WO2022070517A1 - Inkjet ink and image recording method - Google Patents

Inkjet ink and image recording method Download PDF

Info

Publication number
WO2022070517A1
WO2022070517A1 PCT/JP2021/022076 JP2021022076W WO2022070517A1 WO 2022070517 A1 WO2022070517 A1 WO 2022070517A1 JP 2021022076 W JP2021022076 W JP 2021022076W WO 2022070517 A1 WO2022070517 A1 WO 2022070517A1
Authority
WO
WIPO (PCT)
Prior art keywords
ink
silica particles
meth
acrylate
image
Prior art date
Application number
PCT/JP2021/022076
Other languages
French (fr)
Japanese (ja)
Inventor
健次郎 荒木
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to JP2022553460A priority Critical patent/JP7443552B2/en
Publication of WO2022070517A1 publication Critical patent/WO2022070517A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M5/00Duplicating or marking methods; Sheet materials for use therein
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/10Printing inks based on artificial resins
    • C09D11/101Inks specially adapted for printing processes involving curing by wave energy or particle radiation, e.g. with UV-curing following the printing
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/30Inkjet printing inks

Definitions

  • This disclosure relates to inkjet inks and image recording methods.
  • an image recording method in which ink is applied onto a recording medium and the applied ink is irradiated with active energy rays such as ultraviolet rays to cure the ink to obtain an image.
  • active energy rays such as ultraviolet rays
  • Japanese Patent Application Laid-Open No. 2018-024757 contains a photopolymerizable compound, a photopolymerization initiator, and an inorganic filler having an average particle size of 1 nm to 200 nm in an amount of 0.05% by mass to 5.0% by mass in the composition.
  • a clear ink composition for photocurable ink jet printing having a visible light transmittance of 30% or more is described.
  • Japanese Patent Application Laid-Open No. 2019-162742 describes an active energy ray-curable composition containing fine particles having an average primary particle size of 100 nm to 200 nm.
  • Japanese Patent Application Laid-Open No. 2020-62758 contains an ultraviolet curable ink containing 1% by mass to 10% by mass of silica particles having an average primary particle size of 7 nm to 16 nm whose surface is surface-modified with dimethylsilyl or dimethylpolysiloxane. Have been described.
  • images recorded using active energy ray-curable ink may have strong gloss. Due to the strong gloss, the above image may have a relief feeling or may be conspicuous. Therefore, from the viewpoint of reducing the relief feeling of the image, making the image inconspicuous, and the like, it may be required that the gloss is suppressed as the quality of the image recorded by using the active energy ray-curable ink. .. However, if the ink contains a gloss suppressing component in order to suppress the gloss, the ejection property may be deteriorated when the ink is ejected by the inkjet recording method.
  • an inkjet ink capable of recording an image having excellent ejection properties and suppressed gloss, and an image recording method using the inkjet ink.
  • the disclosure includes the following aspects: ⁇ 1> An inkjet ink containing a radically polymerizable monomer and silica particles, wherein the silica particles have an average primary particle size of 22 nm or more and less than 100 nm, and a degree of hydrophobicity of 50 or more.
  • the silica particles are described in ⁇ 1> or ⁇ 2>, wherein the product of the average primary particle size when the unit is nm and the specific surface area when the unit is m 2 / g is 2400 or less. Inkjet ink.
  • ⁇ 4> The inkjet ink according to any one of ⁇ 1> to ⁇ 3>, wherein the silica particles have a degree of hydrophobicity of 70 or more.
  • ⁇ 5> The inkjet ink according to any one of ⁇ 1> to ⁇ 4>, wherein the content of the silica particles is 1% by mass to 10% by mass with respect to the total amount of the inkjet ink.
  • the radically polymerizable monomer contains at least one of a monofunctional radically polymerizable monomer and a bifunctional radically polymerizable monomer, and the total content of the monofunctional radically polymerizable monomer and the bifunctional radically polymerizable monomer is the amount of the inkjet ink.
  • the inkjet ink according to any one of ⁇ 1> to ⁇ 5> which is 50% by mass or more with respect to the total amount.
  • ⁇ 7> The inkjet ink according to any one of ⁇ 1> to ⁇ 6>, wherein the radically polymerizable monomer contains a radically polymerizable monomer having a ClogP value of 2 or more.
  • ⁇ 8> The inkjet ink according to ⁇ 7>, wherein the mass ratio of the content of the radically polymerizable monomer having a ClogP value of 2 or more to the content of the silica particles is 6 to 50.
  • ⁇ 9> The inkjet ink according to any one of ⁇ 1> to ⁇ 8>, wherein the radically polymerizable monomer contains an N-vinyl compound.
  • ⁇ 10> The inkjet ink according to ⁇ 9>, wherein the mass ratio of the content of the N-vinyl compound to the content of the silica particles is 1 to 8.
  • ⁇ 11> The inkjet ink according to any one of ⁇ 1> to ⁇ 10>, wherein the radically polymerizable monomer contains a vinyl ether compound.
  • ⁇ 12> A step of applying the inkjet ink according to any one of ⁇ 1> to ⁇ 11> onto a recording medium by an inkjet recording method to obtain an ink film, and irradiating the ink film with active energy rays.
  • Process and Image recording method including.
  • an inkjet ink capable of recording an image having excellent ejection properties and suppressed gloss, and an image recording method using the inkjet ink.
  • the numerical range represented by using “-" means a range including the numerical values before and after "-" as the lower limit value and the upper limit value.
  • the amount of each component in the composition means the total amount of the plurality of substances present in the composition when a plurality of substances corresponding to each component are present in the composition, unless otherwise specified. do.
  • the upper limit value or the lower limit value described in one numerical range may be replaced with the upper limit value or the lower limit value of another numerical range described stepwise. Further, it may be replaced with the value shown in the embodiment.
  • the term "process” is included in this term not only as an independent process but also as long as the intended purpose of the process is achieved even if it cannot be clearly distinguished from other processes.
  • the combination of preferred embodiments is a more preferred embodiment.
  • "light” is a concept including active energy rays such as ⁇ -rays, ⁇ -rays, electron rays, ultraviolet rays, and visible rays.
  • ultraviolet rays may be referred to as "UV (Ultra Violet) light".
  • (meth) acrylate is a concept including both acrylate and methacrylate
  • (meth) acryloyl group is a concept including both acryloyl group and methacrylic acid group
  • (meth) acrylate is included.
  • “Acrylic acid” is a concept that includes both acrylic acid and methacrylic acid.
  • the "image” means the entire film formed by using ink
  • the “image recording” means the formation of an image (that is, a film).
  • image means the formation of an image (that is, a film).
  • image also includes a solid image.
  • the inkjet ink of the present disclosure (hereinafter, simply referred to as “ink”) contains a radically polymerizable monomer and silica particles, and the silica particles have an average primary particle size of 22 nm or more and less than 100 nm, and have a degree of hydrophobicity of 50. That is all.
  • the ink of the present disclosure it is possible to record an image having excellent ejection properties and suppressed gloss.
  • the reason why the above effect is achieved is presumed as follows.
  • ink is applied onto a recording medium, and active energy rays are applied to the ink applied onto the recording medium (hereinafter, also referred to as “ink film”). It is done by irradiating.
  • the ink film is irradiated with active energy rays, the radically polymerizable monomers in the ink film are polymerized and the ink film is cured. As a result, an image that is a cured ink film is obtained.
  • the ink of the present disclosure can be said to be an active energy ray irradiation type ink.
  • the degree of hydrophobicity of silica particles is 50 or more. Therefore, the silica particles tend to be present on the surface of the ink film. Further, the average primary particle size of the silica particles is 22 nm or more and less than 100 nm. When silica particles of such a size gather on the surface of the ink film, it is considered that the aggregated silica particles function as a matting agent. It is considered that the gloss of the image is suppressed by curing the ink film with the silica particles gathered on the surface of the ink film.
  • the average primary particle size of the silica particles is 22 nm or more, the increase in the viscosity of the ink is suppressed without increasing the surface area of the silica particles. As a result, the ink of the present disclosure is considered to be excellent in ejection property.
  • the average primary particle size of the silica particles is less than 100 nm, the silica particles are less likely to settle, so that the ink of the present disclosure is considered to have excellent ejection properties.
  • Japanese Patent Application Laid-Open No. 2018-024757 discloses an ink containing silica particles having an average particle size of 20 nm. This average particle size means a dispersed particle size, and the primary particle size is considered to be 20 nm or less. Further, Japanese Patent Application Laid-Open No. 2020-62758 contains an ultraviolet curable ink containing 1% by mass to 10% by mass of silica particles having an average primary particle size of 7 nm to 16 nm whose surface is surface-modified with dimethylsilyl or dimethylpolysiloxane. Have been described.
  • the inks disclosed in JP-A-2018-024757 and JP-A-2020-626758 since the average primary particle size of the silica particles is small, the ink has a high viscosity, and as a result, good ejection properties cannot be obtained. it is conceivable that. Further, it is considered that the silica particles do not function as a matting agent because the average primary particle size is not in an appropriate range. Therefore, it is considered that the inks disclosed in JP-A-2018-024757 and JP-A-2020-062758 do not have the effect of suppressing gloss.
  • Japanese Patent Application Laid-Open No. 2019-162742 describes an active energy ray-curable composition containing silica particles having an average primary particle size of 100 nm to 200 nm.
  • the silica particles do not function as a matting agent because the average primary particle size is not in an appropriate range. Therefore, it is considered that the composition disclosed in JP-A-2019-162742 does not have the effect of suppressing gloss.
  • the ink of the present disclosure contains at least one type of silica particles.
  • the degree of hydrophobicity of the silica particles contained in the ink of the present disclosure is 50 or more. That is, the silica particles contained in the ink of the present disclosure are hydrophobic silica particles. Silica particles having a degree of hydrophobicity of 50 or more are likely to be present on the surface of the ink film, so that the gloss of the image is suppressed. Further, the silica particles having a degree of hydrophobicity of 50 or more act as a surfactant in the ink and reduce the surface tension of the ink. When the surface tension of the ink is small, the drip interference is suppressed and the image quality (particularly the graininess) is improved.
  • the degree of hydrophobicity of the silica particles is more preferably 70 or more from the viewpoint of further suppressing the gloss of the obtained image and further improving the image quality.
  • the upper limit of the degree of hydrophobicity of the silica particles is not particularly limited, and is, for example, 99.
  • the degree of hydrophobicity of the silica particles is measured by the following method.
  • the average primary particle size of the silica particles contained in the ink of the present disclosure is 22 nm or more and less than 100 nm.
  • the average primary particle size of the silica particles is 22 nm or more, the increase in the viscosity of the ink is suppressed without increasing the surface area of the silica particles. As a result, the ink of the present disclosure is excellent in ejection property.
  • the average primary particle size of the silica particles is less than 100 nm, the silica particles are less likely to settle, so that the ink of the present disclosure is excellent in ejection property.
  • the average primary particle size of the silica particles is 22 nm or more and less than 100 nm, the silica particles collected on the surface of the ink film function as a matting agent, and the gloss of the image is suppressed.
  • the average primary particle size of the silica particles is preferably 40 nm to 80 nm, more preferably 50 nm to 80 nm, from the viewpoint of further suppressing the gloss of the obtained image and further improving the ejection property.
  • the average primary particle size of silica particles is a value measured using a transmission electron microscope (TEM).
  • the average primary particle size of the silica particles can be measured, for example, using a transmission electron microscope (product name "1200EX") manufactured by JEOL Ltd.
  • the specific measurement method is as follows.
  • Ink diluted 1,000 times was dropped onto a Cu200 mesh (manufactured by JEOL Ltd.) to which a carbon film was attached and dried. Then, from the image magnified 100,000 times by TEM, the equivalent circle diameter of 300 independent particles that do not overlap is measured. The average value of the equivalent circle diameter obtained by the measurement is defined as the average primary particle size.
  • the average secondary particle size of the silica particles contained in the ink of the present disclosure is preferably 200 nm to 800 nm, and more preferably 400 nm to 800 nm.
  • the average secondary particle size of the silica particles is 200 nm to 800 nm, the presence of the silica particles on the surface of the ink film has a high effect of suppressing the gloss of the image.
  • the secondary particle size means the size of the silica particles dispersed in the ink, and can be said to be the dispersed particle size.
  • the silica particles may exist in the state of primary particles in the ink, or may exist in a state in which a plurality of primary particles are aggregated and aggregated. In the former case, the primary particle size and the secondary particle size have almost the same value.
  • the average secondary particle size of the silica particles is a value measured using a particle size distribution measuring device.
  • the average secondary particle size of the silica particles can be measured, for example, by using a particle size distribution measuring device (product name “LUMiSizer”) manufactured by LUM.
  • the specific measurement method is as follows.
  • Centrifugation is performed for 16 hours under the condition of a rotation speed of 3000 using a particle size distribution measuring device (product name "LUMiSizer") manufactured by LUM.
  • the average value of the dispersed particle size obtained by the measurement is defined as the average secondary particle size.
  • the silica particles contained in the ink of the present disclosure preferably have a product of the average primary particle size when the unit is nm and the specific surface area when the unit is m 2 / g is 2400 or less, and preferably 1800 or less. Is more preferable.
  • the lower limit of the product is not particularly limited, and is, for example, 1000.
  • the smaller the average primary particle size the higher the specific surface area.
  • the higher the degree of agglomeration the lower the specific surface area. Therefore, the fact that the product of the average primary particle size and the specific surface area is 2400 or less means that the primary particles aggregate to some extent to form secondary particles. Therefore, when the product of the average primary particle size and the specific surface area of the silica particles is 2400 or less, the gloss of the image is suppressed.
  • the specific surface area of the silica particles is a value measured by the BET method.
  • the specific surface area of the silica particles can be measured, for example, using a rapid BET specific surface area measuring device (product name "BELSORP MR1") manufactured by Microtrac MRB.
  • the specific measurement method is as follows.
  • the specific surface area of the obtained silica particles is calculated from the filling amount of nitrogen gas using a rapid BET specific surface area measuring device.
  • the silica particles may be fumed silica or colloidal silica as long as the average primary particle size is 22 nm or more and less than 100 nm.
  • colloidal silica is monodisperse and does not easily aggregate. That is, the average primary particle size and the average secondary particle size tend to be almost the same value.
  • fumed silica primary particles tend to be loosely aggregated to form secondary particles.
  • the average secondary particle size of the silica particles is preferably 200 nm to 800 nm from the viewpoint of suppressing the gloss of the image. Therefore, the silica particles are preferably fumed silica.
  • the surface structure of the silica particles is not particularly limited, but from the viewpoint of making the degree of hydrophobicity 50 or more, the silica particles preferably have a polydimethylsiloxane structure or an alkyl group, and preferably have a polydimethylsiloxane structure.
  • the surface structure of the silica particles can be analyzed using a pyrolysis gas chromatograph, for example, QP2010 Ultra manufactured by Shimadzu Corporation.
  • Silica particles may be commercially available products.
  • Commercially available products include, for example, VP RY 40S, VP RX 40S (above, manufactured by Ebonic), Aerosil RY50, Aerosil RY51, Aerosil NY50, Aerosil RX50, Aerosil RX50, Aerosil NAX50, Aerosil ASilASilA
  • the content of the silica particles is not particularly limited, but is preferably 0.5% by mass to 15% by mass, more preferably 1% by mass to 10% by mass, and 2.5% by mass with respect to the total amount of the ink. It is more preferably% to 8% by mass.
  • the content of the silica particles is 0.5% by mass or more, the gloss of the image is further suppressed.
  • the content of the silica particles is 15% by mass or less, the ejection property is further improved.
  • the ink of the present disclosure contains at least one radically polymerizable monomer.
  • the radically polymerizable monomer means a monomer having at least one radically polymerizable group in one molecule.
  • the radically polymerizable group is preferably an ethylenically unsaturated group from the viewpoint of curability.
  • the molecular weight of the radically polymerizable monomer is preferably 100 to 400.
  • the molecular weight of the radically polymerizable monomer can be calculated based on the type and number of atoms constituting the radically polymerizable monomer.
  • the radically polymerizable monomer includes a monofunctional radically polymerizable monomer (hereinafter referred to as "monofunctional monomer”), a bifunctional radically polymerizable monomer (hereinafter referred to as “bifunctional monomer”), and a trifunctional or higher functional radically polymerizable monomer (hereinafter referred to as “bifunctional monomer”).
  • monofunctional radically polymerizable monomer hereinafter referred to as "monofunctional monomer”
  • bifunctional radically polymerizable monomer hereinafter referred to as "bifunctional monomer”
  • a trifunctional or higher functional radically polymerizable monomer hereinafter, it may be any of (referred to as "monomer having trifunctionality or higher”).
  • the radically polymerizable monomer may be a combination containing two or more of a monofunctional monomer, a bifunctional monomer, and a trifunctional or higher functional monomer.
  • the radically polymerizable monomer contained in the ink of the present disclosure preferably contains at least one of a monofunctional monomer and a bifunctional monomer.
  • the total content of the monofunctional monomer and the bifunctional monomer is preferably 50% by mass or more, more preferably 55% by mass or more, and more preferably 60% by mass or more with respect to the total amount of the ink. Is even more preferable.
  • the upper limit of the total content of the monofunctional monomer and the bifunctional monomer is not particularly limited, but is, for example, 80% by mass.
  • the radically polymerizable monomer preferably contains a bifunctional monomer, and more preferably contains a monofunctional monomer and a bifunctional monomer.
  • the ink contains a bifunctional monomer, silica particles are easily extruded onto the surface of the ink film during polymerization, so that the gloss of the obtained image is further suppressed.
  • the content of the bifunctional monomer is preferably 5% by mass to 80% by mass, and preferably 10% by mass to 80% by mass, based on the total amount of the ink. More preferably, it is more preferably 20% by mass to 80% by mass.
  • the mass ratio of the content of the bifunctional monomer to the content of the silica particles is preferably 1 to 100, more preferably 3 to 50. It is more preferably 4 to 20.
  • the content of the radically polymerizable monomer is preferably 50% by mass or more, more preferably 60% by mass or more, and 65% by mass or more with respect to the total amount of the ink. It is more preferable that the amount is 70% by mass or more, and it is particularly preferable that the amount is 70% by mass or more.
  • the upper limit of the content of the radically polymerizable monomer is not particularly limited, but is, for example, 80% by mass.
  • monofunctional monomer examples include monofunctional (meth) acrylate, monofunctional (meth) acrylamide, monofunctional aromatic vinyl compound, monofunctional vinyl ether, and monofunctional N-vinyl compound.
  • Examples of the monofunctional (meth) acrylate include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, n-butyl (meth) acrylate, hexyl (meth) acrylate, and 2-ethylhexyl (meth) acrylate.
  • Tert-octyl (meth) acrylate isoamyl (meth) acrylate, decyl (meth) acrylate, isodecyl (meth) acrylate, lauryl (meth) acrylate, stearyl (meth) acrylate, isostearyl (meth) acrylate, cyclohexyl (meth) Acrylate, 4-n-butylcyclohexyl (meth) acrylate, 4-tert-butylcyclohexyl (meth) acrylate, bornyl (meth) acrylate, norbornyl (meth) acrylate, isobornyl (meth) acrylate, adamantyl (meth) acrylate, 2 -Ethylhexyl diglycol (meth) acrylate, butoxyethyl (meth) acrylate, 2-chloroethyl (meth) acrylate, 4-bromo
  • Meta) acrylate EO-modified nonylphenol (meth) acrylate, propylene oxide-modified (hereinafter referred to as PO-modified) nonylphenol (meth) acrylate, EO-modified -2-ethylhexyl (meth) acrylate, dicyclopentenyl (meth) acrylate, dicyclo Examples thereof include pentenyloxyethyl (meth) acrylate, dicyclopentanyl (meth) acrylate, (3-ethyl-3-oxetanylmethyl) (meth) acrylate, and phenoxyethylene glycol (meth) acrylate.
  • Examples of the monofunctional (meth) acrylamide include (meth) acrylamide, N-methyl (meth) acrylamide, N-ethyl (meth) acrylamide, N-propyl (meth) acrylamide, and Nn-butyl (meth) acrylamide.
  • Examples include (meth) acrylamide and (meth) acryloylmorpholin.
  • Examples of the monofunctional aromatic vinyl compound include styrene, dimethylstyrene, trimethylstyrene, isopropylstyrene, chloromethylstyrene, methoxystyrene, acetoxystyrene, chlorostyrene, dichlorostyrene, bromostyrene, vinyl benzoic acid methyl ester, and 3-methyl.
  • Styrene 4-methylstyrene, 3-ethylstyrene, 4-ethylstyrene, 3-propylstyrene, 4-propylstyrene, 3-butylstyrene, 4-butylstyrene, 3-hexylstyrene, 4-hexylstyrene,3-octyl Styrene, 4-octyl styrene, 3- (2-ethylhexyl) styrene, 4- (2-ethylhexyl) styrene, allyl styrene, isopropenyl styrene, butenyl styrene, octenyl styrene, 4-t-butoxycarbonyl styrene, and 4 -T-butoxystyrene can be mentioned.
  • Examples of the monofunctional vinyl ether include methyl vinyl ether, ethyl vinyl ether, propyl vinyl ether, n-butyl vinyl ether, t-butyl vinyl ether, 2-ethylhexyl vinyl ether, n-nonyl vinyl ether, lauryl vinyl ether, cyclohexyl vinyl ether, cyclohexylmethyl vinyl ether and 4-methyl.
  • Examples of the monofunctional N-vinyl compound include N-vinylcaprolactam, N-vinylpyrrolidone, N-vinyloxazolidinone, and N-vinyl-5-methyloxazolidinone.
  • bifunctional monomer examples include a bifunctional (meth) acrylate, a bifunctional vinyl ether, and a bifunctional monomer containing a vinyl ether group and a (meth) acryloyl group.
  • bifunctional (meth) acrylate examples include ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, triethylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate, and dipropylene glycol di (meth).
  • bifunctional vinyl ether examples include 1,4-butanediol divinyl ether (ClogP value: 1.32), ethylene glycol divinyl ether (ClogP value: 0.66), and diethylene glycol divinyl ether (ClogP value: 0.47). Triethylene glycol divinyl ether (ClogP value: 0.29), polyethylene glycol divinyl ether (ClogP value: 0.29 or less), propylene glycol divinyl ether (ClogP value: 0.97), butylene glycol divinyl ether (ClogP value: 1).
  • bifunctional monomer containing a vinyl ether group and a (meth) acryloyl group examples include 2- (2-vinyloxyethoxy) ethyl (meth) acrylate.
  • trifunctional or higher functional monomer examples include trifunctional or higher functional (meth) acrylates and trifunctional or higher functional vinyl ethers.
  • trifunctional or higher functional (meth) acrylate examples include trimethylolethanetri (meth) acrylate, trimethylolpropane tri (meth) acrylate, EO-modified trimethylolpropane tri (meth) acrylate, and PO-modified trimethylolpropane tri (meth) acrylate.
  • trifunctional or higher functional vinyl ether examples include trimethylolethane trivinyl ether, trimethylolpropane trivinyl ether, trimethylolpropane tetravinyl ether, glycerin trivinyl ether, pentaerythritol tetravinyl ether, dipentaerythritol pentavinyl ether, dipentaerythritol hexavinyl ether, and EO.
  • Modified trimethylolpropane trivinyl ether PO-modified trimethylolpropane trivinyl ether, EO-modified dimethylolpropane tetravinyl ether, PO-modified dimethylolpropane tetravinyl ether, EO-modified pentaerythritol tetravinyl ether, PO-modified pentaerythritol tetravinyl ether, EO-modified dipentaerythritol Hexavinyl ether and PO-modified dipentaerythritol hexavinyl ether can be mentioned.
  • urethane (meth) acrylate examples include urethane (meth) acrylate, which is a reaction product of a bifunctional isocyanate compound and a hydroxyl group-containing (meth) acrylate.
  • bifunctional isocyanate compound examples include methylene diisocyanate, dimethylene diisocyanate, trimethylene diisocyanate, tetramethylene diisocyanate, pentamethylene diisocyanate, hexamethylene diisocyanate, dipropylether diisocyanate, 2,2-dimethylpentane diisocyanate, and 3-methoxyhexanediisocyanis.
  • Examples of the hydroxyl group-containing (meth) acrylate include 2-hydroxyethyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, and 3-hydroxy.
  • Examples thereof include butyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, phenylglycidyl ether (meth) acrylate, pentaerythritol (meth) triacrylate, and dipentaerythritol penta (meth) acrylate.
  • Examples of the epoxy (meth) acrylate include a reaction product of (meth) acrylic acid and an epoxy resin.
  • epoxy resin examples include bisphenol A type epoxy resin and cresol novolac type epoxy resin.
  • the radically polymerizable monomer preferably contains a radically polymerizable monomer having a ClogP value of 2 or more.
  • the ink contains two or more kinds of radically polymerizable monomers, it is preferable that at least one of the two or more kinds of radically polymerizable monomers is a radically polymerizable monomer having a LogP value of 2 or more.
  • the ink contains a radically polymerizable monomer having a LogP value of 2 or more, hydrophobic interaction is likely to work with silica particles having a degree of hydrophobicity of 50 or more. As a result, the viscosity of the ink is lowered and the ejection property is improved.
  • the mass ratio of the content of the radically polymerizable monomer having a ClogP value of 2 or more to the content of the silica particles is 5 to 100. It is preferably 6 to 50, more preferably 7 to 30, and even more preferably 7 to 30.
  • Examples of the radically polymerizable monomer having a ClogP value of 2 or more include dipropylene glycol diacrylate (ClogP value: 2.04), tripropylene glycol diacrylate (ClogP value: 2.17), and phenoxyethyl acrylate (ClogP value: 2.04). 2.56), 3-methylpentanediol diacrylate (ClogP value: 2.89), isobornyl acrylate (ClogP value: 4.66), tricyclodecanedimethanol diacrylate (ClogP value: 4.66), Examples thereof include nonanediol diacrylate (ClogP value: 4.66) and lauryl acrylate (ClogP value: 6.62).
  • the ClogP value is calculated using the fragment method.
  • Examples of the calculation software using the fragment method include ChemDrawProfessional16.
  • the radically polymerizable monomer preferably contains an N-vinyl compound.
  • the N-vinyl compound has an action of pushing silica particles onto the surface of the ink film. Therefore, when the ink contains an N-vinyl compound, silica particles gather on the surface of the ink film, and the gloss of the obtained image is further suppressed.
  • the mass ratio of the content of the N-vinyl compound to the content of the silica particles is preferably 1 to 15 and 1 to 15. It is more preferably 10 and even more preferably 1 to 8, and particularly preferably 1 to 7.
  • the radically polymerizable monomer preferably contains a vinyl ether compound.
  • the vinyl ether compound has a slow polymerization rate and is extruded together with the silica particles onto the surface of the ink film. Therefore, when the ink contains a vinyl ether compound, silica particles gather on the surface of the ink film, and the gloss of the obtained image is further suppressed.
  • the vinyl ether compound is generally highly polar and aggregates silica particles, further suppressing the gloss of the obtained image.
  • the polyfunctional vinyl ether compound has a high effect of pushing silica particles onto the surface of the ink film during polymerization. Therefore, the vinyl ether compound is preferably a polyfunctional vinyl ether compound. Further, from the viewpoint that the viscosity of the ink does not become too high and the ejection property is improved, the polyfunctional vinyl ether compound is preferably a bifunctional vinyl ether compound, and more preferably polyethylene glycol divinyl ether.
  • the ClogP value of the vinyl ether compound is preferably less than 1.0, more preferably 0.5 or less.
  • the ClogP value of the vinyl ether compound is less than 1.0, the effect of agglomerating the silica particles and suppressing the gloss of the image is high.
  • the content of the vinyl ether compound is preferably 0.5% by mass to 10% by mass, more preferably 2% by mass to 8% by mass, based on the total amount of the ink.
  • the ink of the present disclosure preferably contains at least one dispersant.
  • the ink contains a dispersant, the dispersibility of the silica particles in the ink is improved. As a result, the ink ejection property is further improved.
  • the type of dispersant is not particularly limited, but from the viewpoint of improving the dispersibility of silica particles having a degree of hydrophobicity of 50 or more, the dispersant is a polymer having a structural unit derived from a hydrophobic monomer having a ClogP value of 2 to 10. Is preferable.
  • a polymer having a structural unit derived from a hydrophobic monomer having a ClogP value of 2 to 10 has a high adsorptivity to the surface of silica particles having a degree of hydrophobicity of 50 or more, so that the dispersibility of the silica particles is improved. As a result, the ink ejection property is further improved.
  • Hydrophobic monomers having a ClogP value of 2 to 10 include, for example, styrene, butyl (meth) acrylate, hexyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, octyl (meth) acrylate, lauryl (meth) acrylate, and Examples include stearyl (meth) acrylate.
  • the dispersant is preferably a basic dispersant.
  • the basic groups contained in the dispersant are adsorbed on the silanol groups present on the surface of the silica particles, so that the dispersibility of the silica particles is improved. As a result, the ink ejection property is further improved.
  • the dispersant may be a commercially available product.
  • SOLSparse series manufactured by Noveon
  • SOLSERSE 13940 17000, 20000, 24000, 26000, 28000, 32000, 35000, 36000, 39000, etc.
  • BYK Chemie such as 2155, 2163, 2164, 9076, 9077, DISPERBYK-9076
  • BYKJET series
  • the mass ratio of the content of the dispersant to the content of the silica particles is preferably 0.05 to 0.5, preferably 0.08 to 0.2, from the viewpoint of stably dispersing the silica particles. More preferred.
  • the ink of the present disclosure preferably contains at least one radical polymerization initiator.
  • radical polymerization initiator examples include alkylphenone compounds, acylphosphine compounds, aromatic onium salt compounds, organic peroxides, thio compounds, hexaarylbiimidazole compounds, ketooxime ester compounds, borate compounds, azinium compounds, metallocene compounds, and activities.
  • examples thereof include ester compounds, compounds having a carbon halogen bond, and alkylamine compounds.
  • the radical polymerization initiator is preferably an acylphosphine compound.
  • acylphosphine oxide compound examples include a monoacylphosphine oxide compound and a bisacylphosphine oxide compound.
  • Examples of the monoacylphosphine oxide compound include isobutyryldiphenylphosphine oxide, 2-ethylhexanoyldiphenylphosphine oxide, 2,4,6-trimethylbenzoyldiphenylphosphine oxide, and (2,4,6-trimethylbenzoyl) ethoxyphenyl.
  • Phosphine oxide o-toluyldiphenylphosphine oxide, pt-butylbenzoyldiphenylphosphine oxide, 3-pyridylcarbonyldiphenylphosphine oxide, acryloyldiphenylphosphine oxide, benzoyldiphenylphosphine oxide, pivaloylphenylphosphine acid vinyl ester, adipoil bis Diphenylphosphine oxide, pivaloyldiphenylphosphine oxide, p-toluyldiphenylphosphine oxide, 4- (t-butyl) benzoyldiphenylphosphine oxide, terephthaloylbisdiphenylphosphine oxide, 2-methylbenzoyldiphenylphosphine oxide, versatoyldiphenylphosphine Examples thereof include oxide, 2-methyl-2-ethylhexanoyldiphenylphosphine
  • bisacylphosphine oxide compound examples include bis (2,6-dichlorobenzoyl) phenylphosphine oxide, bis (2,6-dichlorobenzoyl) -2,5-dimethylphenylphosphine oxide, and bis (2,6-dichlorobenzoyl).
  • the acylphosphine oxide compounds are bis (2,4,6-trimethylbenzoyl) phenylphosphine oxide (product name "Omnirad 819", manufactured by IGM Resins VV), 2,4,6-trimethylbenzoyldiphenylphosphine.
  • Oxide product name "Omnirad TPO H", manufactured by IGM Resins B.V.
  • (2,4,6-trimethylbenzoyl) ethoxyphenylphosphine oxide product name "Omnirad TPO-L", IGM Resins B.V.
  • the content of the radical polymerization initiator is preferably 1% by mass to 10% by mass, more preferably 2% by mass to 8% by mass, based on the total mass of the ink.
  • the ink of the present disclosure may contain a sensitizer together with the radical polymerization initiator.
  • the curability is improved, and particularly when an LED light source is used, the curability is improved.
  • the sensitizer examples include polynuclear aromatic compounds, xanthene compounds, cyanine compounds, merocyanine compounds, thiazine compounds, aclysine compounds, anthraquinones (for example, anthraquinones), squalium compounds, coumarin compounds, and thioxanthones. Examples thereof include system compounds and thiochromanone compounds. Above all, the sensitizer is preferably a thioxanthone-based compound from the viewpoint of improving the image quality of the obtained image.
  • thioxanthone compound examples include thioxanthone, 2-isopropylthioxanthone, 4-isopropylthioxanthone, 2-chlorothioxanthone, 2,4-dichlorothioxanthone, 2-dodecylthioxanthone, 2,4-diethylthioxanthone, 2,4-dimethylthioxanthone, 1 -Methoxycarbonylthioxanthone, 2-ethoxycarbonylthioxanthone, 3- (2-methoxyethoxycarbonyl) thioxanthone, 4-butoxycarbonylthioxanthone, 3-butoxycarbonyl-7-methylthioxanthone, 1-cyano-3-chlorothioxanthone, 1-ethoxy Carbonyl-3-chlorothioxanthone, 1-ethoxycarbonyl-3-ethoxythioxanthone, 1-ethoxycarbonyl-3-a
  • the thioxanthone-based compound is preferably 2,4-diethylthioxanthone, 2-isopropylthioxanthone, or 4-isopropylthioxanthone from the viewpoint of availability and improvement of image quality.
  • the thioxanthone-based compound may be a commercially available product.
  • commercially available products include SPEEDCURE series manufactured by Rambson (for example, SPEEDCURE 7010, SPEEDCURE CPTX, and SPEEDCURE ITX).
  • the content of the sensitizer is preferably 1% by mass to 10% by mass, more preferably 1.5% by mass to 5% by mass, based on the total amount of the ink.
  • the ink according to the present disclosure preferably contains at least one polymerization inhibitor.
  • polymerization inhibitor examples include hydroquinone compounds, phenothiazines, catechols, alkylphenols, alkylbisphenols, zinc dimethyldithiocarbamate, copper dimethyldithiocarbamate, copper dibutyldithiocarbamate, copper salicylate, thiodipropionic acid ester, and mercaptobenzimidazole. , Phosphites, nitrosoamine compounds, hinderedamine compounds, and nitroxyl radicals.
  • the polymerization inhibitor is preferably at least one selected from the group consisting of a nitrosamine compound, a hindered amine compound, a hydroquinone compound, and a nitroxyl radical, and more preferably a nitrosamine compound.
  • nitrosamine compound examples include N-nitroso-N-phenylhydroxylamine aluminum salt and N-nitroso-N-phenylhydroxylamine. Above all, the nitrosamine compound is preferably an N-nitrosamine-N-phenylhydroxylamine aluminum salt.
  • the content of the polymerization inhibitor is preferably 0.01% by mass or more, more preferably 0.03% by mass or more, based on the total amount of the ink, from the viewpoint of improving the stability of the ink over time.
  • the upper limit of the content of the polymerization inhibitor is not particularly limited, but is preferably 1% by mass from the viewpoint of polymerizability.
  • the ink of the present disclosure may contain at least one kind of coloring material.
  • the type of coloring material is not particularly limited and may be either a pigment or a dye. From the viewpoint of light resistance, the coloring material is preferably a pigment.
  • the pigment can be contained in the ink as a pigment dispersion liquid.
  • the pigment dispersion liquid is a liquid obtained by dispersing a pigment in a liquid medium using a pigment dispersant, and contains at least a pigment, a pigment dispersant, and a liquid medium.
  • pigment dispersant examples include the same dispersants as those described above (that is, dispersants for the purpose of dispersing silica particles).
  • liquid medium examples include organic solvents. Further, the liquid medium may be the above-mentioned radically polymerizable monomer contained in the ink.
  • the pigment may be either an organic pigment or an inorganic pigment that is usually commercially available. Further, the pigment may be an invisible pigment having infrared absorption.
  • the content of the coloring material is preferably 1% by mass to 20% by mass, more preferably 2% by mass to 10% by mass, based on the total amount of the ink. preferable.
  • the ink of the present disclosure is a clear ink for recording a clear image
  • the ink of the present disclosure does not have to contain substantially a coloring material.
  • the content of the coloring material may be less than 1% by mass, less than 0.1% by mass, or 0% by mass with respect to the total amount of the ink.
  • the clear image means an image having a transmittance of 80% or more at a wavelength of 400 nm to 700 nm.
  • the ink of the present disclosure may contain other components other than the above components, if necessary.
  • Other components include, for example, surfactants, co-sensitizers, UV absorbers, antioxidants, anti-fading agents, conductive salts, water, solvents, and basic compounds.
  • the pH of the ink is preferably 7 to 10, and more preferably 7.5 to 9.5, from the viewpoint of improving the ejection property when the ink is applied by using an inkjet recording method.
  • the pH is measured at 25 ° C. using a pH meter, and is measured, for example, using a pH meter (model number "HM-31") manufactured by Toa DKK Corporation.
  • the viscosity of the ink is preferably 0.5 mPa ⁇ s to 30 mPa ⁇ s, more preferably 2 mPa ⁇ s to 20 mPa ⁇ s, preferably 2 mPa ⁇ s to 15 mPa ⁇ s, and 3 mPa ⁇ s. It is more preferably about 10 mPa ⁇ s.
  • the viscosity is measured at 25 ° C. using a viscometer, and is measured, for example, using a TV-22 type viscometer manufactured by Toki Sangyo Co., Ltd.
  • the surface tension of the ink is preferably 60 mN / m or less, more preferably 20 mN / m to 50 mN / m, and even more preferably 25 mN / m to 45 mN / m.
  • the surface tension is measured at 25 ° C. using a surface tension meter, and is measured by a plate method using, for example, an automatic surface tension meter (product name “CBVP-Z”) manufactured by Kyowa Surface Science Co., Ltd.
  • the image recording method of the present disclosure includes a step of applying the above ink on a recording medium by an inkjet recording method to obtain an ink film (hereinafter, also referred to as “first application step”), and an active energy ray on the ink film. It includes a step of irradiating (hereinafter, also referred to as “first irradiation step”).
  • the image recording method of the present disclosure may include other steps, if necessary.
  • the image recording method of the present disclosure uses the ink of the present disclosure. Therefore, according to the image recording method of the present disclosure, the same effect as that of the ink of the present disclosure is obtained.
  • the first applying step is a step of applying the ink to the recording medium by an inkjet recording method to obtain an ink film.
  • the type of recording medium is not particularly limited, and is, for example, paper, paper laminated with plastic (for example, polyethylene, polypropylene, polystyrene, etc.), metal plate (for example, metal plate such as aluminum, zinc, copper, etc.), plastic.
  • plastic for example, polyethylene, polypropylene, polystyrene, etc.
  • metal plate for example, metal plate such as aluminum, zinc, copper, etc.
  • Film for example, Polyvinyl Chloride (PVC) resin, cellulose diacetate, cellulose triacetate, cellulose propionate, cellulose butyrate, cellulose acetate butyrate, cellulose nitrate, polyethylene terephthalate (PET: Polyethylene Terephthalate), polyethylene (PE:: Polyethylene), polystyrene (PS: Polystyrene), polypropylene (PP: Polypropylene), polycarbonate (PC: Polycarbonate), polyvinyl acetal, acrylic resin and other films), paper on which the above-mentioned metals are laminated or vapor-deposited, and the above-mentioned. Examples include plastic films on which metal is laminated or vapor-deposited.
  • PVC Polyvinyl Chloride
  • the inkjet recording method is not particularly limited as long as it can record an image, and a known method can be used.
  • Inkjet recording methods include, for example, a charge control method that uses electrostatic attraction to eject ink, a drop-on-demand method that uses the vibration pressure of a piezo element (pressure pulse method), and ink that converts electrical signals into acoustic beams.
  • An acoustic inkjet method in which ink is ejected by irradiating the ink with radiation pressure, and a thermal inkjet (bubble jet (registered trademark)) method in which the ink is heated to form bubbles and the generated pressure is used. ..
  • the inkjet head used in the inkjet recording method a short serial head is used, and a shuttle method in which recording is performed while scanning the head in the width direction of the base material and a recording element are arranged corresponding to the entire area of one side of the base material.
  • a line method using a line head that has been used can be mentioned.
  • a pattern can be formed on the entire surface of the base material by scanning the base material in a direction intersecting the arrangement direction of the recording elements, and a transport system such as a carriage that scans a short head becomes unnecessary. Further, in the line method, the movement of the carriage and the complicated scanning control with the base material are not required, and only the base material moves, so that the recording speed can be increased as compared with the shuttle method.
  • the amount of ink ejected from the inkjet head is preferably 1 pL (picolitre) to 100 pL, more preferably 3 pL to 80 pL, and even more preferably 3 pL to 50 pL.
  • First irradiation step the ink film obtained in the first application step is irradiated with active energy rays.
  • the ink film is irradiated with active energy rays to polymerize at least a part of the radically polymerizable monomer in the ink film to obtain an image.
  • the active energy ray is compared with the case where substantially all of the radically polymerizable monomer in the ink film is polymerized. Reduce the irradiation energy of.
  • polymerizing only a part of the radically polymerizable monomer in the ink film is also referred to as “temporary curing”, and irradiation with active energy rays for temporary curing is also referred to as “pinning exposure”.
  • polymerizing substantially all of the radically polymerizable monomers in the ink film is also referred to as “main curing”, and irradiation with active energy rays for main curing is also referred to as "main exposure”.
  • the first irradiation step may be a step of applying pinning exposure (that is, temporary curing) to the ink film, or may be a step of applying main exposure (that is, main curing) to the ink film. death, It may be a step of applying the pinning exposure and the main exposure to the ink film in this order.
  • the first irradiation step is a step of applying pinning exposure (that is, temporary curing) to the ink film
  • an image of the temporarily cured ink film is obtained by the first irradiation step.
  • the first irradiation step is a step of applying main exposure (that is, main curing) to the ink film, or a step of applying pinning exposure and main exposure to the ink film in this order
  • the first irradiation step is performed. An image that is the main cured ink film can be obtained.
  • the image recording method further includes a second applying step and a second irradiation step described later.
  • the reaction rate of the ink film after pinning exposure is preferably 10% to 80%.
  • reaction rate of the ink film means the polymerization rate of the radically polymerizable monomer in the ink film obtained by high performance liquid chromatography.
  • the reaction rate of the ink film is 10% or more, insufficient spread of dots of the ink (for example, the second ink described later) applied on the ink film is suppressed.
  • the graininess of the finally obtained image for example, a multi-order color image described later
  • the graininess of the image is reduced.
  • the reaction rate of the ink film is 80% or less, the spread of the ink applied on the ink film (for example, the second ink described later) is suppressed to be excessive, and the dots of the ink are suppressed. Drip interference between each other is suppressed. As a result, the image quality of the finally obtained image is improved.
  • the reaction rate of the ink film is preferably 15% or more from the viewpoint of further improving the graininess of the finally obtained image.
  • the reaction rate of the ink film is preferably 75% or less, more preferably 50% or less, still more preferably 40% or less, from the viewpoint of further improving the image quality of the finally obtained image. , 30% or less, and particularly preferably 25% or less.
  • the reaction rate of the ink film after the main exposure is preferably more than 80% and 100% or less, more preferably 85% to 100%, and even more preferably 90% to 100%. When the reaction rate is more than 80%, the adhesion of the image is further improved.
  • the reaction rate of the ink film is calculated using the following method.
  • a recording medium that has been operated until the end of irradiation of the ink film on the recording medium with active energy rays, and prepare a sample piece having a size of 20 mm ⁇ 50 mm from the region where the ink film of the recording medium exists.
  • a sample piece after irradiation is cut out, and the cut out sample piece after irradiation is immersed in 10 mL of THF (tetrahydrofuran) for 24 hours to obtain an eluate from which the ink is eluted.
  • THF tetrahydrofuran
  • the amount of radically polymerizable monomer hereinafter referred to as "amount of monomer after irradiation X1" is determined by high performance liquid chromatography.
  • non-irradiated monomer amount X1 the amount of the radically polymerizable monomer
  • Ink reaction rate (%) ((non-irradiated monomer amount X1-post-irradiated monomer amount X1) / unirradiated monomer amount X1) ⁇ 100
  • the active energy ray in the irradiation step is preferably UV light (that is, ultraviolet light) in the wavelength range of 385 nm to 410 nm. It is more preferable that the UV light has the highest illuminance.
  • the UV light source that is, the light source of UV light
  • a known UV light source in which at least one of the illuminance and the irradiation time is variable can be used.
  • the UV light source is preferably an LED (Light Emitting Diode) light source.
  • Irradiation of the active energy ray in the irradiation step may be performed in an environment where the oxygen concentration is 20% by volume or less (more preferably less than 20% by volume, still more preferably 5% by volume or less). As a result, polymerization inhibition due to oxygen is suppressed, and an excellent image can be obtained due to the adhesion to the recording medium.
  • an inert gas for example, nitrogen gas, argon gas, and helium gas
  • nitrogen gas for example, nitrogen gas, argon gas, and helium gas
  • the illuminance of the active energy ray for the pinning exposure is preferably 0.10 W / cm 2 to 0.50 W / cm 2 from the viewpoint of more easily achieving the reaction rate of the above-mentioned ink, and is more preferably 0.20 W / cm. It is more preferably cm 2 to 0.50 W / cm 2 , and even more preferably 0.20 W / cm 2 to 0.45 W / cm 2 .
  • the irradiation energy of the active energy rays for pinning exposure may be 2 mJ / cm 2 to 20 mJ / cm 2 from the viewpoint of more easily achieving the above-mentioned ink reaction rate. It is preferably 4 mJ / cm 2 to 15 mJ / cm 2 , more preferably.
  • the illuminance of the active energy ray for the main exposure is preferably 1.0 W / cm 2 or more, and 2.0 W / cm 2 or more, from the viewpoint of further improving the adhesion between the recording medium and the image. More preferably, it is more preferably 4.0 W / cm 2 or more.
  • the upper limit of the illuminance of the active energy ray for the main exposure is not particularly limited, but is, for example, 10 W / cm 2 .
  • the exposure amount of the active energy ray for the main exposure is preferably 20 mJ / cm 2 or more, and more preferably 80 mJ / cm 2 or more, from the viewpoint of further improving the adhesion between the recording medium and the image. preferable.
  • the upper limit of the exposure amount of the active energy ray for the main exposure is not particularly limited, and is, for example, 240 mJ / cm 2 .
  • a second ink is applied onto an ink film (hereinafter, also referred to as "first ink film”) irradiated with active energy rays in the first irradiation step, and the first ink film is coated with the second ink. It may include a second application step of obtaining a second ink film in contact with the ink film.
  • the second ink is preferably an ink containing a radically polymerizable monomer and a radical polymerization initiator, and more preferably the ink of the present disclosure.
  • the content of silica particles in the second ink is preferably higher than the content of silica particles in the first ink. Since the silica particles function as a surfactant, the higher the content of the silica particles, the lower the surface tension of the ink. That is, when the content of the silica particles contained in the second ink is larger than the content of the silica particles contained in the first ink, the surface tension of the second ink is lower than the surface tension of the first ink. As a result, when the second ink is applied onto the first ink film, the drip interference is suppressed. As a result, the image quality of the obtained image is improved.
  • the ink of the present disclosure (hereinafter, also referred to as the first ink) applied in the first application step and the second ink have different hues.
  • the second ink may be applied across the first ink film and the non-recording medium on which the first ink film is not formed.
  • the second ink may be applied on at least a part of the first ink film, and does not necessarily have to be applied on the entire first ink film.
  • the method of applying the second ink is the same as the method of applying the first ink, and the preferred embodiment is also the same.
  • the image recording method of the present disclosure including the second application step may further include a second irradiation step of irradiating the entire first ink film and the second ink film with the second active energy ray. ..
  • the second irradiation step may be a step of applying a pinning exposure to the entire first ink film and the second ink film, or a main exposure to the entire first ink film and the second ink film. It may be a step, or it may be a step of applying pinning exposure and main exposure to the entire first ink film and the second ink film in this order.
  • the preferred embodiment of the second active energy ray and its irradiation conditions is the same as the preferred embodiment of the active energy ray and its irradiation conditions in the first irradiation step.
  • the preferred irradiation conditions for the pinning exposure and the main exposure in the second irradiation step are the same as the preferable irradiation conditions for the pinning exposure and the main exposure in the first irradiation step.
  • the content of the silica particles in the ink to be applied later is the content of the silica particles in the ink to be applied first from the viewpoint of improving the image quality of the obtained image.
  • the content of the silica particles in the ink to be applied first is the content of the silica particles in the ink to be applied first from the viewpoint of improving the image quality of the obtained image.
  • black ink, cyan ink, magenta ink, and yellow ink are applied, first, black ink is applied on the recording medium to obtain a black ink film, and then cyan is applied on the black ink film. It is preferable to apply ink, apply magenta ink on the cyan ink film, and apply yellow ink on the magenta ink film.
  • the content of the silica particles contained in the cyan ink is higher than the content of the silica particles contained in the black ink.
  • the content of silica particles contained in magenta ink is higher than the content of silica particles contained in cyan ink
  • the content of silica particles contained in yellow ink is the content of silica particles contained in magenta ink.
  • the content of silica particles means the content with respect to the total amount of each ink.
  • Example 1 to Example 45 Comparative Example 1 to Comparative Example 10> First, a magenta pigment dispersion was prepared.
  • magenta pigment dispersion 30 parts by mass of magenta pigment, 50 parts by mass of "SR341", and 20 parts by mass of "SOLSPERSE 32000" were put into a disperser motor mill M50 (manufactured by Eiger), and a peripheral speed was used using zirconia beads having a diameter of 0.65 mm. The dispersion treatment was carried out at 9 m / s for 8 hours to obtain a magenta pigment dispersion.
  • each component contains the prepared magenta pigment dispersion and the silica particles, radically polymerizable monomers, radical polymerization initiators, sensitizers, polymerization inhibitors, and dispersants shown in Tables 2 to 7 below.
  • the mixture was mixed so as to have the content (% by mass) shown in Tables 2 to 7.
  • the mixture was stirred for 20 minutes at 25 ° C. under the condition of 5000 rpm using a mixer (product name “L4R”, manufactured by Silberson) to obtain ink.
  • the unit of the average primary particle size and the average secondary particle size of the silica particles is "nm", and the unit of the surface area is "m 2 / g".
  • “Monomer / silica particles having a ClogP value of 2 or more” means the mass ratio of the content of the radically polymerizable monomer having a ClogP value of 2 or more to the content of the silica particles.
  • “N-vinyl compound / silica particles” means the mass ratio of the content of the N-vinyl compound to the content of the silica particles.
  • FLORSTAB UV-12 (manufactured by Kromachem) was used for the preparation of the ink.
  • FLORSTAB UV12 is a mixture of N-nitroso-N-phenylhydroxylamine aluminum salt and PEA, and the mixing ratio is 1: 9. Since the N-nitroso-N-phenylhydroxylamine aluminum salt is a polymerization inhibitor and PEA is a radically polymerizable monomer, the polymerization inhibitor and the radically polymerizable monomer will be described below separately. For example, when the content of FLORSTAB UV-12 contained in the ink was 0.5% by mass, PEA was 0.45% by mass and N-nitroso-N-phenylhydroxylamine aluminum salt was 0.05% by mass.
  • ⁇ Radical polymerizable monomer (referred to as "polymerizable monomer” in the table)> -4-HBA: 4-Hydroxybutyl acrylate (product name "4-HBA", manufactured by Osaka Organic Chemical Industry Co., Ltd.) -VMOX: 5-Methyl-3-vinyloxazolidine-2-one (product name "VMOX”, manufactured by BASF) -TEGDA: Triethylene glycol diacrylate (product name "SR268", manufactured by Sartomer) -NVC: N-vinylcaprolactam (product name "NVC", manufactured by BASF) -OXEA: (3-ethyloxetane-3-yl) methyl acrylate (product name "Oxe-10", manufactured by Osaka Organic Chemical Co., Ltd.) -GTA: Glycerin triacrylate (product name "Aronix M930", manufactured by Sartomer) -DPGDA: Dipropylene glycol diacrylate (product
  • ⁇ Radical polymerization initiator (referred to as "polymerization initiator" in the table)>
  • Ominirad 819 Bis (2,4,6-trimethylbenzoyl) phenylphosphine oxide (manufactured by IGM Resins B.V.)
  • TPO-L (2,4,6-trimethylbenzoyl) ethoxyphenylphosphine oxide (product name "Omnirad TPO-L", manufactured by IGM Resins BV)
  • An image recording device (specifically, an inkjet recording device) including a UV light source, a head for yellow ink, a UV light source, a head for white ink, and a nitrogen purge UV exposure machine was prepared.
  • the transport system was a single-pass type sheet-fed printing press.
  • the black ink head, cyan ink head, magenta ink head, and yellow ink head are each equipped with an inkjet nozzle (hereinafter, also simply referred to as “nozzle”) as a piezo type inkjet head (specifically, a line head). ). From each nozzle, 1 pL to 60 pL multi-size dots can be ejected at a resolution of 1,200 ⁇ 1,200 dpi. Here, dpi represents the number of dots per 2.54 cm.
  • the ink supply system of this inkjet recording device is composed of a former tank, a supply pipe, an ink supply tank immediately before the inkjet head, a filter, and an inkjet head.
  • the portion of the ink supply system from the ink supply tank to the inkjet head was heat-insulated and heated. Further, temperature sensors were provided near the nozzles of the ink supply tank and the inkjet head, respectively, and the temperature was controlled so that the nozzle portion was always 70 ° C. ⁇ 2 ° C.
  • the original tank connected to the magenta ink head contained one of the inks for each embodiment and the inks for each comparative example.
  • an LED (Light Emitting Diode) lamp manufactured by Kyocera capable of irradiating UV light having the highest illuminance in the wavelength range of 385 nm to 410 nm, respectively. 4 cm width, G4B, maximum illuminance 10 W) was used.
  • Each of these UV light sources is a UV light source whose illuminance and irradiation time of UV light can be changed.
  • the recording medium is so that the irradiation of UV light to the landed ink is started 0.1 seconds after the ink ejected from each head lands on the recording medium. The transport speed was adjusted.
  • the pinning exposure was carried out in an atmosphere (oxygen concentration 20%) with a UV light source immediately after the magenta ink head.
  • This exposure was carried out by a nitrogen purge UV exposure machine in an atmosphere with an oxygen concentration of 1% and a nitrogen concentration of 99%.
  • the obtained image recording material was used to suppress the gloss of the image and the image quality was evaluated, and the ink was used to evaluate the ejection property.
  • the evaluation method is as follows. The evaluation results are shown in Tables 2 to 7.
  • the gloss difference [image-recording medium] was less than 20.
  • the gloss difference [image-recording medium] was 20 or more and less than 25.
  • the gloss difference [image-recording medium] was 25 or more and less than 30.
  • the gloss difference [image-recorded medium] was 30 or more and less than 40.
  • the gloss difference [image-recorded medium] was 40 or more.
  • image quality The obtained image recording material was visually observed, and the image quality (specifically, graininess) of the image was evaluated.
  • the evaluation criteria are as follows. The rank with the best graininess is "5". 5: No roughness was observed in the entire image and the image was uniform. 4: There was a slight graininess in the image, but it was almost uniform as a whole. 3: There is a slight graininess in the image, but it was at a level that was not a problem in practical use. 2: The image was rough and conspicuous even visually, which was a problem in practical use. 1: The image had a lot of roughness with strong shading, and it was a level that could not be said to be uniform.
  • the inks of Examples 1 to 45 contain a radically polymerizable monomer and silica particles, and the silica particles have an average primary particle size of 22 nm or more and less than 100 nm, and the silica particles have an average primary particle size of 22 nm or more and less than 100 nm. It was possible to record an image having a degree of hydrophobicity of 50 or more, excellent ejection properties, and suppressed gloss.
  • Comparative Example 1 it was found that the average primary particle size of the silica particles was as small as 18 nm, so that the ink ejection property was inferior.
  • Comparative Example 2 Comparative Example 6, and Comparative Example 7, it was found that since the degree of hydrophobicity of the silica particles was 0, an image in which the ink ejection property was inferior and the gloss was suppressed could not be obtained.
  • Comparative Example 9 and Comparative Example 10 it was found that the average primary particle size of the silica particles was as large as 400 nm and 500 nm, respectively, and therefore the ink ejection property was inferior.
  • Example 26 the average secondary particle size of the silica particles was 200 nm to 800 nm, and an image with more suppressed gloss was obtained as compared with Example 42.
  • Example 26 the product of the average primary particle size of the silica particles and the specific surface area was 2400 or less, and it was found that an image with more suppressed gloss was obtained as compared with Example 42.
  • Example 4 since the content of the silica particles is 1% by mass to 10% by mass, the graininess is excellent and the gloss is higher than that of Example 1 in which the content of the silica particles is less than 1% by mass. It was found that a more suppressed image was obtained.
  • Example 4 since the content of the silica particles is 1% by mass to 10% by mass, the ink ejection property is excellent as compared with Example 7 in which the content of the silica particles is more than 10% by mass. It was found that an image with less gloss was obtained.
  • Example 12 since the mass ratio of the content of the radically polymerizable monomer having a ClogP value of 2 or more to the content of the silica particles is 6 to 50, the mass ratio is less than 6, as compared with Example 11. It was found that an image having excellent ink ejection properties and less gloss was obtained.
  • Example 4 since the mass ratio of the content of the radically polymerizable monomer having a ClogP value of 2 or more to the content of the silica particles is 6 to 50, the mass ratio is more than 50, as compared with Example 2. It was found that an image having excellent graininess and less gloss was obtained.
  • Example 13 since the ink contains the N-vinyl compound, the graininess is excellent and the gloss is further suppressed as compared with Example 17 in which the ink does not contain the N-vinyl compound. It turned out that an image was obtained.
  • Example 19 since the mass ratio of the content of the N-vinyl compound to the content of the silica particles is 1 to 8, the graininess is excellent as compared with Example 21 in which the mass ratio is more than 8. It was found that an image with less gloss was obtained.
  • Example 4 since the mass ratio of the content of the N-vinyl compound to the content of the silica particles is 1 to 8, the ink ejection property is excellent as compared with Example 7 in which the mass ratio is less than 1. Moreover, it was found that an image with more suppressed gloss can be obtained.
  • Example 45 since the ink contained a vinyl ether compound, it was found that an image having more suppressed gloss was obtained as compared with Example 23, which did not contain the vinyl ether compound.
  • Example 46 to 53 In addition to the magenta pigment dispersion, a cyan pigment dispersion, a yellow pigment dispersion, and a black pigment dispersion were prepared for recording a multi-order color image.
  • the cyan pigment dispersion, the yellow pigment dispersion, and the black pigment dispersion were prepared by the same method as the magenta pigment dispersion by changing the magenta pigment to a cyan pigment, a yellow pigment, and a black pigment, respectively.
  • each component of each of the prepared pigment dispersions and the silica particles, radically polymerizable monomers, radical polymerization initiators, sensitizers, polymerization inhibitors, and dispersants shown in Table 8 below is shown in Table 8.
  • the mixture was mixed so as to have the stated content (% by mass).
  • the mixture was stirred for 20 minutes at 25 ° C. under the condition of 5000 rpm using a mixer (product name “L4R”, manufactured by Silberson) to obtain ink.
  • Example 46 An image recording device was prepared in the same manner as in Example 1.
  • Example 46 The ink of Example 46 is stored in the original tank connected to the black ink head, the ink of Example 47 is stored in the original tank connected to the cyan ink head, and the original tank connected to the magenta ink head is used. Forty-eight inks were stored, and the ink of Example 49 was stored in the original tank connected to the yellow ink head.
  • each original tank is washed, the ink of Example 50 is stored in the original tank connected to the black ink head, and the ink of Example 51 is stored in the original tank connected to the cyan ink head.
  • the original tank connected to the magenta ink head contained the ink of Example 52, and the original tank connected to the yellow ink head contained the ink of Example 53.
  • Example 46 using the above-mentioned image recording apparatus, the ink (black ink) of Example 46 is applied to the recording medium in a solid shape so that the halftone dot area ratio is 100%, and the black ink is applied.
  • the ink is irradiated with UV light at an illuminance of 0.40 W / cm 2 for 0.024 seconds (pinning exposure), and then irradiated with UV light at an illuminance of 5.0 W / cm 2 for 0.024 seconds (main exposure). ), An image recording material in which an image (specifically, a solid image) was recorded was obtained.
  • the pinning exposure was carried out in an atmosphere (oxygen concentration 20%) with a UV light source immediately after the black ink head.
  • This exposure was carried out by a nitrogen purge UV exposure machine in an atmosphere with an oxygen concentration of 1% and a nitrogen concentration of 99%.
  • Example 47 using the above-mentioned image recording apparatus, the ink (black ink) of Example 46 is applied to the recording medium in a solid shape so that the halftone dot area ratio is 100%, and the black ink is applied.
  • the ink was irradiated with UV light for 0.024 seconds at an illuminance of 0.40 W / cm 2 (pinning exposure).
  • the ink (cyan ink) of Example 47 was applied solidly on the semi-cured black ink film so that the halftone dot area ratio was 100%, and 0.40 W / cm 2 was applied to the applied cyan ink.
  • UV light was irradiated for 0.024 seconds at the illuminance of. (Pinning exposure). Then, by irradiating (main exposure) with UV light for 0.024 seconds at an illuminance of 5.0 W / cm 2 , an image recording material in which an image (specifically, a solid image) was recorded was obtained.
  • the pinning exposure was carried out in an atmosphere (oxygen concentration 20%) by a UV light source immediately after the black ink head and the cyan ink head.
  • This exposure was carried out by a nitrogen purge UV exposure machine in an atmosphere with an oxygen concentration of 1% and a nitrogen concentration of 99%.
  • Example 48 using the above-mentioned image recording apparatus, the ink (black ink) of Example 46 is applied to the recording medium in a solid shape so as to have a halftone dot area ratio of 100%, and the black ink is applied.
  • the ink was irradiated with UV light for 0.024 seconds at an illuminance of 0.40 W / cm 2 . (Pinning exposure).
  • the ink (cyan ink) of Example 47 was applied solidly on the semi-cured black ink film so that the halftone dot area ratio was 100%, and 0.40 W / cm 2 was applied to the applied cyan ink. UV light was irradiated for 0.024 seconds at the illuminance of (pinning exposure).
  • Example 48 The ink of Example 48 (magenta ink) was applied solidly on the semi-cured cyan ink film so that the halftone dot area ratio was 100%, and 0.40 W / cm 2 was applied to the applied magenta ink.
  • UV light was irradiated for 0.024 seconds at the illuminance of (pinning exposure). Then, by irradiating (main exposure) with UV light for 0.024 seconds at an illuminance of 5.0 W / cm 2 , an image recording material in which an image (specifically, a solid image) was recorded was obtained.
  • the pinning exposure was carried out in an atmosphere (oxygen concentration 20%) by a UV light source immediately after the black ink head, the cyan ink head, and the magenta ink head.
  • This exposure was carried out by a nitrogen purge UV exposure machine in an atmosphere with an oxygen concentration of 1% and a nitrogen concentration of 99%.
  • Example 49 using the above-mentioned image recording apparatus, the ink (black ink) of Example 46 is applied to the recording medium in a solid shape so as to have a halftone dot area ratio of 100%, and the black ink is applied.
  • the ink was irradiated with UV light for 0.024 seconds at an illuminance of 0.40 W / cm 2 . (Pinning exposure).
  • the ink (cyan ink) of Example 47 was applied solidly on the semi-cured black ink film so that the halftone dot area ratio was 100%, and 0.40 W / cm 2 was applied to the applied cyan ink. UV light was irradiated for 0.024 seconds at the illuminance of (pinning exposure).
  • Example 48 magenta ink
  • Example 49 yellow ink
  • UV light was irradiated for 0.024 seconds at the illuminance of (pinning exposure).
  • main exposure by irradiating (main exposure) with UV light for 0.024 seconds at an illuminance of 5.0 W / cm 2 , an image recording material in which an image (specifically, a solid image) was recorded was obtained.
  • the pinning exposure was carried out in an atmosphere (oxygen concentration 20%) by a UV light source immediately after the black ink head, the cyan ink head, the magenta ink head, and the yellow ink head.
  • This exposure was carried out by a nitrogen purge UV exposure machine in an atmosphere with an oxygen concentration of 1% and a nitrogen concentration of 99%.
  • Example 46 gloss suppression and image quality evaluation were performed on the black image recorded on the recording medium using the ink of Example 46.
  • gloss suppression and image quality evaluation were performed on the cyan image recorded on the black image using the ink of Example 47.
  • Example 48 gloss suppression and image quality evaluation were performed on the magenta image recorded on the cyan image using the ink of Example 48.
  • Example 49 gloss suppression and image quality evaluation were performed on the yellow image recorded on the magenta image using the ink of Example 49.
  • Examples 50 to 53 gloss suppression and image quality evaluation were performed in the same manner as in Examples 46 to 49.
  • the evaluation method is the same as the evaluation for Example 1. The evaluation results are shown in Table 8.
  • Each ink tank provided in an inkjet recording device (product name "Jet Press 540WV”, manufactured by FUJIFILM Corporation) was individually filled with ink of each color.
  • an undercoat composition UV curable ink (product name “Uvijet MK702”, manufactured by FUJIFILM Corporation) and UV curable ink (product name “Uvijet MK703", manufactured by FUJIFILM Corporation) were mixed at a mass ratio of 85:15. A mixed solution was used. Further, as the white ink, a UV curable ink (product name "Uvijet MK021", manufactured by FUJIFILM Corporation) was used.
  • UV curable ink (product name "Uvijet MKA04", manufactured by FUJIFILM Corporation) was used.
  • cyan ink a UV curable ink (product name "Uvijet MK215", manufactured by FUJIFILM Corporation) was used.
  • magenta ink UV curable ink (product name "Uvijet MK867”, manufactured by FUJIFILM Corporation) was used.
  • yellow ink UV curable ink (product name "Uvijet MKA52”, manufactured by FUJIFILM Corporation) was used.
  • a biaxially stretched polyester film (product name "Emblet PTM-12”, manufactured by Unitika Ltd., film thickness 12 ⁇ m) was used.
  • the undercoat composition was applied onto the recording medium. After applying the undercoat composition, pinning exposure was performed at an illuminance of 750 mW / cm 2 to form an undercoat layer. Next, a solid image was recorded with white ink on the obtained undercoat layer, and black ink, cyan ink, magenta ink, and yellow ink were ejected on the obtained solid image in this order. Even after each ink was ejected, pinning exposure was performed at an illuminance of 750 mW / cm 2 in the same manner as after the undercoat composition was applied.
  • the main exposure was performed from the upper part of the recording medium (that is, the side where the image is recorded) under a nitrogen atmosphere having an oxygen concentration of less than 0.1% by volume at an illuminance of 3000 mW / cm 2 . ..
  • the nitrogen purge was performed using the nitrogen generator attached to the inkjet recording device.
  • the main exposure was performed from the lower part of the recording medium (that is, the side on which the image was not recorded) at an illuminance of 3000 mW / cm 2 to obtain an image recorded object.
  • the transport speed of the recording medium was set to 50 m / min.
  • ⁇ Reference example 3> Add 0.8 g of a silicon-based surfactant (product name "BYK-307", manufactured by BYK) to 1 liter of UV curable ink (product name "Uvijet MK021", manufactured by Fujifilm) and stir well. As a result, white ink was prepared. An image recording was obtained by the same method as in Reference Example 2 except that the prepared white ink was used instead of the UV curable ink (product name "Uvijet MK021", manufactured by FUJIFILM Corporation).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Inks, Pencil-Leads, Or Crayons (AREA)
  • Ink Jet Recording Methods And Recording Media Thereof (AREA)

Abstract

An inkjet ink and an image recording method, wherein the inkjet ink contains a radical polymerizable monomer and silica particles, the silica particles have an average primary particle size of not less than 22 nm but less than 100 nm, and has a hydrophobicity degree of 50 or more.

Description

インクジェットインク及び画像記録方法Inkjet ink and image recording method
 本開示は、インクジェットインク及び画像記録方法に関する。 This disclosure relates to inkjet inks and image recording methods.
 画像記録方法の一種として、被記録媒体上にインクを付与し、付与されたインクに対し、紫外線等の活性エネルギー線を照射することによりインクを硬化させて画像を得る画像記録方法が知られている。 As a kind of image recording method, an image recording method is known in which ink is applied onto a recording medium and the applied ink is irradiated with active energy rays such as ultraviolet rays to cure the ink to obtain an image. There is.
 例えば、特開2018-024757号公報には、光重合性化合物、光重合開始剤、及び平均粒径1nm~200nmの無機フィラーを組成物中0.05質量%~5.0質量%含有し、可視光透過率が30%以上である光硬化型インキジェット印刷用クリアインキ組成物が記載されている。 For example, Japanese Patent Application Laid-Open No. 2018-024757 contains a photopolymerizable compound, a photopolymerization initiator, and an inorganic filler having an average particle size of 1 nm to 200 nm in an amount of 0.05% by mass to 5.0% by mass in the composition. A clear ink composition for photocurable ink jet printing having a visible light transmittance of 30% or more is described.
 また、特開2019-162742号公報には、平均一次粒径が100nm~200nmの微粒子を含有する活性エネルギー線硬化型組成物が記載されている。 Further, Japanese Patent Application Laid-Open No. 2019-162742 describes an active energy ray-curable composition containing fine particles having an average primary particle size of 100 nm to 200 nm.
 また、特開2020-062758号公報には、表面をジメチルシリル又はジメチルポリシロキサンにより表面修飾された平均一次粒径7nm~16nmのシリカ粒子を1質量%~10質量%含有する紫外線硬化型インクが記載されている。 Further, Japanese Patent Application Laid-Open No. 2020-62758 contains an ultraviolet curable ink containing 1% by mass to 10% by mass of silica particles having an average primary particle size of 7 nm to 16 nm whose surface is surface-modified with dimethylsilyl or dimethylpolysiloxane. Have been described.
 ところで、活性エネルギー線硬化型インクを用いて記録される画像は、光沢が強い場合がある。光沢が強いために、上記画像は、レリーフ感を有する場合、目立ちやすい場合等がある。そこで、画像のレリーフ感を低減する観点、画像を目立ちにくくする観点等から、活性エネルギー線硬化型インクを用いて記録される画像の品質として、光沢が抑制されていることが求められる場合がある。しかし、光沢を抑制するために、インクに光沢抑制成分を含有させると、インクジェット記録方式で吐出した場合に吐出性が低下する場合がある。 By the way, images recorded using active energy ray-curable ink may have strong gloss. Due to the strong gloss, the above image may have a relief feeling or may be conspicuous. Therefore, from the viewpoint of reducing the relief feeling of the image, making the image inconspicuous, and the like, it may be required that the gloss is suppressed as the quality of the image recorded by using the active energy ray-curable ink. .. However, if the ink contains a gloss suppressing component in order to suppress the gloss, the ejection property may be deteriorated when the ink is ejected by the inkjet recording method.
 本発明の一実施形態によれば、吐出性に優れ、かつ、光沢が抑制された画像を記録できるインクジェットインク、及び、上記インクジェットインクを用いた画像記録方法が提供される。 According to one embodiment of the present invention, there are provided an inkjet ink capable of recording an image having excellent ejection properties and suppressed gloss, and an image recording method using the inkjet ink.
 本開示は、以下の態様を含む。
<1>ラジカル重合性モノマー及びシリカ粒子を含有し、シリカ粒子は、平均一次粒径が22nm以上100nm未満であり、かつ、疎水化度が50以上である、インクジェットインク。
<2>シリカ粒子は、平均二次粒径が200nm~800nmである、<1>に記載のインクジェットインク。
<3>シリカ粒子は、単位をnmとしたときの平均一次粒径と、単位をm/gとしたときの比表面積との積が2400以下である、<1>又は<2>に記載のインクジェットインク。
<4>シリカ粒子は、疎水化度が70以上である、<1>~<3>のいずれか1つに記載のインクジェットインク。
<5>シリカ粒子の含有量は、インクジェットインクの全量に対して、1質量%~10質量%である、<1>~<4>のいずれか1つに記載のインクジェットインク。
<6>ラジカル重合性モノマーは、単官能ラジカル重合性モノマー及び2官能ラジカル重合性モノマーの少なくとも一方を含み、単官能ラジカル重合性モノマー及び2官能ラジカル重合性モノマーの総含有量が、インクジェットインクの全量に対して、50質量%以上である、<1>~<5>のいずれか1つに記載のインクジェットインク。
<7>ラジカル重合性モノマーは、ClogP値が2以上のラジカル重合性モノマーを含む、<1>~<6>のいずれか1つに記載のインクジェットインク。
<8>シリカ粒子の含有量に対するClogP値が2以上のラジカル重合性モノマーの含有量の質量比率は、6~50である、<7>に記載のインクジェットインク。
<9>ラジカル重合性モノマーは、N-ビニル化合物を含む、<1>~<8>のいずれか1つに記載のインクジェットインク。
<10>シリカ粒子の含有量に対するN-ビニル化合物の含有量の質量比率は、1~8である、<9>に記載のインクジェットインク。
<11>ラジカル重合性モノマーは、ビニルエーテル化合物を含む、<1>~<10>のいずれか1つに記載のインクジェットインク。
<12>被記録媒体上に、<1>~<11>のいずれか1つに記載のインクジェットインクをインクジェット記録方式で付与してインク膜を得る工程と、インク膜に活性エネルギー線を照射する工程と、
を含む画像記録方法。
<13>活性エネルギー線を照射する工程は、インク膜に、酸素濃度5体積%以下の雰囲気下で活性エネルギー線を照射する工程を含む、<12>に記載の画像記録方法。
The disclosure includes the following aspects:
<1> An inkjet ink containing a radically polymerizable monomer and silica particles, wherein the silica particles have an average primary particle size of 22 nm or more and less than 100 nm, and a degree of hydrophobicity of 50 or more.
<2> The inkjet ink according to <1>, wherein the silica particles have an average secondary particle size of 200 nm to 800 nm.
<3> The silica particles are described in <1> or <2>, wherein the product of the average primary particle size when the unit is nm and the specific surface area when the unit is m 2 / g is 2400 or less. Inkjet ink.
<4> The inkjet ink according to any one of <1> to <3>, wherein the silica particles have a degree of hydrophobicity of 70 or more.
<5> The inkjet ink according to any one of <1> to <4>, wherein the content of the silica particles is 1% by mass to 10% by mass with respect to the total amount of the inkjet ink.
<6> The radically polymerizable monomer contains at least one of a monofunctional radically polymerizable monomer and a bifunctional radically polymerizable monomer, and the total content of the monofunctional radically polymerizable monomer and the bifunctional radically polymerizable monomer is the amount of the inkjet ink. The inkjet ink according to any one of <1> to <5>, which is 50% by mass or more with respect to the total amount.
<7> The inkjet ink according to any one of <1> to <6>, wherein the radically polymerizable monomer contains a radically polymerizable monomer having a ClogP value of 2 or more.
<8> The inkjet ink according to <7>, wherein the mass ratio of the content of the radically polymerizable monomer having a ClogP value of 2 or more to the content of the silica particles is 6 to 50.
<9> The inkjet ink according to any one of <1> to <8>, wherein the radically polymerizable monomer contains an N-vinyl compound.
<10> The inkjet ink according to <9>, wherein the mass ratio of the content of the N-vinyl compound to the content of the silica particles is 1 to 8.
<11> The inkjet ink according to any one of <1> to <10>, wherein the radically polymerizable monomer contains a vinyl ether compound.
<12> A step of applying the inkjet ink according to any one of <1> to <11> onto a recording medium by an inkjet recording method to obtain an ink film, and irradiating the ink film with active energy rays. Process and
Image recording method including.
<13> The image recording method according to <12>, wherein the step of irradiating the ink film with the active energy ray includes a step of irradiating the ink film with the active energy ray in an atmosphere having an oxygen concentration of 5% by volume or less.
 本発明の一実施形態によれば、吐出性に優れ、かつ、光沢が抑制された画像を記録できるインクジェットインク、及び、上記インクジェットインクを用いた画像記録方法が提供される。 According to one embodiment of the present invention, there are provided an inkjet ink capable of recording an image having excellent ejection properties and suppressed gloss, and an image recording method using the inkjet ink.
 以下、本開示に係るインクジェットインク及び画像記録方法について詳細に説明する。 Hereinafter, the inkjet ink and the image recording method according to the present disclosure will be described in detail.
 本開示において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値および上限値として含む範囲を意味する。
 本開示において、組成物中の各成分の量は、組成物中に各成分に該当する物質が複数存在する場合、特に断らない限り、組成物中に存在する上記複数の物質の合計量を意味する。
 本開示中に段階的に記載されている数値範囲において、ある数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよく、また、実施例に示されている値に置き換えてもよい。
 本開示において、「工程」との語は、独立した工程だけでなく、他の工程と明確に区別できない場合であっても工程の所期の目的が達成されれば、本用語に含まれる。
 本開示において、好ましい態様の組み合わせは、より好ましい態様である。
 本開示において、「光」は、γ線、β線、電子線、紫外線、可視光線等の活性エネルギー線を包含する概念である。
 本開示においては、紫外線を、「UV(Ultra Violet)光」ということがある。
 本開示において、「(メタ)アクリレート」は、アクリレート及びメタクリレートの両方を包含する概念であり、「(メタ)アクリロイル基」はアクリロイル基及びメタクリロイル基の両方を包含する概念であり、「(メタ)アクリル酸」はアクリル酸及びメタクリル酸の両方を包含する概念である。
In the present disclosure, the numerical range represented by using "-" means a range including the numerical values before and after "-" as the lower limit value and the upper limit value.
In the present disclosure, the amount of each component in the composition means the total amount of the plurality of substances present in the composition when a plurality of substances corresponding to each component are present in the composition, unless otherwise specified. do.
In the numerical range described stepwise in the present disclosure, the upper limit value or the lower limit value described in one numerical range may be replaced with the upper limit value or the lower limit value of another numerical range described stepwise. Further, it may be replaced with the value shown in the embodiment.
In the present disclosure, the term "process" is included in this term not only as an independent process but also as long as the intended purpose of the process is achieved even if it cannot be clearly distinguished from other processes.
In the present disclosure, the combination of preferred embodiments is a more preferred embodiment.
In the present disclosure, "light" is a concept including active energy rays such as γ-rays, β-rays, electron rays, ultraviolet rays, and visible rays.
In the present disclosure, ultraviolet rays may be referred to as "UV (Ultra Violet) light".
In the present disclosure, "(meth) acrylate" is a concept including both acrylate and methacrylate, and "(meth) acryloyl group" is a concept including both acryloyl group and methacrylic acid group, and "(meth) acrylate" is included. "Acrylic acid" is a concept that includes both acrylic acid and methacrylic acid.
 本開示において、「画像」とは、インクを用いて形成される膜全般を意味し、「画像記録」とは、画像(即ち、膜)の形成を意味する。
 また、本開示における「画像」の概念には、ベタ画像(solid image)も包含される。
In the present disclosure, the "image" means the entire film formed by using ink, and the "image recording" means the formation of an image (that is, a film).
The concept of "image" in the present disclosure also includes a solid image.
[インクジェットインク]
 本開示のインクジェットインク(以下、単に「インク」という)は、ラジカル重合性モノマー及びシリカ粒子を含有し、シリカ粒子は、平均一次粒径が22nm以上100nm未満であり、かつ、疎水化度が50以上である。
[Inkjet ink]
The inkjet ink of the present disclosure (hereinafter, simply referred to as “ink”) contains a radically polymerizable monomer and silica particles, and the silica particles have an average primary particle size of 22 nm or more and less than 100 nm, and have a degree of hydrophobicity of 50. That is all.
 本開示のインクによれば、吐出性に優れ、かつ、光沢が抑制された画像を記録できる。上記効果が奏される理由は、以下のように推測される。 According to the ink of the present disclosure, it is possible to record an image having excellent ejection properties and suppressed gloss. The reason why the above effect is achieved is presumed as follows.
 一般に、ラジカル重合性モノマーを含有するインクを用いた画像記録は、被記録媒体上にインクを付与し、被記録媒体上に付与されたインク(以下、「インク膜」ともいう)に活性エネルギー線を照射することによって行われる。この画像記録では、インク膜に活性エネルギー線が照射された際、インク膜中のラジカル重合性モノマーが重合してインク膜が硬化する。その結果、硬化したインク膜である画像が得られる。本開示のインクは、活性エネルギー線照射型インクともいえる。 In general, in image recording using an ink containing a radically polymerizable monomer, ink is applied onto a recording medium, and active energy rays are applied to the ink applied onto the recording medium (hereinafter, also referred to as “ink film”). It is done by irradiating. In this image recording, when the ink film is irradiated with active energy rays, the radically polymerizable monomers in the ink film are polymerized and the ink film is cured. As a result, an image that is a cured ink film is obtained. The ink of the present disclosure can be said to be an active energy ray irradiation type ink.
 本開示のインクでは、シリカ粒子の疎水化度が50以上である。そのため、シリカ粒子はインク膜の表面に存在しやすい。また、シリカ粒子の平均一次粒径が22nm以上100nm未満である。このような大きさのシリカ粒子がインク膜の表面に集まると、凝集したシリカ粒子がマット剤として機能すると考えられる。シリカ粒子がインク膜の表面に集まった状態でインク膜が硬化することにより、画像の光沢が抑制されると考えられる。 In the ink of the present disclosure, the degree of hydrophobicity of silica particles is 50 or more. Therefore, the silica particles tend to be present on the surface of the ink film. Further, the average primary particle size of the silica particles is 22 nm or more and less than 100 nm. When silica particles of such a size gather on the surface of the ink film, it is considered that the aggregated silica particles function as a matting agent. It is considered that the gloss of the image is suppressed by curing the ink film with the silica particles gathered on the surface of the ink film.
 また、シリカ粒子の平均一次粒径が22nm以上であると、シリカ粒子の表面積が増大することなく、インクの粘度上昇が抑制される。その結果、本開示のインクは、吐出性に優れると考えられる。一方、シリカ粒子の平均一次粒径が100nm未満であると、シリカ粒子が沈降しにくいため、本開示のインクは、吐出性に優れると考えられる。 Further, when the average primary particle size of the silica particles is 22 nm or more, the increase in the viscosity of the ink is suppressed without increasing the surface area of the silica particles. As a result, the ink of the present disclosure is considered to be excellent in ejection property. On the other hand, when the average primary particle size of the silica particles is less than 100 nm, the silica particles are less likely to settle, so that the ink of the present disclosure is considered to have excellent ejection properties.
 これに対して、特開2018-024757号公報には、平均粒径20nmのシリカ粒子を含むインクが開示されている。この平均粒径は、分散粒径を意味するものであり、一次粒径は20nm以下であると考えられる。また、特開2020-062758号公報には、表面をジメチルシリル又はジメチルポリシロキサンにより表面修飾された平均一次粒径7nm~16nmのシリカ粒子を1質量%~10質量%含有する紫外線硬化型インクが記載されている。特開2018-024757号公報及び特開2020-062758号公報に開示されているインクでは、シリカ粒子の平均一次粒径が小さいため、インクが高粘度となる結果、良好な吐出性が得られないと考えられる。また、シリカ粒子の平均一次粒径が適切な範囲にないために、マット剤としての機能を果たさないと考えられる。したがって、特開2018-024757号公報及び特開2020-062758号公報に開示されているインクでは、光沢抑制の効果は得られないと考えられる。 On the other hand, Japanese Patent Application Laid-Open No. 2018-024757 discloses an ink containing silica particles having an average particle size of 20 nm. This average particle size means a dispersed particle size, and the primary particle size is considered to be 20 nm or less. Further, Japanese Patent Application Laid-Open No. 2020-62758 contains an ultraviolet curable ink containing 1% by mass to 10% by mass of silica particles having an average primary particle size of 7 nm to 16 nm whose surface is surface-modified with dimethylsilyl or dimethylpolysiloxane. Have been described. In the inks disclosed in JP-A-2018-024757 and JP-A-2020-626758, since the average primary particle size of the silica particles is small, the ink has a high viscosity, and as a result, good ejection properties cannot be obtained. it is conceivable that. Further, it is considered that the silica particles do not function as a matting agent because the average primary particle size is not in an appropriate range. Therefore, it is considered that the inks disclosed in JP-A-2018-024757 and JP-A-2020-062758 do not have the effect of suppressing gloss.
 また、特開2019-162742号公報には、平均一次粒径が100nm~200nmのシリカ粒子を含有する活性エネルギー線硬化型組成物が記載されている。特開2019-162742号公報に開示されている組成物では、シリカ粒子の平均一次粒径が大きいため、沈降しやすく、良好な吐出性が得られないと考えられる。また、シリカ粒子の平均一次粒径が適切な範囲にないために、マット剤としての機能を果たさないと考えられる。したがって、特開2019-162742号公報に開示されている組成物では、光沢抑制の効果は得られないと考えられる。 Further, Japanese Patent Application Laid-Open No. 2019-162742 describes an active energy ray-curable composition containing silica particles having an average primary particle size of 100 nm to 200 nm. In the composition disclosed in JP-A-2019-162742, it is considered that since the average primary particle size of the silica particles is large, it is easy to settle and good ejection property cannot be obtained. Further, it is considered that the silica particles do not function as a matting agent because the average primary particle size is not in an appropriate range. Therefore, it is considered that the composition disclosed in JP-A-2019-162742 does not have the effect of suppressing gloss.
 以下、本開示のインクに含まれる各成分について説明する。 Hereinafter, each component contained in the ink of the present disclosure will be described.
<シリカ粒子>
 本開示のインクは、シリカ粒子を少なくとも1種含有する。
<Silica particles>
The ink of the present disclosure contains at least one type of silica particles.
 本開示のインクに含まれるシリカ粒子の疎水化度は、50以上である。すなわち、本開示のインクに含まれるシリカ粒子は、疎水性シリカ粒子である。疎水化度が50以上であるシリカ粒子は、インク膜の表面に存在しやすいため、画像の光沢が抑制される。また、疎水化度が50以上であるシリカ粒子は、インク中で界面活性剤として働き、インクの表面張力を低下させる。インクの表面張力が小さいと、打滴干渉が抑制され、画質(特に、粒状性)が向上する。 The degree of hydrophobicity of the silica particles contained in the ink of the present disclosure is 50 or more. That is, the silica particles contained in the ink of the present disclosure are hydrophobic silica particles. Silica particles having a degree of hydrophobicity of 50 or more are likely to be present on the surface of the ink film, so that the gloss of the image is suppressed. Further, the silica particles having a degree of hydrophobicity of 50 or more act as a surfactant in the ink and reduce the surface tension of the ink. When the surface tension of the ink is small, the drip interference is suppressed and the image quality (particularly the graininess) is improved.
 シリカ粒子の疎水化度は、得られる画像の光沢をより抑制し、かつ、画質をより向上させる観点から、70以上であることがより好ましい。シリカ粒子の疎水化度の上限値は特に限定されず、例えば、99である。シリカ粒子の疎水化度は、以下の方法で測定される。 The degree of hydrophobicity of the silica particles is more preferably 70 or more from the viewpoint of further suppressing the gloss of the obtained image and further improving the image quality. The upper limit of the degree of hydrophobicity of the silica particles is not particularly limited, and is, for example, 99. The degree of hydrophobicity of the silica particles is measured by the following method.
 まず、インクに対して遠心分離を行い、シリカ粒子を抽出する。次に、イオン交換水50mL、抽出したシリカ粒子0.2gをビーカーに入れ、マグネティックスターラーで攪拌しながらビュレットからメタノールを滴下する。ビーカー内のメタノール濃度が増加するにつれて、シリカ粒子は徐々に沈降していく。シリカ粒子の全量が沈んだ時点で、メタノールの滴下を終了する。滴下終了時におけるメタノールと水との混合溶液中のメタノールの質量分率(%)を疎水化度とする。 First, centrifuge the ink to extract silica particles. Next, 50 mL of ion-exchanged water and 0.2 g of extracted silica particles are placed in a beaker, and methanol is added dropwise from the burette while stirring with a magnetic stirrer. As the concentration of methanol in the beaker increases, the silica particles gradually settle. When the entire amount of silica particles has subsided, the dropping of methanol is terminated. The mass fraction (%) of methanol in the mixed solution of methanol and water at the end of dropping is defined as the degree of hydrophobicity.
 本開示のインクに含まれるシリカ粒子の平均一次粒径は、22nm以上100nm未満である。シリカ粒子の平均一次粒径が22nm以上であると、シリカ粒子の表面積が増大することなく、インクの粘度上昇が抑制される。その結果、本開示のインクは、吐出性に優れる。一方、シリカ粒子の平均一次粒径が100nm未満であると、シリカ粒子が沈降しにくいため、本開示のインクは、吐出性に優れる。また、シリカ粒子の平均一次粒径が22nm以上100nm未満であると、インク膜の表面に集まったシリカ粒子がマット剤として機能し、画像の光沢が抑制される。 The average primary particle size of the silica particles contained in the ink of the present disclosure is 22 nm or more and less than 100 nm. When the average primary particle size of the silica particles is 22 nm or more, the increase in the viscosity of the ink is suppressed without increasing the surface area of the silica particles. As a result, the ink of the present disclosure is excellent in ejection property. On the other hand, when the average primary particle size of the silica particles is less than 100 nm, the silica particles are less likely to settle, so that the ink of the present disclosure is excellent in ejection property. Further, when the average primary particle size of the silica particles is 22 nm or more and less than 100 nm, the silica particles collected on the surface of the ink film function as a matting agent, and the gloss of the image is suppressed.
 シリカ粒子の平均一次粒径は、得られる画像の光沢をより抑制し、かつ、吐出性をより向上させる観点から、40nm~80nmであることが好ましく、50nm~80nmであることがより好ましい。 The average primary particle size of the silica particles is preferably 40 nm to 80 nm, more preferably 50 nm to 80 nm, from the viewpoint of further suppressing the gloss of the obtained image and further improving the ejection property.
 本開示において、シリカ粒子の平均一次粒径は、透過型電子顕微鏡(TEM)を用いて測定される値である。シリカ粒子の平均一次粒径は、例えば、日本電子社製の透過型電子顕微鏡(製品名「1200EX」)を用いて測定することができる。具体的な測定方法は以下のとおりである。 In the present disclosure, the average primary particle size of silica particles is a value measured using a transmission electron microscope (TEM). The average primary particle size of the silica particles can be measured, for example, using a transmission electron microscope (product name "1200EX") manufactured by JEOL Ltd. The specific measurement method is as follows.
 カーボン膜を貼り付けたCu200メッシュ(日本電子社製)に、1,000倍に希釈したインクを滴下し乾燥させる。その後、TEMで10万倍に拡大した画像から、重なっていない独立した粒子300個の円相当径を測定する。測定によって得られた円相当径の平均値を、平均一次粒径とする。 Ink diluted 1,000 times was dropped onto a Cu200 mesh (manufactured by JEOL Ltd.) to which a carbon film was attached and dried. Then, from the image magnified 100,000 times by TEM, the equivalent circle diameter of 300 independent particles that do not overlap is measured. The average value of the equivalent circle diameter obtained by the measurement is defined as the average primary particle size.
 本開示のインクに含まれるシリカ粒子の平均二次粒径は、200nm~800nmであることが好ましく、400nm~800nmであることがより好ましい。シリカ粒子の平均二次粒径が200nm~800nmであると、シリカ粒子がインク膜の表面に存在することによって画像の光沢を抑制する効果が高い。 The average secondary particle size of the silica particles contained in the ink of the present disclosure is preferably 200 nm to 800 nm, and more preferably 400 nm to 800 nm. When the average secondary particle size of the silica particles is 200 nm to 800 nm, the presence of the silica particles on the surface of the ink film has a high effect of suppressing the gloss of the image.
 本開示において、二次粒径とは、インク中でシリカ粒子が分散された状態における大きさを意味し、分散粒径ともいえる。シリカ粒子は、インク中で一次粒子の状態で存在する場合と、一次粒子が複数集まって凝集した状態で存在する場合がある。前者の場合には、一次粒径と二次粒径とがほぼ同じ値となる。 In the present disclosure, the secondary particle size means the size of the silica particles dispersed in the ink, and can be said to be the dispersed particle size. The silica particles may exist in the state of primary particles in the ink, or may exist in a state in which a plurality of primary particles are aggregated and aggregated. In the former case, the primary particle size and the secondary particle size have almost the same value.
 シリカ粒子の平均二次粒径は、粒子径分布測定装置を用いて測定される値である。シリカ粒子の平均二次粒径は、例えば、LUM社製の粒子径分布測定装置(製品名「LUMiSizer」)を用いて測定することができる。具体的な測定方法は以下のとおりである。 The average secondary particle size of the silica particles is a value measured using a particle size distribution measuring device. The average secondary particle size of the silica particles can be measured, for example, by using a particle size distribution measuring device (product name “LUMiSizer”) manufactured by LUM. The specific measurement method is as follows.
 LUM社製の粒子径分布測定装置(製品名「LUMiSizer」)を用いて、回転数3000の条件で16時間遠心分離を行う。測定によって得られた分散粒径の平均値を、平均二次粒径とする。 Centrifugation is performed for 16 hours under the condition of a rotation speed of 3000 using a particle size distribution measuring device (product name "LUMiSizer") manufactured by LUM. The average value of the dispersed particle size obtained by the measurement is defined as the average secondary particle size.
 本開示のインクに含まれるシリカ粒子は、単位をnmとしたときの平均一次粒径と、単位をm/gとしたときの比表面積との積が2400以下であることが好ましく、1800以下であることがより好ましい。上記積の下限値は特に限定されず、例えば、1000である。 The silica particles contained in the ink of the present disclosure preferably have a product of the average primary particle size when the unit is nm and the specific surface area when the unit is m 2 / g is 2400 or less, and preferably 1800 or less. Is more preferable. The lower limit of the product is not particularly limited, and is, for example, 1000.
 通常、平均一次粒径が小さくなるほど、比表面積は高くなる。また、一次粒子同士が凝集している場合に、凝集度合いが高いほど、比表面積は低くなる。よって、平均一次粒径と比表面積との積が2400以下であるということは、一次粒子がある程度凝集して二次粒子を形成していることを意味する。したがって、シリカ粒子の平均一次粒径と比表面積との積が2400以下であると、画像の光沢が抑制される。 Normally, the smaller the average primary particle size, the higher the specific surface area. Further, when the primary particles are agglomerated with each other, the higher the degree of agglomeration, the lower the specific surface area. Therefore, the fact that the product of the average primary particle size and the specific surface area is 2400 or less means that the primary particles aggregate to some extent to form secondary particles. Therefore, when the product of the average primary particle size and the specific surface area of the silica particles is 2400 or less, the gloss of the image is suppressed.
 シリカ粒子の比表面積は、BET法によって測定される値である。シリカ粒子の比表面積は、例えば、Microtrac MRB社製の迅速BET比表面積測定装置(製品名「BELSORP MR1」)を用いて測定することができる。具体的な測定方法は以下のとおりである。 The specific surface area of the silica particles is a value measured by the BET method. The specific surface area of the silica particles can be measured, for example, using a rapid BET specific surface area measuring device (product name "BELSORP MR1") manufactured by Microtrac MRB. The specific measurement method is as follows.
 まず、インクに対して遠心分離を行い、シリカ粒子を抽出する。次に、抽出したシリカ粒子を、プロピレングリコールモノメチルエーテルで洗浄し、乾燥させる。得られたシリカ粒子について、迅速BET比表面積測定装置を用いて、窒素ガスの充填量から比表面積を算出する。 First, centrifuge the ink to extract silica particles. Next, the extracted silica particles are washed with propylene glycol monomethyl ether and dried. The specific surface area of the obtained silica particles is calculated from the filling amount of nitrogen gas using a rapid BET specific surface area measuring device.
 シリカ粒子は、平均一次粒径が22nm以上100nm未満であれば、ヒュームドシリカであってもよく、コロイダルシリカであってもよい。一般に、コロイダルシリカは単分散であって、凝集しにくい。すなわち、平均一次粒径と平均二次粒径とがほぼ同じ値となる傾向にある。一方、ヒュームドシリカは、一次粒子がゆるやかに凝集して二次粒子を形成する傾向にある。本開示のインクでは、画像の光沢を抑制する観点から、シリカ粒子の平均二次粒径は200nm~800nmであることが好ましい。したがって、シリカ粒子は、ヒュームドシリカであることが好ましい。 The silica particles may be fumed silica or colloidal silica as long as the average primary particle size is 22 nm or more and less than 100 nm. In general, colloidal silica is monodisperse and does not easily aggregate. That is, the average primary particle size and the average secondary particle size tend to be almost the same value. On the other hand, in fumed silica, primary particles tend to be loosely aggregated to form secondary particles. In the ink of the present disclosure, the average secondary particle size of the silica particles is preferably 200 nm to 800 nm from the viewpoint of suppressing the gloss of the image. Therefore, the silica particles are preferably fumed silica.
 シリカ粒子の表面構造は特に限定されないが、疎水化度を50以上とする観点から、シリカ粒子は、ポリジメチルシロキサン構造又はアルキル基を有することが好ましく、ポリジメチルシロキサン構造を有することが好ましい。 The surface structure of the silica particles is not particularly limited, but from the viewpoint of making the degree of hydrophobicity 50 or more, the silica particles preferably have a polydimethylsiloxane structure or an alkyl group, and preferably have a polydimethylsiloxane structure.
 シリカ粒子の表面構造は、熱分解ガスクロマトグラフ、例えば、島津製作所製のQP2010 Ultraを用いて解析することができる。 The surface structure of the silica particles can be analyzed using a pyrolysis gas chromatograph, for example, QP2010 Ultra manufactured by Shimadzu Corporation.
 シリカ粒子は市販品であってもよい。市販品としては、例えば、VP RY 40 S、VP RX 40S(以上、エボニック社製)、Aerosil RY50、Aerosil RY51、Aerosil NY50、Aerosil RX50、Aerosil NAX50、Aerosil RM50、Aerosil NA50Y、Aerosil NA50H、Aerosil NY200S、Aerosil NX90S、Aerosil NX90G(以上、エボニック社製)、及びレオロシールPM-09(トクヤマ社製)が挙げられる。 Silica particles may be commercially available products. Commercially available products include, for example, VP RY 40S, VP RX 40S (above, manufactured by Ebonic), Aerosil RY50, Aerosil RY51, Aerosil NY50, Aerosil RX50, Aerosil RX50, Aerosil NAX50, Aerosil ASilASilA Examples include Aerosil NX90S, Aerosil NX90G (above, manufactured by Ebonic), and Leolosil PM-09 (manufactured by Tokuyama).
 シリカ粒子の含有量は特に限定されないが、インクの全量に対して0.5質量%~15質量%であることが好ましく、1質量%~10質量%であることがより好ましく、2.5質量%~8質量%であることがさらに好ましい。シリカ粒子の含有量が0.5質量%以上であると、画像の光沢がより抑制される。一方、シリカ粒子の含有量が15質量%以下であると、吐出性がより向上する。 The content of the silica particles is not particularly limited, but is preferably 0.5% by mass to 15% by mass, more preferably 1% by mass to 10% by mass, and 2.5% by mass with respect to the total amount of the ink. It is more preferably% to 8% by mass. When the content of the silica particles is 0.5% by mass or more, the gloss of the image is further suppressed. On the other hand, when the content of the silica particles is 15% by mass or less, the ejection property is further improved.
<ラジカル重合性モノマー>
 本開示のインクは、ラジカル重合性モノマーを少なくとも1種含有する。
<Radical polymerizable monomer>
The ink of the present disclosure contains at least one radically polymerizable monomer.
 ラジカル重合性モノマーとは、1分子中に少なくとも1つのラジカル重合性基を有するモノマーのことをいう。ラジカル重合性基は、硬化性の観点から、エチレン性不飽和基であることが好ましい。 The radically polymerizable monomer means a monomer having at least one radically polymerizable group in one molecule. The radically polymerizable group is preferably an ethylenically unsaturated group from the viewpoint of curability.
 ラジカル重合性モノマーの分子量は、100~400が好ましい。ラジカル重合性モノマーの分子量は、ラジカル重合性モノマーを構成する原子の種類及び数に基づいて、算出することができる。 The molecular weight of the radically polymerizable monomer is preferably 100 to 400. The molecular weight of the radically polymerizable monomer can be calculated based on the type and number of atoms constituting the radically polymerizable monomer.
 ラジカル重合性モノマーは、単官能ラジカル重合性モノマー(以下、「単官能モノマー」という)、2官能ラジカル重合性モノマー(以下、「2官能モノマー」という)、及び3官能以上のラジカル重合性モノマー(以下、「3官能以上のモノマー」という)のいずれであってもよい。また、ラジカル重合性モノマーは、単官能モノマー、2官能モノマー、及び3官能以上のモノマーのうちの2種以上を含む組み合わせであってもよい。 The radically polymerizable monomer includes a monofunctional radically polymerizable monomer (hereinafter referred to as "monofunctional monomer"), a bifunctional radically polymerizable monomer (hereinafter referred to as "bifunctional monomer"), and a trifunctional or higher functional radically polymerizable monomer (hereinafter referred to as "bifunctional monomer"). Hereinafter, it may be any of (referred to as "monomer having trifunctionality or higher"). Further, the radically polymerizable monomer may be a combination containing two or more of a monofunctional monomer, a bifunctional monomer, and a trifunctional or higher functional monomer.
 本開示のインクに含まれるラジカル重合性モノマーは、単官能モノマー及び2官能モノマーの少なくとも一方を含むことが好ましい。この場合、単官能モノマー及び2官能モノマーの総含有量は、インクの全量に対して、50質量%以上であることが好ましく、55質量%以上であることがより好ましく、60質量%以上であることがさらに好ましい。単官能モノマー及び2官能モノマーの総含有量の上限値は特に限定されないが、例えば、80質量%である。 The radically polymerizable monomer contained in the ink of the present disclosure preferably contains at least one of a monofunctional monomer and a bifunctional monomer. In this case, the total content of the monofunctional monomer and the bifunctional monomer is preferably 50% by mass or more, more preferably 55% by mass or more, and more preferably 60% by mass or more with respect to the total amount of the ink. Is even more preferable. The upper limit of the total content of the monofunctional monomer and the bifunctional monomer is not particularly limited, but is, for example, 80% by mass.
 中でも、ラジカル重合性モノマーは、2官能モノマーを含むことが好ましく、単官能モノマー及び2官能モノマーを含むことがより好ましい。インクに2官能モノマーが含まれていると、重合の際にシリカ粒子がインク膜の表面に押し出されやすいため、得られる画像の光沢がより抑制される。 Among them, the radically polymerizable monomer preferably contains a bifunctional monomer, and more preferably contains a monofunctional monomer and a bifunctional monomer. When the ink contains a bifunctional monomer, silica particles are easily extruded onto the surface of the ink film during polymerization, so that the gloss of the obtained image is further suppressed.
 得られる画像の光沢をより抑制する観点から、2官能モノマーの含有量は、インクの全量に対し、5質量%~80質量%であることが好ましく、10質量%~80質量%であることがより好ましく、20質量%~80質量%であることがさらに好ましい。 From the viewpoint of further suppressing the gloss of the obtained image, the content of the bifunctional monomer is preferably 5% by mass to 80% by mass, and preferably 10% by mass to 80% by mass, based on the total amount of the ink. More preferably, it is more preferably 20% by mass to 80% by mass.
 また、得られる画像の光沢をより抑制する観点から、シリカ粒子の含有量に対する2官能モノマーの含有量の質量比率は、1~100であることが好ましく、3~50であることがより好ましく、4~20であることがさらに好ましい。 Further, from the viewpoint of further suppressing the gloss of the obtained image, the mass ratio of the content of the bifunctional monomer to the content of the silica particles is preferably 1 to 100, more preferably 3 to 50. It is more preferably 4 to 20.
 インクの粘度を低減させる観点から、ラジカル重合性モノマーの含有量は、インクの全量に対し、50質量%以上であることが好ましく、60質量%以上であることがより好ましく、65質量%以上であることがさらに好ましく、70質量%以上であることが特に好ましい。ラジカル重合性モノマーの含有量の上限値は特に限定されないが、例えば、80質量%である。 From the viewpoint of reducing the viscosity of the ink, the content of the radically polymerizable monomer is preferably 50% by mass or more, more preferably 60% by mass or more, and 65% by mass or more with respect to the total amount of the ink. It is more preferable that the amount is 70% by mass or more, and it is particularly preferable that the amount is 70% by mass or more. The upper limit of the content of the radically polymerizable monomer is not particularly limited, but is, for example, 80% by mass.
-単官能モノマー-
 単官能モノマーとしては、例えば、単官能(メタ)アクリレート、単官能(メタ)アクリルアミド、単官能芳香族ビニル化合物、単官能ビニルエーテル、及び単官能N-ビニル化合物が挙げられる。
-Monofunctional monomer-
Examples of the monofunctional monomer include monofunctional (meth) acrylate, monofunctional (meth) acrylamide, monofunctional aromatic vinyl compound, monofunctional vinyl ether, and monofunctional N-vinyl compound.
 単官能(メタ)アクリレートとしては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、ヘキシル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、tert-オクチル(メタ)アクリレート、イソアミル(メタ)アクリレート、デシル(メタ)アクリレート、イソデシル(メタ)アクリレート、ラウリル(メタ)アクリレート、ステアリル(メタ)アクリレート、イソステアリル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、4-n-ブチルシクロヘキシル(メタ)アクリレート、(メタ)アクリル酸4-tert-ブチルシクロヘキシル、ボルニル(メタ)アクリレート、ノルボルニル(メタ)アクリレート、イソボルニル(メタ)アクリレート、アダマンチル(メタ)アクリレート、2-エチルヘキシルジグリコール(メタ)アクリレート、ブトキシエチル(メタ)アクリレート、2-クロロエチル(メタ)アクリレート、4-ブロモブチル(メタ)アクリレート、シアノエチル(メタ)アクリレート、ベンジル(メタ)アクリレート、ブトキシメチル(メタ)アクリレート、3-メトキシブチル(メタ)アクリレート、2-(2-メトキシエトキシ)エチル(メタ)アクリレート、2-(2-ブトキシエトキシ)エチル(メタ)アクリレート、エチルカルビトール(メタ)アクリレート、2,2,2-テトラフルオロエチル(メタ)アクリレート、1H,1H,2H,2H-パーフルオロデシル(メタ)アクリレート、4-ブチルフェニル(メタ)アクリレート、フェニル(メタ)アクリレート、2,4,5-テトラメチルフェニル(メタ)アクリレート、4-クロロフェニル(メタ)アクリレート、2-フェノキシメチル(メタ)アクリレート、2-フェノキシエチル(メタ)アクリレート、グリシジル(メタ)アクリレート、グリシジルオキシブチル(メタ)アクリレート、グリシジルオキシエチル(メタ)アクリレート、グリシジルオキシプロピル(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、3-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、3-ヒドロキシブチル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、環状トリメチロールプロパンホルマール(メタ)アクリレート、フェニルグリシジルエーテル(メタ)アクリレート、ジメチルアミノエチル(メタ)アクリレート、ジエチルアミノエチル(メタ)アクリレート、ジメチルアミノプロピル(メタ)アクリレート、ジエチルアミノプロピル(メタ)アクリレート、トリメトキシシリルプロピル(メタ)アクリレート、トリメチルシリルプロピル(メタ)アクリレート、ポリエチレンオキシドモノメチルエーテル(メタ)アクリレート、ポリエチレンオキシド(メタ)アクリレート、ポリエチレンオキシドモノアルキルエーテル(メタ)アクリレート、ジプロピレングリコール(メタ)アクリレート、ポリプロピレンオキシドモノアルキルエーテル(メタ)アクリレート、2-メタクリロイルオキシエチルコハク酸、2-メタクリロイルオキシヘキサヒドロフタル酸、2-メタクリロイルオキシエチル-2-ヒドロキシプロピルフタレート、ブトキシジエチレングリコール(メタ)アクリレート、トリフルオロエチル(メタ)アクリレート、パーフルオロオクチルエチル(メタ)アクリレート、2-ヒドロキシ-3-フェノキシプロピル(メタ)アクリレート、エチレンオキシド変性(以下、EO変性とする)フェノール(メタ)アクリレート、EO変性クレゾール(メタ)アクリレート、EO変性ノニルフェノール(メタ)アクリレート、プロピレンオキシド変性(以下、PO変性とする)ノニルフェノール(メタ)アクリレート、EO変性-2-エチルヘキシル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、ジシクロペンテニルオキシエチル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、(3-エチル-3-オキセタニルメチル)(メタ)アクリレート、及びフェノキシエチレングリコール(メタ)アクリレートが挙げられる。 Examples of the monofunctional (meth) acrylate include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, n-butyl (meth) acrylate, hexyl (meth) acrylate, and 2-ethylhexyl (meth) acrylate. , Tert-octyl (meth) acrylate, isoamyl (meth) acrylate, decyl (meth) acrylate, isodecyl (meth) acrylate, lauryl (meth) acrylate, stearyl (meth) acrylate, isostearyl (meth) acrylate, cyclohexyl (meth) Acrylate, 4-n-butylcyclohexyl (meth) acrylate, 4-tert-butylcyclohexyl (meth) acrylate, bornyl (meth) acrylate, norbornyl (meth) acrylate, isobornyl (meth) acrylate, adamantyl (meth) acrylate, 2 -Ethylhexyl diglycol (meth) acrylate, butoxyethyl (meth) acrylate, 2-chloroethyl (meth) acrylate, 4-bromobutyl (meth) acrylate, cyanoethyl (meth) acrylate, benzyl (meth) acrylate, butoxymethyl (meth) acrylate , 3-methoxybutyl (meth) acrylate, 2- (2-methoxyethoxy) ethyl (meth) acrylate, 2- (2-butoxyethoxy) ethyl (meth) acrylate, ethylcarbitol (meth) acrylate, 2,2 2-Tetrafluoroethyl (meth) acrylate, 1H, 1H, 2H, 2H-perfluorodecyl (meth) acrylate, 4-butylphenyl (meth) acrylate, phenyl (meth) acrylate, 2,4,5-tetramethylphenyl (Meta) acrylate, 4-chlorophenyl (meth) acrylate, 2-phenoxymethyl (meth) acrylate, 2-phenoxyethyl (meth) acrylate, glycidyl (meth) acrylate, glycidyloxybutyl (meth) acrylate, glycidyloxyethyl (meth) ) Acrylate, glycidyloxypropyl (meth) acrylate, tetrahydrofurfuryl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (Meta) acrylate, 3-hydroxybutyl (meth) acrylate, 4-hydroxybuty Lu (meth) acrylate, cyclic trimethylolpropaneformal (meth) acrylate, phenylglycidyl ether (meth) acrylate, dimethylaminoethyl (meth) acrylate, diethylaminoethyl (meth) acrylate, dimethylaminopropyl (meth) acrylate, diethylaminopropyl (meth) Meta) acrylate, trimethoxysilylpropyl (meth) acrylate, trimethylsilylpropyl (meth) acrylate, polyethylene oxide monomethyl ether (meth) acrylate, polyethylene oxide (meth) acrylate, polyethylene oxide monoalkyl ether (meth) acrylate, dipropylene glycol ( Meta) acrylate, polypropylene oxide monoalkyl ether (meth) acrylate, 2-methacryloyloxyethyl succinic acid, 2-methacryloyloxyhexahydrophthalic acid, 2-methacryloyloxyethyl-2-hydroxypropylphthalate, butoxydiethylene glycol (meth) acrylate, Trifluoroethyl (meth) acrylate, perfluorooctylethyl (meth) acrylate, 2-hydroxy-3-phenoxypropyl (meth) acrylate, ethylene oxide-modified (hereinafter referred to as EO-modified) phenol (meth) acrylate, EO-modified cresol (hereinafter referred to as EO-modified). Meta) acrylate, EO-modified nonylphenol (meth) acrylate, propylene oxide-modified (hereinafter referred to as PO-modified) nonylphenol (meth) acrylate, EO-modified -2-ethylhexyl (meth) acrylate, dicyclopentenyl (meth) acrylate, dicyclo Examples thereof include pentenyloxyethyl (meth) acrylate, dicyclopentanyl (meth) acrylate, (3-ethyl-3-oxetanylmethyl) (meth) acrylate, and phenoxyethylene glycol (meth) acrylate.
 単官能(メタ)アクリルアミドとしては、例えば、(メタ)アクリルアミド、N-メチル(メタ)アクリルアミド、N-エチル(メタ)アクリルアミド、N-プロピル(メタ)アクリルアミド、N-n-ブチル(メタ)アクリルアミド、N-t-ブチル(メタ)アクリルアミド、N-ブトキシメチル(メタ)アクリルアミド、N-イソプロピル(メタ)アクリルアミド、N-メチロール(メタ)アクリルアミド、N,N-ジメチル(メタ)アクリルアミド、N,N-ジエチル(メタ)アクリルアミド、及び(メタ)アクリロイルモルフォリンが挙げられる。 Examples of the monofunctional (meth) acrylamide include (meth) acrylamide, N-methyl (meth) acrylamide, N-ethyl (meth) acrylamide, N-propyl (meth) acrylamide, and Nn-butyl (meth) acrylamide. Nt-butyl (meth) acrylamide, N-butoxymethyl (meth) acrylamide, N-isopropyl (meth) acrylamide, N-methylol (meth) acrylamide, N, N-dimethyl (meth) acrylamide, N, N-diethyl Examples include (meth) acrylamide and (meth) acryloylmorpholin.
 単官能芳香族ビニル化合物としては、例えば、スチレン、ジメチルスチレン、トリメチルスチレン、イソプロピルスチレン、クロロメチルスチレン、メトキシスチレン、アセトキシスチレン、クロロスチレン、ジクロロスチレン、ブロモスチレン、ビニル安息香酸メチルエステル、3-メチルスチレン、4-メチルスチレン、3-エチルスチレン、4-エチルスチレン、3-プロピルスチレン、4-プロピルスチレン、3-ブチルスチレン、4-ブチルスチレン、3-ヘキシルスチレン、4-ヘキシルスチレン、3-オクチルスチレン、4-オクチルスチレン、3-(2-エチルヘキシル)スチレン、4-(2-エチルヘキシル)スチレン、アリルスチレン、イソプロペニルスチレン、ブテニルスチレン、オクテニルスチレン、4-t-ブトキシカルボニルスチレン、及び4-t-ブトキシスチレンが挙げられる。 Examples of the monofunctional aromatic vinyl compound include styrene, dimethylstyrene, trimethylstyrene, isopropylstyrene, chloromethylstyrene, methoxystyrene, acetoxystyrene, chlorostyrene, dichlorostyrene, bromostyrene, vinyl benzoic acid methyl ester, and 3-methyl. Styrene, 4-methylstyrene, 3-ethylstyrene, 4-ethylstyrene, 3-propylstyrene, 4-propylstyrene, 3-butylstyrene, 4-butylstyrene, 3-hexylstyrene, 4-hexylstyrene,3-octyl Styrene, 4-octyl styrene, 3- (2-ethylhexyl) styrene, 4- (2-ethylhexyl) styrene, allyl styrene, isopropenyl styrene, butenyl styrene, octenyl styrene, 4-t-butoxycarbonyl styrene, and 4 -T-butoxystyrene can be mentioned.
 単官能ビニルエーテルとしては、例えば、メチルビニルエーテル、エチルビニルエーテル、プロピルビニルエーテル、n-ブチルビニルエーテル、t-ブチルビニルエーテル、2-エチルヘキシルビニルエーテル、n-ノニルビニルエーテル、ラウリルビニルエーテル、シクロヘキシルビニルエーテル、シクロヘキシルメチルビニルエーテル、4-メチルシクロヘキシルメチルビニルエーテル、ベンジルビニルエーテル、ジシクロペンテニルビニルエーテル、2-ジシクロペンテノキシエチルビニルエーテル、メトキシエチルビニルエーテル、エトキシエチルビニルエーテル、ブトキシエチルビニルエーテル、メトキシエトキシエチルビニルエーテル、エトキシエトキシエチルビニルエーテル、メトキシポリエチレングリコールビニルエーテル、テトラヒドロフルフリルビニルエーテル、2-ヒドロキシエチルビニルエーテル、2-ヒドロキシプロピルビニルエーテル、4-ヒドロキシブチルビニルエーテル、4-ヒドロキシメチルシクロヘキシルメチルビニルエーテル、ジエチレングリコールモノビニルエーテル、ポリエチレングリコールビニルエーテル、クロルエチルビニルエーテル、クロルブチルビニルエーテル、クロルエトキシエチルビニルエーテル、フェニルエチルビニルエーテル、及びフェノキシポリエチレングリコールビニルエーテルが挙げられる。 Examples of the monofunctional vinyl ether include methyl vinyl ether, ethyl vinyl ether, propyl vinyl ether, n-butyl vinyl ether, t-butyl vinyl ether, 2-ethylhexyl vinyl ether, n-nonyl vinyl ether, lauryl vinyl ether, cyclohexyl vinyl ether, cyclohexylmethyl vinyl ether and 4-methyl. Cyclohexylmethyl vinyl ether, benzyl vinyl ether, dicyclopentenyl vinyl ether, 2-dicyclopentenoxyethyl vinyl ether, methoxyethyl vinyl ether, ethoxyethyl vinyl ether, butoxyethyl vinyl ether, methoxyethoxyethyl vinyl ether, ethoxyethoxyethyl vinyl ether, methoxypolyethylene glycol vinyl ether, tetrahydro Full frill vinyl ether, 2-hydroxyethyl vinyl ether, 2-hydroxypropyl vinyl ether, 4-hydroxybutyl vinyl ether, 4-hydroxymethylcyclohexylmethyl vinyl ether, diethylene glycol monovinyl ether, polyethylene glycol vinyl ether, chlorethyl vinyl ether, chlorbutyl vinyl ether, chlorethoxyethyl vinyl ether , Phenylethyl vinyl ether, and phenoxypolyethylene glycol vinyl ether.
 単官能N-ビニル化合物としては、N-ビニルカプロラクタム、N-ビニルピロリドン、N-ビニルオキサゾリジノン、及びN-ビニル-5-メチルオキサゾリジノンが挙げられる。 Examples of the monofunctional N-vinyl compound include N-vinylcaprolactam, N-vinylpyrrolidone, N-vinyloxazolidinone, and N-vinyl-5-methyloxazolidinone.
-2官能モノマー-
 2官能モノマーとしては、例えば、2官能(メタ)アクリレート、2官能ビニルエーテル、及び、ビニルエーテル基と(メタ)アクリロイル基とを含む2官能モノマーが挙げられる。
-2 Functional monomer-
Examples of the bifunctional monomer include a bifunctional (meth) acrylate, a bifunctional vinyl ether, and a bifunctional monomer containing a vinyl ether group and a (meth) acryloyl group.
 2官能(メタ)アクリレートとしては、例えば、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、ジプロピレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、ブチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、3-メチル-1,5-ペンタンジオールジ(メタ)アクリレート、ヘキサンジオールジ(メタ)アクリレート、ヘプタンジオールジ(メタ)アクリレート、EO変性ネオペンチルグリコールジ(メタ)アクリレート、PO変性ネオペンチルグリコールジ(メタ)アクリレート、EO変性ヘキサンジオールジ(メタ)アクリレート、PO変性ヘキサンジオールジ(メタ)アクリレート、オクタンジオールジ(メタ)アクリレート、ノナンジオールジ(メタ)アクリレート、デカンジオールジ(メタ)アクリレート、ドデカンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、グリセリンジ(メタ)アクリレート、ペンタエリスリトールジ(メタ)アクリレート、エチレングリコールジグリシジルエーテルジ(メタ)アクリレート、ジエチレングリコールジグリシジルエーテルジ(メタ)アクリレート、及びトリシクロデカンジメタノールジ(メタ)アクリレートが挙げられる。 Examples of the bifunctional (meth) acrylate include ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, triethylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate, and dipropylene glycol di (meth). Acrylic, Tripropylene Glycol Di (Meta) Acrylic, Polyethylene Glycol Di (Meta) Acrylic, Polypropylene Glycol Di (Meta) Acrylic, Butylene Glycol Di (Meta) Acrylate, Tetraethylene Glycol Di (Meta) Acrylic, Neopentyl Glycol Di (Meta) ) Acrylate, 3-Methyl-1,5-pentanediol di (meth) acrylate, hexanediol di (meth) acrylate, heptanediol di (meth) acrylate, EO-modified neopentyl glycol di (meth) acrylate, PO-modified neopentyl Glycol di (meth) acrylate, EO-modified hexanediol di (meth) acrylate, PO-modified hexanediol di (meth) acrylate, octanediol di (meth) acrylate, nonanediol di (meth) acrylate, decanediol di (meth) acrylate , Dodecanediol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, glycerin di (meth) acrylate, pentaerythritol di (meth) acrylate, ethylene glycol diglycidyl ether di (meth) acrylate, diethylene glycol diglycidyl Examples thereof include ether di (meth) acrylate and tricyclodecanedimethanol di (meth) acrylate.
 2官能ビニルエーテルとしては、例えば、1,4-ブタンジオールジビニルエーテル(ClogP値:1.32)、エチレングリコールジビニルエーテル(ClogP値:0.66)、ジエチレングリコールジビニルエーテル(ClogP値:0.47)、トリエチレングリコールジビニルエーテル(ClogP値:0.29)、ポリエチレングリコールジビニルエーテル(ClogP値:0.29以下)、プロピレングリコールジビニルエーテル(ClogP値:0.97)、ブチレングリコールジビニルエーテル(ClogP値:1.32)、ヘキサンジオールジビニルエーテル(ClogP値:2.38)、1,4-シクロヘキサンジメタノールジビニルエーテル(ClogP値:1.66)、ビスフェノールAアルキレンオキシドジビニルエーテル(例えば、ビスフェノールAエチレンオキシドジビニルエーテルの場合、ClogP値:5.35)、及びビスフェノールFアルキレンオキシドジビニルエーテル(例えば、ビスフェノールFエチレンオキシドジビニルエーテルの場合、ClogP値:4.55)が挙げられる。 Examples of the bifunctional vinyl ether include 1,4-butanediol divinyl ether (ClogP value: 1.32), ethylene glycol divinyl ether (ClogP value: 0.66), and diethylene glycol divinyl ether (ClogP value: 0.47). Triethylene glycol divinyl ether (ClogP value: 0.29), polyethylene glycol divinyl ether (ClogP value: 0.29 or less), propylene glycol divinyl ether (ClogP value: 0.97), butylene glycol divinyl ether (ClogP value: 1). .32), hexanediol divinyl ether (ClogP value: 2.38), 1,4-cyclohexanedimethanol divinyl ether (ClogP value: 1.66), bisphenol A alkylene oxide divinyl ether (eg, bisphenol A ethylene oxide divinyl ether). In the case of bisphenol F alkylene oxide divinyl ether (for example, in the case of bisphenol F ethylene oxide divinyl ether, Clog P value: 4.55).
 ビニルエーテル基と(メタ)アクリロイル基とを含む2官能モノマーとしては、(メタ)アクリル酸2-(2-ビニロキシエトキシ)エチルが挙げられる。 Examples of the bifunctional monomer containing a vinyl ether group and a (meth) acryloyl group include 2- (2-vinyloxyethoxy) ethyl (meth) acrylate.
-3官能以上のモノマー-
 3官能以上のモノマーとしては、例えば、3官能以上の(メタ)アクリレート及び3官能以上のビニルエーテルが挙げられる。
-3 Sensual or higher monomer-
Examples of the trifunctional or higher functional monomer include trifunctional or higher functional (meth) acrylates and trifunctional or higher functional vinyl ethers.
 3官能以上の(メタ)アクリレートとしては、例えば、トリメチロールエタントリ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、EO変性トリメチロールプロパントリ(メタ)アクリレート、PO変性トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、トリ(メタ)アクリロイルオキシエトキシトリメチロールプロパン、グリセリンポリグリシジルエーテルポリ(メタ)アクリレート、及びトリス(2-アクリロイルオキシエチル)イソシアヌレートが挙げられる。 Examples of the trifunctional or higher functional (meth) acrylate include trimethylolethanetri (meth) acrylate, trimethylolpropane tri (meth) acrylate, EO-modified trimethylolpropane tri (meth) acrylate, and PO-modified trimethylolpropane tri (meth) acrylate. ) Acrylate, pentaerythritol tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol tetra (meth) acrylate, dipentaerythritol penta (meth) acrylate, dipentaerythritol hexa (meth) acrylate, tri (meth) Included are acryloyloxyethoxytrimethylolpropane, glycerin polyglycidyl ether poly (meth) acrylate, and tris (2-acryloyloxyethyl) isocyanurate.
 3官能以上のビニルエーテルとしては、例えば、トリメチロールエタントリビニルエーテル、トリメチロールプロパントリビニルエーテル、ジトリメチロールプロパンテトラビニルエーテル、グリセリントリビニルエーテル、ペンタエリスリトールテトラビニルエーテル、ジペンタエリスリトールペンタビニルエーテル、ジペンタエリスリトールヘキサビニルエーテル、EO変性トリメチロールプロパントリビニルエーテル、PO変性トリメチロールプロパントリビニルエーテル、EO変性ジトリメチロールプロパンテトラビニルエーテル、PO変性ジトリメチロールプロパンテトラビニルエーテル、EO変性ペンタエリスリトールテトラビニルエーテル、PO変性ペンタエリスリトールテトラビニルエーテル、EO変性ジペンタエリスリトールヘキサビニルエーテル、及びPO変性ジペンタエリスリトールヘキサビニルエーテルが挙げられる。 Examples of the trifunctional or higher functional vinyl ether include trimethylolethane trivinyl ether, trimethylolpropane trivinyl ether, trimethylolpropane tetravinyl ether, glycerin trivinyl ether, pentaerythritol tetravinyl ether, dipentaerythritol pentavinyl ether, dipentaerythritol hexavinyl ether, and EO. Modified trimethylolpropane trivinyl ether, PO-modified trimethylolpropane trivinyl ether, EO-modified dimethylolpropane tetravinyl ether, PO-modified dimethylolpropane tetravinyl ether, EO-modified pentaerythritol tetravinyl ether, PO-modified pentaerythritol tetravinyl ether, EO-modified dipentaerythritol Hexavinyl ether and PO-modified dipentaerythritol hexavinyl ether can be mentioned.
-ウレタン(メタ)アクリレート-
 2官能モノマー及び3官能以上のモノマーとしては、ウレタン(メタ)アクリレートも挙げられる。
-Urethane (meth) acrylate-
Examples of the bifunctional monomer and the trifunctional or higher functional monomer include urethane (meth) acrylate.
 ウレタン(メタ)アクリレートとしては、2官能イソシアネート化合物と水酸基含有(メタ)アクリレートとの反応物であるウレタン(メタ)アクリレートが挙げられる。 Examples of the urethane (meth) acrylate include urethane (meth) acrylate, which is a reaction product of a bifunctional isocyanate compound and a hydroxyl group-containing (meth) acrylate.
 2官能イソシアネート化合物としては、例えば、メチレンジイソシアネート、ジメチレンジイソシアネート、トリメチレンジイソシアネート、テトラメチレンジイソシアネート、ペンタメチレンジイソシアネート、ヘキサメチレンジイソシアネート、ジプロピルエーテルジイソシアネート、2,2-ジメチルペンタンジイソシアネート、3-メトキシヘキサンジイソシアネート、オクタメチレンジイソシアネート、2,2,4-トリメチルペンタンジイソシアネート、ノナメチレンジイソシアネート、デカメチレンジイソシアネート、3-ブトキシヘキサンジイソシアネート、1,4-ブチレングリコールジプロピルエーテルジイソシアネート、チオジヘキシルジイソシアネート等の脂肪族ジイソシアネート;
m-フェニレンジイソシアネート、p-フェニレンジイソシアネート、2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート、ジメチルベンゼンジイソシアネート、エチルベンゼンジイソシアネート、イソプロピルベンゼンジイソシアネート、トリジンジイソシアネート、1,4-ナフタレンジイソシアネート、1,5-ナフタレンジイソシアネート、2,6-ナフタレンジイソシアネート、2,7-ナフタレンジイソシアネート、メタキシリレンジイソシアネート、パラキシリレンジイソシアネート、テトラメチルキシリレンジイソシアネート等の芳香族ジイソシアネート;
水添キシリレンジイソシアネート、イソホロンジイソシアネート、ジシクロヘキシルメタン4,4'-ジイソシアネート等の脂環式ジイソシアネート;
等が挙げられる。
 水酸基含有(メタ)アクリレートとしては、例えば、2-ヒドロキシエチル(メタ)アクリレート、3-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、3-ヒドロキシブチル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、フェニルグリシジルエーテル(メタ)アクリレート、ペンタエリスリトール(メタ)トリアクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、等が挙げられる。
Examples of the bifunctional isocyanate compound include methylene diisocyanate, dimethylene diisocyanate, trimethylene diisocyanate, tetramethylene diisocyanate, pentamethylene diisocyanate, hexamethylene diisocyanate, dipropylether diisocyanate, 2,2-dimethylpentane diisocyanate, and 3-methoxyhexanediisocyanis. , Octamethylene diisocyanate, 2,2,4-trimethylpentane diisocyanate, nonamethylene diisocyanate, decamethylene diisocyanate, 3-butoxyhexane diisocyanate, 1,4-butylene glycol dipropyl ether diisocyanate, thiodihexyl diisocyanate and other aliphatic diisocyanis;
m-phenylene diisocyanate, p-phenylenedi isocyanate, 2,4-toluene diisocyanate, 2,6-toluene diisocyanate, dimethylbenzene diisocyanate, ethylbenzene diisocyanate, isopropylbenzene diisocyanate, trizine diisocyanate, 1,4-naphthalenedi isocyanate, 1,5 -Aromatic diisocyanates such as naphthalene diisocyanate, 2,6-naphthalene diisocyanate, 2,7-naphthalene diisocyanate, metaxylylene diisocyanate, paraxylylene diisocyanate, tetramethylxylylene diisocyanate;
Alicyclic diisocyanates such as hydrogenated xylylene diisocyanate, isophorone diisocyanate, and dicyclohexylmethane 4,4'-diisocyanate;
And so on.
Examples of the hydroxyl group-containing (meth) acrylate include 2-hydroxyethyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, and 3-hydroxy. Examples thereof include butyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, phenylglycidyl ether (meth) acrylate, pentaerythritol (meth) triacrylate, and dipentaerythritol penta (meth) acrylate.
-エポキシ(メタ)アクリレート-
 2官能モノマー及び3官能以上のモノマーとしては、エポキシ(メタ)アクリレートも挙げられる。
-Epoxy (meth) acrylate-
Examples of the bifunctional monomer and the trifunctional or higher functional monomer include epoxy (meth) acrylate.
 エポキシ(メタ)アクリレートとしては、(メタ)アクリル酸とエポキシ樹脂との反応物が挙げられる。 Examples of the epoxy (meth) acrylate include a reaction product of (meth) acrylic acid and an epoxy resin.
 エポキシ樹脂としては、例えば、ビスフェノールA型エポキシ樹脂及びクレゾールノボラック型エポキシ樹脂が挙げられる。 Examples of the epoxy resin include bisphenol A type epoxy resin and cresol novolac type epoxy resin.
 ラジカル重合性モノマーは、ClogP値が2以上のラジカル重合性モノマーを含むことが好ましい。インクが2種以上のラジカル重合性モノマーを含む場合に、2種以上のラジカル重合性モノマーのうち少なくとも1種が、ClogP値が2以上のラジカル重合性モノマーであることが好ましい。インクにClogP値が2以上のラジカル重合性モノマーが含まれていると、疎水化度が50以上であるシリカ粒子と疎水性相互作用が働きやすい。その結果、インクの粘度が低下し、吐出性が向上する。 The radically polymerizable monomer preferably contains a radically polymerizable monomer having a ClogP value of 2 or more. When the ink contains two or more kinds of radically polymerizable monomers, it is preferable that at least one of the two or more kinds of radically polymerizable monomers is a radically polymerizable monomer having a LogP value of 2 or more. When the ink contains a radically polymerizable monomer having a LogP value of 2 or more, hydrophobic interaction is likely to work with silica particles having a degree of hydrophobicity of 50 or more. As a result, the viscosity of the ink is lowered and the ejection property is improved.
 得られる画像の光沢をより抑制し、かつ、吐出性をより向上させる観点から、シリカ粒子の含有量に対するClogP値が2以上のラジカル重合性モノマーの含有量の質量比率は、5~100であることが好ましく、6~50であることがより好ましく、7~30であることがさらに好ましい。 From the viewpoint of further suppressing the gloss of the obtained image and further improving the ejection property, the mass ratio of the content of the radically polymerizable monomer having a ClogP value of 2 or more to the content of the silica particles is 5 to 100. It is preferably 6 to 50, more preferably 7 to 30, and even more preferably 7 to 30.
 ClogP値が2以上のラジカル重合性モノマーとしては、例えば、ジプロピレングリコールジアクリレート(ClogP値:2.04)、トリプロピレングリコールジアクリレート(ClogP値:2.17)、フェノキシエチルアクリレート(ClogP値:2.56)、3-メチルペンタンジオールジアクリレート(ClogP値:2.89)、イソボルニルアクリレート(ClogP値:4.66)、トリシクロデカンジメタノールジアクリレート(ClogP値:4.66)、ノナンジオールジアクリレート(ClogP値:4.66)、及びラウリルアクリレート(ClogP値:6.62)が挙げられる。 Examples of the radically polymerizable monomer having a ClogP value of 2 or more include dipropylene glycol diacrylate (ClogP value: 2.04), tripropylene glycol diacrylate (ClogP value: 2.17), and phenoxyethyl acrylate (ClogP value: 2.04). 2.56), 3-methylpentanediol diacrylate (ClogP value: 2.89), isobornyl acrylate (ClogP value: 4.66), tricyclodecanedimethanol diacrylate (ClogP value: 4.66), Examples thereof include nonanediol diacrylate (ClogP value: 4.66) and lauryl acrylate (ClogP value: 6.62).
 本開示において、ClogP値は、フラグメント法を用いて計算される。フラグメント法を使用している計算ソフトとしては、例えば、ChemDraw Professioal 16が挙げられる。 In the present disclosure, the ClogP value is calculated using the fragment method. Examples of the calculation software using the fragment method include ChemDrawProfessional16.
 ラジカル重合性モノマーは、N-ビニル化合物を含むことが好ましい。N-ビニル化合物は、シリカ粒子をインク膜表面に押し出す作用を持っている。そのため、インクにN-ビニル化合物が含まれていると、シリカ粒子がインク膜表面に集まり、得られる画像の光沢がより抑制される。 The radically polymerizable monomer preferably contains an N-vinyl compound. The N-vinyl compound has an action of pushing silica particles onto the surface of the ink film. Therefore, when the ink contains an N-vinyl compound, silica particles gather on the surface of the ink film, and the gloss of the obtained image is further suppressed.
 得られる画像の光沢をより抑制し、かつ、吐出性をより向上させる観点から、シリカ粒子の含有量に対するN-ビニル化合物の含有量の質量比率は、1~15であることが好ましく、1~10であることがより好ましく、1~8であることがさらに好ましく、1~7であることが特に好ましい。 From the viewpoint of further suppressing the gloss of the obtained image and further improving the ejection property, the mass ratio of the content of the N-vinyl compound to the content of the silica particles is preferably 1 to 15 and 1 to 15. It is more preferably 10 and even more preferably 1 to 8, and particularly preferably 1 to 7.
 また、ラジカル重合性モノマーは、ビニルエーテル化合物を含むことが好ましい。ビニルエーテル化合物は重合速度が遅く、シリカ粒子と共にインク膜の表面に押し出される。そのため、インクにビニルエーテル化合物が含まれていると、シリカ粒子がインク膜表面に集まり、得られる画像の光沢がより抑制される。また、ビニルエーテル化合物は一般に極性が高く、シリカ粒子を凝集させ、得られる画像の光沢をより一層抑制させる。 Further, the radically polymerizable monomer preferably contains a vinyl ether compound. The vinyl ether compound has a slow polymerization rate and is extruded together with the silica particles onto the surface of the ink film. Therefore, when the ink contains a vinyl ether compound, silica particles gather on the surface of the ink film, and the gloss of the obtained image is further suppressed. In addition, the vinyl ether compound is generally highly polar and aggregates silica particles, further suppressing the gloss of the obtained image.
 特に、多官能ビニルエーテル化合物は、重合の際に、シリカ粒子をインク膜の表面に押し出す効果が高い。したがって、ビニルエーテル化合物は、多官能ビニルエーテル化合物であることが好ましい。また、インクの粘度が高くなり過ぎず、吐出性を向上させる観点から、多官能ビニルエーテル化合物は、2官能ビニルエーテル化合物であることが好ましく、ポリエチレングリコールジビニルエーテルであることがより好ましい。 In particular, the polyfunctional vinyl ether compound has a high effect of pushing silica particles onto the surface of the ink film during polymerization. Therefore, the vinyl ether compound is preferably a polyfunctional vinyl ether compound. Further, from the viewpoint that the viscosity of the ink does not become too high and the ejection property is improved, the polyfunctional vinyl ether compound is preferably a bifunctional vinyl ether compound, and more preferably polyethylene glycol divinyl ether.
 また、ビニルエーテル化合物のClogP値は1.0未満であることが好ましく、0.5以下であることがより好ましい。ビニルエーテル化合物のClogP値が1.0未満であると、シリカ粒子をより凝集させ、画像の光沢を抑制させる効果が高い。 Further, the ClogP value of the vinyl ether compound is preferably less than 1.0, more preferably 0.5 or less. When the ClogP value of the vinyl ether compound is less than 1.0, the effect of agglomerating the silica particles and suppressing the gloss of the image is high.
 ビニルエーテル化合物の含有量は、インクの全量に対して、0.5質量%~10質量%であることが好ましく、2質量%~8質量%であることがより好ましい。 The content of the vinyl ether compound is preferably 0.5% by mass to 10% by mass, more preferably 2% by mass to 8% by mass, based on the total amount of the ink.
<分散剤>
 本開示のインクは、分散剤を少なくとも1種含有することが好ましい。インクに分散剤が含まれていると、インク中でのシリカ粒子の分散性が向上する。その結果、インクの吐出性がより向上する。
<Dispersant>
The ink of the present disclosure preferably contains at least one dispersant. When the ink contains a dispersant, the dispersibility of the silica particles in the ink is improved. As a result, the ink ejection property is further improved.
 分散剤の種類は特に限定されないが、疎水化度が50以上のシリカ粒子の分散性を向上させる観点から、分散剤は、ClogP値が2~10の疎水性モノマーに由来する構造単位を有するポリマーであることが好ましい。ClogP値が2~10の疎水性モノマーに由来する構造単位を有するポリマーは、疎水化度が50以上のシリカ粒子の表面への吸着力が高いため、シリカ粒子の分散性が向上する。その結果、インクの吐出性がより向上する。 The type of dispersant is not particularly limited, but from the viewpoint of improving the dispersibility of silica particles having a degree of hydrophobicity of 50 or more, the dispersant is a polymer having a structural unit derived from a hydrophobic monomer having a ClogP value of 2 to 10. Is preferable. A polymer having a structural unit derived from a hydrophobic monomer having a ClogP value of 2 to 10 has a high adsorptivity to the surface of silica particles having a degree of hydrophobicity of 50 or more, so that the dispersibility of the silica particles is improved. As a result, the ink ejection property is further improved.
 ClogP値が2~10の疎水性モノマーとしては、例えば、スチレン、ブチル(メタ)アクリレート、ヘキシル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、オクチル(メタ)アクリレート、ラウリル(メタ)アクリレート、及びステアリル(メタ)アクリレートが挙げられる。 Hydrophobic monomers having a ClogP value of 2 to 10 include, for example, styrene, butyl (meth) acrylate, hexyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, octyl (meth) acrylate, lauryl (meth) acrylate, and Examples include stearyl (meth) acrylate.
 また、分散剤は、塩基性分散剤であることが好ましい。分散剤に含まれる塩基性基が、シリカ粒子の表面に存在するシラノール基に吸着することにより、シリカ粒子の分散性が向上する。その結果、インクの吐出性がより向上する。 Further, the dispersant is preferably a basic dispersant. The basic groups contained in the dispersant are adsorbed on the silanol groups present on the surface of the silica particles, so that the dispersibility of the silica particles is improved. As a result, the ink ejection property is further improved.
 分散剤は、市販品であってもよい。市販品としては、例えば、ソルスパース(SOLSPERSE)13940、17000、20000、24000、26000、28000、32000、35000、36000、39000等のソルスパースシリーズ(Noveon社製)、
DISPERBYK-108、109、161、162、163、164、167、168、180、182、184、185、2000、2001、2008、2009、2012、2013、2022、2025、2026、2050、2055、2150、2155、2163、2164、9076、9077、DISPERBYK-9076等のDISPERBYKシリーズ(BYKケミー社製);
BYKJET-9150、9151、9152等のBYKJETシリーズ(BYK社製);
Efka PX4701、Efka PX4703、Efka PX4733、Efka PU4063等のEfkaシリーズ(BASF社製);
Dispex Ultra PX 4575(BASF社製)が挙げられる。
The dispersant may be a commercially available product. As commercially available products, for example, SOLSparse series (manufactured by Noveon) such as SOLSERSE 13940, 17000, 20000, 24000, 26000, 28000, 32000, 35000, 36000, 39000, etc.
DISPERBYK-108, 109, 161, 162, 163, 164, 167, 168, 180, 182, 184, 185, 2000, 2001, 2008, 2009, 2012, 2013, 2022, 2025, 2026, 2050, 2055, 2150, DISPERBYK series (manufactured by BYK Chemie) such as 2155, 2163, 2164, 9076, 9077, DISPERBYK-9076;
BYKJET series (manufactured by BYK) such as BYKJET-9150, 9151, 9152;
Efka series (manufactured by BASF) such as Efka PX4701, Efka PX4703, Efka PX4733, Efka PU4063;
Diskex Ultra PX 4575 (manufactured by BASF) can be mentioned.
 シリカ粒子の含有量に対する分散剤の含有量の質量比率は、シリカ粒子を安定に分散させる観点から、0.05~0.5であることが好ましく、0.08~0.2であることがより好ましい。 The mass ratio of the content of the dispersant to the content of the silica particles is preferably 0.05 to 0.5, preferably 0.08 to 0.2, from the viewpoint of stably dispersing the silica particles. More preferred.
<ラジカル重合開始剤>
 本開示のインクは、ラジカル重合開始剤を少なくとも1種含有することが好ましい。
<Radical polymerization initiator>
The ink of the present disclosure preferably contains at least one radical polymerization initiator.
 ラジカル重合開始剤としては、アルキルフェノン化合物、アシルホスフィン化合物、芳香族オニウム塩化合物、有機過酸化物、チオ化合物、ヘキサアリールビイミダゾール化合物、ケトオキシムエステル化合物、ボレート化合物、アジニウム化合物、メタロセン化合物、活性エステル化合物、炭素ハロゲン結合を有する化合物、及びアルキルアミン化合物が挙げられる。 Examples of the radical polymerization initiator include alkylphenone compounds, acylphosphine compounds, aromatic onium salt compounds, organic peroxides, thio compounds, hexaarylbiimidazole compounds, ketooxime ester compounds, borate compounds, azinium compounds, metallocene compounds, and activities. Examples thereof include ester compounds, compounds having a carbon halogen bond, and alkylamine compounds.
 中でも、ラジカル重合開始剤は、アシルホスフィン化合物であることが好ましい。 Above all, the radical polymerization initiator is preferably an acylphosphine compound.
 アシルホスフィンオキシド化合物としては、モノアシルホスフィンオキシド化合物及びビスアシルホスフィンオキシド化合物が挙げられる。 Examples of the acylphosphine oxide compound include a monoacylphosphine oxide compound and a bisacylphosphine oxide compound.
 モノアシルホスフィンオキシド化合物としては、例えば、イソブチリルジフェニルホスフィンオキシド、2-エチルヘキサノイルジフェニルホスフィンオキシド、2,4,6-トリメチルベンゾイルジフェニルホスフィンオキシド、(2,4,6-トリメチルベンゾイル)エトキシフェニルホスフィンオキシド、o-トルイルジフェニルホスフィンオキシド、p-t-ブチルベンゾイルジフェニルホスフィンオキシド、3-ピリジルカルボニルジフェニルホスフィンオキシド、アクリロイルジフェニルホスフィンオキシド、ベンゾイルジフェニルホスフィンオキシド、ピバロイルフェニルホスフィン酸ビニルエステル、アジポイルビスジフェニルホスフィンオキシド、ピバロイルジフェニルホスフィンオキシド、p-トルイルジフェニルホスフィンオキシド、4-(t-ブチル)ベンゾイルジフェニルホスフィンオキシド、テレフタロイルビスジフェニルホスフィンオキシド、2-メチルベンゾイルジフェニルホスフィンオキシド、バーサトイルジフェニルホスフィンオキシド、2-メチル-2-エチルヘキサノイルジフェニルホスフィンオキシド、1-メチル-シクロヘキサノイルジフェニルホスフィンオキシド、ピバロイルフェニルホスフィン酸メチルエステル及びピバロイルフェニルホスフィン酸イソプロピルエステルが挙げられる。 Examples of the monoacylphosphine oxide compound include isobutyryldiphenylphosphine oxide, 2-ethylhexanoyldiphenylphosphine oxide, 2,4,6-trimethylbenzoyldiphenylphosphine oxide, and (2,4,6-trimethylbenzoyl) ethoxyphenyl. Phosphine oxide, o-toluyldiphenylphosphine oxide, pt-butylbenzoyldiphenylphosphine oxide, 3-pyridylcarbonyldiphenylphosphine oxide, acryloyldiphenylphosphine oxide, benzoyldiphenylphosphine oxide, pivaloylphenylphosphine acid vinyl ester, adipoil bis Diphenylphosphine oxide, pivaloyldiphenylphosphine oxide, p-toluyldiphenylphosphine oxide, 4- (t-butyl) benzoyldiphenylphosphine oxide, terephthaloylbisdiphenylphosphine oxide, 2-methylbenzoyldiphenylphosphine oxide, versatoyldiphenylphosphine Examples thereof include oxide, 2-methyl-2-ethylhexanoyldiphenylphosphine oxide, 1-methyl-cyclohexanoyldiphenylphosphine oxide, pivaloylphenylphosphine acid methyl ester and pivaloylphenylphosphine acid isopropyl ester.
 ビスアシルホスフィンオキシド化合物としては、例えば、ビス(2,6-ジクロロベンゾイル)フェニルホスフィンオキシド、ビス(2,6-ジクロロベンゾイル)-2,5-ジメチルフェニルホスフィンオキシド、ビス(2,6-ジクロロベンゾイル)-4-エトキシフェニルホスフィンオキシド、ビス(2,6-ジクロロベンゾイル)-4-プロピルフェニルホスフィンオキシド、ビス(2,6-ジクロロベンゾイル)-2-ナフチルホスフィンオキシド、ビス(2,6-ジクロロベンゾイル)-1-ナフチルホスフィンオキシド、ビス(2,6-ジクロロベンゾイル)-4-クロロフェニルホスフィンオキシド、ビス(2,6-ジクロロベンゾイル)-2,4-ジメトキシフェニルホスフィンオキシド、ビス(2,6-ジクロロベンゾイル)デシルホスフィンオキシド、ビス(2,6-ジクロロベンゾイル)-4-オクチルフェニルホスフィンオキシド、ビス(2,4,6-トリメチルベンゾイル)フェニルホスフィンオキシド、ビス(2,4,6-トリメチルベンゾイル)-2,5-ジメチルフェニルホスフィンオキシド、ビス(2,6-ジクロロ-3,4,5-トリメトキシベンゾイル)-2,5-ジメチルフェニルホスフィンオキシド、ビス(2,6-ジクロロ-3,4,5-トリメトキシベンゾイル)-4-エトキシフェニルホスフィンオキシド、ビス(2-メチル-1-ナフトイル)-2,5-ジメチルフェニルホスフィンオキシド、ビス(2-メチル-1-ナフトイル)-4-エトキシフェニルホスフィンオキシド、ビス(2-メチル-1-ナフトイル)-2-ナフチルホスフィンオキシド、ビス(2-メチル-1-ナフトイル)-4-プロピルフェニルホスフィンオキシド、ビス(2-メチル-1-ナフトイル)-2,5-ジメチルフェニルホスフィンオキシド、ビス(2-メトキシ-1-ナフトイル)-4-エトキシフェニルホスフィンオキシド、ビス(2-クロロ-1-ナフトイル)-2,5-ジメチルフェニルホスフィンオキシド及びビス(2,6-ジメトキシベンゾイル)-2,4,4-トリメチルペンチルホスフィンオキシドが挙げられる。 Examples of the bisacylphosphine oxide compound include bis (2,6-dichlorobenzoyl) phenylphosphine oxide, bis (2,6-dichlorobenzoyl) -2,5-dimethylphenylphosphine oxide, and bis (2,6-dichlorobenzoyl). ) -4-ethoxyphenylphosphine oxide, bis (2,6-dichlorobenzoyl) -4-propylphenylphosphine oxide, bis (2,6-dichlorobenzoyl) -2-naphthylphosphine oxide, bis (2,6-dichlorobenzoyl) ) -1-naphthylphosphine oxide, bis (2,6-dichlorobenzoyl) -4-chlorophenylphosphine oxide, bis (2,6-dichlorobenzoyl) -2,4-dimethoxyphenylphosphine oxide, bis (2,6-dichloro) Benzoyl) decylphosphine oxide, bis (2,6-dichlorobenzoyl) -4-octylphenylphosphine oxide, bis (2,4,6-trimethylbenzoyl) phenylphosphine oxide, bis (2,4,6-trimethylbenzoyl)- 2,5-dimethylphenylphosphine oxide, bis (2,6-dichloro-3,4,5-trimethoxybenzoyl) -2,5-dimethylphenylphosphine oxide, bis (2,6-dichloro-3,4,5 -Trimethoxybenzoyl) -4-ethoxyphenylphosphine oxide, bis (2-methyl-1-naphthoyl) -2,5-dimethylphenylphosphine oxide, bis (2-methyl-1-naphthoyl) -4-ethoxyphenylphosphine oxide , Bis (2-methyl-1-naphthoyl) -2-naphthylphosphine oxide, bis (2-methyl-1-naphthoyl) -4-propylphenylphosphine oxide, bis (2-methyl-1-naphthoyl) -2,5 -Dimethylphenylphosphine oxide, bis (2-methoxy-1-naphthoyl) -4-ethoxyphenylphosphine oxide, bis (2-chloro-1-naphthoyl) -2,5-dimethylphenylphosphine oxide and bis (2,6-- Dimethoxybenzoyl) -2,4,4-trimethylpentylphosphine oxide can be mentioned.
 中でも、アシルホスフィンオキシド化合物は、ビス(2,4,6-トリメチルベンゾイル)フェニルホスフィンオキシド(製品名「Omnirad 819」、IGM Resins B.V.社製)、2,4,6-トリメチルベンゾイルジフェニルホスフィンオキシド(製品名「Omnirad TPO H」、IGM Resins B.V.社製)、又は(2,4,6-トリメチルベンゾイル)エトキシフェニルホスフィンオキシド(製品名「Omnirad TPO-L」、IGM Resins B.V.社製)が好ましい。 Among them, the acylphosphine oxide compounds are bis (2,4,6-trimethylbenzoyl) phenylphosphine oxide (product name "Omnirad 819", manufactured by IGM Resins VV), 2,4,6-trimethylbenzoyldiphenylphosphine. Oxide (product name "Omnirad TPO H", manufactured by IGM Resins B.V.) or (2,4,6-trimethylbenzoyl) ethoxyphenylphosphine oxide (product name "Omnirad TPO-L", IGM Resins B.V.) (Manufactured by the company) is preferable.
 ラジカル重合開始剤の含有量は、インクの全質量に対して1質量%~10質量%であることが好ましく、2質量%~8質量%であることがより好ましい。 The content of the radical polymerization initiator is preferably 1% by mass to 10% by mass, more preferably 2% by mass to 8% by mass, based on the total mass of the ink.
<増感剤>
 本開示のインクがラジカル重合開始剤を含む場合、本開示のインクは、ラジカル重合開始剤と共に増感剤を含有してもよい。インクに増感剤が含まれていると、硬化性が向上し、特にLED光源を用いた場合の硬化性が向上する。
<Sensitizer>
When the ink of the present disclosure contains a radical polymerization initiator, the ink of the present disclosure may contain a sensitizer together with the radical polymerization initiator. When the ink contains a sensitizer, the curability is improved, and particularly when an LED light source is used, the curability is improved.
 増感剤としては、例えば、多核芳香族化合物、キサンテン系化合物、シアニン系化合物、メロシアニン系化合物、チアジン系化合物、アクリジン系化合物、アントラキノン類(例えば、アントラキノン)、スクアリウム系化合物、クマリン系化合物、チオキサントン系化合物、及びチオクロマノン系化合物が挙げられる。中でも、増感剤は、得られる画像の画質を向上させる観点から、チオキサントン系化合物であることが好ましい。 Examples of the sensitizer include polynuclear aromatic compounds, xanthene compounds, cyanine compounds, merocyanine compounds, thiazine compounds, aclysine compounds, anthraquinones (for example, anthraquinones), squalium compounds, coumarin compounds, and thioxanthones. Examples thereof include system compounds and thiochromanone compounds. Above all, the sensitizer is preferably a thioxanthone-based compound from the viewpoint of improving the image quality of the obtained image.
 チオキサントン系化合物としては、チオキサントン、2-イソプロピルチオキサントン、4-イソプロピルチオキサントン、2-クロロチオキサントン、2,4-ジクロロチオキサントン、2-ドデシルチオキサントン、2,4-ジエチルチオキサントン、2,4-ジメチルチオキサントン、1-メトキシカルボニルチオキサントン、2-エトキシカルボニルチオキサントン、3-(2-メトキシエトキシカルボニル)チオキサントン、4-ブトキシカルボニルチオキサントン、3-ブトキシカルボニル-7-メチルチオキサントン、1-シアノ-3-クロロチオキサントン、1-エトキシカルボニル-3-クロロチオキサントン、1-エトキシカルボニル-3-エトキシチオキサントン、1-エトキシカルボニル-3-アミノチオキサントン、1-エトキシカルボニル-3-フェニルスルフリルチオキサントン、3,4-ジ[2-(2-メトキシエトキシ)エトキシカルボニル]チオキサントン、1-エトキシカルボニル-3-(1-メチル-1-モルホリノエチル)チオキサントン、2-メチル-6-ジメトキシメチルチオキサントン、2-メチル-6-(1,1-ジメトキシベンジル)チオキサントン、2-モルホリノメチルチオキサントン、2-メチル-6-モルホリノメチルチオキサントン、n-アリルチオキサントン-3,4-ジカルボキシイミド、n-オクチルチオキサントン-3,4-ジカルボキシイミド、N-(1,1,3,3-テトラメチルブチル)チオキサントン-3,4-ジカルボキシイミド、1-フェノキシチオキサントン、6-エトキシカルボニル-2-メトキシチオキサントン、6-エトキシカルボニル-2-メチルチオキサントン、チオキサントン-2-ポリエチレングリコールエステル、及び2-ヒドロキシ-3-(3,4-ジメチル-9-オキソ-9H-チオキサントン-2-イルオキシ)-N,N,N-トリメチル-1-プロパンアミニウムクロリドが挙げられる。 Examples of the thioxanthone compound include thioxanthone, 2-isopropylthioxanthone, 4-isopropylthioxanthone, 2-chlorothioxanthone, 2,4-dichlorothioxanthone, 2-dodecylthioxanthone, 2,4-diethylthioxanthone, 2,4-dimethylthioxanthone, 1 -Methoxycarbonylthioxanthone, 2-ethoxycarbonylthioxanthone, 3- (2-methoxyethoxycarbonyl) thioxanthone, 4-butoxycarbonylthioxanthone, 3-butoxycarbonyl-7-methylthioxanthone, 1-cyano-3-chlorothioxanthone, 1-ethoxy Carbonyl-3-chlorothioxanthone, 1-ethoxycarbonyl-3-ethoxythioxanthone, 1-ethoxycarbonyl-3-aminothioxanthone, 1-ethoxycarbonyl-3-phenylsulfylthioxanthone, 3,4-di [2- (2-methoxy) Ethoxy) ethoxycarbonyl] thioxanthone, 1-ethoxycarbonyl-3- (1-methyl-1-morpholinoethyl) thioxanthone, 2-methyl-6-dimethoxymethylthioxanthone, 2-methyl-6- (1,1-dimethoxybenzyl) Thioxanthone, 2-morpholinomethylthioxanthone, 2-methyl-6-morpholinomethylthioxanthone, n-allylthioxanthone-3,4-dicarboxyimide, n-octylthioxanthone-3,4-dicarboxyimide, N- (1,1) , 3,3-Tetramethylbutyl) thioxanthone-3,4-dicarboxyimide, 1-phenoxythioxanthone, 6-ethoxycarbonyl-2-methoxythioxanthone, 6-ethoxycarbonyl-2-methylthioxanthone, thioxanthone-2-polyethylene glycol Examples include esters and 2-hydroxy-3- (3,4-dimethyl-9-oxo-9H-thioxanthone-2-yloxy) -N, N, N-trimethyl-1-propaneaminium chloride.
 中でも、入手容易性及び画質向上の観点から、チオキサントン系化合物は、2,4-ジエチルチオキサントン、2-イソプロピルチオキサントン、又は4-イソプロピルチオキサントンが好ましい。 Among them, the thioxanthone-based compound is preferably 2,4-diethylthioxanthone, 2-isopropylthioxanthone, or 4-isopropylthioxanthone from the viewpoint of availability and improvement of image quality.
 チオキサントン系化合物は、市販品であってもよい。市販品としては、Lambson社製のSPEEDCUREシリーズ(例えば、SPEEDCURE 7010、SPEEDCURE CPTX、及びSPEEDCURE ITX)が挙げられる。 The thioxanthone-based compound may be a commercially available product. Examples of commercially available products include SPEEDCURE series manufactured by Rambson (for example, SPEEDCURE 7010, SPEEDCURE CPTX, and SPEEDCURE ITX).
 増感剤の含有量は、インクの全量に対して、1質量%~10質量%であることが好ましく、1.5質量%~5質量%であることがより好ましい。 The content of the sensitizer is preferably 1% by mass to 10% by mass, more preferably 1.5% by mass to 5% by mass, based on the total amount of the ink.
<重合禁止剤>
 本開示に係るインクは、重合禁止剤を少なくとも1種含有することが好ましい。
<Polymerization inhibitor>
The ink according to the present disclosure preferably contains at least one polymerization inhibitor.
 重合禁止剤としては、例えば、ヒドロキノン化合物、フェノチアジン、カテコール類、アルキルフェノール類、アルキルビスフェノール類、ジメチルジチオカルバミン酸亜鉛、ジメチルジチオカルバミン酸銅、ジブチルジチオカルバミン酸銅、サリチル酸銅、チオジプロピオン酸エステル、メルカプトベンズイミダゾール、ホスファイト類、ニトロソアミン化合物、ヒンダードアミン化合物、及びニトロキシルラジカルが挙げられる。 Examples of the polymerization inhibitor include hydroquinone compounds, phenothiazines, catechols, alkylphenols, alkylbisphenols, zinc dimethyldithiocarbamate, copper dimethyldithiocarbamate, copper dibutyldithiocarbamate, copper salicylate, thiodipropionic acid ester, and mercaptobenzimidazole. , Phosphites, nitrosoamine compounds, hinderedamine compounds, and nitroxyl radicals.
 中でも、重合禁止剤は、ニトロソアミン化合物、ヒンダードアミン化合物、ヒドロキノン化合物、及びニトロキシルラジカルからなる群より選択される少なくとも1種であることが好ましく、ニトロソアミン化合物であることがより好ましい。 Among them, the polymerization inhibitor is preferably at least one selected from the group consisting of a nitrosamine compound, a hindered amine compound, a hydroquinone compound, and a nitroxyl radical, and more preferably a nitrosamine compound.
 ニトロソアミン化合物としては、例えば、N-ニトロソ-N-フェニルヒドロキシルアミンアルミニウム塩及びN-ニトロソ-N-フェニルヒドロキシルアミンが挙げられる。中でも、ニトロソアミン化合物は、N-ニトロソ-N-フェニルヒドロキシルアミンアルミニウム塩であることが好ましい。 Examples of the nitrosamine compound include N-nitroso-N-phenylhydroxylamine aluminum salt and N-nitroso-N-phenylhydroxylamine. Above all, the nitrosamine compound is preferably an N-nitrosamine-N-phenylhydroxylamine aluminum salt.
 重合禁止剤の含有量は、インクの経時安定性を向上させる観点から、インクの全量に対して0.01質量%以上であることが好ましく、0.03質量%以上であることがより好ましい。重合禁止剤の含有量の上限値は特に限定されないが、重合性の観点から、1質量%であることが好ましい。 The content of the polymerization inhibitor is preferably 0.01% by mass or more, more preferably 0.03% by mass or more, based on the total amount of the ink, from the viewpoint of improving the stability of the ink over time. The upper limit of the content of the polymerization inhibitor is not particularly limited, but is preferably 1% by mass from the viewpoint of polymerizability.
<色材>
 本開示のインクは、色材を少なくとも1種含有していてもよい。
<Color material>
The ink of the present disclosure may contain at least one kind of coloring material.
 色材の種類は特に限定されず、顔料及び染料のいずれであってもよい。耐光性の観点では、色材は、顔料であることが好ましい。 The type of coloring material is not particularly limited and may be either a pigment or a dye. From the viewpoint of light resistance, the coloring material is preferably a pigment.
 色材として顔料を用いる場合、顔料は顔料分散液としてインクに含有させることができる。顔料分散液は、顔料を顔料分散剤を用いて液状媒体中に分散させることにより得られる液体であり、顔料、顔料分散剤、及び液状媒体を少なくとも含む。 When a pigment is used as a coloring material, the pigment can be contained in the ink as a pigment dispersion liquid. The pigment dispersion liquid is a liquid obtained by dispersing a pigment in a liquid medium using a pigment dispersant, and contains at least a pigment, a pigment dispersant, and a liquid medium.
 顔料分散剤としては、上記分散剤(すなわち、シリカ粒子を分散させる目的の分散剤)と同様のものが挙げられる。 Examples of the pigment dispersant include the same dispersants as those described above (that is, dispersants for the purpose of dispersing silica particles).
 液状媒体としては、例えば、有機溶剤が挙げられる。また、液状媒体は、インクに含有させる上記ラジカル重合性モノマーであってもよい。 Examples of the liquid medium include organic solvents. Further, the liquid medium may be the above-mentioned radically polymerizable monomer contained in the ink.
 顔料は、通常市販されている有機顔料及び無機顔料のいずれであってもよい。また、顔料は、赤外線吸収性を有する不可視顔料であってもよい。 The pigment may be either an organic pigment or an inorganic pigment that is usually commercially available. Further, the pigment may be an invisible pigment having infrared absorption.
 本開示のインクが色材を含有する場合、色材の含有量は、インクの全量に対し、1質量%~20質量%であることが好ましく、2質量%~10質量%であることがより好ましい。 When the ink of the present disclosure contains a coloring material, the content of the coloring material is preferably 1% by mass to 20% by mass, more preferably 2% by mass to 10% by mass, based on the total amount of the ink. preferable.
 本開示のインクが、クリア画像を記録するためのクリアインクである場合、本開示のインクは、色材を実質的に含有しなくてもよい。この場合、色材の含有量は、インクの全量に対し、1質量%未満であってもよく、0.1質量%未満であってもよく、0質量%であってもよい。なお、クリア画像とは、波長400nm~700nmにおける透過率が80%以上である画像を意味する。 When the ink of the present disclosure is a clear ink for recording a clear image, the ink of the present disclosure does not have to contain substantially a coloring material. In this case, the content of the coloring material may be less than 1% by mass, less than 0.1% by mass, or 0% by mass with respect to the total amount of the ink. The clear image means an image having a transmittance of 80% or more at a wavelength of 400 nm to 700 nm.
<その他の成分>
 本開示のインクは、必要に応じて、上記成分以外のその他の成分を含有していてもよい。その他の成分としては、例えば、界面活性剤、共増感剤、紫外線吸収剤、酸化防止剤、褪色防止剤、導電性塩、水、溶剤、及び塩基性化合物が挙げられる。
<Other ingredients>
The ink of the present disclosure may contain other components other than the above components, if necessary. Other components include, for example, surfactants, co-sensitizers, UV absorbers, antioxidants, anti-fading agents, conductive salts, water, solvents, and basic compounds.
<物性>
 インクのpHは、インクジェット記録方式を用いて付与する場合に吐出性を向上させる観点から、7~10であることが好ましく、7.5~9.5であることがより好ましい。pHは、pH計を用いて25℃で測定され、例えば、東亜DKK社製のpHメーター(型番「HM-31」)を用いて測定される。
<Physical characteristics>
The pH of the ink is preferably 7 to 10, and more preferably 7.5 to 9.5, from the viewpoint of improving the ejection property when the ink is applied by using an inkjet recording method. The pH is measured at 25 ° C. using a pH meter, and is measured, for example, using a pH meter (model number "HM-31") manufactured by Toa DKK Corporation.
 インクの粘度は、0.5mPa・s~30mPa・sであることが好ましく、2mPa・s~20mPa・sであることがより好ましく、2mPa・s~15mPa・sであることが好ましく、3mPa・s~10mPa・sであることがさらに好ましい。粘度は、粘度計を用いて25℃で測定され、例えば、東機産業社製のTV-22型粘度計を用いて測定される。 The viscosity of the ink is preferably 0.5 mPa · s to 30 mPa · s, more preferably 2 mPa · s to 20 mPa · s, preferably 2 mPa · s to 15 mPa · s, and 3 mPa · s. It is more preferably about 10 mPa · s. The viscosity is measured at 25 ° C. using a viscometer, and is measured, for example, using a TV-22 type viscometer manufactured by Toki Sangyo Co., Ltd.
 インクの表面張力は、60mN/m以下であることが好ましく、20mN/m~50mN/mであることがより好ましく、25mN/m~45mN/mであることがさらに好ましい。表面張力は、表面張力計を用いて25℃で測定され、例えば、協和界面科学社製の自動表面張力計(製品名「CBVP-Z」)を用いて、プレート法によって測定される。 The surface tension of the ink is preferably 60 mN / m or less, more preferably 20 mN / m to 50 mN / m, and even more preferably 25 mN / m to 45 mN / m. The surface tension is measured at 25 ° C. using a surface tension meter, and is measured by a plate method using, for example, an automatic surface tension meter (product name “CBVP-Z”) manufactured by Kyowa Surface Science Co., Ltd.
[画像記録方法]
 本開示の画像記録方法は、被記録媒体上に、上記インクをインクジェット記録方式で付与してインク膜を得る工程(以下、「第1付与工程」ともいう)と、インク膜に活性エネルギー線を照射する工程(以下、「第1照射工程」ともいう)と、を含む。
[Image recording method]
The image recording method of the present disclosure includes a step of applying the above ink on a recording medium by an inkjet recording method to obtain an ink film (hereinafter, also referred to as "first application step"), and an active energy ray on the ink film. It includes a step of irradiating (hereinafter, also referred to as “first irradiation step”).
 本開示の画像記録方法は、必要に応じ、その他の工程を含んでいてもよい。 The image recording method of the present disclosure may include other steps, if necessary.
 上述のとおり、本開示の画像記録方法は、本開示のインクを用いる。このため、本開示の画像記録方法によれば、本開示のインクと同様の効果が奏される。 As described above, the image recording method of the present disclosure uses the ink of the present disclosure. Therefore, according to the image recording method of the present disclosure, the same effect as that of the ink of the present disclosure is obtained.
<第1付与工程>
 第1付与工程は、被記録媒体上に、上記インクをインクジェット記録方式で付与してインク膜を得る工程である。
<First granting process>
The first applying step is a step of applying the ink to the recording medium by an inkjet recording method to obtain an ink film.
 被記録媒体の種類は特に限定されず、例えば、紙、プラスチック(例えば、ポリエチレン、ポリプロピレン、ポリスチレン等)がラミネートされた紙、金属板(例えば、アルミニウム、亜鉛、銅等の金属の板)、プラスチックフィルム(例えば、ポリ塩化ビニル(PVC:Polyvinyl Chloride)樹脂、二酢酸セルロース、三酢酸セルロース、プロピオン酸セルロース、酪酸セルロース、酢酸酪酸セルロース、硝酸セルロース、ポリエチレンテレフタレート(PET:Polyethylene Terephthalate)、ポリエチレン(PE:Polyethylene)、ポリスチレン(PS:Polystyrene)、ポリプロピレン(PP:Polypropylene)、ポリカーボネート(PC:Polycarbonate)、ポリビニルアセタール、アクリル樹脂等のフィルム)、上述した金属がラミネートされ又は蒸着された紙、及び、上述した金属がラミネートされ又は蒸着されたプラスチックフィルムが挙げられる。 The type of recording medium is not particularly limited, and is, for example, paper, paper laminated with plastic (for example, polyethylene, polypropylene, polystyrene, etc.), metal plate (for example, metal plate such as aluminum, zinc, copper, etc.), plastic. Film (for example, Polyvinyl Chloride (PVC) resin, cellulose diacetate, cellulose triacetate, cellulose propionate, cellulose butyrate, cellulose acetate butyrate, cellulose nitrate, polyethylene terephthalate (PET: Polyethylene Terephthalate), polyethylene (PE:: Polyethylene), polystyrene (PS: Polystyrene), polypropylene (PP: Polypropylene), polycarbonate (PC: Polycarbonate), polyvinyl acetal, acrylic resin and other films), paper on which the above-mentioned metals are laminated or vapor-deposited, and the above-mentioned. Examples include plastic films on which metal is laminated or vapor-deposited.
 インクジェット記録方式は、画像を記録し得る方式であれば特に限定されず、公知の方式を用いることができる。インクジェット記録方式としては、例えば、静電誘引力を利用してインクを吐出させる電荷制御方式、ピエゾ素子の振動圧力を利用するドロップオンデマンド方式(圧力パルス方式)、電気信号を音響ビームに変えインクに照射して放射圧を利用してインクを吐出させる音響インクジェット方式、及び、インクを加熱して気泡を形成し、生じた圧力を利用するサーマルインクジェット(バブルジェット(登録商標))方式が挙げられる。 The inkjet recording method is not particularly limited as long as it can record an image, and a known method can be used. Inkjet recording methods include, for example, a charge control method that uses electrostatic attraction to eject ink, a drop-on-demand method that uses the vibration pressure of a piezo element (pressure pulse method), and ink that converts electrical signals into acoustic beams. An acoustic inkjet method in which ink is ejected by irradiating the ink with radiation pressure, and a thermal inkjet (bubble jet (registered trademark)) method in which the ink is heated to form bubbles and the generated pressure is used. ..
 インクジェット記録方式に用いるインクジェットヘッドとしては、短尺のシリアルヘッドを用い、ヘッドを基材の幅方向に走査させながら記録を行なうシャトル方式と、基材の1辺の全域に対応して記録素子が配列されているラインヘッドを用いたライン方式とが挙げられる。 As the inkjet head used in the inkjet recording method, a short serial head is used, and a shuttle method in which recording is performed while scanning the head in the width direction of the base material and a recording element are arranged corresponding to the entire area of one side of the base material. A line method using a line head that has been used can be mentioned.
 ライン方式では、記録素子の配列方向と交差する方向に基材を走査させることで基材の全面にパターン形成を行なうことができ、短尺ヘッドを走査するキャリッジ等の搬送系が不要となる。また、ライン方式では、キャリッジの移動と基材との複雑な走査制御が不要になり、基材だけが移動するので、シャトル方式と比べて記録速度の高速化が実現できる。 In the line method, a pattern can be formed on the entire surface of the base material by scanning the base material in a direction intersecting the arrangement direction of the recording elements, and a transport system such as a carriage that scans a short head becomes unnecessary. Further, in the line method, the movement of the carriage and the complicated scanning control with the base material are not required, and only the base material moves, so that the recording speed can be increased as compared with the shuttle method.
 インクジェットヘッドから吐出されるインクの打滴量は、1pL(ピコリットル)~100pLであることが好ましく、3pL~80pLであることがより好ましく、3pL~50pLであることがさらに好ましい。 The amount of ink ejected from the inkjet head is preferably 1 pL (picolitre) to 100 pL, more preferably 3 pL to 80 pL, and even more preferably 3 pL to 50 pL.
<第1照射工程>
 第1照射工程では、第1付与工程で得られたインク膜に、活性エネルギー線を照射する。
<First irradiation step>
In the first irradiation step, the ink film obtained in the first application step is irradiated with active energy rays.
 第1照射工程では、インク膜に活性エネルギー線を照射することにより、インク膜中のラジカル重合性モノマーの少なくとも一部を重合させて画像を得る。 In the first irradiation step, the ink film is irradiated with active energy rays to polymerize at least a part of the radically polymerizable monomer in the ink film to obtain an image.
 第1照射工程において、インク膜中のラジカル重合性モノマーの一部のみを重合させる場合には、インク膜中のラジカル重合性モノマーの実質的に全部を重合させる場合と比較して、活性エネルギー線の照射エネルギーを小さくする。 In the first irradiation step, when only a part of the radically polymerizable monomer in the ink film is polymerized, the active energy ray is compared with the case where substantially all of the radically polymerizable monomer in the ink film is polymerized. Reduce the irradiation energy of.
 本開示では、インク膜中のラジカル重合性モノマーの一部のみを重合させることを「仮硬化」ともいい、仮硬化のための活性エネルギー線の照射を「ピニング露光」ともいう。
 本開示では、インク膜中のラジカル重合性モノマーの実質的に全部を重合させることを「本硬化」ともいい、本硬化のための活性エネルギー線の照射を「本露光」ともいう。
In the present disclosure, polymerizing only a part of the radically polymerizable monomer in the ink film is also referred to as "temporary curing", and irradiation with active energy rays for temporary curing is also referred to as "pinning exposure".
In the present disclosure, polymerizing substantially all of the radically polymerizable monomers in the ink film is also referred to as "main curing", and irradiation with active energy rays for main curing is also referred to as "main exposure".
 第1照射工程は、インク膜に対してピニング露光(即ち、仮硬化)を施す工程であってもよいし、インク膜に対して本露光(即ち、本硬化)を施す工程であってもよいし、
ンク膜に対してピニング露光及び本露光をこの順に施す工程であってもよい。
The first irradiation step may be a step of applying pinning exposure (that is, temporary curing) to the ink film, or may be a step of applying main exposure (that is, main curing) to the ink film. death,
It may be a step of applying the pinning exposure and the main exposure to the ink film in this order.
 第1照射工程が、インク膜に対してピニング露光(即ち、仮硬化)を施す工程である場合、第1照射工程により、仮硬化されたインク膜である画像が得られる。第1照射工程が、インク膜に対して本露光(即ち、本硬化)を施す工程、又は、インク膜に対してピニング露光及び本露光をこの順に施す工程である場合、第1照射工程により、本硬化されたインク膜である画像が得られる。 When the first irradiation step is a step of applying pinning exposure (that is, temporary curing) to the ink film, an image of the temporarily cured ink film is obtained by the first irradiation step. When the first irradiation step is a step of applying main exposure (that is, main curing) to the ink film, or a step of applying pinning exposure and main exposure to the ink film in this order, the first irradiation step is performed. An image that is the main cured ink film can be obtained.
 第1照射工程がピニング露光(すなわち、仮硬化)を施す工程である場合の画像記録方法は、さらに、後述する第2付与工程及び第2照射工程を含むことが好ましい。 When the first irradiation step is a step of applying pinning exposure (that is, temporary curing), it is preferable that the image recording method further includes a second applying step and a second irradiation step described later.
 ピニング露光(即ち、仮硬化)後におけるインク膜の反応率は、10%~80%が好ましい。 The reaction rate of the ink film after pinning exposure (that is, temporary curing) is preferably 10% to 80%.
 ここで、インク膜の反応率とは、高速液体クロマトグラフィーによって求められるインク膜中のラジカル重合性モノマーの重合率を意味する。 Here, the reaction rate of the ink film means the polymerization rate of the radically polymerizable monomer in the ink film obtained by high performance liquid chromatography.
 インク膜の反応率が10%以上であることにより、このインク膜上に付与されるインク(例えば、後述の第2インク)のドットの拡がり不足が抑制される。その結果、最終的に得られる画像(例えば、後述の多次色画像)の粒状性が向上する。すなわち、画像のざらつきが低減される。 When the reaction rate of the ink film is 10% or more, insufficient spread of dots of the ink (for example, the second ink described later) applied on the ink film is suppressed. As a result, the graininess of the finally obtained image (for example, a multi-order color image described later) is improved. That is, the graininess of the image is reduced.
 また、インク膜の反応率が80%以下であることにより、このインク膜上に付与されるインク(例えば、後述の第2インク)の拡がりが過剰となることが抑制され、かつ、インクのドット同士の打滴干渉が抑制される。その結果、最終的に得られる画像の画質が向上する。 Further, when the reaction rate of the ink film is 80% or less, the spread of the ink applied on the ink film (for example, the second ink described later) is suppressed to be excessive, and the dots of the ink are suppressed. Drip interference between each other is suppressed. As a result, the image quality of the finally obtained image is improved.
 インク膜の反応率は、最終的に得られる画像の粒状性をより向上させる観点から、15%以上であることが好ましい。 The reaction rate of the ink film is preferably 15% or more from the viewpoint of further improving the graininess of the finally obtained image.
 インク膜の反応率は、最終的に得られる画像の画質をより向上させる観点から、75%以下であることが好ましく、50%以下であることがより好ましく、40%以下であることがさらに好ましく、30%以下であることがより好ましく、25%以下であることが特に好ましい。 The reaction rate of the ink film is preferably 75% or less, more preferably 50% or less, still more preferably 40% or less, from the viewpoint of further improving the image quality of the finally obtained image. , 30% or less, and particularly preferably 25% or less.
 本露光後のインク膜の反応率は、80%超100%以下が好ましく、85%~100%がより好ましく、90%~100%がさらに好ましい。反応率が80%超である場合には、画像の密着性がより向上する。 The reaction rate of the ink film after the main exposure is preferably more than 80% and 100% or less, more preferably 85% to 100%, and even more preferably 90% to 100%. When the reaction rate is more than 80%, the adhesion of the image is further improved.
 インク膜の反応率は、以下の方法を用いて算出される。 The reaction rate of the ink film is calculated using the following method.
 被記録媒体上のインク膜に対する活性エネルギー線の照射終了までの操作が施された被記録媒体を準備し、この被記録媒体のインク膜が存在する領域から20mm×50mmの大きさのサンプル片(以下、照射後サンプル片とする)を切り出し、切り出した照射後サンプル片を、10mLのTHF(テトラヒドロフラン)中に24時間浸漬し、インクが溶出した溶出液を得る。得られた溶出液について、高速液体クロマトグラフィーにより、ラジカル重合性モノマーの量(以下、「照射後モノマー量X1」とする)を求める。 Prepare a recording medium that has been operated until the end of irradiation of the ink film on the recording medium with active energy rays, and prepare a sample piece having a size of 20 mm × 50 mm from the region where the ink film of the recording medium exists. (Hereinafter referred to as a sample piece after irradiation) is cut out, and the cut out sample piece after irradiation is immersed in 10 mL of THF (tetrahydrofuran) for 24 hours to obtain an eluate from which the ink is eluted. With respect to the obtained eluate, the amount of radically polymerizable monomer (hereinafter referred to as "amount of monomer after irradiation X1") is determined by high performance liquid chromatography.
 別途、被記録媒体上のインク膜に対して活性エネルギー線を照射しないこと以外は上記と同じ操作を実施し、ラジカル重合性モノマーの量(以下、「未照射時モノマー量X1」とする)を求める。 Separately, the same operation as above is performed except that the ink film on the recording medium is not irradiated with the active energy rays, and the amount of the radically polymerizable monomer (hereinafter referred to as “non-irradiated monomer amount X1”) is determined. demand.
 照射後モノマー量X1及び未照射時モノマー量X1に基づき、下記式により、インクの反応率(%)を求める。
 インクの反応率(%) = ((未照射時モノマー量X1-照射後モノマー量X1)/未照射時モノマー量X1)×100
Based on the amount of monomer after irradiation X1 and the amount of monomer without irradiation X1, the reaction rate (%) of the ink is determined by the following formula.
Ink reaction rate (%) = ((non-irradiated monomer amount X1-post-irradiated monomer amount X1) / unirradiated monomer amount X1) × 100
 照射工程における活性エネルギー線(即ち、ピニング露光及び/又は本露光のための活性エネルギー線。以下同じ。)は、UV光(即ち、紫外光)であることが好ましく、385nm~410nmの波長域に最高照度を有するUV光であることがより好ましい。 The active energy ray in the irradiation step (that is, the active energy ray for pinning exposure and / or the main exposure; the same applies hereinafter) is preferably UV light (that is, ultraviolet light) in the wavelength range of 385 nm to 410 nm. It is more preferable that the UV light has the highest illuminance.
 UV光源(即ち、UV光の光源)としては、照度及び照射時間の少なくとも一方が可変である公知のUV光源を用いることができる。
 UV光源として、好ましくはLED(Light Emitting Diode)光源である。
As the UV light source (that is, the light source of UV light), a known UV light source in which at least one of the illuminance and the irradiation time is variable can be used.
The UV light source is preferably an LED (Light Emitting Diode) light source.
 照射工程における活性エネルギー線の照射は、酸素濃度が20体積%以下(より好ましくは20体積%未満、さらに好ましくは5体積%以下)の環境下で行われてもよい。これにより、酸素による重合阻害が抑制され、被記録媒体との密着性により優れた画像が得られる。 Irradiation of the active energy ray in the irradiation step may be performed in an environment where the oxygen concentration is 20% by volume or less (more preferably less than 20% by volume, still more preferably 5% by volume or less). As a result, polymerization inhibition due to oxygen is suppressed, and an excellent image can be obtained due to the adhesion to the recording medium.
 酸素濃度20体積%未満の環境下としては、不活性ガス(例えば、窒素ガス、アルゴンガス、及びヘリウムガス)の存在下が好適である。 In an environment where the oxygen concentration is less than 20% by volume, the presence of an inert gas (for example, nitrogen gas, argon gas, and helium gas) is suitable.
 ピニング露光のための活性エネルギー線の照度は、上述したインクの反応率をより達成し易い観点から、0.10W/cm~0.50W/cmであることが好ましく、よ0.20W/cm~0.50W/cmであることがより好ましく、0.20W/cm~0.45W/cmであることがさらに好ましい。 The illuminance of the active energy ray for the pinning exposure is preferably 0.10 W / cm 2 to 0.50 W / cm 2 from the viewpoint of more easily achieving the reaction rate of the above-mentioned ink, and is more preferably 0.20 W / cm. It is more preferably cm 2 to 0.50 W / cm 2 , and even more preferably 0.20 W / cm 2 to 0.45 W / cm 2 .
 ピニング露光のための活性エネルギー線の照射エネルギー(以下、「露光量」ともいう)は、上述したインクの反応率をより達成し易い観点から、2mJ/cm~20mJ/cmであることが好ましく、4mJ/cm~15mJ/cmであることがより好ましい。 The irradiation energy of the active energy rays for pinning exposure (hereinafter, also referred to as “exposure amount”) may be 2 mJ / cm 2 to 20 mJ / cm 2 from the viewpoint of more easily achieving the above-mentioned ink reaction rate. It is preferably 4 mJ / cm 2 to 15 mJ / cm 2 , more preferably.
 本露光のための活性エネルギー線の照度は、被記録媒体と画像との密着性をより向上させる観点から、1.0W/cm以上であることが好ましく、2.0W/cm以上であることがより好ましく、4.0W/cm以上であることがさらに好ましい。 The illuminance of the active energy ray for the main exposure is preferably 1.0 W / cm 2 or more, and 2.0 W / cm 2 or more, from the viewpoint of further improving the adhesion between the recording medium and the image. More preferably, it is more preferably 4.0 W / cm 2 or more.
 本露光のための活性エネルギー線の照度の上限値は特に制限はないが、例えば、10W/cmである。 The upper limit of the illuminance of the active energy ray for the main exposure is not particularly limited, but is, for example, 10 W / cm 2 .
 本露光のための活性エネルギー線の露光量は、被記録媒体と画像との密着性をより向上させる観点から、20mJ/cm以上であることが好ましく、80mJ/cm以上であることがより好ましい。 The exposure amount of the active energy ray for the main exposure is preferably 20 mJ / cm 2 or more, and more preferably 80 mJ / cm 2 or more, from the viewpoint of further improving the adhesion between the recording medium and the image. preferable.
 本露光のための活性エネルギー線の露光量の上限値は特に制限されず、例えば、240mJ/cmである。 The upper limit of the exposure amount of the active energy ray for the main exposure is not particularly limited, and is, for example, 240 mJ / cm 2 .
<第2付与工程>
 本開示の画像記録方法は、第1照射工程における活性エネルギー線が照射されたインク膜(以下、「第1インク膜」ともいう)上に、第2インクを付与し、上記第1インク膜に接する第2インク膜を得る第2付与工程を含んでいてもよい。
<Second granting process>
In the image recording method of the present disclosure, a second ink is applied onto an ink film (hereinafter, also referred to as "first ink film") irradiated with active energy rays in the first irradiation step, and the first ink film is coated with the second ink. It may include a second application step of obtaining a second ink film in contact with the ink film.
 第2インクは、ラジカル重合性モノマー及びラジカル重合開始剤を含有するインクであることが好ましく、本開示のインクであることがより好ましい。 The second ink is preferably an ink containing a radically polymerizable monomer and a radical polymerization initiator, and more preferably the ink of the present disclosure.
 第2インクが本開示のインクである場合に、第2インク中のシリカ粒子の含有量は、第1インク中のシリカ粒子の含有量よりも多いことが好ましい。シリカ粒子は界面活性剤として機能を果たすため、シリカ粒子の含有量が多いほど、インクの表面張力が低下する。すなわち、第2インクに含まれるシリカ粒子の含有量が、第1インクに含まれるシリカ粒子の含有量よりも多いと、第2インクの表面張力が第1インクの表面張力よりも低下する。これにより、第1インク膜上に第2インクを付与した場合に、打滴干渉が抑制される。その結果、得られる画像の画質が向上する。 When the second ink is the ink of the present disclosure, the content of silica particles in the second ink is preferably higher than the content of silica particles in the first ink. Since the silica particles function as a surfactant, the higher the content of the silica particles, the lower the surface tension of the ink. That is, when the content of the silica particles contained in the second ink is larger than the content of the silica particles contained in the first ink, the surface tension of the second ink is lower than the surface tension of the first ink. As a result, when the second ink is applied onto the first ink film, the drip interference is suppressed. As a result, the image quality of the obtained image is improved.
 第1付与工程において付与される本開示のインク(以下、第1インクともいう)と第2インクとは、色相が異なることが好ましい。 It is preferable that the ink of the present disclosure (hereinafter, also referred to as the first ink) applied in the first application step and the second ink have different hues.
 第1インク及び第2インクの色相が異なる場合には、2次色の画像を記録できる。 When the hues of the first ink and the second ink are different, a secondary color image can be recorded.
 第2付与工程において、第2インクは、第1インク膜上及び第1インク膜が形成されていない非記録媒体上に跨って付与されてもよい。 In the second application step, the second ink may be applied across the first ink film and the non-recording medium on which the first ink film is not formed.
 また、第2付与工程において、第2インクは、第1インク膜の少なくとも一部の上に付与されればよく、必ずしも、第1インク膜の全体の上に付与される必要はない。 Further, in the second application step, the second ink may be applied on at least a part of the first ink film, and does not necessarily have to be applied on the entire first ink film.
 第2インクの付与方法は、第1インクの付与方法と同様であり、好ましい態様も同様である。 The method of applying the second ink is the same as the method of applying the first ink, and the preferred embodiment is also the same.
 第2付与工程を含む態様の本開示の画像記録方法によれば、光沢が抑制された2次色画像を記録できる。 According to the image recording method of the present disclosure of the embodiment including the second addition step, it is possible to record a secondary color image in which gloss is suppressed.
<第2照射工程>
 第2付与工程を含む態様の本開示の画像記録方法は、さらに、第1インク膜及び第2インク膜の全体に対し、第2活性エネルギー線を照射する第2照射工程を含んでいてもよい。
<Second irradiation step>
The image recording method of the present disclosure including the second application step may further include a second irradiation step of irradiating the entire first ink film and the second ink film with the second active energy ray. ..
 第2照射工程は、第1インク膜及び第2インク膜の全体に対してピニング露光を施す工程であってもよいし、第1インク膜及び第2インク膜の全体に対して本露光を施す工程であってもよいし、第1インク膜及び第2インク膜の全体に対してピニング露光及び本露光をこの順に施す工程であってもよい。 The second irradiation step may be a step of applying a pinning exposure to the entire first ink film and the second ink film, or a main exposure to the entire first ink film and the second ink film. It may be a step, or it may be a step of applying pinning exposure and main exposure to the entire first ink film and the second ink film in this order.
 第2活性エネルギー線及びその照射条件の好ましい態様は、第1照射工程における活性エネルギー線及びその照射条件の好ましい態様と同様である。
 例えば、第2照射工程におけるピニング露光及び本露光の好ましい照射条件は、第1照射工程におけるピニング露光及び本露光の好ましい照射条件と同様である。
The preferred embodiment of the second active energy ray and its irradiation conditions is the same as the preferred embodiment of the active energy ray and its irradiation conditions in the first irradiation step.
For example, the preferred irradiation conditions for the pinning exposure and the main exposure in the second irradiation step are the same as the preferable irradiation conditions for the pinning exposure and the main exposure in the first irradiation step.
<その他の工程>
 本開示の画像記録方法は、第2照射工程の後に、本開示のインクを付与する工程と、活性エネルギー線を照射する工程を繰り返し行ってもよい。
<Other processes>
In the image recording method of the present disclosure, after the second irradiation step, the step of applying the ink of the present disclosure and the step of irradiating with active energy rays may be repeated.
 本開示のインクを複数回付与する場合には、得られる画像の画質を向上させる観点から、後から付与するインク中のシリカ粒子の含有量は、先に付与するインク中のシリカ粒子の含有量よりも多いことが好ましい。 When the ink of the present disclosure is applied a plurality of times, the content of the silica particles in the ink to be applied later is the content of the silica particles in the ink to be applied first from the viewpoint of improving the image quality of the obtained image. Preferably more than.
 先に付与するインクと、後から付与するインクの色相が異なる場合には、多次色の画像を記録できる。 If the hue of the ink applied first and the ink applied later are different, an image of multiple colors can be recorded.
 例えば、ブラックインク、シアンインク、マゼンタインク、及びイエローインクを付与する場合には、最初に、被記録媒体上に、ブラックインクを付与し、ブラックインク膜を得た後、ブラックインク膜上にシアンインクを付与し、シアンインク膜上にマゼンタインクを付与し、マゼンタインク膜上にイエローインクを付与することが好ましい。 For example, when black ink, cyan ink, magenta ink, and yellow ink are applied, first, black ink is applied on the recording medium to obtain a black ink film, and then cyan is applied on the black ink film. It is preferable to apply ink, apply magenta ink on the cyan ink film, and apply yellow ink on the magenta ink film.
 被記録媒体上に、ブラックインク、シアンインク、マゼンタインク、イエローインクの順に付与することを想定し、シアンインクに含まれるシリカ粒子の含有量は、ブラックインクに含まれるシリカ粒子の含有量よりも多く、マゼンタインクに含まれるシリカ粒子の含有量は、シアンインクに含まれるシリカ粒子の含有量よりも多く、イエローインクに含まれるシリカ粒子の含有量は、マゼンタインクに含まれるシリカ粒子の含有量よりも多いことが好ましい。シリカ粒子の含有量は、各インクの全量に対する含有量を意味する。 Assuming that black ink, cyan ink, magenta ink, and yellow ink are applied to the recording medium in this order, the content of the silica particles contained in the cyan ink is higher than the content of the silica particles contained in the black ink. In many cases, the content of silica particles contained in magenta ink is higher than the content of silica particles contained in cyan ink, and the content of silica particles contained in yellow ink is the content of silica particles contained in magenta ink. Preferably more than. The content of silica particles means the content with respect to the total amount of each ink.
 以下、本開示の実施例を示すが、本開示は以下の実施例には限定されない。 Hereinafter, examples of the present disclosure will be shown, but the present disclosure is not limited to the following examples.
<実施例1~実施例45、比較例1~比較例10>
 まず、マゼンタ顔料分散液を調製した。
<Example 1 to Example 45, Comparative Example 1 to Comparative Example 10>
First, a magenta pigment dispersion was prepared.
-マゼンタ顔料分散液の調製-
 マゼンタ顔料30質量部と、「SR341」50質量部と、「SOLSPERSE 32000」20質量部とを分散機モーターミルM50(アイガー社製)に投入し、直径0.65mmのジルコニアビーズを用い、周速9m/sで8時間分散処理を行い、マゼンタ顔料分散液を得た。
-Preparation of magenta pigment dispersion-
30 parts by mass of magenta pigment, 50 parts by mass of "SR341", and 20 parts by mass of "SOLSPERSE 32000" were put into a disperser motor mill M50 (manufactured by Eiger), and a peripheral speed was used using zirconia beads having a diameter of 0.65 mm. The dispersion treatment was carried out at 9 m / s for 8 hours to obtain a magenta pigment dispersion.
 次に、調製したマゼンタ顔料分散液と、下記表2~表7に記載のシリカ粒子、ラジカル重合性モノマー、ラジカル重合開始剤、増感剤、重合禁止剤、及び分散剤とを、各成分が表2~表7に記載の含有量(質量%)になるよう混合した。混合物を、ミキサー(製品名「L4R」、シルバーソン社製)を用いて、25℃で5000回転/分の条件で20分間撹拌し、インクを得た。 Next, each component contains the prepared magenta pigment dispersion and the silica particles, radically polymerizable monomers, radical polymerization initiators, sensitizers, polymerization inhibitors, and dispersants shown in Tables 2 to 7 below. The mixture was mixed so as to have the content (% by mass) shown in Tables 2 to 7. The mixture was stirred for 20 minutes at 25 ° C. under the condition of 5000 rpm using a mixer (product name “L4R”, manufactured by Silberson) to obtain ink.
 表2~表7中、シリカ粒子の平均一次粒径及び平均二次粒径の単位は「nm」、表面積の単位は「m/g」である。「ClogP値が2以上のモノマー/シリカ粒子」は、シリカ粒子の含有量に対するClogP値が2以上のラジカル重合性モノマーの含有量の質量比率を意味する。「N-ビニル化合物/シリカ粒子」は、シリカ粒子の含有量に対するN-ビニル化合物の含有量の質量比率を意味する。 In Tables 2 to 7, the unit of the average primary particle size and the average secondary particle size of the silica particles is "nm", and the unit of the surface area is "m 2 / g". "Monomer / silica particles having a ClogP value of 2 or more" means the mass ratio of the content of the radically polymerizable monomer having a ClogP value of 2 or more to the content of the silica particles. "N-vinyl compound / silica particles" means the mass ratio of the content of the N-vinyl compound to the content of the silica particles.
 なお、インクの調製には、FLORSTAB UV-12(Kromachem社製)を用いた。FLORSTAB UV12は、N-ニトロソ-N-フェニルヒドロキシルアミンアルミニウム塩とPEAとの混合物であり、混合比は1:9である。N-ニトロソ-N-フェニルヒドロキシルアミンアルミニウム塩は、重合禁止剤であり、PEAはラジカル重合性モノマーであるため、以下では、重合禁止剤とラジカル重合性モノマーに分けて記載する。例えば、インクに含まれるFLORSTAB UV-12の含有量が0.5質量%である場合に、PEA0.45質量%、N-ニトロソ-N-フェニルヒドロキシルアミンアルミニウム塩0.05質量%とした。 In addition, FLORSTAB UV-12 (manufactured by Kromachem) was used for the preparation of the ink. FLORSTAB UV12 is a mixture of N-nitroso-N-phenylhydroxylamine aluminum salt and PEA, and the mixing ratio is 1: 9. Since the N-nitroso-N-phenylhydroxylamine aluminum salt is a polymerization inhibitor and PEA is a radically polymerizable monomer, the polymerization inhibitor and the radically polymerizable monomer will be described below separately. For example, when the content of FLORSTAB UV-12 contained in the ink was 0.5% by mass, PEA was 0.45% by mass and N-nitroso-N-phenylhydroxylamine aluminum salt was 0.05% by mass.
 表2~表7に記載されている各成分の詳細は以下のとおりである。 The details of each component listed in Tables 2 to 7 are as follows.
<シリカ粒子>
Figure JPOXMLDOC01-appb-T000001
<Silica particles>
Figure JPOXMLDOC01-appb-T000001
<ラジカル重合性モノマー(表中、「重合性モノマー」と記す)>
・4-HBA:4-ヒドロキシブチルアクリレート(製品名「4-HBA」、大阪有機化学工業社製)
・VMOX:5-メチル-3-ビニルオキサゾリジン-2-オン(製品名「VMOX」、BASF社製)
・TEGDA:トリエチレングリコールジアクリレート(製品名「SR268」、Sartomer社製)
・NVC:N-ビニルカプロラクタム(製品名「NVC」、BASF社製)
・OXEA:(3-エチルオキセタン-3-イル)メチルアクリレート(製品名「Oxe-10」、大阪有機化学社製)
・GTA:グリセリントリアクリレート(製品名「アロニックスM930」、Sartomer社製)
・DPGDA:ジプロピレングリコールジアクリレート(製品名「SR508」、Sartomer社製)
・PEA:フェノキシエチルアクリレート(製品名「FLORSTAB UV12」、Kromachem社製、のうち90質量%分)
・3MPDDA:3-メチル-1,5-ペンタンジオールジアクリレート(製品名「SR341」、Sartomer社製)
・IBOA:イソボルニルアクリレート(製品名「SR506」、Sartomer社製)
・NDDA:ノナンジオールジアクリレート(製品名「SR578」、Sartomer社製)
・LA:ラウリルアクリレート(製品名「SR335」、Sartomer社製)
・DVE-3:トリエチレングリコールジビニルエーテル(製品名「Rapi-Curetm DVE-3」、Ashland社製)
<Radical polymerizable monomer (referred to as "polymerizable monomer" in the table)>
-4-HBA: 4-Hydroxybutyl acrylate (product name "4-HBA", manufactured by Osaka Organic Chemical Industry Co., Ltd.)
-VMOX: 5-Methyl-3-vinyloxazolidine-2-one (product name "VMOX", manufactured by BASF)
-TEGDA: Triethylene glycol diacrylate (product name "SR268", manufactured by Sartomer)
-NVC: N-vinylcaprolactam (product name "NVC", manufactured by BASF)
-OXEA: (3-ethyloxetane-3-yl) methyl acrylate (product name "Oxe-10", manufactured by Osaka Organic Chemical Co., Ltd.)
-GTA: Glycerin triacrylate (product name "Aronix M930", manufactured by Sartomer)
-DPGDA: Dipropylene glycol diacrylate (product name "SR508", manufactured by Sartomer)
-PEA: Phenoxyethyl acrylate (product name "FLORSTAB UV12", manufactured by Kromachem, 90% by mass)
3MPDDA: 3-Methyl-1,5-pentanediol diacrylate (product name "SR341", manufactured by Sartomer)
-IBOA: Isobornyl acrylate (product name "SR506", manufactured by Sartomer)
NDDA: Nonanediol diacrylate (product name "SR578", manufactured by Sartomer)
-LA: Lauryl acrylate (product name "SR335", manufactured by Sartomer)
-DVE-3: Triethylene glycol divinyl ether (product name "Rapi-Curetm DVE-3", manufactured by Ashland)
<ラジカル重合開始剤(表中、「重合開始剤」と記す)>
・Ominirad 819:ビス(2,4,6-トリメチルベンゾイル)フェニルホスフィンオキシド(IGM Resins B.V.社製)
・TPO-L:(2,4,6-トリメチルベンゾイル)エトキシフェニルホスフィンオキシド(製品名「Omnirad TPO-L」、IGM Resins B.V.社製)
<Radical polymerization initiator (referred to as "polymerization initiator" in the table)>
Ominirad 819: Bis (2,4,6-trimethylbenzoyl) phenylphosphine oxide (manufactured by IGM Resins B.V.)
TPO-L: (2,4,6-trimethylbenzoyl) ethoxyphenylphosphine oxide (product name "Omnirad TPO-L", manufactured by IGM Resins BV)
<増感剤>
・ITX:2-イソプロピルチオキサントン(製品名「SPEEDCURE ITX」、Lambson社製)
<Sensitizer>
-ITX: 2-isopropylthioxanthone (product name "SPEEDCURE ITX", manufactured by Rambson)
<重合禁止剤>
・ニトロソアミン化合物:トリス(N-ニトロソ-N-フェニルヒドロキシルアミン)アルミニウム塩(製品名「FLORSTAB UV12」、Kromachem社製、のうち10質量%分)
<分散剤>
・BYKJET9151:スチレン系ポリマー(BYK社製)
・DISPERBYK-2013:スチレン系ポリマー(BYK社製)
・SOLSPERSE32000:ポリエチレンイミン系ポリマー(Lubrizol社製)
<Polymerization inhibitor>
-Nitrosamine compound: Tris (N-nitrosamine-N-phenylhydroxylamine) aluminum salt (product name "FLORSTAB UV12", manufactured by Kromachem, 10% by mass)
<Dispersant>
-BYKJET9151: Styrene polymer (manufactured by BYK)
DISPERBYK-2013: Styrene-based polymer (manufactured by BYK)
SOLPERSE32000: Polyethyleneimine-based polymer (manufactured by Lubrizol)
<色材>
・マゼンタ顔料:製品名「Cinquasia(登録商標)Magenta L 4540」(BASF社製)
<Color material>
-Magenta pigment: Product name "Cinquasia (registered trademark) Magenta L 4540" (manufactured by BASF)
[画像記録装置の準備]
 被記録媒体を搬送するための搬送系と、被記録媒体の搬送方向上流側から順次配列された、ブラックインク用ヘッド、UV(Ultraviolet)光源、シアンインク用ヘッド、UV光源、マゼンタインク用ヘッド、UV光源、イエローインク用ヘッド、UV光源、ホワイトインク用ヘッド、及び窒素パージUV露光機と、を備える画像記録装置(詳細には、インクジェット記録装置)を準備した。搬送系は、シングルパス方式の枚葉印刷機の搬送系とした。
[Preparation of image recording device]
A transport system for transporting the recording medium, a black ink head, a UV (Ultraviolet) light source, a cyan ink head, a UV light source, and a magenta ink head, which are sequentially arranged from the upstream side in the transport direction of the recorded medium. An image recording device (specifically, an inkjet recording device) including a UV light source, a head for yellow ink, a UV light source, a head for white ink, and a nitrogen purge UV exposure machine was prepared. The transport system was a single-pass type sheet-fed printing press.
 ブラックインク用ヘッド、シアンインク用ヘッド、マゼンタインク用ヘッド、及びイエローインク用ヘッドは、それぞれ、インクジェットノズル(以下、単に「ノズル」ともいう)を備えるピエゾ型のインクジェットヘッド(詳細には、ラインヘッド)である。各ノズルからは、1pL~60pLのマルチサイズドットを1,200×1,200dpiの解像度で射出できる。ここで、dpiとは、2.54cm当たりのドット数を表す。 The black ink head, cyan ink head, magenta ink head, and yellow ink head are each equipped with an inkjet nozzle (hereinafter, also simply referred to as “nozzle”) as a piezo type inkjet head (specifically, a line head). ). From each nozzle, 1 pL to 60 pL multi-size dots can be ejected at a resolution of 1,200 × 1,200 dpi. Here, dpi represents the number of dots per 2.54 cm.
 このインクジェット記録装置のインク供給系は、元タンク、供給配管、インクジェットヘッド直前のインク供給タンク、フィルター、及びインクジェットヘッドによって構成されている。本実施例における画像記録では、上記インク供給系における、インク供給タンクからインクジェットヘッドまでの部分に対し、断熱及び加温を行った。また、インク供給タンク及びインクジェットヘッドのノズル付近にそれぞれ温度センサーを設け、ノズル部分が常に70℃±2℃となるよう、温度制御を行った。 The ink supply system of this inkjet recording device is composed of a former tank, a supply pipe, an ink supply tank immediately before the inkjet head, a filter, and an inkjet head. In the image recording in this embodiment, the portion of the ink supply system from the ink supply tank to the inkjet head was heat-insulated and heated. Further, temperature sensors were provided near the nozzles of the ink supply tank and the inkjet head, respectively, and the temperature was controlled so that the nozzle portion was always 70 ° C. ± 2 ° C.
 マゼンタインク用ヘッドに繋がる元タンクに、各実施例用のインク及び各比較例用のインクのいずれか1つを収容した。 The original tank connected to the magenta ink head contained one of the inks for each embodiment and the inks for each comparative example.
 各インクジェットヘッドの直後の各UV光源及び窒素パージUV露光機におけるUV光源としては、それぞれ、385nm~410nmの波長域に最高照度を有するUV光を照射できるLED(Light Emitting Diode)ランプ(京セラ社製、4cm幅、G4B、最大照度10W)を使用した。 As the UV light source immediately after each inkjet head and the UV light source in the nitrogen purge UV exposure machine, an LED (Light Emitting Diode) lamp (manufactured by Kyocera) capable of irradiating UV light having the highest illuminance in the wavelength range of 385 nm to 410 nm, respectively. 4 cm width, G4B, maximum illuminance 10 W) was used.
 これらの各UV光源は、UV光の照度及び照射時間を変更できるUV光源である。本実施例における画像記録では、各ヘッドから吐出されたインクが被記録媒体上に着弾してから0.1秒後に、着弾したインクに対するUV光の照射が開始されるように、被記録媒体の搬送速度を調整した。 Each of these UV light sources is a UV light source whose illuminance and irradiation time of UV light can be changed. In the image recording in this embodiment, the recording medium is so that the irradiation of UV light to the landed ink is started 0.1 seconds after the ink ejected from each head lands on the recording medium. The transport speed was adjusted.
[画像記録]
 上記した画像記録装置を用い、被記録媒体上に、インクを、網点面積率100%になるようにベタ状に付与し、付与されたインクに対し、0.40W/cmの照度にてUV光を0.024秒照射し(ピニング露光)、次いで5.0W/cmの照度にてUV光を0.024秒照射(本露光)することにより、画像(詳細には、ベタ画像)が記録された画像記録物を得た。
[Image recording]
Using the above-mentioned image recording device, ink is applied to the recording medium in a solid shape so that the halftone dot area ratio is 100%, and the applied ink has an illuminance of 0.40 W / cm 2 . An image (specifically, a solid image) is obtained by irradiating UV light for 0.024 seconds (pinning exposure) and then irradiating UV light for 0.024 seconds (main exposure) with an illuminance of 5.0 W / cm 2 . Obtained an image recording in which was recorded.
 ここで、ピニング露光は、マゼンタインク用ヘッドの直後のUV光源により、大気(酸素濃度20%)雰囲気下で実施した。 Here, the pinning exposure was carried out in an atmosphere (oxygen concentration 20%) with a UV light source immediately after the magenta ink head.
 本露光は、窒素パージUV露光機により、酸素濃度1%、窒素濃度99%の雰囲気下で実施した。 This exposure was carried out by a nitrogen purge UV exposure machine in an atmosphere with an oxygen concentration of 1% and a nitrogen concentration of 99%.
 得られた画像記録物を用いて画像の光沢抑制及び画質の評価を実施し、インクを用いて吐出性の評価を実施した。評価方法は、以下のとおりである。評価結果を表2~表7に示す。 The obtained image recording material was used to suppress the gloss of the image and the image quality was evaluated, and the ink was used to evaluate the ejection property. The evaluation method is as follows. The evaluation results are shown in Tables 2 to 7.
(画像の光沢抑制)
 上記画像が記録される前の被記録媒体の光沢度、及び、得られた画像記録物に記録されている画像の光沢度を、それぞれ、光沢計(製品名「高光沢グロスチェッカ IG-410」、堀場製作所製)により、60°光沢条件で測定した。
 得られた結果に基づき、画像の光沢度から被記録媒体の光沢度(即ち、画像が記録される前の被記録媒体の光沢度)を差し引いた値(以下、「光沢差〔画像-被記録媒体〕」とする)を算出した。光沢差に基づき、画像の光沢抑制を評価した。評価基準は以下のとおりである。画像の光沢が最も抑制されているランクは、「5」である。
(Suppression of image gloss)
The glossiness of the recording medium before the above image is recorded and the glossiness of the image recorded in the obtained image recording material are measured by a gloss meter (product name "high gloss gloss checker IG-410", respectively. , Manufactured by HORIBA, Ltd.) under 60 ° gloss conditions.
Based on the obtained results, the value obtained by subtracting the glossiness of the recorded medium (that is, the glossiness of the recorded medium before the image is recorded) from the glossiness of the image (hereinafter, "gloss difference [image-recorded"). Medium] ”) was calculated. The gloss suppression of the image was evaluated based on the gloss difference. The evaluation criteria are as follows. The rank in which the gloss of the image is most suppressed is "5".
5:光沢差〔画像-被記録媒体〕が20未満であった。
4:光沢差〔画像-被記録媒体〕が20以上25未満であった。
3:光沢差〔画像-被記録媒体〕が25以上30未満であった。
2:光沢差〔画像-被記録媒体〕が30以上40未満であった。
1:光沢差〔画像-被記録媒体〕が40以上であった。
5: The gloss difference [image-recording medium] was less than 20.
4: The gloss difference [image-recording medium] was 20 or more and less than 25.
3: The gloss difference [image-recording medium] was 25 or more and less than 30.
2: The gloss difference [image-recorded medium] was 30 or more and less than 40.
1: The gloss difference [image-recorded medium] was 40 or more.
(吐出性)
 上記した画像記録装置のマゼンタインク用ヘッドから上記インクを、1,200dpiのモードで5分間連続的に吐出する吐出試験を行った。吐出終了後に、ノズル抜けの本数を数えた。この吐出試験を6回行い、ノズル抜けの本数に基づいて、インクの吐出性を評価した。なお、ノズル抜けとは、「吐出できずスジになる」ことをいう。評価基準は以下のとおりである。インクの吐出性に最も優れるランクは「5」である。
5:6回の吐出試験において全て、ノズル抜けが発生しなかった。
4:6回の吐出試験のうち1回の吐出試験においてノズル抜けが1本のみ発生し、5回の吐出試験ではノズル抜けが発生しなかった。
3:6回の吐出試験のうち2回の吐出試験においてノズル抜けが1本のみ発生し、4回の吐出試験ではノズル抜けが発生しなかった。
2:6回の吐出試験のうち3回の吐出試験においてノズル抜けが1本のみ発生し、3回の吐出試験ではノズル抜けが発生しなかった。
1:6回の吐出試験のうち4回以上の吐出試験においてノズル抜けが1本のみ発生したこと、及び、6回の吐出試験のうち少なくとも1回の吐出試験においてノズル抜けが2本以上発生したことの少なくとも一方に該当した。
(Dischargeability)
An ejection test was conducted in which the ink was continuously ejected from the magenta ink head of the image recording device in a mode of 1,200 dpi for 5 minutes. After the ejection was completed, the number of nozzles missing was counted. This ejection test was performed 6 times, and the ejection property of the ink was evaluated based on the number of nozzles missing. In addition, nozzle omission means that "the nozzle cannot be ejected and becomes a streak". The evaluation criteria are as follows. The rank with the best ink ejection property is "5".
Nozzle omission did not occur in all 5: 6 ejection tests.
Only one nozzle was missing in one of the 4: 6 ejection tests, and no nozzle was missing in the five ejection tests.
Only one nozzle was missing in two of the 3: 6 ejection tests, and no nozzle was missing in the four ejection tests.
Only one nozzle was missing in three of the 2: 6 discharge tests, and no nozzle was missing in the three discharge tests.
Only one nozzle omission occurred in four or more ejection tests out of 1: 6 ejection tests, and two or more nozzle omissions occurred in at least one ejection test out of six ejection tests. At least one of the things was true.
(画質)
 得られた画像記録物を目視で観察し、画像の画質(具体的には、粒状性)を評価した。評価基準は以下のとおりである。粒状性に最も優れるランクは「5」である。
5:画像全体にざらつきが見られず均一であった。
4:画像にわずかに微小なざらつきが見られるが、全体としてはほぼ均一であった。
3:画像に微小なざらつきが見られるが、実用上は問題ないレベルであった。
2:画像にざらつきが多く目視でも目立ち、実用上問題になるレベルであった。 
1:画像に強い濃淡をもったざらつきが多く発生し、均一とは言えないレベルであった。
(image quality)
The obtained image recording material was visually observed, and the image quality (specifically, graininess) of the image was evaluated. The evaluation criteria are as follows. The rank with the best graininess is "5".
5: No roughness was observed in the entire image and the image was uniform.
4: There was a slight graininess in the image, but it was almost uniform as a whole.
3: There is a slight graininess in the image, but it was at a level that was not a problem in practical use.
2: The image was rough and conspicuous even visually, which was a problem in practical use.
1: The image had a lot of roughness with strong shading, and it was a level that could not be said to be uniform.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 表2~表7に示すように、実施例1~実施例45のインクは、ラジカル重合性モノマー及びシリカ粒子を含有し、シリカ粒子は、平均一次粒径が22nm以上100nm未満であり、かつ、疎水化度が50以上であり、吐出性に優れ、かつ、光沢が抑制された画像を記録できた。 As shown in Tables 2 to 7, the inks of Examples 1 to 45 contain a radically polymerizable monomer and silica particles, and the silica particles have an average primary particle size of 22 nm or more and less than 100 nm, and the silica particles have an average primary particle size of 22 nm or more and less than 100 nm. It was possible to record an image having a degree of hydrophobicity of 50 or more, excellent ejection properties, and suppressed gloss.
 一方、比較例1では、シリカ粒子の平均一次粒径が18nmと小さいため、インクの吐出性に劣ることが分かった。 On the other hand, in Comparative Example 1, it was found that the average primary particle size of the silica particles was as small as 18 nm, so that the ink ejection property was inferior.
 比較例2、比較例6、及び比較例7では、シリカ粒子の疎水化度が0であるため、インクの吐出性に劣り、かつ、光沢が抑制された画像が得られないことが分かった。 In Comparative Example 2, Comparative Example 6, and Comparative Example 7, it was found that since the degree of hydrophobicity of the silica particles was 0, an image in which the ink ejection property was inferior and the gloss was suppressed could not be obtained.
 比較例3~比較例5では、シリカ粒子の平均一次粒径がそれぞれ、20nm、13nm、15nmと小さいため、インクの吐出性に劣り、かつ、光沢が抑制された画像が得られないことが分かった。 In Comparative Examples 3 to 5, since the average primary particle diameters of the silica particles were as small as 20 nm, 13 nm, and 15 nm, respectively, it was found that the ink ejection property was inferior and the image with suppressed gloss could not be obtained. rice field.
 比較例8では、シリカ粒子の平均一次粒径が110nmと大きいため、光沢が抑制された画像が得られないことが分かった。 In Comparative Example 8, it was found that an image with suppressed gloss could not be obtained because the average primary particle size of the silica particles was as large as 110 nm.
 比較例9及び比較例10では、シリカ粒子の平均一次粒径がそれぞれ、400nm、500nmと非常に大きいため、インクの吐出性に劣ることが分かった。 In Comparative Example 9 and Comparative Example 10, it was found that the average primary particle size of the silica particles was as large as 400 nm and 500 nm, respectively, and therefore the ink ejection property was inferior.
 実施例26では、シリカ粒子の平均二次粒径が200nm~800nmであり、実施例42と比較して、光沢がより抑制された画像が得られることが分かった。 It was found that in Example 26, the average secondary particle size of the silica particles was 200 nm to 800 nm, and an image with more suppressed gloss was obtained as compared with Example 42.
 実施例26では、シリカ粒子の平均一次粒径と比表面積との積が2400以下であり、実施例42と比較して、光沢がより抑制された画像が得られることが分かった。 In Example 26, the product of the average primary particle size of the silica particles and the specific surface area was 2400 or less, and it was found that an image with more suppressed gloss was obtained as compared with Example 42.
 実施例28~実施例31では、シリカ粒子の疎水化度が70以上であるため、実施例36及び実施例37と比較して、光沢がより抑制された画像が得られることが分かった。 It was found that in Examples 28 to 31, since the degree of hydrophobicity of the silica particles was 70 or more, images with more suppressed gloss were obtained as compared with Examples 36 and 37.
 実施例4では、シリカ粒子の含有量が1質量%~10質量%であるため、シリカ粒子の含有量が1質量%未満である実施例1と比較して、粒状性に優れ、かつ、光沢がより抑制された画像が得られることが分かった。 In Example 4, since the content of the silica particles is 1% by mass to 10% by mass, the graininess is excellent and the gloss is higher than that of Example 1 in which the content of the silica particles is less than 1% by mass. It was found that a more suppressed image was obtained.
 実施例4では、シリカ粒子の含有量が1質量%~10質量%であるため、シリカ粒子の含有量が10質量%超である実施例7と比較して、インクの吐出性に優れ、かつ、光沢がより抑制された画像が得られることが分かった。 In Example 4, since the content of the silica particles is 1% by mass to 10% by mass, the ink ejection property is excellent as compared with Example 7 in which the content of the silica particles is more than 10% by mass. It was found that an image with less gloss was obtained.
 実施例12では、シリカ粒子の含有量に対するClogP値が2以上のラジカル重合性モノマーの含有量の質量比率が6~50であるため、質量比率が6未満である実施例11と比較して、インクの吐出性に優れ、かつ、光沢がより抑制された画像が得られることが分かった。 In Example 12, since the mass ratio of the content of the radically polymerizable monomer having a ClogP value of 2 or more to the content of the silica particles is 6 to 50, the mass ratio is less than 6, as compared with Example 11. It was found that an image having excellent ink ejection properties and less gloss was obtained.
 実施例4では、シリカ粒子の含有量に対するClogP値が2以上のラジカル重合性モノマーの含有量の質量比率が6~50であるため、質量比率が50超である実施例2と比較して、粒状性に優れ、かつ、光沢がより抑制された画像が得られることが分かった。 In Example 4, since the mass ratio of the content of the radically polymerizable monomer having a ClogP value of 2 or more to the content of the silica particles is 6 to 50, the mass ratio is more than 50, as compared with Example 2. It was found that an image having excellent graininess and less gloss was obtained.
 実施例13では、インクにN-ビニル化合物が含まれているため、インクにN-ビニル化合物が含まれていない実施例17と比較して、粒状性に優れ、かつ、光沢がより抑制された画像が得られることが分かった。 In Example 13, since the ink contains the N-vinyl compound, the graininess is excellent and the gloss is further suppressed as compared with Example 17 in which the ink does not contain the N-vinyl compound. It turned out that an image was obtained.
 実施例19では、シリカ粒子の含有量に対するN-ビニル化合物の含有量の質量比率が1~8であるため、質量比率が8超である実施例21と比較して、粒状性に優れ、かつ、光沢がより抑制された画像が得られることが分かった。 In Example 19, since the mass ratio of the content of the N-vinyl compound to the content of the silica particles is 1 to 8, the graininess is excellent as compared with Example 21 in which the mass ratio is more than 8. It was found that an image with less gloss was obtained.
 実施例4では、シリカ粒子の含有量に対するN-ビニル化合物の含有量の質量比率が1~8であるため、質量比率が1未満である実施例7と比較して、インクの吐出性に優れ、かつ、光沢がより抑制された画像が得られることが分かった。 In Example 4, since the mass ratio of the content of the N-vinyl compound to the content of the silica particles is 1 to 8, the ink ejection property is excellent as compared with Example 7 in which the mass ratio is less than 1. Moreover, it was found that an image with more suppressed gloss can be obtained.
 実施例45では、インクにビニルエーテル化合物が含まれているため、ビニルエーテル化合物が含まれていない実施例23と比較して、光沢がより抑制された画像が得られることが分かった。 In Example 45, since the ink contained a vinyl ether compound, it was found that an image having more suppressed gloss was obtained as compared with Example 23, which did not contain the vinyl ether compound.
[実施例46~実施例53]
 多次色画像を記録するために、上記マゼンタ顔料分散液のほかに、シアン顔料分散液、イエロー顔料分散液、及びブラック顔料分散液を調製した。シアン顔料分散液、イエロー顔料分散液、及びブラック顔料分散液は、上記マゼンタ顔料をシアン顔料、イエロー顔料、及びブラック顔料にそれぞれ変更することにより、マゼンタ顔料分散液と同様の方法で調製した。
[Examples 46 to 53]
In addition to the magenta pigment dispersion, a cyan pigment dispersion, a yellow pigment dispersion, and a black pigment dispersion were prepared for recording a multi-order color image. The cyan pigment dispersion, the yellow pigment dispersion, and the black pigment dispersion were prepared by the same method as the magenta pigment dispersion by changing the magenta pigment to a cyan pigment, a yellow pigment, and a black pigment, respectively.
<色材>
・マゼンタ顔料:製品名「Cinquasia(登録商標)Magenta L 4540」(BASF社製)
・シアン顔料:PB15:4、製品名「Heliogen(登録商標)Blue D 7110 F」(BASF社製)
・イエロー顔料:P.Y.120、製品名「Novoperm Yellow H2G」(クラリアント社製)
・ブラック顔料:カーボンブラック、製品名「Special Black 250」(Orion Engineered Carbons)
<Color material>
-Magenta pigment: Product name "Cinquasia (registered trademark) Magenta L 4540" (manufactured by BASF)
-Cyan pigment: PB15: 4, product name "Heliogen (registered trademark) Blue D 7110 F" (manufactured by BASF)
-Yellow pigment: P. Y. 120, Product name "Novoperm Yellow H2G" (manufactured by Clariant)
-Black pigment: carbon black, product name "Special Black 250" (Orion Engineered Carbons)
 次に、調製した各顔料分散液と、下記表8に記載のシリカ粒子、ラジカル重合性モノマー、ラジカル重合開始剤、増感剤、重合禁止剤、及び分散剤とを、各成分が表8に記載の含有量(質量%)になるよう混合した。混合物を、ミキサー(製品名「L4R」、シルバーソン社製)を用いて、25℃で5000回転/分の条件で20分間撹拌し、インクを得た。 Next, each component of each of the prepared pigment dispersions and the silica particles, radically polymerizable monomers, radical polymerization initiators, sensitizers, polymerization inhibitors, and dispersants shown in Table 8 below is shown in Table 8. The mixture was mixed so as to have the stated content (% by mass). The mixture was stirred for 20 minutes at 25 ° C. under the condition of 5000 rpm using a mixer (product name “L4R”, manufactured by Silberson) to obtain ink.
[画像記録装置の準備]
 実施例1と同様に、画像記録装置を準備した。ブラックインク用ヘッドに繋がる元タンクに、実施例46のインクを収容し、シアンインク用ヘッドに繋がる元タンクに、実施例47のインクを収容し、マゼンタインク用ヘッドに繋がる元タンクに、実施例48のインクを収容し、イエローインク用ヘッドに繋がる元タンクに、実施例49のインクを収容した。画像記録終了後に、それぞれの元タンクを洗浄し、ブラックインク用ヘッドに繋がる元タンクに、実施例50のインクを収容し、シアンインク用ヘッドに繋がる元タンクに、実施例51のインクを収容し、マゼンタインク用ヘッドに繋がる元タンクに、実施例52のインクを収容し、イエローインク用ヘッドに繋がる元タンクに、実施例53のインクを収容した。
[Preparation of image recording device]
An image recording device was prepared in the same manner as in Example 1. Example 46 The ink of Example 46 is stored in the original tank connected to the black ink head, the ink of Example 47 is stored in the original tank connected to the cyan ink head, and the original tank connected to the magenta ink head is used. Forty-eight inks were stored, and the ink of Example 49 was stored in the original tank connected to the yellow ink head. After the image recording is completed, each original tank is washed, the ink of Example 50 is stored in the original tank connected to the black ink head, and the ink of Example 51 is stored in the original tank connected to the cyan ink head. The original tank connected to the magenta ink head contained the ink of Example 52, and the original tank connected to the yellow ink head contained the ink of Example 53.
[画像記録]
 実施例46では、上記した画像記録装置を用い、被記録媒体上に、実施例46のインク(ブラックインク)を、網点面積率100%になるようにベタ状に付与し、付与されたブラックインクに対し、0.40W/cmの照度にてUV光を0.024秒照射し(ピニング露光)、次いで5.0W/cmの照度にてUV光を0.024秒照射(本露光)することにより、画像(詳細には、ベタ画像)が記録された画像記録物を得た。
[Image recording]
In Example 46, using the above-mentioned image recording apparatus, the ink (black ink) of Example 46 is applied to the recording medium in a solid shape so that the halftone dot area ratio is 100%, and the black ink is applied. The ink is irradiated with UV light at an illuminance of 0.40 W / cm 2 for 0.024 seconds (pinning exposure), and then irradiated with UV light at an illuminance of 5.0 W / cm 2 for 0.024 seconds (main exposure). ), An image recording material in which an image (specifically, a solid image) was recorded was obtained.
 ここで、ピニング露光は、ブラックインク用ヘッドの直後のUV光源により、大気(酸素濃度20%)雰囲気下で実施した。 Here, the pinning exposure was carried out in an atmosphere (oxygen concentration 20%) with a UV light source immediately after the black ink head.
 本露光は、窒素パージUV露光機により、酸素濃度1%、窒素濃度99%の雰囲気下で実施した。 This exposure was carried out by a nitrogen purge UV exposure machine in an atmosphere with an oxygen concentration of 1% and a nitrogen concentration of 99%.
 実施例47では、上記した画像記録装置を用い、被記録媒体上に、実施例46のインク(ブラックインク)を、網点面積率100%になるようにベタ状に付与し、付与されたブラックインクに対し、0.40W/cmの照度にてUV光を0.024秒照射した(ピニング露光)。半硬化したブラックインク膜上に、実施例47のインク(シアンインク)を、網点面積率100%になるようにベタ状に付与し、付与されたシアンインクに対し、0.40W/cmの照度にてUV光を0.024秒照射した。(ピニング露光)。次いで5.0W/cmの照度にてUV光を0.024秒照射(本露光)することにより、画像(詳細には、ベタ画像)が記録された画像記録物を得た。 In Example 47, using the above-mentioned image recording apparatus, the ink (black ink) of Example 46 is applied to the recording medium in a solid shape so that the halftone dot area ratio is 100%, and the black ink is applied. The ink was irradiated with UV light for 0.024 seconds at an illuminance of 0.40 W / cm 2 (pinning exposure). The ink (cyan ink) of Example 47 was applied solidly on the semi-cured black ink film so that the halftone dot area ratio was 100%, and 0.40 W / cm 2 was applied to the applied cyan ink. UV light was irradiated for 0.024 seconds at the illuminance of. (Pinning exposure). Then, by irradiating (main exposure) with UV light for 0.024 seconds at an illuminance of 5.0 W / cm 2 , an image recording material in which an image (specifically, a solid image) was recorded was obtained.
 ここで、ピニング露光は、ブラックインク用ヘッド及びシアンインク用ヘッドの直後のUV光源により、大気(酸素濃度20%)雰囲気下で実施した。 Here, the pinning exposure was carried out in an atmosphere (oxygen concentration 20%) by a UV light source immediately after the black ink head and the cyan ink head.
 本露光は、窒素パージUV露光機により、酸素濃度1%、窒素濃度99%の雰囲気下で実施した。 This exposure was carried out by a nitrogen purge UV exposure machine in an atmosphere with an oxygen concentration of 1% and a nitrogen concentration of 99%.
 実施例48では、上記した画像記録装置を用い、被記録媒体上に、実施例46のインク(ブラックインク)を、網点面積率100%になるようにベタ状に付与し、付与されたブラックインクに対し、0.40W/cmの照度にてUV光を0.024秒照射した。(ピニング露光)。半硬化したブラックインク膜上に、実施例47のインク(シアンインク)を、網点面積率100%になるようにベタ状に付与し、付与されたシアンインクに対し、0.40W/cmの照度にてUV光を0.024秒照射した(ピニング露光)。半硬化したシアンインク膜上に、実施例48のインク(マゼンタインク)を、網点面積率100%になるようにベタ状に付与し、付与されたマゼンタインクに対し、0.40W/cmの照度にてUV光を0.024秒照射した(ピニング露光)。次いで5.0W/cmの照度にてUV光を0.024秒照射(本露光)することにより、画像(詳細には、ベタ画像)が記録された画像記録物を得た。 In Example 48, using the above-mentioned image recording apparatus, the ink (black ink) of Example 46 is applied to the recording medium in a solid shape so as to have a halftone dot area ratio of 100%, and the black ink is applied. The ink was irradiated with UV light for 0.024 seconds at an illuminance of 0.40 W / cm 2 . (Pinning exposure). The ink (cyan ink) of Example 47 was applied solidly on the semi-cured black ink film so that the halftone dot area ratio was 100%, and 0.40 W / cm 2 was applied to the applied cyan ink. UV light was irradiated for 0.024 seconds at the illuminance of (pinning exposure). The ink of Example 48 (magenta ink) was applied solidly on the semi-cured cyan ink film so that the halftone dot area ratio was 100%, and 0.40 W / cm 2 was applied to the applied magenta ink. UV light was irradiated for 0.024 seconds at the illuminance of (pinning exposure). Then, by irradiating (main exposure) with UV light for 0.024 seconds at an illuminance of 5.0 W / cm 2 , an image recording material in which an image (specifically, a solid image) was recorded was obtained.
 ここで、ピニング露光は、ブラックインク用ヘッド、シアンインク用ヘッド、及びマゼンタインク用ヘッドの直後のUV光源により、大気(酸素濃度20%)雰囲気下で実施した。 Here, the pinning exposure was carried out in an atmosphere (oxygen concentration 20%) by a UV light source immediately after the black ink head, the cyan ink head, and the magenta ink head.
 本露光は、窒素パージUV露光機により、酸素濃度1%、窒素濃度99%の雰囲気下で実施した。 This exposure was carried out by a nitrogen purge UV exposure machine in an atmosphere with an oxygen concentration of 1% and a nitrogen concentration of 99%.
 実施例49では、上記した画像記録装置を用い、被記録媒体上に、実施例46のインク(ブラックインク)を、網点面積率100%になるようにベタ状に付与し、付与されたブラックインクに対し、0.40W/cmの照度にてUV光を0.024秒照射した。(ピニング露光)。半硬化したブラックインク膜上に、実施例47のインク(シアンインク)を、網点面積率100%になるようにベタ状に付与し、付与されたシアンインクに対し、0.40W/cmの照度にてUV光を0.024秒照射した(ピニング露光)。半硬化したシアンインク膜上に、実施例48のインク(マゼンタインク)を、網点面積率100%になるようにベタ状に付与し、付与されたマゼンタインクに対し、0.40W/cmの照度にてUV光を0.024秒照射した(ピニング露光)。半硬化したマゼンタインク膜上に、実施例49のインク(イエローインク)を、網点面積率100%になるようにベタ状に付与し、付与されたイエローインクに対し、0.40W/cmの照度にてUV光を0.024秒照射した(ピニング露光)。次いで5.0W/cmの照度にてUV光を0.024秒照射(本露光)することにより、画像(詳細には、ベタ画像)が記録された画像記録物を得た。 In Example 49, using the above-mentioned image recording apparatus, the ink (black ink) of Example 46 is applied to the recording medium in a solid shape so as to have a halftone dot area ratio of 100%, and the black ink is applied. The ink was irradiated with UV light for 0.024 seconds at an illuminance of 0.40 W / cm 2 . (Pinning exposure). The ink (cyan ink) of Example 47 was applied solidly on the semi-cured black ink film so that the halftone dot area ratio was 100%, and 0.40 W / cm 2 was applied to the applied cyan ink. UV light was irradiated for 0.024 seconds at the illuminance of (pinning exposure). The ink of Example 48 (magenta ink) was applied solidly on the semi-cured cyan ink film so that the halftone dot area ratio was 100%, and 0.40 W / cm 2 was applied to the applied magenta ink. UV light was irradiated for 0.024 seconds at the illuminance of (pinning exposure). The ink of Example 49 (yellow ink) was applied solidly on the semi-cured magenta ink film so that the halftone dot area ratio was 100%, and 0.40 W / cm 2 was applied to the applied yellow ink. UV light was irradiated for 0.024 seconds at the illuminance of (pinning exposure). Then, by irradiating (main exposure) with UV light for 0.024 seconds at an illuminance of 5.0 W / cm 2 , an image recording material in which an image (specifically, a solid image) was recorded was obtained.
 ここで、ピニング露光は、ブラックインク用ヘッド、シアンインク用ヘッド、マゼンタインク用ヘッド、及びイエローインク用ヘッドの直後のUV光源により、大気(酸素濃度20%)雰囲気下で実施した。 Here, the pinning exposure was carried out in an atmosphere (oxygen concentration 20%) by a UV light source immediately after the black ink head, the cyan ink head, the magenta ink head, and the yellow ink head.
 本露光は、窒素パージUV露光機により、酸素濃度1%、窒素濃度99%の雰囲気下で実施した。 This exposure was carried out by a nitrogen purge UV exposure machine in an atmosphere with an oxygen concentration of 1% and a nitrogen concentration of 99%.
 実施例50~実施例53についても、実施例46~実施例49と同様に画像記録を行った。 For Examples 50 to 53, image recording was performed in the same manner as in Examples 46 to 49.
 得られた画像記録物を用いて画像の光沢抑制及び画質の評価を実施し、インクを用いて吐出性の評価を実施した。具体的には、実施例46では、被記録媒体上に実施例46のインクを用いて記録されたブラック画像に対して、光沢抑制及び画質の評価を行った。実施例47では、上記ブラック画像上に実施例47のインクを用いて記録されたシアン画像に対して、光沢抑制及び画質の評価を行った。実施例48では、上記シアン画像上に実施例48のインクを用いて記録されたマゼンタ画像に対して、光沢抑制及び画質の評価を行った。実施例49では、上記マゼンタ画像上に実施例49のインクを用いて記録されたイエロー画像に対して、光沢抑制及び画質の評価を行った。実施例50~実施例53についても、実施例46~実施例49と同様に、光沢抑制及び画質の評価を行った。評価方法は、実施例1に対する評価と同じである。評価結果を表8に示す。 The obtained image recording material was used to suppress the gloss of the image and the image quality was evaluated, and the ink was used to evaluate the ejection property. Specifically, in Example 46, gloss suppression and image quality evaluation were performed on the black image recorded on the recording medium using the ink of Example 46. In Example 47, gloss suppression and image quality evaluation were performed on the cyan image recorded on the black image using the ink of Example 47. In Example 48, gloss suppression and image quality evaluation were performed on the magenta image recorded on the cyan image using the ink of Example 48. In Example 49, gloss suppression and image quality evaluation were performed on the yellow image recorded on the magenta image using the ink of Example 49. Also in Examples 50 to 53, gloss suppression and image quality evaluation were performed in the same manner as in Examples 46 to 49. The evaluation method is the same as the evaluation for Example 1. The evaluation results are shown in Table 8.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 表8に示すように、実施例51~実施例53では、後から付与されたインク中のシリカ粒子の含有量が、先に付与されたインク中のシリカ粒子の含有量よりも多く、実施例47~実施例49と比較して、粒状性に優れた画像が得られることが分かった。 As shown in Table 8, in Examples 51 to 53, the content of the silica particles in the ink applied later is higher than the content of the silica particles in the ink applied earlier, and the examples thereof. It was found that an image having excellent graininess could be obtained as compared with 47 to 49.
<参考例1>
 インクジェット記録装置(製品名「Jet Press 540WV」、富士フイルム社製)に設けられている各インクタンクに、各色インクを個別に充填した。下塗り組成物として、UV硬化型インク(製品名「Uvijet MK702」、富士フイルム社製)とUV硬化型インク(製品名「Uvijet MK703」、富士フイルム社製)とを質量比率85:15で混合した混合液を用いた。また、ホワイトインクとして、UV硬化型インク(製品名「Uvijet MK021」、富士フイルム社製)を用いた。ブラックインクとして、UV硬化型インク(製品名「Uvijet MKA04」、富士フイルム社製)を用いた。シアンインクとして、UV硬化型インク(製品名「Uvijet MK215」、富士フイルム社製)を用いた。マゼンタインクとして、UV硬化型インク(製品名「Uvijet MK867」、富士フイルム社製)を用いた。イエローインクとして、UV硬化型インク(製品名「Uvijet MKA52」、富士フイルム社製)を用いた。
 被記録媒体として、二軸延伸ポリエステルフィルム(製品名「エンブレット PTM-12」、ユニチカ社製、膜厚12μm)を用いた。
 まず、被記録媒体上に、下塗り組成物を塗布した。下塗り組成物を塗布した後に、照度750mW/cmでピニング露光を行い、下塗り層を形成した。次に、得られた下塗り層上に、ホワイトインクでベタ画像を記録し、得られたベタ画像上にブラックインク、シアンインク、マゼンタインク、及びイエローインクを、この順に吐出した。各インクを吐出した後においても、下塗り組成物を塗布した後と同様に、照度750mW/cmでピニング露光を行った。最後のピニング露光の後に、酸素濃度0.1体積%未満の窒素雰囲気下で、被記録媒体の上部(すなわち、画像が記録されている側)から、照度3000mW/cmで本露光を行った。窒素パージは、インクジェット記録装置に附属している窒素発生器を用いて行った。次に、大気雰囲気下で、被記録媒体の下部(すなわち、画像が記録されていない側)から、照度3000mW/cmで本露光を行い、画像記録物を得た。
 なお、被記録媒体の搬送速度は50m/分とした。
<Reference example 1>
Each ink tank provided in an inkjet recording device (product name "Jet Press 540WV", manufactured by FUJIFILM Corporation) was individually filled with ink of each color. As an undercoat composition, UV curable ink (product name "Uvijet MK702", manufactured by FUJIFILM Corporation) and UV curable ink (product name "Uvijet MK703", manufactured by FUJIFILM Corporation) were mixed at a mass ratio of 85:15. A mixed solution was used. Further, as the white ink, a UV curable ink (product name "Uvijet MK021", manufactured by FUJIFILM Corporation) was used. As the black ink, UV curable ink (product name "Uvijet MKA04", manufactured by FUJIFILM Corporation) was used. As the cyan ink, a UV curable ink (product name "Uvijet MK215", manufactured by FUJIFILM Corporation) was used. As magenta ink, UV curable ink (product name "Uvijet MK867", manufactured by FUJIFILM Corporation) was used. As the yellow ink, UV curable ink (product name "Uvijet MKA52", manufactured by FUJIFILM Corporation) was used.
As a recording medium, a biaxially stretched polyester film (product name "Emblet PTM-12", manufactured by Unitika Ltd., film thickness 12 μm) was used.
First, the undercoat composition was applied onto the recording medium. After applying the undercoat composition, pinning exposure was performed at an illuminance of 750 mW / cm 2 to form an undercoat layer. Next, a solid image was recorded with white ink on the obtained undercoat layer, and black ink, cyan ink, magenta ink, and yellow ink were ejected on the obtained solid image in this order. Even after each ink was ejected, pinning exposure was performed at an illuminance of 750 mW / cm 2 in the same manner as after the undercoat composition was applied. After the final pinning exposure, the main exposure was performed from the upper part of the recording medium (that is, the side where the image is recorded) under a nitrogen atmosphere having an oxygen concentration of less than 0.1% by volume at an illuminance of 3000 mW / cm 2 . .. The nitrogen purge was performed using the nitrogen generator attached to the inkjet recording device. Next, under an atmospheric atmosphere, the main exposure was performed from the lower part of the recording medium (that is, the side on which the image was not recorded) at an illuminance of 3000 mW / cm 2 to obtain an image recorded object.
The transport speed of the recording medium was set to 50 m / min.
<参考例2>
 下塗り組成物を塗布しなかったこと以外は、参考例1と同様の方法で画像記録物を得た。
<Reference example 2>
An image recording was obtained in the same manner as in Reference Example 1 except that the undercoat composition was not applied.
<参考例3>
 UV硬化型インク(製品名「Uvijet MK021」、富士フイルム社製)1リットルに、シリコン系界面活性剤(製品名「BYK-307」、BYK社製)0.8gを添加し、十分に撹拌することにより、ホワイトインクを調製した。UV硬化型インク(製品名「Uvijet MK021」、富士フイルム社製)の代わりに、調製したホワイトインクを用いたこと以外は、参考例2と同様の方法で画像記録物を得た。
<Reference example 3>
Add 0.8 g of a silicon-based surfactant (product name "BYK-307", manufactured by BYK) to 1 liter of UV curable ink (product name "Uvijet MK021", manufactured by Fujifilm) and stir well. As a result, white ink was prepared. An image recording was obtained by the same method as in Reference Example 2 except that the prepared white ink was used instead of the UV curable ink (product name "Uvijet MK021", manufactured by FUJIFILM Corporation).
 参考例1~参考例3はいずれも、被記録媒体と画像との密着性が良好であり、かつ、画質が良好であることが確認された。 It was confirmed that in each of Reference Example 1 to Reference Example 3, the adhesion between the recording medium and the image was good, and the image quality was good.
 なお、2020年9月29日に出願された日本国特許出願2020-163387号の開示は、その全体が参照により本明細書に取り込まれる。また、本明細書に記載された全ての文献、特許出願および技術規格は、個々の文献、特許出願、および技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。 The disclosure of Japanese Patent Application No. 2020-163387 filed on September 29, 2020 is incorporated herein by reference in its entirety. Also, all documents, patent applications and technical standards described herein are to the same extent as if the individual documents, patent applications and technical standards were specifically and individually stated to be incorporated by reference. , Incorporated by reference herein.

Claims (13)

  1.  ラジカル重合性モノマー及びシリカ粒子を含有し、
     前記シリカ粒子は、平均一次粒径が22nm以上100nm未満であり、かつ、疎水化度が50以上である、インクジェットインク。
    Contains radically polymerizable monomers and silica particles,
    The silica particles are inkjet inks having an average primary particle size of 22 nm or more and less than 100 nm and a degree of hydrophobicity of 50 or more.
  2.  前記シリカ粒子は、平均二次粒径が200nm~800nmである、請求項1に記載のインクジェットインク。 The inkjet ink according to claim 1, wherein the silica particles have an average secondary particle size of 200 nm to 800 nm.
  3.  前記シリカ粒子は、単位をnmとしたときの平均一次粒径と、単位をm/gとしたときの比表面積との積が2400以下である、請求項1又は請求項2に記載のインクジェットインク。 The inkjet according to claim 1 or 2, wherein the silica particles have a product of an average primary particle size when the unit is nm and a specific surface area when the unit is m 2 / g is 2400 or less. ink.
  4.  前記シリカ粒子は、疎水化度が70以上である、請求項1~請求項3のいずれか1項に記載のインクジェットインク。 The inkjet ink according to any one of claims 1 to 3, wherein the silica particles have a degree of hydrophobicity of 70 or more.
  5.  前記シリカ粒子の含有量は、インクジェットインクの全量に対して、1質量%~10質量%である、請求項1~請求項4のいずれか1項に記載のインクジェットインク。 The inkjet ink according to any one of claims 1 to 4, wherein the content of the silica particles is 1% by mass to 10% by mass with respect to the total amount of the inkjet ink.
  6.  前記ラジカル重合性モノマーは、単官能ラジカル重合性モノマー及び2官能ラジカル重合性モノマーの少なくとも一方を含み、
     前記単官能ラジカル重合性モノマー及び前記2官能ラジカル重合性モノマーの総含有量が、インクジェットインクの全量に対して、50質量%以上である、請求項1~請求項5のいずれか1項に記載のインクジェットインク。
    The radically polymerizable monomer contains at least one of a monofunctional radically polymerizable monomer and a bifunctional radically polymerizable monomer.
    The method according to any one of claims 1 to 5, wherein the total content of the monofunctional radically polymerizable monomer and the bifunctional radically polymerizable monomer is 50% by mass or more with respect to the total amount of the inkjet ink. Radical ink.
  7.  前記ラジカル重合性モノマーは、ClogP値が2以上のラジカル重合性モノマーを含む、請求項1~請求項6のいずれか1項に記載のインクジェットインク。 The inkjet ink according to any one of claims 1 to 6, wherein the radically polymerizable monomer contains a radically polymerizable monomer having a ClogP value of 2 or more.
  8.  前記シリカ粒子の含有量に対する前記ClogP値が2以上のラジカル重合性モノマーの含有量の質量比率は、6~50である、請求項7に記載のインクジェットインク。 The inkjet ink according to claim 7, wherein the mass ratio of the content of the radically polymerizable monomer having a ClogP value of 2 or more to the content of the silica particles is 6 to 50.
  9.  前記ラジカル重合性モノマーは、N-ビニル化合物を含む、請求項1~請求項8のいずれか1項に記載のインクジェットインク。 The inkjet ink according to any one of claims 1 to 8, wherein the radically polymerizable monomer contains an N-vinyl compound.
  10.  前記シリカ粒子の含有量に対する前記N-ビニル化合物の含有量の質量比率は、1~8である、請求項9に記載のインクジェットインク。 The inkjet ink according to claim 9, wherein the mass ratio of the content of the N-vinyl compound to the content of the silica particles is 1 to 8.
  11.  前記ラジカル重合性モノマーは、ビニルエーテル化合物を含む、請求項1~請求項10のいずれか1項に記載のインクジェットインク。 The inkjet ink according to any one of claims 1 to 10, wherein the radically polymerizable monomer contains a vinyl ether compound.
  12.  被記録媒体上に、請求項1~請求項11のいずれか1項に記載のインクジェットインクをインクジェット記録方式で付与してインク膜を得る工程と、
     前記インク膜に活性エネルギー線を照射する工程と、
    を含む画像記録方法。
    A step of applying the inkjet ink according to any one of claims 1 to 11 onto a recording medium by an inkjet recording method to obtain an ink film.
    The step of irradiating the ink film with active energy rays and
    Image recording method including.
  13.  前記活性エネルギー線を照射する工程は、前記インク膜に、酸素濃度5体積%以下の雰囲気下で前記活性エネルギー線を照射する工程を含む、請求項12に記載の画像記録方法。 The image recording method according to claim 12, wherein the step of irradiating the active energy ray includes a step of irradiating the ink film with the active energy ray in an atmosphere having an oxygen concentration of 5% by volume or less.
PCT/JP2021/022076 2020-09-29 2021-06-10 Inkjet ink and image recording method WO2022070517A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022553460A JP7443552B2 (en) 2020-09-29 2021-06-10 Inkjet ink and image recording method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-163387 2020-09-29
JP2020163387 2020-09-29

Publications (1)

Publication Number Publication Date
WO2022070517A1 true WO2022070517A1 (en) 2022-04-07

Family

ID=80949810

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/022076 WO2022070517A1 (en) 2020-09-29 2021-06-10 Inkjet ink and image recording method

Country Status (2)

Country Link
JP (1) JP7443552B2 (en)
WO (1) WO2022070517A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024122094A1 (en) * 2022-12-05 2024-06-13 artience株式会社 Ultraviolet curable inkjet ink and method for producing printed material

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011098514A1 (en) * 2010-02-11 2011-08-18 Dsm Ip Assets B.V. Radiation curable liquid composition for low gloss coatings
JP2018532822A (en) * 2015-09-15 2018-11-08 オルネクス ベルギー エス エー Radiation curable composition for low gloss coating
JP2019157062A (en) * 2018-03-16 2019-09-19 株式会社リコー Active energy ray-curable composition, active energy ray-curable inkjet ink and inkjet recording device
JP2019163382A (en) * 2018-03-19 2019-09-26 株式会社リコー Ink composition, ink composition for liquid discharge device, image forming device, and image forming method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011098514A1 (en) * 2010-02-11 2011-08-18 Dsm Ip Assets B.V. Radiation curable liquid composition for low gloss coatings
JP2018532822A (en) * 2015-09-15 2018-11-08 オルネクス ベルギー エス エー Radiation curable composition for low gloss coating
JP2019157062A (en) * 2018-03-16 2019-09-19 株式会社リコー Active energy ray-curable composition, active energy ray-curable inkjet ink and inkjet recording device
JP2019163382A (en) * 2018-03-19 2019-09-26 株式会社リコー Ink composition, ink composition for liquid discharge device, image forming device, and image forming method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024122094A1 (en) * 2022-12-05 2024-06-13 artience株式会社 Ultraviolet curable inkjet ink and method for producing printed material

Also Published As

Publication number Publication date
JPWO2022070517A1 (en) 2022-04-07
JP7443552B2 (en) 2024-03-05

Similar Documents

Publication Publication Date Title
WO2015190469A1 (en) Method for producing three-dimensional model, kit for producing three-dimensional model, and three-dimensional model
EP2423278A1 (en) Ink composition, image forming method and printed matter
JP7373649B2 (en) Active energy ray-curable ink and image recording method
JP7367455B2 (en) Pigment dispersion composition, curable composition, storage container, two-dimensional or three-dimensional image forming device, two-dimensional or three-dimensional image forming method, cured product, and decorated body
WO2019188851A1 (en) Black type ink composition for ink-jet printing, light-shielding film, optical member, and method for forming image
US12116489B2 (en) Electron beam-curable printing ink composition and electron beam-curable overprint varnish composition
JP2017160405A (en) Active energy ray-curable composition, active energy ray-curable ink, composition storage container, two-dimensional or three-dimensional image forming apparatus, two-dimensional or three-dimensional image forming method, and cured product
JP7443552B2 (en) Inkjet ink and image recording method
JP2020117585A (en) Curable composition, storage container, two-dimensional or three-dimensional image forming apparatus, two-dimensional or three-dimensional image forming method, and cured product
JP6741221B2 (en) Active energy ray curable composition, active energy ray curable ink, composition container, two-dimensional or three-dimensional image forming method and forming apparatus
WO2021090872A1 (en) Thermosetting inkjet ink and printing method
US20240043706A1 (en) Active energy ray-curable inkjet ink for beverage container, active energy ray-curable inkjet ink set, and image recording method
US20220348779A1 (en) Ink set, image recording method, image recorded article, and three-dimensional article and method for producing the same
JP7376692B2 (en) Active energy ray-curable ink and image recording method
US20240218195A1 (en) Electron beam-curable printing ink composition and printed matter obtained by printing with electron beam-curable printing ink composition
WO2022209635A1 (en) Electron beam curing inkjet ink, ink set, and image recording method
JP7456032B1 (en) Primer ink composition, ink set, and recording method for photocurable inkjet recording
WO2022163134A1 (en) Electron beam-curable ink, and image recording method
JP2024118896A (en) Ink set and inkjet recording method
WO2024122204A1 (en) Active energy ray-curable inkjet ink, active energy ray-curable ink set, and image recording method
WO2024161887A1 (en) Active energy ray-curable inkjet ink, active energy ray-curable ink set, and image recording method
JP6529573B2 (en) Ink jet ink set and image forming method using the same
WO2023021793A1 (en) Active-energy-ray-curable ink, ink set, and image recording method
WO2023120275A1 (en) Electron beam-curing inkjet ink, ink set, and image recording method
JP2021130779A (en) Pigment dispersion composition, curable composition, storage container, device for forming two or three dimensional images, method of forming two-dimensional or three-dimensional images, cured matter, and decoration

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21874822

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022553460

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21874822

Country of ref document: EP

Kind code of ref document: A1