WO2022070350A1 - Processing system - Google Patents

Processing system Download PDF

Info

Publication number
WO2022070350A1
WO2022070350A1 PCT/JP2020/037295 JP2020037295W WO2022070350A1 WO 2022070350 A1 WO2022070350 A1 WO 2022070350A1 JP 2020037295 W JP2020037295 W JP 2020037295W WO 2022070350 A1 WO2022070350 A1 WO 2022070350A1
Authority
WO
WIPO (PCT)
Prior art keywords
module
spindle
machining
modules
work
Prior art date
Application number
PCT/JP2020/037295
Other languages
French (fr)
Japanese (ja)
Inventor
鉄平 根深
尚一 杉山
和雅 高野
デイビッド ウェリング
リチャード シャーレス
サイモン レーカーズ
Original Assignee
株式会社牧野フライス製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社牧野フライス製作所 filed Critical 株式会社牧野フライス製作所
Priority to PCT/JP2020/037295 priority Critical patent/WO2022070350A1/en
Priority to PCT/JP2021/036351 priority patent/WO2022071551A1/en
Priority to PCT/JP2021/036352 priority patent/WO2022071552A1/en
Priority to PCT/JP2021/036350 priority patent/WO2022071550A1/en
Priority to PCT/JP2021/036356 priority patent/WO2022071554A1/en
Priority to PCT/JP2021/036359 priority patent/WO2022071555A1/en
Priority to PCT/JP2021/036354 priority patent/WO2022071553A1/en
Publication of WO2022070350A1 publication Critical patent/WO2022070350A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q1/00Members which are comprised in the general build-up of a form of machine, particularly relatively large fixed members
    • B23Q1/25Movable or adjustable work or tool supports
    • B23Q1/44Movable or adjustable work or tool supports using particular mechanisms
    • B23Q1/50Movable or adjustable work or tool supports using particular mechanisms with rotating pairs only, the rotating pairs being the first two elements of the mechanism
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23DPLANING; SLOTTING; SHEARING; BROACHING; SAWING; FILING; SCRAPING; LIKE OPERATIONS FOR WORKING METAL BY REMOVING MATERIAL, NOT OTHERWISE PROVIDED FOR
    • B23D79/00Methods, machines, or devices not covered elsewhere, for working metal by removal of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P23/00Machines or arrangements of machines for performing specified combinations of different metal-working operations not covered by a single other subclass
    • B23P23/04Machines or arrangements of machines for performing specified combinations of different metal-working operations not covered by a single other subclass for both machining and other metal-working operations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q1/00Members which are comprised in the general build-up of a form of machine, particularly relatively large fixed members
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q1/00Members which are comprised in the general build-up of a form of machine, particularly relatively large fixed members
    • B23Q1/25Movable or adjustable work or tool supports
    • B23Q1/26Movable or adjustable work or tool supports characterised by constructional features relating to the co-operation of relatively movable members; Means for preventing relative movement of such members
    • B23Q1/40Movable or adjustable work or tool supports characterised by constructional features relating to the co-operation of relatively movable members; Means for preventing relative movement of such members using ball, roller or wheel arrangements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q1/00Members which are comprised in the general build-up of a form of machine, particularly relatively large fixed members
    • B23Q1/25Movable or adjustable work or tool supports
    • B23Q1/44Movable or adjustable work or tool supports using particular mechanisms
    • B23Q1/48Movable or adjustable work or tool supports using particular mechanisms with sliding pairs and rotating pairs
    • B23Q1/4804Movable or adjustable work or tool supports using particular mechanisms with sliding pairs and rotating pairs a single rotating pair followed perpendicularly by a single sliding pair
    • B23Q1/4819Movable or adjustable work or tool supports using particular mechanisms with sliding pairs and rotating pairs a single rotating pair followed perpendicularly by a single sliding pair followed perpendicularly by a single sliding pair
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q1/00Members which are comprised in the general build-up of a form of machine, particularly relatively large fixed members
    • B23Q1/25Movable or adjustable work or tool supports
    • B23Q1/44Movable or adjustable work or tool supports using particular mechanisms
    • B23Q1/50Movable or adjustable work or tool supports using particular mechanisms with rotating pairs only, the rotating pairs being the first two elements of the mechanism
    • B23Q1/52Movable or adjustable work or tool supports using particular mechanisms with rotating pairs only, the rotating pairs being the first two elements of the mechanism a single rotating pair
    • B23Q1/522Movable or adjustable work or tool supports using particular mechanisms with rotating pairs only, the rotating pairs being the first two elements of the mechanism a single rotating pair which is perpendicular to the working surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q1/00Members which are comprised in the general build-up of a form of machine, particularly relatively large fixed members
    • B23Q1/25Movable or adjustable work or tool supports
    • B23Q1/44Movable or adjustable work or tool supports using particular mechanisms
    • B23Q1/56Movable or adjustable work or tool supports using particular mechanisms with sliding pairs only, the sliding pairs being the first two elements of the mechanism
    • B23Q1/60Movable or adjustable work or tool supports using particular mechanisms with sliding pairs only, the sliding pairs being the first two elements of the mechanism two sliding pairs only, the sliding pairs being the first two elements of the mechanism
    • B23Q1/62Movable or adjustable work or tool supports using particular mechanisms with sliding pairs only, the sliding pairs being the first two elements of the mechanism two sliding pairs only, the sliding pairs being the first two elements of the mechanism with perpendicular axes, e.g. cross-slides
    • B23Q1/621Movable or adjustable work or tool supports using particular mechanisms with sliding pairs only, the sliding pairs being the first two elements of the mechanism two sliding pairs only, the sliding pairs being the first two elements of the mechanism with perpendicular axes, e.g. cross-slides a single sliding pair followed perpendicularly by a single sliding pair
    • B23Q1/626Movable or adjustable work or tool supports using particular mechanisms with sliding pairs only, the sliding pairs being the first two elements of the mechanism two sliding pairs only, the sliding pairs being the first two elements of the mechanism with perpendicular axes, e.g. cross-slides a single sliding pair followed perpendicularly by a single sliding pair followed perpendicularly by a single sliding pair
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q11/00Accessories fitted to machine tools for keeping tools or parts of the machine in good working condition or for cooling work; Safety devices specially combined with or arranged in, or specially adapted for use in connection with, machine tools
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q17/00Arrangements for observing, indicating or measuring on machine tools
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q37/00Metal-working machines, or constructional combinations thereof, built-up from units designed so that at least some of the units can form parts of different machines or combinations; Units therefor in so far as the feature of interchangeability is important
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q39/00Metal-working machines incorporating a plurality of sub-assemblies, each capable of performing a metal-working operation
    • B23Q39/04Metal-working machines incorporating a plurality of sub-assemblies, each capable of performing a metal-working operation the sub-assemblies being arranged to operate simultaneously at different stations, e.g. with an annular work-table moved in steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q41/00Combinations or associations of metal-working machines not directed to a particular result according to classes B21, B23, or B24
    • B23Q41/02Features relating to transfer of work between machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q41/00Combinations or associations of metal-working machines not directed to a particular result according to classes B21, B23, or B24
    • B23Q41/04Features relating to relative arrangements of machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q7/00Arrangements for handling work specially combined with or arranged in, or specially adapted for use in connection with, machine tools, e.g. for conveying, loading, positioning, discharging, sorting
    • B23Q7/04Arrangements for handling work specially combined with or arranged in, or specially adapted for use in connection with, machine tools, e.g. for conveying, loading, positioning, discharging, sorting by means of grippers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P21/00Machines for assembling a multiplicity of different parts to compose units, with or without preceding or subsequent working of such parts, e.g. with programme control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q7/00Arrangements for handling work specially combined with or arranged in, or specially adapted for use in connection with, machine tools, e.g. for conveying, loading, positioning, discharging, sorting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J5/00Manipulators mounted on wheels or on carriages

Definitions

  • the present invention relates to a machining system including a spindle module and a table module, and the layout of the module can be changed.
  • a robot arm or a gantry loader traveling on a rail has been used to automate such work transfer and setup change.
  • Such a conventional automation system requires a large investment and requires a dedicated design of a production line. Therefore, it takes a long time and a large amount of money to change the production line when changing the model of the product or the design of the parts.
  • Patent Document 1 and Non-Patent Document 1 describe a modularized manufacturing system in which a production facility or a CNC processing machine is mounted on a hexagonal module base or cell.
  • Patent Document 1 and Non-Patent Document 1 describe the concept of constructing a manufacturing system using a hexagonal module base or cell, but it is not clear what kind of manufacturing system it is.
  • An object of the present invention is to provide a machining system in which the layout of a spindle module and a table module can be easily changed according to the type and number of workpieces to be machined and the situation of a bottleneck in a production line.
  • a machining system including at least one machining module for machining the work by relatively moving the tool and the work, the machining module tip the tool.
  • a spindle module having a spindle extending along a predetermined axis mounted on a portion, a table module having a table for fixing the work, and a coupler for connecting and separating the spindle module and the table module are provided.
  • a machining system is provided that has a self-propelled module base in which at least one module of the spindle module and the table module can travel along a floor surface.
  • the machining module separates the spindle module to which the tool is mounted and the table module for fixing the work, and at least one of the spindle module and the table module can run on its own.
  • the module layout can be easily changed to reconfigure the optimum processing system in a short time and at low cost.
  • FIG. 1 It is a perspective view of the processing module which comprises the spindle module and the table module by embodiment of this invention. It is a top view which looked at the processing module of FIG. 1 in the vertical direction. It is the same perspective view as FIG. 1 which shows the modification of the processing module. It is a schematic sectional drawing of a coupler. It is a perspective view which shows the processing system which includes three processing modules. It is a top view which looked at the processing system of FIG. 5 in the vertical direction. It is a schematic diagram which shows an example of a work gripper. It is a schematic perspective view of the work gripping tool attached to the tip of a spindle. It is a perspective view of the processing system which attached the work gripping tool to the tip of a spindle.
  • FIG. 9 It is a perspective view of the processing system of FIG. 9 during work transfer. It is a top view which shows the module layout of another processing system. It is a top view which shows the module layout of the other processing system. It is a top view which shows the module layout of the other processing system. It is a top view which shows the module layout of the other processing system. It is a schematic diagram which shows the large-scale processing system. It is a flowchart which shows the operation of a processing system. It is a perspective view of a tool magazine module.
  • a machining system for machining a work includes at least one machining module 10.
  • the machining module 10 includes a spindle module 100 and a table module 200.
  • the spindle module 100 and the table module 200 each include control devices 122 and 216 capable of wireless communication with a machining system control device 300 which is a higher-level control device, and the machining module 10 is controlled by the machining system control device 300.
  • Wireless communication can typically be a wireless LAN. Wired communication may be adopted instead of wireless communication.
  • the spindle module 100 includes a spindle module base 102.
  • a plurality of wheels 104 are arranged on the bottom surface of the spindle module base 102.
  • the spindle module 100 includes a wheel drive motor that rotationally drives at least one wheel 104 of a plurality of wheels 104, and a steering motor (not shown) that rotates the at least one wheel 104 around a vertical axis.
  • the spindle module base 102 can run on the floor surface of the factory.
  • a method of providing a plurality of wheel drive motors and changing the rotation speed between the wheel drive motors to steer may be adopted. Further, the spindle module 100 may be fixed to the floor without having wheels for traveling.
  • a column base 106 is rotatably supported on the upper surface of the spindle module base 102 in the B S axis direction, which is a rotary feed shaft around the vertical axis O VS.
  • the spindle module base 102 includes a bearing (not shown) that rotatably supports the column base 106 in the B S axis direction, and the column base 106 includes a shaft portion (not shown) that fits the bearing. Can be done.
  • the spindle module base 102 includes a B S -axis servomotor (not shown) that rotationally feeds the column base 106 in the B S -axis direction, and a rotary encoder (not shown) that rotates the column base 106 in the B S -axis direction.
  • a rotary position detector that detects the position can be provided.
  • the contour of the spindle module 100 projected onto a plane perpendicular to the vertical direction is at least partially hexagonal.
  • This hexagonal contour is formed by the oil pan 124.
  • the oil pan 124 is arranged and fixed below the column base 106 on the outer peripheral surface of the spindle module base 102.
  • the oil pan 124 has dimensions that form the hexagonal outer shape of the spindle module 100 when viewed from above or below along the vertical axis OVS . That is, when viewed in the direction of the vertical axis O VS , the oil pan 124 has a hexagonal shape having a size larger than the external dimension of the spindle module base 102.
  • a column 108 is attached to the upper surface of the column base 106.
  • the column 108 can be a gantry column having an opening 108a penetrating in the front-rear direction (Z-axis direction).
  • a pair of left and right Y-axis guide rails 140 extending in the vertical direction (Y-axis direction) are fixed to the front surface 108b of the column 108.
  • a saddle 110 is arranged on the front surface of the column 108 so as to be movable in the vertical direction along the Y-axis guide rail 140.
  • the column 108 includes a Y-axis feed device that drives the saddle 110 in the vertical direction along the Y-axis guide rail 140.
  • the Y-axis feed device includes a ball screw (not shown) extending in the Y-axis direction and a Y-axis servomotor (not shown) connected to one end of the ball screw, and the saddle 110 has a saddle 110.
  • a nut (not shown) that engages the ball screw is attached.
  • the column 108 includes a position detector that detects a coordinate position in the Y-axis direction such as a digital scale, or an angle detector such as a rotary encoder attached to a Y-axis servomotor, and the saddle 110 is provided from the angle of the servomotor.
  • the coordinate position in the Y-axis direction can be detected.
  • a spindle head 114 that rotatably supports the spindle 112 about an axis OS extending in the front-rear direction (Z-axis direction) is attached to the saddle 110.
  • the spindle head 114 is attached to the saddle 110 so as to be movable in the front-rear direction.
  • the saddle 110 includes a Z-axis guide rail (not shown) that guides the spindle head 114 in the front-rear direction, and a Z-axis feed device that drives the spindle head 114 in the front-rear direction along the Z-axis guide rail.
  • the Z-axis feed device includes a ball screw (not shown) extending in the Z-axis direction and a Z-axis servomotor (not shown) connected to one end of the ball screw, and the spindle head 114 has a spindle head 114. , A nut (not shown) that engages the ball screw is attached.
  • the saddle 110 includes a position detector such as a digital scale that detects a coordinate position in the Z-axis direction, or an angle detector such as a rotary encoder attached to a Z-axis servomotor, and has a spindle from the angle of the servomotor. The coordinate position of the head 114 in the Z-axis direction can be detected.
  • the spindle module 100 has two linear feed shafts , Y-axis and Z-axis, and one rotary feed shaft BS, but the present invention is not limited thereto.
  • the column 108 is placed horizontally along the X axis guide rail 142 along the Y axis and the Z axis. It is equipped with an X-axis feed device that feeds linearly in the direction (horizontal direction).
  • the X-axis feed device includes a ball screw (not shown) extending in the X-axis direction and an X-axis servomotor (not shown) connected to one end of the ball screw. A nut (not shown) that engages the ball screw is attached.
  • the column base 106 includes a position detector such as a digital scale that detects a coordinate position in the X-axis direction, or an angle detector such as a rotary encoder attached to an X-axis servomotor from the angle of the servomotor. The coordinate position of the column 108 in the X-axis direction can be detected.
  • the same reference numerals are given to the same components as those in FIG.
  • the spindle head 114 is a hollow member that houses the spindle 112, and includes a bearing that rotatably supports the spindle 112 around the axis OS.
  • the spindle head 114 can include a spindle servomotor (not shown) that rotationally drives the spindle 112 around the axis OS.
  • the spindle servo motor may be attached to the rear end of the spindle head 114.
  • the spindle head 114 can also include a rotation detector such as a rotary encoder (not shown) that detects the rotational speed of the spindle 112.
  • a tapered hole (not shown) for mounting the tool T is formed at the tip of the spindle 112.
  • the tool T can be a rotary tool such as an end mill or a drill.
  • the tool T can be attached to the tip of the spindle 112 via a tool holder (not shown).
  • the tool holder had a two-sided restraint type tool holder compliant with the HSK standard having a taper shank inserted into the taper hole of the spindle 112, and a 7/24 taper shank shape as specified by ISO 7388. It can be a tool holder.
  • the spindle 112 includes a tool fixing device (not shown) that pulls the tool T along the axis OS toward the rear end of the spindle 112 and fixes the tool T to the tip of the spindle 112.
  • the tool fixing device is a drawbar (not shown) that can be engaged with and detached from the taper shank (pull stud (not shown) provided on the inner surface of the taper shank or the taper shank) of the tool holder mounted in the tapered hole.
  • a disc spring (not shown) that urges the drawbar toward the rear end of the spindle 112, a fluid pressure cylinder or electric motor that drives the drawbar urged toward the rear end of the spindle 112 by the disc spring toward the tip of the spindle 112.
  • Drawbar drives such as motors can be included.
  • a tool magazine 116 is arranged at the top of the column 108.
  • the tool magazine 16 holds a plurality of tools T interchangeably with respect to the spindle 112.
  • the tool magazine 116 has a plurality of tool grip portions (not shown) arranged along an arc centered on a rotation axis OM parallel to the Z axis, and the tool grip portions. It is equipped with an indexing motor 120 that rotates on the rotation axis OM .
  • the tool magazine 116 holds a plurality of tools T so that the central axis OT of the tools T to be held is parallel to the Z axis.
  • the tool is not used between the spindle 112 and the tool magazine 116 by the indexing operation of the tool magazine 116 by the linear feeding device for the Y-axis and the Z-axis of the spindle 112 and the indexing motor 120. Can be exchanged directly with.
  • the table module 200 includes a table module base 202.
  • a plurality of wheels 204 are arranged on the bottom surface of the table module base 202.
  • the table module 200 includes a wheel drive motor that rotationally drives at least one wheel 204 of a plurality of wheels 204, and a steering motor (not shown) that rotates the at least one wheel 204 about a vertical axis.
  • the table module base 202 can run on the floor of the factory.
  • a method of providing a plurality of wheel drive motors and changing the rotation speed between the wheel drive motors to steer may be adopted.
  • the table module 200 may be fixed to the floor without having wheels for traveling. When at least one of the spindle module 100 and the table module 200 is fixed to the floor, the stability of the machining module 10 in which both modules 100 and 200 are combined becomes high.
  • a rotary table 210 is rotatably supported in the B T axis direction, which is a rotary feed axis around the vertical axis O VT . More specifically, a plurality of legs 206 project from the upper surface of the table module base 202, the table base 208 is fixed to the upper end of the legs 206, and the rotary table 210 is placed on the upper surface of the table base 208 in the B T axis direction. It is rotatably supported.
  • the table base 208 may include a bearing (not shown) that rotatably supports the rotary table 210 in the BT axis direction, and the rotary table 210 may include a shaft portion (not shown) that fits into the bearing. can.
  • the table base 208 includes a B T -axis servomotor (not shown) that rotates and feeds the rotary table 210 in the B T -axis direction, and a rotary position of the rotary table 210 such as a rotary encoder (not shown) in the B T -axis direction. It can be equipped with a rotation position detector to detect.
  • a work fixing device (not shown) is provided on the upper surface of the rotary table 210, and the work W can be attached and detached.
  • the work W may be attached to the rotary table 210 via a pallet, and the pallet may have an engaging portion on the lower surface thereof with which a pallet fixing device (not shown) of the rotary table 210 is engaged.
  • the contour of the table module 200 projected onto a plane perpendicular to the vertical direction is at least partially hexagonal. This hexagonal contour is formed by the oil pan 214.
  • the oil pan 214 is attached to the leg 206 between the end portion (lower end portion) fixed to the table module base 202 and the end portion (upper end portion) to which the table base 208 is fixed.
  • the oil pan 214 has dimensions that form the hexagonal outer shape of the table module 200 when the table module 200 is viewed from above or below along the vertical axis OVT . That is, when viewed in the direction of the vertical axis OVT , the oil pan 214 has a hexagonal shape having a dimension larger than the external dimension of the table module base 202.
  • the oil pan 124 of the spindle module 100 and the oil pan 214 of the table module are arranged at different heights, but they may be arranged at the same height.
  • the contours of the spindle module 100 and the table module 200 hexagonal in this way, an efficient module layout without dead space becomes possible. Further, by forming the hexagonal contours of the spindle module 100 and the table module 200 with the same dimensions, the modules can be easily replaced. By forming the hexagonal contours of the spindle module 100 and the table module 200 with the oil pans 124 and 214, the oil pans can be arranged without gaps in the processing space of the factory or the like, and the floor surface of the factory or the like is cut. Prevents dirt from getting dirty with liquids and chips.
  • the machining module 10 further includes couplers 126 and 218 that connect and separate the spindle module 100 and the table module 200.
  • the coupler includes one first coupler 126 provided on the spindle module 100 and one or more second couplers 218 provided on the table module 200. When the first and second couplers 126 and 218 are connected, the connector (not shown) and the cable (not shown) that connect the control device 122 of the spindle module 100 and the control device 216 of the table module 200 are connected. Can be provided.
  • the first coupler 126 includes a first coupler body 128 coupled to the spindle module base 102 and a clamp device 130. have.
  • the first coupler 126 also has a proximity sensor 138 provided on the first coupler body 128.
  • the first coupler body 128 is composed of a member having a tapered cone 128b protruding forward along the horizontal center axis OC1 from the plane 128a.
  • the tapered cone 128b typically has a conical shape in which the radius gradually decreases from the plane 128a toward the tip along the central axis OC1 .
  • the ball collet 132 is reciprocally inserted into the hollow hole 128a along the central axis O c1 , and the base end portion of the ball collet 132 forms the piston 132a.
  • a hollow hole 132c is formed on the tip end side of the ball collet 132. Cylinder chambers 128c and 128d are provided in the first coupler 128 before and after the piston, respectively.
  • the ball collet 132 In the ball collet 132, two through holes 132b orthogonal to each other are formed in a direction perpendicular to the central axis O c1 , and a total of four balls 134 are held.
  • the outer diameter of the ball 134 is larger than the thickness of the tube of the ball collet 132, and the inner diameter of the through hole 132b on the hollow hole 132c side is slightly smaller than the outer diameter of the ball 134 so that the ball 134 does not fall into the hollow hole 132c. It has become.
  • the open end of the hollow hole 128a of the coupler main body 128 has the shape of a tapered hole 128e whose inner diameter decreases toward the inner back, and becomes a straight hole after passing the open end.
  • the cylinder chambers 128c and 128d are arranged further inside the hollow hole 128a.
  • Two ball collets 132 are arranged in the first coupler main body 128 at predetermined intervals in the horizontal direction.
  • the second coupler 218 has a second coupler body 220 coupled to the table module base 202 and having tapered holes 218b formed along the horizontal center axis OC2 from the end face 218a.
  • the taper hole 218b is formed in a complementary shape to the taper cone 128b of the first coupler 126.
  • the second coupler body 220 is attached to the inner part of the tapered hole 218b and has a pull stud 224 extending along the central axis OC2 toward the end face 218a side.
  • the second coupler main body 220 has two tapered holes 218b and two pull studs 224 in the horizontal direction at the same intervals as the predetermined intervals of the two ball collets 132 in the horizontal direction.
  • the clamp device 130 includes a ball collet 132 extending along the central axis O c1 in the hollow hole 128a in the first coupler main body 128, and a plurality of clamp devices 130 provided in front of the ball collet 132 so as to be engageable with the pull stud 224. Including balls 134 and.
  • the clamping device 130 can further include a fluid pressure or electric pressing device that pulls the ball collet 132 inward along the central axis OC1 and presses it outward.
  • the fluid pressure type will be described.
  • the spindle module 100 and the table module 200 In order to connect the spindle module 100 and the table module 200, the spindle module 100 and the table module so that the center axis OC1 of the first coupler 126 and the center axis OC2 of the second coupler 218 match. 200 and 200 are arranged relative to each other. Next, the spindle module 100 and the table module 200 are relatively moved in the approaching direction along the central axis Oc. In this way, after fitting the tapered cone 128b of the first coupler 126 into the tapered hole 218b of the second coupler 218, the ball collet 134 of the clamping device 130 is engaged with the pull stud 224 to add the cylinder chamber 128c.
  • the flat surface 128a of the first coupler body 128 and the end surface 218a of the second coupler body 220 come into contact with each other, and the tapered cone 218b is brought into contact with each other.
  • the first and second coupler bodies 128 and 220 are fixed to each other in close contact with the tapered hole 218b. As a result, the spindle module 100 and the table module 200 are coupled to each other.
  • the first and second coupler main bodies 128 and 220 are provided with two tapered cones 128b and two ball collets 132, and two tapered holes 218b and two pull studs 224, respectively.
  • the coupling rigidity can be further increased by providing the pieces one by one and engaging them at four points.
  • the cylinder chamber 128d is pressurized to push the ball collet 132 forward. Then, the ball 134 moves forward, and the ball 134 can move outward in the radial direction along the tapered hole 128e.
  • the spindle module 100 and the table module 200 are relatively separated along the central axis Oc, the ball collet 132 and the pull stud 224 are disengaged, and the first and second coupler main bodies are disengaged. 128. 220 are separated from each other.
  • the proximity sensor 138 detects the seating and separation of the first and second coupler bodies 128 and 220.
  • the central axis OC is the vertical axis O VS , which is the center of rotation of the rotary feed axis B S of the column base 106 of the spindle module 100, and the table module when the machining module 10 is projected onto a plane perpendicular to the vertical direction. It corresponds to a straight line connecting the vertical axis O VT which is the rotation center of the rotation feed axis BT of the rotation table 210 of 200.
  • the oil pans 126 and 214 forming a contour in which each of the spindle module 100 and the table module 200 is projected onto a plane perpendicular to the vertical direction are common.
  • the shape is such that one side of each hexagonal shape coincides with the straight line L.
  • the straight line L is perpendicular to the common center axis OC of the spindle module 100 and the table module 200.
  • the common center axis OC coincides with the Z axis when the column base 106 is in the home position.
  • the control device 122 of the spindle modules 100 and 100' is a spindle 112 (spindle servomotor) of the spindle modules 100 and 100', a feed device (X-axis servomotor, Y-axis servomotor, Z-axis servomotor), and a column base 106 ( B S axis servomotor), wheels 104 (drive motor and steering motor), clamp device 130 (pressing device for ball collet 132) of coupler 126, and other peripherals attached to spindle module 100 (shown).
  • spindle 112 spindle servomotor
  • a feed device X-axis servomotor, Y-axis servomotor, Z-axis servomotor
  • B S axis servomotor a column base 106
  • wheels 104 drive motor and steering motor
  • clamp device 130 pressing device for ball collet 132 of coupler 126
  • other peripherals attached to spindle module 100 shown.
  • the control device 216 of the table module 200 controls the rotary table 210 ( BT axis servomotor), the wheels 204 (wheel drive motor and steering motor), and other peripheral devices (not shown) attached to the table module 200. do.
  • the control device 122 of the spindle modules 100, 100'or the control device 216 of the table module 200 rotates the spindle 112, the feeder, the column base 106, and the rotation.
  • Table 210 and other peripherals may be controlled.
  • the control devices 122 and 216 are configured to enable wireless communication with the processing system control device 300, which is a higher-level control device.
  • the control device 122 of the spindle modules 100 and 100'and the control device 216 of the table module 200 process the work W based on the control signal received from the processing system control device 300 through wireless communication.
  • Information related to the coordinate values of the feed axis of the spindle modules 100 and 100', the rotation speed of the spindle 112, the rotation position of the rotary table 210 of the table module 200, etc. is wirelessly transmitted from the control devices 122 and 216 for monitoring the operating status. It can be transmitted to the processing system control device 300 through communication.
  • a machining program is transmitted from the machining system control device 300 to the control devices 122 of the spindle modules 100 and 100'to construct a closed control system in the machining modules 10 and 10'for each machining process. May be good.
  • the machining system control device 300 can further reconfigure the machining system in order to optimize the machining process according to the machining and production schedule required for the workpiece.
  • the machining modules 10, 10' include one spindle module 100, 100' and one table module 200.
  • the present invention is not limited to this, and the machining system can be configured by a plurality of machining modules.
  • the machining system 20 shown in FIGS. 5 and 6 is composed of three machining modules 10-1, 10-2, and 10-3. Each of the machining modules 10-1, 10-2, 10-3 has one spindle module 100-1, 100-2, 100-3 and the spindle module 100-1, as in the case of the machining module 10, 10'. It is composed of one table module 200-1, 200-2, 200-3 coupled to each of 100-2 and 100-3.
  • Each of the machining modules 10-1, 10-2, and 10-3 is separated into the workpieces W-1, W-2, and W-3 fixed to the table modules 200-1, 200-2, and 200-3. Machining is performed and one machining process is executed as a whole. More specifically, the workpieces W-1, W-2, and W-3 have the adjacent table module 200 from the first table module 200-1 to the last table module 200-3, as indicated by the arrow P. It is sequentially transferred to -1, 200-2, and 200-3, and during that time, it is sequentially processed by the spindle modules 100-1, 100-2, and 100-3. This makes it possible to optimize the machining process, increase productivity, and perform various machining on the workpiece.
  • the workpieces W-1, W-2, and W-3 are sequentially transferred to the adjacent table modules 200-1, 200-2, and 200-3, so that the machining modules 10-1 and 10 are transferred to the adjacent table modules 200-1, 200-2, and 200-3.
  • Each of -2, 10-3 can be provided with a work gripping tool 150 as shown in FIG. 7 as an example.
  • the work gripping tool 150 has a main body 152 having a central axis OG that is in line with the central axis OS of the main shaft 112 when mounted on the main shaft 112, and hands 154a and 154b protruding axially from the main shaft 152. I have.
  • the work gripping tool 150 further includes a tapered portion 156 formed so as to extend axially from the main body 152 to the side opposite to the hands 154a and 154b and to fit into the tapered hole of the main shaft 112.
  • the tapered portion 156 can be formed in the same manner as the tapered shank of the tool holder mounted in the tapered hole of the spindle 112. As shown in FIG. 8, the work gripping tool 150 of the example of FIG. 7 can be attached to the tip end portion of the spindle 112.
  • the main body 152 of the work gripping tool 150 When the main body 152 of the work gripping tool 150 is attached to the spindle 112, for example, one of the hands 154a and 154b approaches and separates from the other hand 154b and 154a by using the rotary feed shaft CS that rotationally indexes the spindle 112. It is equipped with a drive device (not shown). Both hands 154a and 154b may be able to approach and separate from each other. The hands 154a and 154b are inserted into the gripping holes HG formed in the work W of the spindle module 100, and the work W is held and separated by moving one or both of the hands 154a and 154b in close proximity to each other. The work W is released.
  • FIGS. 9 and 10 The transfer of the work will be described with reference to FIGS. 9 and 10.
  • two machining modules 10-1 and 10-2 are shown for convenience in order to explain the transfer of workpieces between adjacent machining modules, but the machining modules 10- on the downstream side are shown.
  • One or more machining modules may be arranged further downstream of 2, or a transport carriage for transferring the machined workpiece to a workstation described later may be arranged.
  • the workpiece gripping tool 150 is held in the tool magazine 116. Has been done.
  • the spindles of the spindle modules 100-1 and 200-2 are respectively.
  • the tool T mounted on the 112 and the work gripping tool 150 are replaced (see FIG. 9).
  • the hands 154a and 154b of the work gripping tool 150 are inserted into the gripping holes HG, and the works W-1 and W-2 are held by the work gripping tools 150 of the machining modules 10-1 and 10-2.
  • the spindle modules 100-1 and 100-2 of the machining modules 10-1 and 10-2 , the Z-axis and the BS axis of the column base 106, and the table module 200-1 , 200-2 BT axes are used to transfer the workpieces W-1 and W-2 from one machining module to the adjacent downstream machining module.
  • the transfer device for moving the work can be obtained. Not only does it eliminate the need to provide it, which reduces the cost of the machining system, but it also eliminates the need for an installation space for the transfer device for workpiece transfer.
  • the degree of freedom in module layout is increased. It is also possible to grip the work with the work gripping tool 150, invert the mounting surface, reattach the work W to the upper surface of the rotary table 210, and process the surface that has been the mounting surface until now.
  • the machining system is composed of one machining module or a plurality of machining modules arranged side by side, but the present invention is not limited thereto.
  • the machining system 30 shown in FIG. 11 has a second machining module set 20 in addition to the first machining module set 20 composed of three machining modules 10-1, 10-2, and 10-3 similar to the machining system of FIG.
  • a machining module set one additional spindle module 100-4 is provided.
  • the added additional spindle module 100-4 is coupled to the table module 200-2 of the second stage machining module 10-2 of the first machining module set.
  • machining is performed from two side surfaces with respect to one work W-2 fixed to the table module 200-2.
  • the bottleneck can be eliminated with the assistance of the additional spindle module 100-4.
  • the machining system 40 shown in FIG. 12 has two machining modules 10-4, 10-5 in addition to the first machining module set 20 composed of three machining modules 10-1, 10-2, and 10-3. It includes a second machining module set 50 made of.
  • the work W is transferred from the machining module 10-1 toward the machining module 10-3 in the first transfer direction indicated by the arrow P1.
  • the work W is transferred from the machining module 10-4 toward the machining module 10-3 in the second transfer direction indicated by the arrow P2.
  • the same machining as in the machining modules 10-1 and 10-2 of the first machining module set 20 is performed, and the machining module 10- 3 alternately receives the work W subjected to the same machining from the machining module 10-2 of the first machining module set 20 and the machining module 10-5 of the second machining module set 50. ..
  • the processing system 40 is particularly advantageous when the time required for the final process is short.
  • the machining system 60 shown in FIG. 13 has one machining as a second machining module set in addition to the first machining module set 20 composed of three machining modules 10-1, 10-2, and 10-3. It is equipped with modules 10-4.
  • the spindle module 100-4 of the added machining module 10-4 is coupled to the table module 200-2 of the second-stage machining module 10-2 of the first machining module set 20.
  • the work W is transferred from the machining module 10-1 toward the machining module 10-3 in the first transfer direction indicated by the arrow P1.
  • the machining module 10-4 constituting the second machining module set receives the work W from the second-stage machining module 10-2 of the first machining module set 20, and receives the work W from the first machining module set 20.
  • the same processing as the processing in the processing module 10-3 at the final stage of the processing module set 20 is performed. That is, the machining module 10-2 alternately transfers the work W to the two machining modules 10-3 and 10-4.
  • the processing system 40 is particularly advantageous when the time required for the final process is long.
  • the machining system 70 shown in FIG. 14 has two machining modules 10-4, 10-5 in addition to the first machining module set 20 composed of three machining modules 10-1, 10-2, and 10-3. It comprises a second machining module set 80 comprising.
  • the work W is transferred from the machining module 10-1 toward the machining module 10-3 in the first transfer direction indicated by the arrow P1.
  • the work W is transferred from the machining module 10-1 toward the machining module 10-5 in the second transfer direction indicated by the arrow P2.
  • the same machining as in the machining modules 10-2 and 10-3 of the first machining module set 20 is performed, and the machining module 10-
  • the work W machined in 1 is alternately transferred to the machining module 10-2 of the first machining module set 20 and the machining module 10-5 of the second machining module set 80.
  • the processing system 70 is particularly advantageous when the time required for the first step is short.
  • the machining module 10 is configured by the spindle module 100 and the table module 200 that are independent of each other, and the machining systems 20, 30, 40, 60, 70 are configured based on the machining module 10 to form one machining module.
  • the machining time is long and causes a wait in the machining module in the subsequent stage, the machining performed by the machining module 10-2 in the example of FIG. 11, and the machining modules 10-1, 10-2 and the machining module 10- in the example of FIG. Machining performed by 4, 10-5, machining performed by each machining module 10-3, 10-4 in the example of FIG. 13, machining modules 10-2, 10-3 and machining modules 10-4, 10 in the example of FIG.
  • the waiting of the machining module can be eliminated, the machining time of the entire machining system can be shortened, and the so-called bottleneck can be eliminated.
  • the machining time of the process of the machining module 10-1 in FIG. 6 is 4 minutes
  • the machining time of the process of the machining module 10-2 is 6 minutes
  • the machining time of the process of the machining module 10-3 is 4 minutes.
  • the waiting time of the machining module 10-1 when transferring from the module 10-1 to 10-2 is 2 minutes.
  • the waiting time of the machining module 10-3 when shifting from the machining module 10-2 to 10-3 is 2 minutes. In order to eliminate this waiting time, in FIG.
  • the spindle module 100-4 is supplemented to the machining module 10-2, the machining time of the process of the machining module 10-2 is improved to 4 minutes, and the machining times 10-1 and 10 As a result of adjusting the total processing time of -2, 10-3 to 4 minutes, the waiting time, that is, the bottleneck of production is eliminated, and the production efficiency is improved.
  • the machining modules 10-1 to 10-2 are used. There is no waiting time when transferring to, but the waiting time of the machining module 10-3 when shifting from the machining module 10-2 to 10-3 is 3 minutes.
  • machining modules 10-4 and 10-5 equivalent to the spindle modules 100-1 and 10-2 are added to the machining module 10-3. As a result, the production bottleneck has been eliminated, and the overall productivity of the processing system 40 has doubled compared to the processing system 20.
  • one machining system composed of at least one machining module 10 has been described, but the present invention is not limited to this, and constitutes a large-scale machining system including a plurality of machining systems. You can also do it.
  • the large-scale machining system 400 further includes a module station 450 that houses a spare spindle module 100 and a table module 200 that are not in use. If the spindle module 100 or table module 200 constituting the machining lines 410 or 420 fails, the failed spindle module 100 or table module 200 is self-propelled to be removed from the machining lines 410 or 420, and instead, the spindle module of the module station is removed.
  • the 100 or the table module 200 can be incorporated into the machining lines 410, 420. Further, the failed spindle module 100 or table module 200 can be self-propelled to the maintenance station 460. Further, the self-propelled spindle module 100 and the table module 200 are equipped with a battery as a power source, and the maintenance station 460 also has a battery charging facility.
  • the large-scale machining system 400 may include a tool magazine module 470 (FIG. 17) having the same contour as the spindle module 100 and the table module 200.
  • a tool magazine module 470 (FIG. 17) having the same contour as the spindle module 100 and the table module 200.
  • the machining system control device 300 can change or reconfigure the configurations of the machining lines 410 and 420 according to the required machining and production plan.
  • the machining system control device 300 is the number of spindle modules 100 and table modules 200 constituting the machining line.
  • a module layout is created, and it is confirmed by simulation whether or not the machining of the work W by the created module layout conforms to the required machining and production plan (step S12).
  • the machining system control device 300 transmits a movement command to the spindle module 100 and the table module 200 to construct the determined module layout (step S14).
  • Step S18 After the spindle module 100 and the table module 200 are moved according to the movement command in step S16, it is determined whether or not the spindle module 100 and the table module 200 are normally coupled by the first and second couplers 126 and 218. This can be done by the proximity sensor 138 of the first coupler 126. If it is not normally joined (No in step S18), the process returns to step S16, the spindle module 100 and the table module 200 are moved, and the joining operation is repeated again.
  • step S20 the combined spindle module 100 and table module 200 are calibrated in step S20.
  • calibration means establishing communication and control between modules after module coupling, and for example, attaching a ruler directly on the rotary table 210 of each table module 200 using the work transfer device 441.
  • a measurement probe (not shown) from the tool magazine 116 to the spindle 112 of each spindle module 100, measuring the spatial accuracy of the X, Y, and Z axes, and setting error correction parameters for each machining module 10. be.
  • a specific calibration method there is a method using various spatial accuracy measuring devices such as a laser length measuring device and an imaging device, and any method may be adopted.
  • step S22 the workpiece W U is repeatedly processed. While the work is being machined, it is determined whether or not the spindle module 100 and the table module 200 are operating normally (step S24). If the spindle module 100 and the table module 200 are not operating normally (No in step S24), that is, if the spindle module 100 or the table module 200 fails or operates abnormally, an abnormality occurs in step S26.
  • step S24 When the spindle module 100 and the table module 200 are operating normally (Yes in step S24), the process proceeds to step S30 to determine the presence / absence of an interrupt production command. While machining based on the current production directive is in progress, an interrupt production command that requires express machining may be issued from the machining system control device 300. If this interrupt production command is Yes, the production scheduling in step S10 will be performed again.
  • step S32 it is determined whether or not the processing of all the work W has been completed.
  • the spindle module 100 and the table module 200 wait until the next production command is issued at that position (step S34).
  • step S36 the process returns to step S10, and processing is performed under the new module layout according to the input next product required processing and production plan (step S10). It will be started.
  • Machining module 16 Tool magazine 30 Machining system 100 Main shaft module 106 Column base 108 Column 110 Saddle 112 Main shaft 116 Tool magazine 122 Control device 126 Connector 130 Clamping device 200 Table module 202 Table module base 208 Table base 210 Rotating table 210 Pallet 216 Control Device 218 Second coupler 300 Machining system control device

Abstract

A processing module (10) for performing processing of a workpiece by moving a tool (T) and a workpiece (W) relatively to each other is provided with: a spindle module (100) provided with a spindle (112) that is for mounting a tool on the lead end thereof and extends along a predetermined axis (OS); a table module (200) provided with a table (210) on which the workpiece is fixed; and connectors (126, 218) for connecting/separating the spindle module and the table module. At least one of the spindle module and the table module has a self-propelled module base (102, 202) that is capable of traveling on the floor surface.

Description

加工システムProcessing system
 本発明は、主軸モジュールとテーブルモジュールを備え、モジュールのレイアウトを変更可能にした加工システムに関する。 The present invention relates to a machining system including a spindle module and a table module, and the layout of the module can be changed.
 複数の段階を含む加工工程を実行する加工システムでは、各段階の間でワークを搬送したり、段取り替えが行われる。従来、こうしたワーク搬送や段取り替えを自動化するために、レール上を走行するロボットアームやガントリーローダーが用いられてきた。こうした従来の自動化システムでは多額の投資が必要となり、かつ、生産ラインを専用設計することが必要となる。従って、製品のモデルチェンジや部品の設計変更に際して、生産ラインを変更するために、長い時間と多額の費用を要している。 In a machining system that executes a machining process that includes multiple stages, workpieces are transported and setups are changed between each stage. Conventionally, a robot arm or a gantry loader traveling on a rail has been used to automate such work transfer and setup change. Such a conventional automation system requires a large investment and requires a dedicated design of a production line. Therefore, it takes a long time and a large amount of money to change the production line when changing the model of the product or the design of the parts.
 こうした問題を解決するために、特許文献1、非特許文献1には、生産設備やCNC加工機を六角形状のモジュールベースまたはセルに搭載して、モジュール化した製造システムが記載されている。 In order to solve these problems, Patent Document 1 and Non-Patent Document 1 describe a modularized manufacturing system in which a production facility or a CNC processing machine is mounted on a hexagonal module base or cell.
米国特許第6920973号明細書U.S. Pat. No. 6,920,973
 特許文献1および非特許文献1は、六角形状のモジュールベースまたはセルを用いて製造システムを構成するコンセプトを記載しているが、具体的にどのような製造システムであるかについては明確ではない。 Patent Document 1 and Non-Patent Document 1 describe the concept of constructing a manufacturing system using a hexagonal module base or cell, but it is not clear what kind of manufacturing system it is.
 本発明は、加工するワークの種類、数に応じ、また、生産ラインのボトルネックの状況に応じ、主軸モジュールとテーブルモジュールのレイアウトを容易に変更可能な加工システムを提供することを目的としている。 An object of the present invention is to provide a machining system in which the layout of a spindle module and a table module can be easily changed according to the type and number of workpieces to be machined and the situation of a bottleneck in a production line.
 上述の目的を達成するために、本発明によれば、工具とワークとを相対移動させて前記ワークを加工する少なくとも1つの加工モジュールを具備した加工システムにおいて、前記加工モジュールが、前記工具を先端部に装着する所定の軸線に沿って延びる主軸を備えた主軸モジュールと、前記ワークを固定するテーブルを備えたテーブルモジュールと、前記主軸モジュールと前記テーブルモジュールとを結合、分離する連結器とを具備し、前記主軸モジュールと前記テーブルモジュールの少なくとも1つのモジュールが床面に沿って走行可能な自走式モジュールベースを有する加工システムが提供される。 In order to achieve the above object, according to the present invention, in a machining system including at least one machining module for machining the work by relatively moving the tool and the work, the machining module tip the tool. A spindle module having a spindle extending along a predetermined axis mounted on a portion, a table module having a table for fixing the work, and a coupler for connecting and separating the spindle module and the table module are provided. A machining system is provided that has a self-propelled module base in which at least one module of the spindle module and the table module can travel along a floor surface.
 本発明によれば、加工モジュールが、工具を装着した主軸モジュールと、ワークを固定するテーブルモジュールとを独立させ、該主軸モジュールとテーブルモジュールの少なくとも一方を自走可能としたので、部品の設計変更や製品のモデルチェンジ、生産ラインのボトルネックの出現等に際して、容易にモジュールレイアウトを変更して、短時間かつ低コストで最適な加工システムを再構成可能となる。 According to the present invention, the machining module separates the spindle module to which the tool is mounted and the table module for fixing the work, and at least one of the spindle module and the table module can run on its own. In the event of a product model change, product line bottleneck, etc., the module layout can be easily changed to reconfigure the optimum processing system in a short time and at low cost.
本発明の実施形態による主軸モジュールとテーブルモジュールとから構成される加工モジュールの斜視図である。It is a perspective view of the processing module which comprises the spindle module and the table module by embodiment of this invention. 図1の加工モジュールを鉛直方向に見た平面図である。It is a top view which looked at the processing module of FIG. 1 in the vertical direction. 加工モジュールの変形例を示す図1と同様の斜視図である。It is the same perspective view as FIG. 1 which shows the modification of the processing module. 連結器の略示断面図である。It is a schematic sectional drawing of a coupler. 3つの加工モジュールを備えた加工システムを示す斜視図である。It is a perspective view which shows the processing system which includes three processing modules. 図5の加工システムを鉛直方向に見た平面図である。It is a top view which looked at the processing system of FIG. 5 in the vertical direction. ワーク把持具の一例を示す略示図である。It is a schematic diagram which shows an example of a work gripper. 主軸先端部に装着したワーク把持具の略示斜視図である。It is a schematic perspective view of the work gripping tool attached to the tip of a spindle. ワーク把持具を主軸先端部に装着した加工システムの斜視図である。It is a perspective view of the processing system which attached the work gripping tool to the tip of a spindle. ワーク移送中の図9の加工システムの斜視図である。It is a perspective view of the processing system of FIG. 9 during work transfer. 他の加工システムのモジュールレイアウトを示す平面図である。It is a top view which shows the module layout of another processing system. 更に他の加工システムのモジュールレイアウトを示す平面図である。It is a top view which shows the module layout of the other processing system. 更に他の加工システムのモジュールレイアウトを示す平面図である。It is a top view which shows the module layout of the other processing system. 更に他の加工システムのモジュールレイアウトを示す平面図である。It is a top view which shows the module layout of the other processing system. 大規模加工システムを示す略図である。It is a schematic diagram which shows the large-scale processing system. 加工システムの作用を示すフローチャートである。It is a flowchart which shows the operation of a processing system. 工具マガジンモジュールの斜視図である。It is a perspective view of a tool magazine module.
 以下、添付図面を参照して、本発明の好ましい実施形態を説明する。
 まず、図1、2を参照すると、ワークを加工する加工システムは、少なくとも1つの加工モジュール10を具備している。加工モジュール10は、主軸モジュール100と、テーブルモジュール200とを備えている。主軸モジュール100およびテーブルモジュール200は、上位の制御装置である加工システム制御装置300と無線通信可能な制御装置122、216をそれぞれ備えており、加工モジュール10は、加工システム制御装置300による制御の下で1つの加工システムとして動作する。無線通信は、典型的には無線LANとすることができる。無線通信に代えて、有線通信を採用してもよい。
Hereinafter, preferred embodiments of the present invention will be described with reference to the accompanying drawings.
First, referring to FIGS. 1 and 2, a machining system for machining a work includes at least one machining module 10. The machining module 10 includes a spindle module 100 and a table module 200. The spindle module 100 and the table module 200 each include control devices 122 and 216 capable of wireless communication with a machining system control device 300 which is a higher-level control device, and the machining module 10 is controlled by the machining system control device 300. Operates as one processing system. Wireless communication can typically be a wireless LAN. Wired communication may be adopted instead of wireless communication.
 主軸モジュール100は主軸モジュールベース102を備えている。主軸モジュールベース102の底面には、複数の車輪104が配設されている。主軸モジュール100は、複数の車輪104の少なくとも1つの車輪104を回転駆動する車輪駆動モータおよび該少なくとも1つの車輪104を鉛直方向の軸線を中心として回転させる操舵モータ(図示せず)を備えており、車輪駆動モータおよび操舵モータを駆動することによって、主軸モジュールベース102は工場の床面を走行することができる。操舵モータに代えて、複数の車輪駆動モータを備え、車輪駆動モータ間の回転速度を変えて、操舵する方式を採用してもよい。また、走行するための車輪を有さず、主軸モジュール100が床に固定されていてもよい。 The spindle module 100 includes a spindle module base 102. A plurality of wheels 104 are arranged on the bottom surface of the spindle module base 102. The spindle module 100 includes a wheel drive motor that rotationally drives at least one wheel 104 of a plurality of wheels 104, and a steering motor (not shown) that rotates the at least one wheel 104 around a vertical axis. By driving the wheel drive motor and the steering motor, the spindle module base 102 can run on the floor surface of the factory. Instead of the steering motor, a method of providing a plurality of wheel drive motors and changing the rotation speed between the wheel drive motors to steer may be adopted. Further, the spindle module 100 may be fixed to the floor without having wheels for traveling.
 主軸モジュールベース102の上面には、コラムベース106が鉛直軸線OVS周りの回転送り軸であるBS軸方向に回転可能に支持されている。主軸モジュールベース102は、コラムベース106をBS軸方向に回転可能に支持する軸受(図示せず)を備え、コラムベース106は、該軸受に嵌合する軸部(図示せず)を備えることができる。主軸モジュールベース102は、コラムベース106をBS軸方向に回転送りするBS軸サーボモータ(図示せず)と、ロータリエンコーダ(図示せず)のようなコラムベース106のBS軸方向の回転位置を検出する回転位置検出器を備えることができる。 A column base 106 is rotatably supported on the upper surface of the spindle module base 102 in the B S axis direction, which is a rotary feed shaft around the vertical axis O VS. The spindle module base 102 includes a bearing (not shown) that rotatably supports the column base 106 in the B S axis direction, and the column base 106 includes a shaft portion (not shown) that fits the bearing. Can be done. The spindle module base 102 includes a B S -axis servomotor (not shown) that rotationally feeds the column base 106 in the B S -axis direction, and a rotary encoder (not shown) that rotates the column base 106 in the B S -axis direction. A rotary position detector that detects the position can be provided.
 主軸モジュール100を鉛直方向に対して垂直な平面に投影した輪郭は少なくとも部分的に六角形となる。この六角形状の輪郭は、オイルパン124によって形成される。オイルパン124は、主軸モジュールベース102の外周面において、コラムベース106よりも下側に配置、固定されている。オイルパン124は、主軸モジュール100を鉛直軸OVSに沿って上方または下方から見たときに、主軸モジュール100の六角形状の外形を形成する寸法を有している。つまり、鉛直軸OVS方向に見たときに、オイルパン124は、主軸モジュールベース102の外形寸法よりも大きな寸法の六角形状を有している。 The contour of the spindle module 100 projected onto a plane perpendicular to the vertical direction is at least partially hexagonal. This hexagonal contour is formed by the oil pan 124. The oil pan 124 is arranged and fixed below the column base 106 on the outer peripheral surface of the spindle module base 102. The oil pan 124 has dimensions that form the hexagonal outer shape of the spindle module 100 when viewed from above or below along the vertical axis OVS . That is, when viewed in the direction of the vertical axis O VS , the oil pan 124 has a hexagonal shape having a size larger than the external dimension of the spindle module base 102.
 コラムベース106の上面にはコラム108が取り付けられている。一例として、コラム108は、前後方向(Z軸方向)に貫通する開口部108aを有した門形のコラムとすることができる。コラム108の前面108bには、上下方向(Y軸方向)に延びる左右一対のY軸案内レール140が固定されている。 A column 108 is attached to the upper surface of the column base 106. As an example, the column 108 can be a gantry column having an opening 108a penetrating in the front-rear direction (Z-axis direction). A pair of left and right Y-axis guide rails 140 extending in the vertical direction (Y-axis direction) are fixed to the front surface 108b of the column 108.
 コラム108の前面には、Y軸案内レール140に沿って上下方向に移動可能にサドル110が配設されている。コラム108は、サドル110をY軸案内レール140に沿って上下方向に駆動するY軸送り装置を備えている。Y軸送り装置は、Y軸方向に延設されたボールねじ(図示せず)と、該ボールねじの一端に連結されたY軸サーボモータ(図示せず)とを備え、サドル110には、ボールねじに係合するナット(図示せず)が取り付けられている。コラム108は、デジタルスケール等Y軸方向の座標位置を検出する位置検出器を備え、またはY軸サーボモータに取付けられたロータリーエンコーダのような角度検出器を備え、サーボモータの角度からサドル110のY軸方向の座標位置を検出することができる。 A saddle 110 is arranged on the front surface of the column 108 so as to be movable in the vertical direction along the Y-axis guide rail 140. The column 108 includes a Y-axis feed device that drives the saddle 110 in the vertical direction along the Y-axis guide rail 140. The Y-axis feed device includes a ball screw (not shown) extending in the Y-axis direction and a Y-axis servomotor (not shown) connected to one end of the ball screw, and the saddle 110 has a saddle 110. A nut (not shown) that engages the ball screw is attached. The column 108 includes a position detector that detects a coordinate position in the Y-axis direction such as a digital scale, or an angle detector such as a rotary encoder attached to a Y-axis servomotor, and the saddle 110 is provided from the angle of the servomotor. The coordinate position in the Y-axis direction can be detected.
 サドル110には、主軸112を前後方向(Z軸方向)に延びる軸線OSを中心として回転可能に支持する主軸頭114が取り付けられている。主軸頭114は、前後方向に移動可能にサドル110に取り付けられている。サドル110は、主軸頭114を前後方向に案内するZ軸案内レール(図示せず)と、Z軸案内レールに沿って前後方向に駆動するZ軸送り装置を備えている。Z軸送り装置は、Z軸方向に延設されたボールねじ(図示せず)と、該ボールねじの一端に連結されたZ軸サーボモータ(図示せず)とを備え、主軸頭114には、ボールねじに係合するナット(図示せず)取り付けられている。サドル110は、デジタルスケールのようなZ軸方向の座標位置を検出する位置検出器を備え、またはZ軸サーボモータに取付けられたロータリーエンコーダのような角度検出器を備え、サーボモータの角度から主軸頭114のZ軸方向の座標位置を検出することができる。 A spindle head 114 that rotatably supports the spindle 112 about an axis OS extending in the front-rear direction (Z-axis direction) is attached to the saddle 110. The spindle head 114 is attached to the saddle 110 so as to be movable in the front-rear direction. The saddle 110 includes a Z-axis guide rail (not shown) that guides the spindle head 114 in the front-rear direction, and a Z-axis feed device that drives the spindle head 114 in the front-rear direction along the Z-axis guide rail. The Z-axis feed device includes a ball screw (not shown) extending in the Z-axis direction and a Z-axis servomotor (not shown) connected to one end of the ball screw, and the spindle head 114 has a spindle head 114. , A nut (not shown) that engages the ball screw is attached. The saddle 110 includes a position detector such as a digital scale that detects a coordinate position in the Z-axis direction, or an angle detector such as a rotary encoder attached to a Z-axis servomotor, and has a spindle from the angle of the servomotor. The coordinate position of the head 114 in the Z-axis direction can be detected.
 図1に示す例では、主軸モジュール100は、Y軸およびZ軸の2つの直線送り軸と、1つの回転送り軸BSを有しているが、本発明はこれに限定されない。図3の加工モジュール10′の主軸モジュール100′は、Y軸およびZ軸の2つの直線送り軸に加えて、X軸案内レール142に沿って、コラム108をY軸、Z軸に垂直な水平方向(左右方向)に直線送りするX軸送り装置を備えている。X軸送り装置は、X軸方向に延設されたボールねじ(図示せず)と、該ボールねじの一端に連結されたX軸サーボモータ(図示せず)とを備え、コラム108には、ボールねじに係合するナット(図示せず)取り付けられている。コラムベース106は、デジタルスケールのようなX軸方向の座標位置を検出する位置検出器を備え、またはX軸サーボモータに取付けられたロータリーエンコーダのような角度検出器を備え、サーボモータの角度からコラム108のX軸方向の座標位置を検出することができる。なお、図3では、図1と同様の構成要素には同じ参照符号が付されている。 In the example shown in FIG. 1, the spindle module 100 has two linear feed shafts , Y-axis and Z-axis, and one rotary feed shaft BS, but the present invention is not limited thereto. In the spindle module 100'of the machining module 10'in FIG. 3, in addition to the two linear feed axes of the Y axis and the Z axis, the column 108 is placed horizontally along the X axis guide rail 142 along the Y axis and the Z axis. It is equipped with an X-axis feed device that feeds linearly in the direction (horizontal direction). The X-axis feed device includes a ball screw (not shown) extending in the X-axis direction and an X-axis servomotor (not shown) connected to one end of the ball screw. A nut (not shown) that engages the ball screw is attached. The column base 106 includes a position detector such as a digital scale that detects a coordinate position in the X-axis direction, or an angle detector such as a rotary encoder attached to an X-axis servomotor from the angle of the servomotor. The coordinate position of the column 108 in the X-axis direction can be detected. In FIG. 3, the same reference numerals are given to the same components as those in FIG.
 主軸頭114は、主軸112を収容する中空の部材であり、主軸112を軸線OSの周りに回転可能に支持する軸受を備えている。主軸頭114は、主軸112を軸線OSの周りに回転駆動する主軸サーボモータ(図示せず)を内蔵することができる。主軸サーボモータは、主軸頭114の後端に取り付けてもよい。主軸頭114は、また、ロータリエンコーダ(図示せず)のような主軸112の回転速度を検出する回転検出器を備えることができる。 The spindle head 114 is a hollow member that houses the spindle 112, and includes a bearing that rotatably supports the spindle 112 around the axis OS. The spindle head 114 can include a spindle servomotor (not shown) that rotationally drives the spindle 112 around the axis OS. The spindle servo motor may be attached to the rear end of the spindle head 114. The spindle head 114 can also include a rotation detector such as a rotary encoder (not shown) that detects the rotational speed of the spindle 112.
 主軸112の先端部には、工具Tを装着するテーパ穴(図示せず)が形成されている。工具Tは、エンドミルやドリルのような回転工具とすることができる。工具Tは、工具ホルダ(図示せず)を介して主軸112の先端部に装着することができる。工具ホルダは、主軸112のテーパ穴に挿入されるテーパシャンクを有したHSK規格に準拠する2面拘束形の工具ホルダや、ISO 7388によって規定されるような7/24テーパのシャンク形状を有した工具ホルダとすることができる。 A tapered hole (not shown) for mounting the tool T is formed at the tip of the spindle 112. The tool T can be a rotary tool such as an end mill or a drill. The tool T can be attached to the tip of the spindle 112 via a tool holder (not shown). The tool holder had a two-sided restraint type tool holder compliant with the HSK standard having a taper shank inserted into the taper hole of the spindle 112, and a 7/24 taper shank shape as specified by ISO 7388. It can be a tool holder.
 主軸112は、工具Tを軸線OSに沿って主軸112の後端方向に引き込み、工具Tを主軸112の先端部に固定する工具固定装置(図示せず)を備えている。工具固定装置は、テーパ穴に装着された工具ホルダのテーパシャンク(テーパシャンクの内面またはテーパシャンクに設けられたプルスタッド(図示せず))に係合、離脱可能なドローバー(図示せず)、ドローバーを主軸112の後端方向に付勢する皿ばね(図示せず)、皿ばねにより主軸112の後端方向に付勢されているドローバーを主軸112の先端方向に駆動する流体圧シリンダや電動モータのようなドローバー駆動装置を含むことができる。 The spindle 112 includes a tool fixing device (not shown) that pulls the tool T along the axis OS toward the rear end of the spindle 112 and fixes the tool T to the tip of the spindle 112. The tool fixing device is a drawbar (not shown) that can be engaged with and detached from the taper shank (pull stud (not shown) provided on the inner surface of the taper shank or the taper shank) of the tool holder mounted in the tapered hole. A disc spring (not shown) that urges the drawbar toward the rear end of the spindle 112, a fluid pressure cylinder or electric motor that drives the drawbar urged toward the rear end of the spindle 112 by the disc spring toward the tip of the spindle 112. Drawbar drives such as motors can be included.
 コラム108の頂部には工具マガジン116が配設されている。工具マガジン16は、複数の工具Tを主軸112に対して交換可能に保持する。図1に示す例では、工具マガジン116は、Z軸に平行な回転軸線OMを中心とする円弧に沿って配設された複数の工具把持部(図示せず)と、該工具把持部を回転軸線OMに回転させる割出モータ120とを備えている。図示する例では、工具マガジン116は、保持する工具Tの中心軸線OTがZ軸に平行になるように複数の工具Tを保持している。図示する実施形態では、主軸112のY軸およびZ軸の直線送り装置および割出モータ120による工具マガジン116の割り出し動作によって、主軸112と工具マガジン116との間で工具を工具交換アームを用いずに直接的に交換することができる。 A tool magazine 116 is arranged at the top of the column 108. The tool magazine 16 holds a plurality of tools T interchangeably with respect to the spindle 112. In the example shown in FIG. 1, the tool magazine 116 has a plurality of tool grip portions (not shown) arranged along an arc centered on a rotation axis OM parallel to the Z axis, and the tool grip portions. It is equipped with an indexing motor 120 that rotates on the rotation axis OM . In the illustrated example, the tool magazine 116 holds a plurality of tools T so that the central axis OT of the tools T to be held is parallel to the Z axis. In the illustrated embodiment, the tool is not used between the spindle 112 and the tool magazine 116 by the indexing operation of the tool magazine 116 by the linear feeding device for the Y-axis and the Z-axis of the spindle 112 and the indexing motor 120. Can be exchanged directly with.
 テーブルモジュール200はテーブルモジュールベース202を備えている。テーブルモジュールベース202の底面には、複数の車輪204が配設されている。テーブルモジュール200は、複数の車輪204の少なくとも1つの車輪204を回転駆動する車輪駆動モータおよび該少なくとも1つの車輪204を鉛直方向の軸線を中心として回転させる操舵モータ(図示せず)を備えており、車輪駆動モータおよび操舵モータを駆動することによって、テーブルモジュールベース202は工場の床面を走行することができる。操舵モータに代えて、複数の車輪駆動モータを備え、車輪駆動モータ間の回転速度を変えて、操舵する方式を採用してもよい。また、走行するための車輪を有さず、テーブルモジュール200が床に固定されていてもよい。主軸モジュール100とテーブルモジュール200の少なくとも一方が床に固定されていると、両モジュール100、200が結合した加工モジュール10の安定性が高くなる。 The table module 200 includes a table module base 202. A plurality of wheels 204 are arranged on the bottom surface of the table module base 202. The table module 200 includes a wheel drive motor that rotationally drives at least one wheel 204 of a plurality of wheels 204, and a steering motor (not shown) that rotates the at least one wheel 204 about a vertical axis. By driving the wheel drive motor and the steering motor, the table module base 202 can run on the floor of the factory. Instead of the steering motor, a method of providing a plurality of wheel drive motors and changing the rotation speed between the wheel drive motors to steer may be adopted. Further, the table module 200 may be fixed to the floor without having wheels for traveling. When at least one of the spindle module 100 and the table module 200 is fixed to the floor, the stability of the machining module 10 in which both modules 100 and 200 are combined becomes high.
 テーブルモジュールベース202の上面には、回転テーブル210が鉛直軸線OVT周りの回転送り軸であるBT軸方向に回転可能に支持されている。より詳細には、テーブルモジュールベース202の上面から複数の脚206が突出しており、該脚206の上端にテーブルベース208が固定され、該テーブルベース208の上面に、回転テーブル210がBT軸方向に回転可能に支持されている。 On the upper surface of the table module base 202, a rotary table 210 is rotatably supported in the B T axis direction, which is a rotary feed axis around the vertical axis O VT . More specifically, a plurality of legs 206 project from the upper surface of the table module base 202, the table base 208 is fixed to the upper end of the legs 206, and the rotary table 210 is placed on the upper surface of the table base 208 in the B T axis direction. It is rotatably supported.
 テーブルベース208は、回転テーブル210をBT軸方向に回転可能に支持する軸受(図示せず)を備え、回転テーブル210は、該軸受に嵌合する軸部(図示せず)を備えることができる。テーブルベース208は、回転テーブル210をBT軸方向に回転送りするBT軸サーボモータ(図示せず)と、ロータリエンコーダ(図示せず)のような回転テーブル210のBT軸方向の回転位置を検出する回転位置検出器を備えることができる。 The table base 208 may include a bearing (not shown) that rotatably supports the rotary table 210 in the BT axis direction, and the rotary table 210 may include a shaft portion (not shown) that fits into the bearing. can. The table base 208 includes a B T -axis servomotor (not shown) that rotates and feeds the rotary table 210 in the B T -axis direction, and a rotary position of the rotary table 210 such as a rotary encoder (not shown) in the B T -axis direction. It can be equipped with a rotation position detector to detect.
 回転テーブル210の上面にワーク固定装置(図示せず)が備えられ、ワークWが着脱可能に取り付けられる。ワークWはパレットを介して回転テーブル210に取り付けられてもよく、パレットは、その下面に回転テーブル210のパレット固定装置(図示せず)が係合する係合部を有するようにできる。 A work fixing device (not shown) is provided on the upper surface of the rotary table 210, and the work W can be attached and detached. The work W may be attached to the rotary table 210 via a pallet, and the pallet may have an engaging portion on the lower surface thereof with which a pallet fixing device (not shown) of the rotary table 210 is engaged.
 テーブルモジュール200を鉛直方向に対して垂直な平面に投影した輪郭は少なくとも部分的に六角形となる。この六角形状の輪郭は、オイルパン214によって形成される。オイルパン214は、脚206において、テーブルモジュールベース202に固定されている端部(下端部)と、テーブルベース208が固定されている端部(上端部)との間に取り付けられる。 The contour of the table module 200 projected onto a plane perpendicular to the vertical direction is at least partially hexagonal. This hexagonal contour is formed by the oil pan 214. The oil pan 214 is attached to the leg 206 between the end portion (lower end portion) fixed to the table module base 202 and the end portion (upper end portion) to which the table base 208 is fixed.
 オイルパン214は、テーブルモジュール200を鉛直軸OVTに沿って上方または下方から見たときに、テーブルモジュール200の六角形状の外形を形成する寸法を有している。つまり、鉛直軸OVT方向に見たときに、オイルパン214は、テーブルモジュールベース202の外形寸法よりも大きな寸法の六角形状を有している。なお、図1では、主軸モジュール100のオイルパン124と、テーブルモジュールのオイルパン214は、異なる高さに配置されているが、同じ高さに配置されていてもよい。 The oil pan 214 has dimensions that form the hexagonal outer shape of the table module 200 when the table module 200 is viewed from above or below along the vertical axis OVT . That is, when viewed in the direction of the vertical axis OVT , the oil pan 214 has a hexagonal shape having a dimension larger than the external dimension of the table module base 202. In FIG. 1, the oil pan 124 of the spindle module 100 and the oil pan 214 of the table module are arranged at different heights, but they may be arranged at the same height.
 このように、主軸モジュール100およびテーブルモジュール200の輪郭を六角形状とすることによって、デッドスペースのない効率的なモジュールレイアウトが可能となる。また、主軸モジュール100およびテーブルモジュール200の六角形状の輪郭を同じ寸法にて形成することによって、モジュールの置換が容易に行えるようになる。主軸モジュール100およびテーブルモジュール200の六角形状の輪郭をオイルパン124、214により形成することにより、工場等の加工空間に隙間なくオイルパンを配置することが可能なり、工場等の床面が、切削液や切りくずで汚れることが防止される。 By making the contours of the spindle module 100 and the table module 200 hexagonal in this way, an efficient module layout without dead space becomes possible. Further, by forming the hexagonal contours of the spindle module 100 and the table module 200 with the same dimensions, the modules can be easily replaced. By forming the hexagonal contours of the spindle module 100 and the table module 200 with the oil pans 124 and 214, the oil pans can be arranged without gaps in the processing space of the factory or the like, and the floor surface of the factory or the like is cut. Prevents dirt from getting dirty with liquids and chips.
 加工モジュール10は、更に、主軸モジュール100とテーブルモジュール200とを結合、分離する連結器126、218を具備している。連結器は、主軸モジュール100に設けられた1つの第1の連結器126と、テーブルモジュール200に設けられた1または複数の第2の連結器218とを含む。第1と第2の連結器126、218は、結合したときに、主軸モジュール100の制御装置122とテーブルモジュール200の制御装置216とを接続するコネクタ(図示せず)およびケーブル(図示せず)を備えることができる。 The machining module 10 further includes couplers 126 and 218 that connect and separate the spindle module 100 and the table module 200. The coupler includes one first coupler 126 provided on the spindle module 100 and one or more second couplers 218 provided on the table module 200. When the first and second couplers 126 and 218 are connected, the connector (not shown) and the cable (not shown) that connect the control device 122 of the spindle module 100 and the control device 216 of the table module 200 are connected. Can be provided.
 一例として示す連結器126、218の略示断面図である図4を参照すると、第1の連結器126は、主軸モジュールベース102に結合された第1の連結器本体128と、クランプ装置130とを有している。第1の連結器126は、また、第1の連結器本体128に設けられた近接センサ138を有している。 Referring to FIG. 4, which is a schematic cross-sectional view of the coupler 126 and 218 shown as an example, the first coupler 126 includes a first coupler body 128 coupled to the spindle module base 102 and a clamp device 130. have. The first coupler 126 also has a proximity sensor 138 provided on the first coupler body 128.
 第1の連結器本体128は、平面128aから水平の中心軸線OC1に沿って前方へ突出したテーパコーン128bを有した部材から成る。テーパコーン128bは、典型的には、半径が平面128aから先端へ向かって中心軸線OC1に沿って次第に小さくなる円錐形状である。テーパコーン128bの内部には、中心軸線Oc1に沿って、中空穴128aにボールコレット132が往復移動可能に挿入され、ボールコレット132の基端部はピストン132aを形成している。ボールコレット132の先端側には、中空穴132cが形成されている。ピストンの前後の第1の連結器128には、それぞれシリンダ室128c、128dが設けられている。 The first coupler body 128 is composed of a member having a tapered cone 128b protruding forward along the horizontal center axis OC1 from the plane 128a. The tapered cone 128b typically has a conical shape in which the radius gradually decreases from the plane 128a toward the tip along the central axis OC1 . Inside the tapered cone 128b, the ball collet 132 is reciprocally inserted into the hollow hole 128a along the central axis O c1 , and the base end portion of the ball collet 132 forms the piston 132a. A hollow hole 132c is formed on the tip end side of the ball collet 132. Cylinder chambers 128c and 128d are provided in the first coupler 128 before and after the piston, respectively.
 ボールコレット132には、中心軸線Oc1に垂直な方向に、互いに直交する2本の貫通穴132bが形成され、ボール134が合計4個保持されている。ボール134の外径は、ボールコレット132の管の厚さより大きく、ボール134は、中空穴132cに落下しないように、貫通穴132bの中空穴132c側の内径は、ボール134の外径より若干小さくなっている。連結器本体128の中空穴128aの開口端は、内奥へ向かって内径が小さくなるテーパ穴128eの形状になっており、開口端を過ぎるとストレート穴になっている。中空穴128aの更に内奥には、上記のシリンダ室128c、128dが配置されている。第1の連結器本体128には、水平方向に所定の間隔をあけてボールコレット132が2個配置されている。 In the ball collet 132, two through holes 132b orthogonal to each other are formed in a direction perpendicular to the central axis O c1 , and a total of four balls 134 are held. The outer diameter of the ball 134 is larger than the thickness of the tube of the ball collet 132, and the inner diameter of the through hole 132b on the hollow hole 132c side is slightly smaller than the outer diameter of the ball 134 so that the ball 134 does not fall into the hollow hole 132c. It has become. The open end of the hollow hole 128a of the coupler main body 128 has the shape of a tapered hole 128e whose inner diameter decreases toward the inner back, and becomes a straight hole after passing the open end. The cylinder chambers 128c and 128d are arranged further inside the hollow hole 128a. Two ball collets 132 are arranged in the first coupler main body 128 at predetermined intervals in the horizontal direction.
 第2の連結器218は、テーブルモジュールベース202に結合され、端面218aから水平の中心軸線OC2に沿ってテーパ穴218bの形成された第2の連結器本体220を有している。テーパー穴218bは、第1の連結器126のテーパコーン128bに対して相補形状に形成されている。第2の連結器本体220は、テーパー穴218bの内奥に取り付けられ、端面218a側に向かって中心軸線OC2に沿って延びるプルスタッド224を有している。第2の連結器本体220は、水平方向に上記2個のボールコレット132の所定の間隔と同じ間隔で、水平方向にテーパ穴218bとプルスタッド224をそれぞれ2個有している。 The second coupler 218 has a second coupler body 220 coupled to the table module base 202 and having tapered holes 218b formed along the horizontal center axis OC2 from the end face 218a. The taper hole 218b is formed in a complementary shape to the taper cone 128b of the first coupler 126. The second coupler body 220 is attached to the inner part of the tapered hole 218b and has a pull stud 224 extending along the central axis OC2 toward the end face 218a side. The second coupler main body 220 has two tapered holes 218b and two pull studs 224 in the horizontal direction at the same intervals as the predetermined intervals of the two ball collets 132 in the horizontal direction.
 クランプ装置130は、第1の連結器本体128内の中空穴128a内において中心軸線Oc1に沿って延びるボールコレット132と、プルスタッド224に係合可能にボールコレット132の前方に設けられた複数のボール134とを含む。クランプ装置130は、更に、ボールコレット132を中心軸線OC1に沿って内方へ引き込んだり、外方へ押圧する流体圧式または電動式の押圧装置とを含むことができる。ここでは、流体圧式で説明する。 The clamp device 130 includes a ball collet 132 extending along the central axis O c1 in the hollow hole 128a in the first coupler main body 128, and a plurality of clamp devices 130 provided in front of the ball collet 132 so as to be engageable with the pull stud 224. Including balls 134 and. The clamping device 130 can further include a fluid pressure or electric pressing device that pulls the ball collet 132 inward along the central axis OC1 and presses it outward. Here, the fluid pressure type will be described.
 主軸モジュール100とテーブルモジュール200とを結合するために、第1の連結器126の中心軸線OC1と第2の連結器218の中心軸線OC2とが合致するように、主軸モジュール100とテーブルモジュール200とが相対的に配置される。次いで、中心軸線Ocに沿って、主軸モジュール100とテーブルモジュール200とを接近方向に相対移動させる。こうして、第2の連結器218のテーパ穴218bに第1の連結器126のテーパコーン128bを嵌合した後に、クランプ装置130のボールコレット134をプルスタッド224に係合させて、シリンダ室128cを加圧して、ボールコレット132を中心軸線OC1に沿って後退させることによって、第1の連結器本体128の平面128aと第2の連結器本体220の端面218aとが互いに当接すると共に、テーパコーン218bがテーパ穴218b内に密着して、第1と第2の連結器本体128、220が互いに固定される。これにより、主軸モジュール100とテーブルモジュール200とが互いに結合される。 In order to connect the spindle module 100 and the table module 200, the spindle module 100 and the table module so that the center axis OC1 of the first coupler 126 and the center axis OC2 of the second coupler 218 match. 200 and 200 are arranged relative to each other. Next, the spindle module 100 and the table module 200 are relatively moved in the approaching direction along the central axis Oc. In this way, after fitting the tapered cone 128b of the first coupler 126 into the tapered hole 218b of the second coupler 218, the ball collet 134 of the clamping device 130 is engaged with the pull stud 224 to add the cylinder chamber 128c. By pressing and retracting the ball collet 132 along the central axis OC1 , the flat surface 128a of the first coupler body 128 and the end surface 218a of the second coupler body 220 come into contact with each other, and the tapered cone 218b is brought into contact with each other. The first and second coupler bodies 128 and 220 are fixed to each other in close contact with the tapered hole 218b. As a result, the spindle module 100 and the table module 200 are coupled to each other.
 本実施形態では、第1と第2の連結器本体128、220には、それぞれテーパコーン128bとボールコレット132が2個ずつ、テーパ穴218bとプルスタッド224が2個ずつ設けられているが、4個ずつ設けて、4箇所で係合する構成として、結合剛性を更に高めることができる。 In the present embodiment, the first and second coupler main bodies 128 and 220 are provided with two tapered cones 128b and two ball collets 132, and two tapered holes 218b and two pull studs 224, respectively. The coupling rigidity can be further increased by providing the pieces one by one and engaging them at four points.
 主軸モジュール100と、テーブルモジュール200との結合を解除することきは、シリンダ室128dを加圧して、ボールコレット132を前方へ押圧する。すると、ボール134が前方へ移動し、テーパ穴128eに沿ってボール134は半径方向外方へ移動可能となる。この状態で、主軸モジュール100とテーブルモジュール200とを中心軸線Ocに沿って相対的に離すと、ボールコレット132とプルスタッド224との係合が外れて、第1と第2の連結器本体128。220は互いに離反する。近接センサ138は、第1と第2の連結器本体128、220の着座と離反を検出する。 When the coupling between the spindle module 100 and the table module 200 is released, the cylinder chamber 128d is pressurized to push the ball collet 132 forward. Then, the ball 134 moves forward, and the ball 134 can move outward in the radial direction along the tapered hole 128e. In this state, when the spindle module 100 and the table module 200 are relatively separated along the central axis Oc, the ball collet 132 and the pull stud 224 are disengaged, and the first and second coupler main bodies are disengaged. 128. 220 are separated from each other. The proximity sensor 138 detects the seating and separation of the first and second coupler bodies 128 and 220.
 主軸モジュール100とテーブルモジュール200とが互いに結合されたとき、連結器126、218の各々の中心軸線OC1、OC2は合致して、図2に示すように、主軸モジュール100とテーブルモジュール200の共通の中心軸線OCを形成する。中心軸線OCは、加工モジュール10を鉛直方向に対して垂直な平面に投影したときに、主軸モジュール100のコラムベース106の回転送り軸BSの回転中心である鉛直軸線OVSと、テーブルモジュール200の回転テーブル210の回転送り軸BTの回転中心である鉛直軸線OVTとを結ぶ直線に一致する。また、主軸モジュール100とテーブルモジュール200とが互いに結合されたとき、主軸モジュール100およびテーブルモジュール200の各々を鉛直方向に対して垂直な平面に投影した輪郭を形成するオイルパン126、214は、共通の直線Lに各々の各六角形状の1つの辺が一直線上に合致する形状とする。このとき、直線Lは、主軸モジュール100とテーブルモジュール200の共通の中心軸線OCに対して垂直となる。また、共通の中心軸線OCは、コラムベース106がホームポジションにあるとき、Z軸に一致する。 When the spindle module 100 and the table module 200 are coupled to each other, the central axes OC1 and OC2 of the couplers 126 and 218 match, and as shown in FIG. 2 , the spindle module 100 and the table module 200 Form a common central axis OC . The central axis OC is the vertical axis O VS , which is the center of rotation of the rotary feed axis B S of the column base 106 of the spindle module 100, and the table module when the machining module 10 is projected onto a plane perpendicular to the vertical direction. It corresponds to a straight line connecting the vertical axis O VT which is the rotation center of the rotation feed axis BT of the rotation table 210 of 200. Further, when the spindle module 100 and the table module 200 are coupled to each other, the oil pans 126 and 214 forming a contour in which each of the spindle module 100 and the table module 200 is projected onto a plane perpendicular to the vertical direction are common. The shape is such that one side of each hexagonal shape coincides with the straight line L. At this time, the straight line L is perpendicular to the common center axis OC of the spindle module 100 and the table module 200. Also, the common center axis OC coincides with the Z axis when the column base 106 is in the home position.
 主軸モジュール100、100′の制御装置122は、主軸モジュール100、100′の主軸112(主軸サーボモータ)、送り装置(X軸サーボモータ、Y軸サーボモータ、Z軸サーボモータ)、コラムベース106(BS軸サーボモータ)、車輪104(駆動モータおよび操舵モータ)、連結器126のクランプ装置130(ボールコレット132のための押圧装置)、および、主軸モジュール100に付属する他の周辺機器(図示せず)を制御する。テーブルモジュール200の制御装置216は、回転テーブル210(BT軸サーボモータ)、車輪204(車輪駆動モータおよび操舵モータ)、および、テーブルモジュール200に付属する他の周辺機器(図示せず)を制御する。または、主軸モジュール100、100′とテーブルモジュール200が結合後に、主軸モジュール100、100′の制御装置122もしくはテーブルモジュール200の制御装置216のどちらかが、主軸112、送り装置、コラムベース106、回転テーブル210、他の周辺機器を制御してもよい。 The control device 122 of the spindle modules 100 and 100'is a spindle 112 (spindle servomotor) of the spindle modules 100 and 100', a feed device (X-axis servomotor, Y-axis servomotor, Z-axis servomotor), and a column base 106 ( B S axis servomotor), wheels 104 (drive motor and steering motor), clamp device 130 (pressing device for ball collet 132) of coupler 126, and other peripherals attached to spindle module 100 (shown). To control. The control device 216 of the table module 200 controls the rotary table 210 ( BT axis servomotor), the wheels 204 (wheel drive motor and steering motor), and other peripheral devices (not shown) attached to the table module 200. do. Alternatively, after the spindle modules 100, 100'and the table module 200 are coupled, either the control device 122 of the spindle modules 100, 100'or the control device 216 of the table module 200 rotates the spindle 112, the feeder, the column base 106, and the rotation. Table 210 and other peripherals may be controlled.
 制御装置122、216は、更に上位の制御装置である加工システム制御装置300と無線通信可能に構成されている。主軸モジュール100、100′の制御装置122およびテーブルモジュール200の制御装置216は、無線通信を通じて加工システム制御装置300から受け取った制御信号に基づきワークWの加工を行う。主軸モジュール100、100′の送り軸の座標値や主軸112の回転速度、テーブルモジュール200の回転テーブル210の回転位置等に関連した情報は、稼働状況のモニタリングのため、制御装置122、216から無線通信を通じて加工システム制御装置300へ送信するようにできる。或いは、加工システム制御装置300から主軸モジュール100、100′の制御装置122へ加工プログラムを送信して、個々の加工プロセスに関して、加工モジュール10、10′内で閉じた制御系を構築するようにしてもよい。 The control devices 122 and 216 are configured to enable wireless communication with the processing system control device 300, which is a higher-level control device. The control device 122 of the spindle modules 100 and 100'and the control device 216 of the table module 200 process the work W based on the control signal received from the processing system control device 300 through wireless communication. Information related to the coordinate values of the feed axis of the spindle modules 100 and 100', the rotation speed of the spindle 112, the rotation position of the rotary table 210 of the table module 200, etc. is wirelessly transmitted from the control devices 122 and 216 for monitoring the operating status. It can be transmitted to the processing system control device 300 through communication. Alternatively, a machining program is transmitted from the machining system control device 300 to the control devices 122 of the spindle modules 100 and 100'to construct a closed control system in the machining modules 10 and 10'for each machining process. May be good.
 加工システム制御装置300は、更に、ワークに要求される加工や生産スケジュールに応じて加工プロセスを最適化するために加工システムを再構成することができる。既述の実施形態では、加工モジュール10、10′は、1つの主軸モジュール100、100′と、1つのテーブルモジュール200とを備えている。然しながら、本発明はこれに限定されず、加工システムは複数の加工モジュールにより構成することができる。例えば、図5、6に示す加工システム20は、3つの加工モジュール10-1、10-2、10-3により構成されている。加工モジュール10-1、10-2、10-3の各々は、加工モジュール10、10′と同様に、1つの主軸モジュール100-1、100-2、100-3と、主軸モジュール100-1、100-2、100-3の各々に結合された1つのテーブルモジュール200-1、200-2、200-3とにより構成されている。 The machining system control device 300 can further reconfigure the machining system in order to optimize the machining process according to the machining and production schedule required for the workpiece. In the above-described embodiment, the machining modules 10, 10'include one spindle module 100, 100' and one table module 200. However, the present invention is not limited to this, and the machining system can be configured by a plurality of machining modules. For example, the machining system 20 shown in FIGS. 5 and 6 is composed of three machining modules 10-1, 10-2, and 10-3. Each of the machining modules 10-1, 10-2, 10-3 has one spindle module 100-1, 100-2, 100-3 and the spindle module 100-1, as in the case of the machining module 10, 10'. It is composed of one table module 200-1, 200-2, 200-3 coupled to each of 100-2 and 100-3.
 加工モジュール10-1、10-2、10-3の各々は、テーブルモジュール200-1、200-2、200-3に固定されているワークW-1、W-2、W-3に別々の加工を行い、全体として1つの加工プロセスを実行するようになっている。より詳細には、ワークW-1、W-2、W-3は、矢印Pで示すように、最初のテーブルモジュール200-1から最後のテーブルモジュール200-3へ向けて、隣のテーブルモジュール200-1、200-2、200-3へ順次移送され、その間、主軸モジュール100-1、100-2、100-3によって順次に加工されるようになっている。これにより、加工プロセスを最適化して生産性を高めると共に、ワークに対して多様な加工を行うことが可能となる。 Each of the machining modules 10-1, 10-2, and 10-3 is separated into the workpieces W-1, W-2, and W-3 fixed to the table modules 200-1, 200-2, and 200-3. Machining is performed and one machining process is executed as a whole. More specifically, the workpieces W-1, W-2, and W-3 have the adjacent table module 200 from the first table module 200-1 to the last table module 200-3, as indicated by the arrow P. It is sequentially transferred to -1, 200-2, and 200-3, and during that time, it is sequentially processed by the spindle modules 100-1, 100-2, and 100-3. This makes it possible to optimize the machining process, increase productivity, and perform various machining on the workpiece.
 ワークW-1、W-2、W-3は、矢印Pで示すように、隣のテーブルモジュール200-1、200-2、200-3へ順次移送するために、加工モジュール10-1、10-2、10-3の各々は、一例として図7に示すようなワーク把持具150を備えることができる。 As shown by the arrow P, the workpieces W-1, W-2, and W-3 are sequentially transferred to the adjacent table modules 200-1, 200-2, and 200-3, so that the machining modules 10-1 and 10 are transferred to the adjacent table modules 200-1, 200-2, and 200-3. Each of -2, 10-3 can be provided with a work gripping tool 150 as shown in FIG. 7 as an example.
 ワーク把持具150は、主軸112に装着したときに、主軸112の中心軸線OSと一直線となる中心軸線OGを有した本体152と、本体152から軸方向に突出するハンド154a、154bとを備えている。ワーク把持具150は、更に、本体152からハンド154a、154bとは反対側に軸方向に延び、主軸112のテーパ穴に嵌合するように形成されたテーパ部156とを含む。テーパ部156は、主軸112のテーパ穴に装着する工具ホルダのテーパシャンクと同様に形成することができる。図7の例のワーク把持具150は、図8に示すように、主軸112の先端部に装着することが可能となる。 The work gripping tool 150 has a main body 152 having a central axis OG that is in line with the central axis OS of the main shaft 112 when mounted on the main shaft 112, and hands 154a and 154b protruding axially from the main shaft 152. I have. The work gripping tool 150 further includes a tapered portion 156 formed so as to extend axially from the main body 152 to the side opposite to the hands 154a and 154b and to fit into the tapered hole of the main shaft 112. The tapered portion 156 can be formed in the same manner as the tapered shank of the tool holder mounted in the tapered hole of the spindle 112. As shown in FIG. 8, the work gripping tool 150 of the example of FIG. 7 can be attached to the tip end portion of the spindle 112.
 ワーク把持具150の本体152は、主軸112に装着したとき、例えば主軸112を回転割り出しする回転送り軸CSを利用して、ハンド154a、154bの一方を他方のハンド154b、154aに接近、離反させる駆動装置(図示せず)を備えている。ハンド154a、154bの双方が接近、離反できるようにしてもよい。ハンド154a、154bは、主軸モジュール100のワークWに形成された把持穴HG内に挿入され、ハンド154a、154bの一方または双方を接近動作させることによって該ワークWを保持し、離反動作させることによってワークWを解放するようになっている。 When the main body 152 of the work gripping tool 150 is attached to the spindle 112, for example, one of the hands 154a and 154b approaches and separates from the other hand 154b and 154a by using the rotary feed shaft CS that rotationally indexes the spindle 112. It is equipped with a drive device (not shown). Both hands 154a and 154b may be able to approach and separate from each other. The hands 154a and 154b are inserted into the gripping holes HG formed in the work W of the spindle module 100, and the work W is held and separated by moving one or both of the hands 154a and 154b in close proximity to each other. The work W is released.
 図9、10を参照して、ワークの移送を説明する。
 なお、図9、10では、隣接する加工モジュール間におけるワークの移送を説明するために便宜的に2つの加工モジュール10-1、10-2が示されているが、下流側の加工モジュール10-2の更に下流側に1または複数の加工モジュールを配設したり、加工済ワークを後述するワークステーションへ移送するための搬送台車を配置するようにできる。
The transfer of the work will be described with reference to FIGS. 9 and 10.
In FIGS. 9 and 10, two machining modules 10-1 and 10-2 are shown for convenience in order to explain the transfer of workpieces between adjacent machining modules, but the machining modules 10- on the downstream side are shown. One or more machining modules may be arranged further downstream of 2, or a transport carriage for transferring the machined workpiece to a workstation described later may be arranged.
 ワークW-1、W-2の加工中など、加工モジュール10-1から隣の加工モジュール10-2へワークW-1を移送する必要のないときは、ワーク把持具150は工具マガジン116に保持されている。加工モジュール10-1、10-2における加工が終了して、加工モジュール10-1から加工モジュール10-2へワークW-1を移送する段階で、主軸モジュール100-1および200-2の各主軸112に装着されている工具Tとワーク把持具150とが交換される(図9参照)。次いで、ワーク把持具150のハンド154a、154bを把持穴HGに挿入し、ワークW-1、W-2が加工モジュール10-1、10-2の各々のワーク把持具150により保持される。 When it is not necessary to transfer the work W-1 from the machining module 10-1 to the adjacent machining module 10-2, such as during machining of the workpieces W-1 and W-2, the workpiece gripping tool 150 is held in the tool magazine 116. Has been done. At the stage where the machining in the machining modules 10-1 and 10-2 is completed and the work W-1 is transferred from the machining module 10-1 to the machining module 10-2, the spindles of the spindle modules 100-1 and 200-2 are respectively. The tool T mounted on the 112 and the work gripping tool 150 are replaced (see FIG. 9). Next, the hands 154a and 154b of the work gripping tool 150 are inserted into the gripping holes HG, and the works W-1 and W-2 are held by the work gripping tools 150 of the machining modules 10-1 and 10-2.
 次いで、図10に示すように、加工モジュール10-1、10-2の主軸モジュール100-1、100-2のY軸、Z軸およびコラムベース106のBS軸、および、テーブルモジュール200-1、200-2のBT軸を用いて、ワークW-1、W-2が1つの加工モジュールから隣接する下流側の加工モジュールへ移送される。このように、主軸モジュール100-1、100-2およびテーブルモジュール200-1、200-2の送り軸を用いてワークW-1、W-2を移送することによって、ワーク移送用の移送装置を設ける必要がなくなり、加工システムのコストを低減するのみならず、ワーク移送用の移送装置のための設置空間が必要なくなる。更に、モジュールレイアウトの自由度が高まる。なお、ワーク把持具150でワークを把持し、取付面を反転してワークWを回転テーブル210の上面に取り付け直し、今まで取付面だった面に加工を施すこともできる。 Next, as shown in FIG. 10, the spindle modules 100-1 and 100-2 of the machining modules 10-1 and 10-2 , the Z-axis and the BS axis of the column base 106, and the table module 200-1 , 200-2 BT axes are used to transfer the workpieces W-1 and W-2 from one machining module to the adjacent downstream machining module. In this way, by transferring the work W-1 and W-2 using the feed shafts of the spindle modules 100-1 and 100-2 and the table modules 200-1 and 200-2, the transfer device for moving the work can be obtained. Not only does it eliminate the need to provide it, which reduces the cost of the machining system, but it also eliminates the need for an installation space for the transfer device for workpiece transfer. Furthermore, the degree of freedom in module layout is increased. It is also possible to grip the work with the work gripping tool 150, invert the mounting surface, reattach the work W to the upper surface of the rotary table 210, and process the surface that has been the mounting surface until now.
 既述の実施形態では、加工システムは、1つの加工モジュールまたは横並びに配置した複数の加工モジュールから構成されているが、本発明は、これに限定されない。
 図11に示す加工システム30は、図5の加工システムと同様の3つの加工モジュール10-1、10-2、10-3により構成される第1の加工モジュール組20に加えて、第2の加工モジュール組として、1つの付加主軸モジュール100-4を備えている。追加された付加主軸モジュール100-4は、第1の加工モジュール組の第2段目の加工モジュール10-2のテーブルモジュール200-2に結合されている。これにより、加工モジュール10-2では、テーブルモジュール200-2に固定された1つのワークW-2に対して2つの側面から加工が行われる。第2の加工モジュール10-2の加工時間が長い場合、付加主軸モジュール100-4の援助を得て、ボトルネックの解消が図られる。
In the above-described embodiment, the machining system is composed of one machining module or a plurality of machining modules arranged side by side, but the present invention is not limited thereto.
The machining system 30 shown in FIG. 11 has a second machining module set 20 in addition to the first machining module set 20 composed of three machining modules 10-1, 10-2, and 10-3 similar to the machining system of FIG. As a machining module set, one additional spindle module 100-4 is provided. The added additional spindle module 100-4 is coupled to the table module 200-2 of the second stage machining module 10-2 of the first machining module set. As a result, in the machining module 10-2, machining is performed from two side surfaces with respect to one work W-2 fixed to the table module 200-2. When the machining time of the second machining module 10-2 is long, the bottleneck can be eliminated with the assistance of the additional spindle module 100-4.
 図12に示す加工システム40は、3つの加工モジュール10-1、10-2、10-3により構成される第1の加工モジュール組20に加えて、2つの加工モジュール10-4、10-5から成る第2の加工モジュール組50を備えている。第1の加工モジュール組20では、ワークWは加工モジュール10-1から加工モジュール10-3へ向けて矢印P1で示す第1の移送方向に移送される。第2の加工モジュール組50では、ワークWは加工モジュール10-4から加工モジュール10-3へ向けて矢印P2で示す第2の移送方向に移送される。第2の加工モジュール組50の加工モジュール10-4、10-5では、第1の加工モジュール組20の加工モジュール10-1、10-2における加工と同一の加工が行われ、加工モジュール10-3は、第1の加工モジュール組20の加工モジュール10-2と、第2の加工モジュール組50の加工モジュール10-5とから同じ加工が施されたワークWを交互に受け取るようになっている。加工システム40は、最終工程に要する時間が短い場合に特に有利である。 The machining system 40 shown in FIG. 12 has two machining modules 10-4, 10-5 in addition to the first machining module set 20 composed of three machining modules 10-1, 10-2, and 10-3. It includes a second machining module set 50 made of. In the first machining module set 20, the work W is transferred from the machining module 10-1 toward the machining module 10-3 in the first transfer direction indicated by the arrow P1. In the second machining module set 50, the work W is transferred from the machining module 10-4 toward the machining module 10-3 in the second transfer direction indicated by the arrow P2. In the machining modules 10-4 and 10-5 of the second machining module set 50, the same machining as in the machining modules 10-1 and 10-2 of the first machining module set 20 is performed, and the machining module 10- 3 alternately receives the work W subjected to the same machining from the machining module 10-2 of the first machining module set 20 and the machining module 10-5 of the second machining module set 50. .. The processing system 40 is particularly advantageous when the time required for the final process is short.
 図13に示す加工システム60は、3つの加工モジュール10-1、10-2、10-3により構成される第1の加工モジュール組20に加えて、第2の加工モジュール組として、1つの加工モジュール10-4を備えている。追加された加工モジュール10-4の主軸モジュール100-4は、第1の加工モジュール組20の第2段目の加工モジュール10-2のテーブルモジュール200-2に結合されている。第1の加工モジュール組20では、ワークWは加工モジュール10-1から加工モジュール10-3へ向けて矢印P1で示す第1の移送方向に移送される。第2の加工モジュール組を構成する加工モジュール10-4は、矢印P2で示すように、第1の加工モジュール組20の第2段目の加工モジュール10-2からワークWを受け取り、第1の加工モジュール組20の最終段の加工モジュール10-3における加工と同一の加工を行う。つまり、加工モジュール10-2は、ワークWを2つの加工モジュール10-3、10-4へ交互に移送するようになっている。加工システム40は、最終工程に要する時間が長い場合に特に有利である。 The machining system 60 shown in FIG. 13 has one machining as a second machining module set in addition to the first machining module set 20 composed of three machining modules 10-1, 10-2, and 10-3. It is equipped with modules 10-4. The spindle module 100-4 of the added machining module 10-4 is coupled to the table module 200-2 of the second-stage machining module 10-2 of the first machining module set 20. In the first machining module set 20, the work W is transferred from the machining module 10-1 toward the machining module 10-3 in the first transfer direction indicated by the arrow P1. As shown by the arrow P2, the machining module 10-4 constituting the second machining module set receives the work W from the second-stage machining module 10-2 of the first machining module set 20, and receives the work W from the first machining module set 20. The same processing as the processing in the processing module 10-3 at the final stage of the processing module set 20 is performed. That is, the machining module 10-2 alternately transfers the work W to the two machining modules 10-3 and 10-4. The processing system 40 is particularly advantageous when the time required for the final process is long.
 図14に示す加工システム70は、3つの加工モジュール10-1、10-2、10-3により構成される第1の加工モジュール組20に加えて、2つの加工モジュール10-4、10-5から成る第2の加工モジュール組80を備えている。第1の加工モジュール組20では、ワークWは加工モジュール10-1から加工モジュール10-3へ向けて矢印P1で示す第1の移送方向に移送される。第2の加工モジュール組80では、ワークWは加工モジュール10-1から加工モジュール10-5へ向けて矢印P2で示す第2の移送方向に移送される。第2の加工モジュール組80の加工モジュール10-4、10-5では、第1の加工モジュール組20の加工モジュール10-2、10-3における加工と同一の加工が行われ、加工モジュール10-1で加工されたワークWが、第1の加工モジュール組20の加工モジュール10-2と、第2の加工モジュール組80の加工モジュール10-5とに交互に移送されるようになっている。加工システム70は、第1の工程に要する時間が短い場合に特に有利である。 The machining system 70 shown in FIG. 14 has two machining modules 10-4, 10-5 in addition to the first machining module set 20 composed of three machining modules 10-1, 10-2, and 10-3. It comprises a second machining module set 80 comprising. In the first machining module set 20, the work W is transferred from the machining module 10-1 toward the machining module 10-3 in the first transfer direction indicated by the arrow P1. In the second machining module set 80, the work W is transferred from the machining module 10-1 toward the machining module 10-5 in the second transfer direction indicated by the arrow P2. In the machining modules 10-4 and 10-5 of the second machining module set 80, the same machining as in the machining modules 10-2 and 10-3 of the first machining module set 20 is performed, and the machining module 10- The work W machined in 1 is alternately transferred to the machining module 10-2 of the first machining module set 20 and the machining module 10-5 of the second machining module set 80. The processing system 70 is particularly advantageous when the time required for the first step is short.
 このように、互いに独立した主軸モジュール100とテーブルモジュール200とにより加工モジュール10を構成し、加工モジュール10を基本として加工システム20、30、40、60、70を構成することによって、1つの加工モジュールの加工時間が長く、後段の加工モジュールに待を生じさせる段階、図11の例では加工モジュール10-2が行う加工、図12の例では加工モジュール10-1、10-2および加工モジュール10-4、10-5が行う加工、図13の例では各加工モジュール10-3、10-4が行う加工、図14の例では加工モジュール10-2、10-3および加工モジュール10-4、10-5が行う加工を、より多くの主軸モジュール100を補うことによって、加工モジュールの待を解消し、加工システム全体としての加工時間を短縮可能となり、いわゆるボトルネックが解消される。 In this way, the machining module 10 is configured by the spindle module 100 and the table module 200 that are independent of each other, and the machining systems 20, 30, 40, 60, 70 are configured based on the machining module 10 to form one machining module. The machining time is long and causes a wait in the machining module in the subsequent stage, the machining performed by the machining module 10-2 in the example of FIG. 11, and the machining modules 10-1, 10-2 and the machining module 10- in the example of FIG. Machining performed by 4, 10-5, machining performed by each machining module 10-3, 10-4 in the example of FIG. 13, machining modules 10-2, 10-3 and machining modules 10-4, 10 in the example of FIG. By supplementing the machining performed by -5 with more spindle modules 100, the waiting of the machining module can be eliminated, the machining time of the entire machining system can be shortened, and the so-called bottleneck can be eliminated.
 例えば、図6の加工モジュール10-1の工程の加工時間は4分、加工モジュール10-2の工程の加工時間は6分、加工モジュール10-3の工程の加工時間を4分とすると、加工モジュール10-1から10-2へ移送するときの加工モジュール10-1の待ち時間は2分である。加工モジュール10-2から10-3へ移行するときの加工モジュール10-3の待ち時間は2分である。この待ち時間を解消するために、図11では加工モジュール10-2に主軸モジュール100-4を補い、加工モジュール10-2の工程の加工時間を4分に改善し、加工時間10-1、10-2、10-3の全体加工時間を4分に揃えた結果、待ち時間すなわち生産のボトルネックが解消し、生産効率が上がる。 For example, assuming that the machining time of the process of the machining module 10-1 in FIG. 6 is 4 minutes, the machining time of the process of the machining module 10-2 is 6 minutes, and the machining time of the process of the machining module 10-3 is 4 minutes. The waiting time of the machining module 10-1 when transferring from the module 10-1 to 10-2 is 2 minutes. The waiting time of the machining module 10-3 when shifting from the machining module 10-2 to 10-3 is 2 minutes. In order to eliminate this waiting time, in FIG. 11, the spindle module 100-4 is supplemented to the machining module 10-2, the machining time of the process of the machining module 10-2 is improved to 4 minutes, and the machining times 10-1 and 10 As a result of adjusting the total processing time of -2, 10-3 to 4 minutes, the waiting time, that is, the bottleneck of production is eliminated, and the production efficiency is improved.
 例えば、図6の加工モジュール10-1、10-2の各工程の加工時間は共に6分、加工モジュール10-3の工程の加工時間を3分とすると、加工モジュール10-1から10-2へ移送するときの待ち時間は生じないが、加工モジュール10-2から10-3へ移行するときの加工モジュール10-3の待ち時間が3分になる。この待ち時間を解消するために、図12では加工モジュール10-3に主軸モジュール100-1および10-2と同等の加工モジュール10-4および10-5を追加した。これにより、生産のボトルネックが解消し、加工システム40の全体の生産性は、加工システム20と比べて約2倍になったに。 For example, assuming that the machining time of each process of the machining modules 10-1 and 10-2 in FIG. 6 is 6 minutes and the machining time of the process of the machining module 10-3 is 3 minutes, the machining modules 10-1 to 10-2 are used. There is no waiting time when transferring to, but the waiting time of the machining module 10-3 when shifting from the machining module 10-2 to 10-3 is 3 minutes. In order to eliminate this waiting time, in FIG. 12, machining modules 10-4 and 10-5 equivalent to the spindle modules 100-1 and 10-2 are added to the machining module 10-3. As a result, the production bottleneck has been eliminated, and the overall productivity of the processing system 40 has doubled compared to the processing system 20.
 既述の実施形態では、少なくとも1つの加工モジュール10から構成される1つの加工システムについて説明したが、本発明は、これに限定されず、複数の加工システムを含んだ大規模な加工システムを構成することもできる。 In the above-described embodiment, one machining system composed of at least one machining module 10 has been described, but the present invention is not limited to this, and constitutes a large-scale machining system including a plurality of machining systems. You can also do it.
 図15を参照すると、大規模加工システム400は、1つの加工システム制御装置300により制御される複数の、図15では2つの加工ライン410、420を含んでいる。加工ライン410、420は、既述した少なくとも1つの加工モジュール10を含む加工システムにより構成される。大規模加工システム400はワークステーション430を含んでいる。ワークステーション430は、未加工ワークWUを収容する未加工ワークステーション431と、加工済ワークWPを収容する加工済ワークステーション432とを含む。搬送台車のようなワーク搬送装置441によって、ワークステーション430から未加工ワークWUが加工ライン410、420へ搬送され、搬送装置442によって、加工済ワークWPが加工ライン410、420からワークステーション430へ搬送される。 Referring to FIG. 15, the large-scale machining system 400 includes a plurality of machining lines 410, 420 in FIG. 15 controlled by one machining system control device 300. The machining lines 410 and 420 are configured by a machining system including at least one machining module 10 described above. The large-scale machining system 400 includes a workstation 430. The workstation 430 includes a raw workstation 431 accommodating a raw work W U and a processed workstation 432 accommodating a processed work WP . The work transfer device 441, such as a transfer carriage, transfers the raw work WW from the workstation 430 to the machining lines 410, 420, and the transfer device 442 transfers the processed work WP from the machining lines 410, 420 to the workstation 430. Will be transported to.
 大規模加工システム400は、更に、使用していない予備の主軸モジュール100およびテーブルモジュール200を収容するモジュールステーション450を備えている。加工ライン410、420を構成する主軸モジュール100やテーブルモジュール200が故障した場合、故障した主軸モジュール100またはテーブルモジュール200を自走させて加工ライン410、420から取り除き、代わりに、モジュールステーションの主軸モジュール100またはテーブルモジュール200を加工ライン410、420に組み込むことができる。また、故障した主軸モジュール100またはテーブルモジュール200は、メンテナンスステーション460へ自走させるようにできる。また、自走する主軸モジュール100やテーブルモジュール200には、動力源としてのバッテリを搭載しており、メンテナンスステーション460にはバッテリの充電設備も有している。 The large-scale machining system 400 further includes a module station 450 that houses a spare spindle module 100 and a table module 200 that are not in use. If the spindle module 100 or table module 200 constituting the machining lines 410 or 420 fails, the failed spindle module 100 or table module 200 is self-propelled to be removed from the machining lines 410 or 420, and instead, the spindle module of the module station is removed. The 100 or the table module 200 can be incorporated into the machining lines 410, 420. Further, the failed spindle module 100 or table module 200 can be self-propelled to the maintenance station 460. Further, the self-propelled spindle module 100 and the table module 200 are equipped with a battery as a power source, and the maintenance station 460 also has a battery charging facility.
 大規模加工システム400は、主軸モジュール100やテーブルモジュール200と同様の輪郭を有した工具マガジンモジュール470(図17)を備えていてもよい。工具マガジンモジュール470は、主軸モジュール100の工具マガジン116が保持する工具Tでは不足する場合に、当該主軸モジュール100へ自走し、主軸112が直接的に工具マガジンモジュールの各工具にアクセスし、主軸モジュール100との間で工具交換することによって、不足する工具Tを提供する。 The large-scale machining system 400 may include a tool magazine module 470 (FIG. 17) having the same contour as the spindle module 100 and the table module 200. When the tool T held by the tool magazine 116 of the spindle module 100 is insufficient, the tool magazine module 470 travels to the spindle module 100 by itself, and the spindle 112 directly accesses each tool of the tool magazine module to access the spindle. By exchanging tools with the module 100, the missing tool T is provided.
 加工システム制御装置300は、要求される加工や生産計画に応じて加工ライン410、420の構成を変更または再構成することができる。
 図16を参照すると、ステップS10において、要求される加工や生産計画が加工システム制御装置300に入力されると、加工システム制御装置300は、加工ラインを構成する主軸モジュール100およびテーブルモジュール200の個数や配置であるモジュールレイアウトを作成し、作成されたモジュールレイアウトによるワークWの加工が、要求される加工や生産計画に適合するか否かをシミュレーションにより確認する(ステップS12)。
The machining system control device 300 can change or reconfigure the configurations of the machining lines 410 and 420 according to the required machining and production plan.
Referring to FIG. 16, when the required machining or production plan is input to the machining system control device 300 in step S10, the machining system control device 300 is the number of spindle modules 100 and table modules 200 constituting the machining line. A module layout is created, and it is confirmed by simulation whether or not the machining of the work W by the created module layout conforms to the required machining and production plan (step S12).
 適合しない場合には、新たなモジュールレイアウトを作成し、適合するモジュールレイアウトが見つかるまでモジュールレイアウトの作成とシミュレーションを繰り返す。適合するモジュールレイアウトが決定されると、加工システム制御装置300から主軸モジュール100およびテーブルモジュール200に、決定されたモジュールレイアウトを構築するよう移動指令が送信される(ステップS14)。 If it does not match, create a new module layout, and repeat the module layout creation and simulation until a matching module layout is found. When the conforming module layout is determined, the machining system control device 300 transmits a movement command to the spindle module 100 and the table module 200 to construct the determined module layout (step S14).
 ステップS16で移動指令に従い主軸モジュール100およびテーブルモジュール200が移動した後、主軸モジュール100およびテーブルモジュール200が、第1と第2の連結器126、218により正常に結合されたか否かが判定される(ステップS18)。これは、第1の連結器126の近接センサ138により行うことができる。正常に結合されていなければ(ステップS18でNoの場合)、ステップS16へ戻って、主軸モジュール100およびテーブルモジュール200を移動させて、再び結合動作をやり直す。 After the spindle module 100 and the table module 200 are moved according to the movement command in step S16, it is determined whether or not the spindle module 100 and the table module 200 are normally coupled by the first and second couplers 126 and 218. (Step S18). This can be done by the proximity sensor 138 of the first coupler 126. If it is not normally joined (No in step S18), the process returns to step S16, the spindle module 100 and the table module 200 are moved, and the joining operation is repeated again.
 正常に結合されると(ステップS18でYesの場合)、ステップS20において、結合した主軸モジュール100とテーブルモジュール200の校正がなされる。ここで、「校正」とは、モジュール結合後のモジュール間の通信、制御を確立すること、および、例えば、各テーブルモジュール200の回転テーブル210上にワーク搬送装置441を用いて直接定規を取り付け、各主軸モジュール100の主軸112に工具マガジン116から測定プローブ(図示せず)を取り付け、X、Y、Z軸の空間精度を測定し、各加工モジュール10ごとに誤差補正のパラメータを設定することである。具体的な校正方法には、レーザ測長器、撮像装置等種々の空間精度測定装置を用いる方法があり、いずれの方法を採用してもよい。 If they are normally connected (Yes in step S18), the combined spindle module 100 and table module 200 are calibrated in step S20. Here, "calibration" means establishing communication and control between modules after module coupling, and for example, attaching a ruler directly on the rotary table 210 of each table module 200 using the work transfer device 441. By attaching a measurement probe (not shown) from the tool magazine 116 to the spindle 112 of each spindle module 100, measuring the spatial accuracy of the X, Y, and Z axes, and setting error correction parameters for each machining module 10. be. As a specific calibration method, there is a method using various spatial accuracy measuring devices such as a laser length measuring device and an imaging device, and any method may be adopted.
 次いで、未加工ワークステーション431から加工ライン410、420へ未加工ワークWUが搬送され、ワークWUの加工が行われ、加工済ワークWPが加工ライン410、420から加工済ワークステーション432へ搬送され(ステップS22)、繰り返しワークWUの加工が行われる。ワークの加工が行われる間、主軸モジュール100およびテーブルモジュール200が正常に稼働しているか否かが判定される(ステップS24)。主軸モジュール100およびテーブルモジュール200が正常に稼働していない場合(ステップS24でNoの場合)、つまり、主軸モジュール100またはテーブルモジュール200が故障或いは異常な動作をした場合、ステップS26において、異常を生じた主軸モジュール100またはテーブルモジュール200を保守ステーション460へ自走させると共に、モジュールステーション450から、故障していない主軸モジュール100またはテーブルモジュール200が代替モジュールとして選択され(ステップS28)、加工ライン410、420の異常を生じた主軸モジュール100またはテーブルモジュール200の位置へ自走させる(ステップS16)。次いで、ステップS18~S24が実行される。 Next, the raw work W U is transported from the raw workstations 431 to the machining lines 410 and 420, the workpiece W U is machined, and the machined workpiece WP is transferred from the machining lines 410 and 420 to the machined workstation 432. It is conveyed (step S22), and the workpiece W U is repeatedly processed. While the work is being machined, it is determined whether or not the spindle module 100 and the table module 200 are operating normally (step S24). If the spindle module 100 and the table module 200 are not operating normally (No in step S24), that is, if the spindle module 100 or the table module 200 fails or operates abnormally, an abnormality occurs in step S26. The main shaft module 100 or the table module 200 is self-propelled to the maintenance station 460, and the main shaft module 100 or the table module 200 that has not failed is selected as an alternative module from the module station 450 (step S28), and the machining lines 410 and 420 are selected. Self-propelled to the position of the spindle module 100 or the table module 200 in which the abnormality occurred (step S16). Then, steps S18 to S24 are executed.
 主軸モジュール100およびテーブルモジュール200が正常に稼働している場合(ステップS24でYesの場合)、ステップS30に進んで、割込み生産指令の有無が判定される。現在の生産指令に基づく加工が進行中に、特急の加工を行わなければならない割込み生産指令が、加工システム制御装置300から出されることがある。この割込み生産指令がYesの場合、ステップS10の生産スケジューリングから再度行うことになる。 When the spindle module 100 and the table module 200 are operating normally (Yes in step S24), the process proceeds to step S30 to determine the presence / absence of an interrupt production command. While machining based on the current production directive is in progress, an interrupt production command that requires express machining may be issued from the machining system control device 300. If this interrupt production command is Yes, the production scheduling in step S10 will be performed again.
 ステップS30でNoの場合、全てのワークWの加工が完了したか否かが判定される(ステップS32)。全てのワークの加工が完了すると(ステップS32でYesの場合)、主軸モジュール100とテーブルモジュール200は、その位置で次の生産指令が出されるまで待機する(ステップS34)。次の生産指令が発せられると(ステップS36でYesの場合)、ステップS10へ戻って、入力された次の製品要求される加工や生産計画(ステップS10)に従う新たなモジュールレイアウトの下で加工が開始される。 If No in step S30, it is determined whether or not the processing of all the work W has been completed (step S32). When the machining of all the workpieces is completed (Yes in step S32), the spindle module 100 and the table module 200 wait until the next production command is issued at that position (step S34). When the next production command is issued (Yes in step S36), the process returns to step S10, and processing is performed under the new module layout according to the input next product required processing and production plan (step S10). It will be started.
 10  加工モジュール
 16  工具マガジン
 30  加工システム
 100  主軸モジュール
 106  コラムベース
 108  コラム
 110  サドル
 112  主軸
 116  工具マガジン
 122  制御装置
 126  連結器
 130  クランプ装置
 200  テーブルモジュール
 202  テーブルモジュールベース
 208  テーブルベース
 210  回転テーブル
 210  パレット
 216  制御装置
 218  第2の連結器
 300  加工システム制御装置
10 Machining module 16 Tool magazine 30 Machining system 100 Main shaft module 106 Column base 108 Column 110 Saddle 112 Main shaft 116 Tool magazine 122 Control device 126 Connector 130 Clamping device 200 Table module 202 Table module base 208 Table base 210 Rotating table 210 Pallet 216 Control Device 218 Second coupler 300 Machining system control device

Claims (11)

  1.  工具とワークとを相対移動させて前記ワークを加工する少なくとも1つの加工モジュールを具備した加工システムにおいて、
     前記加工モジュールが、
     前記工具を先端部に装着する所定の軸線に沿って延びる主軸を備えた主軸モジュールと、
     前記ワークを固定するテーブルを備えたテーブルモジュールと、
     前記主軸モジュールと前記テーブルモジュールとを結合、分離する連結器と、
     を具備し、前記主軸モジュールと前記テーブルモジュールの少なくとも1つのモジュールが床面に沿って走行可能な自走式モジュールベースを有することを特徴とした加工システム。
    In a machining system provided with at least one machining module for machining the work by moving the tool and the work relative to each other.
    The processing module
    A spindle module having a spindle extending along a predetermined axis for mounting the tool on the tip, and a spindle module.
    A table module with a table for fixing the work, and
    A coupler that connects and separates the spindle module and the table module,
    A machining system comprising, wherein at least one module of the spindle module and the table module has a self-propelled module base capable of traveling along a floor surface.
  2.  前記主軸モジュールおよびテーブルモジュールと制御信号の授受を行い、該主軸モジュールおよびテーブルモジュールを制御する加工システム制御装置を更に具備する請求項1に記載の加工システム。 The machining system according to claim 1, further comprising a machining system control device that sends and receives control signals to and from the spindle module and table module and controls the spindle module and table module.
  3.  前記加工システムは、横並びに配置した複数の前記加工モジュールから成る第1の加工モジュール組を具備しており、
     該第1の加工モジュール組は、複数の前記主軸モジュールから成る主軸モジュール列と、主軸モジュールの各々の前に配置された複数のテーブルモジュールから成るテーブルモジュール列とを含み、
     前記主軸モジュールが、前記主軸モジュール列の一番端に配置された最初の主軸モジュールと、前記主軸モジュールの反対側の端に配置された最後の主軸モジュールとを含み、
     前記テーブルモジュールが、前記最初の主軸モジュールに結合された最初のテーブルモジュールと、前記最後の主軸モジュールに結合された最後のテーブルモジュールとを含み、
     前記主軸モジュールの各々は前記ワークに別々の加工を行い、ワークが、最初のテーブルモジュールから最後のテーブルモジュールへ移送されるまで順次に隣のテーブルモジュールへ移送される間、前記加工モジュールのそれぞれの主軸モジュールによって順次に加工されるようにした請求項2に記載の加工システム。
    The machining system includes a first set of machining modules including a plurality of the machining modules arranged side by side.
    The first set of machining modules includes a spindle module row consisting of the plurality of spindle modules and a table module row consisting of a plurality of table modules arranged in front of each of the spindle modules.
    The spindle module comprises the first spindle module located at the very end of the spindle module row and the last spindle module located at the opposite end of the spindle module.
    The table module includes the first table module coupled to the first spindle module and the last table module coupled to the last spindle module.
    Each of the spindle modules performs separate machining on the workpiece, and while the workpiece is sequentially transferred to the adjacent table module until transferred from the first table module to the last table module, each of the machining modules. The processing system according to claim 2, wherein the processing is sequentially performed by the spindle module.
  4.  前記自走式モジュールベースを有し、前記複数の加工モジュールの1つに結合された付加主軸モジュールを更に具備しており、該1つの加工モジュールのテーブルモジュールに該加工モジュールの主軸モジュールと付加主軸モジュールの双方が結合され、該テーブルモジュールに固定されているワークが、2つの主軸モジュールにより加工される請求項3に記載の加工システム。 It has the self-propelled module base and further includes an additional spindle module coupled to one of the plurality of machining modules, and the spindle module and the additional spindle of the machining module are added to the table module of the one machining module. The machining system according to claim 3, wherein both modules are connected and the workpiece fixed to the table module is machined by two spindle modules.
  5.  前記自走式モジュールベースを有した主軸モジュールと前記自走式モジュールベースを有したテーブルモジュールとを含む少なくとも1つの加工モジュールから成る第2の加工モジュール組を更に具備し、
     前記第2の加工モジュール組の端のテーブルモジュールが、前記第1の加工モジュール組のいずれかのテーブルモジュールに隣接して配置された請求項3に記載の加工システム。
    Further comprising a second machining module set comprising at least one machining module including a spindle module having the self-propelled module base and a table module having the self-propelled module base.
    The machining system according to claim 3, wherein the table module at the end of the second machining module set is arranged adjacent to any table module of the first machining module set.
  6.  前記加工システム制御装置は、前記連結器を分離して前記自走式モジュールベースを有した主軸モジュールまたは前記自走式モジュールベースを有したテーブルモジュールを前記加工モジュールから自走させて切り離し、または待機している前記自走式モジュールベースを有した主軸モジュールまたは前記自走式モジュールベースを有したテーブルモジュールを自走させて前記加工モジュールとして再構成すべく前記連結器を結合させる指示を行う請求項2に記載の加工システム。 The machining system control device separates the coupler and self-propells the spindle module having the self-propelled module base or the table module having the self-propelled module base from the machining module to disconnect or stand by. A claim for instructing that a spindle module having the self-propelled module base or a table module having the self-propelled module base is self-propelled and the coupler is coupled so as to be reconstructed as the machining module. The processing system according to 2.
  7.  未加工ワークを収納する第1の領域と、加工済ワークを収納する第2の領域とを含むワークストッカと、
     前記ワークストッカの第1の領域から前記最初のテーブルモジュールへ未加工ワークを搬送し、加工済ワークを前記最後のテーブルモジュールから前記ワークストッカの第2の領域へ搬送する搬送車とを具備する請求項3に記載の加工システム。
    A work stocker including a first area for storing raw workpieces and a second area for accommodating processed workpieces.
    A claim comprising a transport vehicle for transporting raw work from a first region of the work stocker to the first table module and transporting the machined work from the last table module to a second region of the work stocker. Item 3. The processing system according to Item 3.
  8.  前記主軸モジュールは、前記主軸に交換可能に装着する工具を複数個保持する工具マガジンを含む請求項1に記載の加工システム。 The machining system according to claim 1, wherein the spindle module includes a tool magazine that holds a plurality of tools that are interchangeably mounted on the spindle.
  9.  前記主軸モジュールが、前記工具マガジンに保持されると共に、前記主軸に装着されるように形成されたワーク把持具を更に含む請求項8に記載の加工システム。 The machining system according to claim 8, wherein the spindle module is held in the tool magazine and further includes a work gripping tool formed so as to be mounted on the spindle.
  10.  前記主軸モジュールは、前記主軸に前記ワーク把持具を装着し、前記主軸モジュールと前記テーブルモジュール間の前記主軸の相対移動を利用してワークを把持し、把持したワークを隣接する前記テーブルモジュール間で移送する請求項9に記載の加工システム。 The spindle module mounts the work gripping tool on the spindle, grips the work by utilizing the relative movement of the spindle between the spindle module and the table module, and grips the gripped work between the adjacent table modules. The processing system according to claim 9 to be transferred.
  11.  前記主軸モジュールは、除去加工、付加加工、塑性加工のいずれかの加工処理を行う請求項1に記載の加工システム。 The processing system according to claim 1, wherein the spindle module performs processing of any of removal processing, addition processing, and plastic working.
PCT/JP2020/037295 2020-09-30 2020-09-30 Processing system WO2022070350A1 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
PCT/JP2020/037295 WO2022070350A1 (en) 2020-09-30 2020-09-30 Processing system
PCT/JP2021/036351 WO2022071551A1 (en) 2020-09-30 2021-09-30 Machining system
PCT/JP2021/036352 WO2022071552A1 (en) 2020-09-30 2021-09-30 Processing system
PCT/JP2021/036350 WO2022071550A1 (en) 2020-09-30 2021-09-30 Processing system
PCT/JP2021/036356 WO2022071554A1 (en) 2020-09-30 2021-09-30 Processing system
PCT/JP2021/036359 WO2022071555A1 (en) 2020-09-30 2021-09-30 Safety device for machining system
PCT/JP2021/036354 WO2022071553A1 (en) 2020-09-30 2021-09-30 Processing system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/037295 WO2022070350A1 (en) 2020-09-30 2020-09-30 Processing system

Publications (1)

Publication Number Publication Date
WO2022070350A1 true WO2022070350A1 (en) 2022-04-07

Family

ID=80949944

Family Applications (7)

Application Number Title Priority Date Filing Date
PCT/JP2020/037295 WO2022070350A1 (en) 2020-09-30 2020-09-30 Processing system
PCT/JP2021/036351 WO2022071551A1 (en) 2020-09-30 2021-09-30 Machining system
PCT/JP2021/036359 WO2022071555A1 (en) 2020-09-30 2021-09-30 Safety device for machining system
PCT/JP2021/036350 WO2022071550A1 (en) 2020-09-30 2021-09-30 Processing system
PCT/JP2021/036352 WO2022071552A1 (en) 2020-09-30 2021-09-30 Processing system
PCT/JP2021/036354 WO2022071553A1 (en) 2020-09-30 2021-09-30 Processing system
PCT/JP2021/036356 WO2022071554A1 (en) 2020-09-30 2021-09-30 Processing system

Family Applications After (6)

Application Number Title Priority Date Filing Date
PCT/JP2021/036351 WO2022071551A1 (en) 2020-09-30 2021-09-30 Machining system
PCT/JP2021/036359 WO2022071555A1 (en) 2020-09-30 2021-09-30 Safety device for machining system
PCT/JP2021/036350 WO2022071550A1 (en) 2020-09-30 2021-09-30 Processing system
PCT/JP2021/036352 WO2022071552A1 (en) 2020-09-30 2021-09-30 Processing system
PCT/JP2021/036354 WO2022071553A1 (en) 2020-09-30 2021-09-30 Processing system
PCT/JP2021/036356 WO2022071554A1 (en) 2020-09-30 2021-09-30 Processing system

Country Status (1)

Country Link
WO (7) WO2022070350A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116852123A (en) * 2023-08-31 2023-10-10 惠生(南通)重工有限公司 Large-scale aluminum alloy LNG storage tank production line system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7456051B1 (en) 2023-07-18 2024-03-26 Dmg森精機株式会社 Machine Tools

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5942255A (en) * 1982-08-30 1984-03-08 Toyoda Mach Works Ltd Machining system
JPS60221230A (en) * 1984-04-18 1985-11-05 Nissan Motor Co Ltd Follow up method
US4636137A (en) * 1980-10-24 1987-01-13 Lemelson Jerome H Tool and material manipulation apparatus and method
JPH11179637A (en) * 1997-12-19 1999-07-06 Toyoda Mach Works Ltd Flexible production system and control method thereof
US6920973B2 (en) * 2003-06-19 2005-07-26 The Regents Of The University Of Michigan Integrated reconfigurable manufacturing system
JP2008213131A (en) * 2007-03-07 2008-09-18 Seiko Epson Corp General-purpose cell for production system and production system using general-purpose cell
JP2008229738A (en) * 2007-03-16 2008-10-02 Seiko Epson Corp Production system and general-purpose cell for the production system
JP2009061562A (en) * 2007-09-07 2009-03-26 Toyota Motor Corp Work loading device
JP2019038048A (en) * 2017-08-23 2019-03-14 株式会社日立製作所 Robot procurement device and robot procurement method
WO2019106364A1 (en) * 2017-12-01 2019-06-06 Applied Scientific Technologies UK Limited Modular system

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07233640A (en) * 1994-02-22 1995-09-05 Penta Ocean Constr Co Ltd Travel working vehicle for concrete compacting device
JP3419313B2 (en) * 1998-07-21 2003-06-23 株式会社デンソー Production system
JP2006159321A (en) * 2004-12-03 2006-06-22 Toyota Motor Corp Levelling device
JP2006198764A (en) * 2004-12-24 2006-08-03 Aisin Aw Co Ltd Cell production process and facility
JP4997549B2 (en) * 2007-01-09 2012-08-08 株式会社ジェイテクト Robot line equipment
JP2009297874A (en) * 2008-06-17 2009-12-24 Olympus Corp Manufacturing device
WO2016027328A1 (en) * 2014-08-20 2016-02-25 富士機械製造株式会社 Machining center
US10472095B1 (en) * 2018-09-07 2019-11-12 The Boeing Company Mobile fixture apparatuses and methods

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4636137A (en) * 1980-10-24 1987-01-13 Lemelson Jerome H Tool and material manipulation apparatus and method
JPS5942255A (en) * 1982-08-30 1984-03-08 Toyoda Mach Works Ltd Machining system
JPS60221230A (en) * 1984-04-18 1985-11-05 Nissan Motor Co Ltd Follow up method
JPH11179637A (en) * 1997-12-19 1999-07-06 Toyoda Mach Works Ltd Flexible production system and control method thereof
US6920973B2 (en) * 2003-06-19 2005-07-26 The Regents Of The University Of Michigan Integrated reconfigurable manufacturing system
JP2008213131A (en) * 2007-03-07 2008-09-18 Seiko Epson Corp General-purpose cell for production system and production system using general-purpose cell
JP2008229738A (en) * 2007-03-16 2008-10-02 Seiko Epson Corp Production system and general-purpose cell for the production system
JP2009061562A (en) * 2007-09-07 2009-03-26 Toyota Motor Corp Work loading device
JP2019038048A (en) * 2017-08-23 2019-03-14 株式会社日立製作所 Robot procurement device and robot procurement method
WO2019106364A1 (en) * 2017-12-01 2019-06-06 Applied Scientific Technologies UK Limited Modular system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116852123A (en) * 2023-08-31 2023-10-10 惠生(南通)重工有限公司 Large-scale aluminum alloy LNG storage tank production line system
CN116852123B (en) * 2023-08-31 2023-11-14 惠生(南通)重工有限公司 Large-scale aluminum alloy LNG storage tank production line system

Also Published As

Publication number Publication date
WO2022071553A1 (en) 2022-04-07
WO2022071552A1 (en) 2022-04-07
WO2022071551A1 (en) 2022-04-07
WO2022071550A1 (en) 2022-04-07
WO2022071555A1 (en) 2022-04-07
WO2022071554A1 (en) 2022-04-07

Similar Documents

Publication Publication Date Title
US4893398A (en) Device for automatic joining and machining
WO2022070350A1 (en) Processing system
EP0827807B1 (en) Long bar member machining apparatus and method
US6094793A (en) Intelligent fixture system
JP2010076006A (en) Processing line module and processing plant
KR20160098063A (en) Machine tool
EP3417995B1 (en) Machine tool, in particular multi-spindle turning machine
Cutkosky et al. The design of a flexible machining cell for small batch production
US5174071A (en) Lathe and grinder apparatus with two or more side-by-side arranged manipulator-interfaced dual-spindle units
CN206263596U (en) One kind is used for the mach transfer matic of caliper shell
US20100166519A1 (en) Clamping method for workpieces used for the production of compressor or turbine wheels
CN212734156U (en) Multifunctional turning center machine with double main shafts and double tool turrets
CN112372008A (en) Double-channel three-spindle-box numerical control machine tool
CN106514276A (en) Digital machining system of flange plate parts
CN113927438B (en) Screw tap machining center and machining method
CN108856784A (en) Floor-type vertical-horizontal combined boring-milling numerical control machine tool
JP3011978B2 (en) Automatic processing equipment
CN113770738A (en) Full-automatic production line for crankshaft machining
KR20180134029A (en) Automatic attachment changer and boring machine including the same
CN108747227B (en) Machining production line for bearing of air conditioner compressor
CN113523314B (en) Processing technology and processing system for triple gear
KR20170091807A (en) Automatic machining apparatus for metal works
JP2000126973A (en) Machining center with work robot
CN216633363U (en) Full-automatic production line for crankshaft machining
CN217143473U (en) High-speed railway crossbeam multi-robot system of polishing

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20956278

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20956278

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP