WO2022068941A1 - Systems and methods for digital radiography - Google Patents

Systems and methods for digital radiography Download PDF

Info

Publication number
WO2022068941A1
WO2022068941A1 PCT/CN2021/122461 CN2021122461W WO2022068941A1 WO 2022068941 A1 WO2022068941 A1 WO 2022068941A1 CN 2021122461 W CN2021122461 W CN 2021122461W WO 2022068941 A1 WO2022068941 A1 WO 2022068941A1
Authority
WO
WIPO (PCT)
Prior art keywords
column
connector
radiation source
assembly
subject
Prior art date
Application number
PCT/CN2021/122461
Other languages
French (fr)
Inventor
Kai CUI
Yang Hu
Le Yang
Original Assignee
Shanghai United Imaging Healthcare Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai United Imaging Healthcare Co., Ltd. filed Critical Shanghai United Imaging Healthcare Co., Ltd.
Publication of WO2022068941A1 publication Critical patent/WO2022068941A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16MFRAMES, CASINGS OR BEDS OF ENGINES, MACHINES OR APPARATUS, NOT SPECIFIC TO ENGINES, MACHINES OR APPARATUS PROVIDED FOR ELSEWHERE; STANDS; SUPPORTS
    • F16M11/00Stands or trestles as supports for apparatus or articles placed thereon Stands for scientific apparatus such as gravitational force meters
    • F16M11/02Heads
    • F16M11/04Means for attachment of apparatus; Means allowing adjustment of the apparatus relatively to the stand
    • F16M11/043Allowing translations
    • F16M11/045Allowing translations adapted to left-right translation movement
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/44Constructional features of apparatus for radiation diagnosis
    • A61B6/4429Constructional features of apparatus for radiation diagnosis related to the mounting of source units and detector units
    • A61B6/4452Constructional features of apparatus for radiation diagnosis related to the mounting of source units and detector units the source unit and the detector unit being able to move relative to each other
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/44Constructional features of apparatus for radiation diagnosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/44Constructional features of apparatus for radiation diagnosis
    • A61B6/4429Constructional features of apparatus for radiation diagnosis related to the mounting of source units and detector units
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/54Control of apparatus or devices for radiation diagnosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/54Control of apparatus or devices for radiation diagnosis
    • A61B6/545Control of apparatus or devices for radiation diagnosis involving automatic set-up of acquisition parameters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16MFRAMES, CASINGS OR BEDS OF ENGINES, MACHINES OR APPARATUS, NOT SPECIFIC TO ENGINES, MACHINES OR APPARATUS PROVIDED FOR ELSEWHERE; STANDS; SUPPORTS
    • F16M11/00Stands or trestles as supports for apparatus or articles placed thereon Stands for scientific apparatus such as gravitational force meters
    • F16M11/02Heads
    • F16M11/04Means for attachment of apparatus; Means allowing adjustment of the apparatus relatively to the stand
    • F16M11/043Allowing translations
    • F16M11/046Allowing translations adapted to upward-downward translation movement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16MFRAMES, CASINGS OR BEDS OF ENGINES, MACHINES OR APPARATUS, NOT SPECIFIC TO ENGINES, MACHINES OR APPARATUS PROVIDED FOR ELSEWHERE; STANDS; SUPPORTS
    • F16M11/00Stands or trestles as supports for apparatus or articles placed thereon Stands for scientific apparatus such as gravitational force meters
    • F16M11/02Heads
    • F16M11/04Means for attachment of apparatus; Means allowing adjustment of the apparatus relatively to the stand
    • F16M11/043Allowing translations
    • F16M11/048Allowing translations adapted to forward-backward translation movement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16MFRAMES, CASINGS OR BEDS OF ENGINES, MACHINES OR APPARATUS, NOT SPECIFIC TO ENGINES, MACHINES OR APPARATUS PROVIDED FOR ELSEWHERE; STANDS; SUPPORTS
    • F16M11/00Stands or trestles as supports for apparatus or articles placed thereon Stands for scientific apparatus such as gravitational force meters
    • F16M11/02Heads
    • F16M11/04Means for attachment of apparatus; Means allowing adjustment of the apparatus relatively to the stand
    • F16M11/06Means for attachment of apparatus; Means allowing adjustment of the apparatus relatively to the stand allowing pivoting
    • F16M11/12Means for attachment of apparatus; Means allowing adjustment of the apparatus relatively to the stand allowing pivoting in more than one direction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16MFRAMES, CASINGS OR BEDS OF ENGINES, MACHINES OR APPARATUS, NOT SPECIFIC TO ENGINES, MACHINES OR APPARATUS PROVIDED FOR ELSEWHERE; STANDS; SUPPORTS
    • F16M11/00Stands or trestles as supports for apparatus or articles placed thereon Stands for scientific apparatus such as gravitational force meters
    • F16M11/02Heads
    • F16M11/18Heads with mechanism for moving the apparatus relatively to the stand

Definitions

  • the present disclosure relates to medical devices, and in particular, to systems and methods for imaging using a Digital Radiography (DR) apparatus.
  • DR Digital Radiography
  • X-ray imaging is a technology that uses an X-ray scanner to scan a subject to generate an image of the subject.
  • the X-ray imaging technology such as a Digital Radiography (DR) system
  • DR Digital Radiography
  • an X-ray detector may receive X-rays emitted by a radiation source and convert information relating to the X-rays into digital signals, so that a target image of a subject may be generated based on the digital signals.
  • the DR system usually generates two-dimensional (2D) images (e.g., a 2D chest radiograph) of a subject.
  • 2D images e.g., a 2D chest radiograph
  • the DR apparatus may include a first assembly configured to install thereon a first device, which is a radiation source or a radiation detector
  • the first assembly may include a first column; a second column connected to the first column via a first connector, wherein the first connector is configured to rotate the second column relative to the first column in a first plane; and a second connector connecting the second column to the first device, wherein the second connector is configured to move on the second column along lengthwise directions of the second column.
  • the DR apparatus may further include a second assembly configured to install thereon a second device, wherein when the first device is a radiation source, the second device is a radiation detector; and when the first device is a radiation detector, the second device is a radiation source, and a supporting assembly configured to support the first assembly or the second assembly.
  • the second connector is further configured to rotate the first device installed on the first assembly in a second plane.
  • the first column is connected to the supporting assembly and configured to move on the supporting assembly along lengthwise directions of the supporting assembly.
  • the first connector is further configured to move the second column on the first column along lengthwise directions of the first column.
  • the second assembly includes a third column connected to the second device via a third connector.
  • the third connector is configured to move on the third column along lengthwise directions of the third column.
  • the third connector is further configured to rotate the second device installed on the second assembly relative to the third column.
  • the third column is connected to the supporting assembly and configured to move on the supporting assembly along lengthwise directions of the supporting assembly.
  • the second assembly is a suspension type assembly
  • the third column is suspended on the supporting assembly.
  • the second assembly further includes a fourth column disposed between the third column and the third connector, wherein the fourth column is connected to the third column via a fourth connector, and the fourth connector is configured to rotate the fourth column in a third plane.
  • the fourth connector is further configured to move on the third column along lengthwise directions of the third column.
  • the third connector connects the fourth column and the second device, and the third connector is configured to move the second device on the fourth column along lengthwise directions of the fourth column.
  • the third connector is configured to rotate the second device installed on the second assembly.
  • the second device rotates in a fourth plane.
  • the third column is connected to the supporting assembly and configured to move on the supporting assembly along lengthwise directions of the supporting assembly.
  • the second assembly is a suspension type assembly
  • the third column is suspended on the supporting assembly.
  • the method may include obtaining a scan task of a subject, wherein the scan task includes a scan region, a first scan direction, and a second scan direction; determining, based on the scan task, operating parameters of a radiation source or a radiation detector of the DR apparatus; and obtaining scanning data of the subject, wherein the scanning data is acquired by controlling the radiation source or the radiation detector of the DR apparatus to move according to the operating parameters.
  • a scan task of a subject wherein the scan task includes a scan region, a first scan direction, and a second scan direction
  • determining, based on the scan task, operating parameters of a radiation source or a radiation detector of the DR apparatus determining, based on the scan task, operating parameters of a radiation source or a radiation detector of the DR apparatus
  • obtaining scanning data of the subject wherein the scanning data is acquired by controlling the radiation source or the radiation detector of the DR apparatus to move according to the operating parameters.
  • the method may further include obtaining, based on the scanning data, a 3D image according to an image reconstruction algorithm.
  • the operating parameters of the radiation source or the radiation detector of the DR apparatus includes first parameters of the first scan direction and second parameters of the second scan direction, and the scanning data of the subject is acquired by controlling the radiation source or the radiation detector to move, according to the operating parameters, along the first scan direction and the second scan direction simultaneously.
  • a trajectory of the radiation source or the radiation detector of the DR apparatus includes a spiral trajectory.
  • FIG. 1 is a schematic diagram illustrating an exemplary DR system according to some embodiments of the present disclosure
  • FIG. 2 is a schematic diagram illustrating exemplary hardware and/or software components of a computing device according to some embodiments of the present disclosure
  • FIG. 3 is a schematic diagram illustrating exemplary hardware and/or software components of a mobile device according to some embodiments of the present disclosure
  • FIG. 4 is a block diagram illustrating an exemplary processing device according to some embodiments of the present disclosure.
  • FIG. 5 illustrates an exemplary DR apparatus according to some embodiments of the present disclosure
  • FIG. 6 is a partial view of a first assembly along a direction A shown in FIG. 5 according to some embodiments of the present disclosure
  • FIG. 7 illustrates an exemplary DR apparatus according to some embodiments of the present disclosure
  • FIG. 8 is a partial view of a first assembly along a direction B shown in FIG. 7 according to some embodiments of the present disclosure
  • FIG. 9 illustrates an exemplary DR apparatus according to some embodiments of the present disclosure.
  • FIG. 10 is partial view of a second assembly along a direction C shown in FIG. 9 according to some embodiments of the present disclosure.
  • FIG. 11 illustrates an exemplary DR apparatus according to some embodiments of the present disclosure
  • FIG. 12 illustrates an exemplary DR apparatus according to some embodiments of the present disclosure
  • FIG. 13 illustrates an exemplary scanning table according to some embodiments of the present disclosure
  • FIG. 14 illustrates an exemplary DR apparatus according to some embodiments of the present disclosure
  • FIG. 15 is a flowchart illustrating an exemplary process for obtaining scanning data of a subject according to some embodiments of the present disclosure
  • FIG. 16A illustrates an exemplary trajectory of a radiation source according to some embodiments of the present disclosure
  • FIG. 16B illustrates an exemplary trajectory of a radiation source according to some embodiments of the present disclosure
  • FIG. 17A illustrates exemplary curve trajectories in a second scan direction of a radiation source and a radiation detector according to some embodiments of the present disclosure
  • FIG. 17B illustrates exemplary linear trajectories in a first scan direction of a radiation source and a radiation detector according to some embodiments of the present disclosure.
  • FIG. 18 illustrates exemplary reference vector surfaces of a subject according to some embodiments of the present disclosure.
  • system, ” “engine, ” “unit, ” “module, ” and/or “block” used herein are one method to distinguish different components, elements, parts, sections or assembly of different levels in ascending order. However, the terms may be displaced by another expression if they achieve the same purpose.
  • module, ” “unit, ” or “block, ” as used herein refers to logic embodied in hardware or firmware, or to a collection of software instructions.
  • a module, a unit, or a block described herein may be implemented as software and/or hardware and may be stored in any type of non-transitory computer-readable medium or another storage device.
  • a software module/unit/block may be compiled and linked into an executable program. It will be appreciated that software modules can be callable from other modules/units/blocks or from themselves, and/or may be invoked in response to detected events or interrupts.
  • Software modules/units/blocks configured for execution on computing devices (e.g., processor 210 as illustrated in FIG.
  • a computer-readable medium such as a compact disc, a digital video disc, a flash drive, a magnetic disc, or any other tangible medium, or as a digital download (and can be originally stored in a compressed or installable format that needs installation, decompression, or decryption prior to execution) .
  • a computer-readable medium such as a compact disc, a digital video disc, a flash drive, a magnetic disc, or any other tangible medium, or as a digital download (and can be originally stored in a compressed or installable format that needs installation, decompression, or decryption prior to execution) .
  • Such software code may be stored, partially or fully, on a storage device of the executing computing device, for execution by the computing device.
  • Software instructions may be embedded in firmware, such as an EPROM.
  • hardware modules/units/blocks may be included in connected logic components, such as gates and flip-flops, and/or can be included of programmable units, such as programmable gate arrays or processors.
  • modules/units/blocks or computing device functionality described herein may be implemented as software modules/units/blocks, but may be represented in hardware or firmware.
  • the modules/units/blocks described herein refer to logical modules/units/blocks that may be combined with other modules/units/blocks or divided into sub-modules/sub-units/sub-blocks despite their physical organization or storage. The description may be applicable to a system, an engine, or a portion thereof.
  • image in the present disclosure is used to collectively refer to image data (e.g., scan data, projection data) and/or images of various forms, including a two-dimensional (2D) image, a three-dimensional (3D) image, a four-dimensional (4D) , etc.
  • pixel and “voxel” in the present disclosure are used interchangeably to refer to an element of an image.
  • An anatomical structure shown in an image of a subject may correspond to an actual anatomical structure existing in or on the subject’s body.
  • segmenting an anatomical structure” or “identifying an anatomical structure” in an image of a subject may refer to segmenting or identifying a portion in the image that corresponds to an actual anatomical structure existing in or on the subject’s body.
  • region, ” “location, ” and “area” in the present disclosure may refer to a location of an anatomical structure shown in the image or an actual location of the anatomical structure existing in or on the subject’s body, since the image may indicate the actual location of a certain anatomical structure existing in or on the subject’s body.
  • first, ” “second, ” “third, ” “fourth, ” etc. may be used herein to describe various elements, these elements should not be limited by these terms. These terms are only used to distinguish one element from another. For example, a first element could be termed a second element, and, similarly, a second element could be termed a first element, without departing from the scope of example embodiments of the present invention.
  • imaging modality broadly refers to an imaging method or technology that gathers, generates, processes, and/or analyzes imaging information of a subject.
  • the subject may include a biological subject and/or a non-biological subject.
  • the biological subject may be a human being, an animal, a plant, or a portion thereof (e.g., a heart, a breast, etc. ) .
  • the subject may be a man-made composition of organic and/or inorganic matters that are with or without life.
  • the system may include a DR apparatus.
  • the DR apparatus may include a first assembly configured to install thereon a first device.
  • the first device may be a radiation source or a radiation detector.
  • the first assembly may include a first column, a second column, a first connector, and a second connector.
  • the second column may be connected to the first column via the first connector.
  • the first connector may be configured to rotate the second column relative to the first column in a first plane.
  • the second connector may connect the second column to the first device.
  • the second connector may be configured to move on the second column along lengthwise directions of the second column.
  • the DR apparatus may include a second assembly and a supporting assembly.
  • the second assembly may be configured to install thereon a second device.
  • the second device When the first device is a radiation source, the second device may be a radiation detector.
  • the first device When the first device is a radiation detector, the second device may be a radiation source.
  • the supporting assembly may be configured to support the first assembly or the second assembly.
  • the DR apparatus may obtain scanning data of one or more reference vector surfaces of the subject (e.g., at least one sagittal plane, at least one axial plane, at least one coronal plane, etc. ) .
  • the DR system may generate a 3D image of the subject based on the obtained scanning data.
  • the subject may include a biological subject and/or a non-biological subject.
  • the subject may be a human being, an animal, or a portion thereof.
  • the subject may be a phantom.
  • the subject may be a patient, or a portion of the patient (e.g., the chest, the breast, and/or the abdomen of the patient) .
  • FIG. 1 is a schematic diagram illustrating an exemplary DR system 100 according to some embodiments of the present disclosure.
  • the DR system 100 may include a DR apparatus 110, a processing device 120, a storage device 130, one or more terminal (s) 140, and a network 150.
  • the DR apparatus 110, the processing device 120, the storage device 130, and/or the terminal (s) 140 may be connected to and/or communicate with each other via a wireless connection (e.g., the network 150) , a wired connection, or a combination thereof.
  • the connections between the components in the DR system 100 may vary.
  • the DR apparatus 110 may be connected to the processing device 120 through the network 150, as illustrated in FIG. 1.
  • the DR apparatus 110 may be connected to the processing device 120 directly.
  • the storage device 130 may be connected to the processing device 120 through the network 150, as illustrated in FIG. 1, or connected to the processing device 120 directly.
  • the terminal (s) 140 may be connected to the processing device 120 through the network 150, as illustrated in FIG. 1, or connected to the processing device 120 directly.
  • the DR apparatus 110 may include a radiation source 112 and a radiation detector 114.
  • the radiation source may be configured to generate and/or emit radiations (e.g., X-rays) .
  • the radiation detector 114 may be configured to detect radiations passing through a subject for dose determination and/or imaging. Details of the DR apparatus 110 of the DR system 100 may be found elsewhere in the present disclosure, e.g., in FIGs. 5-14 and the descriptions thereof.
  • the processing device 120 may process data and/or information obtained from the DR apparatus 110, the storage device 130, and/or the terminal (s) 140. For example, the processing device 120 may obtain a scan task of a subject. The processing device 120 may determine operating parameters of the radiation source 112 or the radiation detector 114 of the DR apparatus 110 based on the scan task. As another example, the processing device 120 may obtain scanning data of the subject from the DR apparatus 110 by controlling the radiation source 112 or the radiation detector 114 of the DR apparatus 110 to move according to the operating parameters. As still another example, the processing device 120 may obtain a 3D image based on the scanning data.
  • the processing device 120 may be a single server or a server group.
  • the server group may be centralized or distributed.
  • the processing device 120 may be local or remote.
  • the processing device 120 may access information and/or data from the DR apparatus 110, the storage device 130, and/or the terminal (s) 140 via the network 150.
  • the processing device 120 may be directly connected to the DR apparatus 110, the terminal (s) 140, and/or the storage device 130 to access information and/or data.
  • the processing device 120 may be implemented on a cloud platform.
  • the cloud platform may include a private cloud, a public cloud, a hybrid cloud, a community cloud, a distributed cloud, an inter-cloud, a multi-cloud, or the like, or a combination thereof.
  • the storage device 130 may store data, instructions, and/or any other information.
  • the storage device 130 may store data obtained from the DR apparatus 110, the processing device 120, and/or the terminal (s) 140.
  • the storage device 130 may store data and/or instructions that the processing device 120 may execute or use to perform exemplary methods described in the present disclosure.
  • the storage device 130 may include a mass storage, removable storage, a volatile read-and-write memory, a read-only memory (ROM) , or the like, or any combination thereof.
  • Exemplary mass storage may include a magnetic disk, an optical disk, a solid-state drive, etc.
  • Exemplary removable storage may include a flash drive, a floppy disk, an optical disk, a memory card, a zip disk, a magnetic tape, etc.
  • Exemplary volatile read-and-write memory may include a random access memory (RAM) .
  • Exemplary RAM may include a dynamic RAM (DRAM) , a double date rate synchronous dynamic RAM (DDR SDRAM) , a static RAM (SRAM) , a thyristor RAM (T-RAM) , and a zero-capacitor RAM (Z-RAM) , etc.
  • DRAM dynamic RAM
  • DDR SDRAM double date rate synchronous dynamic RAM
  • SRAM static RAM
  • T-RAM thyristor RAM
  • Z-RAM zero-capacitor RAM
  • Exemplary ROM may include a mask ROM (MROM) , a programmable ROM (PROM) , an erasable programmable ROM (EPROM) , an electrically erasable programmable ROM (EEPROM) , a compact disk ROM (CD-ROM) , and a digital versatile disk ROM, etc.
  • MROM mask ROM
  • PROM programmable ROM
  • EPROM erasable programmable ROM
  • EEPROM electrically erasable programmable ROM
  • CD-ROM compact disk ROM
  • digital versatile disk ROM etc.
  • the storage device 130 may be implemented on a cloud platform as described elsewhere in the disclosure.
  • the storage device 130 may be connected to the network 150 to communicate with one or more other components in the DR system 100 (e.g., the processing device 120, the terminal (s) 140) .
  • One or more components in the DR system 100 may access the data or instructions stored in the storage device 130 via the network 150.
  • the storage device 130 may be part of the processing device 120.
  • the terminal (s) 140 may be connected to and/or communicate with the DR apparatus 110, the processing device 120, and/or the storage device 130. For example, the terminal (s) 140 may obtain a 3D image based on the scanning data.
  • the terminal (s) 140 may include a mobile device 141, a tablet computer 142, a laptop computer 143, or the like, or any combination thereof.
  • the mobile device 140-1 may include a mobile phone, a personal digital assistant (PDA) , a gaming device, a point of sale (POS) device, a laptop, a tablet computer, a desktop, or the like, or any combination thereof.
  • the terminal (s) 140 may include an input device, an output device, etc.
  • the input device may include alphanumeric and other keys that may be input via a keyboard, a touchscreen (for example, with haptics or tactile feedback) , a speech input, an eye tracking input, a brain monitoring system, or any other comparable input mechanism.
  • the input information received through the input device may be transmitted to the processing device 120 via, for example, a bus, for further processing.
  • Other types of the input device may include a cursor control device, such as a mouse, a trackball, or cursor direction keys, etc.
  • the output device may include a display, a speaker, a printer, or the like, or a combination thereof.
  • the terminal (s) 140 may be part of the processing device 120.
  • the network 150 may include any suitable network that can facilitate the exchange of information and/or data for the DR system 100.
  • one or more components of the DR system 100 e.g., the DR apparatus 110, the processing device 120, the storage device 130, the terminal (s) 140, etc.
  • the processing device 120 may obtain image data from the DR apparatus 110 via the network 150.
  • the processing device 120 may obtain user instruction (s) from the terminal (s) 140 via the network 150.
  • the network 150 may be and/or include a public network (e.g., the Internet) , a private network (e.g., a local area network (LAN) , a wide area network (WAN) ) , etc. ) , a wired network (e.g., an Ethernet network) , a wireless network (e.g., an 802.11 network, a Wi-Fi network, etc. ) , a cellular network (e.g., a Long Term Evolution (LTE) network) , a frame relay network, a virtual private network (VPN) , a satellite network, a telephone network, routers, hubs, witches, server computers, and/or any combination thereof.
  • a public network e.g., the Internet
  • a private network e.g., a local area network (LAN) , a wide area network (WAN) ) , etc.
  • a wired network e.g., an Ethernet network
  • a wireless network e
  • the network 150 may include a cable network, a wireline network, a fiber-optic network, a telecommunications network, an intranet, a wireless local area network (WLAN) , a metropolitan area network (MAN) , a public telephone switched network (PSTN) , a Bluetooth TM network, a ZigBee TM network, a near field communication (NFC) network, or the like, or any combination thereof.
  • the network 150 may include one or more network access points.
  • the network 150 may include wired and/or wireless network access points such as base stations and/or internet exchange points through which one or more components of the DR system 100 may be connected to the network 150 to exchange data and/or information.
  • the storage device 130 may be a data storage including cloud computing platforms, such as public cloud, private cloud, community, and hybrid clouds, etc. However, those variations and modifications do not depart the scope of the present disclosure.
  • FIG. 2 is a schematic diagram illustrating exemplary hardware and/or software components of a computing device 200 on which the processing device 120 may be implemented according to some embodiments of the present disclosure.
  • the computing device 200 may include a processor 210, a storage device 220, an input/output (I/O) 230, and a communication port 240.
  • I/O input/output
  • the processor 210 may execute computer instructions (e.g., program code) and perform functions of the processing device 120 in accordance with techniques described herein.
  • the computer instructions may include, for example, routines, programs, subjects, components, data structures, procedures, modules, and functions, which perform particular functions described herein.
  • the processor 210 may process radiation dose data and/or image data obtained from the imaging device 110, the terminal (s) 140, the storage device 130, and/or any other component of the DR system 100.
  • the processor 210 may include one or more hardware processors, such as a microcontroller, a microprocessor, a reduced instruction set computer (RISC) , an application specific integrated circuits (ASICs) , an application-specific instruction-set processor (ASIP) , a central processing unit (CPU) , a graphics processing unit (GPU) , a physics processing unit (PPU) , a microcontroller unit, a digital signal processor (DSP) , a field programmable gate array (FPGA) , an advanced RISC machine (ARM) , a programmable logic device (PLD) , any circuit or processor capable of executing one or more functions, or the like, or any combinations thereof.
  • RISC reduced instruction set computer
  • ASICs application specific integrated circuits
  • ASIP application-specific instruction-set processor
  • CPU central processing unit
  • GPU graphics processing unit
  • PPU physics processing unit
  • DSP digital signal processor
  • FPGA field programmable gate array
  • ARM advanced RISC machine
  • processors may also include multiple processors.
  • operations and/or method steps that are performed by one processor as described in the present disclosure may also be jointly or separately performed by the multiple processors.
  • the processor of the computing device 200 executes both process A and process B
  • process A and process B may also be performed by two or more different processors jointly or separately in the computing device 200 (e.g., a first processor executes process A and a second processor executes process B, or the first and second processors jointly execute processes A and B) .
  • the storage device 220 may store data/information obtained from the imaging device 110, the terminal (s) 140, the storage device 130, and/or any other component of the DR system 100.
  • the storage device 220 may include a mass storage, removable storage, a volatile read-and-write memory, a read-only memory (ROM) , or the like, or any combination thereof.
  • the mass storage may include a magnetic disk, an optical disk, a solid-state drive, etc.
  • the removable storage may include a flash drive, a floppy disk, an optical disk, a memory card, a zip disk, a magnetic tape, etc.
  • the volatile read-and-write memory may include a random access memory (RAM) .
  • the RAM may include a dynamic RAM (DRAM) , a double date rate synchronous dynamic RAM (DDR SDRAM) , a static RAM (SRAM) , a thyristor RAM (T-RAM) , and a zero-capacitor RAM (Z-RAM) , etc.
  • the ROM may include a mask ROM (MROM) , a programmable ROM (PROM) , an erasable programmable ROM (EPROM) , an electrically erasable programmable ROM (EEPROM) , a compact disk ROM (CD-ROM) , and a digital versatile disk ROM, etc.
  • the storage device 220 may store one or more programs and/or instructions to perform exemplary methods described in the present disclosure.
  • the storage device 220 may store a program for the processing device 120 for determining one or more registration parameters related to multi-modality images acquired by the DR system 100.
  • the I/O 230 may input and/or output signals, data, information, etc. In some embodiments, the I/O 230 may enable a user interaction with the processing device 120. In some embodiments, the I/O 230 may include an input device and an output device. Examples of the input device may include a keyboard, a mouse, a touch screen, a microphone, or the like, or a combination thereof. Examples of the output device may include a display device, a loudspeaker, a printer, a projector, or the like, or a combination thereof.
  • Examples of the display device may include a liquid crystal display (LCD) , a light-emitting diode (LED) -based display, a flat panel display, a curved screen, a television device, a cathode ray tube (CRT) , a touch screen, or the like, or a combination thereof.
  • LCD liquid crystal display
  • LED light-emitting diode
  • CRT cathode ray tube
  • the communication port 240 may be connected to a network (e.g., the network 150) to facilitate data communications.
  • the communication port 240 may establish connections between the processing device 120 and the imaging device 110, the terminal (s) 140, and/or the storage device 130.
  • the connection may be a wired connection, a wireless connection, any other communication connection that can enable data transmission and/or reception, and/or any combination of these connections.
  • the wired connection may include, for example, an electrical cable, an optical cable, a telephone wire, or the like, or any combination thereof.
  • the wireless connection may include, for example, a Bluetooth TM link, a Wi-Fi TM link, a WiMax TM link, a WLAN link, a ZigBee link, a mobile network link (e.g., 3G, 4G, 5G, etc. ) , or the like, or any combination thereof.
  • the communication port 240 may be and/or include a standardized communication port, such as RS232, RS485, etc.
  • the communication port 240 may be a specially designed communication port.
  • the communication port 240 may be designed in accordance with the digital imaging and communications in medicine (DICOM) protocol.
  • DICOM digital imaging and communications in medicine
  • FIG. 3 is a schematic diagram illustrating exemplary hardware and/or software components of a mobile device 300 on which the terminal (s) 140 and/or the processing device 120 may be implemented according to some embodiments of the present disclosure.
  • the mobile device 300 may include a communication platform 310, a display 320, a graphics processing unit (GPU) 330, a central processing unit (CPU) 340, an I/O 350, a memory 360, and a storage 390.
  • any other suitable component including but not limited to a system bus or a controller (not shown) , may also be included in the mobile device 300.
  • a mobile operating system 370 e.g., iOS TM , Android TM , Windows Phone TM , etc.
  • the applications 380 may include a browser or any other suitable mobile apps for receiving and rendering information respect to image processing or other information from the processing device 120.
  • User interactions with the information stream may be achieved via the I/O 350 and provided to the processing device 120 and/or other components of the DR system 100 via the network 150.
  • computer hardware platforms may be used as the hardware platform (s) for one or more of the elements described herein.
  • a computer with user interface elements may be used to implement a personal computer (PC) or any other type of workstation or external device.
  • PC personal computer
  • a computer may also act as a server if appropriately programmed.
  • FIG. 4 is a block diagram illustrating an exemplary processing device 120 according to some embodiments of the present disclosure.
  • the processing device 120 may be implemented on the computing device 200 (e.g., the processor 210) illustrated in FIG. 2.
  • the processing device 120 may include an acquisition module 402, a determination module 404, and a generation module 406.
  • the acquisition module 402 may be configured to obtain or acquire information and/or data relating to the DR apparatus.
  • the acquisition module 402 may obtain a scan task of the subject.
  • the scan task may include a scan region, a first scan direction, a second scan direction, or the like, or any combination thereof.
  • the determination module 404 may be configured to determine, based on the scan task, operating parameters of a radiation source or a radiation detector of the DR apparatus.
  • the generation module 406 may be configured to generate an image from the DR apparatus. For example, the generation module 406 may obtain scanning data of the subject. In some embodiments, the scanning data may be acquired by controlling the radiation source and/or the radiation detector of the DR apparatus to move according to the operating parameters. As another example, the generation module 406 may generate, based on the scanning data, a 3D image according to an image reconstruction algorithm.
  • the processing device 120 may include one or more additional modules not described, such as a storage module (not shown) for storing data. In some embodiments, any one of the modules of the processing device 120 may be divided into two or more units.
  • FIG. 5 illustrates an exemplary DR apparatus 500 according to some embodiments of the present disclosure.
  • the DR apparatus 500 may be an exemplary embodiment of the DR apparatus 110 of the DR system 100 described in FIG. 1.
  • the DR apparatus 500 may include a first assembly 510, a second assembly 520, and a supporting assembly 530.
  • the first assembly 510 may be configured to install thereon a first device for supporting the first device.
  • the first device may include a radiation source or a radiation detector.
  • the second assembly 520 may be configured to install thereon a second device for supporting the second device.
  • the first device and the second device may form a source-detector pair, i.e., when the first device is a radiation source, the second device is a radiation detector, and when the first device is a radiation detector, the second device is a radiation source.
  • the first assembly 510 is configured to install thereon a radiation source 590
  • the second assembly 520 is configured to install thereon a radiation detector 580.
  • the supporting assembly 530 may be configured to support the first assembly 510 and/or the second assembly 520.
  • the first assembly 510 may include a first column 511, a second column 512, a first connector 10, and a second connector 20.
  • the second column 512 may be connected to the first column 511 via the first connector 10.
  • the first connector 10 may be configured to rotate the second column relative to the first column.
  • the first connector 10 may include a first rotating component 513.
  • the second column 512 may be connected to the first column 511 via the first rotating component 513.
  • the first rotating component 513 may be configured to rotate the second column 512 relative to the first column 511 in a first plane.
  • a coordinate system XYZ including an X axis, a Y-axis, and a Z-axis is provided in FIG. 5.
  • the positive X direction along the X axis may be from the left side to the right side of the DR apparatus 110 seen from the direction facing the front of the DR apparatus 110; the positive Y direction along the Y axis may be from the lower part to the upper part of the DR apparatus 110; the Z direction may be perpendicular to the plane XY.
  • the first plane may be the plane XY.
  • the first plane may be the plane XZ.
  • the first connector 10 may be further configured to move on the first column 511 along lengthwise directions Z 21 and Z 22 of the first column 511, thereby driving the second column 512 to move along the lengthwise directions Z 21 and Z 22 .
  • the first connector 10 may further include a second moving component 519 connecting with the first rotating component 513.
  • the second connector 20 may connect the second column 512 to the first device (e.g., the radiation source 590 as shown in FIG. 5) and be configured to support movement (e.g., slide, rotate, etc. ) of the second column 512 and/or the radiation source 590.
  • the second connector 20 may include a first installation part 514, a first moving component 515, and a second rotating component 517.
  • the radiation source 590 may be connected to the first installation part 514 via the second rotating component 517.
  • the second column 512 may be connected to the first installation part 514 via the first moving component 515.
  • the second connector 20 may be configured to rotate the radiation source 590 in a second plane. As shown in FIG.
  • the radiation source 590 may rotate relative to the first installation part 514 via the second rotating component 517 of the second connector 20 in the second plane.
  • the second plane may be the XY plane.
  • the second plane may be the XZ plane.
  • the second connector 20 may be configured to move on the second column 512 along lengthwise directions Z 11 and Z 12 of the second column 512 via the first moving component 515, thereby driving the radiation source 590 to move on the second column 512 along the lengthwise directions Z 11 and Z 12 of the second column 512.
  • the combination of the first connector 10 and the second connector 20 may allow the radiation source 590 to move within a great range along the lengthwise directions Z 21 and Z 22 of the first column 511 (or the lengthwise directions Z 11 and Z 12 of the second column 513) .
  • the moving range of the radiation source 590 may be from 0 to (a+b) along the lengthwise directions Z 21 and Z 22 of the first column 511 (or the lengthwise directions Z 11 and Z 12 of the second column 513) .
  • the larger the moving range of the radiation source 590 the better the applicability of the DR device.
  • the radiation source 590 may be controlled by moving the first connector 10 (e.g., the second moving component 519) and/or the second connector 20 (e.g., the first moving component 515) to adapt to the height of the subject.
  • the second assembly 520 may include a third column 521 connected to the second device (e.g., the radiation detector 580 as shown in FIG. 5) via a third connector 30.
  • the third connector 30 may be configured to install the radiation detector 580 on the third column.
  • the third connector 30 may include a second installation part 524 for installing the radiation detector 580 on the third column.
  • the third connector 30 may be configured to move on the third column 521 along lengthwise directions Z 31 and Z 32 of the third column 521, thereby driving the radiation detector 580 to move on the third column 521 along the lengthwise directions Z 31 and Z 32 .
  • the third connector 30 may further include a third moving component 523 connecting to the second installation part 524 and the third column 530.
  • movements of any one of the first moving component 515, the second moving component 519, the first rotating component 513, the second rotating component 517, and/or the third moving component 523 may be implemented by various manners, such as a lead screw and nut drive, a gear and rack drive, a belt drive, a chain drive, or the like, or any combination thereof.
  • the first moving component 515 and/or the second moving component 519 may include various moveable structures.
  • the first moving component 515 may be a slider.
  • the slider may slide along a sliding groove disposed on the second column 512.
  • the slider may stop on different positions of the sliding groove.
  • a sliding groove and at least one slot may be disposed on the second column 512, and the slider may slide in the sliding groove along the lengthwise directions Z 11 and Z 12 of the second column 512 and stop at different slots.
  • the movements of the slider may be controlled using an electric drive device (e.g., a motor) .
  • a motor may control the sliding or stopping of the slider in the sliding groove by a gear and rack drive, or a belt drive.
  • a user may control the sliding or stopping of the slider in the sliding groove via a control device (e.g., a button, a switch, a remote control, etc. ) .
  • any one of the first connector 10, the second connector 20, and the third connector 30 may be an integrated structure.
  • any one of the first connector 10, the second connector 20, and the third connector 30 may be an assembled structure of two or more components.
  • scanning data obtained from the DR apparatus 500 as shown in FIG. 5 may be used to generate a 3D image of a subject.
  • the DR apparatus 110 may realize a tomography scan of the subject along one or more reference vector surfaces of the subject, and reconstruct the scanning data to generate the 3D image.
  • a reference vector surface may be any surface that divides the subject into two parts.
  • exemplary reference vector surfaces of a human body may include a sagittal plane, an axial plane, a coronal plane (e.g., the reference vector surfaces of a human as shown in FIG. 18) , or the like, or any combination thereof.
  • the axial plane may be an imaginary plane that divides the subject (e.g., a human body) into a superior part and an inferior part.
  • the coronal plane may be an imaginary plane that divides the subject into an anterior part and a posterior part.
  • the subject is a human body
  • the coronal plane may divide the human body into a ventral part and a dorsal part.
  • the sagittal plane may be an imaginary plane that divides the subject (e.g., a human body) into a right part and a left part.
  • the subject e.g., a human body not shown in FIG. 5
  • the radiation source 590 may move on the second column 512 along the lengthwise directions Z 11 and Z 12 of the second column 512 via the second connector 20 and/or the radiation source 590 may rotate relative to the first installation part 514 in the second plane via the second rotating component 517 of the second connector 20.
  • the DR apparatus 500 may perform a scan for a plurality of sagittal planes of the subject through a combined movement of the radiation source 590 and/or the radiation detector 580 to obtain the scanning data of the plurality of sagittal planes of the subject.
  • the radiation detector 580 may be kept at a fixed position.
  • the radiation detector 580 may move on the third column 521 along the lengthwise directions Z 31 and Z 32 of the third column 521 opposite to the radiation source 590 relative to the subject, that is, when the radiation source 590 moves on the second column 512 along the lengthwise direction Z 11 of the second column 512, the radiation detector 580 may move on the third column 521 along the lengthwise direction Z 32 of the third column 521, and when the radiation source 590 moves on the second column 512 along the lengthwise direction Z 12 of the second column 512, the radiation detector 580 may move on the third column 521 along the lengthwise direction Z 31 of the third column 521.
  • the detector 180 may obtain the radiations emitted by the radiation source 590, which may ensure that the scanning data of the plurality of sagittal planes of the subject may be obtained.
  • the second column 512 may rotate to a target position relative to the first column 511 in the first plane via the first rotating component 513.
  • An angle between the lengthwise direction Z 11 of the second column 512 and the lengthwise direction Z 21 of the first column 511 i.e., the angle between the lengthwise direction Z 12 of the second column 512 and the lengthwise direction Z 22 of the first column 511) may be set manually by a user (e.g., a physician) according to an experience value, or a default setting of the DR system 100, or determined by the processing device 120 according to an actual need.
  • the angle may be 15 degrees, 30 degrees, 47 degrees, etc.
  • FIG. 6 is a partial view of the first assembly 510 along a direction A shown in FIG. 5 according to some embodiments of the present disclosure.
  • the second column 512 is rotated for 90 degrees, that is, the lengthwise directions Z 21 and Z 22 of the first column 511 are perpendicular to the lengthwise directions Z 11 and Z 12 of the second column 512.
  • the radiation detector 580 may be kept at a fixed position, and the radiation source 590 may move on the second column 512 along the lengthwise directions Z 11 and Z 12 of the second column 512 via the second connector 20 and/or may rotate relative to the first installation part 514 via the second rotating component 517 in the second plane.
  • the scanning data of a plurality of axial planes of the subject may be obtained.
  • scanning data of different reference vector surfaces of the subject may be obtained by adjusting the position of the subject.
  • an angle between a facial direction of the subject and the radiation source 590 may be adjusted according to an actual need, such as 15 degrees, 45 degrees, 60 degrees, etc.
  • the subject e.g., a human body not shown in FIG. 5
  • the DR apparatus 500 may perform a scan for a plurality of coronal planes of the subject through a combined movement of the radiation source 590 and the radiation detector 580 to obtain the scanning data of the plurality of coronal planes of the subject.
  • the obtaining of the scanning data of the plurality of coronal planes may be performed in a similar manner as that of the scanning data of the plurality of sagittal planes when the subject stands facing the radiation source 590, and the descriptions of which are not repeated here.
  • the radiation detector 580 may receive part or all radiations emitted by the radiation source 590 by the movements of the radiation detector 580 and/or the radiation source 590. For example, when the radiation detector 580 is completely opposite to the radiation source 590, the radiation detector 580 may receive all the radiation. In some embodiments, the more radiations obtained by the radiation detector 580, the smaller the noise, and the higher the imaging quality. Thus, the radiation detector 580 and/or the radiation source 590 may move so that the radiation detector 580 is completely opposite to the radiation source 590. As used herein, the term “completely opposite” may refer to a relative location between the radiation detector 580 and the radiation source 590 that enables all of the radiations emitted by the radiation source 590 may be obtained by the radiation detector 580.
  • FIG. 7 illustrates an exemplary DR apparatus 700 according to some embodiments of the present disclosure.
  • the DR apparatus 700 may be an exemplary embodiment of the DR apparatus 110 of the DR system 100 described in FIG. 1.
  • the third connector 30 may be further configured to rotate the second device (e.g., the radiation detector 580) installed on the second assembly 520 relative to the third connector 30.
  • the third connector 30 may further include a third rotating component 527. The radiation detector 580 may rotate relative to the second installation part 524 via the third rotating component 527 in a third plane. As shown in FIG.
  • a coordinate system XYZ including an X axis, a Y-axis, and a Z-axis may be similarly defined as that shown in FIG. 5.
  • the third plane may be the plane XY.
  • the third plane may be the plane XZ.
  • the third plane may be different from or same as the second plane. For example, in a same coordinate system XYZ shown in FIGs. 5 and 7, the third plane may be same as the second plane.
  • the third plane may be different from the second plane.
  • the first rotating component 513 rotates the second column 512 to a certain angle (e.g., 15 degrees)
  • the third plane may be different from the second plane.
  • scanning data obtained from the DR apparatus 700 as shown in FIG. 7 may be used to generate a 3D image of a subject.
  • the subject e.g., a human body not shown in FIG. 7
  • the radiation source 590 may move on the second column 512 along the lengthwise directions Z 11 and Z 12 of the second column 512 via the second connector 20 and/or the radiation source 590 may rotate relative to the first installation part 514 in the second plane via the second rotating component 517 of the second connector 20.
  • the DR apparatus 700 may perform a scan for a plurality of sagittal planes of the subject through a combined movement of the radiation source 590 and/or the radiation detector 580 to obtain the scanning data of the plurality of sagittal planes of the subject.
  • the radiation detector 580 may be kept at a fixed position.
  • the radiation detector 580 may be only rotated relative to the second installation part 524 via the third rotating component 527 of the third connector 30 in the third plane.
  • the radiation detector 580 may be always opposite the radiation source 590 during rotations of the radiation detector 580.
  • the radiation detector 580 may only move on the third column 521 along the lengthwise directions Z 31 and Z 32 of the third column 521 opposite to the radiation source 590 relative to the subject, that is, when the radiation source 590 moves on the second column 512 along the lengthwise direction Z 11 of the second column 512, the radiation detector 580 may move on the third column 521 along the lengthwise direction Z 32 of the third column 521, and when the radiation source 590 moves on the second column 512 along the lengthwise direction Z 12 of the second column 512, the radiation detector 580 may move on the third column 521 along lengthwise direction Z 31 of the third column 521.
  • the radiation detector 580 may rotate relative to the second installation part 524 via the third rotating component 527 of the third connector 30 in the third plane and move on the third column 521 along the lengthwise directions Z 31 and Z 32 of the third column 521 opposite to the radiation source 590 relative to the subject, simultaneously. In this way, no matter where the radiation source 590 moves on the second column 512 along the lengthwise directions Z 11 and Z 12 of the second column 512, the radiation detector 580 may obtain the radiation emitted by the radiation source 590, which may ensure that the scanning data of the at least one sagittal plane of the subject at different positions may be obtained.
  • the second column 512 may rotate to a target position relative to the first column 511 in the first plane via the first rotating component 513.
  • An angle between the lengthwise direction Z 11 of the second column 512 and the lengthwise direction Z 21 of the first column 511 i.e., the angle between the lengthwise direction Z 12 of the second column 512 and the lengthwise direction Z 22 of the first column 511) may be set manually by a user (e.g., a physician) according to an experience value or a default setting of the DR system 100, or determined by the processing device 120 according to an actual need.
  • the angle may be 15 degrees, 30 degrees, 47 degrees, etc.
  • FIG. 8 is a partial view of the first assembly 510 along a direction B shown in FIG. 7 according to some embodiments of the present disclosure.
  • the second column 512 is rotated for 90 degrees, that is, the lengthwise directions Z 21 and Z 22 of the first column 511 are perpendicular to the lengthwise directions Z 11 and Z 12 of the second column 512.
  • the radiation source 590 may move on the second column 512 along the lengthwise directions Z 11 and Z 12 of the second column 512 via the second connector 20 and/or may rotate relative to the first installation part 514 via the second rotating component 517 in the second plane.
  • the DR apparatus 700 may perform a scan for a plurality of axial planes of the subject through a combined movement of the radiation source 590 and/or the radiation detector 580 to obtain the scanning data of the plurality of axial planes of the subject.
  • the radiation detector 580 may be kept at a fixed position.
  • the radiation detector 580 may be only rotated relative to the second installation part 524 via the third rotating component 527 of the third connector 30 in the third plane.
  • the radiation detector 580 may be always opposite the radiation source 590 during rotation of the radiation detector 580.
  • the detector 180 may obtain the radiation emitted by the radiation source 590, which may ensure that the scanning data of the plurality of axial planes of the subject at different positions may be obtained.
  • scanning data of different reference vector surfaces of the subject may be obtained by adjusting the position of the subject.
  • an angle between a facial direction of the subject and the radiation source 590 may be adjusted according to an actual need, such as 15 degrees, 45 degrees, 74 degrees, etc.
  • the subject e.g., a human body not shown in FIG. 9
  • the DR apparatus 700 may perform a scan for a plurality of coronal planes of the subject through a combined movement of the radiation source 590 and the radiation detector 580 to obtain the scanning data of the plurality of coronal planes of the subject.
  • the obtaining of the scanning data of the at least one coronal plane may be performed in a similar manner as that of the scanning data of the plurality of sagittal planes when the subject stands facing the radiation source 590, and the descriptions of which are not repeated here.
  • the first column 511 may be connected to the supporting assembly 530 and configured to move on the supporting assembly 530 along lengthwise directions Z 41 and Z 42 of the supporting assembly 530.
  • the third column 521 may be connected to the supporting assembly 530 and configured to move on the supporting assembly 530 along the lengthwise directions Z 41 and Z 42 of the supporting assembly 530.
  • the DR apparatus 700 may include a fourth moving component 516 and a fifth moving component 526.
  • the first column 511 may be connected to the supporting assembly 530 via the fourth moving component 516.
  • the fourth moving component 516 may move on the supporting assembly 530 along the lengthwise directions Z 41 and Z 42 of the supporting assembly 530, thereby driving the first column 511 to move on the supporting assembly 530 along the lengthwise directions Z 41 and Z 42 of the supporting assembly 530.
  • the third column 511 may be connected to the supporting assembly 530 via the fifth moving component 526.
  • the fifth moving component 526 may move on the supporting assembly 530 along lengthwise directions Z 41 and Z 42 of the supporting assembly 530, thereby driving the third column 521 to move on the supporting assembly 530 along the lengthwise directions Z 41 and Z 42 of the supporting assembly 530.
  • the radiation detector 580 and/or the radiation source 590 may move along lengthwise directions Z 41 and Z 42 of the supporting assembly 530 to adjust a source to image receptor distance (SID) between the radiation detector 580 and the radiation source 590.
  • SID refers to a distance from a focus of the radiation to the radiation detector 580.
  • an image quality of an image generated based on the scanning data obtained by the DR apparatus 700 may be improved by adjusting the SID.
  • FIG. 9 illustrates an exemplary DR apparatus 900 according to some embodiments of the present disclosure.
  • FIG. 10 is a partial view of the second assembly 520 along a direction C shown in FIG. 9 according to some embodiments of the present disclosure.
  • the DR apparatus 900 may be an exemplary embodiment of the DR apparatus 110 of the DR system 100 described in FIG. 1.
  • the second assembly 520 of the DR apparatus 900 may further include a fourth column 522 disposed between the third column 521 and the third connector 30.
  • the second assembly 520 may have a same or similar structure to the first assembly 510.
  • the fourth column 522 may be connected to the third column 521 via a fourth connector 40.
  • the fourth connector 40 may include a fourth rotating component 525.
  • the fourth column 522 may be connected to the third column 521 via the fourth rotating component 525.
  • the fourth rotating component 525 may be configured to rotate the fourth column 522 relative to the third column 521 in a fourth plane.
  • a coordinate system XYZ including an X axis, a Y-axis, and a Z-axis may be similarly defined as that shown in FIG. 5.
  • the fourth plane When the fourth rotating component 525 rotates up and down relative to the third column 521, the fourth plane may be the plane XY. As another example, when the fourth rotating component 525 rotates left and right relative to the third column 521, the fourth plane may be the plane XZ . In some embodiments, the fourth plane may be different from or same as the first plane. For example, in a same coordinate system XYZ shown in FIGs. 5 and 9, the fourth plane may be same as the first plane. As another example, in different coordinate systems each of which is defined relative to the first assembly 510 and the second assembly 520 respectively, the fourth plane may be different from the first plane.
  • the third connector 30 may connect the fourth column 522 to the radiation detector 580.
  • the third connector 30 may include a second installation part 524 and a third moving component 523.
  • the radiation detector 580 may be connected to the second installation part 524.
  • the fourth column 522 may be connected to the second installation part 524 via the third moving component 523.
  • the third connector 30 may be configured to move on the fourth column 522 along lengthwise directions Z 51 and Z 52 of the fourth column 522 via the third moving component 523, thereby driving the radiation detector 580 to move on the fourth column 522 along the lengthwise directions Z 51 and Z 52 of the fourth column 522.
  • the third connector 30 may be further configured to rotate the second device (e.g., the radiation detector 580) installed on the second assembly 520 relative to the third connector 30.
  • the third connector 30 may further include a third rotating component 527. The radiation detector 580 may rotate relative to the second installation part 524 in the third plane via the third rotating component 527.
  • the fourth connector 40 may include a sixth moving component 529.
  • the fourth connector 40 may be configured to move on the third column 521 along the lengthwise directions Z 31 and Z 32 of the third column 521 via the sixth moving component 529, thereby driving the fourth column 522 to move on the third column 521 along the lengthwise directions Z 31 and Z 32 of the third column 521.
  • the radiation source 580 may move a great range along the lengthwise directions Z 31 and Z 32 of the third column 521 with the movement of the fourth connector 40 and/or the movement of the third connector 30.
  • the fourth connector 40 may be an integrated structure.
  • the fourth connector 40 may be an assembled structure of two or more components.
  • scanning data obtained from the DR apparatus 900 as shown in FIG. 9 may be used to generate a 3D image of a subject.
  • the subject e.g., a human body not shown in FIG. 9
  • the radiation source 590 may move on the second column 512 along the lengthwise directions Z 11 and Z 12 of the second column 512 via the second connector 20 and/or the radiation source 590 may rotate relative to the first installation part 514 in the second plane via the second rotating component 517 .
  • the DR apparatus 900 may perform a scan for a plurality of sagittal planes of the subject through a combined movement of the radiation source 590 and the radiation detector 580 to obtain the scanning data of the plurality of sagittal planes of the subject.
  • the radiation detector 580 may be kept at a fixed position.
  • the radiation detector 580 may be only rotated relative to the second installation part 524 in the third plane via the third rotating component 527 .
  • the radiation detector 580 may be always opposite the radiation source 590 during movements of the radiation detector 580 and/or the radiation source 590.
  • the radiation detector 580 may only move on the fourth column 522 along the lengthwise directions Z 51 and Z 52 of the fourth column 522 opposite to the radiation source 590 relative to the subject, that is, when the radiation source 590 moves on the second column 512 along the lengthwise direction Z 11 of the second column 512, the radiation detector 580 may move on the fourth column 522 along lengthwise direction Z 52 of the third column 521, and when the radiation source 590 moves on the second column 512 along the lengthwise direction Z 12 of the second column 512, the radiation detector 580 may move on the fourth column 522 along lengthwise direction Z 51 of the fourth column 522.
  • the radiation detector 580 may rotate relative to the second installation part 524 in the third plane via the third rotating component 527 of the third connector 30 and move on the fourth column 522 along the lengthwise directions Z 51 and Z 52 of the fourth column 522 opposite to the radiation source 590 relative to the subject, simultaneously. In this way, no matter where the radiation source 590 moves on the second column 512 along the lengthwise directions Z 11 and Z 12 of the second column 512, the radiation detector 580 may obtain the radiations emitted by the radiation source 590, which may ensure that the scanning data of the plurality of sagittal planes of the subject may be obtained.
  • the second column 512 and the fourth column 522 may rotate for 90 degrees, that is, the lengthwise directions Z 21 and Z 22 of the first column 511 may be perpendicular to the lengthwise directions Z 11 and Z 12 of the second column 512, and the lengthwise directions Z 51 and Z 52 of the fourth column 522 may be perpendicular to the lengthwise directions Z 31 and Z 32 of the third column 521.
  • the radiation source 590 may move on the second column 512 along the lengthwise directions Z 11 and Z 12 of the second column 512 via the second connector 20 and/or the radiation source 590 may rotate relative to the first installation part 514 in the second plane via the second rotating component 517 of the second connector 20.
  • the DR apparatus 900 may perform a scan for a plurality of axial planes of the subject through a combined movement of the radiation source 590 and the radiation detector 580 to obtain the scanning data of the plurality of axial planes of the subject.
  • the movement of the radiation detector 580 may be performed in a similar manner as that of the radiation detector 580 when the scanning data of the plurality of sagittal planes is obtained, and the descriptions of which are not repeated here.
  • the radiation detector 580 may obtain the radiations emitted by the radiation source 590, which may ensure that the scanning data of the plurality of axial planes of the subject may be obtained.
  • scanning data of different reference vector surfaces of the subject may be obtained by adjusting the position of the subject.
  • an angle between a facial direction of the subject and the radiation source 590 may be adjusted according to an actual need, such as 15 degrees, 45 degrees, 74 degrees, etc.
  • the subject e.g., a human body not shown in FIG. 9
  • the DR apparatus 900 may perform a scan for a plurality of coronal planes of the subject through a combined movement of the radiation source 590 and/or the radiation detector 580 to obtain the scanning data of the plurality of coronal planes of the subject.
  • the obtaining of the scanning data of the plurality of coronal planes may be performed in a similar manner as that of the scanning data of the plurality of sagittal planes when the subject stands facing the radiation source 590, and the descriptions of which are not repeated here.
  • FIG. 11 illustrates an exemplary DR apparatus 1100 according to some embodiments of the present disclosure.
  • a scanning table 540 may be arranged between the first assembly 510 and the second assembly 520.
  • the scanning table 540 may be configured to support a subject (e.g., a patient) to be examined, so that a patient who cannot stand may be scanned via the DR apparatus 1100.
  • the subject may lie on the scanning table 540 facing the radiation source 590.
  • the DR apparatus 900 may obtain the scanning data of ta plurality of axial planes of the subject in a similar manner as that the DR apparatus 900 obtains the scanning data of the plurality of sagittal planes of the subject when the subject stands facing the radiation source 590.
  • the DR apparatus 900 may obtain the scanning data of the plurality of sagittal planes of the subject in a similar manner as that the DR apparatus 900 obtains the scanning data of the plurality of axial planes of the subject when the subject stands facing the radiation source 590.
  • the DR apparatus 1100 may obtain the scanning data of the at least one coronal plane of the subject in a similar manner as that the DR apparatus 900 obtains the scanning data of the plurality of sagittal planes of the subject when the subject stands facing the radiation source 590.
  • FIG. 12 illustrates an exemplary DR apparatus 1200 according to some embodiments of the present disclosure.
  • the second column 512 and the fourth column 522 may rotate for 90 degrees.
  • the radiation detector 580 may rotate relative to the second installation part 524 via the third rotating component 527 of the third connector 30, so that the radiation detector 580 may face the lengthwise direction Z 31 of the third column 521.
  • the radiation resource 590 may rotate relative to the first installation part 514 via the second rotating component 517 of the second connector 20, so that the radiation resource 590 may face the lengthwise direction Z 22 of the first column 511.
  • the fourth connector 40 may move on the third column 521 along the lengthwise direction Z 32 of the third column 521 via the sixth moving component 529, thereby driving the fourth column 522 to move to a certain position lower than the height of the scanning table 540.
  • the first connector 10 may move on the first column 511 along the lengthwise direction Z 21 of the first column 511 via the second moving component 519, thereby driving the second column 512 to move to a certain position higher than the height of the scanning table 540.
  • the fifth moving component 526 may move on the supporting assembly 530 along the lengthwise direction Z 41 of the supporting assembly 530, so that the radiation detector 580 may be located in an appropriate position under the scanning table 540.
  • the fourth moving component 516 may move on the supporting assembly 530 along the lengthwise direction Z 42 of the supporting assembly 530, so that the radiation resource 590 may be located in an appropriate position above the scanning table 540.
  • the subject may lie on the scanning table 540 facing the first column 511.
  • the radiation source 590 may move along the lengthwise directions Z 41 and Z 42 of the supporting assembly 530 via the fourth moving component 516 and/or the radiation source 590 may rotate relative to the first installation part 514 in the second plane via the second rotating component 517.
  • the DR apparatus 1200 may perform a scan for a plurality of axial planes of the subject through a combined movement of the radiation source 590 and/or the radiation detector 580 to obtain the scanning data of the plurality of axial planes of the subject.
  • the radiation detector 580 may be kept at a fixed position.
  • the radiation detector 580 may only rotate relative to the second installation part 524 in the third plane via the third rotating component 527.
  • the radiation detector 580 may be always opposite the radiation source 590 during rotation of the radiation detector 580.
  • the radiation detector 580 may only move along the lengthwise directions Z 41 and Z 42 of the supporting assembly 530 opposite to the radiation source 590 relative to the subject, that is, when the radiation source 590 moves along the lengthwise direction Z 41 of the supporting assembly 530, the radiation detector 580 may move along the lengthwise direction Z 42 of the supporting assembly 530, and when the radiation source 590 moves along the lengthwise direction Z 42 of the supporting assembly 530, the radiation detector 580 may move along the lengthwise direction Z 41 of the supporting assembly 530.
  • the radiation detector 580 may rotate relative to the second installation part 524 in the third plane via the third rotating component 527 and move along the lengthwise directions Z 41 and Z 42 of the supporting assembly 530 opposite to the radiation source 590 relative to the subject, simultaneously.
  • the subject may lie on the scanning table 540 facing the radiation resource 590.
  • the DR apparatus 1200 may obtain the scanning data of a plurality of sagittal planes of the subject in a similar manner as that the DR apparatus 900 obtains the scanning data of the plurality of axial planes of the subject when the subject stands facing the radiation source 590.
  • the subject may lie on the scanning table 540 facing the first column 511.
  • the DR apparatus 1200 may obtain the scanning data of a plurality of coronal planes of the subject in a similar manner as that the DR apparatus 900 obtains the scanning data of the plurality of sagittal planes of the subject when the subject stands facing the radiation source 590.
  • the scanning table 540 may be movable.
  • FIG. 13 illustrates an exemplary scanning table 540 according to some embodiments of the present disclosure.
  • the scanning table 540 may include a flatbed 518, and the first assembly 510.
  • the flatbed 518 may be configured to support a subject.
  • the first assembly 510 may rotate for 90 degrees to connected to the supporting assembly 530 and the flatbed 518.
  • the flatbed 518 may be moved via the rotated first assembly 510.
  • FIG. 14 illustrates an exemplary DR apparatus 1400 according to some embodiments of the present disclosure.
  • the DR apparatus 1400 may be an exemplary embodiment of the DR apparatus 110 of the DR system 100 described in FIG. 1.
  • the second assembly 520 may be configured to a suspension type assembly.
  • the first assembly 510 may be configured to install thereon a radiation detector 580
  • the second assembly 520 may be configured to install thereon a radiation source 590.
  • the supporting assembly 530 may be configured to support the first assembly 510 or the second assembly 520.
  • the second assembly 520 may include a third column 521 connected to the radiation source 590 via a third connector 30.
  • the third column 521 may be suspended on the supporting assembly 530.
  • the third column 521 may be suspended on a ceiling of an examination room where the DR apparatus 1400 is located.
  • the third connector 30 may include a second installation part 524 and a third moving component 523.
  • the radiation source 590 may be connected to the second installation part 524.
  • the third column 521 may be connected to the second installation part 524 via the third moving component 523.
  • the third moving component 523 may be stretchable.
  • the third moving component 523 may be stretchable along the lengthwise directions Z 21 and Z 22 of the first column 511 via the third moving component 523, so that the radiation source 590 may move along lengthwise directions Z 21 and Z 22 of the first column 511 with the stretching of the third moving component 523.
  • a stretchable range of the third moving component 523 may be set according to actual needs.
  • the third connector 30 may be further configured to rotate the second device (e.g., the radiation source 590) installed on the second assembly 520 relative to the third connector 30.
  • the third connector 30 may further include a third rotating component 527 of the third connector 30. The radiation source 590 may rotate relative to the second installation part 524 via the third rotating component 527 of the third connector 30.
  • a slide rail may be arranged on the supporting component 530 (e.g., a ceiling of an examination room where the DR apparatus 1100 is located) , and the second assembly 520 may move on the slide rail.
  • the slide rail may include tracks in one or more directions.
  • the slide rail may include a first track in a direction parallel to the lengthwise directions Z 41 and Z 42 of the supporting assembly 530 described in FIG. 7 and a second track in a direction parallel to the lengthwise directions Z 51 and Z 52 of the fourth column 522 when the fourth column 522 is rotated for 90 degrees.
  • the DR apparatus 1400 may obtain scanning data of a subject in a similar manner as that the DR apparatus 900 obtains scanning data.
  • the subject may stand facing the radiation source 590, and the radiation source 590 may move along the lengthwise directions Z 21 and Z 22 of the first column 511 with the stretching of the third moving component 523 and/or the radiation source 590 may rotate relative to the second installation part 524 via the third rotating component 527 of the third connector 30 to obtain the scanning data of the plurality of sagittal planes of the subject.
  • the radiation source 590 may move along the second track and/or rotate relative to the second installation part 524 via the third rotating component 527 of the third connector 30 to obtain the scanning data of the plurality of axial planes of the subject. More descriptions for the scanning data of a subject may be found elsewhere in the present disclosure (e.g., FIG. 9 and the descriptions thereof) .
  • FIG. 15 is a flowchart illustrating an exemplary process 1500 for obtaining scanning data of a subject according to some embodiments of the present disclosure.
  • the process 1500 may be implemented in the DR system 100 illustrated in FIG. 1.
  • the process 1500 may be stored in a storage (e.g., the storage device 130, the storage device 220, the storage 390) as a form of instructions, and invoked and/or executed by the processing device 120 (e.g., the processor 210 of the computing device 200 as illustrated in FIG. 2, the CPU 340 of the mobile device 300 as illustrated in FIG. 3, and/or one or more modules as illustrated in FIG. 4) .
  • the operations of the illustrated process presented below are intended to be illustrative. In some embodiments, the process 1500 may be accomplished with one or more additional operations not described, and/or without one or more of the operations discussed. Additionally, the order in which the operations of the process 1500 as illustrated in FIG. 15 and described below is not intended to be limiting.
  • the processing device 120 may obtain a scan task of the subject.
  • the scan task may include a scan region, a first scan direction, a second scan direction, or the like, or any combination thereof.
  • a scan region of a subject refers to a region to be exanimated (also referred as to a physical region of interest) of the subject.
  • the scan region of the subject may include one or more specific organs and/or one or more specific tissues, or the whole body of the subject.
  • the scan region may include the head, the chest, a lung, the heart, the liver, the spleen, the pleura, the mediastinum, the abdomen, the large intestine, the small intestine, the bladder, the gallbladder, the pelvis, the spine, the skeleton, blood vessels, the duodenum, or the like, or any combination thereof, of a patient.
  • the scan region may include a lesion of the subject.
  • a lesion refers to damage (or potential damage) and/or an abnormal change (or potential change) in the tissue of the subject, usually caused by disease or trauma.
  • Each of the first scan direction and the second scan direction refers a direction in which a radiation source and/or a radiation detector of a DR apparatus moves to obtain a desired image of the subject.
  • the first scan direction and the second scan direction may be one of the lengthwise directions Z 21 and Z 22 of the first column 511 and one of the lengthwise directions Z 11 and Z 12 of the second column 512 described in FIGs. 5-14, respectively.
  • the scan region may include a plurality of sub-regions.
  • the scan region may include the head, the chest, and a lung of the subject.
  • the first scan directions and the second scan directions corresponding to different sub-regions of the scan region may be the same or different.
  • the first scan direction and the second scan direction corresponding to the head of the subject may be one of the lengthwise directions Z 21 and Z 22 of the first column 511 and one of the lengthwise directions Z 11 and Z 12 of the second column 512 described in FIGs. 5-14, respectively.
  • the first scan direction and the second scan direction corresponding to the chest of the subject may be the one of lengthwise directions Z 41 and Z 42 of the supporting assembly 530 and one of the lengthwise directions Z 11 and Z 12 of the second column 512 described in FIGs. 5-14, respectively.
  • the processing device 120 may further obtain information relating to the subject and diagnostic requirements of a doctor.
  • Exemplary information relating to the subject may include the age, the height, the weight, the medical history, the degree of fatness and thinness, a thickness of the scan region, bone and joint point information, or the like, or any combination thereof.
  • the information relating to the subject and the diagnostic requirements of the doctor may be obtained manually inputted by a user (e.g., a doctor, an imaging specialist, a technician) on a user interface.
  • the processing device 120 may automatically retrieve the information relating to the subject and diagnostic requirements of the doctor from a database.
  • the processing device 120 may determine an exposure intensity and/or an exposure time of the radiation source in each exposure (i.e., each scan) based on the information relating to the subject and the diagnostic requirements of the doctor. For example, different scan regions may be exposed with different exposure intensities. As another example, if the thickness of the scan region is greater than a thickness threshold, the exposure intensity and/or the exposure time of the scan region may be appropriately increased to ensure an image quality of an image generated based on the obtained scanning data. As still another example, if a minimal exposure is to be performed according to the diagnostic requirements of the doctor or the requirements of the subject, the exposure intensity and/or exposure time may be appropriately reduced while ensuring an image quality of an image generated based on the obtained scanning data.
  • the processing device 120 may determine, based on the scan task, operating parameters of a radiation source or a radiation detector of a DR apparatus.
  • the DR apparatus may be any one of the DR apparatus 500, the DR apparatus 700, the DR apparatus 900, the DR apparatus 1100, the DR apparatus 1200, and the DR apparatus 1400 described in FIGs. 5-14.
  • the operating parameters of the radiation source or the radiation detector of the DR apparatus may include a movement speed, a direction of movement, a rotation speed, a direction of rotation, etc., of the radiation source or the radiation detector of the DR apparatus.
  • the operating parameters of the radiation source or the radiation detector may be operating parameters in a coordinate system (e.g., a cartesian coordinate system) .
  • the operating parameters of the radiation source or the radiation detector of the DR apparatus may include first parameters of the first scan direction and second parameters of the second scan direction.
  • the processing device 120 may determine a trajectory of the radiation source and/or a trajectory of the radiation detector based on the scan task.
  • the processing device 120 may determine the operating parameters of the radiation source and/or the operating parameters of the radiation detector based on the trajectory of the radiation source and/or the trajectory of the radiation detector, respectively.
  • the processing device 120 may determine operating parameters of other components of the DR apparatus based on the operating parameters of the radiation source and/or the operating parameters of the radiation detector. For example, if the DR apparatus is the DR apparatus 500 described in FIG. 5, the processing device 120 may determine operating parameters of one or more components (e.g., the first rotating component 513, the first moving component 515, the second rotating component 517, the second moving component 519, etc. ) of the first assembly 510 based on the operating parameters of the radiation source 590. In some embodiments, the processing device 120 may determine trajectories of other components of the DR apparatus based on the trajectory of the radiation source and/or the trajectory of the radiation detector.
  • the processing device 120 may determine trajectories of other components of the DR apparatus based on the trajectory of the radiation source and/or the trajectory of the radiation detector.
  • the processing device 120 may determine the operating parameters of other components of the DR apparatus based on the trajectories of other components of the DR apparatus. For example, if the DR apparatus is the DR apparatus 500 described in FIG. 5, the processing device 120 may determine trajectories of one or more components (e.g., the first rotating component 513, the first moving component 515, the second rotating component 517, the second moving component 519, etc. ) of the first assembly 510 of the DR apparatus 500 based on the trajectory of the radiation source 590. The processing device 120 may determine the operating parameters of the one or more components of the first assembly 510 based on the trajectories of the one or more components of the first assembly 510 of the DR apparatus 500.
  • the processing device 120 may determine trajectories of one or more components of the first assembly 510 based on the trajectories of the one or more components of the first assembly 510 of the DR apparatus 500.
  • the processing device 120 may determine a first trajectory of the first scan direction and a second trajectory of the second scan direction of the radiation source or the radiation detector based on the trajectory of the radiation source or the radiation detector.
  • the processing device 120 may determine the first parameters of the first scan direction and the second parameters of the second scan direction based on the first trajectory of the first scan direction and the second trajectory of the second scan direction of the radiation source or the radiation detector.
  • FIG. 16A illustrates an exemplary trajectory of a radiation source according to some embodiments of the present disclosure.
  • the trajectory of the radiation source is a linear trajectory
  • the first scan direction is perpendicular to the second scan direction.
  • the linear trajectory may be divided into a first trajectory of the first scan direction and a second trajectory of the second scan direction.
  • the first trajectory and the second trajectory may be linear trajectories.
  • the processing device 120 may determine the first parameters of the first scan direction and the second parameters of the second scan direction based on the first trajectory and the second trajectory of the radiation source. For example, the processing device 120 may determine that the first trajectory and the second trajectory are both trajectories generated by unidirectional uniform linear motions.
  • the processing device 120 may further determine the first parameters and the second parameters based on the first trajectory and the second trajectory generated by the unidirectional uniform linear motions.
  • FIG. 16B illustrates an exemplary trajectory of a radiation source according to some embodiments of the present disclosure.
  • the trajectory of the radiation source is a sinusoidal trajectory
  • the first scan direction is perpendicular to the second scan direction.
  • the sinusoidal trajectory may be divided into a first trajectory in the first scan direction and a second trajectory in the second scan direction.
  • the first trajectory and the second trajectory may be linear trajectories.
  • the processing device 120 may determine the first parameters of the first scan direction and the second parameters of the second scan direction based on the first trajectory and the second trajectory of the radiation source.
  • the processing device 120 may determine that the first trajectory is a trajectory generated by a unidirectional uniform linear motion, and the second trajectory is a trajectory generated by a trajectory generated by a reciprocating motion. The processing device 120 may further determine the first parameters and the second parameters based on the first trajectory generated by a unidirectional uniform linear motion and the second trajectory generated by a reciprocating motion.
  • first scan direction being perpendicular to the second scan direction only be taken as an exemplary description.
  • an angel between the first scan direction and the second scan direction may be any angle, such as 30°, 60°, 75°, etc.
  • directions of the movement of the components for controlling the movements of the radiation source and/or the radiation detector in the DR apparatus may correspond to the first scan direction and the second scan direction to facilitate the control of the DR device.
  • the first scan direction may correspond to one of the lengthwise directions Z 21 and Z 22 of the first column 511 of the DR apparatus 500
  • the second scan direction may correspond to one of the lengthwise directions Z 11 and Z 12 of the second column 512 of the DR apparatus 500.
  • the first parameters of the first scan direction and second parameters of the second scan direction of the radiation source or the radiation detector may correspond operating parameters of the components for controlling the movements of the radiation source or the radiation detector.
  • the trajectory of the radiation source or the radiation detector of the DR apparatus may include a spiral trajectory.
  • FIG. 17A illustrates exemplary curve trajectories in a second scan direction of a radiation source and a radiation detector according to some embodiments of the present disclosure.
  • FIG. 17B illustrates exemplary linear trajectories in a first scan direction of a radiation source and a radiation detector according to some embodiments of the present disclosure.
  • the radiation detector may reciprocate along a curve Q 1 from position O 11 to position O 12 and the radiation source may reciprocate along a curve Q 2 from position O 21 to position O 22 in the second scan direction.
  • the radiation detector may move along a straight line Q 3 from position O 13 to position O 14 and the radiation source may move along a straight line Q 4 from position O 23 to position O 24 in the first scan direction.
  • the trajectory of the radiation detector may be opposite to that of the radiation source.
  • that the trajectory of the radiation detector is opposite to that of the radiation source represents that the values of the operating parameters of the radiation source may be the same as those of the radiation detector, and the movement direction of the radiation source may be opposite to the movement direction of the radiation detector.
  • the radiation detector may reciprocate along the curve Q 1 from position O 11 to position O 12 and the radiation source may reciprocate along the curve Q 2 from position O 21 to position O 22 in the second scan direction.
  • the curve Q 1 is the same as the curve Q 2 , and a direction from position O 11 to position O 12 is opposite to a direction from position O 21 to position O 22.
  • the radiation detector may move along the straight line Q 3 from position O 13 to position O 14 and the radiation source may move along the straight line Q 4 from position O 23 to position O 24 in the first scan direction.
  • the straight line Q 3 is the same as the straight line Q 4 , and a direction from position O 13 to position O 14 is opposite to a direction from position O 23 to position O 24 .
  • the radiation detector and the radiation source may be always opposed to each other and the line between the radiation detector and the radiation source always passes through the scan area of the subject.
  • the distance between the radiation detector and the radiation source may be remain constant during the scanning process, which makes that the quality of multiple 2D images generated based on the obtained scanning data are similar, and the SID between the radiation detector and the radiation source may be fixed.
  • the operating parameters of the radiation source and/or the radiation detector may include distances of movement, starting positions of movement, ending positions of movement, of the radiation detector and/or the radiation source.
  • the processing device 120 may determine the distances of movement, the starting positions of movement, the ending positions of movement, of the radiation detector and/or the radiation source based on the scan region of the subject. For example, as shown in FIG. 17A, if the scan region includes a first sub-region D 1 and a second sub-region D 2 , the starting positions of movement of the radiation detector and the radiation resource may be the position O 11 and the position O 21 , respectively. The ending positions of movement of the radiation detector and the radiation resource may be the position O 12 and the position O 22 , respectively.
  • the distances of movement of the radiation detector and the radiation resource may be curve Q 1 from the position O 11 to the position O 12 and Q 2 from the position O 21 to the position O 22 , respectively.
  • the starting positions of movement of the radiation detector and the radiation resource may be the position O 10 and the position O 20 , respectively.
  • the ending positions of movement of the radiation detector and the radiation resource may be the position O 12 and the position O 22 , respectively.
  • the distances of movement of the radiation detector and the radiation resource may be a curve Q 5 from the position O 0 to the position O 12 and a curve Q 6 from the position O 20 to the position O 22 , respectively.
  • the processing device 120 may obtain scanning data of the subject.
  • the scanning data may be acquired by controlling the radiation source and/or the radiation detector of the DR apparatus to move according to the operating parameters.
  • the scanning data of the subject may be acquired by controlling the radiation source and/or the radiation detector to move along the first direction and the second direction simultaneously according to the operating parameters.
  • the processing device 120 may obtain the scanning data of the subject corresponding to different positions of the radiation detector and the radiation resource. For example, as shown in FIG. 17A, the processing device 120 may obtain the scanning data of the subject corresponding to the positions O 10 , O 11 , and O 12 of the radiation detector (i.e., the positions O 20 , O 21 , and O 22 of the radiation resource) .
  • the processing device 120 may obtain scanning data of the subject based on the spiral trajectory described in operation 1504. For example, the processing device 120 may obtain the scanning data of the whole body of a patient from the foot to the head. In this way, complete scanning data of the subject may be obtained by one exposure of the DR apparatus, thereby improving the efficiency of the obtaining of the scanning data.
  • the processing device 120 may obtain, based on the scanning data, a 3D image according to an image reconstruction algorithm.
  • the processing device 120 may generate multiple 2D images based on the obtained scanning data.
  • the processing device 120 may further generate the 3D image based on the multiple 2D images using the image reconstruction algorithm.
  • the processing device 120 may perform one or more operations such as a distortion adjustment, a color adjustment, a grayscale adjustment for the multiple 2D images according to the positional relationship between the radiation source and the radiation detector.
  • the processing device 120 may generate the 3D image based on the multiple processed 2D images by synthesis or using the image reconstruction algorithm.
  • Exemplary image reconstruction algorithms may include a Feldkamp-Davis-Kress (FDK) algorithm, an algebraic algorithm, an iterative algorithm, a Fourier transform algorithm, a convolutional back-projection algorithm, or the like.
  • the process 1500 may be accomplished with one or more additional operations not described and/or without one or more of the operations discussed above.
  • the process 1500 may include an additional operation to transmit the determined 3D image to a terminal device (e.g., the terminal (s) 140 of a doctor) for display.
  • the process 1500 may include an additional storing operation to store information and/or data (e.g., the 3D image, the multiple 2D images, etc. ) in a storage device (e.g., the storage device 130) disclosed elsewhere in the present disclosure.
  • aspects of the present disclosure may be illustrated and described herein in any of a number of patentable classes or context including any new and useful process, machine, manufacture, or composition of matter, or any new and useful improvement thereof. Accordingly, aspects of the present disclosure may be implemented entirely hardware, entirely software (including firmware, resident software, micro-code, etc. ) or combining software and hardware implementation that may all generally be referred to herein as a “module, ” “unit, ” “component, ” “device, ” or “system. ” Furthermore, aspects of the present disclosure may take the form of a computer program product embodied in one or more computer readable media having computer readable program code embodied thereon.
  • a computer readable signal medium may include a propagated data signal with computer readable program code embodied therein, for example, in baseband or as part of a carrier wave. Such a propagated signal may take any of a variety of forms, including electro-magnetic, optical, or the like, or any suitable combination thereof.
  • a computer readable signal medium may be any computer readable medium that is not a computer readable storage medium and that may communicate, propagate, or transport a program for use by or in connection with an instruction execution system, apparatus, or device.
  • Program code embodied on a computer readable signal medium may be transmitted using any appropriate medium, including wireless, wireline, optical fiber cable, RF, or the like, or any suitable combination of the foregoing.
  • Computer program code for carrying out operations for aspects of the present disclosure may be written in any combination of one or more programming languages, including a subject oriented programming language such as Java, Scala, Smalltalk, Eiffel, JADE, Emerald, C++, C#, VB. NET, Python or the like, conventional procedural programming languages, such as the "C" programming language, Visual Basic, Fortran 2003, Perl, COBOL 2002, PHP, ABAP, dynamic programming languages such as Python, Ruby and Groovy, or other programming languages.
  • the program code may execute entirely on the user's computer, partly on the user's computer, as a stand-alone software package, partly on the user's computer and partly on a remote computer or entirely on the remote computer or server.
  • the remote computer may be connected to the user's computer through any type of network, including a local area network (LAN) or a wide area network (WAN) , or the connection may be made to an external computer (for example, through the Internet using an Internet Service Provider) or in a cloud computing environment or offered as a service such as a Software as a Service (SaaS) .
  • LAN local area network
  • WAN wide area network
  • SaaS Software as a Service
  • the numbers expressing quantities or properties used to describe and claim certain embodiments of the application are to be understood as being modified in some instances by the term “about, ” “approximate, ” or “substantially. ”
  • “about, ” “approximate, ” or “substantially” may indicate a certain variation (e.g., ⁇ 1%, ⁇ 5%, ⁇ 10%, or ⁇ 20%) of the value it describes, unless otherwise stated.
  • the numerical parameters set forth in the written description and attached claims are approximations that may vary depending upon the desired properties sought to be obtained by a particular embodiment.
  • the numerical parameters should be construed in light of the number of reported significant digits and by applying ordinary rounding techniques. Notwithstanding that the numerical ranges and parameters setting forth the broad scope of some embodiments of the application are approximations, the numerical values set forth in the specific examples are reported as precisely as practicable.
  • a classification condition used in classification or determination is provided for illustration purposes and modified according to different situations. For example, a classification condition that “avalue is greater than the threshold value” may further include or exclude a condition that “the probability value is equal to the threshold value. ”

Abstract

The present disclosure relates to a digital radiography (DR) apparatus (500) and a method implemented thereon. The DR apparatus (500) may include a first assembly (510) configured to install thereon a first device, which is a radiation source (590) or a radiation detector. The first assembly (510) may include a first column (511); a second column (512) connected to the first column (511) via a first connector (10), wherein the first connector (10) is configured to rotate the second column (512) relative to the first column (511) in a first plane; and a second connector (20) connecting the second column (512) to the first device, wherein the second connector (20) is configured to move on the second column (512) along lengthwise directions of the second column (512).

Description

SYSTEMS AND METHODS FOR DIGITAL RADIOGRAPHY
CROSS-REFERENCE TO RELATED APPLICATIONS
This application claims priority to Chinese Application No. 202011070065.5 filed on September 30, 2020, the entire contents of which are hereby incorporated by reference.
TECHNICAL FIELD
The present disclosure relates to medical devices, and in particular, to systems and methods for imaging using a Digital Radiography (DR) apparatus.
BACKGROUND
X-ray imaging is a technology that uses an X-ray scanner to scan a subject to generate an image of the subject. The X-ray imaging technology, such as a Digital Radiography (DR) system, has been widely used in medical diagnosis, radiation therapy planning, surgery planning, and other medical procedures. In the DR system, an X-ray detector may receive X-rays emitted by a radiation source and convert information relating to the X-rays into digital signals, so that a target image of a subject may be generated based on the digital signals. Conventionally, the DR system usually generates two-dimensional (2D) images (e.g., a 2D chest radiograph) of a subject. However, as many tissues overlap in the 2D image, tomographic structures of the subject cannot be clearly identified. It is desirable to provide DR systems and methods for generating 3D images .
SUMMARY
An aspect of the present disclosure introduces a digital radiography (DR) apparatus. The DR apparatus may include a first assembly configured to install thereon a first device, which is a radiation source or a radiation detector The first assembly may include a first column; a second column connected to the first column via a first connector, wherein the first connector is configured to rotate the second column  relative to the first column in a first plane; and a second connector connecting the second column to the first device, wherein the second connector is configured to move on the second column along lengthwise directions of the second column.
In some embodiments, the DR apparatus may further include a second assembly configured to install thereon a second device, wherein when the first device is a radiation source, the second device is a radiation detector; and when the first device is a radiation detector, the second device is a radiation source, and a supporting assembly configured to support the first assembly or the second assembly.
In some embodiments, the second connector is further configured to rotate the first device installed on the first assembly in a second plane.
In some embodiments, the first column is connected to the supporting assembly and configured to move on the supporting assembly along lengthwise directions of the supporting assembly.
In some embodiments, the first connector is further configured to move the second column on the first column along lengthwise directions of the first column.
In some embodiments, the second assembly includes a third column connected to the second device via a third connector.
In some embodiments, the third connector is configured to move on the third column along lengthwise directions of the third column.
In some embodiments, the third connector is further configured to rotate the second device installed on the second assembly relative to the third column.
In some embodiments, the third column is connected to the supporting assembly and configured to move on the supporting assembly along lengthwise directions of the supporting assembly.
In some embodiments, the second assembly is a suspension type assembly, and the third column is suspended on the supporting assembly.
In some embodiments, the second assembly further includes a fourth column disposed between the third column and the third connector, wherein the fourth column is connected to the third column via a fourth connector, and the fourth connector is configured to rotate the fourth column in a third plane.
In some embodiments, the fourth connector is further configured to move on the third column along lengthwise directions of the third column.
In some embodiments, the third connector connects the fourth column and the second device, and the third connector is configured to move the second device on the fourth column along lengthwise directions of the fourth column.
In some embodiments, the third connector is configured to rotate the second device installed on the second assembly.
In some embodiments, the second device rotates in a fourth plane.
In some embodiments, the third column is connected to the supporting assembly and configured to move on the supporting assembly along lengthwise directions of the supporting assembly.
In some embodiments, the second assembly is a suspension type assembly, and the third column is suspended on the supporting assembly.
Another aspect of the present disclosure introduces a method implemented on a digital radiography (DR) system, the DR system including a DR apparatus and a computing device. The method may include obtaining a scan task of a subject, wherein the scan task includes a scan region, a first scan direction, and a second scan direction; determining, based on the scan task, operating parameters of a radiation source or a radiation detector of the DR apparatus; and obtaining scanning data of the subject, wherein the scanning data is acquired by controlling the radiation source or the radiation detector of the DR apparatus to move according to the operating parameters.
In some embodiments, the method may further include obtaining, based on the scanning data, a 3D image according to an image reconstruction algorithm.
In some embodiments, the operating parameters of the radiation source or the radiation detector of the DR apparatus includes first parameters of the first scan direction and second parameters of the second scan direction, and the scanning data of the subject is acquired by controlling the radiation source or the radiation detector to move, according to the operating parameters, along the first scan direction and the second scan direction simultaneously.
In some embodiments, a trajectory of the radiation source or the radiation  detector of the DR apparatus includes a spiral trajectory.
Additional features will be set forth in part in the description which follows, and in part will become apparent to those skilled in the art upon examination of the following and the accompanying drawings or may be learned by production or operation of the examples. The features of the present disclosure may be realized and attained by practice or use of various aspects of the methodologies, instrumentalities, and combinations set forth in the detailed examples discussed below.
BRIEF DESCRIPTION OF THE DRAWINGS
The present disclosure is further described in terms of exemplary embodiments. These exemplary embodiments are described in detail with reference to the drawings. These embodiments are non-limiting exemplary embodiments, in which like reference numerals represent similar structures throughout the several views of the drawings, and wherein:
FIG. 1 is a schematic diagram illustrating an exemplary DR system according to some embodiments of the present disclosure;
FIG. 2 is a schematic diagram illustrating exemplary hardware and/or software components of a computing device according to some embodiments of the present disclosure;
FIG. 3 is a schematic diagram illustrating exemplary hardware and/or software components of a mobile device according to some embodiments of the present disclosure;
FIG. 4 is a block diagram illustrating an exemplary processing device according to some embodiments of the present disclosure;
FIG. 5 illustrates an exemplary DR apparatus according to some embodiments of the present disclosure;
FIG. 6 is a partial view of a first assembly along a direction A shown in FIG. 5 according to some embodiments of the present disclosure;
FIG. 7 illustrates an exemplary DR apparatus according to some embodiments of the present disclosure;
FIG. 8 is a partial view of a first assembly along a direction B shown in FIG. 7 according to some embodiments of the present disclosure;
FIG. 9 illustrates an exemplary DR apparatus according to some embodiments of the present disclosure;
FIG. 10 is partial view of a second assembly along a direction C shown in FIG. 9 according to some embodiments of the present disclosure;
FIG. 11 illustrates an exemplary DR apparatus according to some embodiments of the present disclosure;
FIG. 12 illustrates an exemplary DR apparatus according to some embodiments of the present disclosure;
FIG. 13 illustrates an exemplary scanning table according to some embodiments of the present disclosure;
FIG. 14 illustrates an exemplary DR apparatus according to some embodiments of the present disclosure;
FIG. 15 is a flowchart illustrating an exemplary process for obtaining scanning data of a subject according to some embodiments of the present disclosure;
FIG. 16A illustrates an exemplary trajectory of a radiation source according to some embodiments of the present disclosure;
FIG. 16B illustrates an exemplary trajectory of a radiation source according to some embodiments of the present disclosure;
FIG. 17A illustrates exemplary curve trajectories in a second scan direction of a radiation source and a radiation detector according to some embodiments of the present disclosure;
FIG. 17B illustrates exemplary linear trajectories in a first scan direction of a radiation source and a radiation detector according to some embodiments of the present disclosure; and
FIG. 18 illustrates exemplary reference vector surfaces of a subject according to some embodiments of the present disclosure.
DETAILED DESCRIPTION
In the following detailed description, numerous specific details are set forth by way of examples in order to provide a thorough understanding of the relevant disclosure. However, it should be apparent to those skilled in the art that the present disclosure may be practiced without such details. In other instances, well-known methods, procedures, systems, components, and/or circuitry have been described at a relatively high-level, without detail, in order to avoid unnecessarily obscuring aspects of the present disclosure. Various modifications to the disclosed embodiments will be readily apparent to those skilled in the art, and the general principles defined herein may be applied to other embodiments and applications without departing from the spirit and scope of the present disclosure. Thus, the present disclosure is not limited to the embodiments shown, but to be accorded the widest scope consistent with the claims.
The terminology used herein is for the purpose of describing particular example embodiments only and is not intended to be limiting. As used herein, the singular forms “a, ” “an, ” and “the” may be intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprise, ” “comprises, ” and/or “comprising, ” “include, ” “includes, ” and/or “including, ” when used in this specification, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof.
It will be understood that the term “system, ” “engine, ” “unit, ” “module, ” and/or “block” used herein are one method to distinguish different components, elements, parts, sections or assembly of different levels in ascending order. However, the terms may be displaced by another expression if they achieve the same purpose.
Generally, the word “module, ” “unit, ” or “block, ” as used herein, refers to logic embodied in hardware or firmware, or to a collection of software instructions. A module, a unit, or a block described herein may be implemented as software and/or hardware and may be stored in any type of non-transitory computer-readable medium  or another storage device. In some embodiments, a software module/unit/block may be compiled and linked into an executable program. It will be appreciated that software modules can be callable from other modules/units/blocks or from themselves, and/or may be invoked in response to detected events or interrupts. Software modules/units/blocks configured for execution on computing devices (e.g., processor 210 as illustrated in FIG. 2) may be provided on a computer-readable medium, such as a compact disc, a digital video disc, a flash drive, a magnetic disc, or any other tangible medium, or as a digital download (and can be originally stored in a compressed or installable format that needs installation, decompression, or decryption prior to execution) . Such software code may be stored, partially or fully, on a storage device of the executing computing device, for execution by the computing device. Software instructions may be embedded in firmware, such as an EPROM. It will be further appreciated that hardware modules/units/blocks may be included in connected logic components, such as gates and flip-flops, and/or can be included of programmable units, such as programmable gate arrays or processors. The modules/units/blocks or computing device functionality described herein may be implemented as software modules/units/blocks, but may be represented in hardware or firmware. In general, the modules/units/blocks described herein refer to logical modules/units/blocks that may be combined with other modules/units/blocks or divided into sub-modules/sub-units/sub-blocks despite their physical organization or storage. The description may be applicable to a system, an engine, or a portion thereof.
It will be understood that when a unit, engine, module, or block is referred to as being “on, ” “connected to, ” or “coupled to, ” another unit, engine, module, or block, it may be directly on, connected or coupled to, or communicate with the other unit, engine, module, or block, or an intervening unit, engine, module, or block may be present, unless the context clearly indicates otherwise. As used herein, the term “and/or” includes any and all combinations of one or more of the associated listed items. The term “image” in the present disclosure is used to collectively refer to image data (e.g., scan data, projection data) and/or images of various forms, including a two-dimensional (2D) image, a three-dimensional (3D) image, a four-dimensional (4D) , etc. The term  “pixel” and “voxel” in the present disclosure are used interchangeably to refer to an element of an image. An anatomical structure shown in an image of a subject may correspond to an actual anatomical structure existing in or on the subject’s body. The term “segmenting an anatomical structure” or “identifying an anatomical structure” in an image of a subject may refer to segmenting or identifying a portion in the image that corresponds to an actual anatomical structure existing in or on the subject’s body. The term “region, ” “location, ” and "area" in the present disclosure may refer to a location of an anatomical structure shown in the image or an actual location of the anatomical structure existing in or on the subject’s body, since the image may indicate the actual location of a certain anatomical structure existing in or on the subject’s body.
It will be understood that, although the terms “first, ” “second, ” “third, ” “fourth, ” etc., may be used herein to describe various elements, these elements should not be limited by these terms. These terms are only used to distinguish one element from another. For example, a first element could be termed a second element, and, similarly, a second element could be termed a first element, without departing from the scope of example embodiments of the present invention.
These and other features, and characteristics of the present disclosure, as well as the methods of operation and functions of the related elements of structure and the combination of parts and economies of manufacture, may become more apparent upon consideration of the following description with reference to the accompanying drawings, all of which form a part of this disclosure. It is to be expressly understood, however, that the drawings are for the purpose of illustration and description only and are not intended to limit the scope of the present disclosure. It is understood that the drawings are not to scale.
The term “imaging modality” or “modality” as used herein broadly refers to an imaging method or technology that gathers, generates, processes, and/or analyzes imaging information of a subject. The subject may include a biological subject and/or a non-biological subject. The biological subject may be a human being, an animal, a plant, or a portion thereof (e.g., a heart, a breast, etc. ) . In some embodiments, the subject may be a man-made composition of organic and/or inorganic matters that are  with or without life.
An aspect of the present disclosure relates to systems and methods for digital radiography. The system may include a DR apparatus. The DR apparatus may include a first assembly configured to install thereon a first device. The first device may be a radiation source or a radiation detector. The first assembly may include a first column, a second column, a first connector, and a second connector. The second column may be connected to the first column via the first connector. The first connector may be configured to rotate the second column relative to the first column in a first plane. The second connector may connect the second column to the first device. The second connector may be configured to move on the second column along lengthwise directions of the second column. In some embodiments, the DR apparatus may include a second assembly and a supporting assembly. The second assembly may be configured to install thereon a second device. When the first device is a radiation source, the second device may be a radiation detector. When the first device is a radiation detector, the second device may be a radiation source. The supporting assembly may be configured to support the first assembly or the second assembly. In this way, the DR apparatus may obtain scanning data of one or more reference vector surfaces of the subject (e.g., at least one sagittal plane, at least one axial plane, at least one coronal plane, etc. ) . The DR system may generate a 3D image of the subject based on the obtained scanning data.
As used herein, the subject may include a biological subject and/or a non-biological subject. For example, the subject may be a human being, an animal, or a portion thereof. As another example, the subject may be a phantom. In some embodiments, the subject may be a patient, or a portion of the patient (e.g., the chest, the breast, and/or the abdomen of the patient) .
FIG. 1 is a schematic diagram illustrating an exemplary DR system 100 according to some embodiments of the present disclosure. As shown in FIG. 1, the DR system 100 may include a DR apparatus 110, a processing device 120, a storage device 130, one or more terminal (s) 140, and a network 150. In some embodiments, the DR apparatus 110, the processing device 120, the storage device 130, and/or the  terminal (s) 140 may be connected to and/or communicate with each other via a wireless connection (e.g., the network 150) , a wired connection, or a combination thereof. The connections between the components in the DR system 100 may vary. Merely by way of example, the DR apparatus 110 may be connected to the processing device 120 through the network 150, as illustrated in FIG. 1. As another example, the DR apparatus 110 may be connected to the processing device 120 directly. As a further example, the storage device 130 may be connected to the processing device 120 through the network 150, as illustrated in FIG. 1, or connected to the processing device 120 directly. As still a further example, the terminal (s) 140 may be connected to the processing device 120 through the network 150, as illustrated in FIG. 1, or connected to the processing device 120 directly.
The DR apparatus 110 may include a radiation source 112 and a radiation detector 114. The radiation source may be configured to generate and/or emit radiations (e.g., X-rays) . The radiation detector 114 may be configured to detect radiations passing through a subject for dose determination and/or imaging. Details of the DR apparatus 110 of the DR system 100 may be found elsewhere in the present disclosure, e.g., in FIGs. 5-14 and the descriptions thereof.
The processing device 120 may process data and/or information obtained from the DR apparatus 110, the storage device 130, and/or the terminal (s) 140. For example, the processing device 120 may obtain a scan task of a subject. The processing device 120 may determine operating parameters of the radiation source 112 or the radiation detector 114 of the DR apparatus 110 based on the scan task. As another example, the processing device 120 may obtain scanning data of the subject from the DR apparatus 110 by controlling the radiation source 112 or the radiation detector 114 of the DR apparatus 110 to move according to the operating parameters. As still another example, the processing device 120 may obtain a 3D image based on the scanning data.
In some embodiments, the processing device 120 may be a single server or a server group. The server group may be centralized or distributed. In some embodiments, the processing device 120 may be local or remote. For example, the  processing device 120 may access information and/or data from the DR apparatus 110, the storage device 130, and/or the terminal (s) 140 via the network 150. As another example, the processing device 120 may be directly connected to the DR apparatus 110, the terminal (s) 140, and/or the storage device 130 to access information and/or data. In some embodiments, the processing device 120 may be implemented on a cloud platform. For example, the cloud platform may include a private cloud, a public cloud, a hybrid cloud, a community cloud, a distributed cloud, an inter-cloud, a multi-cloud, or the like, or a combination thereof.
The storage device 130 may store data, instructions, and/or any other information. In some embodiments, the storage device 130 may store data obtained from the DR apparatus 110, the processing device 120, and/or the terminal (s) 140. In some embodiments, the storage device 130 may store data and/or instructions that the processing device 120 may execute or use to perform exemplary methods described in the present disclosure. In some embodiments, the storage device 130 may include a mass storage, removable storage, a volatile read-and-write memory, a read-only memory (ROM) , or the like, or any combination thereof. Exemplary mass storage may include a magnetic disk, an optical disk, a solid-state drive, etc. Exemplary removable storage may include a flash drive, a floppy disk, an optical disk, a memory card, a zip disk, a magnetic tape, etc. Exemplary volatile read-and-write memory may include a random access memory (RAM) . Exemplary RAM may include a dynamic RAM (DRAM) , a double date rate synchronous dynamic RAM (DDR SDRAM) , a static RAM (SRAM) , a thyristor RAM (T-RAM) , and a zero-capacitor RAM (Z-RAM) , etc. Exemplary ROM may include a mask ROM (MROM) , a programmable ROM (PROM) , an erasable programmable ROM (EPROM) , an electrically erasable programmable ROM (EEPROM) , a compact disk ROM (CD-ROM) , and a digital versatile disk ROM, etc. In some embodiments, the storage device 130 may be implemented on a cloud platform as described elsewhere in the disclosure.
In some embodiments, the storage device 130 may be connected to the network 150 to communicate with one or more other components in the DR system 100 (e.g., the processing device 120, the terminal (s) 140) . One or more components in the  DR system 100 may access the data or instructions stored in the storage device 130 via the network 150. In some embodiments, the storage device 130 may be part of the processing device 120.
The terminal (s) 140 may be connected to and/or communicate with the DR apparatus 110, the processing device 120, and/or the storage device 130. For example, the terminal (s) 140 may obtain a 3D image based on the scanning data. In some embodiments, the terminal (s) 140 may include a mobile device 141, a tablet computer 142, a laptop computer 143, or the like, or any combination thereof. For example, the mobile device 140-1 may include a mobile phone, a personal digital assistant (PDA) , a gaming device, a point of sale (POS) device, a laptop, a tablet computer, a desktop, or the like, or any combination thereof. In some embodiments, the terminal (s) 140 may include an input device, an output device, etc. The input device may include alphanumeric and other keys that may be input via a keyboard, a touchscreen (for example, with haptics or tactile feedback) , a speech input, an eye tracking input, a brain monitoring system, or any other comparable input mechanism. The input information received through the input device may be transmitted to the processing device 120 via, for example, a bus, for further processing. Other types of the input device may include a cursor control device, such as a mouse, a trackball, or cursor direction keys, etc. The output device may include a display, a speaker, a printer, or the like, or a combination thereof. In some embodiments, the terminal (s) 140 may be part of the processing device 120.
The network 150 may include any suitable network that can facilitate the exchange of information and/or data for the DR system 100. In some embodiments, one or more components of the DR system 100 (e.g., the DR apparatus 110, the processing device 120, the storage device 130, the terminal (s) 140, etc. ) may communicate information and/or data with one or more other components of the DR system 100 via the network 150. For example, the processing device 120 may obtain image data from the DR apparatus 110 via the network 150. As another example, the processing device 120 may obtain user instruction (s) from the terminal (s) 140 via the network 150. The network 150 may be and/or include a public network (e.g., the  Internet) , a private network (e.g., a local area network (LAN) , a wide area network (WAN) ) , etc. ) , a wired network (e.g., an Ethernet network) , a wireless network (e.g., an 802.11 network, a Wi-Fi network, etc. ) , a cellular network (e.g., a Long Term Evolution (LTE) network) , a frame relay network, a virtual private network (VPN) , a satellite network, a telephone network, routers, hubs, witches, server computers, and/or any combination thereof. For example, the network 150 may include a cable network, a wireline network, a fiber-optic network, a telecommunications network, an intranet, a wireless local area network (WLAN) , a metropolitan area network (MAN) , a public telephone switched network (PSTN) , a Bluetooth TM network, a ZigBee TM network, a near field communication (NFC) network, or the like, or any combination thereof. In some embodiments, the network 150 may include one or more network access points. For example, the network 150 may include wired and/or wireless network access points such as base stations and/or internet exchange points through which one or more components of the DR system 100 may be connected to the network 150 to exchange data and/or information.
This description is intended to be illustrative, and not to limit the scope of the present disclosure. Many alternatives, modifications, and variations will be apparent to those skilled in the art. The features, structures, methods, and other characteristics of the exemplary embodiments described herein may be combined in various ways to obtain additional and/or alternative exemplary embodiments. For example, the storage device 130 may be a data storage including cloud computing platforms, such as public cloud, private cloud, community, and hybrid clouds, etc. However, those variations and modifications do not depart the scope of the present disclosure.
FIG. 2 is a schematic diagram illustrating exemplary hardware and/or software components of a computing device 200 on which the processing device 120 may be implemented according to some embodiments of the present disclosure. As illustrated in FIG. 2, the computing device 200 may include a processor 210, a storage device 220, an input/output (I/O) 230, and a communication port 240.
The processor 210 may execute computer instructions (e.g., program code) and perform functions of the processing device 120 in accordance with techniques  described herein. The computer instructions may include, for example, routines, programs, subjects, components, data structures, procedures, modules, and functions, which perform particular functions described herein. For example, the processor 210 may process radiation dose data and/or image data obtained from the imaging device 110, the terminal (s) 140, the storage device 130, and/or any other component of the DR system 100. In some embodiments, the processor 210 may include one or more hardware processors, such as a microcontroller, a microprocessor, a reduced instruction set computer (RISC) , an application specific integrated circuits (ASICs) , an application-specific instruction-set processor (ASIP) , a central processing unit (CPU) , a graphics processing unit (GPU) , a physics processing unit (PPU) , a microcontroller unit, a digital signal processor (DSP) , a field programmable gate array (FPGA) , an advanced RISC machine (ARM) , a programmable logic device (PLD) , any circuit or processor capable of executing one or more functions, or the like, or any combinations thereof.
Merely for illustration, only one processor is described in the computing device 200. However, it should be noted that the computing device 200 in the present disclosure may also include multiple processors. Thus, operations and/or method steps that are performed by one processor as described in the present disclosure may also be jointly or separately performed by the multiple processors. For example, if in the present disclosure the processor of the computing device 200 executes both process A and process B, it should be understood that process A and process B may also be performed by two or more different processors jointly or separately in the computing device 200 (e.g., a first processor executes process A and a second processor executes process B, or the first and second processors jointly execute processes A and B) .
The storage device 220 may store data/information obtained from the imaging device 110, the terminal (s) 140, the storage device 130, and/or any other component of the DR system 100. In some embodiments, the storage device 220 may include a mass storage, removable storage, a volatile read-and-write memory, a read-only memory (ROM) , or the like, or any combination thereof. For example, the mass storage may include a magnetic disk, an optical disk, a solid-state drive, etc. The  removable storage may include a flash drive, a floppy disk, an optical disk, a memory card, a zip disk, a magnetic tape, etc. The volatile read-and-write memory may include a random access memory (RAM) . The RAM may include a dynamic RAM (DRAM) , a double date rate synchronous dynamic RAM (DDR SDRAM) , a static RAM (SRAM) , a thyristor RAM (T-RAM) , and a zero-capacitor RAM (Z-RAM) , etc. The ROM may include a mask ROM (MROM) , a programmable ROM (PROM) , an erasable programmable ROM (EPROM) , an electrically erasable programmable ROM (EEPROM) , a compact disk ROM (CD-ROM) , and a digital versatile disk ROM, etc. In some embodiments, the storage device 220 may store one or more programs and/or instructions to perform exemplary methods described in the present disclosure. For example, the storage device 220 may store a program for the processing device 120 for determining one or more registration parameters related to multi-modality images acquired by the DR system 100.
The I/O 230 may input and/or output signals, data, information, etc. In some embodiments, the I/O 230 may enable a user interaction with the processing device 120. In some embodiments, the I/O 230 may include an input device and an output device. Examples of the input device may include a keyboard, a mouse, a touch screen, a microphone, or the like, or a combination thereof. Examples of the output device may include a display device, a loudspeaker, a printer, a projector, or the like, or a combination thereof. Examples of the display device may include a liquid crystal display (LCD) , a light-emitting diode (LED) -based display, a flat panel display, a curved screen, a television device, a cathode ray tube (CRT) , a touch screen, or the like, or a combination thereof.
The communication port 240 may be connected to a network (e.g., the network 150) to facilitate data communications. The communication port 240 may establish connections between the processing device 120 and the imaging device 110, the terminal (s) 140, and/or the storage device 130. The connection may be a wired connection, a wireless connection, any other communication connection that can enable data transmission and/or reception, and/or any combination of these connections. The wired connection may include, for example, an electrical cable, an optical cable, a  telephone wire, or the like, or any combination thereof. The wireless connection may include, for example, a Bluetooth TM link, a Wi-Fi TM link, a WiMax TM link, a WLAN link, a ZigBee link, a mobile network link (e.g., 3G, 4G, 5G, etc. ) , or the like, or any combination thereof. In some embodiments, the communication port 240 may be and/or include a standardized communication port, such as RS232, RS485, etc. In some embodiments, the communication port 240 may be a specially designed communication port. For example, the communication port 240 may be designed in accordance with the digital imaging and communications in medicine (DICOM) protocol.
FIG. 3 is a schematic diagram illustrating exemplary hardware and/or software components of a mobile device 300 on which the terminal (s) 140 and/or the processing device 120 may be implemented according to some embodiments of the present disclosure. As illustrated in FIG. 3, the mobile device 300 may include a communication platform 310, a display 320, a graphics processing unit (GPU) 330, a central processing unit (CPU) 340, an I/O 350, a memory 360, and a storage 390. In some embodiments, any other suitable component, including but not limited to a system bus or a controller (not shown) , may also be included in the mobile device 300. In some embodiments, a mobile operating system 370 (e.g., iOS TM, Android TM, Windows Phone TM, etc. ) and one or more applications 380 may be loaded into the memory 360 from the storage 390 in order to be executed by the CPU 340. The applications 380 may include a browser or any other suitable mobile apps for receiving and rendering information respect to image processing or other information from the processing device 120. User interactions with the information stream may be achieved via the I/O 350 and provided to the processing device 120 and/or other components of the DR system 100 via the network 150.
To implement various modules, units, and their functionalities described in the present disclosure, computer hardware platforms may be used as the hardware platform (s) for one or more of the elements described herein. A computer with user interface elements may be used to implement a personal computer (PC) or any other type of workstation or external device. A computer may also act as a server if appropriately programmed.
FIG. 4 is a block diagram illustrating an exemplary processing device 120 according to some embodiments of the present disclosure. The processing device 120 may be implemented on the computing device 200 (e.g., the processor 210) illustrated in FIG. 2. The processing device 120 may include an acquisition module 402, a determination module 404, and a generation module 406.
The acquisition module 402 may be configured to obtain or acquire information and/or data relating to the DR apparatus. For example, the acquisition module 402 may obtain a scan task of the subject. In some embodiments, the scan task may include a scan region, a first scan direction, a second scan direction, or the like, or any combination thereof.
The determination module 404 may be configured to determine, based on the scan task, operating parameters of a radiation source or a radiation detector of the DR apparatus.
The generation module 406 may be configured to generate an image from the DR apparatus. For example, the generation module 406 may obtain scanning data of the subject. In some embodiments, the scanning data may be acquired by controlling the radiation source and/or the radiation detector of the DR apparatus to move according to the operating parameters. As another example, the generation module 406 may generate, based on the scanning data, a 3D image according to an image reconstruction algorithm.
It should be noted that the above description is merely provided for the purposes of illustration, and not intended to limit the scope of the present disclosure. For persons having ordinary skills in the art, multiple variations and modifications may be made under the teachings of the present disclosure. However, those variations and modifications do not depart from the scope of the present disclosure. In some embodiments, the processing device 120 may include one or more additional modules not described, such as a storage module (not shown) for storing data. In some embodiments, any one of the modules of the processing device 120 may be divided into two or more units.
FIG. 5 illustrates an exemplary DR apparatus 500 according to some  embodiments of the present disclosure. In some embodiments, the DR apparatus 500 may be an exemplary embodiment of the DR apparatus 110 of the DR system 100 described in FIG. 1. As shown in FIG. 5, the DR apparatus 500 may include a first assembly 510, a second assembly 520, and a supporting assembly 530.
The first assembly 510 may be configured to install thereon a first device for supporting the first device. In some embodiments, the first device may include a radiation source or a radiation detector. The second assembly 520 may be configured to install thereon a second device for supporting the second device. The first device and the second device may form a source-detector pair, i.e., when the first device is a radiation source, the second device is a radiation detector, and when the first device is a radiation detector, the second device is a radiation source. For illustration purposes, as shown in FIG. 5, the first assembly 510 is configured to install thereon a radiation source 590, and the second assembly 520 is configured to install thereon a radiation detector 580. The supporting assembly 530 may be configured to support the first assembly 510 and/or the second assembly 520.
In some embodiments, the first assembly 510 may include a first column 511, a second column 512, a first connector 10, and a second connector 20. The second column 512 may be connected to the first column 511 via the first connector 10. In some embodiments, the first connector 10 may be configured to rotate the second column relative to the first column. For example, the first connector 10 may include a first rotating component 513. The second column 512 may be connected to the first column 511 via the first rotating component 513. The first rotating component 513 may be configured to rotate the second column 512 relative to the first column 511 in a first plane. A coordinate system XYZ including an X axis, a Y-axis, and a Z-axis is provided in FIG. 5. The positive X direction along the X axis may be from the left side to the right side of the DR apparatus 110 seen from the direction facing the front of the DR apparatus 110; the positive Y direction along the Y axis may be from the lower part to the upper part of the DR apparatus 110; the Z direction may be perpendicular to the plane XY. For example, as shown in FIG. 5, when the first rotating component 513 rotates up and down relative to the first column 511, the first plane may be the plane  XY. As another example, when the first rotating component 513 rotates left and right relative to the first column 511, the first plane may be the plane XZ. In some embodiments, the first connector 10 may be further configured to move on the first column 511 along lengthwise directions Z 21 and Z 22 of the first column 511, thereby driving the second column 512 to move along the lengthwise directions Z 21 and Z 22. For example, the first connector 10 may further include a second moving component 519 connecting with the first rotating component 513.
The second connector 20 may connect the second column 512 to the first device (e.g., the radiation source 590 as shown in FIG. 5) and be configured to support movement (e.g., slide, rotate, etc. ) of the second column 512 and/or the radiation source 590. As shown in FIG. 5, the second connector 20 may include a first installation part 514, a first moving component 515, and a second rotating component 517. The radiation source 590 may be connected to the first installation part 514 via the second rotating component 517. The second column 512 may be connected to the first installation part 514 via the first moving component 515. In some embodiments, the second connector 20 may be configured to rotate the radiation source 590 in a second plane. As shown in FIG. 5, the radiation source 590 may rotate relative to the first installation part 514 via the second rotating component 517 of the second connector 20 in the second plane. For example, when the second rotating component 517 rotates up and down relative to the second column 512, the second plane may be the XY plane. As another example, when the second rotating component 517 rotates left and right relative to the second column 512, the second plane may be the XZ plane. In some embodiments, the second connector 20 may be configured to move on the second column 512 along lengthwise directions Z 11 and Z 12 of the second column 512 via the first moving component 515, thereby driving the radiation source 590 to move on the second column 512 along the lengthwise directions Z 11 and Z 12 of the second column 512.
The combination of the first connector 10 and the second connector 20 may allow the radiation source 590 to move within a great range along the lengthwise directions Z 21 and Z 22 of the first column 511 (or the lengthwise directions Z 11 and Z 12 of  the second column 513) . For example, if a length of first column 511 is a and a length of the second column 512 is b, the moving range of the radiation source 590 may be from 0 to (a+b) along the lengthwise directions Z 21 and Z 22 of the first column 511 (or the lengthwise directions Z 11 and Z 12 of the second column 513) . The larger the moving range of the radiation source 590, the better the applicability of the DR device. For example, when the height of a subject is greater than the first column 511 (or the second column 513) , the radiation source 590 may be controlled by moving the first connector 10 (e.g., the second moving component 519) and/or the second connector 20 (e.g., the first moving component 515) to adapt to the height of the subject.
In some embodiments, the second assembly 520 may include a third column 521 connected to the second device (e.g., the radiation detector 580 as shown in FIG. 5) via a third connector 30. In some embodiments, the third connector 30 may be configured to install the radiation detector 580 on the third column. For example, the third connector 30 may include a second installation part 524 for installing the radiation detector 580 on the third column. In some embodiments, the third connector 30 may be configured to move on the third column 521 along lengthwise directions Z 31 and Z 32 of the third column 521, thereby driving the radiation detector 580 to move on the third column 521 along the lengthwise directions Z 31 and Z 32. For example, the third connector 30 may further include a third moving component 523 connecting to the second installation part 524 and the third column 530.
In some embodiments, movements of any one of the first moving component 515, the second moving component 519, the first rotating component 513, the second rotating component 517, and/or the third moving component 523 may be implemented by various manners, such as a lead screw and nut drive, a gear and rack drive, a belt drive, a chain drive, or the like, or any combination thereof. The first moving component 515 and/or the second moving component 519 may include various moveable structures. For example, the first moving component 515 may be a slider. The slider may slide along a sliding groove disposed on the second column 512. The slider may stop on different positions of the sliding groove. For example, a sliding groove and at least one slot may be disposed on the second column 512, and the slider  may slide in the sliding groove along the lengthwise directions Z 11 and Z 12 of the second column 512 and stop at different slots. In some embodiments, the movements of the slider may be controlled using an electric drive device (e.g., a motor) . For example, a motor may control the sliding or stopping of the slider in the sliding groove by a gear and rack drive, or a belt drive. In some embodiments, a user may control the sliding or stopping of the slider in the sliding groove via a control device (e.g., a button, a switch, a remote control, etc. ) . In some embodiments, any one of the first connector 10, the second connector 20, and the third connector 30 may be an integrated structure. Alternatively, any one of the first connector 10, the second connector 20, and the third connector 30 may be an assembled structure of two or more components.
In some embodiments, scanning data obtained from the DR apparatus 500 as shown in FIG. 5 may be used to generate a 3D image of a subject. For example, the DR apparatus 110 may realize a tomography scan of the subject along one or more reference vector surfaces of the subject, and reconstruct the scanning data to generate the 3D image. A reference vector surface may be any surface that divides the subject into two parts. For example, exemplary reference vector surfaces of a human body may include a sagittal plane, an axial plane, a coronal plane (e.g., the reference vector surfaces of a human as shown in FIG. 18) , or the like, or any combination thereof. In some embodiments, the axial plane may be an imaginary plane that divides the subject (e.g., a human body) into a superior part and an inferior part. The coronal plane may be an imaginary plane that divides the subject into an anterior part and a posterior part. For example, the subject is a human body, and the coronal plane may divide the human body into a ventral part and a dorsal part. The sagittal plane may be an imaginary plane that divides the subject (e.g., a human body) into a right part and a left part.
Merely by way of example, the subject (e.g., a human body not shown in FIG. 5) may stand facing the radiation source 590. When the first column 511 is parallel to the second column 512, that is, the lengthwise directions Z 21 and Z 22 of the first column 511 are parallel to the lengthwise directions Z 11 and Z 12 of the second column 512, the radiation source 590 may move on the second column 512 along the lengthwise directions Z 11 and Z 12 of the second column 512 via the second connector 20 and/or the  radiation source 590 may rotate relative to the first installation part 514 in the second plane via the second rotating component 517 of the second connector 20. In this case, The DR apparatus 500 may perform a scan for a plurality of sagittal planes of the subject through a combined movement of the radiation source 590 and/or the radiation detector 580 to obtain the scanning data of the plurality of sagittal planes of the subject. In some embodiments, the radiation detector 580 may be kept at a fixed position. In some embodiments, the radiation detector 580 may move on the third column 521 along the lengthwise directions Z 31 and Z 32 of the third column 521 opposite to the radiation source 590 relative to the subject, that is, when the radiation source 590 moves on the second column 512 along the lengthwise direction Z 11 of the second column 512, the radiation detector 580 may move on the third column 521 along the lengthwise direction Z 32 of the third column 521, and when the radiation source 590 moves on the second column 512 along the lengthwise direction Z 12 of the second column 512, the radiation detector 580 may move on the third column 521 along the lengthwise direction Z 31 of the third column 521. In this way, no matter where the radiation source 590 moves on the second column 512 along the lengthwise directions Z 11 and Z 12 of the second column 512, the detector 180 may obtain the radiations emitted by the radiation source 590, which may ensure that the scanning data of the plurality of sagittal planes of the subject may be obtained.
In some embodiments, the second column 512 may rotate to a target position relative to the first column 511 in the first plane via the first rotating component 513. An angle between the lengthwise direction Z 11 of the second column 512 and the lengthwise direction Z 21 of the first column 511 (i.e., the angle between the lengthwise direction Z 12 of the second column 512 and the lengthwise direction Z 22 of the first column 511) may be set manually by a user (e.g., a physician) according to an experience value, or a default setting of the DR system 100, or determined by the processing device 120 according to an actual need. For example, the angle may be 15 degrees, 30 degrees, 47 degrees, etc. Merely by way of example, FIG. 6 is a partial view of the first assembly 510 along a direction A shown in FIG. 5 according to some embodiments of the present disclosure. As shown in FIG. 6, the second column 512 is  rotated for 90 degrees, that is, the lengthwise directions Z 21 and Z 22 of the first column 511 are perpendicular to the lengthwise directions Z 11 and Z 12 of the second column 512. The radiation detector 580 may be kept at a fixed position, and the radiation source 590 may move on the second column 512 along the lengthwise directions Z 11 and Z 12 of the second column 512 via the second connector 20 and/or may rotate relative to the first installation part 514 via the second rotating component 517 in the second plane. The scanning data of a plurality of axial planes of the subject may be obtained.
In some embodiments, scanning data of different reference vector surfaces of the subject may be obtained by adjusting the position of the subject. For example, an angle between a facial direction of the subject and the radiation source 590 may be adjusted according to an actual need, such as 15 degrees, 45 degrees, 60 degrees, etc. Merely by way of example, the subject (e.g., a human body not shown in FIG. 5) may stand so that the angle between the facial direction of the subject and the radiation source 590 is 90 degrees. The DR apparatus 500 may perform a scan for a plurality of coronal planes of the subject through a combined movement of the radiation source 590 and the radiation detector 580 to obtain the scanning data of the plurality of coronal planes of the subject. In some embodiments, the obtaining of the scanning data of the plurality of coronal planes may be performed in a similar manner as that of the scanning data of the plurality of sagittal planes when the subject stands facing the radiation source 590, and the descriptions of which are not repeated here.
The radiation detector 580 may receive part or all radiations emitted by the radiation source 590 by the movements of the radiation detector 580 and/or the radiation source 590. For example, when the radiation detector 580 is completely opposite to the radiation source 590, the radiation detector 580 may receive all the radiation. In some embodiments, the more radiations obtained by the radiation detector 580, the smaller the noise, and the higher the imaging quality. Thus, the radiation detector 580 and/or the radiation source 590 may move so that the radiation detector 580 is completely opposite to the radiation source 590. As used herein, the term “completely opposite” may refer to a relative location between the radiation  detector 580 and the radiation source 590 that enables all of the radiations emitted by the radiation source 590 may be obtained by the radiation detector 580.
FIG. 7 illustrates an exemplary DR apparatus 700 according to some embodiments of the present disclosure. In some embodiments, the DR apparatus 700 may be an exemplary embodiment of the DR apparatus 110 of the DR system 100 described in FIG. 1. As shown in FIG. 7, on the basis of the DR apparatus 500 illustrated in FIG. 5, the third connector 30 may be further configured to rotate the second device (e.g., the radiation detector 580) installed on the second assembly 520 relative to the third connector 30. In some embodiments, the third connector 30 may further include a third rotating component 527. The radiation detector 580 may rotate relative to the second installation part 524 via the third rotating component 527 in a third plane. As shown in FIG. 7, a coordinate system XYZ including an X axis, a Y-axis, and a Z-axis may be similarly defined as that shown in FIG. 5. When the third rotating component 527 rotates up and down relative to the third column 521, the third plane may be the plane XY. As another example, when the third rotating component 527 rotates left and right relative to the third column 521, the third plane may be the plane XZ. In some embodiments, the third plane may be different from or same as the second plane. For example, in a same coordinate system XYZ shown in FIGs. 5 and 7, the third plane may be same as the second plane. As another example, in different coordinate systems each of which is defined relative to the first assembly 510 and the second assembly 520 respectively, the third plane may be different from the second plane. As still another example, when the first rotating component 513 rotates the second column 512 to a certain angle (e.g., 15 degrees) , the third plane may be different from the second plane.
In some embodiments, scanning data obtained from the DR apparatus 700 as shown in FIG. 7 may be used to generate a 3D image of a subject. Merely by way of example, the subject (e.g., a human body not shown in FIG. 7) may stand facing the radiation source 590. When the first column 511 is parallel to the second column 512, that is, the lengthwise directions Z 21 and Z 22 of the first column 511 are parallel to the lengthwise directions Z 11 and Z 12 of the second column 512, the radiation source 590  may move on the second column 512 along the lengthwise directions Z 11 and Z 12 of the second column 512 via the second connector 20 and/or the radiation source 590 may rotate relative to the first installation part 514 in the second plane via the second rotating component 517 of the second connector 20. In this case, The DR apparatus 700 may perform a scan for a plurality of sagittal planes of the subject through a combined movement of the radiation source 590 and/or the radiation detector 580 to obtain the scanning data of the plurality of sagittal planes of the subject. In some embodiments, the radiation detector 580 may be kept at a fixed position. In some embodiments, the radiation detector 580 may be only rotated relative to the second installation part 524 via the third rotating component 527 of the third connector 30 in the third plane. The radiation detector 580 may be always opposite the radiation source 590 during rotations of the radiation detector 580. In some embodiments, the radiation detector 580 may only move on the third column 521 along the lengthwise directions Z 31 and Z 32 of the third column 521 opposite to the radiation source 590 relative to the subject, that is, when the radiation source 590 moves on the second column 512 along the lengthwise direction Z 11 of the second column 512, the radiation detector 580 may move on the third column 521 along the lengthwise direction Z 32 of the third column 521, and when the radiation source 590 moves on the second column 512 along the lengthwise direction Z 12 of the second column 512, the radiation detector 580 may move on the third column 521 along lengthwise direction Z 31 of the third column 521. In some embodiments, the radiation detector 580 may rotate relative to the second installation part 524 via the third rotating component 527 of the third connector 30 in the third plane and move on the third column 521 along the lengthwise directions Z 31 and Z 32 of the third column 521 opposite to the radiation source 590 relative to the subject, simultaneously. In this way, no matter where the radiation source 590 moves on the second column 512 along the lengthwise directions Z 11 and Z 12 of the second column 512, the radiation detector 580 may obtain the radiation emitted by the radiation source 590, which may ensure that the scanning data of the at least one sagittal plane of the subject at different positions may be obtained.
In some embodiments, the second column 512 may rotate to a target position  relative to the first column 511 in the first plane via the first rotating component 513. An angle between the lengthwise direction Z 11 of the second column 512 and the lengthwise direction Z 21 of the first column 511 (i.e., the angle between the lengthwise direction Z 12 of the second column 512 and the lengthwise direction Z 22 of the first column 511) may be set manually by a user (e.g., a physician) according to an experience value or a default setting of the DR system 100, or determined by the processing device 120 according to an actual need. For example, the angle may be 15 degrees, 30 degrees, 47 degrees, etc. Merely by way of example, FIG. 8 is a partial view of the first assembly 510 along a direction B shown in FIG. 7 according to some embodiments of the present disclosure. As shown in FIG. 8, the second column 512 is rotated for 90 degrees, that is, the lengthwise directions Z 21 and Z 22 of the first column 511 are perpendicular to the lengthwise directions Z 11 and Z 12 of the second column 512. The radiation source 590 may move on the second column 512 along the lengthwise directions Z 11 and Z 12 of the second column 512 via the second connector 20 and/or may rotate relative to the first installation part 514 via the second rotating component 517 in the second plane. In this case, The DR apparatus 700 may perform a scan for a plurality of axial planes of the subject through a combined movement of the radiation source 590 and/or the radiation detector 580 to obtain the scanning data of the plurality of axial planes of the subject. In some embodiments, the radiation detector 580 may be kept at a fixed position. In some embodiments, the radiation detector 580 may be only rotated relative to the second installation part 524 via the third rotating component 527 of the third connector 30 in the third plane. The radiation detector 580 may be always opposite the radiation source 590 during rotation of the radiation detector 580. In this way, no matter where the radiation source 590 moves on the second column 512 along the lengthwise directions Z 11 and Z 12 of the second column 512, the detector 180 may obtain the radiation emitted by the radiation source 590, which may ensure that the scanning data of the plurality of axial planes of the subject at different positions may be obtained.
In some embodiments, scanning data of different reference vector surfaces of the subject may be obtained by adjusting the position of the subject. For example, an  angle between a facial direction of the subject and the radiation source 590 may be adjusted according to an actual need, such as 15 degrees, 45 degrees, 74 degrees, etc. Merely by way of example, the subject (e.g., a human body not shown in FIG. 9) may stand so that the angle between the facial direction of the subject and the radiation source 590 is 90 degrees. The DR apparatus 700 may perform a scan for a plurality of coronal planes of the subject through a combined movement of the radiation source 590 and the radiation detector 580 to obtain the scanning data of the plurality of coronal planes of the subject. In some embodiments, the obtaining of the scanning data of the at least one coronal plane may be performed in a similar manner as that of the scanning data of the plurality of sagittal planes when the subject stands facing the radiation source 590, and the descriptions of which are not repeated here.
In some embodiments, the first column 511 may be connected to the supporting assembly 530 and configured to move on the supporting assembly 530 along lengthwise directions Z 41 and Z 42 of the supporting assembly 530. In some embodiments, the third column 521 may be connected to the supporting assembly 530 and configured to move on the supporting assembly 530 along the lengthwise directions Z 41 and Z 42 of the supporting assembly 530. For example, as shown in FIG. 7, the DR apparatus 700 may include a fourth moving component 516 and a fifth moving component 526. The first column 511 may be connected to the supporting assembly 530 via the fourth moving component 516. The fourth moving component 516 may move on the supporting assembly 530 along the lengthwise directions Z 41 and Z 42 of the supporting assembly 530, thereby driving the first column 511 to move on the supporting assembly 530 along the lengthwise directions Z 41 and Z 42 of the supporting assembly 530. The third column 511 may be connected to the supporting assembly 530 via the fifth moving component 526. The fifth moving component 526 may move on the supporting assembly 530 along lengthwise directions Z 41 and Z 42 of the supporting assembly 530, thereby driving the third column 521 to move on the supporting assembly 530 along the lengthwise directions Z 41 and Z 42 of the supporting assembly 530. In this way, the radiation detector 580 and/or the radiation source 590 may move along lengthwise directions Z 41 and Z 42 of the supporting assembly 530 to  adjust a source to image receptor distance (SID) between the radiation detector 580 and the radiation source 590. The SID refers to a distance from a focus of the radiation to the radiation detector 580. In some embodiments, an image quality of an image generated based on the scanning data obtained by the DR apparatus 700 may be improved by adjusting the SID.
FIG. 9 illustrates an exemplary DR apparatus 900 according to some embodiments of the present disclosure. FIG. 10 is a partial view of the second assembly 520 along a direction C shown in FIG. 9 according to some embodiments of the present disclosure. In some embodiments, the DR apparatus 900 may be an exemplary embodiment of the DR apparatus 110 of the DR system 100 described in FIG. 1. As shown in FIG. 9, on the basis of the DR apparatus 700 illustrated in FIG. 7, the second assembly 520 of the DR apparatus 900 may further include a fourth column 522 disposed between the third column 521 and the third connector 30.
In some embodiments, the second assembly 520 may have a same or similar structure to the first assembly 510. For example, the fourth column 522 may be connected to the third column 521 via a fourth connector 40. In some embodiments, the fourth connector 40 may include a fourth rotating component 525. The fourth column 522 may be connected to the third column 521 via the fourth rotating component 525. The fourth rotating component 525 may be configured to rotate the fourth column 522 relative to the third column 521 in a fourth plane. As shown in FIG. 9, a coordinate system XYZ including an X axis, a Y-axis, and a Z-axis may be similarly defined as that shown in FIG. 5. When the fourth rotating component 525 rotates up and down relative to the third column 521, the fourth plane may be the plane XY. As another example, when the fourth rotating component 525 rotates left and right relative to the third column 521, the fourth plane may be the plane XZ . In some embodiments, the fourth plane may be different from or same as the first plane. For example, in a same coordinate system XYZ shown in FIGs. 5 and 9, the fourth plane may be same as the first plane. As another example, in different coordinate systems each of which is defined relative to the first assembly 510 and the second assembly 520 respectively, the fourth plane may be different from the first plane.
The third connector 30 may connect the fourth column 522 to the radiation detector 580. In some embodiments, the third connector 30 may include a second installation part 524 and a third moving component 523. The radiation detector 580 may be connected to the second installation part 524. The fourth column 522 may be connected to the second installation part 524 via the third moving component 523. In some embodiments, the third connector 30 may be configured to move on the fourth column 522 along lengthwise directions Z 51 and Z 52 of the fourth column 522 via the third moving component 523, thereby driving the radiation detector 580 to move on the fourth column 522 along the lengthwise directions Z 51 and Z 52 of the fourth column 522.
In some embodiments, the third connector 30 may be further configured to rotate the second device (e.g., the radiation detector 580) installed on the second assembly 520 relative to the third connector 30. In some embodiments, the third connector 30 may further include a third rotating component 527. The radiation detector 580 may rotate relative to the second installation part 524 in the third plane via the third rotating component 527.
In some embodiments, the fourth connector 40 may include a sixth moving component 529. The fourth connector 40 may be configured to move on the third column 521 along the lengthwise directions Z 31 and Z 32 of the third column 521 via the sixth moving component 529, thereby driving the fourth column 522 to move on the third column 521 along the lengthwise directions Z 31 and Z 32 of the third column 521. In this way, the radiation source 580 may move a great range along the lengthwise directions Z 31 and Z 32 of the third column 521 with the movement of the fourth connector 40 and/or the movement of the third connector 30. In some embodiments, the fourth connector 40 may be an integrated structure. Alternatively, the fourth connector 40 may be an assembled structure of two or more components.
In some embodiments, scanning data obtained from the DR apparatus 900 as shown in FIG. 9 may be used to generate a 3D image of a subject. Merely by way of example, the subject (e.g., a human body not shown in FIG. 9) may stand facing the radiation source 590. When the first column 511 is parallel to the second column 512, that is, the lengthwise directions Z 21 and Z 22 of the first column 511 are parallel to the  lengthwise directions Z 11 and Z 12 of the second column 512, the radiation source 590 may move on the second column 512 along the lengthwise directions Z 11 and Z 12 of the second column 512 via the second connector 20 and/or the radiation source 590 may rotate relative to the first installation part 514 in the second plane via the second rotating component 517 . In this case, The DR apparatus 900 may perform a scan for a plurality of sagittal planes of the subject through a combined movement of the radiation source 590 and the radiation detector 580 to obtain the scanning data of the plurality of sagittal planes of the subject. In some embodiments, the radiation detector 580 may be kept at a fixed position. In some embodiments, the radiation detector 580 may be only rotated relative to the second installation part 524 in the third plane via the third rotating component 527 . The radiation detector 580 may be always opposite the radiation source 590 during movements of the radiation detector 580 and/or the radiation source 590. In some embodiments, the radiation detector 580 may only move on the fourth column 522 along the lengthwise directions Z 51 and Z 52 of the fourth column 522 opposite to the radiation source 590 relative to the subject, that is, when the radiation source 590 moves on the second column 512 along the lengthwise direction Z 11 of the second column 512, the radiation detector 580 may move on the fourth column 522 along lengthwise direction Z 52 of the third column 521, and when the radiation source 590 moves on the second column 512 along the lengthwise direction Z 12 of the second column 512, the radiation detector 580 may move on the fourth column 522 along lengthwise direction Z 51 of the fourth column 522. In some embodiments, the radiation detector 580 may rotate relative to the second installation part 524 in the third plane via the third rotating component 527 of the third connector 30 and move on the fourth column 522 along the lengthwise directions Z 51 and Z 52 of the fourth column 522 opposite to the radiation source 590 relative to the subject, simultaneously. In this way, no matter where the radiation source 590 moves on the second column 512 along the lengthwise directions Z 11 and Z 12 of the second column 512, the radiation detector 580 may obtain the radiations emitted by the radiation source 590, which may ensure that the scanning data of the plurality of sagittal planes of the subject may be obtained.
In some embodiments, the second column 512 and the fourth column 522 may rotate for 90 degrees, that is, the lengthwise directions Z 21 and Z 22 of the first column 511 may be perpendicular to the lengthwise directions Z 11 and Z 12 of the second column 512, and the lengthwise directions Z 51 and Z 52 of the fourth column 522 may be perpendicular to the lengthwise directions Z 31 and Z 32 of the third column 521. The radiation source 590 may move on the second column 512 along the lengthwise directions Z 11 and Z 12 of the second column 512 via the second connector 20 and/or the radiation source 590 may rotate relative to the first installation part 514 in the second plane via the second rotating component 517 of the second connector 20. In this case, the DR apparatus 900 may perform a scan for a plurality of axial planes of the subject through a combined movement of the radiation source 590 and the radiation detector 580 to obtain the scanning data of the plurality of axial planes of the subject. The movement of the radiation detector 580 may be performed in a similar manner as that of the radiation detector 580 when the scanning data of the plurality of sagittal planes is obtained, and the descriptions of which are not repeated here. In this way, no matter where the radiation source 590 moves on the second column 512 along the lengthwise directions Z 11 and Z 12 of the second column 512, the radiation detector 580 may obtain the radiations emitted by the radiation source 590, which may ensure that the scanning data of the plurality of axial planes of the subject may be obtained.
In some embodiments, scanning data of different reference vector surfaces of the subject may be obtained by adjusting the position of the subject. For example, an angle between a facial direction of the subject and the radiation source 590 may be adjusted according to an actual need, such as 15 degrees, 45 degrees, 74 degrees, etc. Merely by way of example, the subject (e.g., a human body not shown in FIG. 9) may stand so that the angle between the facial direction of the subject and the radiation source 590 is 90 degrees. The DR apparatus 900 may perform a scan for a plurality of coronal planes of the subject through a combined movement of the radiation source 590 and/or the radiation detector 580 to obtain the scanning data of the plurality of coronal planes of the subject. In some embodiments, the obtaining of the scanning data of the plurality of coronal planes may be performed in a similar manner as that of the scanning  data of the plurality of sagittal planes when the subject stands facing the radiation source 590, and the descriptions of which are not repeated here.
FIG. 11 illustrates an exemplary DR apparatus 1100 according to some embodiments of the present disclosure. As shown in FIG. 11, on the basis of the DR apparatus 900 illustrated in FIG. 9, a scanning table 540 may be arranged between the first assembly 510 and the second assembly 520. The scanning table 540 may be configured to support a subject (e.g., a patient) to be examined, so that a patient who cannot stand may be scanned via the DR apparatus 1100.
Merely by way of example, the subject may lie on the scanning table 540 facing the radiation source 590. The DR apparatus 900 may obtain the scanning data of ta plurality of axial planes of the subject in a similar manner as that the DR apparatus 900 obtains the scanning data of the plurality of sagittal planes of the subject when the subject stands facing the radiation source 590. When the second column 512 and the fourth column 522 are rotated for 90 degrees, the DR apparatus 900 may obtain the scanning data of the plurality of sagittal planes of the subject in a similar manner as that the DR apparatus 900 obtains the scanning data of the plurality of axial planes of the subject when the subject stands facing the radiation source 590. When the subject lies on the scanning table 540 facing the lengthwise direction Z 21 or the lengthwise direction Z 22 of the first column 511, and the second column 512 and the fourth column 522 are rotated for 90 degrees, the DR apparatus 1100 may obtain the scanning data of the at least one coronal plane of the subject in a similar manner as that the DR apparatus 900 obtains the scanning data of the plurality of sagittal planes of the subject when the subject stands facing the radiation source 590.
FIG. 12 illustrates an exemplary DR apparatus 1200 according to some embodiments of the present disclosure. As shown in FIG. 12, on the basis of the DR apparatus 1100 illustrated in FIG. 11, the second column 512 and the fourth column 522 may rotate for 90 degrees. The radiation detector 580 may rotate relative to the second installation part 524 via the third rotating component 527 of the third connector 30, so that the radiation detector 580 may face the lengthwise direction Z 31 of the third column 521. The radiation resource 590 may rotate relative to the first installation part  514 via the second rotating component 517 of the second connector 20, so that the radiation resource 590 may face the lengthwise direction Z 22 of the first column 511. The fourth connector 40 may move on the third column 521 along the lengthwise direction Z 32 of the third column 521 via the sixth moving component 529, thereby driving the fourth column 522 to move to a certain position lower than the height of the scanning table 540. The first connector 10 may move on the first column 511 along the lengthwise direction Z 21 of the first column 511 via the second moving component 519, thereby driving the second column 512 to move to a certain position higher than the height of the scanning table 540. The fifth moving component 526 may move on the supporting assembly 530 along the lengthwise direction Z 41 of the supporting assembly 530, so that the radiation detector 580 may be located in an appropriate position under the scanning table 540. The fourth moving component 516 may move on the supporting assembly 530 along the lengthwise direction Z 42 of the supporting assembly 530, so that the radiation resource 590 may be located in an appropriate position above the scanning table 540.
In some embodiments, the subject may lie on the scanning table 540 facing the first column 511. The radiation source 590 may move along the lengthwise directions Z 41 and Z 42 of the supporting assembly 530 via the fourth moving component 516 and/or the radiation source 590 may rotate relative to the first installation part 514 in the second plane via the second rotating component 517. In this case, The DR apparatus 1200 may perform a scan for a plurality of axial planes of the subject through a combined movement of the radiation source 590 and/or the radiation detector 580 to obtain the scanning data of the plurality of axial planes of the subject. In some embodiments, the radiation detector 580 may be kept at a fixed position. In some embodiments, the radiation detector 580 may only rotate relative to the second installation part 524 in the third plane via the third rotating component 527. The radiation detector 580 may be always opposite the radiation source 590 during rotation of the radiation detector 580. In some embodiments, the radiation detector 580 may only move along the lengthwise directions Z 41 and Z 42 of the supporting assembly 530 opposite to the radiation source 590 relative to the subject, that is, when the radiation  source 590 moves along the lengthwise direction Z 41 of the supporting assembly 530, the radiation detector 580 may move along the lengthwise direction Z 42 of the supporting assembly 530, and when the radiation source 590 moves along the lengthwise direction Z 42 of the supporting assembly 530, the radiation detector 580 may move along the lengthwise direction Z 41 of the supporting assembly 530. In some embodiments, the radiation detector 580 may rotate relative to the second installation part 524 in the third plane via the third rotating component 527 and move along the lengthwise directions Z 41 and Z 42 of the supporting assembly 530 opposite to the radiation source 590 relative to the subject, simultaneously.
In some embodiments, the subject may lie on the scanning table 540 facing the radiation resource 590. The DR apparatus 1200 may obtain the scanning data of a plurality of sagittal planes of the subject in a similar manner as that the DR apparatus 900 obtains the scanning data of the plurality of axial planes of the subject when the subject stands facing the radiation source 590.
In some embodiments, the subject may lie on the scanning table 540 facing the first column 511. The DR apparatus 1200 may obtain the scanning data of a plurality of coronal planes of the subject in a similar manner as that the DR apparatus 900 obtains the scanning data of the plurality of sagittal planes of the subject when the subject stands facing the radiation source 590.
In some embodiments, the scanning table 540 may be movable. FIG. 13 illustrates an exemplary scanning table 540 according to some embodiments of the present disclosure. As shown in FIG. 13, the scanning table 540 may include a flatbed 518, and the first assembly 510. The flatbed 518 may be configured to support a subject. The first assembly 510 may rotate for 90 degrees to connected to the supporting assembly 530 and the flatbed 518. The flatbed 518 may be moved via the rotated first assembly 510.
FIG. 14 illustrates an exemplary DR apparatus 1400 according to some embodiments of the present disclosure. In some embodiments, the DR apparatus 1400 may be an exemplary embodiment of the DR apparatus 110 of the DR system 100 described in FIG. 1. As shown in FIG. 14, on the basis of the DR apparatus 500  illustrated in FIG. 5, the second assembly 520 may be configured to a suspension type assembly. For illustration purposes, the first assembly 510 may be configured to install thereon a radiation detector 580, and the second assembly 520 may be configured to install thereon a radiation source 590. The supporting assembly 530 may be configured to support the first assembly 510 or the second assembly 520.
The second assembly 520 may include a third column 521 connected to the radiation source 590 via a third connector 30. The third column 521 may be suspended on the supporting assembly 530. For example, the third column 521 may be suspended on a ceiling of an examination room where the DR apparatus 1400 is located. In some embodiments, the third connector 30 may include a second installation part 524 and a third moving component 523. The radiation source 590 may be connected to the second installation part 524. The third column 521 may be connected to the second installation part 524 via the third moving component 523. In some embodiments, the third moving component 523 may be stretchable. In some embodiments, the third moving component 523 may be stretchable along the lengthwise directions Z 21 and Z 22 of the first column 511 via the third moving component 523, so that the radiation source 590 may move along lengthwise directions Z 21 and Z 22 of the first column 511 with the stretching of the third moving component 523. A stretchable range of the third moving component 523 may be set according to actual needs.
In some embodiments, the third connector 30 may be further configured to rotate the second device (e.g., the radiation source 590) installed on the second assembly 520 relative to the third connector 30. In some embodiments, the third connector 30 may further include a third rotating component 527 of the third connector 30. The radiation source 590 may rotate relative to the second installation part 524 via the third rotating component 527 of the third connector 30.
In some embodiments, a slide rail may be arranged on the supporting component 530 (e.g., a ceiling of an examination room where the DR apparatus 1100 is located) , and the second assembly 520 may move on the slide rail. The slide rail may include tracks in one or more directions. For example, the slide rail may include a first track in a direction parallel to the lengthwise directions Z 41 and Z 42 of the supporting  assembly 530 described in FIG. 7 and a second track in a direction parallel to the lengthwise directions Z 51 and Z 52 of the fourth column 522 when the fourth column 522 is rotated for 90 degrees. In this case, the DR apparatus 1400 may obtain scanning data of a subject in a similar manner as that the DR apparatus 900 obtains scanning data. For example, the subject may stand facing the radiation source 590, and the radiation source 590 may move along the lengthwise directions Z 21 and Z 22 of the first column 511 with the stretching of the third moving component 523 and/or the radiation source 590 may rotate relative to the second installation part 524 via the third rotating component 527 of the third connector 30 to obtain the scanning data of the plurality of sagittal planes of the subject. The radiation source 590 may move along the second track and/or rotate relative to the second installation part 524 via the third rotating component 527 of the third connector 30 to obtain the scanning data of the plurality of axial planes of the subject. More descriptions for the scanning data of a subject may be found elsewhere in the present disclosure (e.g., FIG. 9 and the descriptions thereof) .
FIG. 15 is a flowchart illustrating an exemplary process 1500 for obtaining scanning data of a subject according to some embodiments of the present disclosure. In some embodiments, the process 1500 may be implemented in the DR system 100 illustrated in FIG. 1. For example, the process 1500 may be stored in a storage (e.g., the storage device 130, the storage device 220, the storage 390) as a form of instructions, and invoked and/or executed by the processing device 120 (e.g., the processor 210 of the computing device 200 as illustrated in FIG. 2, the CPU 340 of the mobile device 300 as illustrated in FIG. 3, and/or one or more modules as illustrated in FIG. 4) . The operations of the illustrated process presented below are intended to be illustrative. In some embodiments, the process 1500 may be accomplished with one or more additional operations not described, and/or without one or more of the operations discussed. Additionally, the order in which the operations of the process 1500 as illustrated in FIG. 15 and described below is not intended to be limiting.
In 1502, the processing device 120 (e.g., the acquisition module 402) may obtain a scan task of the subject. In some embodiments, the scan task may include a scan region, a first scan direction, a second scan direction, or the like, or any  combination thereof.
A scan region of a subject refers to a region to be exanimated (also referred as to a physical region of interest) of the subject. For example, the scan region of the subject may include one or more specific organs and/or one or more specific tissues, or the whole body of the subject. Merely by way of example, the scan region may include the head, the chest, a lung, the heart, the liver, the spleen, the pleura, the mediastinum, the abdomen, the large intestine, the small intestine, the bladder, the gallbladder, the pelvis, the spine, the skeleton, blood vessels, the duodenum, or the like, or any combination thereof, of a patient. In some embodiments, the scan region may include a lesion of the subject. A lesion refers to damage (or potential damage) and/or an abnormal change (or potential change) in the tissue of the subject, usually caused by disease or trauma.
Each of the first scan direction and the second scan direction refers a direction in which a radiation source and/or a radiation detector of a DR apparatus moves to obtain a desired image of the subject. For example, the first scan direction and the second scan direction may be one of the lengthwise directions Z 21 and Z 22 of the first column 511 and one of the lengthwise directions Z 11 and Z 12 of the second column 512 described in FIGs. 5-14, respectively.
In some embodiments, the scan region may include a plurality of sub-regions. For example, the scan region may include the head, the chest, and a lung of the subject. The first scan directions and the second scan directions corresponding to different sub-regions of the scan region may be the same or different. For example, the first scan direction and the second scan direction corresponding to the head of the subject may be one of the lengthwise directions Z 21 and Z 22 of the first column 511 and one of the lengthwise directions Z 11 and Z 12 of the second column 512 described in FIGs. 5-14, respectively. The first scan direction and the second scan direction corresponding to the chest of the subject may be the one of lengthwise directions Z 41 and Z 42 of the supporting assembly 530 and one of the lengthwise directions Z 11 and Z 12 of the second column 512 described in FIGs. 5-14, respectively.
In some embodiments, the processing device 120 may further obtain  information relating to the subject and diagnostic requirements of a doctor. Exemplary information relating to the subject may include the age, the height, the weight, the medical history, the degree of fatness and thinness, a thickness of the scan region, bone and joint point information, or the like, or any combination thereof. In some embodiments, the information relating to the subject and the diagnostic requirements of the doctor may be obtained manually inputted by a user (e.g., a doctor, an imaging specialist, a technician) on a user interface. In some embodiments, the processing device 120 may automatically retrieve the information relating to the subject and diagnostic requirements of the doctor from a database.
In some embodiments, the processing device 120 may determine an exposure intensity and/or an exposure time of the radiation source in each exposure (i.e., each scan) based on the information relating to the subject and the diagnostic requirements of the doctor. For example, different scan regions may be exposed with different exposure intensities. As another example, if the thickness of the scan region is greater than a thickness threshold, the exposure intensity and/or the exposure time of the scan region may be appropriately increased to ensure an image quality of an image generated based on the obtained scanning data. As still another example, if a minimal exposure is to be performed according to the diagnostic requirements of the doctor or the requirements of the subject, the exposure intensity and/or exposure time may be appropriately reduced while ensuring an image quality of an image generated based on the obtained scanning data.
In 1504, the processing device 120 (e.g., the determination module 404) may determine, based on the scan task, operating parameters of a radiation source or a radiation detector of a DR apparatus.
In some embodiments, the DR apparatus may be any one of the DR apparatus 500, the DR apparatus 700, the DR apparatus 900, the DR apparatus 1100, the DR apparatus 1200, and the DR apparatus 1400 described in FIGs. 5-14. The operating parameters of the radiation source or the radiation detector of the DR apparatus may include a movement speed, a direction of movement, a rotation speed, a direction of rotation, etc., of the radiation source or the radiation detector of the DR apparatus. In  some embodiments, the operating parameters of the radiation source or the radiation detector may be operating parameters in a coordinate system (e.g., a cartesian coordinate system) . In some embodiments, the operating parameters of the radiation source or the radiation detector of the DR apparatus may include first parameters of the first scan direction and second parameters of the second scan direction.
In some embodiments, the processing device 120 may determine a trajectory of the radiation source and/or a trajectory of the radiation detector based on the scan task. The processing device 120 may determine the operating parameters of the radiation source and/or the operating parameters of the radiation detector based on the trajectory of the radiation source and/or the trajectory of the radiation detector, respectively.
In some embodiments, the processing device 120 may determine operating parameters of other components of the DR apparatus based on the operating parameters of the radiation source and/or the operating parameters of the radiation detector. For example, if the DR apparatus is the DR apparatus 500 described in FIG. 5, the processing device 120 may determine operating parameters of one or more components (e.g., the first rotating component 513, the first moving component 515, the second rotating component 517, the second moving component 519, etc. ) of the first assembly 510 based on the operating parameters of the radiation source 590. In some embodiments, the processing device 120 may determine trajectories of other components of the DR apparatus based on the trajectory of the radiation source and/or the trajectory of the radiation detector. The processing device 120 may determine the operating parameters of other components of the DR apparatus based on the trajectories of other components of the DR apparatus. For example, if the DR apparatus is the DR apparatus 500 described in FIG. 5, the processing device 120 may determine trajectories of one or more components (e.g., the first rotating component 513, the first moving component 515, the second rotating component 517, the second moving component 519, etc. ) of the first assembly 510 of the DR apparatus 500 based on the trajectory of the radiation source 590. The processing device 120 may determine the operating parameters of the one or more components of the first assembly 510 based on the trajectories of the one or more components of the first  assembly 510 of the DR apparatus 500.
In some embodiments, the processing device 120 may determine a first trajectory of the first scan direction and a second trajectory of the second scan direction of the radiation source or the radiation detector based on the trajectory of the radiation source or the radiation detector. The processing device 120 may determine the first parameters of the first scan direction and the second parameters of the second scan direction based on the first trajectory of the first scan direction and the second trajectory of the second scan direction of the radiation source or the radiation detector.
FIG. 16A illustrates an exemplary trajectory of a radiation source according to some embodiments of the present disclosure. As shown in FIG. 16A, the trajectory of the radiation source is a linear trajectory, and the first scan direction is perpendicular to the second scan direction. The linear trajectory may be divided into a first trajectory of the first scan direction and a second trajectory of the second scan direction. The first trajectory and the second trajectory may be linear trajectories. The processing device 120 may determine the first parameters of the first scan direction and the second parameters of the second scan direction based on the first trajectory and the second trajectory of the radiation source. For example, the processing device 120 may determine that the first trajectory and the second trajectory are both trajectories generated by unidirectional uniform linear motions. The processing device 120 may further determine the first parameters and the second parameters based on the first trajectory and the second trajectory generated by the unidirectional uniform linear motions.
FIG. 16B illustrates an exemplary trajectory of a radiation source according to some embodiments of the present disclosure. As shown in FIG. 16B, the trajectory of the radiation source is a sinusoidal trajectory, and the first scan direction is perpendicular to the second scan direction. The sinusoidal trajectory may be divided into a first trajectory in the first scan direction and a second trajectory in the second scan direction. The first trajectory and the second trajectory may be linear trajectories. The processing device 120 may determine the first parameters of the first scan direction and the second parameters of the second scan direction based on the first trajectory  and the second trajectory of the radiation source. For example, the processing device 120 may determine that the first trajectory is a trajectory generated by a unidirectional uniform linear motion, and the second trajectory is a trajectory generated by a trajectory generated by a reciprocating motion. The processing device 120 may further determine the first parameters and the second parameters based on the first trajectory generated by a unidirectional uniform linear motion and the second trajectory generated by a reciprocating motion.
It should be noted that the aforementioned first scan direction being perpendicular to the second scan direction only be taken as an exemplary description. In some embodiments, an angel between the first scan direction and the second scan direction may be any angle, such as 30°, 60°, 75°, etc.
In some embodiments, directions of the movement of the components for controlling the movements of the radiation source and/or the radiation detector in the DR apparatus may correspond to the first scan direction and the second scan direction to facilitate the control of the DR device. For example, for the DR apparatus 500, the first scan direction may correspond to one of the lengthwise directions Z 21 and Z 22 of the first column 511 of the DR apparatus 500, and the second scan direction may correspond to one of the lengthwise directions Z 11 and Z 12 of the second column 512 of the DR apparatus 500. In this case, the first parameters of the first scan direction and second parameters of the second scan direction of the radiation source or the radiation detector may correspond operating parameters of the components for controlling the movements of the radiation source or the radiation detector.
In some embodiments, the trajectory of the radiation source or the radiation detector of the DR apparatus may include a spiral trajectory. FIG. 17A illustrates exemplary curve trajectories in a second scan direction of a radiation source and a radiation detector according to some embodiments of the present disclosure. FIG. 17B illustrates exemplary linear trajectories in a first scan direction of a radiation source and a radiation detector according to some embodiments of the present disclosure. As shown in FIG. 17A, the radiation detector may reciprocate along a curve Q 1 from position O 11 to position O 12 and the radiation source may reciprocate along a curve Q 2  from position O 21 to position O 22 in the second scan direction. As shown in FIG. 17B, the radiation detector may move along a straight line Q 3 from position O 13 to position O 14 and the radiation source may move along a straight line Q 4 from position O 23 to position O 24 in the first scan direction.
In some embodiments, in order to ensure that the radiation detector may receive radiations emitted by the radiation source, the trajectory of the radiation detector may be opposite to that of the radiation source. As used herein, that the trajectory of the radiation detector is opposite to that of the radiation source represents that the values of the operating parameters of the radiation source may be the same as those of the radiation detector, and the movement direction of the radiation source may be opposite to the movement direction of the radiation detector. For example, as shown in FIG. 17A, the radiation detector may reciprocate along the curve Q 1 from position O 11 to position O 12 and the radiation source may reciprocate along the curve Q 2 from position O 21 to position O 22 in the second scan direction. The curve Q 1 is the same as the curve Q 2, and a direction from position O 11 to position O 12 is opposite to a direction from position O 21 to position O 22. As shown in FIG. 17B, the radiation detector may move along the straight line Q 3 from position O 13 to position O 14 and the radiation source may move along the straight line Q 4 from position O 23 to position O 24 in the first scan direction. The straight line Q 3 is the same as the straight line Q 4, and a direction from position O 13 to position O 14 is opposite to a direction from position O 23 to position O 24. In this way, the radiation detector and the radiation source may be always opposed to each other and the line between the radiation detector and the radiation source always passes through the scan area of the subject. Moreover, the distance between the radiation detector and the radiation source may be remain constant during the scanning process, which makes that the quality of multiple 2D images generated based on the obtained scanning data are similar, and the SID between the radiation detector and the radiation source may be fixed.
In some embodiments, the operating parameters of the radiation source and/or the radiation detector may include distances of movement, starting positions of movement, ending positions of movement, of the radiation detector and/or the radiation  source. In some embodiments, the processing device 120 may determine the distances of movement, the starting positions of movement, the ending positions of movement, of the radiation detector and/or the radiation source based on the scan region of the subject. For example, as shown in FIG. 17A, if the scan region includes a first sub-region D 1 and a second sub-region D 2, the starting positions of movement of the radiation detector and the radiation resource may be the position O 11 and the position O 21, respectively. The ending positions of movement of the radiation detector and the radiation resource may be the position O 12 and the position O 22, respectively. And the distances of movement of the radiation detector and the radiation resource may be curve Q 1 from the position O 11 to the position O 12 and Q 2 from the position O 21 to the position O 22, respectively. If the scan region includes a first sub-region D 1, the starting positions of movement of the radiation detector and the radiation resource may be the position O 10 and the position O 20, respectively. The ending positions of movement of the radiation detector and the radiation resource may be the position O 12 and the position O 22, respectively. And the distances of movement of the radiation detector and the radiation resource may be a curve Q 5 from the position O 0 to the position O 12 and a curve Q 6 from the position O 20 to the position O 22, respectively.
In 1506, the processing device 120 (e.g., the generation module 406) may obtain scanning data of the subject. In some embodiments, the scanning data may be acquired by controlling the radiation source and/or the radiation detector of the DR apparatus to move according to the operating parameters.
In some embodiments, the scanning data of the subject may be acquired by controlling the radiation source and/or the radiation detector to move along the first direction and the second direction simultaneously according to the operating parameters.
In some embodiments, the processing device 120 may obtain the scanning data of the subject corresponding to different positions of the radiation detector and the radiation resource. For example, as shown in FIG. 17A, the processing device 120 may obtain the scanning data of the subject corresponding to the positions O 10, O 11, and O 12 of the radiation detector (i.e., the positions O 20, O 21, and O 22 of the radiation  resource) .
In some embodiments, the processing device 120 may obtain scanning data of the subject based on the spiral trajectory described in operation 1504. For example, the processing device 120 may obtain the scanning data of the whole body of a patient from the foot to the head. In this way, complete scanning data of the subject may be obtained by one exposure of the DR apparatus, thereby improving the efficiency of the obtaining of the scanning data.
In 1508, the processing device 120 (e.g., the generation module 406) may obtain, based on the scanning data, a 3D image according to an image reconstruction algorithm.
In some embodiments, the processing device 120 may generate multiple 2D images based on the obtained scanning data. The processing device 120 may further generate the 3D image based on the multiple 2D images using the image reconstruction algorithm.
In some embodiments, the processing device 120 may perform one or more operations such as a distortion adjustment, a color adjustment, a grayscale adjustment for the multiple 2D images according to the positional relationship between the radiation source and the radiation detector. The processing device 120 may generate the 3D image based on the multiple processed 2D images by synthesis or using the image reconstruction algorithm. Exemplary image reconstruction algorithms may include a Feldkamp-Davis-Kress (FDK) algorithm, an algebraic algorithm, an iterative algorithm, a Fourier transform algorithm, a convolutional back-projection algorithm, or the like.
It should be noted that the above description regarding the process 1500 is merely provided for the purposes of illustration, and not intended to limit the scope of the present disclosure. For persons having ordinary skills in the art, multiple variations and modifications may be made under the teachings of the present disclosure. However, those variations and modifications do not depart from the scope of the present disclosure. In some embodiments, the process 1500 may be accomplished with one or more additional operations not described and/or without one or more of the operations discussed above. For example, the process 1500 may include an  additional operation to transmit the determined 3D image to a terminal device (e.g., the terminal (s) 140 of a doctor) for display. As another example, the process 1500 may include an additional storing operation to store information and/or data (e.g., the 3D image, the multiple 2D images, etc. ) in a storage device (e.g., the storage device 130) disclosed elsewhere in the present disclosure.
It will be apparent to those skilled in the art that various changes and modifications can be made in the present disclosure without departing from the spirit and scope of the disclosure. In this manner, the present disclosure may be intended to include such modifications and variations if the modifications and variations of the present disclosure are within the scope of the appended claims and the equivalents thereof.
Having thus described the basic concepts, it may be rather apparent to those skilled in the art after reading this detailed disclosure that the foregoing detailed disclosure is intended to be presented by way of example only and is not limiting. Various alterations, improvements, and modifications may occur and are intended to those skilled in the art, though not expressly stated herein. These alterations, improvements, and modifications are intended to be suggested by this disclosure, and are within the spirit and scope of the exemplary embodiments of this disclosure.
Moreover, certain terminology has been used to describe embodiments of the present disclosure. For example, the terms “one embodiment, ” “an embodiment, ” and “some embodiments” mean that a particular feature, structure or characteristic described in connection with the embodiment is included in at least one embodiment of the present disclosure. Therefore, it is emphasized and should be appreciated that two or more references to “an embodiment” or “one embodiment” or “an alternative embodiment” in various portions of this specification are not necessarily all referring to the same embodiment. Furthermore, the particular features, structures or characteristics may be combined as suitable in one or more embodiments of the present disclosure.
Further, it will be appreciated by one skilled in the art, aspects of the present disclosure may be illustrated and described herein in any of a number of patentable  classes or context including any new and useful process, machine, manufacture, or composition of matter, or any new and useful improvement thereof. Accordingly, aspects of the present disclosure may be implemented entirely hardware, entirely software (including firmware, resident software, micro-code, etc. ) or combining software and hardware implementation that may all generally be referred to herein as a “module, ” “unit, ” “component, ” “device, ” or “system. ” Furthermore, aspects of the present disclosure may take the form of a computer program product embodied in one or more computer readable media having computer readable program code embodied thereon.
A computer readable signal medium may include a propagated data signal with computer readable program code embodied therein, for example, in baseband or as part of a carrier wave. Such a propagated signal may take any of a variety of forms, including electro-magnetic, optical, or the like, or any suitable combination thereof. A computer readable signal medium may be any computer readable medium that is not a computer readable storage medium and that may communicate, propagate, or transport a program for use by or in connection with an instruction execution system, apparatus, or device. Program code embodied on a computer readable signal medium may be transmitted using any appropriate medium, including wireless, wireline, optical fiber cable, RF, or the like, or any suitable combination of the foregoing.
Computer program code for carrying out operations for aspects of the present disclosure may be written in any combination of one or more programming languages, including a subject oriented programming language such as Java, Scala, Smalltalk, Eiffel, JADE, Emerald, C++, C#, VB. NET, Python or the like, conventional procedural programming languages, such as the "C" programming language, Visual Basic, Fortran 2003, Perl, COBOL 2002, PHP, ABAP, dynamic programming languages such as Python, Ruby and Groovy, or other programming languages. The program code may execute entirely on the user's computer, partly on the user's computer, as a stand-alone software package, partly on the user's computer and partly on a remote computer or entirely on the remote computer or server. In the latter scenario, the remote computer may be connected to the user's computer through any type of network, including a local area network (LAN) or a wide area network (WAN) , or the connection may be made to  an external computer (for example, through the Internet using an Internet Service Provider) or in a cloud computing environment or offered as a service such as a Software as a Service (SaaS) .
Furthermore, the recited order of processing elements or sequences, or the use of numbers, letters, or other designations therefore, is not intended to limit the claimed processes and methods to any order except as may be specified in the claims. Although the above disclosure discusses through various examples what is currently considered to be a variety of useful embodiments of the disclosure, it is to be understood that such detail is solely for that purpose, and that the appended claims are not limited to the disclosed embodiments, but, on the contrary, are intended to cover modifications and equivalent arrangements that are within the spirit and scope of the disclosed embodiments. For example, although the implementation of various components described above may be embodied in a hardware device, it may also be implemented as a software only solution, e.g., an installation on an existing server or mobile device.
Similarly, it should be appreciated that in the foregoing description of embodiments of the present disclosure, various features are sometimes grouped together in a single embodiment, figure, or description thereof for the purpose of streamlining the disclosure aiding in the understanding of one or more of the various embodiments. This method of disclosure, however, is not to be interpreted as reflecting an intention that the claimed subject matter requires more features than are expressly recited in each claim. Rather, claim subject matter lie in less than all features of a single foregoing disclosed embodiment.
In some embodiments, the numbers expressing quantities or properties used to describe and claim certain embodiments of the application are to be understood as being modified in some instances by the term “about, ” “approximate, ” or “substantially. ” For example, “about, ” “approximate, ” or “substantially” may indicate a certain variation (e.g., ±1%, ±5%, ±10%, or ±20%) of the value it describes, unless otherwise stated. Accordingly, in some embodiments, the numerical parameters set forth in the written description and attached claims are approximations that may vary depending upon the  desired properties sought to be obtained by a particular embodiment. In some embodiments, the numerical parameters should be construed in light of the number of reported significant digits and by applying ordinary rounding techniques. Notwithstanding that the numerical ranges and parameters setting forth the broad scope of some embodiments of the application are approximations, the numerical values set forth in the specific examples are reported as precisely as practicable. In some embodiments, a classification condition used in classification or determination is provided for illustration purposes and modified according to different situations. For example, a classification condition that “avalue is greater than the threshold value” may further include or exclude a condition that “the probability value is equal to the threshold value. ”

Claims (22)

  1. A digital radiography (DR) apparatus, comprising:
    a first assembly configured to install thereon a first device, which is a radiation source or a radiation detector, the first assembly including:
    a first column;
    a second column connected to the first column via a first connector, wherein the first connector is configured to rotate the second column relative to the first column in a first plane; and
    a second connector connecting the second column to the first device, wherein the second connector is configured to move on the second column along lengthwise directions of the second column.
  2. The DR apparatus of claim 1, further comprising:
    a second assembly configured to install thereon a second device, wherein when the first device is a radiation source, the second device is a radiation detector; and when the first device is a radiation detector, the second device is a radiation source.
  3. The DR apparatus of claim 2, further comprising:
    a supporting assembly configured to support the first assembly or the second assembly.
  4. The DR apparatus of any one of claims 1-3, wherein the second connector is further configured to rotate the first device installed on the first assembly in a second plane.
  5. The DR apparatus of claim 3, wherein the first column is connected to the supporting assembly and configured to move on the supporting assembly along lengthwise directions of the supporting assembly.
  6. The DR apparatus of any one of claims 1-5, wherein the first connector is further  configured to move the second column on the first column along lengthwise directions of the first column.
  7. The DR apparatus of any one of claims 2-6, wherein the second assembly includes a third column connected to the second device via a third connector.
  8. The DR apparatus of claim 7, wherein the third connector is configured to move on the third column along lengthwise directions of the third column.
  9. The DR apparatus of claim 7 or claim 8, wherein the third connector is further configured to rotate the second device installed on the second assembly relative to the third column.
  10. The DR apparatus of any one of claims 7-9, wherein the third column is connected to the supporting assembly.
  11. The DR apparatus of any one of claims 7-10, wherein the third column is configured to move on the supporting assembly along lengthwise directions of the supporting assembly.
  12. The DR apparatus of any one of claims 7-11, wherein the second assembly is a suspension type assembly, and the third column is suspended on the supporting assembly.
  13. The DR apparatus of claim 7, wherein the second assembly further includes a fourth column disposed between the third column and the third connector, wherein the fourth column is connected to the third column via a fourth connector, and the fourth connector is configured to rotate the fourth column in a third plane.
  14. The DR apparatus of claim 13, wherein the fourth connector is further configured to  move on the third column along lengthwise directions of the third column.
  15. The DR apparatus of claim 13 or claim 14, wherein the third connector connects the fourth column and the second device, and the third connector is configured to move the second device on the fourth column along lengthwise directions of the fourth column.
  16. The DR apparatus of any one of claims 13-15, wherein the third connector is configured to rotate the second device installed on the second assembly, and the second device rotates in a fourth plane.
  17. The DR apparatus of any one of claims 13-16, wherein the third column is connected to the supporting assembly and configured to move on the supporting assembly along lengthwise directions of the supporting assembly.
  18. The DR apparatus of any one of claims 13-17, wherein the second assembly is a suspension type assembly, and the third column is suspended on the supporting assembly.
  19. A method implemented on a digital radiography (DR) system, the DR system including a DR apparatus and a computing device, the method comprising:
    obtaining a scan task of a subject, wherein the scan task includes a scan region, a first scan direction, and a second scan direction;
    determining, based on the scan task, operating parameters of a radiation source or a radiation detector of the DR apparatus; and
    obtaining scanning data of the subject, wherein the scanning data is acquired by controlling the radiation source or the radiation detector of the DR apparatus to move according to the operating parameters.
  20. The method of claim 19, further comprising:
    obtaining, based on the scanning data, a 3D image according to an image  reconstruction algorithm.
  21. The method of claim 19 or claim 20, wherein the operating parameters of the radiation source or the radiation detector of the DR apparatus includes first parameters of the first scan direction and second parameters of the second scan direction, and the scanning data of the subject is acquired by controlling the radiation source or the radiation detector to move, according to the operating parameters, along the first scan direction and the second scan direction simultaneously.
  22. The method of claim 21, wherein a trajectory of the radiation source or the radiation detector of the DR apparatus includes a spiral trajectory.
PCT/CN2021/122461 2020-09-30 2021-09-30 Systems and methods for digital radiography WO2022068941A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011070065.5 2020-09-30
CN202011070065.5A CN112212149B (en) 2020-09-30 2020-09-30 DR equipment

Publications (1)

Publication Number Publication Date
WO2022068941A1 true WO2022068941A1 (en) 2022-04-07

Family

ID=74053477

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/122461 WO2022068941A1 (en) 2020-09-30 2021-09-30 Systems and methods for digital radiography

Country Status (2)

Country Link
CN (1) CN112212149B (en)
WO (1) WO2022068941A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112212149B (en) * 2020-09-30 2022-07-05 上海联影医疗科技股份有限公司 DR equipment
CN117169257A (en) * 2023-11-01 2023-12-05 上海超群检测科技股份有限公司 X-ray imaging device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1424866A (en) * 2001-12-13 2003-06-18 西门子公司 X-ray devices
CN101933813A (en) * 2010-09-14 2011-01-05 中国科学院深圳先进技术研究院 Adjusting device of X-ray imaging equipment
CN103841892A (en) * 2012-08-06 2014-06-04 株式会社东芝 X-ray image capture device
JP2018033493A (en) * 2016-08-29 2018-03-08 株式会社日立製作所 X-ray fluoroscopic imaging apparatus
CN111317496A (en) * 2020-02-29 2020-06-23 江苏一影医疗设备有限公司 CT imaging device and imaging method
CN112212149A (en) * 2020-09-30 2021-01-12 上海联影医疗科技股份有限公司 DR equipment

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE29623035U1 (en) * 1996-07-12 1997-09-18 Siemens Ag X-ray diagnostic device
JP2004298473A (en) * 2003-03-31 2004-10-28 Shimadzu Corp X-rays image photographing system
CN201111410Y (en) * 2007-08-01 2008-09-10 北京天行健医疗科技有限公司 Skyrail hanging bracket type ray machine
CN202950664U (en) * 2012-10-30 2013-05-29 南方医科大学 X-ray imaging unit
CN209377597U (en) * 2018-10-08 2019-09-13 北京万东医疗科技股份有限公司 X-ray reception device and X-ray production apparatus
CN110236580A (en) * 2019-07-08 2019-09-17 南京普爱医疗设备股份有限公司 A kind of medical X ray machine various dimensions dynamic scan device
CN111077172A (en) * 2019-12-16 2020-04-28 东莞材料基因高等理工研究院 X-ray CT imaging device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1424866A (en) * 2001-12-13 2003-06-18 西门子公司 X-ray devices
CN101933813A (en) * 2010-09-14 2011-01-05 中国科学院深圳先进技术研究院 Adjusting device of X-ray imaging equipment
CN103841892A (en) * 2012-08-06 2014-06-04 株式会社东芝 X-ray image capture device
JP2018033493A (en) * 2016-08-29 2018-03-08 株式会社日立製作所 X-ray fluoroscopic imaging apparatus
CN111317496A (en) * 2020-02-29 2020-06-23 江苏一影医疗设备有限公司 CT imaging device and imaging method
CN112212149A (en) * 2020-09-30 2021-01-12 上海联影医疗科技股份有限公司 DR equipment

Also Published As

Publication number Publication date
CN112212149B (en) 2022-07-05
CN112212149A (en) 2021-01-12

Similar Documents

Publication Publication Date Title
US20230181144A1 (en) Imaging systems and methods
US20210104055A1 (en) Systems and methods for object positioning and image-guided surgery
US11776170B2 (en) Systems and methods for medical imaging
US9775582B2 (en) Medical image photographing apparatus and method of processing medical image
WO2019136660A1 (en) Systems and methods for intrafractional ct imaging in image-guided radiotherapy
WO2022068941A1 (en) Systems and methods for digital radiography
WO2019120196A1 (en) Systems and methods for determining scanning parameter in imaging
US10032293B2 (en) Computed tomography (CT) apparatus and method of reconstructing CT image
US11842465B2 (en) Systems and methods for motion correction in medical imaging
WO2019136670A1 (en) Systems and methods for ct imaging in image-guided radiotherapy
US11672501B2 (en) System and method for couch sag compensation
US20230064456A1 (en) Imaging systems and methods
US20220249050A1 (en) Systems and methods for limited view imaging
US11963814B2 (en) Systems and methods for determing target scanning phase
US20220192619A1 (en) Imaging systems and methods
CN112085766B (en) System and method for imaging a moving object
US11738210B2 (en) Medical systems and methods
US20220353409A1 (en) Imaging systems and methods
WO2022214093A1 (en) Systems and methods for image processing
US11963806B2 (en) Systems and methods for a parameter adjustment of a multi-energy computed tomograph device
CN116322902A (en) Image registration system and method
US20220323027A1 (en) Imaging systems and methods
US20240135516A1 (en) Systems and methods for motion correction in medical imaging
CN109363695B (en) Imaging method and system
US20240032881A1 (en) Systems and methods for limited view imaging

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21874595

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21874595

Country of ref document: EP

Kind code of ref document: A1