 2002-12-13 2004-09-16 Gary Bodnar Method for using an electronic imaging device to measure color
WO2006040832A1 (ja) 2004-10-15 2006-04-20 Kenji Yoshida ドットパターンを印刷形成した媒体面の印刷構造、印刷方法、およびその読取方法
JP2015215291A (ja) 2014-05-13 2015-12-03 イーシン インコーポレイテッド エネルギー測定システム、シートマーカ及び濃度測定システム
US20180104973A1 (en) * 2015-04-07 2018-04-19 Bryan Greener Pressure imaging and indicating materials and devices

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4224130A4

Also Published As

Publication number Publication date
CN116324359A (zh) 2023-06-23
EP4224130A4 (en) 2024-03-20
EP4224130A1 (en) 2023-08-09
JPWO2022070783A1 (ja) 2022-04-07
TW202234033A (zh) 2022-09-01
US20230306708A1 (en) 2023-09-28

Similar Documents

Publication Publication Date Title
US10168215B2 (en) Color measurement apparatus and color information processing apparatus
KR102007309B1 (ko) 물체의 컬러를 측정하기 위한 방법 및 장치
US7974466B2 (en) Method for deriving consistent, repeatable color measurements from data provided by a digital imaging device
JP5293355B2 (ja) 光沢感評価方法、光沢感評価装置、該装置を有する画像評価装置、画像評価方法および該方法を実行するためのプログラム
Nam et al. Multispectral photometric stereo for acquiring high-fidelity surface normals
US20230230345A1 (en) Image analysis method, image analysis device, program, and recording medium
JP2021113744A (ja) 撮像システム
JP2012154711A (ja) 分光スペクトル推定装置および学習スペクトル生成方法
JP6341335B2 (ja) 二次元測色装置
WO2022070783A1 (ja) 画像処理装置、画像処理方法、プログラムおよび記録媒体
JP2003114107A (ja) 膜厚測定装置
EP3605467B1 (en) Coating color identifying device, coating color identifying method, coating color identifying program, and computer-readable medium containing coating color identifying program
WO2022024516A1 (ja) 画像補正装置、画像補正方法、プログラムおよび記録媒体
Svilainis LED directivity measurement in situ
JP5396211B2 (ja) 色評価方法及び色評価システム
JP6813749B1 (ja) 対象物の色を数値化する方法、信号処理装置、および撮像システム
JP2006071316A (ja) 膜厚取得方法
JP2007147507A (ja) 分光測定方法及び分光測定装置
TW202101961A (zh) 使用多種波長之光單色成像的顏色檢查方法
WO2019167806A1 (en) Method for setting colorimetric conversion parameters in a measuring device
JP3811728B2 (ja) 膜厚取得方法
JP2004070228A (ja) 環境光源補正機能付きの表示装置とデザイン装置と、デザイン方法、及び測色計ユニット
TWI633528B (zh) 顯示器校正系統與顯示器校正方法
Kim The three-dimensional evolution of hyperspectral imaging
JP5929338B2 (ja) 撮像装置、分光情報作成方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21875085

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022553725

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202347022593

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021875085

Country of ref document: EP

Effective date: 20230502