WO2022070609A1 - Transparent conductive film - Google Patents

Transparent conductive film Download PDF

Info

Publication number
WO2022070609A1
WO2022070609A1 PCT/JP2021/029153 JP2021029153W WO2022070609A1 WO 2022070609 A1 WO2022070609 A1 WO 2022070609A1 JP 2021029153 W JP2021029153 W JP 2021029153W WO 2022070609 A1 WO2022070609 A1 WO 2022070609A1
Authority
WO
WIPO (PCT)
Prior art keywords
transparent conductive
conductive film
film
pen
sliding
Prior art date
Application number
PCT/JP2021/029153
Other languages
French (fr)
Japanese (ja)
Inventor
央 多々見
Original Assignee
東洋紡株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋紡株式会社 filed Critical 東洋紡株式会社
Priority to CN202180044765.3A priority Critical patent/CN115769315A/en
Priority to JP2021549297A priority patent/JPWO2022070609A1/ja
Publication of WO2022070609A1 publication Critical patent/WO2022070609A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/025Electric or magnetic properties
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/045Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means using resistive elements, e.g. a single continuous surface or two parallel surfaces put in contact
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports

Definitions

  • the present invention relates to a transparent conductive film in which a transparent conductive film of a crystalline indium-tin composite oxide is laminated on a transparent plastic film base material, particularly a pen sliding durability when used for a resistance film type touch panel. It relates to a transparent conductive film having excellent heavy pressure durability and high definition.
  • a transparent conductive film in which a transparent and low-resistance thin film is laminated on a transparent plastic base material is used for applications that utilize the conductivity, for example, flat panel displays such as liquid crystal displays and electroluminescence (EL) displays.
  • flat panel displays such as liquid crystal displays and electroluminescence (EL) displays.
  • EL electroluminescence
  • the transparent conductive thin film may be cracked or peeled off.
  • a transparent conductive film having both excellent pen sliding durability and excellent pen heavy pressure durability. Further, it is required that the image on the touch panel has high definition.
  • the conventional transparent conductive film realizes a transparent conductive film having excellent pen sliding durability by controlling the crystallinity of the indium-tin composite oxide.
  • the conventional transparent conductive film was insufficient when the pen heavy pressure durability test described later was carried out.
  • an object of the present invention is transparency that is excellent in pen sliding durability when used for a touch panel, is also excellent in pen heavy pressure durability, and can provide a high-definition image.
  • the purpose is to provide a conductive film.
  • the present invention has been made in view of the above circumstances, and the transparent conductive film of the present invention, which has been able to solve the above problems, has the following configuration.
  • 1. A transparent conductive film in which a transparent conductive film of an indium-tin composite oxide is laminated on one surface of a transparent plastic film substrate, and is a transparent conductive film of the transparent conductive film according to the following pen sliding durability test.
  • the ON resistance is 10 k ⁇ or less
  • the increase rate of the surface resistance value of the transparent conductive film of the transparent conductive film by the following pen heavy pressure test is 1.5 or less
  • the comb widths are 0.125 mm and 0.25 mm.
  • the transparent conductive film according to the present invention is used as one panel plate, and the other panel plate is an indium-tin composite oxide thin film having a thickness of 20 nm by a sputtering method on a glass substrate (tin oxide content: 10% by mass).
  • a transparent conductive thin film made of is used.
  • the two panel plates are arranged via epoxy beads having a diameter of 30 ⁇ m so that the transparent conductive thin films face each other, and the film side panel plate and the glass side panel plate are attached with double-sided tape having a thickness of 170 ⁇ m.
  • the transparent conductive film according to the present invention cut to 50 mm ⁇ 50 mm is used as one panel plate, and the other panel plate is an indium-tin oxide composite oxide thin film (tin oxide) having a thickness of 20 nm on a glass substrate by a sputtering method.
  • tin oxide indium-tin oxide composite oxide thin film
  • a transparent conductive thin film having a content of 10% by mass is used.
  • the two panel plates are arranged via epoxy beads having a diameter of 30 ⁇ m so that the transparent conductive thin films face each other, and the thickness is adjusted to 120 ⁇ m with double-sided tape.
  • a touch panel was made by pasting a board.
  • a load of 35 N is applied to a position 2.0 mm from the end of the double-sided tape with a pen made of polyacetal (tip shape 0.8 mmR), and linear sliding is performed 10 times (5 reciprocations) in parallel with the double-sided tape.
  • a pen load is applied to the transparent conductive film surface according to the present invention.
  • the sliding distance is 30 mm and the sliding speed is 20 mm / sec. Slide in a position where there are no epoxy beads.
  • the transparent conductive film is removed, the surface resistance (4 terminal method) at any 5 points of the sliding part is measured, and the average value is calculated.
  • the crystal grain size of the transparent conductive film of the indium-tin composite oxide is 10 to 100 nm, the crystallinity of the transparent conductive film of the indium-tin composite oxide is 20 to 80%, and the crystal size of the transparent conductive film of the indium-tin oxide is 20 to 80%.
  • the transparent conductive film contains 0.5 to 10% by mass of tin oxide, the thickness of the transparent conductive film of the indium-tin composite oxide is 10 to 30 nm, and the thickness of the transparent conductive film of the indium-tin composite oxide is three-dimensional.
  • the surface roughness SRa is X
  • X is 1 to 100 nm
  • the three-dimensional surface roughness SRa on the transparent conductive film substrate opposite to the transparent conductive film side is Y, (X 3 ). + Y 3 )
  • the transparent conductive film according to any one of the above 1 to 4 which has a curable resin layer between a transparent conductive film of an indium-tin composite oxide and a transparent plastic film substrate.
  • the present invention it is possible to provide a transparent conductive film having both excellent pen sliding durability and excellent pen heavy pressure durability, and capable of providing a high-definition image.
  • the obtained transparent conductive film is extremely useful for applications such as a resistance film type touch panel.
  • the transparent conductive film of the present invention is a transparent conductive film in which a transparent conductive film of an indium-tin composite oxide is laminated on one surface of a transparent plastic film base material, and the following pen sliding durability test is performed.
  • the ON resistance of the transparent conductive film of the transparent conductive film is 10 k ⁇ or less, and the increase rate of the surface resistance value of the transparent conductive film of the transparent conductive film by the following pen heavy pressure test is 1.5 or less. It is preferable that the total transmission image sharpness of the transparent conductive film at widths of 0.125 mm, 0.25 mm, 0.5 mm, 1.0 mm and 2.0 mm is 250% or more and less than 500%.
  • the transparent conductive film according to the present invention is used as one panel plate, and the other panel plate is an indium-tin composite oxide thin film having a thickness of 20 nm by a sputtering method on a glass substrate (tin oxide content: 10% by mass).
  • a transparent conductive thin film made of is used.
  • the two panel plates are arranged via epoxy beads having a diameter of 30 ⁇ m so that the transparent conductive thin films face each other, and the film side panel plate and the glass side panel plate are attached with double-sided tape having a thickness of 170 ⁇ m. , Made a touch panel.
  • a load of 2.5 N was applied to a polyacetal pen (tip shape: 0.8 mmR), and a linear sliding test of 180,000 reciprocations was performed on the touch panel.
  • a pen load is applied to the transparent conductive film surface according to the present invention.
  • the sliding distance was 30 mm and the sliding speed was 180 mm / sec.
  • the ON resistance resistance value when the movable electrode (film electrode) and the fixed electrode came into contact with each other
  • a transparent conductive film obtained by cutting the transparent conductive film according to the present invention into 50 mm ⁇ 50 mm is used as one panel plate, and the other panel plate is an indium-tin composite oxide having a thickness of 20 nm by a sputtering method on a glass substrate.
  • a transparent conductive thin film composed of a thin film (tin oxide content: 10% by mass) was used.
  • the two panel plates are arranged via epoxy beads having a diameter of 30 ⁇ m so that the transparent conductive thin films face each other, and the thickness is adjusted to 120 ⁇ m with double-sided tape.
  • a touch panel was made by pasting a board.
  • a load of 35 N is applied to a position 2.0 mm from the end of the double-sided tape with a pen made of polyacetal (tip shape 0.8 mmR), and linear sliding is performed 10 times (5 reciprocations) in parallel with the double-sided tape.
  • a pen load is applied to the transparent conductive film surface according to the present invention.
  • the sliding distance is 30 mm and the sliding speed is 20 mm / sec.
  • sliding is performed at a position where there are no epoxy beads.
  • the transparent conductive film is removed, the surface resistance (4 terminal method) at any 5 points of the sliding part is measured, and the average value is calculated.
  • the rate of increase in the surface resistance value is calculated by dividing the average value of the surface resistance values of the sliding portion by the surface resistance value of the non-sliding portion (measured by the 4-terminal method).
  • the transparent conductive film of the present invention is excellent in pen sliding durability and pen heavy pressure durability. Pen sliding durability and pen heavy pressure durability are contradictory properties.
  • the pen sliding durability will be described.
  • the transparent conductive film of indium-tin composite oxide having excellent pen sliding durability has a high crystallinity of the transparent conductive film and a large crystal grain size.
  • the degree of crystallinity and the crystal grain size will be described.
  • a high degree of crystallinity means a high proportion of crystals.
  • a large crystal grain size means a large circular or polygonal region observed under a transmission electron microscope.
  • a transparent conductive film with a high degree of crystallinity has a high proportion of hard crystals, and a transparent conductive film having a large crystal grain size has a large strain around the crystal grains. Excellent for.
  • the pen heavy pressure durability will be described.
  • a transparent conductive film of an indium-tin composite oxide having excellent pen heavy pressure durability needs to have a low crystallinity of the transparent conductive film, a small crystal grain size, and a small three-dimensional surface roughness of the transparent conductive film. be. The three-dimensional surface roughness will be described later.
  • a transparent conductive film having a low crystallinity has a high proportion of soft amorphous, and a transparent conductive film having a small crystal grain size has a small strain around the crystal grains.
  • the pen sliding durability and the pen heavy pressure durability are contradictory properties.
  • the pen sliding durability and the pen heavy pressure durability can be achieved at the same time by controlling the crystallinity and the crystal grain size of the transparent conductive film. A transparent conductive film having a transparent conductive film that achieves both pen sliding durability and pen heavy pressure durability will be described.
  • the ON resistance of the transparent conductive film of the transparent conductive film according to the pen sliding durability test is 10 k ⁇ or less, cracks, peeling, wear, etc. are suppressed with respect to the transparent conductive film even if continuous input is made to the touch panel with a pen. It is preferable because it is used.
  • the ON resistance may be 9.5 k ⁇ or less, more preferably 5 k ⁇ or less.
  • the ON resistance is 3 k ⁇ or less, may be 1.5 k ⁇ or less, and is preferably 1 k ⁇ or less. If the ON resistance is 0 k ⁇ , the pen sliding durability is very excellent, and in the present invention, the ON resistance can be 0 k ⁇ .
  • the ON resistance may be, for example, 3 k ⁇ or more, or 5 k ⁇ or more.
  • these upper and lower limits may be combined as appropriate.
  • the increase rate of the surface resistance value of the transparent conductive film of the transparent conductive film by the pen heavy pressure test is 1.5 or less.
  • the rate of increase in the surface resistance value is 1.2 or less, and particularly preferably 1.0 (no increase).
  • the rate of increase in the surface resistance value of the transparent conductive film according to the present invention is preferably 1.0 or more.
  • the ON resistance of the transparent conductive film of the transparent conductive film by the pen sliding durability test is 0.05 k ⁇ or more and 9.5 k ⁇ or less, and the transparent conductive film by the pen heavy pressure (durability) test.
  • the rate of increase in the surface resistance value of the transparent conductive film is 1.0 or more and 1.5 or less.
  • pen sliding durability and pen heavy pressure durability are usually contradictory properties. In the present invention, these two durability can be well-balanced within such a range.
  • cracks, peeling, wear, etc. can be suppressed against the transparent conductive film, and in addition, excellent durability is achieved against loads caused by pen sliding and pen heavy pressure. Can be shown.
  • the numerical range the range and the value described in the present specification can be selected.
  • the definition is high. It is desirable because it is possible to provide various images.
  • "comb width" means an optical comb width which conforms to JIS-K7105.
  • the crystal grain size of the transparent conductive film of the indium-tin composite oxide is 10 to 100 nm, and the crystallinity of the transparent conductive film of the indium-tin composite oxide is 20 to 80%. It is preferable to have.
  • the crystal grain size of the transparent conductive film of the indium-tin composite oxide is 10 nm or more, the transparent conductive film becomes moderately hard due to the strain around the crystal grains of the transparent conductive film, so that the pen sliding durability is excellent.
  • the crystal grain size of the transparent conductive film of the indium-tin composite oxide is 30 nm or more.
  • the crystal grain size of the transparent conductive film of the indium-tin composite oxide is 100 nm or less, the transparent conductive film is not too hard due to the strain around the crystal grains of the transparent conductive film, so that the pen heavy pressure durability is improved. It is preferable because it is excellent. More preferably, the crystal grain size of the transparent conductive film of the indium-tin composite oxide is 90 nm or less. In one embodiment, the crystal grain size of the transparent conductive film of the indium-tin composite oxide is 30 nm or more and 95 nm or less, for example, 40 nm or more and 90 nm or less.
  • the crystallinity of the transparent conductive film of the indium-tin composite oxide is 20% or more, it becomes moderately hard due to the hard crystals occupying the transparent conductive film, and the pen sliding durability is excellent, which is preferable. More preferably, the crystallinity of the transparent conductive film of the indium-tin composite oxide is 25% or more. On the other hand, when the crystallinity of the transparent conductive film of the indium-tin composite oxide is 80% or less, the amount of hard crystals contained is large, but the transparent conductive film is not too hard, so that the pen heavy pressure durability is excellent. Therefore, it is preferable. In one embodiment, the crystallinity of the transparent conductive film of the indium-tin composite oxide is 25% or more and 78% or less, for example, 25% or more and 76% or less.
  • the transparent conductive film in the present invention preferably has an X of 1 to 100 nm, where X is the three-dimensional surface roughness SRa of the transparent conductive film.
  • X is 1 to 100 nm, the surface protrusions of the transparent conductive film are small, so that the amount of deformation of the surface protrusions is small when the pen heavy pressure test is performed, crack generation of the transparent conductive film is suppressed, and the transparent conductivity is further suppressed. Since the film has some surface protrusions, it is preferable because the film winding property can be maintained. More preferably, X is 1 to 80 nm. More preferably, X is 1 to 65 nm.
  • the transparent conductive film in the present invention is made of an indium-tin composite oxide, and preferably contains 0.5% by mass or more and 10% by mass or less of tin oxide.
  • Tin oxide in the indium-tin composite oxide corresponds to an impurity for indium oxide.
  • the inclusion of tin oxide impurities increases the melting point of the indium-tin composite oxide. That is, since the impurity content of tin oxide acts in the direction of inhibiting crystallization, it is an important factor having a strong correlation with crystallinity such as crystal grain size and crystallinity.
  • tin oxide is contained in an amount of 0.5% by mass or more, the surface resistance of the transparent conductive film becomes a practical level, which is preferable.
  • the tin oxide content is 1% by mass or more, and particularly preferably 2% by mass or more.
  • the tin oxide content is more preferably 8% by mass or less, further preferably 6% by mass or less, and particularly preferably 4% by mass or less.
  • the surface resistance of the transparent conductive film of the present invention is preferably 50 to 900 ⁇ / ⁇ , more preferably 50 to 600 ⁇ / ⁇ .
  • the thickness of the transparent conductive film is preferably 10 nm or more and 30 nm or less.
  • the thickness of the transparent conductive film is an important factor having a strong correlation with crystallinity such as crystal grain size and crystallinity.
  • the transparent conductive film does not have too many amorphous substances, and it is easy to give an appropriate crystal grain size and crystallinity to make a semi-crystalline state, which will be described later, and as a result, the pen slides. Durability is maintained and is preferable.
  • the thickness of the transparent conductive film is more preferably 13 nm or more, more preferably 16 nm or more.
  • the thickness of the transparent conductive film is 30 nm or less, the crystal grain size of the transparent conductive film is not too large, the crystallinity is not too high, the semi-crystalline state is easily maintained, and the pen heavy pressure durability is maintained. It is preferable that the sex is maintained. It is more preferably 28 nm or less, still more preferably 25 nm or less.
  • the transparent conductive film in the present invention has (X 3 + Y 3 ) 1/3 of 140 nm or less, where Y is the three-dimensional surface roughness SRa of the surface of the transparent plastic film substrate opposite to the transparent conductive film side. If this is the case, the total transmission image sharpness of the transparent conductive film at the comb widths of 0.125 mm, 0.25 mm, 0.5 mm, 1.0 mm, and 2.0 mm is 250% or more and less than 500%, which is high. This is desirable because it enables the provision of fine images.
  • ((X 3 + Y 3 ) The smaller the value of 1/3 , the smaller the unevenness on both sides of the transparent conductive film, so that the transmitted image sharpness for improving the straightness of the incident light on the transparent conductive film is improved. It was confirmed that it tended to be higher and used. More preferably (X 3 + Y 3 ) 1/3 is 120 nm or less. More preferably (X 3 + Y 3 ) 1/3 is 70 nm or less (X). 3 + Y 3 ) When 1/3 is 1 nm or more, it is preferable because the transparent conductive film has some surface protrusions and can maintain the film winding property.
  • the transparent conductive film in the present invention does not peel off even when the adhesion test (JIS K5600-5-6: 1999) is carried out on the transparent conductive film surface.
  • the transparent conductive film that does not peel off in the adhesion test is a transparent conductive film that is in close contact with a layer that is in contact with the transparent conductive film, such as a transparent plastic substrate or a curable resin layer. Even if continuous input is performed, cracks, peeling, wear, etc. are suppressed on the transparent conductive film, and even if a stronger force than expected for normal use is applied, cracks, peeling, etc. are suppressed on the transparent conductive film. preferable.
  • the transparent conductive film in the present invention is cracked or peeled when a bending resistance test (JIS K5600-5: 1: 1999) is performed on the transparent conductive film side of the transparent conductive film and the bent portion is observed with a 10-fold loupe.
  • a bending resistance test JIS K5600-5: 1: 1999
  • the mandrel diameter at which this occurs is smaller than 20 mm.
  • the layer in contact with the transparent conductive film does not crack when the pen heavy pressure test is performed, and the transparent conductive film does not crack, which is preferable. More preferably, it is 18 mm or less.
  • the value of the bending resistance test may be 1 mm or more, for example, 8 mm or more and 10 mm or more.
  • the value of the bending resistance test is 13 mm or more, and may be 15 mm or more.
  • the layer in contact with the transparent conductive film does not crack when the pen heavy pressure test is performed, and the transparent conductive film does not crack, which is preferable. Further, it becomes possible to provide a transparent conductive film having both excellent pen sliding durability and excellent pen heavy pressure durability.
  • the thickness of the transparent plastic film base material is preferably in the range of 100 to 250 ⁇ m, more preferably 130 to 220 ⁇ m.
  • the thickness of the plastic film is 100 ⁇ m or more, the mechanical strength is maintained, the deformation with respect to the pen input when used for a touch panel is small, and the pen sliding durability and the pen heavy pressure durability are excellent, which is preferable.
  • the thickness is 250 ⁇ m or less, when it is used for a touch panel, it is not necessary to particularly increase the load for positioning by pen input, which is preferable.
  • the transparent conductive film in the present invention preferably has a curable resin layer between the transparent conductive film and the plastic film base material.
  • the presence of the curable resin layer can increase the adhesion of the transparent conductive film and disperse the force applied to the transparent conductive film, so that cracks, peeling, wear, etc. are suppressed with respect to the transparent conductive film in the pen sliding test. Further, it is preferable because cracks and peeling are suppressed with respect to the transparent conductive film in the pen heavy pressure test.
  • the crystallinity of the transparent conductive film in the present invention is neither too high nor too low (such crystallinity is referred to as semi-crystalline or semi-crystalline). It is very difficult to make the transparent conductive film stable and semi-crystalline. This is because the state of being stopped in the middle of the rapid phase change from amorphous to crystalline is semi-crystalline.
  • the production method for obtaining the transparent conductive film of the present invention is not particularly limited, and for example, the following production methods can be preferably exemplified.
  • the sputtering method is preferably used as a method for forming a transparent conductive film of a crystalline indium-tin composite oxide on at least one surface of a transparent plastic film substrate.
  • the hydrogen atom-containing gas (hydrogen, ammonia, hydrogen + argon mixed gas, etc., which is not particularly limited as long as it contains hydrogen atoms, but water is excluded) is described below by the mass flow controller in the film forming atmosphere.
  • Indium-tin composite oxide using a sintered target of indium-tin composite oxide containing 0.5 to 10% by mass of tin oxide, with the film temperature during sputtering set to 0 ° C. or lower.
  • the thickness of the transparent conductive film is adjusted to be 10 to 30 nm, and the transparent conductive film is placed on a transparent plastic film having a three-dimensional surface roughness SRa of the transparent conductive film of indium-tin composite oxide of 1 to 100 nm.
  • the hydrogen atom-containing gas has the effect of inhibiting the crystallization of the transparent conductive film in the film forming atmosphere during sputtering.
  • the value of (hydrogen gas flow rate) ⁇ (inert gas flow rate + hydrogen gas flow rate) ⁇ 100 (may be simply described as hydrogen concentration) is 0.01 to 3. It is desirable that it is 0.00%.
  • the hydrogen concentration is, for example, 0.01% or more and 2.00%, and may be 0.01% or more and 1.00% or less. When the hydrogen concentration is within such a range, it can contribute to leading to good results in both the pen sliding durability test ON resistance value and the pen heavy pressure durability test, for example.
  • the inert gas examples include helium, neon, argon, krypton, xenon and the like.
  • a gas outlet is arranged so that the hydrogen atom-containing gas can be sprayed uniformly in the direction perpendicular to the longitudinal direction of the film roll when the hydrogen atom-containing gas is precisely flowed in the film formation atmosphere by the mass flow controller. By doing so, it is difficult to form a transparent conductive film in which high and low crystalline parts are mixed, and it is easy to obtain a uniform semi-crystalline transparent conductive film.
  • the center value (the value between the maximum value and the minimum value) of the ratio of the water pressure to the inert gas in the film formation atmosphere at the time of sputtering onto a film roll is 1.0 ⁇ 10.
  • Controlled to -4 to 2.0 ⁇ 10 -3 and the difference between the maximum and minimum values of the ratio of the water pressure to the inert gas in the film formation atmosphere during sputtering from the start of film formation to the end of film formation.
  • the uniformity of the crystallinity of the transparent conductive film is maintained over the entire length of the film.
  • the amount of water released from the film when forming a transparent conductive film is small, such as the following bombarding process and the following limitation of the height difference of the unevenness of the end face of the film roll, so that the amount of water is uniform over the entire length of the film. If it is released, precise control of the water content becomes unnecessary, which is preferable.
  • the central value of the ratio of the water pressure to the inert gas depends somewhat on the content of tin oxide in the transparent conductive film of the indium-tin composite oxide and the thickness of the transparent conductive film.
  • the center value of the ratio of the water pressure to the inert gas is set low within the above range. It is desirable to do.
  • the center value of the ratio of the water pressure to the inert gas is within the above range. It is desirable to set it higher.
  • FIG. 5 shows a schematic diagram of an example of a sputtering apparatus preferably used in the present invention, in which the traveling film 1 partially contacts the surface of the center roll 2 and travels.
  • An indium-tin sputtering target 4 is installed via the chimney 3, and a thin film of indium-tin composite oxide is deposited and laminated on the surface of the film 1 running on the center roll 2.
  • the temperature of the center roll 2 is controlled by a temperature controller (not shown).
  • the film temperature is 0 ° C. or lower, the release of impurity gases such as water and organic gas from the film, which disperses the crystallinity of the transparent conductive film, can be suppressed, so that the film is transparent from the start of film formation to the end of film formation. It is preferable because the crystallinity of the conductive film is easily made uniform.
  • the center value of the ratio of the water pressure to the inert gas in the film forming atmosphere during sputtering (the value between the maximum value and the minimum value) is 1.0 ⁇ 10 -4 to 2 It is desirable that it is 0.0 ⁇ 10 -3 .
  • the ratio of the water pressure to the inert gas in the film forming atmosphere during sputtering is in the above range, it is desirable because the inhibition of the crystallinity of the transparent conductive film by the hydrogen atom-containing gas effectively acts.
  • the main purpose of this manufacturing method is to eliminate the influence of water-induced crystallinity, which is a factor that disperses the crystallinity of the transparent conductive film, as much as possible, and to control the crystallinity with a hydrogen-containing gas.
  • the first reason is that when a film is formed on a plastic film by sputtering, the film is heated and water is released from the film, so that the amount of water in the film formation atmosphere increases and the ultimate vacuum is measured. Since it increases more than the amount of water at the time, it is more accurate to express it with the amount of water at the time of film formation than to express it with the degree of ultimate vacuum.
  • the second reason is the case of a device that puts in a large amount of transparent plastic film.
  • the film is charged in the form of a film roll.
  • water easily drains from the outer layer of the roll, but water does not easily drain from the inner layer of the roll.
  • the film roll is stopped, but the film roll runs during film formation, and the inner layer of the film roll containing a large amount of water is unwound, so that the moisture in the film formation atmosphere This is because the amount increases and the amount of water increases from the amount of water when the ultimate vacuum degree is measured.
  • it when controlling the amount of water in the film-forming atmosphere, it is possible to preferably cope with it by observing the ratio of the water pressure to the inert gas in the film-forming atmosphere during sputtering.
  • the bombarding step is to generate plasma by applying a voltage and discharging with only an inert gas such as argon gas or a mixed gas of a reactive gas such as oxygen and an inert gas flowing. .. Specifically, it is desirable to bombard the film by RF sputtering with a SUS target or the like. Since the film is exposed to plasma by the bombarding process, water and organic components are released from the film, and the amount of water and organic components released from the film when forming a transparent conductive film is reduced, so that the film is formed from the start of film formation. It is preferable because the crystallinity of the transparent conductive film up to the end is easily made uniform. Further, since the layer in contact with the transparent conductive film is activated by the bombard process, the adhesion of the transparent conductive film is improved, which is desirable because the pen sliding durability and the pen heavy pressure durability are improved.
  • an inert gas such as argon gas or a mixed gas of a reactive gas such as oxygen and an inert gas flowing. .
  • the film roll for forming a transparent conductive film preferably has a height difference of 10 mm or less between the most convex portion and the most concave portion on the roll end face. If it is 10 mm or less, the crystal of the transparent conductive film from the start of film formation to the end of film formation will be less uneven in the way water and organic components are discharged from the end face of the film when the film roll is put into the sputtering apparatus. It is preferable because the properties are easily made uniform.
  • the method of forming a transparent conductive film of a crystalline indium-tin composite oxide on at least one surface of a transparent plastic film substrate it is desirable to introduce oxygen gas during sputtering.
  • oxygen gas is introduced during sputtering, there is no problem due to lack of oxygen in the transparent conductive film of the indium-tin composite oxide, the surface resistance of the transparent conductive film is low, and the total light transmittance is high, which is preferable. Therefore, it is desirable to introduce oxygen gas during sputtering in order to bring the surface resistance and total light transmittance of the transparent conductive film to a practical level.
  • the total light transmittance of the transparent conductive film of the present invention is preferably 70 to 95%.
  • the transparent conductive film of the present invention is formed by laminating a transparent conductive film of an indium-tin composite oxide on a transparent plastic film substrate, and then in an atmosphere containing oxygen at 80 to 200 ° C. and 0.1 to 1. It is desirable that it has been heat-treated for 12 hours. When the temperature is 80 ° C. or higher, it is easy to take measures to slightly increase the crystallinity so as to make the pen semi-crystalline state, and the pen sliding durability is improved, which is preferable. When the temperature is 200 ° C. or lower, the flatness of the transparent plastic film is ensured, which is preferable.
  • the transparent plastic film base material used in the present invention is a film obtained by melt-extruding or solution-extruding an organic polymer into a film, and if necessary, stretching, cooling, and heat-fixing in the longitudinal direction and / or the width direction.
  • the organic polymers include polyethylene, polypropylene, polyethylene terephthalate, polyethylene-2,6-naphthalate, polypropylene terephthalate, polybutylene terephthalate, nylon 6, nylon 4, nylon 66, nylon 12, polyimide, polyamideimide, and polyether.
  • organic polymers polyethylene terephthalate, polypropylene terephthalate, polybutylene terephthalate, polyethylene-2,6-naphthalate, syndiotactic polystyrene, norbornene-based polymer, polycarbonate, polyarylate and the like are suitable. Further, these organic polymers may be copolymerized with a small amount of a monomer of another organic polymer, or may be blended with another organic polymer.
  • the transparent plastic film substrate used in the present invention has surface activity of the film such as corona discharge treatment, glow discharge treatment, flame treatment, ultraviolet irradiation treatment, electron beam irradiation treatment, ozone treatment, etc., as long as the object of the present invention is not impaired. It may be subjected to a chemical discharge treatment.
  • the transparent conductive film adheres strongly to the curable resin layer and the force applied to the transparent conductive film can be dispersed. It is preferable because cracks, peeling, abrasion, etc. are suppressed with respect to the film, and cracks, peeling, etc. are suppressed with respect to the transparent conductive film in the pen heavy pressure test. Further, when a transparent conductive film is formed on the surface of the curable resin layer having an uneven surface, the true contact area when the transparent conductive thin film comes into contact with the glass during the pen sliding test is reduced, so that the glass surface is reduced.
  • the slipperiness between the transparent conductive film and the transparent conductive film will be improved and the pen sliding durability will be improved, the winding property of the film roll will be improved, and the anti-Newton ring property will be improved.
  • This is not preferable because the amount of deformation of the surface protrusions when the pen heavy pressure test is performed becomes large and cracks occur in the transparent conductive film. Therefore, when the three-dimensional surface roughness SRa of the transparent conductive film is X as the surface unevenness, it is preferable that X is 1 to 100 nm.
  • the curable resin layer may be applied to both surfaces of the transparent plastic film base material.
  • Y is 1 to 139 nm. Details of the curable resin layer are described below.
  • the curable resin preferably used in the present invention is not particularly limited as long as it is a resin that can be cured by applying energy such as heating, ultraviolet irradiation, electron beam irradiation, etc., and is a silicone resin, an acrylic resin, a methacrylic resin, or an epoxy resin. , Melamine resin, polyester resin, urethane resin and the like. From the viewpoint of productivity, it is preferable to use an ultraviolet curable resin as a main component.
  • Such an ultraviolet curable resin is synthesized from, for example, a polyfunctional acrylate resin such as acrylic acid or methacrylic acid ester of polyhydric alcohol, diisocyanate, polyhydric alcohol and hydroxyalkyl ester of acrylic acid or methacrylic acid.
  • a polyfunctional acrylate resin such as acrylic acid or methacrylic acid ester of polyhydric alcohol, diisocyanate, polyhydric alcohol and hydroxyalkyl ester of acrylic acid or methacrylic acid.
  • examples thereof include a polyfunctional urethane acrylate resin and the like.
  • monofunctional monomers such as vinylpyrrolidone, methylmethacrylate, and styrene can be added to these polyfunctional resins to copolymerize them.
  • a discharge treatment method in which a glow or corona discharge is applied to increase the number of carbonyl groups, carboxyl groups, and hydroxyl groups, and an acid or alkali to increase polar groups such as amino groups, hydroxyl groups, and carbonyl groups.
  • Examples include a chemical treatment method for processing.
  • the ultraviolet curable resin is usually used by adding a photopolymerization initiator.
  • a photopolymerization initiator a known compound that absorbs ultraviolet rays to generate radicals can be used without particular limitation, and such photopolymerization initiators include, for example, various benzoins, phenylketones, and benzophenones. The kind etc. can be mentioned.
  • the amount of the photopolymerization initiator added is usually preferably 1 to 5 parts by mass per 100 parts by mass of the ultraviolet curable resin.
  • inorganic particles and organic particles in combination with the curable resin layer, which is the main constituent component, in the curable resin layer.
  • the curable resin layer which is the main constituent component
  • Examples of the inorganic particles include silica and the like.
  • Examples of the organic particles include polyester resin, polyolefin resin, polystyrene resin, and polyamide resin.
  • a resin that is incompatible with the curable resin in combination with the curable resin that is the main component it is also preferable to use a resin that is incompatible with the curable resin in combination with the curable resin that is the main component.
  • a resin that is incompatible with the curable resin in combination with the curable resin of the matrix phase separation occurs in the curable resin and the incompatible resin can be dispersed in the form of particles.
  • the dispersed particles of the incompatible resin can form irregularities on the surface of the curable resin and improve the surface roughness in a wide area.
  • incompatible resin examples include polyester resin, polyolefin resin, polystyrene resin, and polyamide resin.
  • the mixing ratio when inorganic particles are used in the curable resin layer directly under the transparent conductive film is shown.
  • the amount of the inorganic particles is preferably 0.1 to 20 parts by mass, more preferably 0.1 to 15 parts by mass, and particularly preferably 0.1 to 12 parts by mass per 100 parts by mass of the ultraviolet curable resin.
  • the blending amount is 0.1 to 20 parts by mass per 100 parts by mass of the ultraviolet curable resin, the convex portions formed on the surface of the curable resin layer are not too small, and three-dimensional surface roughness can be effectively imparted.
  • the amount of deformation of the surface protrusions is reduced, cracks in the transparent conductive film are suppressed, high-definition images can be provided, and the transparent conductive film has some surface protrusions, so the film is wound. It is preferable because it can maintain the removability.
  • the blending ratio when inorganic particles are used in the curable resin layer on the surface opposite to the surface on which the transparent conductive film is formed is shown.
  • the amount of the inorganic particles is preferably 0.1 to 25 parts by mass, more preferably 0.1 to 15 parts by mass, and particularly preferably 0.1 to 12 parts by mass per 100 parts by mass of the ultraviolet curable resin.
  • the blending amount is 0.1 to 25 parts by mass per 100 parts by mass of the ultraviolet curable resin, the convex portions formed on the surface of the curable resin layer are not too small, and three-dimensional surface roughness can be effectively imparted. It is preferable because it is possible to provide a high-definition image and the film winding property can be maintained because the transparent conductive film has some surface protrusions.
  • the above-mentioned ultraviolet curable resin, photopolymerization initiator, and resin incompatible with inorganic particles, organic particles, and ultraviolet curable resin are dissolved in a common solvent to prepare a coating liquid.
  • the solvent used is not particularly limited, and is, for example, an alcohol solvent such as ethyl alcohol and isopropyl alcohol, an ester solvent such as ethyl acetate and butyl acetate, and dibutyl ether and ethylene glycol monoethyl ether.
  • Ketone-based solvents such as ether-based solvents, methylisobutylketone, cyclohexanone and the like, aromatic hydrocarbon-based solvents such as toluene, xylene, solventnaphtha and the like can be used alone or in combination.
  • the concentration of the resin component in the coating liquid can be appropriately selected in consideration of the viscosity and the like according to the coating method.
  • the ratio of the total amount of the ultraviolet curable resin, the photopolymerization initiator, and the high molecular weight polyester resin in the coating liquid is usually 20 to 80% by mass.
  • other known additives such as a silicone-based leveling agent may be added to the coating liquid, if necessary.
  • the prepared coating liquid is coated on a transparent plastic film substrate.
  • the coating method is not particularly limited, and conventionally known methods such as a bar coat method, a gravure coat method, and a reverse coat method can be used.
  • the solvent of the coated coating liquid is evaporated and removed in the next drying step.
  • the high molecular weight polyester resin uniformly dissolved in the coating liquid becomes particles and precipitates in the ultraviolet curable resin.
  • the plastic film is irradiated with ultraviolet rays to crosslink and cure the ultraviolet curable resin to form a curable resin layer.
  • the high-molecular-weight polyester resin particles are fixed in the hard coat layer, and protrusions are formed on the surface of the curable resin layer to improve the surface roughness in a wide area.
  • the thickness of the curable resin layer is preferably in the range of 0.1 to 15 ⁇ m. It is more preferably in the range of 0.5 to 10 ⁇ m, and particularly preferably in the range of 1 to 8 ⁇ m. When the thickness of the curable resin layer is 0.1 ⁇ m or more, sufficient protrusions are formed, which is preferable. On the other hand, when it is 15 ⁇ m or less, the productivity is good and preferable.
  • the three-dimensional center surface average surface roughness SRa is defined in ISO 25178, and is a three-dimensional surface shape measuring device Bartscan (R5500H-M100 manufactured by Ryoka System Co., Ltd. (measurement conditions: wave mode, measurement wavelength 560 nm,). The three-dimensional center plane average surface roughness SRa was obtained using an objective lens 10 times)). The number of measurements was set to 5, and the average value thereof was calculated. Here, the first decimal place in nm is rounded off.
  • the three-dimensional surface roughness SRa of the transparent conductive film is X
  • the three-dimensional surface roughness SRa of the surface of the transparent plastic film substrate opposite to the transparent conductive film side is Y.
  • FIGS. 1 to 4 show an example of a method for certifying the longest part of a crystal grain at the time of measurement. That is, the longest part is certified by the length of the straight line that can measure the largest particle size of each crystal grain.
  • Thickness (film thickness) of transparent conductive film A film sample piece on which a transparent conductive thin film layer was laminated was cut into a size of 1 mm ⁇ 10 mm and embedded in an epoxy resin for an electron microscope. This was fixed to the sample holder of the ultramicrotome, and a thin section having a cross section parallel to the short side of the embedded sample piece was prepared. Next, a photograph was taken at a site where the thin film of this section was not significantly damaged, using a transmission electron microscope (JEM-2010, manufactured by JEOL) at an acceleration voltage of 200 kV and a bright field of view at an observation magnification of 10,000 times. The film thickness was calculated from the photographs taken.
  • JEM-2010 manufactured by JEOL
  • the transparent conductive film according to the present invention is used as one panel plate, and the other panel plate is an indium-tin composite oxide thin film having a thickness of 20 nm on a glass substrate by a sputtering method.
  • a transparent conductive thin film having a tin oxide content (10% by mass) was used.
  • a touch panel was produced by arranging these two panel plates via epoxy beads having a diameter of 30 ⁇ m so that the transparent conductive thin films face each other. Next, a load of 5.0 N was applied to a polyacetal pen (tip shape: 0.8 mmR), and a linear sliding test of 180,000 reciprocations was performed on the touch panel.
  • the sliding distance was 30 mm and the sliding speed was 180 mm / sec.
  • the ON resistance resistance value when the movable electrode (film electrode) and the fixed electrode came into contact with each other
  • the ON resistance is preferably 10 k ⁇ or less.
  • the films in each comparative example were used instead of the transparent conductive film according to the present invention.
  • a transparent conductive film obtained by cutting the transparent conductive film according to the present invention into a size of 50 mm ⁇ 50 mm is used as one panel plate, and the thickness of the other panel plate is increased by sputtering on a glass substrate.
  • a transparent conductive thin film made of a 20 nm indium-tin oxide composite oxide thin film (tin oxide content: 10% by mass) was used.
  • the two panel plates are arranged via epoxy beads having a diameter of 30 ⁇ m so that the transparent conductive thin films face each other, and the thickness is adjusted to 120 ⁇ m with double-sided tape.
  • a touch panel was made by pasting a board.
  • a load of 35 N is applied to a position 2.0 mm from the end of the double-sided tape with a pen made of polyacetal (tip shape 0.8 mmR), and linear sliding is performed 10 times (5 reciprocations) in parallel with the double-sided tape.
  • a pen load is applied to the transparent conductive film surface according to the present invention.
  • the sliding distance is 30 mm and the sliding speed is 20 mm / sec.
  • sliding is performed at a position where there are no epoxy beads.
  • the transparent conductive film is removed, the surface resistance (4 terminal method) at any 5 points of the sliding part is measured, and the average value is calculated.
  • the four terminals When measuring the surface resistance, arrange the four terminals in a direction perpendicular to the sliding portion so that the sliding portion comes between the second terminal and the third terminal.
  • the rate of increase in the surface resistance value is calculated by dividing the average value of the surface resistance values of the sliding portion by the surface resistance value of the non-sliding portion (measured by the 4-terminal method).
  • the films in each comparative example were used instead of the transparent conductive film according to the present invention.
  • the transparent plastic film base material used in Examples and Comparative Examples is a biaxially oriented transparent PET film having easy-adhesive layers on both sides (manufactured by Toyobo Co., Ltd., A4340, thickness is shown in Table 1).
  • As the curable resin layer 100 parts by mass of a photopolymerization initiator-containing acrylic resin (Seika Beam (registered trademark) EXF-01J, manufactured by Dainichi Seika Kogyo Co., Ltd.) and silica particles (Snowtex ZL, manufactured by Nissan Chemical Co., Ltd.) are shown.
  • this coating liquid is hereinafter referred to as coating liquid A).
  • the prepared coating liquid was applied using a Meyer bar so that the thickness of the coating film was 5 ⁇ m.
  • the coating film was cured by irradiating with ultraviolet rays (light intensity: 300 mJ / cm 2 ) using an ultraviolet irradiation device (UB042-5AM-W type manufactured by Eye Graphics). .. Further, the curable resin layer was provided on both sides of the transparent plastic base material.
  • Examples 1 to 8 Each example level was carried out as follows under the conditions shown in Table 1. The film was placed in a vacuum chamber and evacuated to 1.5 ⁇ 10 -4 Pa. Next, after the introduction of oxygen, argon was introduced as the inert gas and hydrogen gas was introduced as the hydrogen-containing gas at the concentrations shown in Table 1 to bring the total pressure to 0.6 Pa. Power was applied to an indium-tin oxide composite oxide sintering target or an indium oxide sintered target containing no tin oxide at a power density of 3 W / cm 2 , and a transparent conductive film was formed by a DC magnetron sputtering method. The film thickness was controlled by changing the speed at which the film passed over the target.
  • the ratio of the water pressure to the inert gas in the film formation atmosphere during sputtering was measured using a gas analyzer (Transpector XPR3 manufactured by Inficon).
  • a gas analyzer Transpector XPR3 manufactured by Inficon.
  • Table 1 shows the temperature at the center of the maximum and minimum temperatures from the start of film formation to the end of film formation on the film roll as the center value.
  • the film on which the transparent conductive film was formed and laminated was subjected to the heat treatment shown in Table 1 and then measured. The measurement results are shown in Table 1.
  • Comparative Examples 1 to 9 A transparent conductive film was prepared and evaluated in the same manner as in Example 1 under the conditions shown in Table 1. However, Comparative Example 7 does not have a curable resin layer. However, in Comparative Example 8, the thickness of the coating film of the curable resin layer was adjusted to be 20 ⁇ m. The results are shown in Table 2.
  • the transparent conductive films shown in Examples 1 to 8 are excellent in pen sliding durability, pen heavy pressure durability, and high definition, and have all the characteristics. There is. However, as shown in Table 2, Comparative Examples 1 to 9 cannot satisfy all of the pen sliding durability, the pen heavy pressure durability, and the high definition.
  • a transparent conductive film having excellent pen sliding durability, pen heavy pressure durability, and high definition can be produced, which is extremely useful for applications such as a resistance film type touch panel. be.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Non-Insulated Conductors (AREA)
  • Laminated Bodies (AREA)

Abstract

[Problem] The present invention provides a transparent conductive film which is excellent in terms of pen sliding durability, pen weight pressure durability and high definition when used in a touch panel. [Solution] A transparent conductive film which is obtained by superposing a transparent conductive membrane of an indium-tin composite oxide on at least one surface of a transparent plastic film base material, wherein: the ON resistance of the transparent conductive membrane of the transparent conductive film as determined by a pen sliding durability test is 10kΩ or less; the rate of increase of the surface resistance value of the transparent conductive membrane of the transparent conductive film as determined by a pen weight pressure test is 1.5 or less; and the total sharpness of transmitted images of the transparent conductive film at the comb widths of 0.125 mm, 0.25 mm, 0.5 mm, 1.0 mm and 2.0 mm is not less than 250% but less than 500%.

Description

透明導電性フィルムTransparent conductive film
 本発明は、透明プラスチックフィルム基材上に結晶性のインジウム-スズ複合酸化物の透明導電膜を積層した透明導電性フィルム、特に、抵抗膜式タッチパネルに用いた際のペン摺動耐久性、ペン重加圧耐久性、高精細性に優れる透明導電性フィルムに関するものである。 The present invention relates to a transparent conductive film in which a transparent conductive film of a crystalline indium-tin composite oxide is laminated on a transparent plastic film base material, particularly a pen sliding durability when used for a resistance film type touch panel. It relates to a transparent conductive film having excellent heavy pressure durability and high definition.
 透明プラスチック基材上に、透明でかつ抵抗の小さい薄膜を積層した透明導電性フィルムは、その導電性を利用した用途、例えば、液晶ディスプレイやエレクトロルミネッセンス(EL)ディスプレイ等のようなフラットパネルディスプレイや、タッチパネルの透明電極等として、電気・電子分野の用途に広く使用されている。 A transparent conductive film in which a transparent and low-resistance thin film is laminated on a transparent plastic base material is used for applications that utilize the conductivity, for example, flat panel displays such as liquid crystal displays and electroluminescence (EL) displays. , As a transparent electrode for touch panels, etc., is widely used in applications in the electrical and electronic fields.
 抵抗膜式タッチパネルは、ガラスやプラスチックの基板に透明導電性薄膜をコーティングした固定電極と、プラスチックフィルムに透明導電性薄膜をコーティングした可動電極(=フィルム電極)を組み合わせたものであり、表示体の上側に重ね合わせて使用されている。指やペンでフィルム電極を押して、固定電極とフィルム電極の透明導性薄膜同士を接触させることが、タッチパネルの位置認識のための入力となる。指と比較して、ペンはタッチパネルにかかる力が強くなることが多い。タッチパネルにペンで入力し続けると、フィルム電極側の透明導電性薄膜にクラック、剥離、摩耗等の破壊が生じることがある。また、タッチパネルをペンで激しく叩いたり、非常に強い力でペン入力するなど、通常使用想定以上の強い力をタッチパネルに加えると、透明導電性薄膜にクラック、剥離等の破壊が生じることがある。これらの問題を解決するために、優れたペン摺動耐久性と優れたペン重加圧耐久性を両立する透明導電性フィルムが要望されている。さらに、タッチパネルの映像について高精細であることも求められている。 The resistance film type touch panel is a combination of a fixed electrode coated with a transparent conductive thin film on a glass or plastic substrate and a movable electrode (= film electrode) coated with a transparent conductive thin film on a plastic film. It is used by stacking it on the upper side. Pressing the film electrode with a finger or a pen to bring the fixed electrode and the transparent conductive thin film of the film electrode into contact with each other is an input for position recognition of the touch panel. Compared to fingers, pens often exert more force on the touch panel. If the touch panel is continuously input with a pen, the transparent conductive thin film on the film electrode side may be broken such as cracks, peeling, and wear. In addition, if a stronger force than expected for normal use, such as hitting the touch panel violently with a pen or inputting with a pen with a very strong force, is applied to the touch panel, the transparent conductive thin film may be cracked or peeled off. In order to solve these problems, there is a demand for a transparent conductive film having both excellent pen sliding durability and excellent pen heavy pressure durability. Further, it is required that the image on the touch panel has high definition.
 ペン摺動耐久性を向上させる手段として、フィルム電極側の透明導電性薄膜を結晶性にする方法がある(例えば、特許文献1参照)。しかしながら、従来の透明導電性フィルムは、インジウム-スズ複合酸化物の結晶性を制御することでペン摺動耐久性に優れた透明導電性フィルムを実現している。しかし、従来の透明導電性フィルムは、後述のペン重加圧耐久性試験を実施すると、不十分であった。 As a means for improving the pen sliding durability, there is a method of making the transparent conductive thin film on the film electrode side crystalline (see, for example, Patent Document 1). However, the conventional transparent conductive film realizes a transparent conductive film having excellent pen sliding durability by controlling the crystallinity of the indium-tin composite oxide. However, the conventional transparent conductive film was insufficient when the pen heavy pressure durability test described later was carried out.
特開2004-071171号公報Japanese Unexamined Patent Publication No. 2004-071171
 本発明の目的は、上記の従来の問題点に鑑み、タッチパネルに用いた際のペン摺動耐久性に優れるとともにペン重加圧耐久性にも優れ、さらに高精細な映像を提供可能とする透明導電性フィルムを提供することにある。 In view of the above-mentioned conventional problems, an object of the present invention is transparency that is excellent in pen sliding durability when used for a touch panel, is also excellent in pen heavy pressure durability, and can provide a high-definition image. The purpose is to provide a conductive film.
 本発明は、上記のような状況に鑑みなされたものであって、上記の課題を解決することができた本発明の透明導電性フィルムとは、以下の構成よりなる。
1. 透明プラスチックフィルム基材上の一方の面にインジウム-スズ複合酸化物の透明導電膜が積層された透明導電性フィルムであって、以下のペン摺動耐久性試験による透明導電フィルムの透明導電膜のON抵抗が10kΩ以下であり、さらに以下のペン重加圧試験による透明導電フィルムの透明導電膜の表面抵抗値の増加率が1.5以下であり、さらにクシ幅0.125mm、0.25mm、0.5mm、1.0mm、2.0mmでの透明導電性フィルムの透過像鮮明度の総和が250%以上500%未満である透明導電性フィルム。
(ペン摺動耐久性試験方法)
 本発明に係る透明導電性フィルムを一方のパネル板として用い、他方のパネル板として、ガラス基板上にスパッタリング法で厚みが20nmのインジウム-スズ複合酸化物薄膜(酸化スズ含有量:10質量%)からなる透明導電性薄膜を用いる。前記2枚のパネル板を透明導電性薄膜が対向するように、直径30μmのエポキシビーズを介して配置し、厚みが170μmの両面テープでフィルム側のパネル板とガラス側のパネル板を貼り付けて、タッチパネルを作製する。次にポリアセタール製のペン(先端の形状:0.8mmR)に2.5Nの荷重をかけ、18万往復の直線摺動試験をタッチパネルに行う。この試験において、本発明に係る透明導電性フィルム面に対してペンの荷重を印加する。
 この時の摺動距離は30mm、摺動速度は180mm/秒とする。この摺動耐久性試験後に、ペン荷重0.8Nで摺動部を押さえた際の、ON抵抗(可動電極(フィルム電極)と固定電極とが接触した時の抵抗値)を測定する。
(ペン重加圧試験方法)
 50mm×50mmにカットした、本発明に係る透明導電性フィルムを一方のパネル板として用い、他方のパネル板として、ガラス基板上にスパッタリング法で厚みが20nmのインジウム-スズ複合酸化物薄膜(酸化スズ含有量:10質量%)からなる透明導電性薄膜を用いる。この2枚のパネル板を透明導電性薄膜が対向するように、直径30μmのエポキシビーズを介して配置し、厚みが120μmとなるように調整した両面テープでフィルム側のパネル板とガラス側のパネル板を貼り付けて、タッチパネルを作製した。両面テープの端から2.0mmの位置をポリアセタール製のペン(先端の形状0.8mmR)で35Nの荷重をかけ、両面テープと平行に10回(往復5回)の直線摺動を実施する。この試験において、本発明に係る透明導電性フィルム面に対してペンの荷重を印加する。このときの摺動距離は30mm、摺動速度は20mm/秒とする。エポキシビーズがない位置で摺動を行う。摺動後に、透明導電性フィルムを取り外して、摺動部の任意の5か所の表面抵抗(4端子法)を測定し、平均値を出す。表面抵抗を測定するときは、摺動部と垂直になる方向に4端子を並べ、2端子目と3端子目の間に摺動部が来るようにする。摺動部の表面抵抗値の平均値を未摺動部の表面抵抗値(4端子法で測定)で除して、表面抵抗値の増加率を算出する。
2. インジウム-スズ複合酸化物の透明導電膜の結晶粒径が10~100nmであり、インジウム-スズ複合酸化物の透明導電膜の結晶化度が20~80%であり、インジウム-スズ複合酸化物の透明導電膜が、酸化スズを0.5~10質量%含み、インジウム-スズ複合酸化物の透明導電膜の厚みが、10~30nmであり、インジウム-スズ複合酸化物の透明導電膜の三次元表面粗さSRaをXとした場合、Xが1~100nmであり、さらに透明プラスチックフィルム基材上の透明導電膜側とは反対面の三次元表面粗さSRaをYとした場合、(X+Y1/3が、140nm以下である上記第1に記載の透明導電性フィルム。
3. 透明導電膜の表面において付着性試験(JIS K5600-5-6:1999)を実施しても透明導電膜が剥離せず、 透明導電性フィルムのインジウム-スズ複合酸化物の透明導電膜側において耐屈曲性試験(JIS K5600-5-1:1999)をし、10倍のルーペで屈曲部を観察した時に割れや剥れが起こるマンドレル直径が20mmより小さい上記第1又は第2に記載の透明導電性フィルム。
4. 透明導電性フィルムの厚みが100~250μmである上記第1~第3のいずれかに記載の透明導電性フィルム。
5. インジウム-スズ複合酸化物の透明導電膜と透明プラスチックフィルム基材の間に硬化型樹脂層を有する上記第1~第4のいずれかに記載の透明導電性フィルム。
The present invention has been made in view of the above circumstances, and the transparent conductive film of the present invention, which has been able to solve the above problems, has the following configuration.
1. 1. A transparent conductive film in which a transparent conductive film of an indium-tin composite oxide is laminated on one surface of a transparent plastic film substrate, and is a transparent conductive film of the transparent conductive film according to the following pen sliding durability test. The ON resistance is 10 kΩ or less, the increase rate of the surface resistance value of the transparent conductive film of the transparent conductive film by the following pen heavy pressure test is 1.5 or less, and the comb widths are 0.125 mm and 0.25 mm. A transparent conductive film having a total transmission image sharpness of 250% or more and less than 500% at 0.5 mm, 1.0 mm, and 2.0 mm.
(Pen sliding durability test method)
The transparent conductive film according to the present invention is used as one panel plate, and the other panel plate is an indium-tin composite oxide thin film having a thickness of 20 nm by a sputtering method on a glass substrate (tin oxide content: 10% by mass). A transparent conductive thin film made of is used. The two panel plates are arranged via epoxy beads having a diameter of 30 μm so that the transparent conductive thin films face each other, and the film side panel plate and the glass side panel plate are attached with double-sided tape having a thickness of 170 μm. , Make a touch panel. Next, a load of 2.5 N is applied to a polyacetal pen (tip shape: 0.8 mmR), and a linear sliding test of 180,000 reciprocations is performed on the touch panel. In this test, a pen load is applied to the transparent conductive film surface according to the present invention.
At this time, the sliding distance is 30 mm and the sliding speed is 180 mm / sec. After this sliding durability test, the ON resistance (resistance value when the movable electrode (film electrode) and the fixed electrode come into contact with each other) when the sliding portion is pressed with a pen load of 0.8 N is measured.
(Pen heavy pressure test method)
The transparent conductive film according to the present invention cut to 50 mm × 50 mm is used as one panel plate, and the other panel plate is an indium-tin oxide composite oxide thin film (tin oxide) having a thickness of 20 nm on a glass substrate by a sputtering method. A transparent conductive thin film having a content of 10% by mass) is used. The two panel plates are arranged via epoxy beads having a diameter of 30 μm so that the transparent conductive thin films face each other, and the thickness is adjusted to 120 μm with double-sided tape. The panel plate on the film side and the panel on the glass side. A touch panel was made by pasting a board. A load of 35 N is applied to a position 2.0 mm from the end of the double-sided tape with a pen made of polyacetal (tip shape 0.8 mmR), and linear sliding is performed 10 times (5 reciprocations) in parallel with the double-sided tape. In this test, a pen load is applied to the transparent conductive film surface according to the present invention. At this time, the sliding distance is 30 mm and the sliding speed is 20 mm / sec. Slide in a position where there are no epoxy beads. After sliding, the transparent conductive film is removed, the surface resistance (4 terminal method) at any 5 points of the sliding part is measured, and the average value is calculated. When measuring the surface resistance, arrange the four terminals in a direction perpendicular to the sliding portion so that the sliding portion comes between the second terminal and the third terminal. The rate of increase in the surface resistance value is calculated by dividing the average value of the surface resistance values of the sliding portion by the surface resistance value of the non-sliding portion (measured by the 4-terminal method).
2. 2. The crystal grain size of the transparent conductive film of the indium-tin composite oxide is 10 to 100 nm, the crystallinity of the transparent conductive film of the indium-tin composite oxide is 20 to 80%, and the crystal size of the transparent conductive film of the indium-tin oxide is 20 to 80%. The transparent conductive film contains 0.5 to 10% by mass of tin oxide, the thickness of the transparent conductive film of the indium-tin composite oxide is 10 to 30 nm, and the thickness of the transparent conductive film of the indium-tin composite oxide is three-dimensional. When the surface roughness SRa is X, X is 1 to 100 nm, and when the three-dimensional surface roughness SRa on the transparent conductive film substrate opposite to the transparent conductive film side is Y, (X 3 ). + Y 3 ) The transparent conductive film according to the first item above, wherein 1/3 is 140 nm or less.
3. 3. Even if the adhesion test (JIS K5600-5-6: 1999) was performed on the surface of the transparent conductive film, the transparent conductive film did not peel off, and the transparent conductive film was resistant to the transparent conductive film side of the indium-tin composite oxide. The transparent conductivity according to the first or second above, wherein the mandrel diameter is smaller than 20 mm, in which cracking or peeling occurs when a bending part is observed by a bending test (JIS K5600-5: 1: 1999) with a 10-fold loupe. Sex film.
4. The transparent conductive film according to any one of the above 1st to 3rd, wherein the transparent conductive film has a thickness of 100 to 250 μm.
5. The transparent conductive film according to any one of the above 1 to 4, which has a curable resin layer between a transparent conductive film of an indium-tin composite oxide and a transparent plastic film substrate.
 本発明によれば、優れたペン摺動耐久性および優れたペン重加圧耐久性を併せ持ち、さらに高精細な映像を提供可能とする透明導電性フィルムの提供が可能となる。得られた透明導電性フィルムは、抵抗膜式タッチパネル等の用途に極めて有用である。 According to the present invention, it is possible to provide a transparent conductive film having both excellent pen sliding durability and excellent pen heavy pressure durability, and capable of providing a high-definition image. The obtained transparent conductive film is extremely useful for applications such as a resistance film type touch panel.
本発明における結晶粒の最長部の一例(その1)を示す模式図である。It is a schematic diagram which shows an example (the 1) of the longest part of the crystal grain in this invention. 本発明における結晶粒の最長部の他の一例(その2)を示す模式図である。It is a schematic diagram which shows another example (the 2) of the longest part of the crystal grain in this invention. 本発明における結晶粒の最長部の他の一例(その3)を示す模式図である。It is a schematic diagram which shows another example (the 3) of the longest part of the crystal grain in this invention. 本発明における結晶粒の最長部の他の一例(その4)を示す模式図である。It is a schematic diagram which shows another example (the 4) of the longest part of the crystal grain in this invention. 本発明において好適に使用されるスパッタリング装置の一例のセンターロールの位置を説明するための模式図である。It is a schematic diagram for demonstrating the position of the center roll of an example of a sputtering apparatus preferably used in this invention.
 本発明の透明導電性フィルムは、透明プラスチックフィルム基材上の一方の面にインジウム-スズ複合酸化物の透明導電膜が積層された透明導電性フィルムであって、以下のペン摺動耐久性試験による透明導電フィルムの透明導電膜のON抵抗が10kΩ以下であり、さらに以下のペン重加圧試験による透明導電フィルムの透明導電膜の表面抵抗値の増加率が1.5以下であり、さらにクシ幅0.125mm、0.25mm、0.5mm、1.0mm、2.0mmでの透明導電性フィルムの透過像鮮明度の総和が250%以上500%未満であることが好ましい。
(ペン摺動耐久性試験)
 本発明に係る透明導電性フィルムを一方のパネル板として用い、他方のパネル板として、ガラス基板上にスパッタリング法で厚みが20nmのインジウム-スズ複合酸化物薄膜(酸化スズ含有量:10質量%)からなる透明導電性薄膜を用いた。この2枚のパネル板を透明導電性薄膜が対向するように、直径30μmのエポキシビーズを介して配置し、厚みが170μmの両面テープでフィルム側のパネル板とガラス側のパネル板を貼り付けて、タッチパネルを作製した。次にポリアセタール製のペン(先端の形状:0.8mmR)に2.5Nの荷重をかけ、18万往復の直線摺動試験をタッチパネルに行った。この試験において、本発明に係る透明導電性フィルム面に対してペンの荷重を印加する。この時の摺動距離は30mm、摺動速度は180mm/秒とした。この摺動耐久性試験後に、ペン荷重0.8Nで摺動部を押さえた際の、ON抵抗(可動電極(フィルム電極)と固定電極とが接触した時の抵抗値)を測定した。
(ペン重加圧試験)
 本発明に係る透明導電性フィルムを50mm×50mmにカットした透明導電性フィルムを一方のパネル板として用い、他方のパネル板として、ガラス基板上にスパッタリング法で厚みが20nmのインジウム-スズ複合酸化物薄膜(酸化スズ含有量:10質量%)からなる透明導電性薄膜を用いた。この2枚のパネル板を透明導電性薄膜が対向するように、直径30μmのエポキシビーズを介して配置し、厚みが120μmとなるように調整した両面テープでフィルム側のパネル板とガラス側のパネル板を貼り付けて、タッチパネルを作製した。両面テープの端から2.0mmの位置をポリアセタール製のペン(先端の形状0.8mmR)で35Nの荷重をかけ、両面テープと平行に10回(往復5回)の直線摺動を実施する。この試験において、本発明に係る透明導電性フィルム面に対してペンの荷重を印加する。このときの摺動距離は30mm、摺動速度は20mm/秒である。ただし、エポキシビーズがない位置で摺動を行う。摺動後に、透明導電性フィルムを取り外して、摺動部の任意の5か所の表面抵抗(4端子法)を測定し、平均値を出す。表面抵抗を測定するときは、摺動部と垂直になる方向に4端子を並べ、2端子目と3端子目の間に摺動部が来るようにする。摺動部の表面抵抗値の平均値を未摺動部の表面抵抗値(4端子法で測定)で除して、表面抵抗値の増加率を算出する。
The transparent conductive film of the present invention is a transparent conductive film in which a transparent conductive film of an indium-tin composite oxide is laminated on one surface of a transparent plastic film base material, and the following pen sliding durability test is performed. The ON resistance of the transparent conductive film of the transparent conductive film is 10 kΩ or less, and the increase rate of the surface resistance value of the transparent conductive film of the transparent conductive film by the following pen heavy pressure test is 1.5 or less. It is preferable that the total transmission image sharpness of the transparent conductive film at widths of 0.125 mm, 0.25 mm, 0.5 mm, 1.0 mm and 2.0 mm is 250% or more and less than 500%.
(Pen sliding durability test)
The transparent conductive film according to the present invention is used as one panel plate, and the other panel plate is an indium-tin composite oxide thin film having a thickness of 20 nm by a sputtering method on a glass substrate (tin oxide content: 10% by mass). A transparent conductive thin film made of is used. The two panel plates are arranged via epoxy beads having a diameter of 30 μm so that the transparent conductive thin films face each other, and the film side panel plate and the glass side panel plate are attached with double-sided tape having a thickness of 170 μm. , Made a touch panel. Next, a load of 2.5 N was applied to a polyacetal pen (tip shape: 0.8 mmR), and a linear sliding test of 180,000 reciprocations was performed on the touch panel. In this test, a pen load is applied to the transparent conductive film surface according to the present invention. At this time, the sliding distance was 30 mm and the sliding speed was 180 mm / sec. After this sliding durability test, the ON resistance (resistance value when the movable electrode (film electrode) and the fixed electrode came into contact with each other) when the sliding portion was pressed with a pen load of 0.8 N was measured.
(Pen heavy pressure test)
A transparent conductive film obtained by cutting the transparent conductive film according to the present invention into 50 mm × 50 mm is used as one panel plate, and the other panel plate is an indium-tin composite oxide having a thickness of 20 nm by a sputtering method on a glass substrate. A transparent conductive thin film composed of a thin film (tin oxide content: 10% by mass) was used. The two panel plates are arranged via epoxy beads having a diameter of 30 μm so that the transparent conductive thin films face each other, and the thickness is adjusted to 120 μm with double-sided tape. The panel plate on the film side and the panel on the glass side. A touch panel was made by pasting a board. A load of 35 N is applied to a position 2.0 mm from the end of the double-sided tape with a pen made of polyacetal (tip shape 0.8 mmR), and linear sliding is performed 10 times (5 reciprocations) in parallel with the double-sided tape. In this test, a pen load is applied to the transparent conductive film surface according to the present invention. At this time, the sliding distance is 30 mm and the sliding speed is 20 mm / sec. However, sliding is performed at a position where there are no epoxy beads. After sliding, the transparent conductive film is removed, the surface resistance (4 terminal method) at any 5 points of the sliding part is measured, and the average value is calculated. When measuring the surface resistance, arrange the four terminals in a direction perpendicular to the sliding portion so that the sliding portion comes between the second terminal and the third terminal. The rate of increase in the surface resistance value is calculated by dividing the average value of the surface resistance values of the sliding portion by the surface resistance value of the non-sliding portion (measured by the 4-terminal method).
 本発明の透明導電性フィルムは、ペン摺動耐久性とペン重加圧耐久性に優れている。ペン摺動耐久性とペン重加圧耐久性は相反する性質である。まずペン摺動耐久性について説明する。ペン摺動耐久性に優れるインジウム-スズ複合酸化物の透明導電性フィルムは透明導電膜の結晶化度が高く、結晶粒径が大きい。結晶化度と結晶粒径について説明する。透過型電子顕微鏡下で観察される、円状もしくは多角形状の領域をもつ部分を透明導電膜の結晶(=結晶粒)、それ以外の部分を非晶と定義する。結晶化度が高いとは、結晶の割合が高いことを示す。結晶粒径が大きいとは、透過型電子顕微鏡下で観察される、円状もしくは多角形状の領域が大きいことを示す。結晶化度の高い透明導電膜は、硬い結晶の割合が高いこと、結晶粒径が大きいものは結晶粒の周りのひずみが大きくなることなどから、透明導電膜が硬くなり、ペン摺動耐久性に優れる。次にペン重加圧耐久性について説明する。ペン重加圧耐久性に優れるインジウム-スズ複合酸化物の透明導電性フィルムは透明導電膜の結晶化度が低く、結晶粒径が小さく、さらに透明導電膜の三次元表面粗さが小さい必要がある。三次元表面粗さについては後で説明するが、まず結晶化度の低い透明導電膜は、軟らかい非晶の割合が高いこと、結晶粒径が小さいものは結晶粒の周りのひずみが小さくなることなどから、透明導電膜に荷重がかかってもクラックが入りにくくなるなどして、ペン重加圧耐久性に優れる。前記のように、ペン摺動耐久性とペン重加圧耐久性は相反する性質であることが分かる。検討の結果、透明導電膜の結晶化度と結晶粒径を制御することによりペン摺動耐久性とペン重加圧耐久性を両立させることができることを発明した。ペン摺動耐久性とペン重加圧耐久性を両立させる透明導電膜を有する透明導電性フィルムについて説明する。 The transparent conductive film of the present invention is excellent in pen sliding durability and pen heavy pressure durability. Pen sliding durability and pen heavy pressure durability are contradictory properties. First, the pen sliding durability will be described. The transparent conductive film of indium-tin composite oxide having excellent pen sliding durability has a high crystallinity of the transparent conductive film and a large crystal grain size. The degree of crystallinity and the crystal grain size will be described. The portion having a circular or polygonal region observed under a transmission electron microscope is defined as a crystal (= crystal grain) of a transparent conductive film, and the other portion is defined as an amorphous. A high degree of crystallinity means a high proportion of crystals. A large crystal grain size means a large circular or polygonal region observed under a transmission electron microscope. A transparent conductive film with a high degree of crystallinity has a high proportion of hard crystals, and a transparent conductive film having a large crystal grain size has a large strain around the crystal grains. Excellent for. Next, the pen heavy pressure durability will be described. A transparent conductive film of an indium-tin composite oxide having excellent pen heavy pressure durability needs to have a low crystallinity of the transparent conductive film, a small crystal grain size, and a small three-dimensional surface roughness of the transparent conductive film. be. The three-dimensional surface roughness will be described later. First, a transparent conductive film having a low crystallinity has a high proportion of soft amorphous, and a transparent conductive film having a small crystal grain size has a small strain around the crystal grains. Therefore, even if a load is applied to the transparent conductive film, cracks are less likely to occur, and the pen heavy pressure durability is excellent. As described above, it can be seen that the pen sliding durability and the pen heavy pressure durability are contradictory properties. As a result of the study, it was invented that the pen sliding durability and the pen heavy pressure durability can be achieved at the same time by controlling the crystallinity and the crystal grain size of the transparent conductive film. A transparent conductive film having a transparent conductive film that achieves both pen sliding durability and pen heavy pressure durability will be described.
 本発明においてペン摺動耐久性試験による透明導電フィルムの透明導電膜のON抵抗が10kΩ以下であれば、タッチパネルにペンで連続入力しても透明導電膜に対してクラック、剥離、摩耗などが抑えられているため好ましい。一態様においてON抵抗は、9.5kΩ以下であってよく、より好ましくは5kΩ以下である。例えば、ON抵抗は3kΩ以下であり、1.5kΩ以下であってよく、好ましくは1kΩ以下である。ON抵抗は、0kΩであれば、ペン摺動耐久性が非常に優れ、本発明であれば、ON抵抗が0kΩであることも可能である。ON抵抗は、例えば、3kΩ以上であってもよく、5kΩ以上であってもよい。
 ON抵抗がこのような範囲内であることにより、タッチパネルにペンで連続入力しても透明導電膜に対してクラック、剥離、摩耗などが抑えられる。
 一態様において、これら上限及び下限を適宜組み合わせてもよい。
In the present invention, if the ON resistance of the transparent conductive film of the transparent conductive film according to the pen sliding durability test is 10 kΩ or less, cracks, peeling, wear, etc. are suppressed with respect to the transparent conductive film even if continuous input is made to the touch panel with a pen. It is preferable because it is used. In one embodiment, the ON resistance may be 9.5 kΩ or less, more preferably 5 kΩ or less. For example, the ON resistance is 3 kΩ or less, may be 1.5 kΩ or less, and is preferably 1 kΩ or less. If the ON resistance is 0 kΩ, the pen sliding durability is very excellent, and in the present invention, the ON resistance can be 0 kΩ. The ON resistance may be, for example, 3 kΩ or more, or 5 kΩ or more.
When the ON resistance is within such a range, cracks, peeling, wear, and the like can be suppressed with respect to the transparent conductive film even if the touch panel is continuously input with a pen.
In one embodiment, these upper and lower limits may be combined as appropriate.
 本発明においてペン重加圧試験によるによる透明導電フィルムの透明導電膜の表面抵抗値の増加率が1.5以下であることが望ましい。このような特性を有することで、例えば、通常使用想定以上の強い力がかかったとしても、透明導電膜に対してクラック、剥離などを抑制できる。より好ましくは、表面抵抗値の増加率は1.2以下、特に好ましくは1.0(増大なし)である。
 ここで、本発明に係る透明導電膜の表面抵抗値の増加率は1.0以上であることが好ましい。
In the present invention, it is desirable that the increase rate of the surface resistance value of the transparent conductive film of the transparent conductive film by the pen heavy pressure test is 1.5 or less. By having such a characteristic, for example, even if a stronger force than expected for normal use is applied, cracks, peeling, etc. can be suppressed with respect to the transparent conductive film. More preferably, the rate of increase in the surface resistance value is 1.2 or less, and particularly preferably 1.0 (no increase).
Here, the rate of increase in the surface resistance value of the transparent conductive film according to the present invention is preferably 1.0 or more.
 一態様において、ペン摺動耐久性試験による透明導電フィルムの透明導電膜のON抵抗は、0.05kΩ以上9.5kΩ以下であり、かつ、ペン重加圧(耐久性)試験によるによる透明導電フィルムの透明導電膜の表面抵抗値の増加率は、1.0以上1.5以下である。
 上述のように、通常、ペン摺動耐久性とペン重加圧耐久性は相反する性質である。本発明においては、このような範囲内で、これら2つの耐久性をバランスよく有することができる。また、タッチパネルにペンで連続入力しても透明導電膜に対してクラック、剥離、摩耗などを抑制でき、その上、ペン摺動、ペン重加圧による負荷に対しても、優れた耐久性を示すことができる。なお、数値範囲は、本明細書において記載の範囲、値を選択できる。
In one embodiment, the ON resistance of the transparent conductive film of the transparent conductive film by the pen sliding durability test is 0.05 kΩ or more and 9.5 kΩ or less, and the transparent conductive film by the pen heavy pressure (durability) test. The rate of increase in the surface resistance value of the transparent conductive film is 1.0 or more and 1.5 or less.
As described above, pen sliding durability and pen heavy pressure durability are usually contradictory properties. In the present invention, these two durability can be well-balanced within such a range. In addition, even if continuous input is made to the touch panel with a pen, cracks, peeling, wear, etc. can be suppressed against the transparent conductive film, and in addition, excellent durability is achieved against loads caused by pen sliding and pen heavy pressure. Can be shown. As the numerical range, the range and the value described in the present specification can be selected.
 本発明においてクシ幅0.125mm、0.25mm、0.5mm、1.0mm、2.0mmでの透明導電性フィルムの透過像鮮明度の総和が250%以上500%未満であれば、高精細な映像を提供可能となるため望ましい。透過像鮮明度の総和が大きいほど、象の鮮明性が高くなる、すなわち、高精細性に優れる。より好ましくは透明導電性フィルムの透過像鮮明度の総和は300%以上である。さらに好ましくは透明導電性フィルムの透過像鮮明度の総和は400%以上である。
 なお、本明細書において「クシ幅」とは、JIS-K7105に準拠する、光学クシ幅を意味する。
In the present invention, if the total transmission image sharpness of the transparent conductive film at comb widths of 0.125 mm, 0.25 mm, 0.5 mm, 1.0 mm, and 2.0 mm is 250% or more and less than 500%, the definition is high. It is desirable because it is possible to provide various images. The larger the total sharpness of the transmitted image, the higher the sharpness of the elephant, that is, the better the high definition. More preferably, the total transmission image sharpness of the transparent conductive film is 300% or more. More preferably, the total transmission image sharpness of the transparent conductive film is 400% or more.
In addition, in this specification, "comb width" means an optical comb width which conforms to JIS-K7105.
 本発明における透明導電性フィルムは、インジウム-スズ複合酸化物の透明導電膜の結晶粒径が10~100nmであり、インジウム-スズ複合酸化物の透明導電膜の結晶化度が20~80%であることが好ましい。インジウム-スズ複合酸化物の透明導電膜の結晶粒径が10nm以上であると、透明導電膜の結晶粒の周りのひずみにより透明導電膜が適度に硬くなるので、ペン摺動耐久性に優れるため好ましい。より好ましくはインジウム-スズ複合酸化物の透明導電膜の結晶粒径が30nm以上である。
 一方、インジウム-スズ複合酸化物の透明導電膜の結晶粒径が100nm以下であれば、透明導電膜の結晶粒の周りのひずみによる透明導電膜が硬過ぎないため、ペン重加圧耐久性に優れるため好ましい。より好ましくはインジウム-スズ複合酸化物の透明導電膜の結晶粒径が90nm以下である。
 一態様において、インジウム-スズ複合酸化物の透明導電膜の結晶粒径は、30nm以上95nm以下であり、例えば、40nm以上90nm以下である。
 インジウム-スズ複合酸化物の透明導電膜の結晶化度が20%以上であると、透明導電膜に占める硬い結晶により適度に硬くなり、ペン摺動耐久性に優れるため好ましい。より好ましくはインジウム-スズ複合酸化物の透明導電膜の結晶化度が25%以上である。一方、インジウム-スズ複合酸化物の透明導電膜の結晶化度が80%以下であれば、硬い結晶が含まれる量が多いが透明導電膜が硬過ぎないため、ペン重加圧耐久性に優れるため好ましい。
 一態様において、インジウム-スズ複合酸化物の透明導電膜の結晶化度は、25%以上78%以下であり、例えば、25%以上76%以下である。
In the transparent conductive film of the present invention, the crystal grain size of the transparent conductive film of the indium-tin composite oxide is 10 to 100 nm, and the crystallinity of the transparent conductive film of the indium-tin composite oxide is 20 to 80%. It is preferable to have. When the crystal grain size of the transparent conductive film of the indium-tin composite oxide is 10 nm or more, the transparent conductive film becomes moderately hard due to the strain around the crystal grains of the transparent conductive film, so that the pen sliding durability is excellent. preferable. More preferably, the crystal grain size of the transparent conductive film of the indium-tin composite oxide is 30 nm or more.
On the other hand, when the crystal grain size of the transparent conductive film of the indium-tin composite oxide is 100 nm or less, the transparent conductive film is not too hard due to the strain around the crystal grains of the transparent conductive film, so that the pen heavy pressure durability is improved. It is preferable because it is excellent. More preferably, the crystal grain size of the transparent conductive film of the indium-tin composite oxide is 90 nm or less.
In one embodiment, the crystal grain size of the transparent conductive film of the indium-tin composite oxide is 30 nm or more and 95 nm or less, for example, 40 nm or more and 90 nm or less.
When the crystallinity of the transparent conductive film of the indium-tin composite oxide is 20% or more, it becomes moderately hard due to the hard crystals occupying the transparent conductive film, and the pen sliding durability is excellent, which is preferable. More preferably, the crystallinity of the transparent conductive film of the indium-tin composite oxide is 25% or more. On the other hand, when the crystallinity of the transparent conductive film of the indium-tin composite oxide is 80% or less, the amount of hard crystals contained is large, but the transparent conductive film is not too hard, so that the pen heavy pressure durability is excellent. Therefore, it is preferable.
In one embodiment, the crystallinity of the transparent conductive film of the indium-tin composite oxide is 25% or more and 78% or less, for example, 25% or more and 76% or less.
 本発明における透明導電性フィルムは、透明導電膜の三次元表面粗さSRaをXとした場合、Xが1~100nmであることが好ましい。Xが、1~100nmであれば、透明導電膜の表面突起が小さいため、ペン重加圧試験をしたときに表面突起の変形量が小さくなり透明導電膜のクラック発生が抑制され、さらに透明導電膜に多少の表面突起があるためフィルム巻取り性も保持できるため好ましい。より好ましくはXが、1~80nmである。さらに好ましくはXが、1~65nmである。 The transparent conductive film in the present invention preferably has an X of 1 to 100 nm, where X is the three-dimensional surface roughness SRa of the transparent conductive film. When X is 1 to 100 nm, the surface protrusions of the transparent conductive film are small, so that the amount of deformation of the surface protrusions is small when the pen heavy pressure test is performed, crack generation of the transparent conductive film is suppressed, and the transparent conductivity is further suppressed. Since the film has some surface protrusions, it is preferable because the film winding property can be maintained. More preferably, X is 1 to 80 nm. More preferably, X is 1 to 65 nm.
 本発明における透明導電膜は、インジウム-スズ複合酸化物からなり、酸化スズを0.5質量%以上10質量%以下含むことが好ましい。インジウム-スズ複合酸化物中の酸化スズは酸化インジウムにとっての不純物に相当する。酸化スズの不純物が含有されていることにより、インジウム-スズ複合酸化物の融点が増大する。すなわち、酸化スズの不純物含有は結晶化を阻害する方向に働くため、結晶粒径や結晶化度などの結晶性と相関の強い重要な因子である。酸化スズが0.5質量%以上含有されていると、透明導電性フィルムの表面抵抗が実用的な水準となり好ましい。更に好ましくは酸化スズの含有率は1質量%以上であり、2質量%以上であると特に好ましい。酸化スズの含有率が10質量%以下であると、後述の半結晶状態に調節する上での結晶化が起こり易く、ペン摺動耐久性が良好となり好ましい。酸化スズの含有率は8質量%以下であるとより好ましく、6質量%以下であると更に好ましく、4質量%以下であると特に好ましい。なお、本発明の透明導電性フィルムの表面抵抗は50~900Ω/□であることが好ましく、より好ましくは50~600Ω/□である。 The transparent conductive film in the present invention is made of an indium-tin composite oxide, and preferably contains 0.5% by mass or more and 10% by mass or less of tin oxide. Tin oxide in the indium-tin composite oxide corresponds to an impurity for indium oxide. The inclusion of tin oxide impurities increases the melting point of the indium-tin composite oxide. That is, since the impurity content of tin oxide acts in the direction of inhibiting crystallization, it is an important factor having a strong correlation with crystallinity such as crystal grain size and crystallinity. When tin oxide is contained in an amount of 0.5% by mass or more, the surface resistance of the transparent conductive film becomes a practical level, which is preferable. More preferably, the tin oxide content is 1% by mass or more, and particularly preferably 2% by mass or more. When the tin oxide content is 10% by mass or less, crystallization is likely to occur in adjusting to the semi-crystalline state described later, and the pen sliding durability is good, which is preferable. The tin oxide content is more preferably 8% by mass or less, further preferably 6% by mass or less, and particularly preferably 4% by mass or less. The surface resistance of the transparent conductive film of the present invention is preferably 50 to 900 Ω / □, more preferably 50 to 600 Ω / □.
 本発明において透明導電膜の厚みは、10nm以上30nm以下であることが好ましい。透明導電膜の厚みは、結晶粒径や結晶化度などの結晶性と相関の強い重要な因子である。透明導電膜の厚みが10nm以上であると、透明導電膜に非晶が多過ぎることがなく、後述の半結晶状態にする適度な結晶粒径と結晶化度を与え易く、結果としてペン摺動耐久性が保たれて好ましい。より好ましくは透明導電膜の厚みは13nm以上、より好ましくは16nm以上である。また、透明導電膜の厚みが30nm以下であると、透明導電膜の結晶粒径が大き過ぎることがなく結晶化度が高過ぎることがなく、半結晶状態を保持し易く、ペン重加圧耐久性が保たれて好ましい。より好ましくは28nm以下、更に好ましくは25nm以下である。 In the present invention, the thickness of the transparent conductive film is preferably 10 nm or more and 30 nm or less. The thickness of the transparent conductive film is an important factor having a strong correlation with crystallinity such as crystal grain size and crystallinity. When the thickness of the transparent conductive film is 10 nm or more, the transparent conductive film does not have too many amorphous substances, and it is easy to give an appropriate crystal grain size and crystallinity to make a semi-crystalline state, which will be described later, and as a result, the pen slides. Durability is maintained and is preferable. The thickness of the transparent conductive film is more preferably 13 nm or more, more preferably 16 nm or more. Further, when the thickness of the transparent conductive film is 30 nm or less, the crystal grain size of the transparent conductive film is not too large, the crystallinity is not too high, the semi-crystalline state is easily maintained, and the pen heavy pressure durability is maintained. It is preferable that the sex is maintained. It is more preferably 28 nm or less, still more preferably 25 nm or less.
 本発明における透明導電性フィルムは、透明プラスチックフィルム基材上の透明導電膜側とは反対面の三次元表面粗さSRaをYとした場合、(X+Y1/3が、140nm以下であれば、クシ幅0.125mm、0.25mm、0.5mm、1.0mm、2.0mmでの透明導電性フィルムの透過像鮮明度の総和が250%以上500%未満となるため、高精細な映像を提供可能となるため望ましい。((X+Y1/3の値が小さいほど、透明導電性フィルムの両面の凹凸が小さくなるため、透明導電性フィルムへの入射光の直進性が向上するための透過像鮮明度が高くなる傾向にあることを確認し利用した。より好ましくは(X+Y1/3が120nm以下である。さらに好ましくは(X+Y1/3が70nm以下である。(X+Y1/3が1nm以上あれば、透明導電性フィルムに多少の表面突起があるためフィルム巻取り性を保持できるため好ましい。 The transparent conductive film in the present invention has (X 3 + Y 3 ) 1/3 of 140 nm or less, where Y is the three-dimensional surface roughness SRa of the surface of the transparent plastic film substrate opposite to the transparent conductive film side. If this is the case, the total transmission image sharpness of the transparent conductive film at the comb widths of 0.125 mm, 0.25 mm, 0.5 mm, 1.0 mm, and 2.0 mm is 250% or more and less than 500%, which is high. This is desirable because it enables the provision of fine images. ((X 3 + Y 3 ) The smaller the value of 1/3 , the smaller the unevenness on both sides of the transparent conductive film, so that the transmitted image sharpness for improving the straightness of the incident light on the transparent conductive film is improved. It was confirmed that it tended to be higher and used. More preferably (X 3 + Y 3 ) 1/3 is 120 nm or less. More preferably (X 3 + Y 3 ) 1/3 is 70 nm or less (X). 3 + Y 3 ) When 1/3 is 1 nm or more, it is preferable because the transparent conductive film has some surface protrusions and can maintain the film winding property.
 本発明における透明導電性フィルムは、透明導電膜面において付着性試験(JIS K5600-5-6:1999)を実施しても透明導電膜が剥離しないことが好ましい。付着性試験で透明導電膜が剥れない透明導電性フィルムは、透明導電膜が透明プラスチック基材や硬化型樹脂層など透明導電膜に接している層と密着しているため、タッチパネルにペンで連続入力しても透明導電膜に対してクラック、剥離、摩耗などが抑えられ、さらに、通常使用想定以上の強い力がかかったとしても、透明導電膜に対してクラック、剥離などが抑えられるため好ましい。 It is preferable that the transparent conductive film in the present invention does not peel off even when the adhesion test (JIS K5600-5-6: 1999) is carried out on the transparent conductive film surface. The transparent conductive film that does not peel off in the adhesion test is a transparent conductive film that is in close contact with a layer that is in contact with the transparent conductive film, such as a transparent plastic substrate or a curable resin layer. Even if continuous input is performed, cracks, peeling, wear, etc. are suppressed on the transparent conductive film, and even if a stronger force than expected for normal use is applied, cracks, peeling, etc. are suppressed on the transparent conductive film. preferable.
 本発明における透明導電性フィルムは、透明導電性フィルムの透明導電膜側において耐屈曲性試験(JIS K5600-5-1:1999)をして10倍のルーペで屈曲部を観察した時に割れや剥れが起こるマンドレル直径が20mmより小さいことが好ましい。マンドレル直径が20mmより小さいと、ペン重加圧試験をしたときに透明導電膜に接する層が割れず、透明導電膜にクラックが入らないため好ましい。より好ましくは18mm以下である。
 一態様において、耐屈曲性試験の値は、1mm以上であってよく、例えば、8mm以上、10mm以上であってよい。また、一態様において、耐屈曲性試験の値は、13mm以上であり、15mm以上であってよい。
 このような範囲内であることにより、ペン重加圧試験をしたときに透明導電膜に接する層が割れず、透明導電膜にクラックが入らないため好ましい。
 また、優れたペン摺動耐久性および優れたペン重加圧耐久性を併せ持つ透明導電性フィルムの提供が可能となる。
The transparent conductive film in the present invention is cracked or peeled when a bending resistance test (JIS K5600-5: 1: 1999) is performed on the transparent conductive film side of the transparent conductive film and the bent portion is observed with a 10-fold loupe. It is preferable that the mandrel diameter at which this occurs is smaller than 20 mm. When the mandrel diameter is smaller than 20 mm, the layer in contact with the transparent conductive film does not crack when the pen heavy pressure test is performed, and the transparent conductive film does not crack, which is preferable. More preferably, it is 18 mm or less.
In one embodiment, the value of the bending resistance test may be 1 mm or more, for example, 8 mm or more and 10 mm or more. Further, in one embodiment, the value of the bending resistance test is 13 mm or more, and may be 15 mm or more.
Within such a range, the layer in contact with the transparent conductive film does not crack when the pen heavy pressure test is performed, and the transparent conductive film does not crack, which is preferable.
Further, it becomes possible to provide a transparent conductive film having both excellent pen sliding durability and excellent pen heavy pressure durability.
 本発明における透明導電性フィルムは、透明プラスチックフィルム基材の厚みは、100~250μmの範囲であることが好ましく、130~220μmであることがより好ましい。プラスチックフィルムの厚みが100μm以上であると、機械的強度が保持され、特にタッチパネルに用いた際のペン入力に対する変形が小さく、ペン摺動耐久性とペン重加圧耐久性が優れるため好ましい。一方、厚みが250μm以下であると、タッチパネルに用いた際に、ペン入力で位置させるための荷重を特に大きくする必要がなく好ましい。 In the transparent conductive film in the present invention, the thickness of the transparent plastic film base material is preferably in the range of 100 to 250 μm, more preferably 130 to 220 μm. When the thickness of the plastic film is 100 μm or more, the mechanical strength is maintained, the deformation with respect to the pen input when used for a touch panel is small, and the pen sliding durability and the pen heavy pressure durability are excellent, which is preferable. On the other hand, when the thickness is 250 μm or less, when it is used for a touch panel, it is not necessary to particularly increase the load for positioning by pen input, which is preferable.
 本発明における透明導電性フィルムは、透明導電膜とプラスチックフィルム基材の間に硬化型樹脂層があることが好ましい。硬化型樹脂層があることにより透明導電膜の密着力増加や透明導電膜にかかる力を分散することができるため、ペン摺動試験での透明導電膜に対してクラック、剥離、摩耗などが抑えられ、さらに、ペン重加圧試験での透明導電膜に対してクラック、剥離などが抑えられるため好ましい。 The transparent conductive film in the present invention preferably has a curable resin layer between the transparent conductive film and the plastic film base material. The presence of the curable resin layer can increase the adhesion of the transparent conductive film and disperse the force applied to the transparent conductive film, so that cracks, peeling, wear, etc. are suppressed with respect to the transparent conductive film in the pen sliding test. Further, it is preferable because cracks and peeling are suppressed with respect to the transparent conductive film in the pen heavy pressure test.
 本発明における透明導電膜の結晶性は高過ぎず、低過ぎずという状態である(このような結晶性を半結晶性又は半結晶質と呼ぶことにする)。透明導電膜を安定して半結晶性にすることは非常に難しい。それは、非晶性から結晶性へ急激に相変化していく途中で止めた状態が半結晶性だからである。そのため、結晶性に関係のあるパラメーターである成膜雰囲気中の水分量に敏感で、特に、水素原子含有ガスに大変敏感で、少しでも成膜雰囲気中の水素原子含有ガスや水分量が少ないとほぼ完全な結晶性(高い結晶性)になり、逆に、少しでも成膜雰囲気中の水素原子含有ガスや水分量が多いと非晶性(低い結晶性)になる。 The crystallinity of the transparent conductive film in the present invention is neither too high nor too low (such crystallinity is referred to as semi-crystalline or semi-crystalline). It is very difficult to make the transparent conductive film stable and semi-crystalline. This is because the state of being stopped in the middle of the rapid phase change from amorphous to crystalline is semi-crystalline. Therefore, it is sensitive to the amount of water in the film-forming atmosphere, which is a parameter related to crystallinity, and in particular, it is very sensitive to the hydrogen atom-containing gas, and if the amount of hydrogen atom-containing gas and water in the film-forming atmosphere is small, It becomes almost completely crystalline (high crystalline), and conversely, if there is a large amount of hydrogen atom-containing gas or water content in the film-forming atmosphere, it becomes amorphous (low crystalline).
 本発明の透明導電性フィルムを得るための製造方法に特に限定はないが、例えば、以下のような製造方法を好ましく例示できる。
 透明プラスチックフィルム基材上の少なくとも一方の面に結晶性のインジウム-スズ複合酸化物の透明導電膜を成膜する方法としてはスパッタリング法が好ましく用いられる。透明導電性フィルムを高い生産性で製造するためには、フィルムロールを供給し、成膜後、フィルムロールの形状に巻き上げる所謂ロール式スパッタリング装置を使用することが好ましい。成膜雰囲気中にマスフローコントローラーで水素原子含有ガス(水素、アンモニア、水素+アルゴン混合ガスなど、水素原子が含まれているガスであれば特に限定しない。ただし、水は除く。)を下記に記載の量を導入し、さらに、スパッタリング時のフィルム温度を0℃以下にして、酸化スズを0.5~10質量%含むインジウム-スズ複合酸化物の焼結ターゲットを用い、インジウム-スズ複合酸化物の透明導電膜の厚みが10~30nmになるように調整し、インジウム-スズ複合酸化物の透明導電膜の三次元表面粗さSRaが、1~100nmである透明プラスチックフィルム上に透明導電膜を成膜することが好ましく採用され得る。スパッタリング時の成膜雰囲気中で、水素原子含有ガスが透明導電膜の結晶化を阻害する効果がある。成膜雰囲気中に水素ガスを流す場合には、(水素ガス流量)÷(不活性ガス流量+水素ガス流量)×100の値(単に水素濃度と記載する場合がある)が0.01~3.00%であることが望ましい。水素濃度は、例えば、0.01%以上2.00%であり、0.01%以上1.00%以下であってもよい。
水素濃度がこのような範囲内であることにより、例えば、ペン摺動耐久性試験ON抵抗値、ペン重加圧耐久性試験のいずれにおいても、良好な結果が導かれることに寄与し得る。
 また、不活性ガスとしては、ヘリウム、ネオン、アルゴン、クリプトン、キセノンなどが挙げられる。水素ガス以外の水素原子含有ガスを使用する場合には、水素原子含有ガスに含まれる水素原子量から、水素ガス(=水素分子)量に換算して計算すればよい。成膜雰囲気中に水素原子含有ガスをマスフローコントローラーで精密に流すときに、フィルムロールの長手方向に垂直な方向に対して、水素原子含有ガスを均一に吹き付けることができるようにガス吹き出し口を配置することにより、結晶性の高い部分や低い部分が混在するような透明導電膜になりづらく、均一な半結晶性の透明導電膜を得易いので、優れたペン摺動耐久性およびペン重加圧耐久性を併せ持つ透明導電性フィルムを好適に得ることが可能となる。成膜雰囲気中の水が多いと、透明導電膜の結晶性が低下することが知られているため、成膜雰囲気中の水分量も重要な因子である。水素原子含有ガスを使用の場合は、フィルムロールへのスパッタリング時の成膜雰囲気の不活性ガスに対する水分圧の比の中心値(最大値と最小値の中間の値)が、1.0×10-4~2.0×10-3に制御し、さらにスパッタリング時の成膜雰囲気の不活性ガスに対する水分圧の比について、成膜開始時から成膜終了時までの最大値と最小値の差が1.0×10-3以下であればフィルムの全長にわたって透明導電膜の結晶性の均一性が保たれるため、スパッタ機の排気装置としてよく使用されるロータリーポンプ、ターボ分子ポンプ、クライオポンプに加えて、下記のボンバード工程、下記のフィルムロール端面の凹凸の高低差の限定など、透明導電膜を成膜するときにフィルムから放出される水分量を少なく、フィルム全長にわたって均一な水分量を放出するようにすれば、水分量の精密制御が不要となり好ましい。ただし、不活性ガスに対する水分圧の比の中心値は、インジウム-スズ複合酸化物の透明導電膜中の酸化スズの含有率や、透明導電膜の厚みにもいくらか依存している。インジウム-スズ複合酸化物の透明導電膜中の酸化スズの添加量が多い場合や透明導電膜が薄い場合は、不活性ガスに対する水分圧の比の中心値を前記の範囲の中で低めに設定することが望ましい。逆に、インジウム-スズ複合酸化物の透明導電膜中の酸化スズの含有率が少ない場合や透明導電膜が厚い場合は、不活性ガスに対する水分圧の比の中心値を前記の範囲のなかで高めに設定することが望ましい。スパッタリング時のフィルム温度を0℃以下にして透明プラスチックフィルム上に透明導電膜を成膜することが好ましい。成膜中のフィルム温度は、走行フィルムが接触するセンターロールの温度を調節する温調機の設定温度で代用する。ここで、図5に本発明において好適に使用されるスパッタリング装置の一例の模式図を示しており、走行するフィルム1がセンターロール2の表面に部分的に接触して走行している。チムニー3を介してインジウム-スズのスパッタリングターゲット4が設置され、センターロール2上を走行するフィルム1の表面にインジウム-スズ複合酸化物の薄膜が堆積して積層される。センターロール2は図示しない温調機によって温度制御される。フィルム温度が0℃以下であれば、透明導電膜の結晶性をばらつかせるフィルムからの水、有機ガス等の不純物ガスの放出を抑制できるため、成膜開始時から成膜終了時までの透明導電膜の結晶性が均一化しやすいので好ましい。水素原子含有ガスを使用する場合は、スパッタリング時の成膜雰囲気の不活性ガスに対する水分圧の比の中心値(最大値と最小値の中間の値)は、1.0×10-4~2.0×10-3であることが望ましい。 スパッタリング時の成膜雰囲気の不活性ガスに対する水分圧の比が前記の範囲であれば、水素原子含有ガスによる透明導電膜の結晶性の阻害が効果的に作用するため望ましい。また、透明導電性フィルムの表面抵抗および全光線透過率を実用的な水準にするために、スパッタリング時に酸素ガスを添加することが望ましい。この製造方法は、透明導電膜の結晶性をばらつかせる要因の水による結晶性の影響を極力排除して、水素含有ガスにより結晶性をコントロールすることを主眼としている。
The production method for obtaining the transparent conductive film of the present invention is not particularly limited, and for example, the following production methods can be preferably exemplified.
The sputtering method is preferably used as a method for forming a transparent conductive film of a crystalline indium-tin composite oxide on at least one surface of a transparent plastic film substrate. In order to produce a transparent conductive film with high productivity, it is preferable to use a so-called roll-type sputtering apparatus in which a film roll is supplied, and after film formation, the film is wound into the shape of the film roll. The hydrogen atom-containing gas (hydrogen, ammonia, hydrogen + argon mixed gas, etc., which is not particularly limited as long as it contains hydrogen atoms, but water is excluded) is described below by the mass flow controller in the film forming atmosphere. Indium-tin composite oxide using a sintered target of indium-tin composite oxide containing 0.5 to 10% by mass of tin oxide, with the film temperature during sputtering set to 0 ° C. or lower. The thickness of the transparent conductive film is adjusted to be 10 to 30 nm, and the transparent conductive film is placed on a transparent plastic film having a three-dimensional surface roughness SRa of the transparent conductive film of indium-tin composite oxide of 1 to 100 nm. It is preferable to form a film. The hydrogen atom-containing gas has the effect of inhibiting the crystallization of the transparent conductive film in the film forming atmosphere during sputtering. When hydrogen gas is flowed in the film forming atmosphere, the value of (hydrogen gas flow rate) ÷ (inert gas flow rate + hydrogen gas flow rate) × 100 (may be simply described as hydrogen concentration) is 0.01 to 3. It is desirable that it is 0.00%. The hydrogen concentration is, for example, 0.01% or more and 2.00%, and may be 0.01% or more and 1.00% or less.
When the hydrogen concentration is within such a range, it can contribute to leading to good results in both the pen sliding durability test ON resistance value and the pen heavy pressure durability test, for example.
Examples of the inert gas include helium, neon, argon, krypton, xenon and the like. When a hydrogen atom-containing gas other than hydrogen gas is used, the amount of hydrogen atom contained in the hydrogen atom-containing gas may be converted into the amount of hydrogen gas (= hydrogen molecule) for calculation. A gas outlet is arranged so that the hydrogen atom-containing gas can be sprayed uniformly in the direction perpendicular to the longitudinal direction of the film roll when the hydrogen atom-containing gas is precisely flowed in the film formation atmosphere by the mass flow controller. By doing so, it is difficult to form a transparent conductive film in which high and low crystalline parts are mixed, and it is easy to obtain a uniform semi-crystalline transparent conductive film. Therefore, excellent pen sliding durability and pen heavy pressure are applied. It is possible to suitably obtain a transparent conductive film having durability. Since it is known that the crystallinity of the transparent conductive film deteriorates when there is a large amount of water in the film-forming atmosphere, the amount of water in the film-forming atmosphere is also an important factor. When a hydrogen atom-containing gas is used, the center value (the value between the maximum value and the minimum value) of the ratio of the water pressure to the inert gas in the film formation atmosphere at the time of sputtering onto a film roll is 1.0 × 10. Controlled to -4 to 2.0 × 10 -3 , and the difference between the maximum and minimum values of the ratio of the water pressure to the inert gas in the film formation atmosphere during sputtering from the start of film formation to the end of film formation. When is 1.0 × 10 -3 or less, the uniformity of the crystallinity of the transparent conductive film is maintained over the entire length of the film. In addition, the amount of water released from the film when forming a transparent conductive film is small, such as the following bombarding process and the following limitation of the height difference of the unevenness of the end face of the film roll, so that the amount of water is uniform over the entire length of the film. If it is released, precise control of the water content becomes unnecessary, which is preferable. However, the central value of the ratio of the water pressure to the inert gas depends somewhat on the content of tin oxide in the transparent conductive film of the indium-tin composite oxide and the thickness of the transparent conductive film. When the amount of tin oxide added to the transparent conductive film of the indium-tin composite oxide is large or the transparent conductive film is thin, the center value of the ratio of the water pressure to the inert gas is set low within the above range. It is desirable to do. On the contrary, when the content of tin oxide in the transparent conductive film of the indium-tin composite oxide is low or the transparent conductive film is thick, the center value of the ratio of the water pressure to the inert gas is within the above range. It is desirable to set it higher. It is preferable to set the film temperature during sputtering to 0 ° C. or lower to form a transparent conductive film on the transparent plastic film. The film temperature during film formation is substituted by the set temperature of the temperature controller that adjusts the temperature of the center roll that the traveling film comes into contact with. Here, FIG. 5 shows a schematic diagram of an example of a sputtering apparatus preferably used in the present invention, in which the traveling film 1 partially contacts the surface of the center roll 2 and travels. An indium-tin sputtering target 4 is installed via the chimney 3, and a thin film of indium-tin composite oxide is deposited and laminated on the surface of the film 1 running on the center roll 2. The temperature of the center roll 2 is controlled by a temperature controller (not shown). When the film temperature is 0 ° C. or lower, the release of impurity gases such as water and organic gas from the film, which disperses the crystallinity of the transparent conductive film, can be suppressed, so that the film is transparent from the start of film formation to the end of film formation. It is preferable because the crystallinity of the conductive film is easily made uniform. When a hydrogen atom-containing gas is used, the center value of the ratio of the water pressure to the inert gas in the film forming atmosphere during sputtering (the value between the maximum value and the minimum value) is 1.0 × 10 -4 to 2 It is desirable that it is 0.0 × 10 -3 . When the ratio of the water pressure to the inert gas in the film forming atmosphere during sputtering is in the above range, it is desirable because the inhibition of the crystallinity of the transparent conductive film by the hydrogen atom-containing gas effectively acts. In addition, it is desirable to add oxygen gas during sputtering in order to bring the surface resistance and total light transmittance of the transparent conductive film to a practical level. The main purpose of this manufacturing method is to eliminate the influence of water-induced crystallinity, which is a factor that disperses the crystallinity of the transparent conductive film, as much as possible, and to control the crystallinity with a hydrogen-containing gas.
 プラスチックフィルム上にインジウム-スズ複合酸化物を成膜する時の水分量の制御には、到達真空度を観測するよりも、実際に成膜時の水分量を観測することの方が以下の2つの理由で望ましい。 In order to control the water content when forming an indium-tin composite oxide on a plastic film, it is better to actually observe the water content at the time of film formation than to observe the ultimate vacuum degree. Desirable for one reason.
 その理由の1点目として、スパッタリングで、プラスチックフィルムに成膜をすると、フィルムが加熱され、フィルムから水分が放出されるので、成膜雰囲気中の水分量が増加し、到達真空度を測定したときの水分量より増加するため、到達真空度で表現するよりも成膜時の水分量で表現する方が正確である。 The first reason is that when a film is formed on a plastic film by sputtering, the film is heated and water is released from the film, so that the amount of water in the film formation atmosphere increases and the ultimate vacuum is measured. Since it increases more than the amount of water at the time, it is more accurate to express it with the amount of water at the time of film formation than to express it with the degree of ultimate vacuum.
 その理由の2点目は、大量に透明プラスチックフィルムを投入する装置での場合である。このような装置ではフィルムをフィルムロールの形態で投入する。フィルムをロールにして真空槽に投入するとロールの外層部分は水が抜けやすいが、ロールの内層部分は水が抜けにくい。到達真空度を測定するとき、フィルムロールは停止しているが、成膜時にはフィルムロールが走行するため、水を多く含むフィルムロールの内層部分が巻き出されてくるため、成膜雰囲気中の水分量が増加し、到達真空度を測定したときの水分量より増加するためである。本発明においては、成膜雰囲気中の水分量の制御に当たって、スパッタリング時の成膜雰囲気の不活性ガスに対する水分圧の比を観測することで好ましく対応することができる。 The second reason is the case of a device that puts in a large amount of transparent plastic film. In such a device, the film is charged in the form of a film roll. When the film is rolled into a vacuum chamber, water easily drains from the outer layer of the roll, but water does not easily drain from the inner layer of the roll. When measuring the ultimate vacuum, the film roll is stopped, but the film roll runs during film formation, and the inner layer of the film roll containing a large amount of water is unwound, so that the moisture in the film formation atmosphere This is because the amount increases and the amount of water increases from the amount of water when the ultimate vacuum degree is measured. In the present invention, when controlling the amount of water in the film-forming atmosphere, it is possible to preferably cope with it by observing the ratio of the water pressure to the inert gas in the film-forming atmosphere during sputtering.
 透明導電膜を成膜する前に、フィルムをボンバード工程に通すことが望ましい。ボンバード工程とは、アルゴンガスなどの不活性ガスだけ、もしくは、酸素などの反応性ガスと不活性ガスの混合ガスを流した状態で、電圧を印加し放電を行い、プラズマを発生させることである。具体的には、SUSターゲットなどでRFスパッタリングにより、フィルムをボンバードすることが望ましい。ボンバード工程によりフィルムがプラズマにさらされるため、フィルムから水や有機成分が放出し、透明導電膜を成膜するときにフィルムから放出する水や有機成分が減少するため、成膜開始時から成膜終了時までの透明導電膜の結晶性が均一化しやすいので好ましい。また、ボンバード工程により透明導電膜が接する層が活性化するため、透明導電膜の密着性が向上するため、ペン摺動耐久性やペン重加圧耐久性が向上するため望ましい。 It is desirable to pass the film through the bombard process before forming the transparent conductive film. The bombarding step is to generate plasma by applying a voltage and discharging with only an inert gas such as argon gas or a mixed gas of a reactive gas such as oxygen and an inert gas flowing. .. Specifically, it is desirable to bombard the film by RF sputtering with a SUS target or the like. Since the film is exposed to plasma by the bombarding process, water and organic components are released from the film, and the amount of water and organic components released from the film when forming a transparent conductive film is reduced, so that the film is formed from the start of film formation. It is preferable because the crystallinity of the transparent conductive film up to the end is easily made uniform. Further, since the layer in contact with the transparent conductive film is activated by the bombard process, the adhesion of the transparent conductive film is improved, which is desirable because the pen sliding durability and the pen heavy pressure durability are improved.
 透明導電膜を成膜するためのフィルムロールは、ロール端面において、最も凸の箇所と最も凹の箇所の高低差は10mm以下が好ましい。10mm以下であれば、スパッタ装置にフィルムロールを投入した時にフィルム端面からの水や有機成分の放出の仕方にムラが小さくなるため、成膜開始時から成膜終了時までの透明導電膜の結晶性が均一化しやすいので好ましい。 The film roll for forming a transparent conductive film preferably has a height difference of 10 mm or less between the most convex portion and the most concave portion on the roll end face. If it is 10 mm or less, the crystal of the transparent conductive film from the start of film formation to the end of film formation will be less uneven in the way water and organic components are discharged from the end face of the film when the film roll is put into the sputtering apparatus. It is preferable because the properties are easily made uniform.
 透明プラスチックフィルム基材上の少なくとも一方の面に結晶性のインジウム-スズ複合酸化物の透明導電膜を成膜する方法において、スパッタリング時に酸素ガスを導入することが望ましい。スパッタリング時に酸素ガスを導入すると、インジウム-スズ複合酸化物の透明導電膜の酸素の欠乏による不具合がなく、透明導電性フィルムの表面抵抗は低く、全光線透過率は高くなり好ましい。そのため、透明導電性フィルムの表面抵抗および全光線透過率を実用的な水準にするために、スパッタリング時に酸素ガスを導入することが望ましい。 なお、本発明の透明導電性フィルムの全光線透過率は70~95%が好ましい。 In the method of forming a transparent conductive film of a crystalline indium-tin composite oxide on at least one surface of a transparent plastic film substrate, it is desirable to introduce oxygen gas during sputtering. When oxygen gas is introduced during sputtering, there is no problem due to lack of oxygen in the transparent conductive film of the indium-tin composite oxide, the surface resistance of the transparent conductive film is low, and the total light transmittance is high, which is preferable. Therefore, it is desirable to introduce oxygen gas during sputtering in order to bring the surface resistance and total light transmittance of the transparent conductive film to a practical level. The total light transmittance of the transparent conductive film of the present invention is preferably 70 to 95%.
 本発明の透明導電性フィルムは、透明プラスチックフィルム基材上にインジウム-スズ複合酸化物の透明導電膜が成膜積層された後、酸素を含む雰囲気下で、80~200℃、0.1~12時間加熱処理を施されてなることが望ましい。80℃以上であると、半結晶状態にすべく結晶性をやや高める処置が容易であり、ペン摺動耐久性が向上し好ましい。200℃以下であると、透明プラスチックフィルムの平面性が確保されて好ましい。 The transparent conductive film of the present invention is formed by laminating a transparent conductive film of an indium-tin composite oxide on a transparent plastic film substrate, and then in an atmosphere containing oxygen at 80 to 200 ° C. and 0.1 to 1. It is desirable that it has been heat-treated for 12 hours. When the temperature is 80 ° C. or higher, it is easy to take measures to slightly increase the crystallinity so as to make the pen semi-crystalline state, and the pen sliding durability is improved, which is preferable. When the temperature is 200 ° C. or lower, the flatness of the transparent plastic film is ensured, which is preferable.
<透明プラスチックフィルム基材>
 本発明で用いる透明プラスチックフィルム基材とは、有機高分子をフィルム状に溶融押出し又は溶液押出しをして、必要に応じ、長手方向及び/又は幅方向に延伸、冷却、熱固定を施したフィルムであり、有機高分子としては、ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート、ポリエチレン-2,6-ナフタレート、ポリプロピレンテレフタレート、ポリブチレンテレフタレート、ナイロン6、ナイロン4、ナイロン66、ナイロン12、ポリイミド、ポリアミドイミド、ポリエーテルサルファン、ポリエーテルエーテルケトン、ポリカーボネート、ポリアリレート、セルロースプロピオネート、ポリ塩化ビニール、ポリ塩化ビニリデン、ポリビニルアルコール、ポリエーテルイミド、ポリフェニレンスルフィド、ポリフェニレンオキサイド、ポリスチレン、シンジオタクチックポリスチレン、ノルボルネン系ポリマー等が挙げられる。
<Transparent plastic film base material>
The transparent plastic film base material used in the present invention is a film obtained by melt-extruding or solution-extruding an organic polymer into a film, and if necessary, stretching, cooling, and heat-fixing in the longitudinal direction and / or the width direction. The organic polymers include polyethylene, polypropylene, polyethylene terephthalate, polyethylene-2,6-naphthalate, polypropylene terephthalate, polybutylene terephthalate, nylon 6, nylon 4, nylon 66, nylon 12, polyimide, polyamideimide, and polyether. Sulfane, polyether ether ketone, polycarbonate, polyarylate, cellulose propionate, polyvinyl chloride, polyvinylidene chloride, polyvinyl alcohol, polyetherimide, polyphenylene sulfide, polyphenylene oxide, polystyrene, syndiotactic polystyrene, norbornene polymer, etc. Can be mentioned.
 これらの有機高分子のなかで、ポリエチレンテレフタレート、ポリプロピレンテレフタレート、ポリブチレンテレフタレート、ポリエチレン-2,6-ナフタレート、シンジオタクチックポリスチレン、ノルボルネン系ポリマー、ポリカーボネート、ポリアリレート等が好適である。また、これらの有機高分子は他の有機重合体の単量体を少量共重合したり、他の有機高分子をブレンドしてもよい。 Among these organic polymers, polyethylene terephthalate, polypropylene terephthalate, polybutylene terephthalate, polyethylene-2,6-naphthalate, syndiotactic polystyrene, norbornene-based polymer, polycarbonate, polyarylate and the like are suitable. Further, these organic polymers may be copolymerized with a small amount of a monomer of another organic polymer, or may be blended with another organic polymer.
 本発明で用いる透明プラスチックフィルム基材は、本発明の目的を損なわない範囲で、前記フィルムをコロナ放電処理、グロー放電処理、火炎処理、紫外線照射処理、電子線照射処理、オゾン処理等の表面活性化処理を施してもよい。 The transparent plastic film substrate used in the present invention has surface activity of the film such as corona discharge treatment, glow discharge treatment, flame treatment, ultraviolet irradiation treatment, electron beam irradiation treatment, ozone treatment, etc., as long as the object of the present invention is not impaired. It may be subjected to a chemical discharge treatment.
 透明プラスチックフィルム基材に硬化型樹脂層を塗布すると、透明導電膜が硬化型樹脂層と強く密着することや透明導電膜にかかる力を分散することができるため、ペン摺動試験での透明導電膜に対してクラック、剥離、摩耗などが抑えられ、さらに、ペン重加圧試験での透明導電膜に対してクラック、剥離などが抑えられるため好ましい。また、硬化型樹脂層の表面を凹凸にした上に透明導電膜を成膜すると、ペン摺動試験のときに透明導電薄膜がガラスと接触するときの真の接触面積が減少するためにガラス面と透明導電膜との滑り性が良くなってペン摺動耐久性が向上することや、フィルムロールの巻取り性の向上や、アンチニュートンリング性を期待することができるが、凹凸が大きすぎると、ペン重加圧試験をしたときの表面突起の変形量が大きくなり、透明導電膜にクラック発生するため好ましくない。そのため表面凹凸として、透明導電膜の三次元表面粗さSRaをXとした場合、Xが1~100nmにすることが好ましい。また、硬化型樹脂層は透明プラスチックフィルム基材の両面に塗布しても良い。透明導電膜が形成されている面とは反対面の硬化型樹脂層の三次元表面粗さSRaをYとした場合、Yが、1~139nmにすることが好ましい。硬化型樹脂層の詳細について以下に記載する。 When the curable resin layer is applied to the transparent plastic film base material, the transparent conductive film adheres strongly to the curable resin layer and the force applied to the transparent conductive film can be dispersed. It is preferable because cracks, peeling, abrasion, etc. are suppressed with respect to the film, and cracks, peeling, etc. are suppressed with respect to the transparent conductive film in the pen heavy pressure test. Further, when a transparent conductive film is formed on the surface of the curable resin layer having an uneven surface, the true contact area when the transparent conductive thin film comes into contact with the glass during the pen sliding test is reduced, so that the glass surface is reduced. It can be expected that the slipperiness between the transparent conductive film and the transparent conductive film will be improved and the pen sliding durability will be improved, the winding property of the film roll will be improved, and the anti-Newton ring property will be improved. This is not preferable because the amount of deformation of the surface protrusions when the pen heavy pressure test is performed becomes large and cracks occur in the transparent conductive film. Therefore, when the three-dimensional surface roughness SRa of the transparent conductive film is X as the surface unevenness, it is preferable that X is 1 to 100 nm. Further, the curable resin layer may be applied to both surfaces of the transparent plastic film base material. When the three-dimensional surface roughness SRa of the curable resin layer on the surface opposite to the surface on which the transparent conductive film is formed is Y, it is preferable that Y is 1 to 139 nm. Details of the curable resin layer are described below.
 また、本発明で好ましく用いられる前記硬化型樹脂としては、加熱、紫外線照射、電子線照射等のエネルギー印加により硬化する樹脂であれば特に制限はなく、シリコーン樹脂、アクリル樹脂、メタクリル樹脂、エポキシ樹脂、メラミン樹脂、ポリエステル樹脂、ウレタン樹脂等が挙げられる。生産性の観点からは、紫外線硬化型樹脂を主成分とすることが好ましい。 The curable resin preferably used in the present invention is not particularly limited as long as it is a resin that can be cured by applying energy such as heating, ultraviolet irradiation, electron beam irradiation, etc., and is a silicone resin, an acrylic resin, a methacrylic resin, or an epoxy resin. , Melamine resin, polyester resin, urethane resin and the like. From the viewpoint of productivity, it is preferable to use an ultraviolet curable resin as a main component.
 このような紫外線硬化型樹脂としては、例えば、多価アルコールのアクリル酸又はメタクリル酸エステルのような多官能性のアクリレート樹脂、ジイソシアネート、多価アルコール及びアクリル酸又はメタクリル酸のヒドロキシアルキルエステル等から合成されるような多官能性のウレタンアクリレート樹脂等を挙げることができる。必要に応じて、これらの多官能性の樹脂に単官能性の単量体、例えば、ビニルピロリドン、メチルメタクリレート、スチレン等を加えて共重合させることができる。 Such an ultraviolet curable resin is synthesized from, for example, a polyfunctional acrylate resin such as acrylic acid or methacrylic acid ester of polyhydric alcohol, diisocyanate, polyhydric alcohol and hydroxyalkyl ester of acrylic acid or methacrylic acid. Examples thereof include a polyfunctional urethane acrylate resin and the like. If necessary, monofunctional monomers such as vinylpyrrolidone, methylmethacrylate, and styrene can be added to these polyfunctional resins to copolymerize them.
 また、透明導電性薄膜と硬化型樹脂層との付着力を向上するために、硬化型樹脂層の表面を以下に記載する手法で処理することが有効である。具体的な手法としては、カルボニル基、カルボキシル基、水酸基を増加するためにグロー又はコロナ放電を照射する放電処理法、アミノ基、水酸基、カルボニル基等の極性基を増加させるために酸又はアルカリで処理する化学薬品処理法等が挙げられる。 Further, in order to improve the adhesive force between the transparent conductive thin film and the curable resin layer, it is effective to treat the surface of the curable resin layer by the method described below. Specific methods include a discharge treatment method in which a glow or corona discharge is applied to increase the number of carbonyl groups, carboxyl groups, and hydroxyl groups, and an acid or alkali to increase polar groups such as amino groups, hydroxyl groups, and carbonyl groups. Examples include a chemical treatment method for processing.
 紫外線硬化型樹脂は、通常、光重合開始剤を添加して使用される。光重合開始剤としては、紫外線を吸収してラジカルを発生する公知の化合物を特に制限なく使用することができ、このような光重合開始剤としては、例えば、各種ベンゾイン類、フェニルケトン類、ベンゾフェノン類等を挙げることができる。光重合開始剤の添加量は、紫外線硬化型樹脂100質量部当たり通常1~5質量部とすることが好ましい。 The ultraviolet curable resin is usually used by adding a photopolymerization initiator. As the photopolymerization initiator, a known compound that absorbs ultraviolet rays to generate radicals can be used without particular limitation, and such photopolymerization initiators include, for example, various benzoins, phenylketones, and benzophenones. The kind etc. can be mentioned. The amount of the photopolymerization initiator added is usually preferably 1 to 5 parts by mass per 100 parts by mass of the ultraviolet curable resin.
 また、本発明において硬化型樹脂層には、主たる構成成分である硬化型樹脂のほかに、無機粒子や有機粒子を併用することが好ましい。硬化型樹脂に無機粒子や有機粒子を分散させることにより、硬化型樹脂表面に凹凸を形成させ、広領域における表面粗さを向上させることができる。 Further, in the present invention, it is preferable to use inorganic particles and organic particles in combination with the curable resin layer, which is the main constituent component, in the curable resin layer. By dispersing the inorganic particles and organic particles in the curable resin, unevenness can be formed on the surface of the curable resin, and the surface roughness in a wide region can be improved.
 前記の無機粒子としてはシリカなどが例示される。前記の有機粒子としてポリエステル樹脂、ポリオレフィン樹脂、ポリスチレン樹脂、ポリアミド樹脂等が例示される。 Examples of the inorganic particles include silica and the like. Examples of the organic particles include polyester resin, polyolefin resin, polystyrene resin, and polyamide resin.
 無機粒子や有機粒子以外に、主たる構成成分である硬化型樹脂のほかに、硬化型樹脂に非相溶な樹脂を併用することも好ましい。マトリックスの硬化型樹脂に非相溶な樹脂を少量併用することで、硬化型樹脂中で相分離が起こり非相溶樹脂を粒子状に分散させることができる。この非相溶樹脂の分散粒子により、硬化型樹脂表面に凹凸を形成させ、広領域における表面粗さを向上させることができる。 In addition to the inorganic particles and organic particles, it is also preferable to use a resin that is incompatible with the curable resin in combination with the curable resin that is the main component. By using a small amount of an incompatible resin in combination with the curable resin of the matrix, phase separation occurs in the curable resin and the incompatible resin can be dispersed in the form of particles. The dispersed particles of the incompatible resin can form irregularities on the surface of the curable resin and improve the surface roughness in a wide area.
 非相溶樹脂としてはポリエステル樹脂、ポリオレフィン樹脂、ポリスチレン樹脂、ポリアミド樹脂等が例示される。 Examples of the incompatible resin include polyester resin, polyolefin resin, polystyrene resin, and polyamide resin.
 ここでは一例として、透明導電膜の直下の硬化型樹脂層に無機粒子を用いる場合の配合割合を示す。紫外線硬化型樹脂100質量部当たり無機粒子0.1~20質量部であることが好ましく、さらに好ましくは0.1~15質量部、特に好ましくは0.1~12質量部である
前記無機粒子の配合量が紫外線硬化型樹脂100質量部当たり0.1~20質量部であると、硬化型樹脂層表面に形成される凸部が小さ過ぎず、効果的に三次元表面粗さを付与でき、ペン重加圧試験をしたときに表面突起の変形量が小さくなり透明導電膜のクラック発生が抑制され、高精細な映像を提供可能となり、さらに透明導電膜に多少の表面突起があるためフィルム巻取り性も保持できるため好ましい。
Here, as an example, the mixing ratio when inorganic particles are used in the curable resin layer directly under the transparent conductive film is shown. The amount of the inorganic particles is preferably 0.1 to 20 parts by mass, more preferably 0.1 to 15 parts by mass, and particularly preferably 0.1 to 12 parts by mass per 100 parts by mass of the ultraviolet curable resin. When the blending amount is 0.1 to 20 parts by mass per 100 parts by mass of the ultraviolet curable resin, the convex portions formed on the surface of the curable resin layer are not too small, and three-dimensional surface roughness can be effectively imparted. When the pen heavy pressure test is performed, the amount of deformation of the surface protrusions is reduced, cracks in the transparent conductive film are suppressed, high-definition images can be provided, and the transparent conductive film has some surface protrusions, so the film is wound. It is preferable because it can maintain the removability.
 ここでは一例として、透明導電膜が形成されている面とは反対面の硬化型樹脂層に無機粒子を用いる場合の配合割合を示す。紫外線硬化型樹脂100質量部当たり無機粒子0.1~25質量部であることが好ましく、さらに好ましくは0.1~15質量部、特に好ましくは0.1~12質量部である
前記無機粒子の配合量が紫外線硬化型樹脂100質量部当たり0.1~25質量部であると、硬化型樹脂層表面に形成される凸部が小さ過ぎず、効果的に三次元表面粗さを付与でき、高精細な映像を提供可能となり、さらに透明導電膜に多少の表面突起があるためフィルム巻取り性も保持できるため好ましい。
Here, as an example, the blending ratio when inorganic particles are used in the curable resin layer on the surface opposite to the surface on which the transparent conductive film is formed is shown. The amount of the inorganic particles is preferably 0.1 to 25 parts by mass, more preferably 0.1 to 15 parts by mass, and particularly preferably 0.1 to 12 parts by mass per 100 parts by mass of the ultraviolet curable resin. When the blending amount is 0.1 to 25 parts by mass per 100 parts by mass of the ultraviolet curable resin, the convex portions formed on the surface of the curable resin layer are not too small, and three-dimensional surface roughness can be effectively imparted. It is preferable because it is possible to provide a high-definition image and the film winding property can be maintained because the transparent conductive film has some surface protrusions.
 前記の紫外線硬化型樹脂、光重合開始剤及び、無機粒子や有機粒子や紫外線硬化型樹脂に非相溶な樹脂は、それぞれに共通の溶剤に溶解して塗布液を調製する。使用する溶剤には特に制限はなく、例えば、エチルアルコール、イソプロピルアルコール等のようなアルコール系溶剤、酢酸エチル、酢酸ブチル等のようなエステル系溶剤、ジブチルエーテル、エチレングリコールモノエチルエーテル等のようなエーテル系溶剤、メチルイソブチルケトン、シクロヘキサノン等のようなケトン系溶剤、トルエン、キシレン、ソルベントナフサ等のような芳香族炭化水素系溶剤等を単独に、あるいは混合して使用することができる。 The above-mentioned ultraviolet curable resin, photopolymerization initiator, and resin incompatible with inorganic particles, organic particles, and ultraviolet curable resin are dissolved in a common solvent to prepare a coating liquid. The solvent used is not particularly limited, and is, for example, an alcohol solvent such as ethyl alcohol and isopropyl alcohol, an ester solvent such as ethyl acetate and butyl acetate, and dibutyl ether and ethylene glycol monoethyl ether. Ketone-based solvents such as ether-based solvents, methylisobutylketone, cyclohexanone and the like, aromatic hydrocarbon-based solvents such as toluene, xylene, solventnaphtha and the like can be used alone or in combination.
 塗布液中の樹脂成分の濃度は、コーティング法に応じた粘度等を考慮して適切に選択することができる。例えば、塗布液中に紫外線硬化型樹脂、光重合開始剤及び高分子量のポリエステル樹脂の合計量が占める割合は、通常は20~80質量%である。また、この塗布液には、必要に応じて、その他の公知の添加剤、例えば、シリコーン系レベリング剤等を添加してもよい。 The concentration of the resin component in the coating liquid can be appropriately selected in consideration of the viscosity and the like according to the coating method. For example, the ratio of the total amount of the ultraviolet curable resin, the photopolymerization initiator, and the high molecular weight polyester resin in the coating liquid is usually 20 to 80% by mass. Further, other known additives such as a silicone-based leveling agent may be added to the coating liquid, if necessary.
 本発明において、調製された塗布液は透明プラスチックフィルム基材上にコーティングされる。コーティング法には特に制限はなく、バーコート法、グラビアコート法、リバースコート法等の従来から知られている方法を使用することができる。 In the present invention, the prepared coating liquid is coated on a transparent plastic film substrate. The coating method is not particularly limited, and conventionally known methods such as a bar coat method, a gravure coat method, and a reverse coat method can be used.
 コーティングされた塗布液は、次の乾燥工程で溶剤が蒸発除去される。この工程で、塗布液中で均一に溶解していた高分子量のポリエステル樹脂は粒子となって紫外線硬化型樹脂中に析出する。塗膜を乾燥した後、プラスチックフィルムに紫外線を照射することにより、紫外線硬化型樹脂が架橋・硬化して硬化型樹脂層を形成する。この硬化の工程で、高分子量のポリエステル樹脂の粒子はハードコート層中に固定されるとともに、硬化型樹脂層の表面に突起を形成し広領域における表面粗さを向上させる。 The solvent of the coated coating liquid is evaporated and removed in the next drying step. In this step, the high molecular weight polyester resin uniformly dissolved in the coating liquid becomes particles and precipitates in the ultraviolet curable resin. After the coating film is dried, the plastic film is irradiated with ultraviolet rays to crosslink and cure the ultraviolet curable resin to form a curable resin layer. In this curing step, the high-molecular-weight polyester resin particles are fixed in the hard coat layer, and protrusions are formed on the surface of the curable resin layer to improve the surface roughness in a wide area.
 また、硬化型樹脂層の厚みは0.1~15μmの範囲であることが好ましい。より好ましくは0.5~10μmの範囲であり、特に好ましくは1~8μmの範囲である。硬化型樹脂層の厚みが0.1μm以上の場合には、十分な突起が形成され好ましい。一方、15μm以下であれば、生産性がよく好ましい。 Further, the thickness of the curable resin layer is preferably in the range of 0.1 to 15 μm. It is more preferably in the range of 0.5 to 10 μm, and particularly preferably in the range of 1 to 8 μm. When the thickness of the curable resin layer is 0.1 μm or more, sufficient protrusions are formed, which is preferable. On the other hand, when it is 15 μm or less, the productivity is good and preferable.
 以下に実施例により本発明をさらに詳細に説明するが、本発明はこれらの実施例によりなんら限定されるものではない。なお、実施例における各種測定評価は下記の方法により行った。
(1)全光線透過率
 JIS-K7136-1:1997に準拠し、日本電色工業(株)製NDH-2000を用いて、全光線透過率を測定した。
Hereinafter, the present invention will be described in more detail by way of examples, but the present invention is not limited to these examples. The various measurements and evaluations in the examples were performed by the following methods.
(1) Total light transmittance The total light transmittance was measured using NDH-2000 manufactured by Nippon Denshoku Kogyo Co., Ltd. in accordance with JIS-K7136-1: 1997.
(2)表面抵抗値
 JIS-K7194:1994に準拠し、4端子法にて測定した。測定機は、(株)三菱化学アナリテック製 Lotesta AX MCP-T370を用いた。
(2) Surface resistance value Measured by the 4-terminal method in accordance with JIS-K7194: 1994. As a measuring machine, Rotesta AX MCP-T370 manufactured by Mitsubishi Chemical Analytec Co., Ltd. was used.
(3)三次元中心面平均表面粗さSRa
 三次元中心面平均表面粗さSRaは、ISO 25178に規定されるものであり、3次元表面形状測定装置バートスキャン(菱化システム社製、R5500H-M100(測定条件:waveモード、測定波長560nm、対物レンズ10倍))を用いて、三次元中心面平均表面粗さSRaを求めた。測定数を5とし、それらの平均値を求めた。ここで、nm単位の小数点第一位を四捨五入した。ここでは、透明導電膜の三次元表面粗さSRaをX、透明プラスチックフィルム基材上の透明導電膜側とは反対面の三次元表面粗さSRaをYとする。
(3) Three-dimensional center surface average surface roughness SRa
The three-dimensional center surface average surface roughness SRa is defined in ISO 25178, and is a three-dimensional surface shape measuring device Bartscan (R5500H-M100 manufactured by Ryoka System Co., Ltd. (measurement conditions: wave mode, measurement wavelength 560 nm,). The three-dimensional center plane average surface roughness SRa was obtained using an objective lens 10 times)). The number of measurements was set to 5, and the average value thereof was calculated. Here, the first decimal place in nm is rounded off. Here, the three-dimensional surface roughness SRa of the transparent conductive film is X, and the three-dimensional surface roughness SRa of the surface of the transparent plastic film substrate opposite to the transparent conductive film side is Y.
(4)結晶粒径
 透明導電性薄膜層を積層したフィルム試料片を1mm×10mmの大きさに切り出し、導電性薄膜面を外向きにして適当な樹脂ブロックの上面に貼り付けた。これをトリミングしたのち、一般的なウルトラミクロトームの技法によってフィルム表面にほぼ平行な超薄切片を作製した。
 この切片を透過型電子顕微鏡(JEOL社製、JEM-2010)で観察して著しい損傷がない導電性薄膜表面部分を選び、加速電圧200kV、直接倍率40000倍で写真撮影を行った。
 透過型電子顕微鏡下で観察される結晶粒において、すべての結晶粒の最長部を測定し、それらの測定値の平均値を結晶粒径とする。ここで、図1~4に結晶粒の最長部の測定時における最長部の認定方法に関する例を示す。即ち、最も各結晶粒の粒径を最も大きく測定できる直線の長さによって最長部を認定している。
(4) Crystal grain size A film sample piece on which a transparent conductive thin film layer was laminated was cut into a size of 1 mm × 10 mm and attached to the upper surface of an appropriate resin block with the conductive thin film surface facing outward. After trimming this, an ultrathin section almost parallel to the film surface was prepared by a general ultramicrotome technique.
This section was observed with a transmission electron microscope (JEM-2010, manufactured by JEOL Ltd.), a conductive thin film surface portion having no significant damage was selected, and photographs were taken at an acceleration voltage of 200 kV and a direct magnification of 40,000 times.
In the crystal grains observed under a transmission electron microscope, the longest part of all the crystal grains is measured, and the average value of those measured values is taken as the crystal grain size. Here, FIGS. 1 to 4 show an example of a method for certifying the longest part of a crystal grain at the time of measurement. That is, the longest part is certified by the length of the straight line that can measure the largest particle size of each crystal grain.
(5)透明導電膜の厚み(膜厚)
 透明導電性薄膜層を積層したフィルム試料片を1mm×10mmの大きさに切り出し、電子顕微鏡用エポキシ樹脂に包埋した。これをウルトラミクロトームの試料ホルダに固定し、包埋した試料片の短辺に平行な断面薄切片を作製した。次いで、この切片の薄膜の著しい損傷がない部位において、透過型電子顕微鏡(JEOL社製、JEM-2010)を用い、加速電圧200kV、明視野で観察倍率1万倍にて写真撮影を行って得られた写真から膜厚を求めた。
(5) Thickness (film thickness) of transparent conductive film
A film sample piece on which a transparent conductive thin film layer was laminated was cut into a size of 1 mm × 10 mm and embedded in an epoxy resin for an electron microscope. This was fixed to the sample holder of the ultramicrotome, and a thin section having a cross section parallel to the short side of the embedded sample piece was prepared. Next, a photograph was taken at a site where the thin film of this section was not significantly damaged, using a transmission electron microscope (JEM-2010, manufactured by JEOL) at an acceleration voltage of 200 kV and a bright field of view at an observation magnification of 10,000 times. The film thickness was calculated from the photographs taken.
(6)ペン摺動耐久性試験
 本発明に係る透明導電性フィルムを一方のパネル板として用い、他方のパネル板として、ガラス基板上にスパッタリング法で厚みが20nmのインジウム-スズ複合酸化物薄膜(酸化スズ含有量:10質量%)からなる透明導電性薄膜を用いた。この2枚のパネル板を透明導電性薄膜が対向するように、直径30μmのエポキシビーズを介して、配置しタッチパネルを作製した。次にポリアセタール製のペン(先端の形状:0.8mmR)に5.0Nの荷重をかけ、18万往復の直線摺動試験をタッチパネルに行った。この試験において、本発明に係る透明導電性フィルム面に対してペンの荷重を印加する。この時の摺動距離は30mm、摺動速度は180mm/秒とした。この摺動耐久性試験後に、ペン荷重0.8Nで摺動部を押さえた際の、ON抵抗(可動電極(フィルム電極)と固定電極とが接触した時の抵抗値)を測定した。ON抵抗は10kΩ以下であるのが望ましい。
 なお、比較例においては、本発明に係る透明導電性フィルムに代わり、各比較例におけるフィルムを使用した。
(6) Pen Sliding Durability Test The transparent conductive film according to the present invention is used as one panel plate, and the other panel plate is an indium-tin composite oxide thin film having a thickness of 20 nm on a glass substrate by a sputtering method. A transparent conductive thin film having a tin oxide content (10% by mass) was used. A touch panel was produced by arranging these two panel plates via epoxy beads having a diameter of 30 μm so that the transparent conductive thin films face each other. Next, a load of 5.0 N was applied to a polyacetal pen (tip shape: 0.8 mmR), and a linear sliding test of 180,000 reciprocations was performed on the touch panel. In this test, a pen load is applied to the transparent conductive film surface according to the present invention. At this time, the sliding distance was 30 mm and the sliding speed was 180 mm / sec. After this sliding durability test, the ON resistance (resistance value when the movable electrode (film electrode) and the fixed electrode came into contact with each other) when the sliding portion was pressed with a pen load of 0.8 N was measured. The ON resistance is preferably 10 kΩ or less.
In the comparative examples, the films in each comparative example were used instead of the transparent conductive film according to the present invention.
(7)ペン重加圧試験
 本発明に係る透明導電性フィルムを50mm×50mmにカットした透明導電性フィルムを一方のパネル板として用い、他方のパネル板として、ガラス基板上にスパッタリング法で厚みが20nmのインジウム-スズ複合酸化物薄膜(酸化スズ含有量:10質量%)からなる透明導電性薄膜を用いた。この2枚のパネル板を透明導電性薄膜が対向するように、直径30μmのエポキシビーズを介して配置し、厚みが120μmとなるように調整した両面テープでフィルム側のパネル板とガラス側のパネル板を貼り付けて、タッチパネルを作製した。両面テープの端から2.0mmの位置をポリアセタール製のペン(先端の形状0.8mmR)で35Nの荷重をかけ、両面テープと平行に10回(往復5回)の直線摺動を実施する。この試験において、本発明に係る透明導電性フィルム面に対してペンの荷重を印加する。このときの摺動距離は30mm、摺動速度は20mm/秒である。ただし、エポキシビーズがない位置で摺動を行う。摺動後に、透明導電性フィルムを取り外して、摺動部の任意の5か所の表面抵抗(4端子法)を測定し、平均値を出す。表面抵抗を測定するときは、摺動部と垂直になる方向に4端子を並べ、2端子目と3端子目の間に摺動部が来るようにする。摺動部の表面抵抗値の平均値を未摺動部の表面抵抗値(4端子法で測定)で除して、表面抵抗値の増加率を算出する。
 なお、比較例においては、本発明に係る透明導電性フィルムに代わり、各比較例におけるフィルムを使用した。
(7) Pen Heavy Pressurization Test A transparent conductive film obtained by cutting the transparent conductive film according to the present invention into a size of 50 mm × 50 mm is used as one panel plate, and the thickness of the other panel plate is increased by sputtering on a glass substrate. A transparent conductive thin film made of a 20 nm indium-tin oxide composite oxide thin film (tin oxide content: 10% by mass) was used. The two panel plates are arranged via epoxy beads having a diameter of 30 μm so that the transparent conductive thin films face each other, and the thickness is adjusted to 120 μm with double-sided tape. The panel plate on the film side and the panel on the glass side. A touch panel was made by pasting a board. A load of 35 N is applied to a position 2.0 mm from the end of the double-sided tape with a pen made of polyacetal (tip shape 0.8 mmR), and linear sliding is performed 10 times (5 reciprocations) in parallel with the double-sided tape. In this test, a pen load is applied to the transparent conductive film surface according to the present invention. At this time, the sliding distance is 30 mm and the sliding speed is 20 mm / sec. However, sliding is performed at a position where there are no epoxy beads. After sliding, the transparent conductive film is removed, the surface resistance (4 terminal method) at any 5 points of the sliding part is measured, and the average value is calculated. When measuring the surface resistance, arrange the four terminals in a direction perpendicular to the sliding portion so that the sliding portion comes between the second terminal and the third terminal. The rate of increase in the surface resistance value is calculated by dividing the average value of the surface resistance values of the sliding portion by the surface resistance value of the non-sliding portion (measured by the 4-terminal method).
In the comparative examples, the films in each comparative example were used instead of the transparent conductive film according to the present invention.
(8)透明導電膜中に含まれる酸化スズの含有率の測定
 試料を切りとって(約15cm)石英製三角フラスコにいれ、6mol/l塩酸20mlを加え、酸の揮発がないようにフィルムシールをした。室温で時々揺り動かしながら9日間放置し、透明導電膜を溶解させた。残フィルムを取り出し、透明導電膜が溶解した塩酸を測定液とした。溶解液中のIn、Snは、ICP発光分析装置(メーカー名;リガク、装置型式;CIROS-120 EOP)を用いて、検量線法により求めた。各元素の測定波長は、干渉のない、感度の高い波長を選択した。また、標準溶液は、市販のIn、Snの標準溶液を希釈して用いた。
(8) Measurement of the content of tin oxide contained in the transparent conductive film Cut a sample (about 15 cm 2 ), put it in a quartz Erlenmeyer flask, add 20 ml of 6 mol / l hydrochloric acid, and seal the film so that the acid does not volatilize. Did. It was left at room temperature for 9 days with occasional shaking to dissolve the transparent conductive film. The remaining film was taken out, and hydrochloric acid in which the transparent conductive film was dissolved was used as a measuring solution. In and Sn in the solution were determined by a calibration curve method using an ICP emission spectrometer (manufacturer name; Rigaku, device model; CIROS-120 EOP). For the measurement wavelength of each element, a wavelength with high sensitivity without interference was selected. As the standard solution, a commercially available standard solution of In and Sn was diluted and used.
(9)付着性試験
 JIS K5600-5-6:1999に準拠して実施した。
(9) Adhesion test Conducted in accordance with JIS K5600-5-6: 1999.
(10)耐屈曲性試験
 JIS K5600-5-1:1999に準拠して実施した。ただし、マンドレル直径が13mmまで割れや剥れが起こらない場合は、これ以上の耐屈曲試験は行わず、すべて13mmと記載した。
(10) Flexibility test Performed in accordance with JIS K5600-5: 1: 1999. However, if cracking or peeling does not occur up to a mandrel diameter of 13 mm, no further bending resistance test is performed, and all are described as 13 mm.
(11)透過像鮮明度試験
 JIS-K7105に準拠し、クシ幅0.125mm、0.25mm、0.5mm、1.0mm、2.0mmでの透明導電性フィルムの透過像鮮明度を測定し、各クシ幅の透過像鮮明度の総和を求めた。測定機は、スガ試験機(株)製 写像性測定器 ICM-1Tを用いた。
(11) Transmission image sharpness test According to JIS-K7105, the transmission image sharpness of the transparent conductive film at comb widths of 0.125 mm, 0.25 mm, 0.5 mm, 1.0 mm and 2.0 mm is measured. , The total of the transmission image sharpness of each comb width was calculated. As the measuring machine, the image quality measuring device ICM-1T manufactured by Suga Test Instruments Co., Ltd. was used.
 実施例、比較例において使用した透明プラスチックフィルム基材は、両面に易接着層を有する二軸配向透明PETフィルム(東洋紡社製、A4340、厚みは表1に記載)である。硬化型樹脂層として、光重合開始剤含有アクリル系樹脂(大日精化工業社製、セイカビーム(登録商標)EXF-01J)100質量部に、シリカ粒子(日産化学社製、スノーテックスZL)を表1に記載の量を配合し、溶剤としてトルエン/MEK(8/2:質量比)の混合溶媒を、固形分濃度が50質量%になるように加え、撹拌して均一に溶解し塗布液を調製した(この塗布液を以下塗布液Aと呼ぶ)。塗膜の厚みが5μmになるように、調製した塗布液を、マイヤーバーを用いて塗布した。80℃で1分間乾燥を行った後、紫外線照射装置(アイグラフィックス社製、UB042-5AM-W型)を用いて紫外線を照射(光量:300mJ/cm)し、塗膜を硬化させた。また、硬化型樹脂層は透明プラスチック基材の両面に設けた。 The transparent plastic film base material used in Examples and Comparative Examples is a biaxially oriented transparent PET film having easy-adhesive layers on both sides (manufactured by Toyobo Co., Ltd., A4340, thickness is shown in Table 1). As the curable resin layer, 100 parts by mass of a photopolymerization initiator-containing acrylic resin (Seika Beam (registered trademark) EXF-01J, manufactured by Dainichi Seika Kogyo Co., Ltd.) and silica particles (Snowtex ZL, manufactured by Nissan Chemical Co., Ltd.) are shown. Add the amount described in 1 and add a mixed solvent of toluene / MEK (8/2: mass ratio) as a solvent so that the solid content concentration becomes 50% by mass, and stir to uniformly dissolve the coating liquid. Prepared (this coating liquid is hereinafter referred to as coating liquid A). The prepared coating liquid was applied using a Meyer bar so that the thickness of the coating film was 5 μm. After drying at 80 ° C. for 1 minute, the coating film was cured by irradiating with ultraviolet rays (light intensity: 300 mJ / cm 2 ) using an ultraviolet irradiation device (UB042-5AM-W type manufactured by Eye Graphics). .. Further, the curable resin layer was provided on both sides of the transparent plastic base material.
(実施例1~8)
 各実施例水準は表1に示した条件のもと、以下の通り実施した。
 真空槽にフィルムを投入し、1.5×10-4Paまで真空引きをした。次に、酸素導入後に不活性ガスとしてアルゴン、水素含有ガスとして水素ガスを表1に記載の濃度を導入し全圧を0.6Paにした。
 インジウム-スズ複合酸化物の焼結ターゲット、あるいは酸化スズを含まない酸化インジウム焼結ターゲットに3W/cmの電力密度で電力を投入し、DCマグネトロンスパッタリング法により、透明導電膜を成膜した。膜厚についてはフィルムがターゲット上を通過するときの速度を変えて制御した。また、スパッタリング時の成膜雰囲気の不活性ガスに対する水分圧の比については、ガス分析装置(インフィコン社製、トランスペクターXPR3)を用いて測定した。各実施例水準において、スパッタリング時の成膜雰囲気の不活性ガスに対する水分圧の比を調節すべく、表1に記載されるように、ボンバード工程の有無、フィルムロール端面の凹凸高低差、フィルムが接触走行しているセンターロールの温度を制御する温調機の温媒の温度を調節した。フィルムロールへの成膜開始時から成膜終了時までの温度の最大値と最小値の丁度真ん中に当たる温度を中心値として表1に記載した。
 透明導電膜を成膜積層したフィルムは、表1に記載の熱処理をした後、測定を実施した。測定結果を表1に示した。
(Examples 1 to 8)
Each example level was carried out as follows under the conditions shown in Table 1.
The film was placed in a vacuum chamber and evacuated to 1.5 × 10 -4 Pa. Next, after the introduction of oxygen, argon was introduced as the inert gas and hydrogen gas was introduced as the hydrogen-containing gas at the concentrations shown in Table 1 to bring the total pressure to 0.6 Pa.
Power was applied to an indium-tin oxide composite oxide sintering target or an indium oxide sintered target containing no tin oxide at a power density of 3 W / cm 2 , and a transparent conductive film was formed by a DC magnetron sputtering method. The film thickness was controlled by changing the speed at which the film passed over the target. The ratio of the water pressure to the inert gas in the film formation atmosphere during sputtering was measured using a gas analyzer (Transpector XPR3 manufactured by Inficon). At each example level, in order to adjust the ratio of the water pressure to the inert gas in the film formation atmosphere during sputtering, as shown in Table 1, the presence or absence of the bombard step, the unevenness height difference of the film roll end face, and the film The temperature of the temperature medium of the temperature controller that controls the temperature of the center roll traveling in contact was adjusted. Table 1 shows the temperature at the center of the maximum and minimum temperatures from the start of film formation to the end of film formation on the film roll as the center value.
The film on which the transparent conductive film was formed and laminated was subjected to the heat treatment shown in Table 1 and then measured. The measurement results are shown in Table 1.
(比較例1~9)
 表1に記載の条件で実施例1と同様に透明導電性フィルムを作製して評価した。ただし、比較例7は硬化型樹脂層を設けていない。ただし、比較例8は硬化型樹脂層の塗膜の厚みが20μmになるように調整した。結果を表2に示した。
(Comparative Examples 1 to 9)
A transparent conductive film was prepared and evaluated in the same manner as in Example 1 under the conditions shown in Table 1. However, Comparative Example 7 does not have a curable resin layer. However, in Comparative Example 8, the thickness of the coating film of the curable resin layer was adjusted to be 20 μm. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表1A、1Bに記載のとおり、実施例1~8記載の透明導電性フィルムは、ペン摺動耐久性、ペン重加圧耐久性、高精細性に優れており、すべての特性を兼備している。しかしながら、表2に記載の通り、比較例1~9はペン摺動耐久性、ペン重加圧耐久性、高精細性をすべて満たすことができていない。 As shown in Tables 1A and 1B, the transparent conductive films shown in Examples 1 to 8 are excellent in pen sliding durability, pen heavy pressure durability, and high definition, and have all the characteristics. There is. However, as shown in Table 2, Comparative Examples 1 to 9 cannot satisfy all of the pen sliding durability, the pen heavy pressure durability, and the high definition.
 上記の通り、本発明によれば、ペン摺動耐久性、ペン重加圧耐久性、高精細性に優れた透明導電性フィルムを作製でき、これは抵抗膜式タッチパネル等の用途に極めて有用である。 As described above, according to the present invention, a transparent conductive film having excellent pen sliding durability, pen heavy pressure durability, and high definition can be produced, which is extremely useful for applications such as a resistance film type touch panel. be.
   1.フィルム
   2.センターロール
   3.チムニー
   4.インジウム-スズ複合酸化物のターゲット
 
1. 1. Film 2. Center roll 3. Chimney 4. Target of indium-tin composite oxide

Claims (5)

  1.  透明プラスチックフィルム基材上の一方の面にインジウム-スズ複合酸化物の透明導電膜が積層された透明導電性フィルムであって、以下のペン摺動耐久性試験による透明導電フィルムの透明導電膜のON抵抗が10kΩ以下であり、以下のペン重加圧試験による透明導電フィルムの透明導電膜の表面抵抗値の増加率が1.5以下であり、さらにクシ幅0.125mm、0.25mm、0.5mm、1.0mm、2.0mmでの透明導電性フィルムの透過像鮮明度の総和が250%以上500%未満である透明導電性フィルム。
    (ペン摺動耐久性試験方法)
     前記透明導電性フィルムを一方のパネル板として用い、他方のパネル板として、ガラス基板上にスパッタリング法で厚みが20nmのインジウム-スズ複合酸化物薄膜(酸化スズ含有量:10質量%)からなる透明導電性薄膜を用いる。前記2枚のパネル板を透明導電性薄膜が対向するように、直径30μmのエポキシビーズを介して配置し、厚みが170μmの両面テープでフィルム側のパネル板とガラス側のパネル板を貼り付けて、タッチパネルを作製する。次にポリアセタール製のペン(先端の形状:0.8mmR)に2.5Nの荷重をかけ、18万往復の直線摺動試験をタッチパネルに行う。この試験において、前記透明導電性フィルム面に対してペンの荷重を印加する。この時の摺動距離は30mm、摺動速度は180mm/秒とする。この摺動耐久性試験後に、ペン荷重0.8Nで摺動部を押さえた際の、ON抵抗(可動電極(フィルム電極)と固定電極とが接触した時の抵抗値)を測定する。
    (ペン重加圧試験方法)
     50mm×50mmにカットした前記透明導電性フィルムを一方のパネル板として用い、他方のパネル板として、ガラス基板上にスパッタリング法で厚みが20nmのインジウム-スズ複合酸化物薄膜(酸化スズ含有量:10質量%)からなる透明導電性薄膜を用いる。この2枚のパネル板を透明導電性薄膜が対向するように、直径30μmのエポキシビーズを介して配置し、厚みが120μmとなるように調整した両面テープでフィルム側のパネル板とガラス側のパネル板を貼り付けて、タッチパネルを作製した。両面テープの端から2.0mmの位置をポリアセタール製のペン(先端の形状0.8mmR)で35Nの荷重をかけ、両面テープと平行に10回(往復5回)の直線摺動を実施する。この試験において、前記透明導電性フィルム面に対してペンの荷重を印加する。このときの摺動距離は30mm、摺動速度は20mm/秒とする。エポキシビーズがない位置で摺動を行う。摺動後に、透明導電性フィルムを取り外して、摺動部の任意の5か所の表面抵抗(4端子法)を測定し、平均値を出す。表面抵抗を測定するときは、摺動部と垂直になる方向に4端子を並べ、2端子目と3端子目の間に摺動部が来るようにする。摺動部の表面抵抗値の平均値を未摺動部の表面抵抗値(4端子法で測定)で除して、表面抵抗値の増加率を算出する。
    A transparent conductive film in which a transparent conductive film of an indium-tin composite oxide is laminated on one surface of a transparent plastic film substrate, and is a transparent conductive film of the transparent conductive film according to the following pen sliding durability test. The ON resistance is 10 kΩ or less, the increase rate of the surface resistance value of the transparent conductive film of the transparent conductive film by the following pen heavy pressure test is 1.5 or less, and the comb widths are 0.125 mm, 0.25 mm, and 0. A transparent conductive film having a total transmission image sharpness of 2.5 mm, 1.0 mm, and 2.0 mm, which is 250% or more and less than 500%.
    (Pen sliding durability test method)
    The transparent conductive film is used as one panel plate, and the other panel plate is transparent composed of an indium-tin oxide composite oxide thin film (tin oxide content: 10% by mass) having a thickness of 20 nm on a glass substrate by a sputtering method. Use a conductive thin film. The two panel plates are arranged via epoxy beads having a diameter of 30 μm so that the transparent conductive thin films face each other, and the film side panel plate and the glass side panel plate are attached with double-sided tape having a thickness of 170 μm. , Make a touch panel. Next, a load of 2.5 N is applied to a polyacetal pen (tip shape: 0.8 mmR), and a linear sliding test of 180,000 reciprocations is performed on the touch panel. In this test, a pen load is applied to the transparent conductive film surface. At this time, the sliding distance is 30 mm and the sliding speed is 180 mm / sec. After this sliding durability test, the ON resistance (resistance value when the movable electrode (film electrode) and the fixed electrode come into contact with each other) when the sliding portion is pressed with a pen load of 0.8 N is measured.
    (Pen heavy pressure test method)
    The transparent conductive film cut to 50 mm × 50 mm is used as one panel plate, and the other panel plate is an indium-tin oxide composite oxide thin film having a thickness of 20 nm by a sputtering method on a glass substrate (tin oxide content: 10). A transparent conductive thin film consisting of (% by mass) is used. The two panel plates are arranged via epoxy beads having a diameter of 30 μm so that the transparent conductive thin films face each other, and the thickness is adjusted to 120 μm with double-sided tape. The panel plate on the film side and the panel on the glass side. A touch panel was made by pasting a board. A load of 35 N is applied to a position 2.0 mm from the end of the double-sided tape with a pen made of polyacetal (tip shape 0.8 mmR), and linear sliding is performed 10 times (5 reciprocations) in parallel with the double-sided tape. In this test, a pen load is applied to the transparent conductive film surface. At this time, the sliding distance is 30 mm and the sliding speed is 20 mm / sec. Slide in a position where there are no epoxy beads. After sliding, the transparent conductive film is removed, the surface resistance (4 terminal method) at any 5 points of the sliding part is measured, and the average value is calculated. When measuring the surface resistance, arrange the four terminals in a direction perpendicular to the sliding portion so that the sliding portion comes between the second terminal and the third terminal. The rate of increase in the surface resistance value is calculated by dividing the average value of the surface resistance values of the sliding portion by the surface resistance value of the non-sliding portion (measured by the 4-terminal method).
  2.  インジウム-スズ複合酸化物の透明導電膜の結晶粒径が10~100nmであり、インジウム-スズ複合酸化物の透明導電膜の結晶化度が20~80%であり、インジウム-スズ複合酸化物の透明導電膜が、酸化スズを0.5~10質量%含み、インジウム-スズ複合酸化物の透明導電膜の厚みが、10~30nmであり、インジウム-スズ複合酸化物の透明導電膜の三次元表面粗さSRaをXとした場合、Xが1~100nmであり、さらに透明プラスチックフィルム基材上の透明導電膜側とは反対面の三次元表面粗さSRaをYとした場合、(X+Y1/3が、140nm以下である請求項1に記載の透明導電性フィルム。 The crystal grain size of the transparent conductive film of the indium-tin composite oxide is 10 to 100 nm, the crystallinity of the transparent conductive film of the indium-tin composite oxide is 20 to 80%, and the crystal size of the transparent conductive film of the indium-tin oxide is 20 to 80%. The transparent conductive film contains 0.5 to 10% by mass of tin oxide, the thickness of the transparent conductive film of the indium-tin composite oxide is 10 to 30 nm, and the thickness of the transparent conductive film of the indium-tin composite oxide is three-dimensional. When the surface roughness SRa is X, X is 1 to 100 nm, and when the three-dimensional surface roughness SRa on the transparent conductive film substrate opposite to the transparent conductive film side is Y, (X 3 ). + Y 3 ) The transparent conductive film according to claim 1, wherein 1/3 is 140 nm or less.
  3.  透明導電膜の表面において付着性試験(JIS K5600-5-6:1999)を実施しても透明導電膜が剥離せず、 透明導電性フィルムのインジウム-スズ複合酸化物の透明導電膜側において耐屈曲性試験(JIS K5600-5-1:1999)をし、10倍のルーペで屈曲部を観察した時に割れや剥れが起こるマンドレル直径が20mmより小さい請求項1又は2に記載の透明導電性フィルム。 Even if the adhesion test (JIS K5600-5-6: 1999) was performed on the surface of the transparent conductive film, the transparent conductive film did not peel off, and the transparent conductive film was resistant to the transparent conductive film side of the indium-tin composite oxide. The transparent conductivity according to claim 1 or 2, wherein the mandrel diameter is smaller than 20 mm, in which cracking or peeling occurs when a bending portion is observed by a bending test (JIS K5600-5: 1: 1999) with a 10-fold loupe. the film.
  4.  透明導電性フィルムの厚みが100~250μmである請求項1~3のいずれかに記載の透明導電性フィルム The transparent conductive film according to any one of claims 1 to 3, wherein the thickness of the transparent conductive film is 100 to 250 μm.
  5.  インジウム-スズ複合酸化物の透明導電膜と透明プラスチックフィルム基材の間に硬化型樹脂層を有する請求項1~4のいずれかに記載の透明導電性フィルム。
     
    The transparent conductive film according to any one of claims 1 to 4, which has a curable resin layer between the transparent conductive film of the indium-tin composite oxide and the transparent plastic film substrate.
PCT/JP2021/029153 2020-09-29 2021-08-05 Transparent conductive film WO2022070609A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180044765.3A CN115769315A (en) 2020-09-29 2021-08-05 Transparent conductive film
JP2021549297A JPWO2022070609A1 (en) 2020-09-29 2021-08-05

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-163453 2020-09-29
JP2020163453 2020-09-29

Publications (1)

Publication Number Publication Date
WO2022070609A1 true WO2022070609A1 (en) 2022-04-07

Family

ID=80951347

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/029153 WO2022070609A1 (en) 2020-09-29 2021-08-05 Transparent conductive film

Country Status (4)

Country Link
JP (1) JPWO2022070609A1 (en)
CN (1) CN115769315A (en)
TW (1) TW202219989A (en)
WO (1) WO2022070609A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002050230A (en) * 2000-08-03 2002-02-15 Toyobo Co Ltd Transparent conductive film, transparent conductive sheet and touch panel
JP2002343150A (en) * 2001-05-22 2002-11-29 Mitsui Chemicals Inc Transparent electric conductive film and its manufacturing method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002050230A (en) * 2000-08-03 2002-02-15 Toyobo Co Ltd Transparent conductive film, transparent conductive sheet and touch panel
JP2002343150A (en) * 2001-05-22 2002-11-29 Mitsui Chemicals Inc Transparent electric conductive film and its manufacturing method

Also Published As

Publication number Publication date
JPWO2022070609A1 (en) 2022-04-07
CN115769315A (en) 2023-03-07
TW202219989A (en) 2022-05-16

Similar Documents

Publication Publication Date Title
JP6753361B2 (en) Transparent conductive film
JP6769345B2 (en) Transparent conductive film
WO2010035598A1 (en) Transparent conductive film and touch panel
WO2020196015A1 (en) Transparent electroconductive film
JP2023038265A (en) Transparent electroconductive film
JP5481992B2 (en) Transparent conductive film
JP2010080290A (en) Transparent conductive film
WO2021200709A1 (en) Transparent conductive film
JP7272488B2 (en) transparent conductive film
WO2022049898A1 (en) Transparent conductive film
WO2022070609A1 (en) Transparent conductive film
WO2022270356A1 (en) Transparent conductive film
WO2022070610A1 (en) Transparent conductive film
JP5509683B2 (en) Transparent conductive film
JP6137433B1 (en) Transparent conductive film
WO2022038900A1 (en) Transparent conductive film
WO2023157563A1 (en) Transparent conductive film

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021549297

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21874912

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21874912

Country of ref document: EP

Kind code of ref document: A1