WO2022070391A1 - 無線基地局 - Google Patents

無線基地局 Download PDF

Info

Publication number
WO2022070391A1
WO2022070391A1 PCT/JP2020/037465 JP2020037465W WO2022070391A1 WO 2022070391 A1 WO2022070391 A1 WO 2022070391A1 JP 2020037465 W JP2020037465 W JP 2020037465W WO 2022070391 A1 WO2022070391 A1 WO 2022070391A1
Authority
WO
WIPO (PCT)
Prior art keywords
propagation delay
delay compensation
time information
information
unit
Prior art date
Application number
PCT/JP2020/037465
Other languages
English (en)
French (fr)
Inventor
天楊 閔
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to CN202080105630.9A priority Critical patent/CN116458264A/zh
Priority to JP2022553381A priority patent/JPWO2022070391A5/ja
Priority to PCT/JP2020/037465 priority patent/WO2022070391A1/ja
Priority to US18/247,166 priority patent/US20230370991A1/en
Publication of WO2022070391A1 publication Critical patent/WO2022070391A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/004Synchronisation arrangements compensating for timing error of reception due to propagation delay
    • H04W56/005Synchronisation arrangements compensating for timing error of reception due to propagation delay compensating for timing error by adjustment in the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/004Synchronisation arrangements compensating for timing error of reception due to propagation delay
    • H04W56/0045Synchronisation arrangements compensating for timing error of reception due to propagation delay compensating for timing error by altering transmission time
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices

Definitions

  • This disclosure relates to a radio base station corresponding to compensation for propagation delay with a terminal.
  • the 3rd Generation Partnership Project (3GPP) specifies the 5th generation mobile communication system (also called 5G, New Radio (NR) or Next Generation (NG)), and next-generation specifications called Beyond 5G, 5G Evolution or 6G. We are also proceeding with the conversion.
  • 5G New Radio
  • NG Next Generation
  • 3GPP Release-17 provides more accurate synchronization between wireless base stations (gNB) and terminals (User Equipment, UE) regarding support for Industrial Internet of Things (IIoT) and URLLC (Ultra-Reliable and Low Latency Communications). The goal is to achieve this (Non-Patent Document 1).
  • gNB wireless base stations
  • UE User Equipment
  • IIoT Industrial Internet of Things
  • URLLC Ultra-Reliable and Low Latency Communications
  • Non-Patent Document 2 For example, in use cases such as smart grids, high synchronization accuracy is required in a wide service area (Non-Patent Document 2), so compensation for propagation delay in the radio section between UE and gNB is indispensable.
  • UE to gNB is applied while applying CU-DU split gNB deployment in which CU (Central Unit) and DU (Distributed Unit) of gNB are arranged separately. It is conceivable to perform propagation delay compensation between (specifically, between UE and DU).
  • CU Central Unit
  • DU Distributed Unit
  • the following disclosure is made in view of such a situation, and can realize propagation delay compensation in a radio section with a terminal (UE) while responding to a demand for high synchronization accuracy in a wide service area.
  • the purpose is to provide a wireless base station.
  • One aspect of the present disclosure is to acquire and propagate a propagation delay between a transmission / reception unit (for example, message transmission / reception unit 117) that transmits / receives a specified message or response and a terminal (UE200) in response to reception of the message or response.
  • a radio base including a control unit (for example, delay compensation control unit 115) that executes delay compensation, and the propagation delay compensation is executed by the communication unit (DU120) on the terminal side or the communication unit (CU110) on the network side.
  • One aspect of the present disclosure is to acquire a propagation delay between a transmission / reception unit (radio transmission unit 121 and radio reception unit 123) for transmitting / receiving a radio signal and a terminal (UE200) based on a time difference between reception and transmission of the radio signal.
  • a control unit (delay compensation control unit 125) for executing propagation delay compensation is provided, and the propagation delay compensation is a radio base station (gNB100) executed in the communication unit (DU120) on the terminal side.
  • One aspect of the present disclosure is based on a propagation delay between a receiving unit (message transmitting / receiving unit 128) that receives a control message of time information including identification information of a terminal (UE200) and the terminal associated with the identification information. It is a radio base station (gNB100) including a transmission unit (message transmission / reception unit 128) for transmitting the time information adjusted in the above-mentioned manner.
  • One aspect of the present disclosure is to compensate for propagation delay between a receiving unit (message transmitting / receiving unit 128) that receives a control message of time information including identification information of a terminal (UE200) and the terminal associated with the identification information. It is a radio base station (gNB100) including a transmission unit (message transmission / reception unit 128) that transmits a response message including compensation information indicating whether or not the execution has been performed.
  • a receiving unit messagessage transmitting / receiving unit 128) that receives a control message of time information including identification information of a terminal (UE200) and the terminal associated with the identification information.
  • gNB100 radio base station
  • One aspect of the present disclosure is a transmission unit (for example, a message transmission / reception unit 117) for transmitting system information including time information used in the system or a message related to a downlink, and the terminal for propagating delay compensation between the terminal (UE200).
  • FIG. 1 is an overall schematic configuration diagram of the wireless communication system 10.
  • FIG. 2 is a diagram showing an example of TSN support by the wireless communication system 10.
  • FIG. 3 is a functional block configuration diagram of the CU 110.
  • FIG. 4 is a functional block configuration diagram of the DU 120.
  • FIG. 5 is a diagram showing a sequence of propagation delay compensation according to operation example 1-1.
  • FIG. 6 is a diagram showing a sequence of propagation delay compensation according to operation example 1-2.
  • FIG. 7 is a diagram showing a sequence of propagation delay compensation according to operation example 1-3.
  • FIG. 8 is a diagram showing a sequence of propagation delay compensation according to operation example 1-4.
  • FIG. 9 is a diagram showing a sequence of propagation delay compensation according to operation example 2.
  • FIG. 1 is an overall schematic configuration diagram of the wireless communication system 10.
  • FIG. 2 is a diagram showing an example of TSN support by the wireless communication system 10.
  • FIG. 3 is a functional block configuration diagram of the CU 110.
  • FIG. 10 is a diagram showing a sequence of propagation delay compensation according to operation example 3.
  • FIG. 11 is a diagram showing a sequence of propagation delay compensation (No. 1) according to the operation example 4.
  • FIG. 12 is a diagram showing a sequence of propagation delay compensation (No. 2) according to the operation example 4.
  • FIG. 13 is a diagram showing a configuration example of an information element included in the Reporting Request Type of REFERENCE TIME INFORMATION REPORTING CONTROL.
  • FIG. 14 is a diagram showing a configuration example of information elements included in REFERENCE TIME INFORMATION REPORT.
  • FIG. 15 is a diagram showing a configuration example of an information element included in Time Reference Information of REFERENCE TIME INFORMATION REPORT.
  • FIG. 16 is a diagram showing a configuration example of DLInformation Transfer msg.
  • FIG. 17 is a diagram showing a configuration example of SIB9.
  • FIG. 18 is a diagram showing an example of the hardware configuration of the CU 110 and the DU 120.
  • FIG. 1 is an overall schematic configuration diagram of the wireless communication system 10 according to the present embodiment.
  • the wireless communication system 10 is a wireless communication system according to 5G New Radio (NR), and includes a Next Generation-Radio Access Network 20 (hereinafter, NG-RAN20, and a user terminal 200 (hereinafter, UE200)). ..
  • NR 5G New Radio
  • NG-RAN20 Next Generation-Radio Access Network
  • UE200 user terminal 200
  • the wireless communication system 10 may be a wireless communication system according to a method called Beyond 5G, 5G Evolution, or 6G.
  • NG-RAN20 includes a radio base station 100 (hereinafter, gNB100).
  • gNB100 radio base station 100
  • the specific configuration of the wireless communication system 10 including the number of gNBs and UEs is not limited to the example shown in FIG.
  • NG-RAN20 actually includes multiple NG-RANNodes, specifically gNB (or ng-eNB), and is connected to 5GC30, which is a core network according to 5G.
  • NG-RAN20 and 5GC30 may be simply expressed as "network”.
  • the 5GC30 may be provided with a User Plane Function 35 (hereinafter, UPF35) that is included in the 5G system architecture and provides user plane functions.
  • UPF35 can be connected to the TSN Grand Master 25 (hereinafter, TSCGM25), which provides time information used in the TimeSensitive Network (TSN), via a specific interface.
  • TSCGM25 can provide highly accurate time information (date and time) to the IoT device 40 connected to the UE200 via the NG-RAN20 or the like.
  • the IoT device 40 may be called an end station or the like.
  • TSN can be used as a network for Industrial Internet of Things (IIoT).
  • IIoT Industrial Internet of Things
  • the TSN may be configured as a network separate from the NG-RAN20 and 5GC30, that is, the NR (5G) system, and may be synchronized with the timing when an independent clock is generated.
  • the TSN may include networks related to services that require high synchronization accuracy in a wide service area, such as smart grids.
  • GNB100 is a wireless base station that complies with NR, and executes wireless communication according to UE200 and NR.
  • the gNB100 and UE200 are Massive MIMO, which generates a beam with higher directivity by controlling radio signals transmitted from multiple antenna elements, and carrier aggregation (CA), which uses multiple component carriers (CC) in a bundle. It can also support dual connectivity (DC) that communicates simultaneously between the UE and multiple NG-RAN Nodes.
  • Massive MIMO which generates a beam with higher directivity by controlling radio signals transmitted from multiple antenna elements
  • CA carrier aggregation
  • CC component carriers
  • DC dual connectivity
  • the IoT device 40 may be a TSN, for example, a communication device (terminal) included in the IIoT, and may be synchronized with the timing (time information) in the TSN.
  • the TSC GM25 and the IoT device 40 can be connected to the NR (5G) system, and a mechanism for compensating for the propagation delay between the UE 200 and the gNB 100 is provided.
  • 5G NR
  • FIG. 2 shows an example of TSN support by the wireless communication system 10.
  • the gNB100 may be composed of a Central Unit 110 (hereinafter, CU110) and a Distributed Unit 120 (hereinafter, DU120).
  • CU110 Central Unit 110
  • DU120 Distributed Unit 120
  • a plurality of DU120s may be connected to the CU110.
  • a wired method (for example, Ethernet (registered trademark)) may be used for the connection between the CU 110 and the DU 120.
  • a wireless method may be used for the connection between the CU 110 and the DU 120.
  • the IoT device 40 connected to the UE200 can operate in synchronization with the TSN time information provided by the TSC GM25 (see the clock icon in the figure).
  • the time information used in the system is provided by the 5G grand master (5GGM).
  • UPF35, CU110, DU120 and UE200 can operate in synchronization with the time information of 5GGM.
  • the wireless communication system 10 applies a CU-DU split gNB deployment in which the CU 110 and a plurality of DU 120s are geographically separated from each other. It can cover a large service area (eg up to 20km 2 ).
  • Propagation delay compensation is interpreted as adjusting the time information for TSN according to the amount of propagation delay in the radio section, and as a result, each of the IoT devices 40 can operate in synchronization with the time information for TSN. It's okay. More simply, it may be interpreted as adjusting the propagation delay between UE200 and gNB100 (DU120) (radio section) to the time information subtracted from the time information for TSN.
  • propagation delay compensation may be interpreted as adjusting the propagation delay between UE200 and gNB100 (DU120) (radio section) to the time information obtained by subtracting the propagation delay from the time information of 5G GM, in the 5G system. If accurate synchronization is maintained, it may be interpreted that the 5G system acts as a TSN bridge and each TSN IoT device can operate in synchronization with the time for TSN.
  • FIG. 3 is a functional block configuration diagram of the CU 110.
  • the CU 110 includes a network connection unit 111, a DU connection unit 113, a delay compensation control unit 115, a message transmission / reception unit 117, and a system information transmission unit 119.
  • the network connection unit 111 provides a communication interface with a network, specifically, another communication node constituting the NG-RAN20, and a communication interface with a communication node constituting the 5GC30.
  • the communication interface may include N2, N3, and the like.
  • the DU connection unit 113 provides a communication interface with the DU120.
  • the communication interface may include F1 and the like.
  • the DU connection unit 113 can provide a communication interface (Ethernet (registered trademark) or the like) for connecting a plurality of DU 120s by wire.
  • Delay compensation control unit 115 executes control related to compensation for propagation delay between UE200 and gNB100.
  • the delay compensation control unit 115 may constitute a control unit.
  • the delay compensation control unit 115 may acquire the propagation delay with the UE 200 based on the specified message transmitted or received by the message transmission / reception unit 117.
  • the delay compensation control unit 115 can calculate the propagation delay between UE200 and gNB100 (specifically, DU120) based on the value of gNBRx-Txtimedifference transmitted from DU120.
  • the gNB Rx-Tx time difference may be interpreted as the difference (time difference) between the reception timing and the transmission timing of the specified subframe in the gNB100 (DU120).
  • the gNB Rx-Tx time difference is specified in Chapter 3GPP TS38.215 5.2.3. The gNB Rx-Tx time difference will be described later.
  • the delay compensation control unit 115 can acquire the propagation delay with the UE 200 and execute the propagation delay compensation in response to the reception of a message or response such as gNB Rx-Tx time difference.
  • the propagation delay compensation may be executed by the DU120 which is the communication unit on the UE200 side or the CU110 which is the communication unit on the network side.
  • the delay compensation control unit 115 can include the necessity of instructing the UE 200 for propagation delay compensation with each UE 200 in the system information or the message regarding the downlink, specifically, DLInformationTransfermsg.
  • the system information (SIB) can be transmitted (notified) to the UE 200 by the system information transmission unit 119, as will be described later.
  • the UE 200 may perform propagation delay compensation based on such system information or messages regarding downlinks.
  • the message transmission / reception unit 117 sends / receives a specified message or response.
  • the message transmission / reception unit 117 may constitute a transmission / reception unit.
  • the message transmission / reception unit 117 can send the POSITIONING MEASUREMENT REQUEST to the DU120 and receive the POSITIONING MEASUREMENT RESPONSE, which is a response to the POSITIONING MEASUREMENT REQUEST, from the DU120.
  • POSITIONING MEASUREMENT RESPONSE may include gNB Rx-Tx time difference.
  • POSITIONING MEASUREMENT REQUEST and POSITIONING MEASUREMENT RESPONSE are specified in 3GPP TS38.473.
  • the message transmission / reception unit 117 transmits REFERENCE TIME INFORMATION REPORTING CONTROL, which is a kind of F1 message specified in 3GPP TS38.473, to DU120, and receives REFERENCE TIME INFORMATION REPORT, which is a response to REFERENCE TIME INFORMATION REPORTING CONTROL, from DU120.
  • the REFERENCE TIME INFORMATION REPORTING CONTROL may include a Propagation delay compensation request instructing the DU 120 to perform propagation delay compensation.
  • the message transmission / reception unit 117 can transmit a message regarding a downlink that can include time information, specifically, a unicast message DLInformationTransfermsg. To the UE200 via the DU120.
  • the message transmission / reception unit 117 may constitute a transmission unit.
  • the system information transmission unit 119 transmits the system information to be notified, that is, to be broadcast, in the cell formed by the gNB 100.
  • the system information may be referred to as a System Information Block (SIB).
  • SIB includes a plurality of types, and in particular, in the present embodiment, the system information transmission unit 119 can notify the SIB9 including the information element (IE) called referenceTimeInfo-r16 into the cell via the DU120.
  • referenceTimeInfo-r16 indicates the internal system clock (may be called time or timing) of NR (5G).
  • the system information transmission unit 119 can transmit the system information transmission unit 119 including the time information used in the wireless communication system 10.
  • the system information transmission unit 119 may constitute a transmission unit.
  • FIG. 4 is a functional block configuration diagram of the DU 120.
  • the DU 120 includes a wireless transmission unit 121, a wireless reception unit 123, a CU connection unit 124, a delay compensation control unit 125, an RA processing unit 126, a time information processing unit 127, and a message transmission / reception unit 128.
  • the radio transmission unit 121 transmits a radio signal according to NR toward UE200.
  • the radio receiver 123 is transmitted from the UE 200 and receives a radio signal according to NR.
  • the wireless transmission unit 121 and the wireless reception unit 123 may form a transmission / reception unit for transmitting / receiving wireless signals.
  • the CU connection unit 124 provides a communication interface with the CU 110.
  • the communication interface may include F1 and the like, and the CU connection unit 124 can provide a communication interface for making a wired connection with the CU 110.
  • the delay compensation control unit 125 executes control related to compensation for the propagation delay between the UE 200 and the gNB 100, similarly to the delay compensation control unit 115 of the CU 110.
  • the delay compensation control unit 125 may constitute a control unit.
  • the delay compensation control unit 125 can acquire the propagation delay with the UE 200 based on the time difference between the reception and transmission of the radio signal, and can execute the propagation delay compensation.
  • the time difference between the reception and transmission of the radio signal may be the above-mentioned gNB Rx-Tx time difference.
  • the radio signal may be interpreted as a radio frame, subframe, slot or symbol, and the like. Alternatively, the radio signal may be read as a message of a higher layer (for example, a radio resource control layer (RRC)).
  • RRC radio resource control layer
  • the propagation delay compensation may be realized by the same operation as the CU110. That is, the delay compensation control unit 125 can also acquire the propagation delay with the UE 200 and execute the propagation delay compensation in response to the reception of the message or the response.
  • the delay compensation control unit 125 may execute propagation delay compensation in response to the reception of the random access preamble (msg. 1) from the UE 200 in the random access procedure (RA procedure). It should be noted that the execution in response to the reception may be executed at the same time as the reception, or may be executed within a certain time after the reception.
  • the delay compensation control unit 125 when the delay compensation control unit 125 receives the random access preamble (msg. 1), it calculates the Timing advance (TA) command and at the same time, the propagation delay peculiar to each UE 200 (UE specific propagation delay). May be calculated and propagation delay compensation may be performed.
  • TA Timing advance
  • the delay compensation control unit 125 may execute propagation delay compensation in response to the reception of the REFERENCE TIME INFORMATION REPORTING CONTROL (control message) transmitted from the CU 110.
  • REFERENCE TIME INFORMATION REPORTING CONTROL control message
  • the purpose of REFERENCE TIME INFORMATION REPORTING CONTROL is to instruct the DU120 to send the requested accurate time information (Time Reference Information) to the CU110.
  • the REFERENCE TIME INFORMATION REPORTING CONTROL may include an information element (IE) instructing the DU 120 to execute propagation delay compensation.
  • the IE may be called, for example, Propagation delay compensation request.
  • the propagation delay compensation may be executed in the DU120 which is the communication unit on the UE200 side.
  • the delay compensation control unit 125 can include in the system information (SIB9) whether or not it is necessary to instruct the UE 200 to instruct the propagation delay compensation with each UE 200.
  • SIB9 system information
  • the RA processing unit 126 executes processing related to the RA procedure with the UE 200.
  • the RA processing unit 126 may support a contention-based RA procedure (CBRA) and a contention-free RA procedure (CFRA). Further, the RA processing unit 126 may support a 4-step and 2-step RA procedure.
  • CBRA contention-based RA procedure
  • CFRA contention-free RA procedure
  • the RA processing unit 126 can execute the RA procedure based on the random access preamble (msg. 1) received from the UE 200 by the message transmission / reception unit 128.
  • the RA procedure may include sending a random access response (msg. 2) to the UE 200, receiving a scheduled transmission (msg. 3), and sending a contention resolution (msg. 4).
  • the time information processing unit 127 executes processing related to time information (5GGM standard) used in the wireless communication system 10 and time information for TSN (TSCGM25 standard).
  • the time information processing unit 127 is TSN based on the propagation delay with the UE200 associated with the identification information (may be called RANUEID) of the UE200 included in the REFERENCE TIME INFORMATION REPORTING CONTROL. You may adjust the time information for. Specifically, as described above, it may be interpreted as adjusting the propagation delay to the time information obtained by subtracting the time information for TSN.
  • the message transmission / reception unit 128 sends / receives a specified message or response.
  • the message transmission / reception unit 128 may constitute a transmission / reception unit.
  • the message transmission / reception unit 128 can receive a message related to the RA procedure, specifically, a random access preamble (msg. 1) and the like.
  • a message related to the RA procedure specifically, a random access preamble (msg. 1) and the like.
  • the message transmission / reception unit 128 may transmit the POSITIONING MEASUREMENT RESPONSE including the value of gNB Rx-Tx time difference acquired by the delay compensation control unit 125 to the CU 110.
  • the message transmission / reception unit 128 can also receive the time information control message.
  • the message transmission / reception unit 128 may constitute a reception unit.
  • the message transmission / reception unit 128 can receive REFERENCE TIME INFORMATION REPORTING CONTROL from the CU 110.
  • the REFERENCE TIME INFORMATION REPORTING CONTROL may include a RANUE ID as identification information that can uniquely identify each UE200. As long as the identification information can uniquely identify each UE200, not only the RANUEID but also other IDs may be used.
  • the message transmission / reception unit 128 can receive a time information control message (REFERENCE TIME INFORMATION REPORTING CONTROL) including the identification information of the UE 200 identification information (RANUE ID).
  • a time information control message REFERENCE TIME INFORMATION REPORTING CONTROL
  • RANUE ID the identification information of the UE 200 identification information
  • the message transmission / reception unit 128 can transmit the time information adjusted by the time information processing unit 127 to the CU 110. Specifically, the message transmission / reception unit 128 can transmit time information adjusted based on the propagation delay between the specific RAN UE ID and the associated UE 200. In the present embodiment, the message transmission / reception unit 128 may constitute a transmission unit.
  • the time information may be included in the REFERENCE TIME INFORMATION REPORT, which is a response message to the REFERENCE TIME INFORMATION REPORTING CONTROL.
  • the message transmission / reception unit 128 can transmit a response message (REFERENCE TIME INFORMATION REPORT) including compensation information indicating whether or not propagation delay compensation with the UE 200 associated with the specific RAN UE ID has been executed.
  • a response message REFERENCE TIME INFORMATION REPORT
  • the message transmission / reception unit 128 can transmit a REFERENCE TIME INFORMATION REPORT including an information element (IE) of compensation information.
  • the IE may be referred to as Propagation delay compensation needed or Propagation delay compensation completed.
  • the message transmission / reception unit 128 can transmit (relay) the system information (SIB9) and DLInformationTransfer msg. Transmitted from the CU 110 to the UE 200.
  • SIB9 system information
  • DLInformationTransfer msg. Transmitted from the CU 110 to the UE 200.
  • Table 1 shows the contents of the Clock synchronization service performance requirements specified in 3GPP TS22.104, Chapter 5.6.2.
  • synchronization requirements vary depending on the application scenario, but in use cases such as smart grids (see underlined part), high synchronization accuracy is required in a wide service area, so between UE200 and gNB100. Radio propagation delay compensation is essential.
  • the CU-DU split gNB deployment in which the CU110 and the plurality of DU120s are geographically separated and arranged is applied. This can cover a large service area (up to 20km 2 ).
  • CU110 requests time information (Time Reference Information) from DU120, and DU120 to CU110 is called Time Reference Information (Reference Time Information). There is signaling to report (may be), but it is unclear whether the time information reported from DU120 to CU110 is propagated delay compensated and may not be double compensated or compensated.
  • the problem can be solved by any of operation examples 1-1 to operation examples 1-4.
  • either CU110 or DU120 reliably performs propagation delay compensation.
  • FIG. 5 shows a sequence of propagation delay compensation according to the operation example 1-1.
  • the UE200 transmits a random access preamble (msg.1) toward the DU120 in order to start a random access procedure (RA procedure) with the gNB100 (DU120) (S10). ).
  • msg.1 random access preamble
  • RA procedure random access procedure
  • the DU120 When the DU120 receives a random access preamble, it calculates the Timing advance (TA) command and at the same time calculates the UE specific propagation delay (which may be read as acquisition, the same shall apply hereinafter) (S20). .. The calculation of the UE specific propagation delay does not necessarily have to be performed at the same time as the calculation of the TA command (TA value).
  • TA Timing advance
  • DU120 sends a random access response including TA command to UE200 (S30).
  • the UE200 and DU120 may continue the RA procedure following the random access response.
  • the DU120 executes propagation delay compensation based on the calculated UE specific propagation delay (S40). Specifically, the DU120 may calculate the time information obtained by subtracting the UE specific propagation delay and adjust the time information for the TSN or the time information for the 5G system (5GGM).
  • FIG. 6 shows a sequence of propagation delay compensation according to operation example 1-2.
  • the same parts as those of the operation example 1-1 will be omitted as appropriate.
  • UE200 and DU120 may establish a connection in the RRC layer (RRC connection) and maintain the connection state in the RRC layer (S110).
  • RRC connection the connection in the RRC layer does not necessarily have to be established.
  • DU120 measures gNB Rx-Tx time difference (S120).
  • gNB Rx-Tx time difference is specified in 3GPP TS38.215 Section 5.2.3 and may be interpreted as the difference (time difference) between the reception timing and transmission timing of the specified subframe in DU120. ..
  • the gNB Rx-Tx time difference may be defined as (T gNB-RX -T gNB-TX ).
  • T gNB-RX is the reception timing of the positioning node (DU120) of the uplink subframe #i including the Sounding Reference Signal (SRS) associated with the UE200, and is the first path detected in time. May be defined by.
  • SRS Sounding Reference Signal
  • T gNB-TX is the transmission timing of the positioning node of the downlink subframe #j that is the closest in time to the subframe #i received from the DU 120.
  • DU120 calculates the propagation delay (UEspecificpropagation delay) between UE200 and DU120 based on the calculated gNBRx-Txtimedifference (S130).
  • DU120 executes propagation delay compensation based on the calculated UE specific propagation delay (S140).
  • FIG. 7 shows a sequence of propagation delay compensation according to operation example 1-3.
  • REFERENCE TIME INFORMATION REPORTING CONTROL includes a Propagation delay compensation request instructing the DU120 to perform propagation delay compensation.
  • FIG. 13 shows a configuration example of information elements included in the Reporting Request Type of REFERENCE TIME INFORMATION REPORTING CONTROL.
  • the Reporting Request Type may include a Propagation delay compensation request.
  • DU120 calculates the propagation delay (UEspecificpropagationdelay) between UE200 and DU120 based on the Propagation delay compensation request included in REFERENCE TIME INFORMATION REPORTING CONTROL (S220).
  • DU120 executes propagation delay compensation based on the calculated UE specific propagation delay (S230).
  • Operation example 1-4 In this operation example, the CU 110 performs propagation delay compensation.
  • FIG. 8 shows a sequence of propagation delay compensation according to operation example 1-4.
  • POSITIONING MEASUREMENT REQUEST may be defined in a position management procedure (Positioning Measurement procedure) for exchanging position information (positioning information) of a node.
  • the DU120 measures gNB Rx-Tx time difference in response to the reception of POSITIONING MEASUREMENT REQUEST (S320).
  • the DU120 returns the POSITIONING MEASUREMENT RESPONSE including the measured gNB Rx-Tx time difference to the CU110 (S330).
  • the CU110 calculates the propagation delay (UEspecific propagation delay) between the UE200 and the DU120 based on the gNB Rx-Tx time difference received from the DU120 (S340).
  • CU110 executes propagation delay compensation based on the calculated UE specific propagation delay (S350).
  • the DU120 may instruct that propagation delay compensation in the CU110 is required (Propagation delay compensation needed) when transmitting the REFERENCE TIME INFORMATION REPORT to the CU110.
  • the DU120 may calculate the UE specific propagation delay of the UE 200 at the same time as calculating the TA command, and send the UE specific propagation delay to the CU 110.
  • REFERENCE TIME INFORMATION REPORTING CONTROL and / or REFERENCE TIME INFORMATION REPORT associated with RANUE ID is used to solve the problem.
  • FIG. 9 shows a sequence of propagation delay compensation according to operation example 2.
  • the CU110 transmits REFERENCE TIME INFORMATION REPORTING CONTROL (S410).
  • the REFERENCE TIME INFORMATION REPORTING CONTROL includes the RAN UE ID of the UE 200 that is the target of propagation delay compensation.
  • RANUEID is specified in 3GPP TS38.473 and so on.
  • the DU120 identifies the target UE200 based on the RANUEID included in the REFERENCE TIME INFORMATION REPORTING CONTROL, and calculates the time information (for example, the time information for TSN) used in the specified UE200 (S420). ). Specifically, the DU120 calculates the time information obtained by subtracting the propagation delay of the radio section with the UE200.
  • the DU120 reports the calculated time information to CU110 by REFERENCE TIME INFORMATION REPORT (S430).
  • the REFERENCE TIME INFORMATION REPORT includes the RANUE ID of the UE200.
  • FIG. 14 shows a configuration example of information elements included in REFERENCE TIME INFORMATION REPORT.
  • the REFERENCE TIME INFORMATION REPORT may include a RANUE ID, a time information (Time Reference Information Per UE), and a Propagation delay compensation needed. Propagation delay compensation needed indicates that propagation delay compensation of the UE 200 in the CU 110 is required.
  • REFERENCE TIME INFORMATION REPORTING CONTROL may also include information elements such as RANUE ID.
  • the CU110 executes propagation delay compensation based on the received time information (S440). Specifically, the CU 110 calculates the UE specific propagation delay of the UE 200, which is the target of the propagation delay compensation, based on the received time information, and executes the propagation delay compensation based on the calculated UE specific propagation delay.
  • FIG. 10 shows a sequence of propagation delay compensation according to operation example 3.
  • the CU110 transmits REFERENCE TIME INFORMATION REPORTING CONTROL (S510).
  • the REFERENCE TIME INFORMATION REPORTING CONTROL may include the RANUE ID of the UE 200 to be compensated for the propagation delay, as in the operation example 2.
  • the DU120 identifies the target UE200 based on the RANUEID included in the REFERENCE TIME INFORMATION REPORTING CONTROL, and calculates the time information (for example, time information for TSN) used in the specified UE200 (S520). ). Specifically, as in the operation example 2, the DU 120 calculates the time information obtained by subtracting the propagation delay of the radio section with the UE 200.
  • the DU120 executes propagation delay compensation based on the calculated time information (S530). Specifically, the DU120 calculates the UE specific propagation delay of the UE 200, which is the target of the propagation delay compensation, based on the calculated time information, and executes the propagation delay compensation based on the calculated UE specific propagation delay.
  • the DU120 reports the calculated time information to CU110 by REFERENCE TIME INFORMATION REPORT (S540).
  • the REFERENCE TIME INFORMATION REPORT may include the RANUE ID of the UE 200 and the Propagation delay compensation completed.
  • FIG. 15 shows a configuration example of an information element included in Time Reference Information of REFERENCE TIME INFORMATION REPORT.
  • the Time Reference Information may include Propagation delay compensation completed. Propagation delay compensation completed indicates that the DU120 has already executed the propagation delay compensation of the UE200.
  • a mechanism is introduced in which the CU110 or DU120 can always instruct the UE200 to compensate for propagation delay, specifically, to instruct the UE200 to Propagation delay compensation needed or Propagation delay compensation completed. Will be done.
  • FIG. 11 shows a sequence of propagation delay compensation (No. 1) according to the operation example 4.
  • the CU 110 determines a method of compensating for the propagation delay in the radio section between the UE 200 and the gNB 100 (DU120) (S610). Specifically, the CU 110 determines to perform propagation delay compensation in the UE 200.
  • CU110 determines the instruction of propagation delay compensation to UE200 based on the determined propagation delay compensation method (S620).
  • the CU110 transmits system information or a message including an instruction for propagation delay compensation to the UE200 to the UE200 via the DU120 (S630). Specifically, the CU 110 transmits system information (SIB9) including referenceTimeInfo-r16 and Propagation delay compensation needed, or DL Information Transfer msg. Containing referenceTime Info-r 16 and Propagation delay compensation needed.
  • FIG. 12 shows a sequence of propagation delay compensation (No. 2) according to the operation example 4.
  • the CU 110 determines the propagation delay compensation method, but in the sequence of FIG. 12, the DU 120 determines the propagation delay compensation method.
  • SIB9 system information (S710).
  • SIB9 includes referenceTimeInfo-r16 but does not include Propagation delay compensation needed.
  • DU120 determines the compensation method for propagation delay in the radio section between UE200 and gNB100 (DU120) (S720). Specifically, the DU120 determines to perform propagation delay compensation in the UE200.
  • DU120 determines the instruction of propagation delay compensation to UE200 based on the determined propagation delay compensation method (S730).
  • the DU120 sends system information (SIB9) including instructions for propagation delay compensation to the UE200 to the UE200 (S740).
  • SIB9 or DL Information Transfer msg. Includes Propagation delay compensation needed.
  • either CU110 or DU120 should include (encode) the propagation delay compensation instruction (Propagation delay compensation needed) for UE200 in SIB9. It may be. If the CU 110 does not encode the propagation delay compensation instruction into SIB9, it may be interpreted as implicitly instructing the DU120 to encode the propagation delay compensation instruction into SIB9.
  • CU110 may give the instruction of the propagation delay compensation to DLInformationTransfermsg.
  • SIB9 or DLInformationTransfermsg. May include Propagation delay compensation completed.
  • FIG. 16 shows a configuration example of DLInformation Transfer msg.
  • DLInformationTransfermsg. May include a field of Propagation delay compensation needed.
  • Propagation delay compensation needs may indicate whether the network requires the UE 200 to perform propagation delay compensation. true may indicate that the network requires the UE to perform propagation delay compensation.
  • FIG. 17 shows a configuration example of SIB9. As shown in FIG. 17, SIB9 may also include a field of Propagation delay compensation needed.
  • the following action / effect can be obtained.
  • the gNB100 (CU110 or DU120) ensures compensation for propagation delay in the radio section between UE200 and gNB100, or instructions for propagation delay compensation, even when time information for TSN is handled in the wireless communication system 10. Can be executed.
  • the gNB100 can acquire the propagation delay with the UE200 and perform propagation delay compensation in response to receiving a specified message or response (random access preamble (msg. 1), POSITIONING MEASUREMENT RESPONSE, etc.).
  • the propagation delay compensation may be performed on the CU110 or DU120. Therefore, it is possible to reliably eliminate the possibility of double compensation or non-compensation.
  • the gNB 100 (DU120) can acquire the propagation delay with the UE 200 based on the time difference (gNB Rx-Tx time difference) between the reception and the transmission of the radio signal, and can execute the propagation delay compensation. Therefore, it is possible to reliably eliminate the possibility of double compensation or non-compensation.
  • the gNB100 (DU120) can transmit time information adjusted based on the propagation delay between the UE200 identification information (RANUEID) and the associated UE200. Therefore, it is possible to report the time information from DU120 to CU110 for each UE200 after subtracting the propagation delay in the radio section.
  • RANUEID UE200 identification information
  • the gNB100 (DU120) is a response including compensation information (Propagation delay compensation completed) indicating whether or not propagation delay compensation with the UE200 associated with the identification information (RANUEID) of the UE200 has been executed. You can send a message (REFERENCE TIME INFORMATION REPORT). Therefore, it is possible to clarify whether or not the time information reported from DU120 to CU110 is compensated for propagation delay, and it is possible to reliably eliminate the possibility of double compensation or non-compensation.
  • compensation information Propagation delay compensation completed
  • RANUEID identification information
  • You can send a message (REFERENCE TIME INFORMATION REPORT). Therefore, it is possible to clarify whether or not the time information reported from DU120 to CU110 is compensated for propagation delay, and it is possible to reliably eliminate the possibility of double compensation or non-compensation.
  • the gNB100 (CU110 or DU120) can include the necessity of instructing the UE200 for propagation delay compensation with the UE200 in the system information (SIB9) or the message regarding the downlink (DLInformationTransfer msg.). Therefore, even when the propagation delay compensation is instructed to the UE 200, it is possible to clarify whether the CU 110 or the DU 120 is instructed, and it is possible to surely eliminate the possibility that the double instruction or the instruction is not given.
  • SIB9 system information
  • DLInformationTransfer msg. the message regarding the downlink
  • CU-DU split gNB deployment was applied, but the CU-DU split gNB deployment is not always necessary.
  • CU110 and DU120 may be located relatively close geographically.
  • the wireless communication system 10 is connected to the TSN, but it does not necessarily have to be a network or application scenario that requires high synchronization accuracy such as the TSN. ..
  • each functional block may be realized using one physically or logically coupled device, or two or more physically or logically separated devices can be directly or indirectly (eg, for example). , Wired, wireless, etc.) and may be realized using these plurality of devices.
  • the functional block may be realized by combining the software with the one device or the plurality of devices.
  • Functions include judgment, decision, judgment, calculation, calculation, processing, derivation, investigation, search, confirmation, reception, transmission, output, access, solution, selection, selection, establishment, comparison, assumption, expectation, and assumption. Broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, assigning, etc., but limited to these I can't.
  • a functional block (configuration unit) that makes transmission function is called a transmitting unit (transmitting unit) or a transmitter (transmitter).
  • the realization method is not particularly limited.
  • FIG. 18 is a diagram showing an example of the hardware configuration of the CU 110 and the DU 120.
  • the CU 110 and DU 120 may be configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like.
  • the word “device” can be read as a circuit, device, unit, etc.
  • the hardware configuration of the device may be configured to include one or more of each of the devices shown in the figure, or may be configured not to include some of the devices.
  • Each functional block of CU110 and DU120 (see FIGS. 3 and 4) is realized by any hardware element of the computer device or a combination of the hardware elements.
  • each function of the CU110 and DU120 allows the processor 1001 to perform calculations and control communication by the communication device 1004 by loading predetermined software (programs) on the hardware such as the processor 1001 and memory 1002. It is realized by controlling at least one of reading and writing of data in the memory 1002 and the storage 1003.
  • Processor 1001 operates, for example, an operating system to control the entire computer.
  • the processor 1001 may be configured by a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic unit, a register, and the like.
  • CPU central processing unit
  • the processor 1001 reads a program (program code), a software module, data, etc. from at least one of the storage 1003 and the communication device 1004 into the memory 1002, and executes various processes according to these.
  • a program program code
  • a program that causes a computer to execute at least a part of the operations described in the above-described embodiment is used.
  • the various processes described above may be executed by one processor 1001 or may be executed simultaneously or sequentially by two or more processors 1001.
  • Processor 1001 may be implemented by one or more chips.
  • the program may be transmitted from the network via a telecommunication line.
  • the memory 1002 is a computer-readable recording medium, and is composed of at least one such as ReadOnlyMemory (ROM), ErasableProgrammableROM (EPROM), Electrically ErasableProgrammableROM (EEPROM), and RandomAccessMemory (RAM). May be done.
  • the memory 1002 may be referred to as a register, a cache, a main memory (main storage device), or the like.
  • the memory 1002 can store a program (program code), a software module, or the like that can execute the method according to the embodiment of the present disclosure.
  • the storage 1003 is a computer-readable recording medium, for example, an optical disk such as Compact Disc ROM (CD-ROM), a hard disk drive, a flexible disk, an optical magnetic disk (for example, a compact disk, a digital versatile disk, or a Blu-ray). It may consist of at least one (registered trademark) disk), smart card, flash memory (eg, card, stick, key drive), floppy (registered trademark) disk, magnetic strip, and the like.
  • Storage 1003 may be referred to as auxiliary storage.
  • the recording medium described above may be, for example, a database, server or other suitable medium containing at least one of the memory 1002 and the storage 1003.
  • the communication device 1004 is hardware (transmission / reception device) for communicating between computers via at least one of a wired network and a wireless network, and is also referred to as, for example, a network device, a network controller, a network card, a communication module, or the like.
  • the communication device 1004 includes, for example, a high frequency switch, a duplexer, a filter, a frequency synthesizer, etc. in order to realize at least one of frequency division duplex (FDD) and time division duplex (TDD). It may be composed of.
  • FDD frequency division duplex
  • TDD time division duplex
  • the input device 1005 is an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, etc.) that accepts an input from the outside.
  • the output device 1006 is an output device (for example, a display, a speaker, an LED lamp, etc.) that outputs to the outside.
  • the input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
  • Bus 1007 may be configured using a single bus or may be configured using different buses for each device.
  • the device includes hardware such as a microprocessor, a digital signal processor (Digital Signal Processor: DSP), an ApplicationSpecific Integrated Circuit (ASIC), a ProgrammableLogicDevice (PLD), and a FieldProgrammableGateArray (FPGA).
  • the hardware may implement some or all of each functional block.
  • processor 1001 may be implemented using at least one of these hardware.
  • information notification includes physical layer signaling (eg Downlink Control Information (DCI), Uplink Control Information (UCI), higher layer signaling (eg RRC signaling, Medium Access Control (MAC) signaling, Master Information Block). (MIB), System Information Block (SIB)), other signals or combinations thereof.
  • DCI Downlink Control Information
  • UCI Uplink Control Information
  • RRC signaling eg RRC signaling, Medium Access Control (MAC) signaling, Master Information Block). (MIB), System Information Block (SIB)
  • RRC signaling may also be referred to as an RRC message, eg, RRC Connection Setup. ) Message, RRC Connection Reconfiguration message, etc. may be used.
  • LTE LongTermEvolution
  • LTE-A LTE-Advanced
  • SUPER3G IMT-Advanced
  • 4G 4th generation mobile communication system
  • 5G 5th generation mobile communication system
  • FutureRadioAccess FAA
  • NewRadio NR
  • W-CDMA registered trademark
  • GSM registered trademark
  • CDMA2000 Code Division Multiple Access 2000
  • UMB UltraMobileBroadband
  • IEEE802.11 Wi-Fi (registered trademark)
  • IEEE802.16 WiMAX®
  • IEEE802.20 Ultra-WideBand
  • Bluetooth® Ultra-WideBand
  • other systems that utilize appropriate systems and at least one of the next-generation systems extended based on them. It may be applied to one.
  • a plurality of systems may be applied in combination (for example, a combination of at least one of LTE and LTE-A and 5G).
  • the specific operation performed by the base station in this disclosure may be performed by its upper node (upper node).
  • various operations performed for communication with the terminal are the base station and other network nodes other than the base station (eg, MME or). It is clear that it can be done by at least one of (but not limited to, S-GW, etc.).
  • S-GW network node
  • the case where there is one network node other than the base station is illustrated above, it may be a combination of a plurality of other network nodes (for example, MME and S-GW).
  • Information and signals can be output from the upper layer (or lower layer) to the lower layer (or upper layer).
  • Input / output may be performed via a plurality of network nodes.
  • the input / output information may be stored in a specific location (for example, memory) or may be managed using a management table. I / O information can be overwritten, updated, or added. The output information may be deleted. The entered information may be transmitted to other devices.
  • the determination may be made by a value represented by 1 bit (0 or 1), by a boolean value (Boolean: true or false), or by comparing numerical values (for example, a predetermined value). It may be done by comparison with the value).
  • the notification of predetermined information (for example, the notification of "being X") is not limited to the explicit one, but is performed implicitly (for example, the notification of the predetermined information is not performed). May be good.
  • software, instructions, information, etc. may be transmitted and received via a transmission medium.
  • a transmission medium For example, a website, where the software uses at least one of wired technology (coaxial cable, fiber optic cable, twisted pair, Digital Subscriber Line (DSL), etc.) and wireless technology (infrared, microwave, etc.).
  • wired technology coaxial cable, fiber optic cable, twisted pair, Digital Subscriber Line (DSL), etc.
  • wireless technology infrared, microwave, etc.
  • the information, signals, etc. described in this disclosure may be represented using any of a variety of different techniques.
  • data, instructions, commands, information, signals, bits, symbols, chips, etc. that may be referred to throughout the above description are voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these. It may be represented by a combination of.
  • a channel and a symbol may be a signal (signaling).
  • the signal may be a message.
  • the component carrier (CC) may be referred to as a carrier frequency, a cell, a frequency carrier, or the like.
  • system and “network” used in this disclosure are used interchangeably.
  • the information, parameters, etc. described in the present disclosure may be expressed using an absolute value, a relative value from a predetermined value, or another corresponding information. It may be represented.
  • the radio resource may be one indicated by an index.
  • Base Station BS
  • Wireless Base Station Wireless Base Station
  • Fixed Station NodeB
  • eNodeB eNodeB
  • gNodeB gNodeB
  • Access point "transmission point”
  • reception point "transmission / reception point”
  • cell “sector”
  • Cell group “cell group”
  • Terms such as “carrier” and “component carrier” may be used interchangeably.
  • Base stations are sometimes referred to by terms such as macrocells, small cells, femtocells, and picocells.
  • a base station can accommodate one or more (eg, three) cells (also called sectors). When a base station accommodates multiple cells, the entire base station coverage area can be divided into multiple smaller areas, each smaller area being a base station subsystem (eg, a remote radio for indoor use). Communication services can also be provided by Head: RRH).
  • RRH Remote Radio Head
  • cell refers to a base station that provides communication services in this coverage, and part or all of the coverage area of at least one of the base station subsystems.
  • MS Mobile Station
  • UE user equipment
  • terminal terminal
  • Mobile stations can be used by those skilled in the art as subscriber stations, mobile units, subscriber units, wireless units, remote units, mobile devices, wireless devices, wireless communication devices, remote devices, mobile subscriber stations, access terminals, mobile terminals, wireless. It may also be referred to as a terminal, remote terminal, handset, user agent, mobile client, client, or some other suitable term.
  • At least one of the base station and the mobile station may be called a transmitting device, a receiving device, a communication device, or the like.
  • At least one of the base station and the mobile station may be a device mounted on the mobile body, a mobile body itself, or the like.
  • the moving body may be a vehicle (eg, car, airplane, etc.), an unmanned moving body (eg, drone, self-driving car, etc.), or a robot (manned or unmanned). ) May be.
  • at least one of the base station and the mobile station includes a device that does not necessarily move during communication operation.
  • at least one of a base station and a mobile station may be an Internet of Things (IoT) device such as a sensor.
  • IoT Internet of Things
  • the base station in the present disclosure may be read as a mobile station (user terminal, the same shall apply hereinafter).
  • communication between a base station and a mobile station has been replaced with communication between a plurality of mobile stations (for example, it may be called Device-to-Device (D2D), Vehicle-to-Everything (V2X), etc.).
  • D2D Device-to-Device
  • V2X Vehicle-to-Everything
  • Each aspect / embodiment of the present disclosure may be applied to the configuration.
  • the mobile station may have the functions of the base station.
  • the words such as "up” and “down” may be read as words corresponding to the communication between terminals (for example, "side”).
  • the upstream channel, the downstream channel, and the like may be read as a side channel.
  • the mobile station in the present disclosure may be read as a base station.
  • the base station may have the functions of the mobile station.
  • the radio frame may be composed of one or more frames in the time domain. Each one or more frames in the time domain may be referred to as a subframe. Subframes may further be composed of one or more slots in the time domain.
  • the subframe may have a fixed time length (eg, 1 ms) that does not depend on numerology.
  • the numerology may be a communication parameter that applies to at least one of the transmission and reception of a signal or channel.
  • Numerology includes, for example, SubCarrier Spacing (SCS), bandwidth, symbol length, cyclic prefix length, transmission time interval (Transmission Time Interval: TTI), number of symbols per TTI, wireless frame configuration, transmission / reception. It may indicate at least one of a specific filtering process performed by the machine in the frequency domain, a specific windowing process performed by the transmitter / receiver in the time domain, and the like.
  • the slot may be composed of one or more symbols (Orthogonal Frequency Division Multiplexing (OFDM) symbol, Single Carrier Frequency Division Multiple Access (SC-FDMA) symbol, etc.) in the time area.
  • the slot may be a unit of time based on numerology.
  • the slot may include a plurality of mini slots. Each minislot may be composed of one or more symbols in the time domain. Further, the mini slot may be referred to as a sub slot. The minislot may consist of a smaller number of symbols than the slot.
  • PDSCH (or PUSCH) transmitted in time units larger than the minislot may be referred to as PDSCH (or PUSCH) mapping type A.
  • the PDSCH (or PUSCH) transmitted using the minislot may be referred to as PDSCH (or PUSCH) mapping type B.
  • the wireless frame, subframe, slot, minislot and symbol all represent the time unit when transmitting a signal.
  • the radio frame, subframe, slot, minislot and symbol may have different names corresponding to each.
  • one subframe may be referred to as a transmission time interval (TTI)
  • TTI transmission time interval
  • TTI transmission time interval
  • TTI transmission time interval
  • TTI transmission time interval
  • TTI transmission time interval
  • TTI slot or one minislot
  • at least one of the subframe and TTI may be a subframe (1ms) in existing LTE, a period shorter than 1ms (eg, 1-13 symbols), or a period longer than 1ms. May be.
  • the unit representing TTI may be called a slot, a mini slot, or the like instead of a subframe.
  • TTI refers to, for example, the minimum time unit of scheduling in wireless communication.
  • a base station schedules each user terminal to allocate radio resources (frequency bandwidth that can be used in each user terminal, transmission power, etc.) in TTI units.
  • the definition of TTI is not limited to this.
  • TTI may be a transmission time unit such as a channel-encoded data packet (transport block), a code block, or a code word, or may be a processing unit such as scheduling or link adaptation.
  • the time interval for example, the number of symbols
  • the transport block, code block, code word, etc. may be shorter than the TTI.
  • one or more TTIs may be the minimum time unit for scheduling. Further, the number of slots (number of mini-slots) constituting the minimum time unit of the scheduling may be controlled.
  • TTI with a time length of 1 ms may be called normal TTI (TTI in LTE Rel.8-12), normal TTI, long TTI, normal subframe, normal subframe, long subframe, slot, etc.
  • a TTI shorter than a normal TTI may be referred to as a shortened TTI, a short TTI, a partial TTI (partial or fractional TTI), a shortened subframe, a short subframe, a minislot, a subslot, a slot, and the like.
  • the long TTI (for example, normal TTI, subframe, etc.) may be read as a TTI having a time length of more than 1 ms
  • the short TTI (for example, shortened TTI, etc.) may be read as a TTI less than the TTI length of the long TTI and 1 ms. It may be read as a TTI having the above TTI length.
  • the resource block (RB) is a resource allocation unit in the time domain and the frequency domain, and may include one or a plurality of continuous subcarriers in the frequency domain.
  • the number of subcarriers contained in RB may be the same regardless of numerology, and may be, for example, 12.
  • the number of subcarriers contained in the RB may be determined based on numerology.
  • the time domain of RB may include one or more symbols, and may have a length of 1 slot, 1 mini slot, 1 subframe, or 1 TTI.
  • Each 1TTI, 1 subframe, etc. may be composed of one or a plurality of resource blocks.
  • One or more RBs are physical resource blocks (Physical RB: PRB), sub-carrier groups (Sub-Carrier Group: SCG), resource element groups (Resource Element Group: REG), PRB pairs, RB pairs, etc. May be called.
  • Physical RB Physical RB: PRB
  • sub-carrier groups Sub-Carrier Group: SCG
  • resource element groups Resource Element Group: REG
  • PRB pairs RB pairs, etc. May be called.
  • the resource block may be composed of one or a plurality of resource elements (ResourceElement: RE).
  • RE resource elements
  • 1RE may be a radio resource area of 1 subcarrier and 1 symbol.
  • Bandwidth Part (which may also be called partial bandwidth, etc.) may represent a subset of consecutive common resource blocks (RBs) for a neurology in a carrier. good.
  • the common RB may be specified by the index of the RB with respect to the common reference point of the carrier.
  • PRBs may be defined in a BWP and numbered within that BWP.
  • BWP may include BWP for UL (UL BWP) and BWP for DL (DL BWP).
  • BWP for UL
  • DL BWP BWP for DL
  • One or more BWPs may be set in one carrier for the UE.
  • At least one of the configured BWPs may be active, and the UE may not expect to send or receive a given signal / channel outside the active BWP.
  • “cell”, “carrier” and the like in this disclosure may be read as “BWP”.
  • the above-mentioned structures such as wireless frames, subframes, slots, mini-slots and symbols are merely examples.
  • the number of subframes contained in a wireless frame the number of slots per subframe or wireless frame, the number of minislots contained within a slot, the number of symbols and RBs contained in a slot or minislot, included in RB.
  • the number of subcarriers, as well as the number of symbols in the TTI, the symbol length, the cyclic prefix (CP) length, and other configurations can be changed in various ways.
  • connection means any direct or indirect connection or connection between two or more elements and each other. It can include the presence of one or more intermediate elements between two “connected” or “joined” elements.
  • the connection or connection between the elements may be physical, logical, or a combination thereof.
  • connection may be read as "access”.
  • the two elements use at least one of one or more wires, cables and printed electrical connections, and, as some non-limiting and non-comprehensive examples, the radio frequency domain. Can be considered to be “connected” or “coupled” to each other using electromagnetic energy having wavelengths in the microwave and light (both visible and invisible) regions.
  • the reference signal can also be abbreviated as Reference Signal (RS), and may be called a pilot (Pilot) depending on the applied standard.
  • RS Reference Signal
  • Pilot pilot
  • each of the above devices may be replaced with a "part”, a “circuit”, a “device”, or the like.
  • references to elements using designations such as “first” and “second” as used in this disclosure does not generally limit the quantity or order of those elements. These designations can be used in the present disclosure as a convenient way to distinguish between two or more elements. Therefore, references to the first and second elements do not mean that only two elements can be adopted there, or that the first element must somehow precede the second element.
  • determining and “determining” used in this disclosure may include a wide variety of actions.
  • “Judgment” and “decision” are, for example, judgment (judging), calculation (calculating), calculation (computing), processing (processing), derivation (deriving), investigation (investigating), search (looking up, search, inquiry). It may include (eg, searching in a table, database or another data structure), ascertaining as “judgment” or “decision”.
  • judgment and “decision” are receiving (for example, receiving information), transmitting (for example, transmitting information), input (input), output (output), and access. It may include (for example, accessing data in memory) to be regarded as “judgment” or “decision”.
  • judgment and “decision” are considered to be “judgment” and “decision” when the things such as solving, selecting, choosing, establishing, and comparing are regarded as “judgment” and “decision”. Can include. That is, “judgment” and “decision” may include considering some action as “judgment” and “decision”. Further, “judgment (decision)” may be read as “assuming", “expecting”, “considering” and the like.
  • the term "A and B are different” may mean “A and B are different from each other”.
  • the term may mean that "A and B are different from C”.
  • Terms such as “separate” and “combined” may be interpreted in the same way as “different”.
  • Radio communication system 20 NG-RAN 25 TSC GM 30 5GC 35 UPF 40

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

gNB(100)は、規定のメッセージまたは応答を送受信し、当該メッセージまたは応答の受信に応じて、UE(200)との伝搬遅延を取得し、伝搬遅延補償を実行する。伝搬遅延補償は、UE(200)側のDU(120)またはネットワーク側のCU(110)において実行される。

Description

無線基地局
 本開示は、端末との伝搬遅延の補償に対応した無線基地局に関する。
 3rd Generation Partnership Project(3GPP)は、5th generation mobile communication system(5G、New Radio(NR)またはNext Generation(NG)とも呼ばれる)を仕様化し、さらに、Beyond 5G、5G Evolution或いは6Gと呼ばれる次世代の仕様化も進めている。
 3GPP Release-17では、Industrial Internet of Things(IIoT)及びURLLC(Ultra-Reliable and Low Latency Communications)のサポートに関して、無線基地局(gNB)と端末(User Equipment, UE)とのさらに高精度な同期を実現することが目標とされている(非特許文献1)。
 例えば、スマートグリッドなどのユースケースでは、広いサービスエリアにおける高い同期精度が要求される(非特許文献2)ため、UEとgNBとの無線区間における伝搬遅延の補償が不可欠である。
 このように広いサービスエリアにおける高い同期精度が要求される場合、gNBのCU(Central Unit)とDU(Distributed Unit)とを分離して配置するCU-DU split gNB deploymentを適用しつつ、UE~gNB間(具体的には、UE~DU間)の伝搬遅延補償を実行することが考えられる。
"Enhanced Industrial Internet of Things (IoT) and ultra-reliable and low latency communication (URLLC) support for NR", RP-201310, 3GPP TSG RAN Meeting #88e, 3GPP, 2020年7月 3GPP TS 22.104 V17.3.0, 3rd Generation Partnership Project; Technical Specification Group Services and System Aspects; Service requirements for cyber-physical control applications in vertical domains; Stage 1 (Release 17)、3GPP、2020年7月
 しかしながら、現状の3GPPの仕様(Release-16)によれば、無線基地局のCUとDUとが適切に連携してUE~gNB間の伝搬遅延補償を実行することが難しい問題がある。
 そこで、以下の開示は、このような状況に鑑みてなされたものであり、広いサービスエリアにおける高い同期精度の要求に対応しつつ、端末(UE)との無線区間の伝搬遅延補償を実現し得る無線基地局の提供を目的とする。
 本開示の一態様は、規定のメッセージまたは応答を送受信する送受信部(例えば、メッセージ送受信部117)と、前記メッセージまたは応答の受信に応じて、端末(UE200)との伝搬遅延を取得し、伝搬遅延補償を実行する制御部(例えば、遅延補償制御部115)とを備え、前記伝搬遅延補償は、前記端末側の通信ユニット(DU120)またはネットワーク側の通信ユニット(CU110)において実行される無線基地局(gNB100)である。
 本開示の一態様は、無線信号を送受信する送受信部(無線送信部121及び無線受信部123)と、前記無線信号の受信と送信との時間差に基づいて端末(UE200)との伝搬遅延を取得し、伝搬遅延補償を実行する制御部(遅延補償制御部125)とを備え、前記伝搬遅延補償は、前記端末側の通信ユニット(DU120)において実行される無線基地局(gNB100)である。
 本開示の一態様は、端末(UE200)の識別情報を含む時刻情報の制御メッセージを受信する受信部(メッセージ送受信部128)と、前記識別情報と対応付けられた前記端末との伝搬遅延に基づいて調整された前記時刻情報を送信する送信部(メッセージ送受信部128)とを備える無線基地局(gNB100)である。
 本開示の一態様は、端末(UE200)の識別情報を含む時刻情報の制御メッセージを受信する受信部(メッセージ送受信部128)と、前記識別情報と対応付けられた前記端末との伝搬遅延補償を実行したか否かを示す補償情報を含む応答メッセージを送信する送信部(メッセージ送受信部128)とを備える無線基地局(gNB100)である。
 本開示の一態様は、システム内において用いられる時刻情報を含むシステム情報または下りリンクに関するメッセージを送信する送信部(例えば、メッセージ送受信部117)と、端末(UE200)との伝搬遅延補償の前記端末への指示の要否を前記システム情報または前記メッセージに含める制御部(例えば、遅延補償制御部115)とを備える無線基地局(gNB100)である。
図1は、無線通信システム10の全体概略構成図である。 図2は、無線通信システム10によるTSNのサポート例を示す図である。 図3は、CU110の機能ブロック構成図である。 図4は、DU120の機能ブロック構成図である。 図5は、動作例1-1に係る伝搬遅延補償のシーケンスを示す図である。 図6は、動作例1-2に係る伝搬遅延補償のシーケンスを示す図である。 図7は、動作例1-3に係る伝搬遅延補償のシーケンスを示す図である。 図8は、動作例1-4に係る伝搬遅延補償のシーケンスを示す図である。 図9は、動作例2に係る伝搬遅延補償のシーケンスを示す図である。 図10は、動作例3に係る伝搬遅延補償のシーケンスを示す図である。 図11は、動作例4に係る伝搬遅延補償のシーケンス(その1)を示す図である。 図12は、動作例4に係る伝搬遅延補償のシーケンス(その2)を示す図である。 図13は、REFERENCE TIME INFORMATION REPORTING CONTROLのReporting Request Typeに含まれる情報要素の構成例を示す図である。 図14は、REFERENCE TIME INFORMATION REPORTに含まれる情報要素の構成例を示す図である。 図15は、REFERENCE TIME INFORMATION REPORTのTime Reference Informationに含まれる情報要素の構成例を示す図である。 図16は、DLInformationTransfer msg.の構成例を示す図である。 図17は、SIB9の構成例を示す図である。 図18は、CU110及びDU120のハードウェア構成の一例を示す図である。
 以下、実施形態を図面に基づいて説明する。なお、同一の機能や構成には、同一または類似の符号を付して、その説明を適宜省略する。
 (1)無線通信システムの全体概略構成
 図1は、本実施形態に係る無線通信システム10の全体概略構成図である。無線通信システム10は、5G New Radio(NR)に従った無線通信システムであり、Next Generation-Radio Access Network 20(以下、NG-RAN20、及びユーザ端末200(User Equipment 200、以下、UE200)を含む。
 なお、無線通信システム10は、Beyond 5G、5G Evolution或いは6Gと呼ばれる方式に従った無線通信システムでもよい。
 NG-RAN20は、無線基地局100(以下、gNB100)を含む。なお、gNB及びUEの数を含む無線通信システム10の具体的な構成は、図1に示した例に限定されない。
 NG-RAN20は、実際には複数のNG-RAN Node、具体的には、gNB(またはng-eNB)を含み、5Gに従ったコアネットワークである5GC30と接続される。なお、NG-RAN20及び5GC30は、単に「ネットワーク」と表現されてもよい。
 5GC30には、5Gのシステムアーキテクチャに含まれ、ユーザプレーンの機能を提供するUser Plane Function 35(以下、UPF35)が設けられてよい。UPF35は、Time Sensitive Network(TSN)において用いられる時刻情報を提供するTSNグランドマスタ25(以下、TSC GM25)と特定のインターフェースを介して接続できる。TSC GM25は、高精度の時刻情報(日付及び時刻)をNG-RAN20などを介してUE200に接続されたIoTデバイス40に提供できる。なお、IoTデバイス40は、エンドステーションなどと呼ばれてもよい。
 例えば、TSNは、Industrial Internet of Things(IIoT)用のネットワークとして用い得る。TSNは、NG-RAN20及び5GC30、つまり、NR(5G)システムとは、別個のネットワークとして構成されてよく、独立したクロックが発生するタイミングに同期していてもよい。
 TSNには、スマートグリッドなど、広いサービスエリアにおいて高い同期精度が要求されるサービスに関連するネットワークが含まれてもよい。
 gNB100は、NRに従った無線基地局であり、UE200とNRに従った無線通信を実行する。gNB100及びUE200は、複数のアンテナ素子から送信される無線信号を制御することによって、より指向性の高いビームを生成するMassive MIMO、複数のコンポーネントキャリア(CC)を束ねて用いるキャリアアグリゲーション(CA)、及びUEと複数のNG-RAN Nodeそれぞれとの間において同時に通信を行うデュアルコネクティビティ(DC)などに対応することができる。
 IoTデバイス40は、TSN、例えば、IIoTに含まれる通信装置(端末)であってもよく、TSN内のタイミング(時刻情報)に同期してよい。
 このように、本実施形態では、NR(5G)システムには、TSC GM25及びIoTデバイス40を接続することができ、UE200とgNB100との間における伝搬遅延を補償するメカニズムが提供される。
 図2は、無線通信システム10によるTSNのサポート例を示す。図2に示すように、gNB100は、Central Unit 110(以下、CU110)及びDistributed Unit 120(以下、DU120)とによって構成されてよい。CU110には、複数のDU120が接続されてよい。CU110とDU120との接続には、有線方式(例えば、Ethernet(登録商標))が用いられてよい。なお、CU110とDU120との接続には、無線方式が用いられても構わない。
 UE200に接続されるIoTデバイス40は、TSC GM25によって提供されるTSNの時刻情報に同期して動作できる(図中の時計のアイコン参照)。一方、NR(5G)システム内では、5Gグランドマスタ(5G GM)によってシステム内において用いられる時刻情報が提供される。UPF35、CU110、DU120及びUE200は、5G GMの時刻情報に同期して動作できる。
 無線通信システム10は、スマートグリッドなど、広いサービスエリアにおいて高い同期精度が要求される場合、CU110と複数のDU120とを地理的に分離して配置するCU-DU split gNB deploymentを適用することによって、広いサービスエリア(例えば、20km2まで)をカバーし得る。
 また、高い同期精度(例えば、1μ秒未満)を達成するため、UE200とgNB100との間における伝搬遅延を補償することができる。具体的には、無線通信システム10では、UE200と、当該UE200が接続されているDU120との無線区間における伝搬遅延を補償することができる。伝搬遅延補償とは、当該無線区間の伝搬遅延量に応じてTSN用の時刻情報を調整し、結果的に、IoTデバイス40のそれぞれが、TSN用の時刻情報に同期して動作できることと解釈されてよい。より端的には、UE200とgNB100(DU120)との間(無線区間)の伝搬遅延をTSN用の時刻情報から差し引いた時刻情報に調整することと解釈されてもよい。
 或いは、伝搬遅延補償とは、UE200とgNB100(DU120)との間(無線区間)の伝搬遅延を5G GMの時刻情報から差し引いた時刻情報に調整することと解釈されてもよく,5Gシステム内において正確な同期が保てれば,5GシステムがTSN bridgeの役割を果たし,TSN IoTデバイスそれぞれが,TSN用の時刻に同期して動作できることと解釈されてもよい.
 (2)無線通信システムの機能ブロック構成
 次に、無線通信システム10の機能ブロック構成について説明する。具体的には、gNB100を構成するCU110及びDU120の機能ブロック構成について説明する。
 (2.1)CU110
 図3は、CU110の機能ブロック構成図である。図3に示すように、CU110は、ネットワーク接続部111、DU接続部113、遅延補償制御部115、メッセージ送受信部117及びシステム情報送信部119を備える。
 ネットワーク接続部111は、ネットワーク、具体的には、NG-RAN20を構成する他の通信ノードとの通信インターフェース、及び5GC30を構成する通信ノードとの通信インターフェースを提供する。例えば、当該通信インターフェースには、N2, N3などが含まれてよい。
 DU接続部113は、DU120との通信インターフェースを提供する。例えば、当該通信インターフェースには、F1などが含まれてよい。具体的には、DU接続部113は、複数のDU120を有線接続するための通信インターフェース(Ethernet(登録商標)など)を提供できる。
 遅延補償制御部115は、UE200とgNB100との間の伝搬遅延の補償に関する制御を実行する。本実施形態において、遅延補償制御部115は、制御部を構成してよい。
 具体的には、遅延補償制御部115は、メッセージ送受信部117が送信または受信する規定のメッセージに基づいて、UE200との伝搬遅延を取得してよい。
 例えば、遅延補償制御部115は、DU120から送信されるgNB Rx-Tx time differenceの値に基づいて、UE200とgNB100(具体的には、DU120)との伝搬遅延を算出できる。gNB Rx-Tx time differenceは、gNB100(DU120)における規定のサブフレームの受信タイミングと送信タイミングとの差分(時間差)と解釈されてよい。gNB Rx-Tx time differenceは、3GPP TS38.215 5.2.3章において規定されている。gNB Rx-Tx time differenceについては、さらに後述する。
 このように、遅延補償制御部115は、gNB Rx-Tx time differenceなどのメッセージまたは応答の受信に応じて、UE200との伝搬遅延を取得し、伝搬遅延補償を実行できる。なお、後述するように、伝搬遅延補償は、UE200側の通信ユニットであるDU120、またはネットワーク側の通信ユニットであるCU110において実行されてよい。
 また、遅延補償制御部115は、UE200それぞれとの伝搬遅延補償の当該UE200への指示の要否をシステム情報、または下りリンクに関するメッセージ、具体的には、DLInformationTransfer msg.に含めることができる。システム情報(SIB)は、後述するように、システム情報送信部119によって、UE200に向けて送信(報知)できる。UE200は、このようなシステム情報または下りリンクに関するメッセージに基づいて、伝搬遅延補償を実行してもよい。
 メッセージ送受信部117は、規定のメッセージまたは応答を送受信する。本実施形態において、メッセージ送受信部117は、送受信部を構成してよい。
 具体的には、メッセージ送受信部117は、POSITIONING MEASUREMENT REQUESTをDU120に送信し、POSITIONING MEASUREMENT REQUEST対する応答である POSITIONING MEASUREMENT RESPONSEをDU120から受信できる。POSITIONING MEASUREMENT RESPONSEには、gNB Rx-Tx time differenceが含まれてよい。POSITIONING MEASUREMENT REQUEST及びPOSITIONING MEASUREMENT RESPONSEは、3GPP TS38.473において規定される。
 また、メッセージ送受信部117は、3GPP TS38.473において規定されるF1メッセージの一種であるREFERENCE TIME INFORMATION REPORTING CONTROLをDU120に送信し、REFERENCE TIME INFORMATION REPORTING CONTROLに対する応答であるREFERENCE TIME INFORMATION REPORTをDU120から受信できる。REFERENCE TIME INFORMATION REPORTING CONTROLには、DU120に伝搬遅延補償を実行させることを指示するPropagation delay compensation requestが含まれてよい。
 さらに、メッセージ送受信部117は、時刻情報を含むことができる下りリンクに関するメッセージ、具体的には、ユニキャストのメッセージであるDLInformationTransfer msg.を、DU120を介してUE200に送信できる。本実施形態において、メッセージ送受信部117は、送信部を構成してよい。
 なお、これらのメッセージは、例示であり、CU110~DU120において送受信されるメッセージであれば、異なるメッセージであっても構わない。
 システム情報送信部119は、gNB100が形成するセル内に報知、つまり、ブロードキャストされるシステム情報を送信する。当該システム情報は、System Information Block(SIB)と呼ばれてもよい。SIBには、複数の種類が含まれるが、特に本実施形態では、システム情報送信部119は、referenceTimeInfo-r16と呼ばれる情報要素(IE)を含むSIB9を、DU120を介してセル内に報知できる。referenceTimeInfo-r16は、NR(5G)のInternal system clock(時刻またはタイミングと呼ばれてもよい)を示す。
 つまり、システム情報送信部119は、無線通信システム10内において用いられる時刻情報を含むシステム情報送信部119を送信できる。本実施形態において、システム情報送信部119は、送信部を構成してよい。
 (2.2)DU120
 図4は、DU120の機能ブロック構成図である。図4に示すように、DU120は、無線送信部121、無線受信部123、CU接続部124、遅延補償制御部125、RA処理部126、時刻情報処理部127及びメッセージ送受信部128を備える。
 無線送信部121は、NRに従った無線信号をUE200に向けて送信する。無線受信部123は、UE200から送信され、NRに従った無線信号を受信する。本実施形態において、無線送信部121と無線受信部123とは、無線信号を送受信する送受信部を構成してよい。
 CU接続部124は、CU110との通信インターフェースを提供する。上述したように、当該通信インターフェースには、F1などが含まれてよく、CU接続部124は、CU110と有線接続するための通信インターフェースを提供できる。
 遅延補償制御部125は、CU110の遅延補償制御部115と同様に、UE200とgNB100との間の伝搬遅延の補償に関する制御を実行する。本実施形態において、遅延補償制御部125は、制御部を構成してよい。
 具体的には、遅延補償制御部125は、無線信号の受信と送信との時間差に基づいてUE200との伝搬遅延を取得し、伝搬遅延補償を実行できる。無線信号の受信と送信との時間差とは、上述したgNB Rx-Tx time differenceであってよい。無線信号とは、無線フレーム、サブフレーム、スロットまたはシンボルなどと解釈されてもよい。或いは、無線信号は、上位レイヤ(例えば、無線リソース制御レイヤ(RRC))のメッセージなどに読み替えてよい。
 なお、伝搬遅延補償は、CU110と同様の動作によって実現されてよい。つまり、遅延補償制御部125は、メッセージまたは応答の受信に応じて、UE200との伝搬遅延を取得し、伝搬遅延補償を実行することもできる。
 具体的には、遅延補償制御部125は、ランダムアクセス手順(RA手順)におけるランダムアクセスプリアンブル(msg. 1)のUE200からの受信に応じて、伝搬遅延補償を実行してよい。なお、受信に応じて実行するとは、受信と同時に実行することでもよいし、受信後、一定の時間内に実行することでもよい。
 より具体的には、遅延補償制御部125は、ランダムアクセスプリアンブル(msg. 1)を受信した場合、Timing advance(TA)コマンドを算出すると同時に、UE200それぞれに固有の伝搬遅延(UE specific propagation delay)を算出し、伝搬遅延補償を実行してよい。
 また、遅延補償制御部125は、CU110から送信されるREFERENCE TIME INFORMATION REPORTING CONTROL(制御メッセージ)の受信に応じて、伝搬遅延補償を実行してよい。REFERENCE TIME INFORMATION REPORTING CONTROLの目的は、要求された正確な時刻情報(Time Reference Information)をCU110に送信することをDU120に指示することである。
 本実施形態では、REFERENCE TIME INFORMATION REPORTING CONTROLには、DU120に伝搬遅延補償を実行させることを指示する情報要素(IE)が含まれてよい。当該IEは、例えば、Propagation delay compensation requestなどと呼ばれてもよい。
 このように、本実施形態では、伝搬遅延補償は、UE200側の通信ユニットであるDU120において実行されてもよい。
 また、遅延補償制御部125は、UE200それぞれとの伝搬遅延補償の当該UE200への指示の要否をシステム情報(SIB9)に含めることができる。
 RA処理部126は、UE200とのRA手順に関する処理を実行する。具体的には、RA処理部126は、コンテンションベースのRA手順(CBRA)及びコンテンションフリーのRA手順(CFRA)をサポートしてよい。また、RA処理部126は、4ステップ及び2ステップのRA手順をサポートしてもよい。
 RA処理部126は、メッセージ送受信部128がUE200から受信したランダムアクセスプリアンブル(msg. 1)に基づいて、RA手順を実行できる。RA手順には、ランダムアクセス応答(msg. 2)のUE200への送信、スケジュール伝送(msg. 3)の受信及びコンテンション解決(msg. 4)の送信が含まれてもよい。
 時刻情報処理部127は、無線通信システム10内において用いられる時刻情報(5G GM基準)、及びTSN用の時刻情報(TSC GM25基準)に関する処理を実行する。
 具体的には、時刻情報処理部127は、REFERENCE TIME INFORMATION REPORTING CONTROLに含まれるUE200の識別情報(RAN UE IDと呼ばれてよい)と対応付けられた当該UE200との伝搬遅延に基づいて、TSN用の時刻情報を調整してよい。具体的には、上述したように、伝搬遅延をTSN用の時刻情報から差し引いた時刻情報に調整することと解釈されてよい。
 メッセージ送受信部128は、規定のメッセージまたは応答を送受信する。本実施形態において、メッセージ送受信部128は、送受信部を構成してよい。
 具体的には、メッセージ送受信部128は、RA手順に関するメッセージ、具体的にはランダムアクセスプリアンブル(msg. 1)などを受信できる。
 また、メッセージ送受信部128は、遅延補償制御部125によって取得されたgNB Rx-Tx time differenceの値を含むPOSITIONING MEASUREMENT RESPONSEをCU110に送信してよい。
 メッセージ送受信部128は、時刻情報の制御メッセージを受信することもできる。本実施形態において、メッセージ送受信部128は、受信部を構成してよい。具体的には、メッセージ送受信部128は、CU110からREFERENCE TIME INFORMATION REPORTING CONTROLを受信できる。REFERENCE TIME INFORMATION REPORTING CONTROLには、UE200それぞれを一意に識別できる識別情報として、RAN UE IDが含まれてよい。なお、UE200それぞれを一意に識別できる識別情報であれば、RAN UE IDに限らず、他のIDが用いられても構わない。
 メッセージ送受信部128は、UE200の識別情報(RAN UE ID)の識別情報を含む時刻情報の制御メッセージ(REFERENCE TIME INFORMATION REPORTING CONTROL)を受信できる。
 また、メッセージ送受信部128は、時刻情報処理部127によって調整された時刻情報をCU110に送信できる。具体的には、メッセージ送受信部128は、特定のRAN UE IDと対応付けられたUE200との伝搬遅延に基づいて調整された時刻情報を送信できる。本実施形態において、メッセージ送受信部128は、送信部を構成してよい。当該時刻情報は、REFERENCE TIME INFORMATION REPORTING CONTROLに対する応答メッセージであるREFERENCE TIME INFORMATION REPORTに含まれてよい。
 さらに、メッセージ送受信部128は、特定のRAN UE IDと対応付けられたUE200との伝搬遅延補償を実行したか否かを示す補償情報を含む応答メッセージ(REFERENCE TIME INFORMATION REPORT)を送信できる。
 具体的には、メッセージ送受信部128は、補償情報の情報要素(IE)を含むREFERENCE TIME INFORMATION REPORTを送信できる。当該IEは、Propagation delay compensation needed或いはPropagation delay compensation completedなどと呼ばれてもよい。
 さらに、メッセージ送受信部128は、CU110から送信されたシステム情報(SIB9)及びDLInformationTransfer msg.をUE200に対して送信(中継)することができる。
 (3)無線通信システムの動作
 次に、無線通信システム10の動作について説明する。具体的には、CU-DU split gNB deploymentにおける伝搬遅延補償に関する動作について説明する。
 (3.1)前提
 表1は、3GPP TS22.104 5.6.2章において規定されているClock synchronisation service performance requirementsの内容である。
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、同期要求条件は、アプリケーションのシナリオによって異なるが、スマートグリッドなどのユースケース(下線部参照)では、広いサービスエリアにおける高い同期精度が要求されるため、UE200~gNB100間の無線伝搬遅延補償が不可欠である。
 そこで、本実施形態では、CU110と、複数のDU120とを地理的に分離して配置するCU-DU split gNB deploymentが適用される。これにより、広いサービスエリア(20km2まで)をカバーし得る。
 (3.2)課題
 CU-DU split gNB deploymentを適用しつつ、高い同期精度を満足するためには、特に、UE200~DU120の無線区間の伝搬遅延の補償が重要となるが、CU110と、複数のDU120とが、どのように連携して、複数のUE200それぞれとの無線区間の伝搬遅延を適切に補償するのかが問題となる。
 具体的には、次のような課題があると考えられる。
  ・(課題1): ネットワーク(gNB100)側が無線伝搬遅延を補償する場合、CU110またはDU120の何れが補償を実行するのかが明確でなく、二重補償または補償がされない可能性がある。
  ・(課題2): 3GPP TS38.473において規定されているF1メッセージであるREFERENCE TIME INFORMATION REPORTING CONTROLと、REFERENCE TIME INFORMATION REPORTは、共にUE200と無関係のメッセージ(non-UE associated msg.)であるため、ネットワーク側が伝搬遅延補償を実行する場合、DU120からCU110に対して、UE200毎に、無線区間の伝搬遅延を差し引いた時刻情報を報告することができない。
  ・(課題3): 3GPP TS 38.473において規定されているF1インターフェースでは、CU110がDU120に対して時刻情報(Time Reference Information)を要求し、DU120からCU110にTime Reference Information(Reference Time Informationと呼ばれてもよい)を報告するシグナリングが存在するが、DU120からCU110に報告する時刻情報が伝搬遅延補償されているか否かが不明であり、二重補償または補償がされない可能性がある。
  ・(課題4): UE200に対して伝搬遅延補償を指示する場合、CU110またはDU120の何れが指示するのかが明確でなく、二重指示または指示がされない可能性がある。
 (3.3)動作例
 以下では、上述した課題1~4を解決し得る動作例について説明する。
 (3.3.1)動作例1
 本動作例は、課題1と対応する。つまり、CU110またはDU120の何れが伝搬遅延補償を実行するのかが明確でなく、二重補償または補償がされない可能性がある。
 具体的には、動作例1-1~動作例1-4の何れかによって、当該課題を解決し得る。動作例1-1~動作例1-4では、CU110またはDU120の何れが、確実に伝搬遅延補償を実行する。
 (3.3.1.1)動作例1-1
 本動作例では、DU120が伝搬遅延補償を実行する。図5は、動作例1-1に係る伝搬遅延補償のシーケンスを示す。
 図5に示すように、UE200は、gNB100(DU120)とのランダムアクセス手順(RA手順)を開始するため、ランダムアクセスプリアンブル(random access preamble (msg.1))をDU120に向けて送信する(S10)。
 DU120は、ランダムアクセスプリアンブルを受信した時に、Timing advance(TA)コマンドを算出すると同時にUE200に固有の伝搬遅延(UE specific propagation delay)を算出(取得と読み替えてもよい、以下同)する(S20)。なお、UE specific propagation delayの算出は、必ずしもTAコマンド(TAの値)の算出と同時でなくても構わない。
 DU120は、TAコマンドを含むランダムアクセスレスポンスをUE200に送信する(S30)。なお、UE200とDU120とは、ランダムアクセスレスポンスに引き続いて、RA手順を継続してよい。
 DU120は、算出したUE specific propagation delayに基づいて伝搬遅延補償を実行する(S40)。具体的には、DU120は、UE specific propagation delayを差し引いた時刻情報を算出し、TSN用の時刻情報、または5Gシステム(5G GM)用の時刻情報を調整してよい。
 (3.3.1.2)動作例1-2
 本動作例でも、DU120が伝搬遅延補償を実行する。図6は、動作例1-2に係る伝搬遅延補償のシーケンスを示す。以下、動作例1-1と同様の部分については、適宜説明を省略する。
 図6に示すように、UE200とDU120とは、RRCレイヤにおける接続(RRC connection)が確立し、RRCレイヤにおける接続状態を維持してよい(S110)。但し、gNB Rx-Tx time differenceが測定できる状態であれば、必ずしもRRCレイヤにおける接続は確立されていなくても構わない。
 DU120は、gNB Rx-Tx time differenceを測定する(S120)。上述したように、gNB Rx-Tx time differenceは、3GPP TS38.215 5.2.3章において規定されており、DU120における規定のサブフレームの受信タイミングと送信タイミングとの差分(時間差)と解釈されてよい。
 具体的には、gNB Rx-Tx time differenceは、(TgNB-RX-TgNB-TX)として定義されてよい。ここで、TgNB-RXは、UE200に関連付けられたSounding Reference Signal(SRS)を含む上りリンクのサブフレーム#iの測位ノード(DU120)の受信タイミングであり、時間内に最初に検出されたパスによって定義されてよい。
 TgNB-TXは、DU120から受信したサブフレーム#iに時間的に最も近い下りリンクのサブフレーム#jの測位ノードの送信タイミングである。
 DU120は、算出したgNB Rx-Tx time differenceに基づいて、UE200とDU120との伝搬遅延(UE specific propagation delay)を算出する(S130)。
 DU120は、算出したUE specific propagation delayに基づいて伝搬遅延補償を実行する(S140)。
 (3.3.1.3)動作例1-3
 本動作例でも、DU120が伝搬遅延補償を実行する。図7は、動作例1-3に係る伝搬遅延補償のシーケンスを示す。
 図7に示すように、CU110は、F1メッセージの一種であるREFERENCE TIME INFORMATION REPORTING CONTROLをDU120に送信する(S210)。REFERENCE TIME INFORMATION REPORTING CONTROLには、DU120に伝搬遅延補償を実行させることを指示するPropagation delay compensation requestが含まれる。
 図13は、REFERENCE TIME INFORMATION REPORTING CONTROLのReporting Request Typeに含まれる情報要素の構成例を示す。図13に示すように、Reporting Request Typeには、Propagation delay compensation requestが含まれてよい。
 DU120は、REFERENCE TIME INFORMATION REPORTING CONTROLに含まれるPropagation delay compensation requestに基づいて、UE200とDU120との伝搬遅延(UE specific propagation delay)を算出する(S220)。
 DU120は、算出したUE specific propagation delayに基づいて伝搬遅延補償を実行する(S230)。
 (3.3.1.4)動作例1-4
 本動作例では、CU110が伝搬遅延補償を実行する。図8は、動作例1-4に係る伝搬遅延補償のシーケンスを示す。
 図8に示すように、CU110は、POSITIONING MEASUREMENT REQUESTをDU120に送信する(S310)。POSITIONING MEASUREMENT REQUESTは、ノードの位置情報(positioning information)を交換するための位置管理手順(Positioning Measurement procedure)において規定されてよい。
 DU120は、POSITIONING MEASUREMENT REQUESTの受信に応じて、gNB Rx-Tx time differenceを測定する(S320)。
 DU120は、測定したgNB Rx-Tx time differenceを含むPOSITIONING MEASUREMENT RESPONSEをCU110に返送する(S330)。
 CU110は、DU120から受信したgNB Rx-Tx time differenceに基づいて、UE200とDU120との伝搬遅延(UE specific propagation delay)を算出する(S340)。
 CU110は、算出したUE specific propagation delayに基づいて伝搬遅延補償を実行する(S350)。
 なお、DU120は、REFERENCE TIME INFORMATION REPORTをCU110に送信する際に、CU110における伝搬遅延補償が必要であること(Propagation delay compensation needed)を指示してもよい。或いは、DU120は、random access preamble (msg.1)を受信した時に、TAコマンドを算出すると同時にUE200のUE specific propagation delayを算出し、CU110にUE specific propagation delayを送信するようにしてもよい。
 (3.3.2)動作例2
 本動作例は、課題2と対応する。つまり、REFERENCE TIME INFORMATION REPORTING CONTROLと、REFERENCE TIME INFORMATION REPORTは、non-UE associated msg.であるため、DU120からCU110に対して、UE200毎に、無線区間の伝搬遅延を差し引いた時刻情報を報告することができない。
 本動作例では、当該課題を解決するため、RAN UE IDと対応付けられたREFERENCE TIME INFORMATION REPORTING CONTROL及び/またはREFERENCE TIME INFORMATION REPORTが用いられる。
 図9は、動作例2に係る伝搬遅延補償のシーケンスを示す。図9に示すように、CU110は、REFERENCE TIME INFORMATION REPORTING CONTROLを送信する(S410)。当該REFERENCE TIME INFORMATION REPORTING CONTROLには、伝搬遅延補償の対象となるUE200のRAN UE IDが含まれる。上述したように、RAN UE IDは、3GPP TS38.473などにおいて規定されている。
 DU120は、REFERENCE TIME INFORMATION REPORTING CONTROLに含まれるRAN UE IDに基づいて、対象となるUE200を特定し、特定したUE200において用いられている時刻情報(例えば、TSN用の時刻情報)を算出する(S420)。具体的には、DU120は、当該UE200との無線区間の伝搬遅延を差し引いた時刻情報を算出する。
 DU120は、算出した時刻情報をREFERENCE TIME INFORMATION REPORTによってCU110に報告する(S430)。当該REFERENCE TIME INFORMATION REPORTには、当該UE200のRAN UE IDが含まれる。
 図14は、REFERENCE TIME INFORMATION REPORTに含まれる情報要素の構成例を示す。図14に示すように、REFERENCE TIME INFORMATION REPORTには、RAN UE ID、時刻情報(Time Reference Information Per UE)及びPropagation delay compensation neededが含まれてよい。Propagation delay compensation neededは、CU110での当該UE200の伝搬遅延補償が必要なことを示す。なお、REFERENCE TIME INFORMATION REPORTING CONTROLにも、RAN UE IDなどの情報要素が含まれてよい。
 CU110は、受信した時刻情報に基づいて伝搬遅延補償を実行する(S440)。具体的には、CU110は、受信した時刻情報に基づいて、伝搬遅延補償の対象となるUE200のUE specific propagation delayを算出し、算出したUE specific propagation delayに基づいて伝搬遅延補償を実行する。
 (3.3.3)動作例3
 本動作例は、課題3と対応する。つまり、DU120からCU110にTime Reference Informationを報告するシグナリングが存在するが、DU120からCU110に報告する時刻情報が伝搬遅延補償されているか否かが不明であり、二重補償または補償がされない可能性がある。
 本動作例では、当該課題を解決するため、DU120が伝搬遅延補償を実行したことを明示的にCU110に報告する。
 図10は、動作例3に係る伝搬遅延補償のシーケンスを示す。図10に示すように、CU110は、REFERENCE TIME INFORMATION REPORTING CONTROLを送信する(S510)。当該REFERENCE TIME INFORMATION REPORTING CONTROLには、動作例2と同様に、伝搬遅延補償の対象となるUE200のRAN UE IDが含まれてよい。
 DU120は、REFERENCE TIME INFORMATION REPORTING CONTROLに含まれるRAN UE IDに基づいて、対象となるUE200を特定し、特定したUE200において用いられている時刻情報(例えば、TSN用の時刻情報)を算出する(S520)。具体的には、動作例2と同様に、DU120は、当該UE200との無線区間の伝搬遅延を差し引いた時刻情報を算出する。
 DU120は、算出した時刻情報に基づいて伝搬遅延補償を実行する(S530)。具体的には、DU120は、算出した時刻情報に基づいて、伝搬遅延補償の対象となるUE200のUE specific propagation delayを算出し、算出したUE specific propagation delayに基づいて伝搬遅延補償を実行する。
 DU120は、算出した時刻情報をREFERENCE TIME INFORMATION REPORTによってCU110に報告する(S540)。当該REFERENCE TIME INFORMATION REPORTには、当該UE200のRAN UE ID及びPropagation delay compensation completedが含まれてよい。
 図15は、REFERENCE TIME INFORMATION REPORTのTime Reference Informationに含まれる情報要素の構成例を示す。図15に示すように、Time Reference Informationには、Propagation delay compensation completedが含まれてよい。Propagation delay compensation completedは、DU120が既に当該UE200の伝搬遅延補償を実行していることを示す。
 (3.3.4)動作例4
 本動作例は、課題4と対応する。つまり、ネットワーク、具体的には、gNB100がUE200に対して伝搬遅延補償を指示する場合、CU110またはDU120の何れが指示するのかが明確でなく、二重指示または指示がされない可能性がある。
 本動作例では、当該課題を解決するため、CU110またはDU120が、必ずUE200に対して伝搬遅延補償を指示、具体的には、Propagation delay compensation neededまたはPropagation delay compensation completedをUE200に指示できるメカニズムが導入される。
 図11は、動作例4に係る伝搬遅延補償のシーケンス(その1)を示す。図11に示すように、CU110は、UE200とgNB100(DU120)との無線区間の伝搬遅延の補償方法を決定する(S610)。具体的には、CU110は、UE200において伝搬遅延補償を実行することを決定する。
 CU110は、決定した伝搬遅延補償の方法に基づいて、UE200に対して伝搬遅延補償の指示を決定する(S620)。
 CU110は、UE200に対する伝搬遅延補償の指示を含むシステム情報或いはメッセージを、DU120を介してUE200に送信する(S630)。具体的には、CU110は、referenceTimeInfo-r16及びPropagation delay compensation neededを含むシステム情報(SIB9)、或いはreferenceTimeInfo-r16及びPropagation delay compensation neededを含むDLInformationTransfer msg.をUE200に送信する。
 図12は、動作例4に係る伝搬遅延補償のシーケンス(その2)を示す。図11では、CU110が伝搬遅延の補償方法を決定していたが、図12のシーケンスでは、DU120が伝搬遅延の補償方法を決定する。
 図12に示すように、CU110は、システム情報(SIB9)を送信する(S710)。SIB9には、referenceTimeInfo-r16は含まれているが、Propagation delay compensation neededは含まれていない。
 DU120は、UE200とgNB100(DU120)との無線区間の伝搬遅延の補償方法を決定する(S720)。具体的には、DU120は、UE200において伝搬遅延補償を実行することを決定する。
 DU120は、決定した伝搬遅延補償の方法に基づいて、UE200に対して伝搬遅延補償の指示を決定する(S730)。
 DU120は、UE200に対する伝搬遅延補償の指示を含むシステム情報(SIB9)をUE200に送信する(S740)。当該SIB9或いはDLInformationTransfer msg.には、Propagation delay compensation neededが含まれる。
 図11及び図12に示したように、referenceTimeInfo-r16をSIB9に含める場合、CU110またはDU120の何れかが、UE200に対する伝搬遅延補償の指示(Propagation delay compensation needed)をSIB9に含める(エンコードする)ようにしてもよい。なお、CU110が当該伝搬遅延補償の指示をSIB9にエンコードしない場合、当該伝搬遅延補償の指示のSIB9へのエンコードを暗黙的にDU120に対して指示すると解釈されてもよい。
 また、referenceTimeInfo-r16をDLInformationTransfer msg.に含める場合、CU110が当該伝搬遅延補償の指示をDLInformationTransfer msg.してもよい。
 なお、動作例1~3のように、CU110またはDU120が伝搬遅延補償を実行する場合、SIB9或いはDLInformationTransfer msg.には、Propagation delay compensation completedが含まれるようにしてもよい。
 図16は、DLInformationTransfer msg.の構成例を示す。図16に示すように、DLInformationTransfer msg.には、Propagation delay compensation neededのフィールドが含まれてよい。Propagation delay compensation neededは、ネットワークがUE200に伝搬遅延補償を実行するように要求するか否かを示してよい。trueは、ネットワークがUEに対して伝搬遅延補償の実行を要求することを示してよい。
 図17は、SIB9の構成例を示す。図17に示すように、SIB9にもPropagation delay compensation neededのフィールドが含まれてよい。
 (4)作用・効果
 上述した実施形態によれば、以下の作用効果が得られる。具体的には、gNB100(CU110またはDU120)は、無線通信システム10においてTSN用の時刻情報が取り扱われる場合でも、UE200とgNB100との無線区間の伝搬遅延の補償、または伝搬遅延補償の指示を確実に実行できる。
 このため、IIoT(スマートグリッドを含む)など、高い同期精度が要求されるアプリケーションのシナリオにおいて、CU-DU split gNB deploymentが適用される場合でも、CU110及びDU120それぞれの役割及び動作が明確となり、CU110とDU120とが適切に連携してUE200~gNB100間の伝搬遅延補償を実行できる。
 より具体的には、gNB100は、規定のメッセージまたは応答(ランダムアクセスプリアンブル(msg. 1)、POSITIONING MEASUREMENT RESPONSEなど)の受信に応じて、UE200との伝搬遅延を取得し、伝搬遅延補償を実行でき、当該伝搬遅延補償は、CU110またはDU120において実行し得る。このため、二重補償または補償がされない可能性を確実に排除できる。
 本実施形態では、gNB100(DU120)は、無線信号の受信と送信との時間差(gNB Rx-Tx time difference)に基づいてUE200との伝搬遅延を取得し、伝搬遅延補償を実行できる。このため、二重補償または補償がされない可能性を確実に排除できる。
 本実施形態では、gNB100(DU120)は、UE200の識別情報(RAN UE ID)と対応付けられたUE200との伝搬遅延に基づいて調整された時刻情報を送信できる。このため、DU120からCU110に対して、UE200毎に、無線区間の伝搬遅延を差し引いた時刻情報を報告することができる。
 本実施形態では、gNB100(DU120)は、UE200の識別情報(RAN UE ID)と対応付けられたUE200との伝搬遅延補償を実行したか否かを示す補償情報(Propagation delay compensation completed)を含む応答メッセージ(REFERENCE TIME INFORMATION REPORT)を送信できる。このため、DU120からCU110に報告する時刻情報が伝搬遅延補償されているか否かを明確にでき、二重補償または補償がされない可能性を確実に排除できる。
 本実施形態では、gNB100(CU110またはDU120)は、UE200との伝搬遅延補償の当該UE200への指示の要否をシステム情報(SIB9)または下りリンクに関するメッセージ(DLInformationTransfer msg.)に含めることができる。このため、UE200に対して伝搬遅延補償を指示する場合でも、CU110またはDU120の何れが指示するのかを明確にでき、二重指示または指示がされない可能性を確実に排除できる。
 (5)その他の実施形態
 以上、実施形態について説明したが、当該実施形態の記載に限定されるものではなく、種々の変形及び改良が可能であることは、当業者には自明である。
 例えば、上述した実施形態では、CU-DU split gNB deploymentの適用を前提としていたが、CU-DU split gNB deploymentは、必ずしも必要ない。つまり、CU110とDU120とは、地理的に比較的近い場所に配置されていても構わない。
 さらに、上述した実施形態では、無線通信システム10にTSNに接続されることを前提としていたが、必ずしもTSNのような高い同期精度が要求されるようなネットワーク或いはアプリケーションのシナリオでなくても構わない。
 また、上述した実施形態の説明に用いたブロック構成図(図3,4)は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及びソフトウェアの少なくとも一方の任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的または論理的に結合した1つの装置を用いて実現されてもよいし、物理的または論理的に分離した2つ以上の装置を直接的または間接的に(例えば、有線、無線などを用いて)接続し、これら複数の装置を用いて実現されてもよい。機能ブロックは、上記1つの装置または上記複数の装置にソフトウェアを組み合わせて実現されてもよい。
 機能には、判断、決定、判定、計算、算出、処理、導出、調査、探索、確認、受信、送信、出力、アクセス、解決、選択、選定、確立、比較、想定、期待、見做し、報知(broadcasting)、通知(notifying)、通信(communicating)、転送(forwarding)、構成(configuring)、再構成(reconfiguring)、割り当て(allocating、mapping)、割り振り(assigning)などがあるが、これらに限られない。例えば、送信を機能させる機能ブロック(構成部)は、送信部(transmitting unit)や送信機(transmitter)と呼称される。何れも、上述したとおり、実現方法は特に限定されない。
 さらに、上述したgNB100(CU110及びDU120)は、本開示の無線通信方法の処理を行うコンピュータとして機能してもよい。図18は、CU110及びDU120のハードウェア構成の一例を示す図である。図18に示すように、CU110及びDU120は、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006及びバス1007などを含むコンピュータ装置として構成されてもよい。
 なお、以下の説明では、「装置」という文言は、回路、デバイス、ユニットなどに読み替えることができる。当該装置のハードウェア構成は、図に示した各装置を1つまたは複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。
 CU110及びDU120の各機能ブロック(図3,4参照)は、当該コンピュータ装置の何れかのハードウェア要素、または当該ハードウェア要素の組み合わせによって実現される。
 また、CU110及びDU120における各機能は、プロセッサ1001、メモリ1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることによって、プロセッサ1001が演算を行い、通信装置1004による通信を制御したり、メモリ1002及びストレージ1003におけるデータの読み出し及び書き込みの少なくとも一方を制御したりすることによって実現される。
 プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインターフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(CPU)によって構成されてもよい。
 また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール、データなどを、ストレージ1003及び通信装置1004の少なくとも一方からメモリ1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施の形態において説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。さらに、上述の各種処理は、1つのプロセッサ1001によって実行されてもよいし、2つ以上のプロセッサ1001により同時または逐次に実行されてもよい。プロセッサ1001は、1以上のチップによって実装されてもよい。なお、プログラムは、電気通信回線を介してネットワークから送信されてもよい。
 メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、Read Only Memory(ROM)、Erasable Programmable ROM(EPROM)、Electrically Erasable Programmable ROM(EEPROM)、Random Access Memory(RAM)などの少なくとも1つによって構成されてもよい。メモリ1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ1002は、本開示の一実施形態に係る方法を実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。
 ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、例えば、Compact Disc ROM(CD-ROM)などの光ディスク、ハードディスクドライブ、フレキシブルディスク、光磁気ディスク(例えば、コンパクトディスク、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、スマートカード、フラッシュメモリ(例えば、カード、スティック、キードライブ)、フロッピー(登録商標)ディスク、磁気ストリップなどの少なくとも1つによって構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。上述の記録媒体は、例えば、メモリ1002及びストレージ1003の少なくとも一方を含むデータベース、サーバその他の適切な媒体であってもよい。
 通信装置1004は、有線ネットワーク及び無線ネットワークの少なくとも一方を介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。
 通信装置1004は、例えば周波数分割複信(Frequency Division Duplex:FDD)及び時分割複信(Time Division Duplex:TDD)の少なくとも一方を実現するために、高周波スイッチ、デュプレクサ、フィルタ、周波数シンセサイザなどを含んで構成されてもよい。
 入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、LEDランプなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。
 また、プロセッサ1001及びメモリ1002などの各装置は、情報を通信するためのバス1007で接続される。バス1007は、単一のバスを用いて構成されてもよいし、装置間ごとに異なるバスを用いて構成されてもよい。
 さらに、当該装置は、マイクロプロセッサ、デジタル信号プロセッサ(Digital Signal Processor:DSP)、Application Specific Integrated Circuit(ASIC)、Programmable Logic Device(PLD)、Field Programmable Gate Array(FPGA)などのハードウェアを含んで構成されてもよく、当該ハードウェアにより、各機能ブロックの一部または全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つを用いて実装されてもよい。
 また、情報の通知は、本開示において説明した態様/実施形態に限られず、他の方法を用いて行われてもよい。例えば、情報の通知は、物理レイヤシグナリング(例えば、Downlink Control Information(DCI)、Uplink Control Information(UCI)、上位レイヤシグナリング(例えば、RRCシグナリング、Medium Access Control(MAC)シグナリング、報知情報(Master Information Block(MIB)、System Information Block(SIB))、その他の信号またはこれらの組み合わせによって実施されてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRC Connection Setup)メッセージ、RRC接続再構成(RRC Connection Reconfiguration)メッセージなどであってもよい。
 本開示において説明した各態様/実施形態は、Long Term Evolution(LTE)、LTE-Advanced(LTE-A)、SUPER 3G、IMT-Advanced、4th generation mobile communication system(4G)、5th generation mobile communication system(5G)、Future Radio Access(FRA)、New Radio(NR)、W-CDMA(登録商標)、GSM(登録商標)、CDMA2000、Ultra Mobile Broadband(UMB)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、Ultra-WideBand(UWB)、Bluetooth(登録商標)、その他の適切なシステムを利用するシステム及びこれらに基づいて拡張された次世代システムの少なくとも一つに適用されてもよい。また、複数のシステムが組み合わされて(例えば、LTE及びLTE-Aの少なくとも一方と5Gとの組み合わせなど)適用されてもよい。
 本開示において説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本開示において説明した方法については、例示的な順序を用いて様々なステップの要素を提示しており、提示した特定の順序に限定されない。
 本開示において基地局によって行われるとした特定動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局を有する1つまたは複数のネットワークノード(network nodes)からなるネットワークにおいて、端末との通信のために行われる様々な動作は、基地局及び基地局以外の他のネットワークノード(例えば、MMEまたはS-GWなどが考えられるが、これらに限られない)の少なくとも1つによって行われ得ることは明らかである。上記において基地局以外の他のネットワークノードが1つである場合を例示したが、複数の他のネットワークノードの組み合わせ(例えば、MME及びS-GW)であってもよい。
 情報、信号(情報等)は、上位レイヤ(または下位レイヤ)から下位レイヤ(または上位レイヤ)へ出力され得る。複数のネットワークノードを介して入出力されてもよい。
 入出力された情報は、特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルを用いて管理してもよい。入出力される情報は、上書き、更新、または追記され得る。出力された情報は削除されてもよい。入力された情報は他の装置へ送信されてもよい。
 判定は、1ビットで表される値(0か1か)によって行われてもよいし、真偽値(Boolean:trueまたはfalse)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。
 本開示において説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的に行うものに限られず、暗黙的(例えば、当該所定の情報の通知を行わない)ことによって行われてもよい。
 ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。
 また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(Digital Subscriber Line:DSL)など)及び無線技術(赤外線、マイクロ波など)の少なくとも一方を使用してウェブサイト、サーバ、または他のリモートソースから送信される場合、これらの有線技術及び無線技術の少なくとも一方は、伝送媒体の定義内に含まれる。
 本開示において説明した情報、信号などは、様々な異なる技術の何れかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、またはこれらの任意の組み合わせによって表されてもよい。
 なお、本開示において説明した用語及び本開示の理解に必要な用語については、同一のまたは類似する意味を有する用語と置き換えてもよい。例えば、チャネル及びシンボルの少なくとも一方は信号(シグナリング)であってもよい。また、信号はメッセージであってもよい。また、コンポーネントキャリア(Component Carrier:CC)は、キャリア周波数、セル、周波数キャリアなどと呼ばれてもよい。
 本開示において使用する「システム」及び「ネットワーク」という用語は、互換的に使用される。
 また、本開示において説明した情報、パラメータなどは、絶対値を用いて表されてもよいし、所定の値からの相対値を用いて表されてもよいし、対応する別の情報を用いて表されてもよい。例えば、無線リソースはインデックスによって指示されるものであってもよい。
 上述したパラメータに使用する名称はいかなる点においても限定的な名称ではない。さらに、これらのパラメータを使用する数式等は、本開示で明示的に開示したものと異なる場合もある。様々なチャネル(例えば、PUCCH、PDCCHなど)及び情報要素は、あらゆる好適な名称によって識別できるため、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的な名称ではない。
 本開示においては、「基地局(Base Station:BS)」、「無線基地局」、「固定局(fixed station)」、「NodeB」、「eNodeB(eNB)」、「gNodeB(gNB)」、「アクセスポイント(access point)」、「送信ポイント(transmission point)」、「受信ポイント(reception point)、「送受信ポイント(transmission/reception point)」、「セル」、「セクタ」、「セルグループ」、「キャリア」、「コンポーネントキャリア」などの用語は、互換的に使用され得る。基地局は、マクロセル、スモールセル、フェムトセル、ピコセルなどの用語で呼ばれる場合もある。
 基地局は、1つまたは複数(例えば、3つ)のセル(セクタとも呼ばれる)を収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局(Remote Radio Head:RRH)によって通信サービスを提供することもできる。
 「セル」または「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局、及び基地局サブシステムの少なくとも一方のカバレッジエリアの一部または全体を指す。
 本開示においては、「移動局(Mobile Station:MS)」、「ユーザ端末(user terminal)」、「ユーザ装置(User Equipment:UE)」、「端末」などの用語は、互換的に使用され得る。
 移動局は、当業者によって、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント、またはいくつかの他の適切な用語で呼ばれる場合もある。
 基地局及び移動局の少なくとも一方は、送信装置、受信装置、通信装置などと呼ばれてもよい。なお、基地局及び移動局の少なくとも一方は、移動体に搭載されたデバイス、移動体自体などであってもよい。当該移動体は、乗り物(例えば、車、飛行機など)であってもよいし、無人で動く移動体(例えば、ドローン、自動運転車など)であってもよいし、ロボット(有人型または無人型)であってもよい。なお、基地局及び移動局の少なくとも一方は、必ずしも通信動作時に移動しない装置も含む。例えば、基地局及び移動局の少なくとも一方は、センサなどのInternet of Things(IoT)機器であってもよい。
 また、本開示における基地局は、移動局(ユーザ端末、以下同)として読み替えてもよい。例えば、基地局及び移動局間の通信を、複数の移動局間の通信(例えば、Device-to-Device(D2D)、Vehicle-to-Everything(V2X)などと呼ばれてもよい)に置き換えた構成について、本開示の各態様/実施形態を適用してもよい。この場合、基地局が有する機能を移動局が有する構成としてもよい。また、「上り」及び「下り」などの文言は、端末間通信に対応する文言(例えば、「サイド(side)」)で読み替えられてもよい。例えば、上りチャネル、下りチャネルなどは、サイドチャネルで読み替えられてもよい。
 同様に、本開示における移動局は、基地局として読み替えてもよい。この場合、移動局が有する機能を基地局が有する構成としてもよい。
無線フレームは時間領域において1つまたは複数のフレームによって構成されてもよい。時間領域において1つまたは複数の各フレームはサブフレームと呼ばれてもよい。サブフレームはさらに時間領域において1つまたは複数のスロットによって構成されてもよい。サブフレームは、ニューメロロジー(numerology)に依存しない固定の時間長(例えば、1ms)であってもよい。
 ニューメロロジーは、ある信号またはチャネルの送信及び受信の少なくとも一方に適用される通信パラメータであってもよい。ニューメロロジーは、例えば、サブキャリア間隔(SubCarrier Spacing:SCS)、帯域幅、シンボル長、サイクリックプレフィックス長、送信時間間隔(Transmission Time Interval:TTI)、TTIあたりのシンボル数、無線フレーム構成、送受信機が周波数領域において行う特定のフィルタリング処理、送受信機が時間領域において行う特定のウィンドウイング処理などの少なくとも1つを示してもよい。
 スロットは、時間領域において1つまたは複数のシンボル(Orthogonal Frequency Division Multiplexing(OFDM))シンボル、Single Carrier Frequency Division Multiple Access(SC-FDMA)シンボルなど)で構成されてもよい。スロットは、ニューメロロジーに基づく時間単位であってもよい。
 スロットは、複数のミニスロットを含んでもよい。各ミニスロットは、時間領域において1つまたは複数のシンボルによって構成されてもよい。また、ミニスロットは、サブスロットと呼ばれてもよい。ミニスロットは、スロットよりも少ない数のシンボルによって構成されてもよい。ミニスロットより大きい時間単位で送信されるPDSCH(またはPUSCH)は、PDSCH(またはPUSCH)マッピングタイプAと呼ばれてもよい。ミニスロットを用いて送信されるPDSCH(またはPUSCH)は、PDSCH(またはPUSCH)マッピングタイプBと呼ばれてもよい。
 無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、何れも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、それぞれに対応する別の呼称が用いられてもよい。
 例えば、1サブフレームは送信時間間隔(TTI)と呼ばれてもよいし、複数の連続したサブフレームがTTIと呼ばれてよいし、1スロットまたは1ミニスロットがTTIと呼ばれてもよい。つまり、サブフレーム及びTTIの少なくとも一方は、既存のLTEにおけるサブフレーム(1ms)であってもよいし、1msより短い期間(例えば、1-13シンボル)であってもよいし、1msより長い期間であってもよい。なお、TTIを表す単位は、サブフレームではなくスロット、ミニスロットなどと呼ばれてもよい。
 ここで、TTIは、例えば、無線通信におけるスケジューリングの最小時間単位のことをいう。例えば、LTEシステムでは、基地局が各ユーザ端末に対して、無線リソース(各ユーザ端末において使用することが可能な周波数帯域幅、送信電力など)を、TTI単位で割り当てるスケジューリングを行う。なお、TTIの定義はこれに限られない。
 TTIは、チャネル符号化されたデータパケット(トランスポートブロック)、コードブロック、コードワードなどの送信時間単位であってもよいし、スケジューリング、リンクアダプテーションなどの処理単位となってもよい。なお、TTIが与えられたとき、実際にトランスポートブロック、コードブロック、コードワードなどがマッピングされる時間区間(例えば、シンボル数)は、当該TTIよりも短くてもよい。
 なお、1スロットまたは1ミニスロットがTTIと呼ばれる場合、1以上のTTI(すなわち、1以上のスロットまたは1以上のミニスロット)が、スケジューリングの最小時間単位となってもよい。また、当該スケジューリングの最小時間単位を構成するスロット数(ミニスロット数)は制御されてもよい。
 1msの時間長を有するTTIは、通常TTI(LTE Rel.8-12におけるTTI)、ノーマルTTI、ロングTTI、通常サブフレーム、ノーマルサブフレーム、ロングサブフレーム、スロットなどと呼ばれてもよい。通常TTIより短いTTIは、短縮TTI、ショートTTI、部分TTI(partialまたはfractional TTI)、短縮サブフレーム、ショートサブフレーム、ミニスロット、サブスロット、スロットなどと呼ばれてもよい。
 なお、ロングTTI(例えば、通常TTI、サブフレームなど)は、1msを超える時間長を有するTTIで読み替えてもよいし、ショートTTI(例えば、短縮TTIなど)は、ロングTTIのTTI長未満かつ1ms以上のTTI長を有するTTIで読み替えてもよい。
 リソースブロック(RB)は、時間領域及び周波数領域のリソース割当単位であり、周波数領域において、1つまたは複数個の連続した副搬送波(subcarrier)を含んでもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに関わらず同じであってもよく、例えば12であってもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに基づいて決定されてもよい。
 また、RBの時間領域は、1つまたは複数個のシンボルを含んでもよく、1スロット、1ミニスロット、1サブフレーム、または1TTIの長さであってもよい。1TTI、1サブフレームなどは、それぞれ1つまたは複数のリソースブロックで構成されてもよい。
 なお、1つまたは複数のRBは、物理リソースブロック(Physical RB:PRB)、サブキャリアグループ(Sub-Carrier Group:SCG)、リソースエレメントグループ(Resource Element Group:REG)、PRBペア、RBペアなどと呼ばれてもよい。
 また、リソースブロックは、1つまたは複数のリソースエレメント(Resource Element:RE)によって構成されてもよい。例えば、1REは、1サブキャリア及び1シンボルの無線リソース領域であってもよい。
 帯域幅部分(Bandwidth Part:BWP)(部分帯域幅などと呼ばれてもよい)は、あるキャリアにおいて、あるニューメロロジー用の連続する共通RB(common resource blocks)のサブセットのことを表してもよい。ここで、共通RBは、当該キャリアの共通参照ポイントを基準としたRBのインデックスによって特定されてもよい。PRBは、あるBWPで定義され、当該BWP内で番号付けされてもよい。
 BWPには、UL用のBWP(UL BWP)と、DL用のBWP(DL BWP)とが含まれてもよい。UEに対して、1キャリア内に1つまたは複数のBWPが設定されてもよい。
 設定されたBWPの少なくとも1つがアクティブであってもよく、UEは、アクティブなBWPの外で所定の信号/チャネルを送受信することを想定しなくてもよい。なお、本開示における「セル」、「キャリア」などは、「BWP」で読み替えられてもよい。
 上述した無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルなどの構造は例示に過ぎない。例えば、無線フレームに含まれるサブフレームの数、サブフレームまたは無線フレームあたりのスロットの数、スロット内に含まれるミニスロットの数、スロットまたはミニスロットに含まれるシンボル及びRBの数、RBに含まれるサブキャリアの数、並びにTTI内のシンボル数、シンボル長、サイクリックプレフィックス(Cyclic Prefix:CP)長などの構成は、様々に変更することができる。
 「接続された(connected)」、「結合された(coupled)」という用語、またはこれらのあらゆる変形は、2またはそれ以上の要素間の直接的または間接的なあらゆる接続または結合を意味し、互いに「接続」または「結合」された2つの要素間に1またはそれ以上の中間要素が存在することを含むことができる。要素間の結合または接続は、物理的なものであっても、論理的なものであっても、或いはこれらの組み合わせであってもよい。例えば、「接続」は「アクセス」で読み替えられてもよい。本開示で使用する場合、2つの要素は、1またはそれ以上の電線、ケーブル及びプリント電気接続の少なくとも一つを用いて、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域及び光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどを用いて、互いに「接続」または「結合」されると考えることができる。
 参照信号は、Reference Signal(RS)と略称することもでき、適用される標準によってパイロット(Pilot)と呼ばれてもよい。
 本開示において使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。
 上記の各装置の構成における「手段」を、「部」、「回路」、「デバイス」等に置き換えてもよい。
 本開示において使用する「第1」、「第2」などの呼称を使用した要素へのいかなる参照も、それらの要素の量または順序を全般的に限定しない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本開示において使用され得る。したがって、第1及び第2の要素への参照は、2つの要素のみがそこで採用され得ること、または何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。
 本開示において、「含む(include)」、「含んでいる(including)」及びそれらの変形が使用されている場合、これらの用語は、用語「備える(comprising)」と同様に、包括的であることが意図される。さらに、本開示において使用されている用語「または(or)」は、排他的論理和ではないことが意図される。
 本開示において、例えば、英語でのa, an及びtheのように、翻訳により冠詞が追加された場合、本開示は、これらの冠詞の後に続く名詞が複数形であることを含んでもよい。
 本開示で使用する「判断(determining)」、「決定(determining)」という用語は、多種多様な動作を包含する場合がある。「判断」、「決定」は、例えば、判定(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up、search、inquiry)(例えば、テーブル、データベース又は別のデータ構造での探索)、確認(ascertaining)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などした事を「判断」「決定」したとみなす事を含み得る。つまり、「判断」「決定」は、何らかの動作を「判断」「決定」したとみなす事を含み得る。また、「判断(決定)」は、「想定する(assuming)」、「期待する(expecting)」、「みなす(considering)」などで読み替えられてもよい。
 本開示において、「AとBが異なる」という用語は、「AとBが互いに異なる」ことを意味してもよい。なお、当該用語は、「AとBがそれぞれCと異なる」ことを意味してもよい。「離れる」、「結合される」などの用語も、「異なる」と同様に解釈されてもよい。
 以上、本開示について詳細に説明したが、当業者にとっては、本開示が本開示中に説明した実施形態に限定されるものではないということは明らかである。本開示は、請求の範囲の記載により定まる本開示の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本開示の記載は、例示説明を目的とするものであり、本開示に対して何ら制限的な意味を有するものではない。
 10 無線通信システム
 20 NG-RAN
 25 TSC GM
 30 5GC
 35 UPF
 40 IoTデバイス
 100 gNB
 110 CU
 111 ネットワーク接続部
 113 DU接続部
 115 遅延補償制御部
 117 メッセージ送受信部
 119 システム情報送信部
 120 DU
 121 無線送信部
 123 無線受信部
 124 CU接続部
 125 遅延補償制御部
 126 RA処理部
 127 時刻情報処理部
 128 メッセージ送受信部
 200 UE
 1001 プロセッサ
 1002 メモリ
 1003 ストレージ
 1004 通信装置
 1005 入力装置
 1006 出力装置
 1007 バス

Claims (5)

  1.  規定のメッセージまたは応答を送受信する送受信部と、
     前記メッセージまたは応答の受信に応じて、端末との伝搬遅延を取得し、伝搬遅延補償を実行する制御部と
    を備え、
     前記伝搬遅延補償は、前記端末側の通信ユニットまたはネットワーク側の通信ユニットにおいて実行される無線基地局。
  2.  無線信号を送受信する送受信部と、
     前記無線信号の受信と送信との時間差に基づいて端末との伝搬遅延を取得し、伝搬遅延補償を実行する制御部と
    を備え、
     前記伝搬遅延補償は、前記端末側の通信ユニットにおいて実行される無線基地局。
  3.  端末の識別情報を含む時刻情報の制御メッセージを受信する受信部と、
     前記識別情報と対応付けられた前記端末との伝搬遅延に基づいて調整された前記時刻情報を送信する送信部と
    を備える無線基地局。
  4.  端末の識別情報を含む時刻情報の制御メッセージを受信する受信部と、
     前記識別情報と対応付けられた前記端末との伝搬遅延補償を実行したか否かを示す補償情報を含む応答メッセージを送信する送信部と
    を備える無線基地局。
  5.  システム内において用いられる時刻情報を含むシステム情報または下りリンクに関するメッセージを送信する送信部と、
     端末との伝搬遅延補償の前記端末への指示の要否を前記システム情報または前記メッセージに含める制御部と
    を備える無線基地局。
PCT/JP2020/037465 2020-10-01 2020-10-01 無線基地局 WO2022070391A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202080105630.9A CN116458264A (zh) 2020-10-01 2020-10-01 无线基站
JP2022553381A JPWO2022070391A5 (ja) 2020-10-01 無線基地局および無線通信方法
PCT/JP2020/037465 WO2022070391A1 (ja) 2020-10-01 2020-10-01 無線基地局
US18/247,166 US20230370991A1 (en) 2020-10-01 2020-10-01 Radio base station

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/037465 WO2022070391A1 (ja) 2020-10-01 2020-10-01 無線基地局

Publications (1)

Publication Number Publication Date
WO2022070391A1 true WO2022070391A1 (ja) 2022-04-07

Family

ID=80950107

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/037465 WO2022070391A1 (ja) 2020-10-01 2020-10-01 無線基地局

Country Status (3)

Country Link
US (1) US20230370991A1 (ja)
CN (1) CN116458264A (ja)
WO (1) WO2022070391A1 (ja)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200033627A (ko) * 2018-09-20 2020-03-30 콘텔라 주식회사 분산형 기지국 시스템에서 프론트홀 구간의 지연 측정 및 보정 장치 및 방법
WO2020081062A1 (en) * 2018-10-16 2020-04-23 Nokia Technologies Oy Wireless network support for ieee tsn based industrial automation

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "Propagation Delay Compensation Enhancements for Time Synchronization", 3GPP DRAFT; R1-2005517, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Electronic meeting; 20200817 - 20200828, 8 August 2020 (2020-08-08), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051917526 *
NOKIA, NOKIA SHANGHAI BELL: "Discussion on enhancements for support of propagation delay compensation for accurate time synchronization", 3GPP DRAFT; R2-2006922, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Online; 20200817 - 20200828, 6 August 2020 (2020-08-06), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051910883 *
OPPO: "Consideration of TSN time synchronization enhancements", 3GPP DRAFT; R2-2007141, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. electronic; 20200817 - 20200828, 7 August 2020 (2020-08-07), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051911962 *
QUALCOMM INCORPORATED: "Propagation Delay Compensation for Reference Timing Delivery", 3GPP DRAFT; R2-2006906, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Electronic; 20200817 - 20200828, 7 August 2020 (2020-08-07), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051911781 *
ZTE CORPORATION, SANECHIPS, CHINA SOUTHERN POWER GRID CO., LTD: "Enhancements for time synchronization in TSN", 3GPP DRAFT; R2-2006831, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. E-meeting; 20200817 - 20200828, 7 August 2020 (2020-08-07), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051911731 *

Also Published As

Publication number Publication date
CN116458264A (zh) 2023-07-18
US20230370991A1 (en) 2023-11-16
JPWO2022070391A1 (ja) 2022-04-07

Similar Documents

Publication Publication Date Title
CN112956280B (zh) 用户装置以及基站装置
WO2020144783A1 (ja) 端末及び通信方法
JP7482883B2 (ja) 端末、通信システム、及び通信方法
JP7343591B2 (ja) 端末及び通信方法
WO2020166047A1 (ja) ユーザ装置、及び制御方法
WO2020166046A1 (ja) ユーザ装置、及び制御方法
JP7553198B2 (ja) 端末、通信方法及び無線通信システム
WO2021149110A1 (ja) 端末及び通信方法
CN114375588B (zh) 终端和通信方法
US20230328721A1 (en) Terminal
JPWO2020174947A1 (ja) 端末及び通信方法
US20240121736A1 (en) Terminal and radio base station
EP4102908A1 (en) Terminal and communication method
WO2021161481A1 (ja) 端末
WO2022070391A1 (ja) 無線基地局
CN115136716A (zh) 终端及通信方法
WO2020144786A1 (ja) 端末及び通信方法
WO2020090095A1 (ja) ユーザ装置
CN114503727A (zh) 终端和通信方法
JPWO2020161907A1 (ja) ユーザ装置
WO2022034669A1 (ja) 端末
JP7552992B2 (ja) 端末、通信システム及び通信方法
WO2021251439A1 (ja) 端末
WO2022153515A1 (ja) 端末及び通信方法
WO2022153422A1 (ja) 端末及び通信方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20956319

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022553381

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202080105630.9

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20956319

Country of ref document: EP

Kind code of ref document: A1