WO2022068759A1 - 用于基站的休眠和唤醒的电子设备、方法和存储介质 - Google Patents

用于基站的休眠和唤醒的电子设备、方法和存储介质 Download PDF

Info

Publication number
WO2022068759A1
WO2022068759A1 PCT/CN2021/120864 CN2021120864W WO2022068759A1 WO 2022068759 A1 WO2022068759 A1 WO 2022068759A1 CN 2021120864 W CN2021120864 W CN 2021120864W WO 2022068759 A1 WO2022068759 A1 WO 2022068759A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
information
iab
neighboring
electronic device
Prior art date
Application number
PCT/CN2021/120864
Other languages
English (en)
French (fr)
Inventor
许晓东
张书蒙
闫诗颖
田璐
李锟
李浩进
崔焘
Original Assignee
索尼集团公司
许晓东
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 索尼集团公司, 许晓东 filed Critical 索尼集团公司
Priority to US18/042,459 priority Critical patent/US20230328643A1/en
Priority to JP2023519783A priority patent/JP2023543483A/ja
Priority to EP21874419.1A priority patent/EP4207875A4/en
Priority to KR1020237009289A priority patent/KR20230075416A/ko
Priority to CN202180066212.8A priority patent/CN116250284A/zh
Publication of WO2022068759A1 publication Critical patent/WO2022068759A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0203Power saving arrangements in the radio access network or backbone network of wireless communication networks
    • H04W52/0206Power saving arrangements in the radio access network or backbone network of wireless communication networks in access points, e.g. base stations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/16Performing reselection for specific purposes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/042Public Land Mobile systems, e.g. cellular systems
    • H04W84/047Public Land Mobile systems, e.g. cellular systems using dedicated repeater stations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission or use of information for re-establishing the radio link
    • H04W36/0061Transmission or use of information for re-establishing the radio link of neighbour cell information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/24Reselection being triggered by specific parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/34Reselection control
    • H04W36/38Reselection control by fixed network equipment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/16Interfaces between hierarchically similar devices
    • H04W92/20Interfaces between hierarchically similar devices between access points
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present disclosure relates generally to systems and methods for power saving of base stations, and in particular to techniques for dormancy and wake-up of base stations.
  • base stations can be deployed on a large scale in wireless communication networks to provide higher-speed wireless transmission services for more users.
  • too many communication devices work at the same time, which will lead to a large amount of energy consumption, which will bring an excessive burden of energy supply and bring about a large negative impact on the environment.
  • a large number of communication devices work as usual, which will cause a lot of unnecessary power consumption and may cause interference to surrounding communication devices. Therefore, when the traffic load in the network is light and/or there are one or more communication devices with light workload, it is an effective energy saving method to appropriately enter the corresponding communication device into a sleep state.
  • the service load in the wireless communication system is heavy and/or there are one or more communication devices with a heavy workload, the communication device in the dormant state can be appropriately caused to enter the wake-up state.
  • the sleep and wake-up of the base station can significantly save the overall energy consumption of the system.
  • a wireless communication system in order to save the energy consumption of the entire system, it is necessary to consider whether to sleep/wake up a part of the base stations in the system. In such a scenario, it is very important to maintain stable wireless communication performance of communication devices (eg, terminal devices and sub-base stations) served by the base station. Therefore, there is a need for systems and methods that can further improve energy efficiency and reduce communication interruptions.
  • the present disclosure proposes an efficient sleep and wake-up mechanism for the base station, which can reduce the total energy consumption of the wireless communication system and improve the communication quality between the base station and the base station and between the base station and the terminal device.
  • an electronic device for a first base station including a processing circuit configured to: detect a first indicator of the first base station; An indicator indicates that the workload of the first base station is lower than the first threshold, sending first information to the second base station, wherein the first information includes information used to indicate that the first base station requests dormancy; and receiving from the second base station the first information for the the second information, wherein the second information indicates whether the first base station is allowed to sleep.
  • a method for a first base station comprising: detecting a first indicator of the first base station; indicating the operation of the first base station in response to the detected first indicator The load is lower than the first threshold, sending first information to the second base station, wherein the first information includes information indicating that the first base station requests dormancy; and receiving from the second base station second information for the first information, wherein the second The information indicates whether the first base station is allowed to sleep.
  • an electronic device for a second base station comprising a processing circuit configured to receive first information from the first base station, wherein the first information is the first Sent by a base station in response to detecting that the first indicator of the first base station indicates that the workload of the first base station is lower than a first threshold, and wherein the first information includes information used to indicate that the first base station requests dormancy;
  • the base station transmits second information for the first information, wherein the second information indicates whether the first base station is allowed to sleep.
  • a method for a second base station comprising: receiving first information from the first base station, wherein the first information is a response of the first base station to detecting the first The first indicator of the base station indicates that the workload of the first base station is lower than the first threshold, and the first information includes information used to indicate that the first base station requests dormancy; and the first information is sent to the first base station. Two pieces of information, wherein the second information indicates whether the first base station is allowed to sleep.
  • a computer-readable storage medium storing one or more instructions that, when executed by one or more processors of an electronic device, cause the electronic device to execute the same Methods according to various embodiments of the present disclosure.
  • an apparatus for wireless communication comprising means or units for performing methods according to various embodiments of the present disclosure.
  • FIG. 1 illustrates an example scenario diagram of a wireless communication system according to an embodiment of the present disclosure.
  • FIG. 2 illustrates an exemplary electronic device for a first base station according to an embodiment of the present disclosure.
  • FIG 3 illustrates an exemplary electronic device for a second base station according to an embodiment of the present disclosure.
  • FIG. 4 shows a schematic diagram of an example of dormancy for a base station according to an embodiment of the present disclosure.
  • FIG. 5A shows a communication interaction diagram for a first example of dormancy of a base station according to an embodiment of the present disclosure.
  • FIG. 5B shows a communication interaction diagram for a second example of dormancy of a base station according to an embodiment of the present disclosure.
  • FIG. 6 shows a schematic diagram of an example for wake-up of a base station according to an embodiment of the present disclosure.
  • FIG. 7A shows a communication interaction diagram for a first example of wake-up of a base station according to an embodiment of the present disclosure.
  • FIG. 7B shows a communication interaction diagram for a second example of wake-up of a base station according to an embodiment of the present disclosure.
  • FIG. 8 shows a schematic diagram of an example of a transmission frame for dormancy and wake-up of a base station according to an embodiment of the present disclosure.
  • FIG. 9 shows a flowchart of an example method for a first base station according to an embodiment of the present disclosure.
  • FIG. 10 shows a flowchart of an example method for a second base station according to an embodiment of the present disclosure.
  • FIG. 11 is a block diagram of an example structure of a personal computer as an information processing apparatus that can be employed in an embodiment of the present disclosure
  • FIG. 12 is a block diagram illustrating a first example of a schematic configuration of a base station to which techniques of the present disclosure may be applied;
  • FIG. 13 is a block diagram showing a second example of a schematic configuration of a base station to which techniques of the present disclosure may be applied;
  • FIG. 14 is a block diagram showing an example of a schematic configuration of a smartphone to which the technology of the present disclosure can be applied.
  • 15 is a block diagram showing an example of a schematic configuration of a car navigation apparatus to which the technology of the present disclosure can be applied.
  • FIG. 1 illustrates an example scenario diagram of a wireless communication system according to an embodiment of the present disclosure. It should be appreciated that FIG. 1 illustrates only one of many types and possible arrangements of wireless communication systems; the features of the present disclosure may be implemented in any of a variety of systems as desired.
  • a wireless communication system 100 includes base stations 101-a to 101-c (for ease of description, any one of the base stations 101-a to 101-c may be referred to herein as a base station 101 or a first base station) , a base station 102 (which may also be referred to as a second base station herein), and one or more terminals 103-a to 103-d (for convenience of description, any one of the terminal devices 103-a to 103-d is in It may be referred to herein as a terminal device 103).
  • Base station 102 may be configured to manage and control base stations 101-a to 101-c. In some embodiments, some or all of the base stations 101-a to 101-c may have mobility.
  • Base stations and base stations may be configured to communicate via backhaul links.
  • Base stations (eg, 101, 102) and terminal devices 103 may be configured to communicate over an access link.
  • the base station 102 may also be configured to communicate with a network (eg, a cellular service provider's core network, a telecommunications network such as a public switched telephone network (PSTN), and/or the Internet, not shown) over a wired medium (eg, cable). communication.
  • base stations (eg, 101, 102) may facilitate communication between terminal devices (eg, 103-a to 103-c) and/or between terminal devices (eg, 103-a to 103-c) and the network.
  • base station includes at least a wireless communication station that facilitates communication as part of a wireless communication system or radio system.
  • base stations may include, but are not limited to, the following: at least one of a base transceiver station (BTS) and a base station controller (BSC) in a GSM system; a radio network controller (RNC) and a Node B in a WCDMA system At least one; eNB in LTE and LTE-Advanced systems; access point (AP) in WLAN, WiMAX system; ) in the system gNB, eLTE eNB, etc.).
  • BTS base transceiver station
  • BSC base station controller
  • RNC radio network controller
  • Node B Node B in a WCDMA system
  • eNB in LTE and LTE-Advanced systems
  • AP access point
  • WLAN WiMAX system
  • gNB eLTE eNB
  • base stations may operate in accordance with one or more wireless communication technologies to provide continuous or near-continuous radio signal coverage to terminal devices (eg, 103) and the like over a particular geographic area .
  • the coverage area of a base station is generally referred to as a cell. Cells of different base stations may have different sizes.
  • the base station 101 may include a mobile access and backhaul (Integrated Access and Backhaul, IAB) base station
  • the base station 102 the second base station
  • IAB donor IAB donor
  • terminal equipment in this document has the full breadth of its usual meaning, for example, a terminal equipment can be a mobile station (Mobile Station, MS), user equipment (User Equipment, UE), and so on.
  • a terminal device may be implemented as a device such as a mobile phone, a handheld device, a media player, a computer, a laptop or tablet, or almost any type of wireless device.
  • terminal devices may communicate using a variety of wireless communication technologies.
  • terminal devices may be configured to communicate using two or more of GSM, UMTS, CDMA2000, WiMAX, LTE, LTE-A, WLAN, NR, Bluetooth, and the like.
  • end devices may also be configured to communicate using only one wireless communication technology.
  • the base station 102 actively decides and initiates the dormancy and wake-up of the base station 101, however, this requires extensive detection and analysis, resulting in low efficiency.
  • the base station 101 since the base station 101 may have mobility, it may require a longer time for the state transition of the base station, thereby causing the quality of service to be degraded for the user. Therefore, there is a need for efficient energy saving methods for dormancy and wake-up of base stations.
  • the present disclosure proposes the following electronic devices for the first base station and the second base station, so as to achieve high efficiency and energy saving while still maintaining stable and good communication quality.
  • FIG. 2 shows an exemplary electronic device for the first base station 101 according to an embodiment of the present disclosure.
  • the electronic device 200 shown in FIG. 2 may include various units to implement various embodiments according to the present disclosure.
  • the electronic device 200 includes a detection unit 202 , a management unit 204 and a communication unit 206 .
  • the electronic device 200 is implemented as the first base station 101 itself or a part thereof, or as a device associated with the first base station 101 or a part of the device.
  • the various operations described below in connection with the first base station may be implemented by the units 202, 204 and 206 of the electronic device 200 or other possible units.
  • the detection unit 202 of the electronic device 200 may be configured to detect the first indicator of the first base station.
  • the management unit 204 may be configured to determine whether the detected first indicator indicates that the workload of the first base station is lower than the first threshold.
  • the communication unit 206 may be configured to send first information to the second base station, wherein the first information includes a method for instructing the first base station to request dormancy Information.
  • the communication unit 306 may be further configured to receive second information for the first information from the second base station, wherein the second information indicates whether the first base station is allowed to sleep.
  • FIG. 3 illustrates an exemplary electronic device 300 for use with the second base station 102 in the system 100 according to an embodiment of the present disclosure.
  • the electronic device 300 shown in FIG. 3 may include various units to implement various embodiments according to the present disclosure.
  • the electronic device 300 includes a communication unit 302 and a management unit 304 .
  • the electronic device 300 is implemented as the second base station 102 itself or a part thereof, or as a device for controlling the terminal device 102 or otherwise related to the second base station 102 or as a part of the device.
  • the various operations described below in conjunction with the second base station may be implemented by the units 302 and 304 of the electronic device 300 or other possible units.
  • the communication unit 302 of the electronic device 300 may be configured to receive first information from the first base station, wherein the first information is that the first base station indicates the operation of the first base station in response to detecting the first indicator of the first base station is sent when the load is lower than a first threshold, and wherein the first information includes information for indicating that the first base station requests dormancy.
  • the management unit 304 may determine the second information based on the first information, wherein the second information indicates whether the first base station is allowed to sleep.
  • the communication unit 302 may also be configured to send the second information for the first information to the first base station.
  • electronic devices 200 and 300 may be implemented at the chip level, or may also be implemented at the device level by including other external components (eg, radio links, antennas, etc.).
  • each electronic device can function as a communication device as a whole.
  • processing circuitry may refer to various implementations of digital circuitry, analog circuitry, or mixed-signal (combination of analog and digital) circuitry that perform functions in a computing system.
  • Processing circuitry may include, for example, circuits such as integrated circuits (ICs), application specific integrated circuits (ASICs), portions or circuits of separate processor cores, entire processor cores, separate processors, such as field programmable gate arrays (FPGAs) programmable hardware devices, and/or systems including multiple processors.
  • ICs integrated circuits
  • ASICs application specific integrated circuits
  • FPGAs field programmable gate arrays
  • a base station may include a sleep state and an awake state.
  • the base station works normally, and the energy consumption is relatively large; on the contrary, in the sleep state, the energy consumption of the base station is relatively small.
  • the sleep state in the present disclosure may include a deep sleep state (sometimes also referred to as an idle (IDLE) state), and may also include a shallow sleep state (sometimes also referred to as an inactive (INACTIVE) state).
  • the light sleep state consumes slightly more power than the deep sleep state.
  • the transition from the shallow sleep state to the awake state requires less signaling and lower latency, thus enabling faster state transitions.
  • the shallow sleep state can shorten the wake-up time and reduce power consumption in the mobile scene of the base station.
  • FIG. 4 shows a schematic diagram of an example of dormancy for a base station according to an embodiment of the present disclosure. More specifically, the system 400A shown in FIG. 4 shows an example before the base station sleeps, and the system 400B shows an example after the base station sleeps.
  • a base station 102 manages and controls a plurality of base stations 101-a to 101-f, and a plurality of terminal devices 103-a to 103-d exist in the system, wherein the terminal devices are connected to the base station 101.
  • two deployment structures may exist in a wireless communication system: simple deployment and complex deployment.
  • a simple deployment includes only a single level of base stations 101, eg base station 102 is connected to base station 101-a, which in turn is connected to terminal device 103-a.
  • Complex deployments may include multiple levels of base stations 101, eg base station 102 is connected to base station 101-b, which in turn is connected to base station 101-c, which in turn is connected to base station 101-d.
  • base stations close to base station 102 may be referred to as upstream base stations (sometimes also referred to as parent base stations) and vice versa may be referred to as downstream base stations (also sometimes referred to as child base stations).
  • upstream base stations sometimes also referred to as parent base stations
  • downstream base stations also sometimes referred to as child base stations
  • base station 101-b is an upstream base station of base station 101-c
  • base station 101-d is a downstream base station of base station 101-c. It should be understood that only an example of a network deployment is shown in FIG. 4, and in practice there may be more or less tiers of base stations.
  • the base station 101 may send first information to the base station 102, where the first information includes an indication that the base station 101 requests hibernation information.
  • the base station 102 may send second information to the base station 101, wherein the second information indicates whether the base station 101 is allowed to sleep. If the base station 101 receives the second information and the second information indicates that it is allowed to sleep, it can notify the terminal equipment and/or downstream base stations it serves to connect to one or more neighboring base stations.
  • base station 101-a in system 400A detects that its workload is below a first threshold and sends first information to base station 102 including information requesting sleep. In the case of receiving the second information from the base station 102 indicating that the base station 101-a is allowed to sleep, the base station 101-a may notify the terminal device 103-a it serves to connect to other neighboring base stations.
  • the terminal device 103-a is connected to the neighboring base station 101-c of the base station 101-a, and the base station 101-a enters a sleep state.
  • base station 101-c in system 400A detects that its workload is below a first threshold and sends first information to base station 102 including information requesting sleep.
  • the first information is transmitted from the base station 101-c to the base station 102 via the base station 101-b.
  • base station 101-c may notify its downstream base station 101-d to connect to other neighboring base stations.
  • the base station 101-d is connected to the neighboring base station 101-f of the base station 101-c, and the base station 101-c enters a sleep state.
  • system 400B only shows an example of the dormancy of the base station, and when the base station 101 enters the dormant state, multiple terminal devices and/or downstream base stations served by the base station 101 can each be connected to multiple different neighboring base stations.
  • connecting to a neighboring base station includes accessing a neighboring base station and handing over to a neighboring base station.
  • the base station 101 may cause the terminal device 103 to handover to other neighboring base stations.
  • the base station 101 may notify the terminal device 103 to access the neighboring base station.
  • the above-mentioned connection operation of the terminal device 103 is also applicable to the downstream base station of the base station 101 .
  • the thresholds may be predefined values, or may be based on prior experience combined with machine learning and other techniques are trained and computed values. It should also be understood that these thresholds may be updated periodically.
  • FIG. 5A shows a communication interaction diagram for a first example of dormancy of a base station according to an embodiment of the present disclosure.
  • the scenarios for the first example include the base station 101 in a simple deployment of the above wireless communication system and the base station 101 closest to the base station 102 in a complex deployment (ie, the base station 101 is directly connected to the base station 102).
  • base station 101 is an IAB base station
  • base station 102 is an IAB donor base station.
  • the IAB base station detects its own first index, where the first index includes but is not limited to the traffic volume of the IAB base station and/or the power consumption of the IAB base station. That is, the first indicator may reflect the size of the workload of the IAB base station. As an example, the workload of the IAB base station may be a function of the first indicator of the IAB base station. Generally speaking, the larger the value of the first index, the heavier the workload of the IAB base station; the smaller the value of the first index, the lighter the workload of the IAB base station.
  • the IAB base station In response to the detected first indicator indicating that the workload of the IAB base station is lower than the first threshold (ie, the IAB base station has less traffic and/or lower power consumption), in operation 2, the IAB base station sends to the IAB donor base station
  • the first information where the first information includes information for instructing the IAB base station to request dormancy (herein, the information is also referred to as dormancy request information for short). Additionally, the first information may also include the value of the first index or workload of the IAB base station for storage and further analysis by the IAB donor base station.
  • the IAB donor base station may determine second information, and transmit the second information to the IAB base station in operation 3, wherein the second information may indicate that the IAB base station is allowed to sleep.
  • the second information may include an Acknowledgement (ACK) response to the first information (indicating that the IAB base station requests dormancy).
  • ACK Acknowledgement
  • the determination of the second information is based at least on the workload status of one or more neighboring IAB base stations of the IAB base station.
  • the second information includes an ACK response based at least on the fact that one or more neighboring IAB base stations of the IAB base station are below a third threshold (ie, the one or more neighboring IAB base stations have less traffic and/or lower power consumption) (ie, indicating that the IAB base station is allowed to sleep). That is to say, the IAB donor base station determines that there are communication devices (referred to as downstream devices in FIG. 5A , downstream devices include but are not limited to the communication devices served by the IAB base station that are capable of taking over the services of the IAB base station in the adjacent IAB base stations of the IAB base station. In the case of the terminal equipment and the downstream IAB base station), it is determined that the IAB base station is allowed to enter the sleep state.
  • a third threshold ie, the one or more neighboring IAB base stations have less traffic and/or lower power consumption
  • the IAB donor base station may store or may access an information table including the workload status of each IAB base station in the wireless communication system where it is located.
  • the information table can be reported by each IAB base station to the IAB donor base station regularly, or it can be obtained by the IAB donor base station regularly detected.
  • the second information may also include a list of one or more neighboring IAB base stations of the IAB base station.
  • the list may include identifiers of one or more neighboring IAB base stations with workload below a third threshold, and the one or more neighboring IAB base stations may be ordered in order of low to high workload .
  • the list may further include the value of the workload of the neighboring IAB base stations whose workload is lower than the third threshold. This information can then be provided to downstream devices of the IAB base station to assist it in selecting and connecting to the corresponding neighboring IAB base station.
  • the IAB donor base station may directly send the second information including a negative acknowledgement (Negative Acknowledgement, NACK) response to the IAB base station or not send a response. If the IAB base station receives a NACK response within a predetermined time or does not receive a response, it will continue to remain in the wake-up state and normally maintain connection and communication with its downstream devices.
  • NACK Negative Acknowledgement
  • the IAB base station After the IAB base station receives the second information including the ACK response from the IAB donor base station, in operation 4, the IAB base station sends radio resource control (Radio Resource Control, RRC) reconfiguration (Reconfiguration) information to its downstream device, so that the downstream device The device performs a random access procedure with a neighboring IAB base station in operation 5 .
  • RRC Radio Resource Control
  • the downstream device may randomly search or find a suitable neighboring IAB base station according to certain criteria (eg, according to a signal-to-noise ratio (SNR) value) , and connect to the neighboring IAB base station. If the second information also includes a list of one or more neighboring IAB base stations of the IAB base station, the IAB base station may forward the list to its downstream devices. Based on this list, downstream devices can connect to neighboring IAB base stations with lower workload and higher communication quality in a more targeted and faster manner.
  • SNR signal-to-noise ratio
  • the downstream device of the IAB base station After the downstream device of the IAB base station completes the random access process, it performs RRC reconfiguration with the newly connected adjacent IAB base station in operation 6, and then sends RRC reconfiguration completion information to the IAB base station in operation 7. After receiving the RRC configuration completion information of all downstream devices, the IAB base station enters the dormant state.
  • FIG. 5B shows a communication interaction diagram for a second example of dormancy of a base station according to an embodiment of the present disclosure.
  • the scenario for the second example includes the base station 101 with an upstream base station in the complex deployment of the wireless communication system described above (ie, the base station 101 is connected to the base station 102 via the upstream base station).
  • FIG. 5B can be understood in conjunction with the example of FIG. 5A , and the main difference between the two is that in FIG. 5B , the base station 101 and the base station 102 need to interact via the upstream base station of the base station 101 .
  • base station 101 is an IAB base station
  • base station 102 is an IAB donor base station.
  • the IAB base station detects its own first index, where the first index includes but is not limited to the traffic volume of the IAB base station and/or the power consumption of the IAB base station.
  • the IAB base station reports to its upstream IAB base station.
  • the first information is sent, and the upstream IAB base station sends the first information to the IAB donor base station in operation 3.
  • the first information includes information for instructing the IAB base station to request dormancy (dormancy request information). Additionally, the first information may also include the value of the first index or workload of the IAB base station for storage and further analysis by the IAB donor base station.
  • the IAB donor base station may determine the second information and transmit the second information to the upstream IAB base station in operation 4, and the upstream IAB base station transmits the second information to the IAB base station in operation 5.
  • the second information may indicate that the IAB base station is allowed to sleep.
  • the second information may include an Acknowledgement (ACK) response to the first information (indicating that the IAB base station requests dormancy).
  • ACK Acknowledgement
  • the determination of the second information is based at least on the workload status of one or more neighboring IAB base stations of the IAB base station.
  • the second information includes an ACK response based at least on the fact that one or more neighboring IAB base stations of the IAB base station are below a third threshold (ie, the one or more neighboring IAB base stations have less traffic and/or lower power consumption) (ie, indicating that the IAB base station is allowed to sleep). That is to say, the IAB donor base station determines that there are communication devices (referred to as downstream devices in FIG. 5B , downstream devices include but are not limited to the communication devices served by the IAB base station that are capable of taking over the services of the IAB base station in the adjacent IAB base stations of the IAB base station. In the case of the terminal equipment and the downstream IAB base station), it is determined that the IAB base station is allowed to enter the sleep state.
  • a third threshold ie, the one or more neighboring IAB base stations have less traffic and/or lower power consumption
  • the second information may also include a list of one or more neighboring IAB base stations of the IAB base station.
  • the list may include identifiers of one or more neighboring IAB base stations with workload below a third threshold, and the one or more neighboring IAB base stations may be ordered in order of low to high workload .
  • the list may further include the value of the workload of the neighboring IAB base stations whose workload is lower than the third threshold. This information can then be provided to downstream devices of the IAB base station to assist it in selecting and connecting to the corresponding neighboring IAB base station.
  • the IAB donor base station determines that the adjacent IAB base stations of the IAB base station do not have the ability to take over the downstream equipment of the IAB base station (for example, the workload of all the adjacent IAB base stations of the IAB base station is high, that is, the workload of all the adjacent IAB base stations of the IAB base station is high. The traffic volume is large and/or the power consumption is high), then the IAB donor base station can send the second information including a negative acknowledgement (Negative Acknowledgement, NACK) response to the IAB base station via the upstream IAB base station or not send a response. If the IAB base station receives a NACK response within a predetermined time or does not receive a response, it will continue to remain in the wake-up state and normally maintain connection and communication with its downstream devices.
  • NACK negative acknowledgement
  • the IAB base station After the IAB base station receives the second information including the ACK response from the IAB donor base station, in operation 6, the IAB base station sends RRC reconfiguration information to its downstream device, so that the downstream device performs randomization with the neighboring IAB base station in operation 7 access process.
  • the downstream device may randomly search or find a suitable neighboring IAB base station according to certain criteria (for example, according to the SNR value), and connect to it. Proximity to the IAB base station. If the second information also includes a list of one or more neighboring IAB base stations of the IAB base station, the IAB base station may forward the list to its downstream devices. Based on this list, downstream devices can connect to neighboring IAB base stations with lower workload and higher communication quality in a more targeted and faster manner.
  • the downstream device of the IAB base station After the downstream device of the IAB base station completes the random access process, it performs RRC reconfiguration with the newly connected adjacent IAB base station in operation 8, and then sends RRC reconfiguration completion information to the IAB base station in operation 9. After receiving the RRC configuration completion information of all downstream devices, the IAB base station enters the dormant state.
  • FIG. 5B only shows an example in which the IAB base station has one upstream IAB base station, in fact, there may be multiple levels of upstream IAB base stations, so the first information and the second information between the IAB base station and the IAB donor base station are The information may be transmitted via the upstream IAB base stations of the intermediate multiple levels.
  • first and second examples for the dormancy of the base station for convenience of explanation, an example in which the first base station 101 is an IAB base station and the second base station 102 is an IAB donor base station is introduced.
  • first base station 101 and the second base station 102 may actually be any other suitable type of base station.
  • the first base station when the first base station detects that its own workload is low, it can actively request hibernation from the second base station, and the second base station can request hibernation according to the locally stored or accessible first base station.
  • the workload status of the neighboring base stations is used to determine whether to allow the first base station to sleep. After being allowed to sleep, the first base station can notify the terminal equipment it serves and/or the downstream base station to connect to one or more neighboring base stations of the first base station, which ensures the continuity of the communication service.
  • the terminal equipment needs to completely complete the remaining traffic before entering the sleep state, which is not applicable to the dormancy of the base station, because the traffic volume of the base station is much larger than that of the terminal equipment, and it is difficult to transfer the remaining services. The amount is completely cleared.
  • the base station dormancy mechanism of the present disclosure the base station can consider dormancy when the workload is lower than a certain threshold, and can quickly enter the dormancy state by connecting downstream devices to neighboring base stations.
  • upstream devices such as a base station or the network may decide that the terminal device can enter a dormant state, and notify the terminal device of the decision.
  • the second base station only decides and informs the first base station that it can enter the sleep state, but the downstream devices of the first base station know nothing about the decision, which will result in radio Link failure (Radio Link Failure, RLF) occurs, and the terminal device and the downstream base station will lose service for a period of time.
  • RLF Radio Link Failure
  • the first base station can decide that it needs to sleep, and after obtaining the permission of the second base station, inform the downstream device of the decision, so as to make it connect to the neighboring base station, thereby effectively avoiding the communication interruption of the downstream device And maintain a stable and good communication quality.
  • the operation of actively requesting sleep by the first base station realizes local optimization processing, which is compared with the global processing of the second base station determining one or more base stations to sleep according to the detected workload of each base station Save a lot of time.
  • the network traffic changes in real time, and the second base station cannot monitor the workload of the first base station in real time, but the first base station can detect its own workload at a higher frequency and request sleep in time.
  • each base station may have different workload tolerances, that is, different base stations may have different standards for requesting sleep. Therefore, it is more accurate and reasonable for the first base station to determine whether sleep is required according to its own workload.
  • FIG. 6 shows a schematic diagram of an example for wake-up of a base station according to an embodiment of the present disclosure. More specifically, the system 600A shown in FIG. 6 shows an example before the base station wakes up, while the system 600B shows an example after the base station wakes up.
  • a base station 102 manages and controls a plurality of base stations 101a to 101-h, and a plurality of terminal devices 103-a to 103-d exist in the system, wherein the terminal devices are connected to the base station 101.
  • system 600A two deployment structures may exist in a wireless communication system: simple deployment and complex deployment.
  • a simple deployment includes only a single level of base stations 101, e.g. base station 102 is connected to base station 101-a, which in turn is connected to terminal devices 103-a to 103-c.
  • Complex deployments may include multiple levels of base stations 101, eg base station 102 is connected to base station 101-b, which in turn is connected to base station 101-c, which in turn is connected to base station 101-d.
  • base stations close to base station 102 may be referred to as upstream base stations (sometimes also referred to as parent base stations) and vice versa may be referred to as downstream base stations (also sometimes referred to as child base stations).
  • upstream base stations sometimes also referred to as parent base stations
  • downstream base stations also sometimes referred to as child base stations
  • base station 101-b is an upstream base station of base station 101-c
  • base station 101-d is a downstream base station of base station 101-c. It should be understood that only an example of network deployment is shown in FIG. 6, and in practice there may be more or less tiers of base stations.
  • the base station 102 may send the third information , wherein the third information includes information indicating one or more neighboring base stations in a dormant state that request to wake up the base station 101 .
  • the base station 102 may transmit information (also referred to herein as fourth information) including response information for the third information to the base station 101 . If the base station 102 determines that one or more neighboring base stations of the base station 101 are to be woken up, the one or more neighboring base stations will receive the wake-up information from the base station 102 and enter the wake-up state. Thereafter, one or more terminal devices and/or downstream base stations served by the base station 101 may connect to at least one neighboring base station.
  • the heavy workload of the base station 101 may be caused by two reasons: node overload and node congestion.
  • Node overload may mean that too many terminal devices are connected to base station 101, resulting in service overload of base station 101 (that is, too many access links);
  • node congestion may mean that too many base stations are connected to base station 101, and a large number of services require Forwarded by the base station 101, thus causing the base station 101 to be congested (ie, too many backhaul links).
  • the occurrence of at least one of node overload and node congestion will overload the base station 101 so that the base station 101 expects its neighboring base stations to be able to wake up to share its workload.
  • base station 101-a in system 600A detects that its workload is above a second threshold (eg, node overloading has occurred) and sends a third message to base station 102 including a request to wake up a neighboring base station. Then, the base station 101-a receives fourth information from the base station 102 indicating that the neighboring base station of the base station 101-a is to wake up, and the neighboring base station 101-e of the base station 101-a (previously in the sleep state) enters the awake state. Some or all of the terminal devices 103-a to 103-c served by the base station 101-a will be able to connect to other neighboring base stations.
  • a second threshold eg, node overloading has occurred
  • the terminal device 103-a served by the base station 101-a remains connected, while the terminal devices 103-b and 103-c served by the base station 101-a turn to connect to the neighboring base station that has just woken up 101-e.
  • base station 101-c in system 600A detects that its workload is above a second threshold (eg, node congestion has occurred) and sends a third message to base station 102 including a request to wake up a neighboring base station. Since the base station 101-c has an upstream base station 101-b, the third information is transmitted from the base station 101-c to the base station 102 via the base station 101-b.
  • a second threshold eg, node congestion has occurred
  • the base station 101-c receives (via the base station 101-b) fourth information from the base station 102 indicating that the neighboring base stations of the base station 101-c are to wake up, and the neighboring base stations 101-h of the base station 101-c (previously in a dormant state) ) to enter the wake-up state.
  • Some or all of the terminal devices 103-d and downstream base stations 101-d served by the base station 101-c will be able to connect to other neighboring base stations.
  • the terminal device 103-d served by the base station 101-c remains connected, while the downstream base station 101-d of the base station 101-c turns to connect to the neighboring base station 101-h that has just woken up.
  • the system 600B only shows an example of the wake-up of the base station.
  • multiple terminal devices and/or downstream base stations served by the base station 101 can be connected to each other. to multiple different neighboring base stations.
  • the neighboring base stations to which the terminal device and/or the downstream base station is connected may be the neighboring base stations that have just woken up to shift the workload to such base stations for alleviating the overload and congestion of the base station 101 .
  • FIG. 7A shows a communication interaction diagram for a first example of wake-up of a base station according to an embodiment of the present disclosure.
  • the scenarios for the first example include the base station 101 in the simple deployment of the above wireless communication system and the base station 101 closest to the base station 102 in the complex deployment (ie the base station 101 is directly connected to the base station 102 ).
  • base station 101 is an IAB base station
  • base station 102 is an IAB donor base station.
  • the IAB base station detects its own first index, where the first index includes but is not limited to the traffic volume of the IAB base station and/or the power consumption of the IAB base station. That is, the first indicator may reflect the size of the workload of the IAB base station. As an example, the workload of the IAB base station may be a function of the first indicator of the IAB base station. Generally speaking, the larger the value of the first index is, the heavier the workload of the IAB base station is. As mentioned earlier, there are two reasons for the overload of the IAB base station: node overload and node congestion.
  • the workload from the terminal equipment ie, the load of the access link
  • the workload from the base station ie, the load of the backhaul link
  • the IAB base station sends third information to the IAB donor base station, wherein the third information includes information for indicating one or more neighboring IAB base stations that request to wake up the IAB base station (this information is also referred to as request wake-up information). Additionally, the third information may also include the value of the first indicator or workload of the IAB base station for storage and further analysis by the IAB donor base station.
  • the IAB donor base station may determine fourth information, and transmit the fourth information to the IAB base station in operation 3, wherein the fourth information may include response information to the third information.
  • the response information may indicate that one or more neighboring base stations of the IAB base station are about to wake up.
  • the determination of the fourth information is based on at least the sleep state of one or more neighboring IAB base stations of the IAB base station. That is to say, the IAB donor base station determines that there are one or more adjacent IAB base stations in a dormant state in the adjacent IAB base stations of the IAB base station, and some or all of the one or more adjacent IAB base stations are capable of taking over the services of the IAB base station.
  • the downstream device includes but is not limited to the terminal device served by the IAB base station and the downstream IAB base station), determine to wake up part of the one or more adjacent IAB base stations or all.
  • the IAB donor base station may store or access an information table including the workload status and network topology (including location information of base stations and terminal equipment, etc.) of each IAB base station in the wireless communication system where it is located.
  • the information table can be reported to the IAB donor base station periodically by each IAB base station and terminal equipment, or it can be obtained by the IAB donor base station regularly detected.
  • the IAB donor base station can randomly designate the neighboring IAB base stations to wake up, and can also decide which neighboring base station(s) of the IAB base stations to wake up based on the information table of the network topology.
  • the fourth information may also include specific information of one or more neighboring IAB base stations to be woken up, so that downstream devices of the IAB base station are connected to at least one neighboring base station.
  • the specific information may be presented in a list, and the list may include identifiers of one or more neighboring IAB base stations to wake up, and optionally may include location information of the one or more neighboring IAB base stations. This specific information can then be provided to downstream devices of the IAB base station to assist it in selecting and connecting to the corresponding neighboring IAB base station.
  • the IAB donor base station can determine whether there is an adjacent IAB base station of the IAB base station based on the obtained information table of the workload state of the IAB base station.
  • One or more neighboring IAB base stations with workload below a fourth threshold (the fourth threshold being less than the second threshold) (ie, one or more neighboring IAB base stations with less traffic and/or less power consumption).
  • the IAB donor base station determines that the one or more neighboring IAB base stations of the IAB base station are capable of taking over part or all of the downstream equipment of the IAB base station, it can inform the IAB base station and make some of its downstream equipment. Or all connect to nearby IAB base stations with lower workload.
  • the IAB donor base station transmits wake-up information to one or more neighboring IAB base stations to wake up, and the one or more neighboring IAB base stations transition from the sleep state to the wake-up state.
  • dormant neighboring IAB base stations may have mobility.
  • wake-up information can be transmitted via the F1 interface between the central unit of the dormant IAB base station and the IAB donor base station.
  • the IAB base station After receiving the fourth information, the IAB base station sends RRC reconfiguration information to its downstream device in operation 5, so that the downstream device performs a random access procedure with the neighboring IAB base station in operation 6.
  • the IAB base station may notify all its downstream devices to perform RRC reconfiguration.
  • the IAB base station may also select a part of downstream devices to perform RRC reconfiguration randomly or according to a specific criterion (for example, the traffic volume with the downstream device exceeds a specific threshold).
  • the downstream device may randomly search or find a suitable neighboring IAB according to certain criteria (e.g., according to the SNR value). base station and connect to the adjacent IAB base station. If the second information further includes specific information of one or more neighboring IAB base stations of the IAB base station that will wake up, the IAB base station may forward the specific information to its downstream devices. Based on the specific information, the downstream device can connect to the neighboring IAB base station that has just been woken up and that can provide itself with higher communication quality in a more targeted and faster manner.
  • certain criteria e.g., according to the SNR value
  • the downstream device of the IAB base station After the downstream device of the IAB base station completes the random access process, it performs RRC reconfiguration with the newly connected adjacent IAB base station in operation 7, and then sends RRC reconfiguration completion information to the IAB base station in operation 8.
  • the IAB donor base station can also directly send information indicating that one or more adjacent IAB base stations have been awakened (and optionally, one or more of the awakened IAB base stations) directly to the downstream device of the IAB base station after waking up the adjacent IAB base station. information on the identifier of the neighboring IAB base station) to enable downstream devices to connect to the neighboring IAB base station as needed.
  • the RRC reconfiguration procedure between the IAB base station and the downstream device can be omitted (ie, operations 5, 7-8 can be omitted).
  • the operation for transmitting the fourth information ie, operation 3 can also be omitted.
  • FIG. 7B shows a communication interaction diagram for a second example of wake-up of a base station according to an embodiment of the present disclosure.
  • the scenario for the second example includes the base station 101 with an upstream base station in the complex deployment of the wireless communication system described above (ie, the base station 101 is connected to the base station 102 via the upstream base station).
  • FIG. 7B can be understood in conjunction with the example of FIG. 7A , and the main difference between the two is that in FIG. 7B , the base station 101 and the base station 102 need to interact via the upstream base station of the base station 101.
  • base station 101 is an IAB base station
  • base station 102 is an IAB donor base station.
  • the IAB base station detects its own first index, where the first index includes but is not limited to the traffic volume of the IAB base station and/or the power consumption of the IAB base station. That is, the first indicator may reflect the size of the workload of the IAB base station.
  • the overload of the IAB base station there are two reasons for the overload of the IAB base station: node overload and node congestion. Therefore, the workload from the terminal equipment (ie, the load of the access link) and the workload from the base station (ie, the load of the backhaul link) can also be counted separately.
  • the IAB base station In response to the detected first indicator indicating that the workload of the IAB base station is higher than a second threshold (eg, the presence of either or both of node overload and node congestion resulting in higher traffic and/or higher power consumption of the IAB base station) large), in operation 2, the IAB base station sends the third information to its upstream IAB base station, and the upstream IAB base station sends the third information to the IAB donor base station in operation 3.
  • the third information includes information for indicating one or more neighboring IAB base stations that request to wake up the IAB base station (request to wake up information). Additionally, the third information may also include the value of the first indicator or workload of the IAB base station for storage and further analysis by the IAB donor base station.
  • the IAB donor base station may determine the fourth information, and transmit the fourth information to the upstream IAB base station in operation 4, and the upstream IAB base station transmits the fourth information to the IAB base station in operation 5.
  • the fourth information may include response information to the third information.
  • the response information may indicate that one or more neighboring base stations of the IAB base station are about to wake up.
  • the determination of the fourth information is based on at least the sleep state of one or more neighboring IAB base stations of the IAB base station.
  • the IAB donor base station determines that there are one or more adjacent IAB base stations in a dormant state in the adjacent IAB base stations of the IAB base station, and some or all of the one or more adjacent IAB base stations are capable of taking over the services of the IAB base station.
  • the downstream device includes but is not limited to the terminal device served by the IAB base station and the downstream IAB base station), determine to wake up part of the one or more adjacent IAB base stations or all.
  • the IAB donor base station may store or have access to an information table including the workload status and network topology (including location information of base stations and terminal equipment, etc.) of each IAB base station in the wireless communication system where it is located.
  • the fourth information may also include specific information of one or more neighboring IAB base stations to wake up, so that downstream devices of the IAB base station are connected to at least one neighboring base station.
  • the specific information may be presented in the form of a list, and the list may include the identifiers of one or more neighboring IAB base stations to wake up, and optionally the location information of the one or more neighboring IAB base stations. This specific information can then be provided to downstream devices of the IAB base station to assist it in selecting and connecting to the corresponding neighboring IAB base station.
  • the IAB donor base station can determine whether there is an adjacent IAB base station of the IAB base station based on the obtained information table of the workload state of the IAB base station.
  • One or more neighboring IAB base stations with workload below a fourth threshold (the fourth threshold being less than the second threshold) (ie, one or more neighboring IAB base stations with less traffic and/or less power consumption).
  • the IAB donor base station determines that the one or more neighboring IAB base stations of the IAB base station are capable of taking over part or all of the downstream equipment of the IAB base station
  • the IAB base station can be informed via the upstream IAB base station and the IAB base station can be made Some or all of the devices downstream of the base station are connected to neighboring IAB base stations with lower workloads.
  • the IAB donor base station transmits wake-up information to one or more neighboring IAB base stations to wake up, and the one or more neighboring IAB base stations transition from the sleep state to the wake-up state.
  • wake-up information can be transmitted via the F1 interface between the central unit of the dormant IAB base station and the IAB donor base station.
  • the IAB base station After receiving the fourth information, the IAB base station sends RRC reconfiguration information to its downstream device in operation 7, so that the downstream device performs a random access procedure with the neighboring IAB base station in operation 8.
  • the IAB base station may notify all its downstream devices to perform RRC reconfiguration.
  • the IAB base station may also select a part of downstream devices to perform RRC reconfiguration randomly or according to a specific criterion (for example, the traffic volume with the downstream device exceeds a specific threshold).
  • the downstream device may randomly search or find a suitable neighboring IAB according to certain criteria (e.g., according to the SNR value). base station and connect to the adjacent IAB base station. If the second information further includes specific information of one or more neighboring IAB base stations of the IAB base station that will wake up, the IAB base station may forward the specific information to its downstream devices. Based on the specific information, the downstream device can connect to the neighboring IAB base station that has just been woken up and that can provide itself with higher communication quality in a more targeted and faster manner.
  • certain criteria e.g., according to the SNR value
  • the downstream device of the IAB base station After the downstream device of the IAB base station completes the random access procedure, it performs RRC reconfiguration with the newly connected neighboring IAB base station in operation 9, and then sends RRC reconfiguration completion information to the IAB base station in operation 10.
  • the IAB donor base station can also directly send information indicating that the adjacent IAB base station has woken up (and optionally, the information of the identifier of the awakened adjacent IAB base station) directly to the downstream device of the IAB base station after waking up the adjacent IAB base station. ) to allow downstream devices to connect to neighboring IAB base stations as needed.
  • the RRC reconfiguration procedure between the IAB base station and the downstream device can be omitted (ie, operations 7, 9-10 can be omitted).
  • the operations for transmitting the fourth information ie, operations 4 and 5 may also be omitted.
  • FIG. 7B only shows an example in which the IAB base station has one upstream IAB base station, in fact, there may be multiple levels of upstream IAB base stations, so the first information and the second information between the IAB base station and the IAB donor base station are The information may be transmitted via the upstream IAB base stations of the intermediate multiple levels.
  • first and second examples for the dormancy of the base station for convenience of explanation, an example in which the first base station 101 is an IAB base station and the second base station 102 is an IAB donor base station is introduced.
  • first base station 101 and the second base station 102 may actually be any other suitable type of base station.
  • the first base station when the first base station detects that its own workload is high, it can request the second base station to wake up the neighboring base stations, and the second base station can wake up the neighboring base station according to the locally stored or accessible first base station.
  • the sleep state of the base station's neighbor base stations to determine whether one or more neighbor base stations will wake up.
  • some or all of the terminal equipment and/or downstream base stations served by the first base station can be connected to at least one adjacent base station, which relieves the heavy workload of the first base station.
  • the terminal device can trigger its own wake-up when it detects that it has an uplink service requirement.
  • this wake-up mechanism cannot be directly applied to the base station wake-up in the present disclosure. This is because when a terminal device detects that it has an uplink service requirement and its nearest base station is in a dormant state, based on the principle of energy saving, the terminal device will directly connect to other adjacent base stations for communication, and will not actively request Wake up a dormant base station.
  • the terminal device wake-up mechanism the terminal device can be woken up by the upstream device such as the base station or the network through network paging, etc.
  • This method is also not suitable for the base station wake-up in the present disclosure.
  • the aimless network paging will consume a lot of time and resources, and the efficiency is too low.
  • the base station sleep mechanism of the present disclosure after the first base station sends the request to wake up the adjacent base station, it helps to accurately locate the area where the base station needs to be woken up, so that the second base station can quickly wake up one or more adjacent base stations to alleviate the first base station's Overload and congestion problems.
  • the process of the first base station actively requesting to wake up the neighboring dormant base stations is efficient and time-saving. If the first base station only sends the value of the workload to the second base station, the second base station will not actively judge and determine whether the information is periodically reported information or information for requesting to wake up neighboring base stations.
  • the sending of the wake-up request information helps the second base station to specifically query the neighboring dormant base stations of the first base station and determine which (or which) neighboring base stations to wake up.
  • each base station may have different workload tolerances, that is, different base stations may have different criteria for sending overload and congestion. Therefore, the first base station determines whether it needs to request to wake up neighboring base stations according to its own workload to share its workload. accurate and reasonable.
  • FIG. 8 shows a schematic diagram of an example of a transmission frame for dormancy and wake-up of a base station according to an embodiment of the present disclosure.
  • the request dormancy information for indicating the request to dormancy and the request wakeup information for requesting to wake up other neighboring base stations sent by the first base station to the second base station may be included in the traffic load information in the existing transmission frame (Legacy Traffic Load Information) field.
  • 1 bit may be added to the traffic load information field to indicate that dormancy information is requested, and when the first base station detects that its workload is low (eg, lower than the first threshold), the value of this bit may be set to 1 to Indicates that sleep is requested, otherwise the value of this bit is set to 0.
  • another 1 bit can be added to the traffic load information field to indicate the request for wake-up information.
  • the value of this bit may be set to 1 to indicate a request to wake up a neighboring base station in a dormant state, otherwise the value of this bit is set to 0.
  • the above-mentioned sleep request information and wake-up request information may also be included in other fields of the transmission frame.
  • the request for sleep information and the request for wake-up information may also occupy more bits, or occupy idle bits in the original field.
  • the sleep and wake-up mechanism for the base station proposed by the present disclosure enables the first base station to determine whether to request sleep or request to wake up other neighboring base stations according to the detected workload of itself.
  • the second base station assists in determining whether to allow the first base station to sleep or wake up one or more neighboring base stations of the first base station according to the global base station workload state and sleep state and other information. It can be seen that the above processing helps the second base station to query information and make judgments in a targeted manner, so that the sleep and wake-up process is very efficient and time-saving.
  • the first base station receives permission to sleep, it can notify the terminal equipment and/or downstream base station it serves to connect to an appropriate neighboring base station in time, which can reduce communication interruption and ensure stable and good communication service quality.
  • the mechanism proposed in the present disclosure also allows different base stations to judge whether the workload is too light or too heavy according to their own capacity, and has greater flexibility and diversity.
  • allowing the use of the F1 interface instead of the traditional RRC connection to transmit the wake-up information in the NR communication system can further reduce the delay caused by the number of transmitted signaling, thereby shortening the total wake-up time.
  • the method 900 may include detecting a first indicator of the first base station (block S901 ); in response to the detected first indicator indicating that the workload of the first base station is lower than a first threshold, sending a notification to the second base station sending first information, wherein the first information includes information indicating that the first base station requests dormancy (block S902); and receiving second information from the second base station for the first information, wherein the second information indicates whether to allow the first The base station sleeps (block S903).
  • a first indicator of the first base station block S901
  • the first information includes information indicating that the first base station requests dormancy
  • second information indicates whether to allow the first The base station sleeps
  • FIG. 10 shows a flowchart of an example method 1000 for a second base station according to an embodiment of the present disclosure.
  • the method may be performed by the base station 102 (or more specifically, the electronic device 300 ) in the system 100 .
  • the method 1000 may include receiving first information from a first base station, wherein the first information is that the first base station indicates that the workload of the first base station is lower than the first indicator in response to detecting the first base station threshold, and wherein the first information includes information for indicating that the first base station requests dormancy (block S1001); sending second information for the first information to the first base station, wherein the second information indicates whether to allow the first The base station sleeps (block S1002 .
  • the method 1000 may include receiving first information from a first base station, wherein the first information is that the first base station indicates that the workload of the first base station is lower than the first indicator in response to detecting the first base station threshold, and wherein the first information includes information for indicating that the first base station requests dormancy (block S
  • An electronic device for a first base station comprising a processing circuit configured to:
  • Second information for the first information is received from the second base station, wherein the second information indicates whether the first base station is allowed to sleep.
  • Clause 2 The electronic device of clause 1, wherein the second information further comprises a list of one or more neighboring base stations of the first base station.
  • Clause 3 The electronic device of clause 1 or 2, the processing circuit is further configured to:
  • a terminal device and/or sub-base station served by the first base station is notified of one or more neighboring base stations connected to the first base station.
  • Clause 4 The electronic device of clause 1 or 2, wherein the second information is based on at least a workload status of one or more neighboring base stations of the first base station.
  • Fourth information for the third information is received from the second base station, wherein the fourth information indicates one or more neighboring base stations to wake up.
  • the second information indicates that the first base station is allowed to sleep based at least on the workload of one or more neighboring base stations of the first base station being below a third threshold;
  • the fourth information is based on at least a sleep state of one or more neighboring base stations of the first base station.
  • Clause 8 The electronic device according to Clause 3, wherein the first indicator comprises the traffic volume of the first base station and/or the power consumption of the first base station.
  • Clause 9 The electronic device of clause 1, wherein the first base station comprises an integrated access and backhaul (IAB) base station and the second base station comprises an IAB donor (IAB donor) base station.
  • IAB integrated access and backhaul
  • IAB donor IAB donor
  • An electronic device for a second base station comprising a processing circuit configured to:
  • Receive first information from a first base station wherein the first information is sent by the first base station in response to detecting that a first indicator of the first base station indicates that the workload of the first base station is below a first threshold, and wherein the first information includes information indicating that the first base station requests dormancy;
  • Second information for the first information is sent to the first base station, wherein the second information indicates whether the first base station is allowed to sleep.
  • Clause 11 The electronic device of clause 10, wherein the second information further comprises a list of one or more neighboring base stations of the first base station.
  • Clause 12 The electronic device of clause 10 or 11, wherein the second information is based at least on a workload status of one or more neighboring base stations of the first base station.
  • Clause 13 The electronic device of clause 10, the processing circuit further configured to:
  • the third information is sent by the first base station in response to detecting that the first indicator indicates that the workload of the first base station is higher than the second threshold, and wherein the third information includes a method for indicating the first information that a base station requests to wake up one or more neighboring base stations of the first base station;
  • Fourth information for the third information is sent to the first base station, wherein the fourth information indicates one or more neighboring base stations to wake up.
  • the second information indicates that the first base station is allowed to sleep based at least on the workload of one or more neighboring base stations of the first base station being below a third threshold;
  • the fourth information is based on at least a sleep state of one or more neighboring base stations of the first base station.
  • Clause 15 The electronic device of Clause 10, wherein the first indicator comprises the traffic volume of the first base station and/or the power consumption of the first base station.
  • Clause 16 The electronic device of clause 10, wherein the first base station comprises an integrated access and backhaul (IAB) base station and the second base station comprises an IAB donor base station.
  • IAB integrated access and backhaul
  • a method for a first base station comprising:
  • Second information for the first information is received from the second base station, wherein the second information indicates whether the first base station is allowed to sleep.
  • a method for a second base station comprising:
  • Receive first information from a first base station wherein the first information is sent by the first base station in response to detecting that a first indicator of the first base station indicates that the workload of the first base station is below a first threshold, and wherein the first information includes information indicating that the first base station requests dormancy;
  • Second information for the first information is sent to the first base station, wherein the second information indicates whether the first base station is allowed to sleep.
  • Clause 19 A computer-readable storage medium having stored thereon one or more instructions that, when executed by one or more processors of an electronic device, cause the electronic device to perform a procedure described in accordance with clause 17 or 18. method described.
  • Clause 20 An apparatus for wireless communication comprising means for performing the method of clause 17 or 18.
  • machine-executable instructions in a machine-readable storage medium or program product may be configured to perform operations corresponding to the above-described apparatus and method embodiments.
  • the embodiments of the machine-readable storage medium or program product will be apparent to those skilled in the art, and thus the description will not be repeated.
  • Machine-readable storage media and program products for carrying or including the above-described machine-executable instructions are also within the scope of the present disclosure.
  • Such storage media may include, but are not limited to, floppy disks, optical disks, magneto-optical disks, memory cards, memory sticks, and the like.
  • FIG. 11 is a block diagram showing an example structure of a personal computer as an information processing apparatus that can be employed in an embodiment of the present disclosure.
  • the personal computer may correspond to the above-described exemplary terminal device according to the present disclosure.
  • a central processing unit (CPU) 1101 executes various processes according to a program stored in a read only memory (ROM) 1102 or a program loaded from a storage section 1108 to a random access memory (RAM) 1103 .
  • ROM read only memory
  • RAM random access memory
  • data required when the CPU 1101 executes various processes and the like is also stored as needed.
  • the CPU 1101, the ROM 1102, and the RAM 1103 are connected to each other via a bus 1104.
  • Input/output interface 1105 is also connected to bus 1104 .
  • the following components are connected to the input/output interface 1105: an input section 1106, including a keyboard, a mouse, etc.; an output section 1107, including a display such as a cathode ray tube (CRT), a liquid crystal display (LCD), etc., and a speaker, etc.; a storage section 1108 , including a hard disk, etc.; and a communication section 1109, including a network interface card such as a LAN card, a modem, and the like.
  • the communication section 1109 performs communication processing via a network such as the Internet.
  • a driver 1110 is also connected to the input/output interface 1105 as required.
  • a removable medium 1111 such as a magnetic disk, an optical disk, a magneto-optical disk, a semiconductor memory, etc. is mounted on the drive 1110 as needed, so that a computer program read therefrom is installed into the storage section 1108 as needed.
  • a program constituting the software is installed from a network such as the Internet or a storage medium such as a removable medium 1111 .
  • such a storage medium is not limited to the removable medium 1111 shown in FIG. 11 in which the program is stored and distributed separately from the device to provide the program to the user.
  • the removable medium 1111 include magnetic disks (including floppy disks (registered trademark)), optical disks (including compact disk read only memory (CD-ROM) and digital versatile disks (DVD)), magneto-optical disks (including minidiscs (MD) (registered trademark) )) and semiconductor memory.
  • the storage medium may be the ROM 1102, a hard disk included in the storage section 1108, or the like, in which programs are stored and distributed to users together with the devices that include them.
  • the electronic devices 200 and 300 may be implemented as or included in various control devices/base stations, and the methods shown in FIG. 9 and/or FIG. 10 also It can be implemented by various control devices/base stations.
  • control device/base station mentioned in this disclosure may be implemented as any type of base station, eg, an evolved Node B (gNB), such as a macro gNB and a small gNB.
  • gNB evolved Node B
  • Small gNBs may be gNBs covering cells smaller than macro cells, such as pico gNBs, micro gNBs, and home (femto) gNBs.
  • the base station may be implemented as any other type of base station, such as a NodeB and a Base Transceiver Station (BTS).
  • BTS Base Transceiver Station
  • the base station may include: a main body (also referred to as a base station device) configured to control wireless communication; and one or more remote radio heads (Remote Radio Heads, RRHs) disposed at a place different from the main body.
  • a main body also referred to as a base station device
  • RRHs Remote Radio Heads
  • various types of terminals to be described below can each operate as a base station by temporarily or semi-persistently performing a base station function.
  • the terminal devices referred to in this disclosure may be implemented as mobile terminals such as smartphones, tablet personal computers (PCs), notebook PCs, portable game terminals, portable/dongles type mobile routers and digital cameras) or in-vehicle terminals (such as car navigation equipment).
  • the user equipment may also be implemented as a terminal performing machine-to-machine (M2M) communication (also referred to as a machine type communication (MTC) terminal).
  • M2M machine-to-machine
  • MTC machine type communication
  • the user equipment may be a wireless communication module (such as an integrated circuit module comprising a single die) mounted on each of the aforementioned terminals. In some cases, user equipment may communicate using a variety of wireless communication technologies.
  • user equipment may be configured to communicate using two or more of GSM, UMTS, CDMA2000, WiMAX, LTE, LTE-A, WLAN, NR, Bluetooth, and the like. In some cases, user equipment may also be configured to communicate using only one wireless communication technology.
  • base station in this disclosure has the full breadth of its ordinary meaning and includes at least a wireless communication station used as a wireless communication system or part of a radio system to facilitate communication.
  • Examples of base stations may be, for example, but not limited to the following:
  • a base station may be one or both of a base transceiver station (BTS) and a base station controller (BSC) in a GSM system, or a radio network controller in a WCDMA system
  • BTS base transceiver station
  • BSC base station controller
  • RNC radio network controller
  • Node B which may be eNBs in LTE and LTE-Advanced systems, or may be corresponding network nodes in future communication systems (such as gNB, eLTE that may appear in 5G communication systems) eNB, etc.).
  • Some functions in the base station of the present disclosure may also be implemented as entities with control functions for communication in D2D, M2M and V2V communication scenarios, or as entities with spectrum coordination functions in cognitive radio communication scenarios.
  • gNB 1200 is a block diagram showing a first example of a schematic configuration of a base station (a gNB is taken as an example in this figure) to which the techniques of the present disclosure can be applied.
  • gNB 1200 includes multiple antennas 1210 and base station equipment 1220.
  • the base station apparatus 1220 and each antenna 1210 may be connected to each other via an RF cable.
  • the gNB 1200 (or the base station device 1220 ) here may correspond to the above-mentioned base stations 101 and 102 (or more specifically, the electronic devices 200 and 300 ).
  • Each of the antennas 1210 includes a single or multiple antenna elements (such as multiple antenna elements included in a multiple-input multiple-output (MIMO) antenna), and is used by the base station apparatus 1220 to transmit and receive wireless signals.
  • gNB 1200 may include multiple antennas 1210.
  • multiple antennas 1210 may be compatible with multiple frequency bands used by gNB 1200.
  • the base station apparatus 1220 includes a controller 1221 , a memory 1222 , a network interface 1223 , and a wireless communication interface 1225 .
  • the controller 1221 may be, for example, a CPU or a DSP, and operates various functions of a higher layer of the base station apparatus 1220 .
  • the controller 1221 generates data packets from data in the signal processed by the wireless communication interface 1225, and communicates the generated packets via the network interface 1223.
  • the controller 1221 may bundle data from a plurality of baseband processors to generate a bundled packet, and deliver the generated bundled packet.
  • the controller 1221 may have logical functions to perform controls such as radio resource control, radio bearer control, mobility management, admission control, and scheduling. This control can be performed in conjunction with nearby gNB or core network nodes.
  • the memory 1222 includes RAM and ROM, and stores programs executed by the controller 1221 and various types of control data such as a terminal list, transmission power data, and scheduling data.
  • the network interface 1223 is a communication interface for connecting the base station apparatus 1220 to the core network 1224 .
  • the controller 1221 may communicate with core network nodes or further gNBs via the network interface 1223 .
  • gNB 1200 and core network nodes or other gNBs may be connected to each other through logical interfaces such as S1 interface and X2 interface.
  • the network interface 1223 may also be a wired communication interface or a wireless communication interface for a wireless backhaul line. If the network interface 1223 is a wireless communication interface, the network interface 1223 may use a higher frequency band for wireless communication than the frequency band used by the wireless communication interface 1225 .
  • Wireless communication interface 1225 supports any cellular communication scheme, such as Long Term Evolution (LTE) and LTE-Advanced, and provides wireless connectivity to terminals located in the cell of gNB 1200 via antenna 1210.
  • Wireless communication interface 1225 may generally include, for example, a baseband (BB) processor 1226 and RF circuitry 1227 .
  • the BB processor 1226 may perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and performs layers such as L1, Medium Access Control (MAC), Radio Link Control (RLC), and Packet Data Convergence Protocol (PDCP)) various types of signal processing.
  • the BB processor 1226 may have some or all of the above-described logical functions.
  • the BB processor 1226 may be a memory storing a communication control program, or a module including a processor and associated circuitry configured to execute the program.
  • the update procedure may cause the functionality of the BB processor 1226 to change.
  • the module may be a card or blade that is inserted into a slot in the base station device 1220. Alternatively, the module can also be a chip mounted on a card or blade.
  • the RF circuit 1227 may include, for example, a mixer, a filter, and an amplifier, and transmit and receive wireless signals via the antenna 1210 .
  • FIG. 12 shows an example in which one RF circuit 1227 is connected to one antenna 1210 , the present disclosure is not limited to this illustration, but one RF circuit 1227 may connect multiple antennas 1210 at the same time.
  • the wireless communication interface 1225 may include multiple BB processors 1226 .
  • multiple BB processors 1226 may be compatible with multiple frequency bands used by gNB 1200.
  • the wireless communication interface 1225 may include a plurality of RF circuits 1227 .
  • multiple RF circuits 1227 may be compatible with multiple antenna elements.
  • FIG. 12 shows an example in which the wireless communication interface 1225 includes multiple BB processors 1226 and multiple RF circuits 1227 , the wireless communication interface 1225 may also include a single BB processor 1226 or a single RF circuit 1227 .
  • gNB 13 is a block diagram showing a second example of a schematic configuration of a base station (a gNB is taken as an example in this figure) to which the techniques of the present disclosure can be applied.
  • gNB 1330 includes multiple antennas 1340, base station equipment 1350, and RRH 1360.
  • the RRH 1360 and each antenna 1340 may be connected to each other via an RF cable.
  • the base station apparatus 1350 and the RRH 1360 may be connected to each other via a high-speed line such as an optical fiber cable.
  • the gNB 1330 (or the base station device 1350) here may correspond to the above-mentioned base stations 101 and 102 (or more specifically, the electronic devices 200 and 300).
  • Each of the antennas 1340 includes a single or multiple antenna elements (such as multiple antenna elements included in a MIMO antenna) and is used by the RRH 1360 to transmit and receive wireless signals.
  • gNB 1330 may include multiple antennas 1340.
  • multiple antennas 1340 may be compatible with multiple frequency bands used by gNB 1330.
  • the base station apparatus 1350 includes a controller 1351 , a memory 1352 , a network interface 1353 , a wireless communication interface 1355 , and a connection interface 1357 .
  • the controller 1351 , the memory 1352 and the network interface 1353 are the same as the controller 1221 , the memory 1222 and the network interface 1223 described with reference to FIG. 12 .
  • Wireless communication interface 1355 supports any cellular communication scheme, such as LTE and LTE-Advanced, and provides wireless communication via RRH 1360 and antenna 1340 to terminals located in a sector corresponding to RRH 1360.
  • Wireless communication interface 1355 may generally include BB processor 1356, for example.
  • the BB processor 1356 is the same as the BB processor 1226 described with reference to FIG. 12, except that the BB processor 1356 is connected to the RF circuit 1364 of the RRH 1360 via the connection interface 1357.
  • the wireless communication interface 1355 may include multiple BB processors 1356 .
  • multiple BB processors 1356 may be compatible with multiple frequency bands used by gNB 1330.
  • FIG. 13 shows an example in which the wireless communication interface 1355 includes multiple BB processors 1356
  • the wireless communication interface 1355 may also include a single BB processor 1356 .
  • connection interface 1357 is an interface for connecting the base station apparatus 1350 (the wireless communication interface 1355) to the RRH 1360.
  • the connection interface 1357 may also be a communication module for communication in the above-mentioned high-speed line connecting the base station device 1350 (the wireless communication interface 1355) to the RRH 1360.
  • RRH 1360 includes connection interface 1361 and wireless communication interface 1363.
  • connection interface 1361 is an interface for connecting the RRH 1360 (the wireless communication interface 1363 ) to the base station apparatus 1350.
  • the connection interface 1361 may also be a communication module used for communication in the above-mentioned high-speed line.
  • the wireless communication interface 1363 transmits and receives wireless signals via the antenna 1340 .
  • Wireless communication interface 1363 may typically include RF circuitry 1364, for example.
  • RF circuitry 1364 may include, for example, mixers, filters, and amplifiers, and transmit and receive wireless signals via antenna 1340 .
  • FIG. 13 shows an example in which one RF circuit 1364 is connected to one antenna 1340 , the present disclosure is not limited to this illustration, but one RF circuit 1364 may connect multiple antennas 1340 at the same time.
  • the wireless communication interface 1363 may include a plurality of RF circuits 1364 .
  • multiple RF circuits 1364 may support multiple antenna elements.
  • FIG. 13 shows an example in which the wireless communication interface 1363 includes multiple RF circuits 1364
  • the wireless communication interface 1363 may include a single RF circuit 1364 .
  • FIG. 14 is a block diagram showing an example of a schematic configuration of a smartphone 1400 to which the techniques of the present disclosure may be applied.
  • Smartphone 1400 includes processor 1401, memory 1402, storage device 1403, external connection interface 1404, camera device 1406, sensor 1407, microphone 1408, input device 1409, display device 1410, speaker 1411, wireless communication interface 1412, one or more Antenna switch 1415 , one or more antennas 1416 , bus 1417 , battery 1418 , and auxiliary controller 1419 .
  • the smart phone 1400 (or the processor 1401 ) here may correspond to the above-mentioned terminal device 103 .
  • the processor 1401 may be, for example, a CPU or a system on a chip (SoC), and controls the functions of the application layer and further layers of the smartphone 1400 .
  • the memory 1402 includes RAM and ROM, and stores data and programs executed by the processor 1401 .
  • the storage device 1403 may include storage media such as semiconductor memories and hard disks.
  • the external connection interface 1404 is an interface for connecting external devices such as memory cards and Universal Serial Bus (USB) devices to the smartphone 1400 .
  • the camera 1406 includes an image sensor such as a charge coupled device (CCD) and a complementary metal oxide semiconductor (CMOS), and generates a captured image.
  • Sensors 1407 may include a set of sensors such as measurement sensors, gyroscope sensors, geomagnetic sensors, and acceleration sensors.
  • the microphone 1408 converts the sound input to the smartphone 1400 into an audio signal.
  • the input device 1409 includes, for example, a touch sensor, a keypad, a keyboard, buttons, or switches configured to detect a touch on the screen of the display device 1410, and receives operations or information input from a user.
  • the display device 1410 includes a screen such as a liquid crystal display (LCD) and an organic light emitting diode (OLED) display, and displays an output image of the smartphone 1400 .
  • the speaker 1411 converts the audio signal output from the smartphone 1400 into sound.
  • the wireless communication interface 1412 supports any cellular communication scheme, such as LTE and LTE-Advanced, and performs wireless communication.
  • Wireless communication interface 1412 may typically include, for example, BB processor 1413 and RF circuitry 1414 .
  • the BB processor 1413 may perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and perform various types of signal processing for wireless communication.
  • the RF circuit 1414 may include, for example, mixers, filters, and amplifiers, and transmit and receive wireless signals via the antenna 1416 .
  • the wireless communication interface 1412 may be a chip module on which the BB processor 1413 and the RF circuit 1414 are integrated. As shown in FIG.
  • the wireless communication interface 1412 may include a plurality of BB processors 1413 and a plurality of RF circuits 1414 .
  • FIG. 14 shows an example in which the wireless communication interface 1412 includes multiple BB processors 1413 and multiple RF circuits 1414 , the wireless communication interface 1412 may include a single BB processor 1413 or a single RF circuit 1414 .
  • the wireless communication interface 1412 may support additional types of wireless communication schemes, such as short-range wireless communication schemes, near field communication schemes, and wireless local area network (LAN) schemes.
  • the wireless communication interface 1412 may include the BB processor 1413 and the RF circuit 1414 for each wireless communication scheme.
  • Each of the antenna switches 1415 switches the connection destination of the antenna 1416 among a plurality of circuits included in the wireless communication interface 1412, such as circuits for different wireless communication schemes.
  • Each of the antennas 1416 includes a single or multiple antenna elements (such as multiple antenna elements included in a MIMO antenna), and is used for the wireless communication interface 1412 to transmit and receive wireless signals.
  • smartphone 1400 may include multiple antennas 1416 .
  • FIG. 14 shows an example in which the smartphone 1400 includes multiple antennas 1416
  • the smartphone 1400 may also include a single antenna 1416 .
  • the smartphone 1400 may include an antenna 1416 for each wireless communication scheme.
  • the antenna switch 1415 can be omitted from the configuration of the smartphone 1400 .
  • the bus 1417 connects the processor 1401, the memory 1402, the storage device 1403, the external connection interface 1404, the camera 1406, the sensor 1407, the microphone 1408, the input device 1409, the display device 1410, the speaker 1411, the wireless communication interface 1412, and the auxiliary controller 1419 to each other connect.
  • the battery 1418 provides power to the various blocks of the smartphone 1400 shown in FIG. 14 via feeders, which are partially shown in phantom in the figure.
  • the auxiliary controller 1419 operates the minimum necessary functions of the smartphone 1400, eg, in a sleep mode.
  • FIG. 15 is a block diagram showing an example of a schematic configuration of a car navigation apparatus 1520 to which the techniques of the present disclosure can be applied.
  • the car navigation device 1520 includes a processor 1521, a memory 1522, a global positioning system (GPS) module 1524, a sensor 1525, a data interface 1526, a content player 1527, a storage medium interface 1528, an input device 1529, a display device 1530, a speaker 1531, a wireless Communication interface 1533 , one or more antenna switches 1536 , one or more antennas 1537 , and battery 1538 .
  • the car navigation device 1520 (or the processor 1521 ) here may correspond to the above-mentioned terminal device 103 .
  • the processor 1521 may be, for example, a CPU or a SoC, and controls the navigation function and other functions of the car navigation device 1520 .
  • the memory 1522 includes RAM and ROM, and stores data and programs executed by the processor 1521 .
  • the GPS module 1524 measures the position (such as latitude, longitude, and altitude) of the car navigation device 1520 using GPS signals received from GPS satellites.
  • Sensors 1525 may include a set of sensors such as gyroscope sensors, geomagnetic sensors, and air pressure sensors.
  • the data interface 1526 is connected to, for example, the in-vehicle network 1541 via a terminal not shown, and acquires data generated by the vehicle, such as vehicle speed data.
  • the content player 1527 reproduces content stored in storage media such as CDs and DVDs, which are inserted into the storage media interface 1528.
  • the input device 1529 includes, for example, a touch sensor, a button, or a switch configured to detect a touch on the screen of the display device 1530, and receives operations or information input from a user.
  • the display device 1530 includes a screen such as an LCD or OLED display, and displays images or reproduced content of a navigation function.
  • the speaker 1531 outputs the sound of the navigation function or the reproduced content.
  • the wireless communication interface 1533 supports any cellular communication scheme such as LTE and LTE-Advanced, and performs wireless communication.
  • Wireless communication interface 1533 may generally include, for example, BB processor 1534 and RF circuitry 1535.
  • the BB processor 1534 may perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and perform various types of signal processing for wireless communication.
  • the RF circuit 1535 may include, for example, a mixer, a filter, and an amplifier, and transmit and receive wireless signals via the antenna 1537 .
  • the wireless communication interface 1533 can also be a chip module on which the BB processor 1534 and the RF circuit 1535 are integrated. As shown in FIG.
  • the wireless communication interface 1533 may include a plurality of BB processors 1534 and a plurality of RF circuits 1535 .
  • FIG. 15 shows an example in which the wireless communication interface 1533 includes multiple BB processors 1534 and multiple RF circuits 1535 , the wireless communication interface 1533 may also include a single BB processor 1534 or a single RF circuit 1535 .
  • the wireless communication interface 1533 may support another type of wireless communication scheme, such as a short-range wireless communication scheme, a near field communication scheme, and a wireless LAN scheme.
  • the wireless communication interface 1533 may include the BB processor 1534 and the RF circuit 1535 for each wireless communication scheme.
  • Each of the antenna switches 1536 switches the connection destination of the antenna 1537 among a plurality of circuits included in the wireless communication interface 1533, such as circuits for different wireless communication schemes.
  • Each of the antennas 1537 includes a single or multiple antenna elements (such as multiple antenna elements included in a MIMO antenna), and is used for the wireless communication interface 1533 to transmit and receive wireless signals.
  • the car navigation device 1520 may include a plurality of antennas 1537 .
  • FIG. 15 shows an example in which the car navigation device 1520 includes multiple antennas 1537 , the car navigation device 1520 may also include a single antenna 1537 .
  • the car navigation device 1520 may include an antenna 1537 for each wireless communication scheme.
  • the antenna switch 1536 may be omitted from the configuration of the car navigation apparatus 1520 .
  • the battery 1538 provides power to the various blocks of the car navigation device 1520 shown in FIG. 15 via feeders, which are partially shown as dashed lines in the figure.
  • the battery 1538 accumulates power supplied from the vehicle.
  • the techniques of this disclosure may also be implemented as an in-vehicle system (or vehicle) 1540 that includes one or more blocks of a car navigation device 1520, an in-vehicle network 1541, and a vehicle module 1542.
  • vehicle module 1542 generates vehicle data such as vehicle speed, engine speed, and fault information, and outputs the generated data to the in-vehicle network 1541 .
  • a plurality of functions included in one unit in the above embodiments may be implemented by separate devices.
  • multiple functions implemented by multiple units in the above embodiments may be implemented by separate devices, respectively.
  • one of the above functions may be implemented by multiple units. Needless to say, such a configuration is included in the technical scope of the present disclosure.
  • the steps described in the flowcharts include not only processing performed in time series in the stated order, but also processing performed in parallel or individually rather than necessarily in time series. Furthermore, even in the steps processed in time series, needless to say, the order can be appropriately changed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开内容涉及用于基站的休眠和唤醒的电子设备、方法和存储介质。描述了用于第一基站的方法,该方法包括:检测第一基站的第一指标;响应于检测到的第一指标指示第一基站的工作负荷低于第一阈值,向第二基站发送第一信息,其中第一信息包括用于指示第一基站请求休眠的信息;以及从第二基站接收针对第一信息的第二信息,其中第二信息指示是否允许第一基站休眠。在该方法中,第一基站可以包括集成接入和回传(IAB)基站,并且第二基站可以包括IAB施主(IAB donor)基站。

Description

用于基站的休眠和唤醒的电子设备、方法和存储介质 技术领域
本公开一般地涉及用于基站的节能的系统和方法,并且具体地涉及用于基站的休眠和唤醒的技术。
背景技术
随着无线通信技术的发展,越来越多的用户参与无线通信,并且用户不断地探索和发现能够通过无线通信实现的新业务功能,从而用户的业务需求量持续地高速增长。对此,可以在无线通信网络中大规模地部署基站,为更多的用户提高更高速率的无线传输服务。
然而,过多的通信设备同时工作,将导致大量的能量消耗,这将带来过大的能量供应负担,并且给环境带来较大的负面影响。例如,在网络中的业务负载较低的情况下,大量的通信设备照常工作,将导致大量不必要的功率损耗,并且可能对周围的通信设备造成干扰。因此,当网络中的业务负载较轻以及/或者存在一个或多个工作负荷较轻的通信设备时,适当地使得相应的通信设备进入休眠状态成为了有效的节能方法。相应地,当无线通信系统中的业务负载较重以及/或者存在一个或多个工作负荷较重的通信设备时,可以适当地使得处于休眠状态的通信设备进入唤醒状态。
由于基站的能耗远大于终端设备的能耗,因此基站的休眠和唤醒能够显著节省系统的总体能耗。在无线通信系统中,为了节省整个系统的能量损耗,需要考虑是否要休眠/唤醒系统中的一部分基站。在这种场景中,维持基站所服务的通信设备(例如,终端设备和子基站)的稳定的无线通信性能非常重要。因此,需要能够进一步提高节能效率和减少通信中断的系统和方法。
发明内容
本公开提出了针对基站的高效的休眠和唤醒机制,能够降低无线通信系统的总 能耗,并且提高基站和基站之间以及基站与终端设备之间的通信质量。
根据本公开的第一方面,提供了用于第一基站的电子设备,所述电子设备包括处理电路,所述处理电路被配置为:检测第一基站的第一指标;响应于检测到的第一指标指示第一基站的工作负荷低于第一阈值,向第二基站发送第一信息,其中第一信息包括用于指示第一基站请求休眠的信息;以及从第二基站接收针对第一信息的第二信息,其中第二信息指示是否允许第一基站休眠。
对应地,根据本公开的第一方面,还提供了用于第一基站的方法,所述方法包括:检测第一基站的第一指标;响应于检测到的第一指标指示第一基站的工作负荷低于第一阈值,向第二基站发送第一信息,其中第一信息包括用于指示第一基站请求休眠的信息;以及从第二基站接收针对第一信息的第二信息,其中第二信息指示是否允许第一基站休眠。
根据本公开的第二方面,提供了用于第二基站的电子设备,所述电子设备包括处理电路,所述处理电路被配置为:从第一基站接收第一信息,其中第一信息是第一基站响应于检测到第一基站的第一指标指示第一基站的工作负荷低于第一阈值而发送的,并且其中第一信息包括用于指示第一基站请求休眠的信息;以及向第一基站发送针对第一信息的第二信息,其中第二信息指示是否允许第一基站休眠。
对应地,根据本公开的第二方面,还提供了用于第二基站的方法,所述方法包括:从第一基站接收第一信息,其中第一信息是第一基站响应于检测到第一基站的第一指标指示第一基站的工作负荷低于第一阈值而发送的,并且其中第一信息包括用于指示第一基站请求休眠的信息;以及向第一基站发送针对第一信息的第二信息,其中第二信息指示是否允许第一基站休眠。
根据本公开的第三方面,提供了存储有一个或多个指令的计算机可读存储介质,所述一个或多个指令在由电子设备的一个或多个处理器执行时使所述电子设备执行根据本公开的各种实施例的方法。
根据本公开的第四方面,提供了用于无线通信的装置,所述装置包括执行根据本公开的各种实施例的方法的部件或单元。
提供上述概述是为了总结一些示例性的实施例,以提供对本文所描述的主题的各 方面的基本理解。因此,上述特征仅仅是示例并且不应该被解释为以任何方式缩小本文所描述的主题的范围或精神。本文所描述的主题的其他特征、方面和优点将从以下结合附图描述的具体实施方式而变得明晰。
附图说明
当结合附图考虑实施例的以下具体描述时,可以获得对本公开内容更好的理解。在各附图中使用了相同或相似的附图标记来表示相同或者相似的部件。各附图连同下面的具体描述一起包含在本说明书中并形成说明书的一部分,用来例示说明本公开的实施例和解释本公开的原理和优点。其中:
图1示出了根据本公开实施例的无线通信系统的示例场景图。
图2示出了根据本公开实施例的用于第一基站的示例性电子设备。
图3示出了根据本公开实施例的用于第二基站的示例性电子设备。
图4示出了根据本公开实施例的用于基站的休眠的示例的示意图。
图5A示出了根据本公开实施例的用于基站的休眠的第一示例的通信交互图。
图5B示出了根据本公开实施例的用于基站的休眠的第二示例的通信交互图。
图6示出了根据本公开实施例的用于基站的唤醒的示例的示意图。
图7A示出了根据本公开实施例的用于基站的唤醒的第一示例的通信交互图。
图7B示出了根据本公开实施例的用于基站的唤醒的第二示例的通信交互图。
图8示出了根据本公开实施例的用于基站的休眠和唤醒的传输帧的示例的示意图。
图9示出了根据本公开实施例的用于第一基站的示例方法的流程图。
图10示出了根据本公开实施例的用于第二基站的示例方法的流程图。
图11为作为本公开的实施例中可采用的信息处理设备的个人计算机的示例结构的框图;
图12为示出可以应用本公开的技术的基站的示意性配置的第一示例的框图;
图13为示出可以应用本公开的技术的基站的示意性配置的第二示例的框图;
图14为示出可以应用本公开的技术的智能电话的示意性配置的示例的框图。
图15为示出可以应用本公开的技术的汽车导航设备的示意性配置的示例的框图。
虽然在本公开内容中所描述的实施例可能易于有各种修改和另选形式,但是其具体实施例在附图中作为例子示出并且在本文中被详细描述。但是,应该理解的是,附图以及对其的详细描述不旨在将实施例限定到所公开的特定形式,而是相反,目的是要涵盖属于权利要求的精神和范围内的所有修改、等同和另选方案。
具体实施方式
以下描述根据本公开的设备和方法等各方面的代表性应用。这些例子的描述仅是为了增加上下文并帮助理解所描述的实施例。因此,对本领域技术人员而言清楚的是,以下所描述的实施例可以在没有具体细节当中的一些或全部的情况下被实施。在其他情况下,众所周知的过程步骤没有详细描述,以避免不必要地模糊所描述的实施例。其他应用也是可能的,本公开的方案并不限制于这些示例。
图1示出了根据本公开实施例的无线通信系统的示例场景图。应该理解的是,图1仅示出无线通信系统的多种类型和可能布置中的一种;本公开的特征可根据需要在各种系统中的任一者中实现。
如图1所示,无线通信系统100包括基站101-a至101-c(为便于说明,基站101-a至101-c中的任何一个基站在本文中可以称为基站101或第一基站)、基站102(在本文中也可以称为第二基站)、以及一个或多个终端103-a至103-d(为便于说明,终端设备103-a至103-d中的任何一个终端设备在本文中可以称为终端设备103)。基站102可以被配置为管理和控制基站101-a至101-c。在一些实施例中,基站101-a至101-c中的部分或全部可以具有移动性。基站和基站之间(例如,基站101和基站102之间、以及基站101-b和基站101-c)可以被配置为通过回传链路进行通信。基站(例如,101、102)和终端设备103可以被配置为通过接入链路进行通信。基站102还可以被配置为通过有线介质(例如,线缆)与网络(例如,蜂窝服务提供方的核心网、诸如公共交换电话网(PSTN)的电信网络和/或互联网,未示出)进行通信。因此,基站(例如101、102) 可以便于终端设备(例如,103-a至103-c)之间和/或终端设备(例如,103-a至103-c)与网络之间的通信。
应理解,在本文中基站一词具有其通常含义的全部广度,并且至少包括作为无线通信系统或无线电系统的一部分以便于通信的无线通信站。基站的示例可以包括但不限于以下:GSM系统中的基站收发信机(BTS)和基站控制器(BSC)中的至少一者;WCDMA系统中的无线电网络控制器(RNC)和Node B中的至少一者;LTE和LTE-Advanced系统中的eNB;WLAN、WiMAX系统中的接入点(AP);以及将要或正在开发的通信系统中对应的网络节点(例如5G新无线电(New Radio,NR)系统中的gNB,eLTE eNB等)。本文中基站的部分功能也可以实现为在D2D、M2M以及V2V通信场景下对通信具有控制功能的实体,或者实现为在认知无线电通信场景下起频谱协调作用的实体。
应该理解的是,基站(例如101、102)可以根据一种或多种无线通信技术进行操作,在特定地理区域上向终端设备(例如,103)及类似设备提供连续或近似连续的无线电信号覆盖。基站的覆盖区域一般称为小区。不同基站的小区可以具有不同的尺寸。
应该理解的是,作为示例,在新无线电(NR)通信系统中,基站101(第一基站)可以包括移动接入和回传(Integrated Access and Backhaul,IAB)基站,并且基站102(第二基站)可以包括IAB施主(IAB donor)基站。
在本文中终端设备一词具有其通常含义的全部广度,例如终端设备可以为移动站(Mobile Station,MS)、用户设备(User Equipment,UE)等。终端设备可以实现为诸如移动电话、手持式设备、媒体播放器、计算机、膝上型电脑或平板电脑的设备或者几乎任何类型的无线设备。在一些情况下,终端设备可以使用多种无线通信技术进行通信。例如,终端设备可以被配置为使用GSM、UMTS、CDMA2000、WiMAX、LTE、LTE-A、WLAN、NR、蓝牙等中的两者或更多者进行通信。在一些情况下,终端设备也可以被配置为仅使用一种无线通信技术进行通信。
在一些实施例中,由基站102主动决定和发起基站101的休眠和唤醒,然而这需要进行大范围的检测和分析,导致效率较低。此外,如上所述,由于基站101可能具有移动性,因此可能需要较长的基站状态转换时间,从而导致用户服务质量下降。因此,需要高效的用于基站的休眠和唤醒的节能方法。对此,本公开提出了以下用于第一基站 和第二基站的电子设备,使得实现高效节能的同时仍然维持稳定良好的通信质量。
图2示出了根据本公开实施例的用于第一基站101的示例性电子设备。图2所示的电子设备200可以包括各种单元以实现根据本公开的各实施例。在该示例中,电子设备200包括检测单元202、管理单元204和通信单元206。在一种实施方式中,电子设备200被实现为第一基站101本身或其一部分,或者被实现为与第一基站101相关的设备或者该设备的一部分。以下结合第一基站描述的各种操作可以由电子设备200的单元202、204和206或者其他可能的单元实现。
在实施例中,电子设备200的检测单元202可以被配置为检测第一基站的第一指标。管理单元204可以被配置为判断检测到的第一指标是否指示第一基站的工作负荷低于第一阈值。响应于检测到的第一指标指示第一基站的工作负荷低于第一阈值,通信单元206可以被配置为向第二基站发送第一信息,其中第一信息包括用于指示第一基站请求休眠的信息。此外,通信单元306还可以被配置为从第二基站接收针对第一信息的第二信息,其中第二信息指示是否允许第一基站休眠。
图3示出了根据本公开实施例的用于系统100中的第二基站102的示例性电子设备300。图3所示的电子设备300可以包括各种单元以实现根据本公开的各实施例。在该示例中,电子设备300包括通信单元302和管理单元304。在一种实施方式中,电子设备300被实现为第二基站102本身或其一部分,或者被实现为用于控制终端设备102或以其他方式与第二基站102相关的设备或者该设备的一部分。以下结合第二基站描述的各种操作可以由电子设备300的单元302和304或者其他可能的单元实现。
在实施例中,电子设备300的通信单元302可以被配置为从第一基站接收第一信息,其中第一信息是第一基站响应于检测到第一基站的第一指标指示第一基站的工作负荷低于第一阈值而发送的,并且其中第一信息包括用于指示第一基站请求休眠的信息。管理单元304可以基于第一信息来确定第二信息,其中第二信息指示是否允许第一基站休眠。此外,通信单元302还可以被配置为向第一基站发送针对第一信息的第二信息。
在一些实施例中,电子设备200和300可以以芯片级来实现,或者也可以通过包括其他外部部件(例如无线电链路、天线等)而以设备级来实现。例如,各电子设备可以作为整机而工作为通信设备。
应该注意的是,上述各个单元仅是根据其所实现的具体功能划分的逻辑模块,而不是用于限制具体的实现方式,例如可以以软件、硬件或者软硬件结合的方式来实现。在实际实现时,上述各个单元可被实现为独立的物理实体,或者也可由单个实体(例如,处理器(CPU或DSP等)、集成电路等)来实现。其中,处理电路可以指在计算系统中执行功能的数字电路系统、模拟电路系统或混合信号(模拟和数字的组合)电路系统的各种实现。处理电路可以包括例如诸如集成电路(IC)、专用集成电路(ASIC)这样的电路、单独处理器核心的部分或电路、整个处理器核心、单独的处理器、诸如现场可编程门阵列(FPGA)的可编程硬件设备、和/或包括多个处理器的系统。
休眠状态和唤醒状态
根据本公开的基站可以包括休眠状态和唤醒状态。在唤醒状态下,基站正常工作,能耗较大;反之,在休眠状态下,基站的能耗较小。
应该理解的是,本公开中的休眠状态可以包括深度休眠状态(有时也称为空闲(IDLE)状态),也可以包括浅度休眠状态(有时也称为非活动(INACTIVE)状态)。浅度休眠状态的功耗略大于深度休眠状态。然而,浅度休眠状态转换为唤醒状态仅需要较少的信令和较低的延迟,因此可以实现更加快速的状态转换。此外,浅度休眠状态可以在基站的移动场景中缩短唤醒时间,降低功耗。
基站的休眠
图4示出了根据本公开实施例的用于基站的休眠的示例的示意图。更具体地,图4示出的系统400A示出了基站休眠之前的示例,而系统400B示出了基站休眠之后的示例。
如图4所示,基站102管理和控制多个基站101-a至101-f,并且系统中存在多个终端设备103-a至103-d,其中终端设备与基站101连接。以系统400A作为示例,无线通信系统中可以存在两种部署结构:简单部署和复杂部署。简单部署中仅包括单层级的基站101,例如基站102连接到基站101-a,基站101-a继而连接到终端设备103-a。复杂部署中可以包括多层级的基站101,例如基站102连接到基站101-b,基站101-b继而连接到基站101-c,基站101-c继而连接到基站101-d。在复杂部署中,靠近基站102的基站可以称为上游基站(有时也称为父基站),反之可以称为下游基站(有时也称为子基站)。例如,基站101-b是基站101-c的上游基站,并且基站101-d是基站101-c的下 游基站。应该理解的是,图4中仅示出了网络部署的示例,实践中可以具有更多或更少的层级的基站。
根据本公开的实施例,在基站101检测到其工作负荷低于特定阈值(在本文中也称为第一阈值)后,可以向基站102发送第一信息,其中第一信息包括指示基站101请求休眠的信息。基站102可以向基站101发送第二信息,其中第二信息指示是否允许该基站101休眠。如果基站101接收到第二信息并且第二信息指示允许自己休眠,就可以通知其所服务的终端设备和/或下游基站连接到一个或多个邻近基站。
在一个实施例中,在系统400A中的基站101-a检测到其工作负荷低于第一阈值并且向基站102发送包括请求休眠的信息的第一信息。在接收到来自基站102的指示允许该基站101-a休眠的第二信息的情况下,基站101-a可以通知其所服务的终端设备103-a连接到其他邻近基站。对应地,在系统400B中,终端设备103-a连接到基站101-a的邻近基站101-c,并且基站101-a进入休眠状态。在另一个实施例中,在系统400A中的基站101-c检测到其工作负荷低于第一阈值并且向基站102发送包括请求休眠的信息的第一信息。由于基站101-c具有上游基站101-b,因此第一信息是从基站101-c经由基站101-b发送到基站102的。在(经由基站101-b)接收到来自基站102的指示允许基站101-c休眠的第二信息的情况下,基站101-c可以通知其下游基站101-d连接到其他邻近基站。对应地,在系统400B中,基站101-d连接到基站101-c的邻近基站101-f,并且基站101-c进入休眠状态。
应该理解的是,系统400B仅示出了基站的休眠的示例,当基站101进入休眠状态后,其所服务的多个终端设备和/或下游基站可以各自连接到多个不同的邻近基站。
还应该理解的是,连接到邻近基站包括接入邻近基站和切换到邻近基站。在一个实施例中,如果基站101在休眠之前存在与终端设备103正在进行的通信,那么基站101可以使终端设备103切换到其他邻近基站。在另一个实施例中,如果基站101在休眠之前没有与终端设备103正在进行的通信,那么基站101可以通知终端设备103接入该邻近基站。类似地,上述终端设备103的连接操作对于基站101的下游基站同样适用。
还应该理解的是,本文中的阈值(例如,第一阈值,以及后文中的第二阈值、第三阈值、第四阈值)可以是预先定义的值,也可以是根据先验经验结合机器学习等技术经过训练和计算得到的值。还应该理解的是,这些阈值可以定期地更新。
下面将通过两个具体示例来详细描述根据本公开的用于基站的休眠的方法。
基站的休眠的第一示例
图5A示出了根据本公开实施例的用于基站的休眠的第一示例的通信交互图。第一示例针对的场景包括上述无线通信系统的简单部署中的基站101以及复杂部署中的最靠近基站102的基站101(即,基站101与基站102直接连接)。为了便于说明,在第一示例中,基站101为IAB基站,并且基站102为IAB donor基站。
首先,在操作1中,IAB基站检测自身的第一指标,其中第一指标包括但不限于该IAB基站的业务量和/或该IAB基站的功耗。也就是说,第一指标可以反映该IAB基站的工作负荷的大小。作为示例,IAB基站的工作负荷可以是IAB基站的第一指标的函数。通常来说,第一指标的值越大,IAB基站的工作负荷越重;第一指标的值越小,IAB基站的工作负荷越轻。响应于检测到的第一指标指示IAB基站的工作负荷低于第一阈值(即,IAB基站的业务量较小和/或功耗较低),在操作2中,IAB基站向IAB donor基站发送第一信息,其中第一信息包括用于指示IAB基站请求休眠的信息(在本文中该信息也简称为请求休眠信息)。附加地,第一信息也可以包括IAB基站的第一指标或工作负荷的值,以供IAB donor基站存储和进一步分析。
基于第一信息,IAB donor基站可以确定第二信息,并且在操作3中将第二信息发送给IAB基站,其中第二信息可以指示允许该IAB基站休眠。作为示例,第二信息可以包括针对第一信息(指示IAB基站请求休眠)的确认(Acknowledgement,ACK)响应。第二信息的确定至少基于IAB基站的一个或多个邻近IAB基站的工作负荷状态。例如,至少基于IAB基站的一个或多个邻近IAB基站低于第三阈值(即,该一个或多个邻近IAB基站的业务量较小和/或功耗较低),第二信息包括ACK响应(即,指示允许IAB基站休眠)。也就是说,在IAB donor基站确定IAB基站的邻近IAB基站中存在有能力承接该IAB基站所服务的通信设备(在图5A中称为下游设备,下游设备包括但不限于该IAB基站所服务的终端设备和下游IAB基站)的情况下,确定允许该IAB基站进入休眠状态。
应该理解的是,IAB donor基站可以存储有或者可以访问包括其所在的无线通信系统中的各个IAB基站的工作负荷状态的信息表。该信息表可以是各个IAB基站定期报告给IAB donor基站的,也可以是IAB donor基站定期检测得到的。
附加地,由于IAB donor基站可以获得各个IAB基站的工作负荷状态,因此第二信息还可以包括IAB基站的一个或多个邻近IAB基站的列表。作为示例,该列表中可以包括工作负荷低于第三阈值的一个或多个邻近IAB基站的标识符,并且可以将这一个或多个邻近IAB基站按照工作负荷从低到高的顺序将它们排序。可选地,该列表中还可以包括上述工作负荷低于第三阈值的邻近IAB基站的工作负荷的值。这些信息可以后续被提供给IAB基站的下游设备以辅助其选择并连接到相应的邻近IAB基站。
应该理解的是,如果IAB donor基站确定IAB基站的邻近IAB基站没有能力承接该IAB基站的下游设备(例如,IAB基站的所有邻近IAB基站的工作负荷较高,即IAB基站的所有邻近IAB基站的业务量较大和/或功耗较高),那么IAB donor基站可以直接向IAB基站发送包括否定确认(Negative Acknowledgement,NACK)响应的第二信息或者不发送响应。IAB基站在预定时间内接收到NACK响应或者未接收到响应的情况下,将继续保持唤醒状态,正常与其下游设备保持连接和通信。
IAB基站在接收到来自IAB donor基站的包括ACK响应的第二信息后,在操作4中,IAB基站向其下游设备发送无线资源控制(Radio Resource Control,RRC)重配置(Reconfiguration)信息,使得下游设备在操作5中执行与邻近IAB基站的随机接入过程。
应该理解的是,如果第二信息中仅包括指示允许IAB基站休眠的ACK响应,那么下游设备可以随机地搜索或根据特定准则(例如,根据信噪比(SNR)值)找到合适的邻近IAB基站,并连接到该邻近IAB基站。如果第二信息中还包括IAB基站的一个或多个邻近IAB基站的列表,那么IAB基站可以将该列表转发给其下游设备。下游设备基于该列表,可以更加有针对性地和更快速地连接到工作负荷较低且能够为自己提供较高通信质量的邻近IAB基站。
在IAB基站的下游设备完成随机接入过程后,在操作6中与新连接的邻近IAB基站进行RRC重配置,然后在操作7中向IAB基站发送RRC重配置完成信息。IAB基站在接收到所有下游设备的RRC配置完成信息后,进入休眠状态。
基站的休眠的第二示例
图5B示出了根据本公开实施例的用于基站的休眠的第二示例的通信交互图。第二 示例针对的场景包括上述无线通信系统的复杂部署中的具有上游基站的基站101(即,基站101经由上游基站与基站102连接)。可以结合图5A的示例来理解图5B,二者的主要区别在于在图5B中基站101和基站102之间需要经由基站101的上游基站进行交互。为了便于说明,在第二示例中,基站101为IAB基站,并且基站102为IAB donor基站。
首先,在操作1中,IAB基站检测自身的第一指标,其中第一指标包括但不限于该IAB基站的业务量和/或该IAB基站的功耗。响应于检测到的第一指标指示IAB基站的工作负荷低于第一阈值(即,IAB基站的业务量较小和/或功耗较低),在操作2中,IAB基站向其上游IAB基站发送第一信息,并且上游IAB基站在操作3中将第一信息发送给IAB donor基站。第一信息包括用于指示IAB基站请求休眠的信息(请求休眠信息)。附加地,第一信息也可以包括IAB基站的第一指标或工作负荷的值,以供IAB donor基站存储和进一步分析。
基于第一信息,IAB donor基站可以确定第二信息,并且在操作4中将第二信息发送给上游IAB基站,并且由上游IAB基站在操作5中将第二信息发送给IAB基站。第二信息可以指示允许该IAB基站休眠。作为示例,第二信息可以包括针对第一信息(指示IAB基站请求休眠)的确认(Acknowledgement,ACK)响应。第二信息的确定至少基于IAB基站的一个或多个邻近IAB基站的工作负荷状态。例如,至少基于IAB基站的一个或多个邻近IAB基站低于第三阈值(即,该一个或多个邻近IAB基站的业务量较小和/或功耗较低),第二信息包括ACK响应(即,指示允许IAB基站休眠)。也就是说,在IAB donor基站确定IAB基站的邻近IAB基站中存在有能力承接该IAB基站所服务的通信设备(在图5B中称为下游设备,下游设备包括但不限于该IAB基站所服务的终端设备和下游IAB基站)的情况下,确定允许该IAB基站进入休眠状态。
与图5A类似,附加地,由于IAB donor基站可以获得其所在的无线通信系统中的各个IAB基站的工作负荷状态,因此第二信息还可以包括IAB基站的一个或多个邻近IAB基站的列表。作为示例,该列表中可以包括工作负荷低于第三阈值的一个或多个邻近IAB基站的标识符,并且可以将这一个或多个邻近IAB基站按照工作负荷从低到高的顺序将它们排序。可选地,该列表中还可以包括上述工作负荷低于第三阈值的邻近IAB基站的工作负荷的值。这些信息可以后续被提供给IAB基站的下游设备以辅助其选 择并连接到相应的邻近IAB基站。
应该理解的是,如果IAB donor基站确定IAB基站的邻近IAB基站没有能力承接该IAB基站的下游设备(例如,IAB基站的所有邻近IAB基站的工作负荷较高,即IAB基站的所有邻近IAB基站的业务量较大和/或功耗较高),那么IAB donor基站可以经由上游IAB基站向IAB基站发送包括否定确认(Negative Acknowledgement,NACK)响应的第二信息或者不发送响应。IAB基站在预定时间内接收到NACK响应或者未接收到响应的情况下,将继续保持唤醒状态,正常与其下游设备保持连接和通信。
IAB基站在接收到来自IAB donor基站的包括ACK响应的第二信息后,在操作6中,IAB基站向其下游设备发送RRC重配置信息,使得下游设备在操作7中执行与邻近IAB基站的随机接入过程。
应该理解的是,如果第二信息中仅包括指示允许IAB基站休眠的ACK响应,那么下游设备可以随机地搜索或根据特定准则(例如,根据SNR值)找到合适的邻近IAB基站,并连接到该邻近IAB基站。如果第二信息中还包括IAB基站的一个或多个邻近IAB基站的列表,那么IAB基站可以将该列表转发给其下游设备。下游设备基于该列表,可以更加有针对性地和更快速地连接到工作负荷较低且能够为自己提供较高通信质量的邻近IAB基站。
在IAB基站的下游设备完成随机接入过程后,在操作8中与新连接的邻近IAB基站进行RRC重配置,然后在操作9中向IAB基站发送RRC重配置完成信息。IAB基站在接收到所有下游设备的RRC配置完成信息后,进入休眠状态。
应该理解的是,图5B中仅示出了IAB基站具有一个上游IAB基站的示例,实际上可以具有多个层级的上游IAB基站,因此IAB基站和IAB donor基站之间的第一信息和第二信息的可以经由中间的多个层级的上游IAB基站来传输。
在上述用于基站的休眠的第一示例和第二示例中,出于便于阐述的目的,介绍了第一基站101为IAB基站和第二基站102为IAB donor基站的示例。然而,应该理解的是,第一基站101和第二基站102实际上也可以是其他任何适当类型的基站。
根据本公开提出的用于基站的休眠的机制,可以在第一基站检测到自己的工作负荷较低的情况下向第二基站主动请求休眠,第二基站根据本地存储或可访问的第一基站 的邻近基站的工作负荷状态来确定是否允许第一基站休眠。在被允许休眠后,第一基站可以通知其所服务的终端设备和/或下游基站连接到第一基站的一个或多个邻近基站,保证了通信服务的连续性。
在传统的终端设备休眠机制中,终端设备需要彻底完成剩余的业务量才进入休眠状态,这对于基站的休眠是不适用的,因为基站的业务量比终端设备大得多,很难将剩余业务量彻底清零。根据本公开的基站休眠机制,基站在工作负荷低于一定阈值时就可以考虑休眠,并且可以通过使得下游设备连接到邻近基站来快速进入休眠状态。另一方面,在传统的终端设备休眠机制中,可以由基站等上游设备或网络决定终端设备可以进入休眠状态,并且将该决定告知终端设备。如果将该休眠机制直接应用于本公开中的基站休眠,那么第二基站仅决定并告知第一基站可以进入休眠状态,但是第一基站的下游设备对该决定一无所知,从而将导致无线电链路失败(Radio Link Failure,RLF)的发生,并且终端设备和下游基站将在一段时间内丢失服务。根据本公开的基站休眠机制,第一基站可以决定自身需要休眠,并且在获得第二基站的允许后将该决定告知下游设备,以使其连接到邻近基站,从而有效避免了下游设备的通信中断并且维持了稳定良好的通信质量。
根据本公开的实施例,第一基站主动请求休眠的操作实现了局部优化处理,这相较于第二基站根据检测到的各个基站的工作负荷来判断要休眠的一个或多个基站的全局处理节省了大量的时间。这是因为网络的业务量实时发生变化,第二基站无法实时监测第一基站的工作负荷,但是第一基站可以以较高的频率进行自身的工作负荷的检测并且及时地请求休眠。此外,每个基站对于工作负荷的承受能力可能不同,即不同基站请求休眠的标准可能不同,因此由第一基站根据自身的工作负荷来判断是否需要休眠更加准确和合理。
基站的唤醒
图6示出了根据本公开实施例的用于基站的唤醒的示例的示意图。更具体地,图6示出的系统600A示出了基站唤醒之前的示例,而系统600B示出了基站唤醒之后的示例。
如图6所示,基站102管理和控制多个基站101a至101-h,并且系统中存在多个终端设备103-a至103-d,其中终端设备与基站101连接。以系统600A作为示例,无线通信系统中可以存在两种部署结构:简单部署和复杂部署。简单部署中仅包括单层级的 基站101,例如基站102连接到基站101-a,基站101-a继而连接到终端设备103-a至103-c。复杂部署中可以包括多层级的基站101,例如基站102连接到基站101-b,基站101-b继而连接到基站101-c,基站101-c继而连接到基站101-d。在复杂部署中,靠近基站102的基站可以称为上游基站(有时也称为父基站),反之可以称为下游基站(有时也称为子基站)。例如,基站101-b是基站101-c的上游基站,并且基站101-d是基站101-c的下游基站。应该理解的是,图6中仅示出了网络部署的示例,实践中可以具有更多或更少的层级的基站。
根据本公开的实施例,在基站101检测到其工作负荷高于特定阈值(在本文中也称为第二阈值,并且第二阈值不小于第一阈值)后,可以向基站102发送第三信息,其中第三信息包括指示请求唤醒基站101的处于休眠状态的一个或多个邻近基站的信息。基站102可以向基站101发送包括针对第三信息的响应信息的信息(在本文中也称为第四信息)。如果基站102确定将要唤醒基站101的一个或多个邻近基站,那么该一个或多个邻近基站将接收到来自基站102的唤醒信息并且进入唤醒状态。之后,基站101所服务的一个或多个终端设备和/或下游基站可以连接到至少一个邻近基站。
应该理解的是,基站101的工作负荷较重可能是两种原因引起的:节点过载和节点拥塞。节点过载可以指过多的终端设备与基站101连接,导致基站101发生了业务过载(即,接入链路数量过多);节点拥塞可以指过多的基站与基站101连接,大量的业务需要通过基站101转发,因此导致基站101发生了拥塞(即,回传链路数量过多)。节点过载和节点拥塞中的至少一个的发生将使得基站101的工作负荷过重,从而基站101希望其邻近基站能够被唤醒以分担其工作负荷。
在一个实施例中,在系统600A中的基站101-a检测到其工作负荷高于第二阈值(例如,发生了节点过载)并且向基站102发送包括请求唤醒邻近基站的第三信息。然后,基站101-a接收到来自基站102的指示将要唤醒该基站101-a的邻近基站的第四信息,并且基站101-a的邻近基站101-e(先前处于休眠状态)进入唤醒状态。基站101-a所服务的终端设备103-a至103-c中的部分或全部将可以连接到其他邻近基站。对应地,在系统600B中,基站101-a所服务的终端设备103-a仍然保持连接,而基站101-a所服务的终端设备103-b和103-c转而连接到刚刚唤醒的邻近基站101-e。在另一个实施例中,在系统600A中的基站101-c检测到其工作负荷高于第二阈值(例如,发生了节点拥塞) 并且向基站102发送包括请求唤醒邻近基站的第三信息。由于基站101-c具有上游基站101-b,因此第三信息是从基站101-c经由基站101-b发送到基站102的。然后,基站101-c(经由基站101-b)接收到来自基站102的指示将要唤醒基站101-c的邻近基站的第四信息,并且基站101-c的邻近基站101-h(先前处于休眠状态)进入唤醒状态。基站101-c所服务的终端设备103-d和下游基站101-d中的部分或全部将可以连接到其他邻近基站。对应地,在系统600B中,基站101-c服务的终端设备103-d仍然保持连接,而基站101-c的下游基站101-d转而连接到刚刚唤醒的邻近基站101-h。
应该理解的是,系统600B仅示出了基站的唤醒的示例,在基站101的一个或多个邻近基站被唤醒的情况下,该基站101服务的多个终端设备和/或下游基站可以各自连接到多个不同的邻近基站。还应该理解的是,终端设备和/或下游基站连接的邻近基站可以是刚刚被唤醒的邻近基站,以将工作负荷转移到此类基站,用于缓解基站101的过载和拥塞。
下面将通过两个具体示例来详细描述根据本公开的用于基站的唤醒的方法。
基站的唤醒的第一示例
图7A示出了根据本公开实施例的用于基站的唤醒的第一示例的通信交互图。第一示例针对的场景包括上述无线通信系统的简单部署中的基站101以及复杂部署中的最靠近基站102的基站101(即基站101与基站102直接连接)。为了便于说明,在第一示例中,基站101为IAB基站,并且基站102为IAB donor基站。
首先,在操作1中,IAB基站检测自身的第一指标,其中第一指标包括但不限于该IAB基站的业务量和/或该IAB基站的功耗。也就是说,第一指标可以反映该IAB基站的工作负荷的大小。作为示例,IAB基站的工作负荷可以是IAB基站的第一指标的函数。通常来说,第一指标的值越大,IAB基站的工作负荷越重。如前所述,IAB基站的工作负荷过重存在两种原因:节点过载和节点拥塞。因此,也可以分别统计来自终端设备的工作负荷(即,接入链路的负荷)和来自基站的工作负荷(即,回传链路的负荷)。响应于检测到的第一指标指示IAB基站的工作负荷高于第二阈值(例如,出现节点过载和节点拥塞中的任一者或两者而导致IAB基站的业务量较大和/或功耗较大),在操作2中,IAB基站向IAB donor基站发送第三信息,其中第三信息包括用于指示请求唤醒IAB基站的一个或多个邻近IAB基站的信息(在本文中该信息也简称为请求唤醒信息)。 附加地,第三信息也可以包括IAB基站的第一指标或工作负荷的值,以供IAB donor基站存储和进一步分析。
基于第三信息,IAB donor基站可以确定第四信息,并且在操作3中将第四信息发送给IAB基站,其中第四信息可以包括针对第三信息的响应信息。作为示例,响应信息可以指示将要唤醒IAB基站的一个或多个邻近基站。第四信息的确定至少基于IAB基站的一个或多个邻近IAB基站的休眠状态。也就是说,在IAB donor基站确定IAB基站的邻近IAB基站中存在处于休眠状态的一个或多个邻近IAB基站并且该一个或多个邻近IAB基站中的部分或全部有能力承接该IAB基站所服务的通信设备(在图7A中称为下游设备,下游设备包括但不限于该IAB基站所服务的终端设备和下游IAB基站)的情况下,确定唤醒该一个或多个邻近IAB基站中的部分或全部。
应该理解的是,IAB donor基站可以存储有或者可以访问包括其所在的无线通信系统中的各个IAB基站的工作负荷状态和网络拓扑(包括基站和终端设备的位置信息等)的信息表。该信息表可以是各个IAB基站和终端设备定期报告给IAB donor基站的,也可以是IAB donor基站定期检测得到的。还应该理解的是,IAB donor基站可以随机地指定将要唤醒的邻近IAB基站,也可以基于网络拓扑的信息表来决定将要唤醒IAB基站的哪个(哪些)邻近基站。
附加地,第四信息还可以包括将要唤醒的一个或多个邻近IAB基站的具体信息,以使IAB基站的下游设备连接到至少一个邻近基站。作为示例,该具体信息可以以列表形式呈现,并且该列表中可以包括将要唤醒的一个或多个邻近IAB基站的标识符,并且可选地可以包括这一个或多个邻近IAB基站的位置信息。这些具体信息可以后续被提供给IAB基站的下游设备以辅助其选择并连接到相应的邻近IAB基站。
应该理解的是,如果IAB donor基站确定IAB基站不存在处于休眠状态的邻近基站,那么IAB donor基站可以基于所获得的IAB基站的工作负荷状态的信息表来判定IAB基站的邻近IAB基站中是否存在工作负荷低于第四阈值(第四阈值小于第二阈值)的一个或多个邻近IAB基站(即,一个或多个邻近IAB基站的业务量较小和/或功耗较低)。也就是说,在IAB donor基站确定IAB基站的该一个或多个邻近IAB基站有能力承接该IAB基站的下游设备中的部分或全部的情况下,可以告知IAB基站并且使得其下游设备中的部分或全部连接到工作负荷较低的邻近IAB基站。
在操作4中,IAB donor基站向将要唤醒的一个或多个邻近IAB基站发送唤醒信息,并且该一个或多个邻近IAB基站从休眠状态转换为唤醒状态。应该注意的是,休眠的邻近IAB基站可能具有移动性。为了减少信令交互和由此产生的延迟,唤醒信息可以通过休眠IAB基站和IAB donor基站的中央单元之间的F1接口进行传输。IAB基站在接收到第四信息之后,在操作5中向其下游设备发送RRC重配置信息,使得下游设备在操作6中执行与邻近IAB基站的随机接入过程。
应该理解的是,IAB基站可以通知其全部下游设备进行RRC重配置。可替代地,IAB基站也可以随机地或根据特定准则(例如,与该下游设备的业务量超过特定阈值)选择一部分下游设备进行RRC重配置。
还应该理解的是,如果第四信息中仅包括指示将要唤醒一个或多个邻近IAB基站的肯定指示,那么下游设备可以随机地搜索或根据特定准则(例如,根据SNR值)找到合适的邻近IAB基站,并连接到该邻近IAB基站。如果第二信息中还包括IAB基站的将要唤醒的一个或多个邻近IAB基站的具体信息,那么IAB基站可以将该具体信息转发给其下游设备。下游设备基于该具体信息,可以更加有针对性地和更快速地连接到刚刚被唤醒的且能够为自己提供较高通信质量的邻近IAB基站。
在IAB基站的下游设备完成随机接入过程后,在操作7中与新连接的邻近IAB基站进行RRC重配置,然后在操作8中向IAB基站发送RRC重配置完成信息。
应该理解的是,IAB donor基站也可以在唤醒邻近IAB基站后,直接向IAB基站的下游设备发送指示已经唤醒了一个或多个邻近IAB基站的信息(以及可选地,唤醒的一个或多个邻近IAB基站的标识符的信息),以使下游设备根据需要连接到邻近IAB基站。应该注意的是,在这种情况下,可以省去IAB基站和下游设备之间的RRC重配置过程(即可以省去操作5、7-8)。可选地,在这种情况下,用于传输第四信息的操作(即操作3)也可以省去。
基站的唤醒的第二示例
图7B示出了根据本公开实施例的用于基站的唤醒的第二示例的通信交互图。第二示例针对的场景包括上述无线通信系统的复杂部署中的具有上游基站的基站101(即,基站101经由上游基站与基站102连接)。可以结合图7A的示例来理解图7B,二者的 主要区别在于在图7B中基站101和基站102之间需要经由基站101的上游基站进行交互。为了便于说明,在第二示例中,基站101为IAB基站,并且基站102为IAB donor基站。
首先,在操作1中,IAB基站检测自身的第一指标,其中第一指标包括但不限于该IAB基站的业务量和/或该IAB基站的功耗。也就是说,第一指标可以反映该IAB基站的工作负荷的大小。如前所述,IAB基站的工作负荷过重存在两种原因:节点过载和节点拥塞。因此,也可以分别统计来自终端设备的工作负荷(即,接入链路的负荷)和来自基站的工作负荷(即,回传链路的负荷)。响应于检测到的第一指标指示IAB基站的工作负荷高于第二阈值(例如,出现节点过载和节点拥塞中的任一者或两者而导致IAB基站的业务量较大和/或功耗较大),在操作2中,IAB基站向其上游IAB基站发送第三信息,并且上游IAB基站在操作3中将第三信息发送给IAB donor基站。第三信息包括用于指示请求唤醒IAB基站的一个或多个邻近IAB基站的信息(请求唤醒信息)。附加地,第三信息也可以包括IAB基站的第一指标或工作负荷的值,以供IAB donor基站存储和进一步分析。
基于第三信息,IAB donor基站可以确定第四信息,并且在操作4中将第四信息发送给上游IAB基站,并且由上游IAB基站在操作5中将第四信息发送给IAB基站。第四信息可以包括针对第三信息的响应信息。作为示例,响应信息可以指示将要唤醒IAB基站的一个或多个邻近基站。第四信息的确定至少基于IAB基站的一个或多个邻近IAB基站的休眠状态。也就是说,在IAB donor基站确定IAB基站的邻近IAB基站中存在处于休眠状态的一个或多个邻近IAB基站并且该一个或多个邻近IAB基站中的部分或全部有能力承接该IAB基站所服务的通信设备(在图7B中称为下游设备,下游设备包括但不限于该IAB基站所服务的终端设备和下游IAB基站)的情况下,确定唤醒该一个或多个邻近IAB基站中的部分或全部。
与图7A类似,附加地,IAB donor基站可以存储有或者可以访问包括其所在的无线通信系统中的各个IAB基站的工作负荷状态和网络拓扑(包括基站和终端设备的位置信息等)的信息表。因此,第四信息还可以包括将要唤醒的一个或多个邻近IAB基站的具体信息,以使IAB基站的下游设备连接到至少一个邻近基站。作为示例,该具体信息可以以列表形式呈现,并且该列表中可以包括将要唤醒的一个或多个邻近IAB基站的标 识符,并且可选地可以包括这一个或多个邻近IAB基站的位置信息。这些具体信息可以后续被提供给IAB基站的下游设备以辅助其选择并连接到相应的邻近IAB基站。
应该理解的是,如果IAB donor基站确定IAB基站不存在处于休眠状态的邻近基站,那么IAB donor基站可以基于所获得的IAB基站的工作负荷状态的信息表来判定IAB基站的邻近IAB基站中是否存在工作负荷低于第四阈值(第四阈值小于第二阈值)的一个或多个邻近IAB基站(即,一个或多个邻近IAB基站的业务量较小和/或功耗较低)。也就是说,在IAB donor基站确定IAB基站的该一个或多个邻近IAB基站有能力承接该IAB基站的下游设备中的部分或全部的情况下,可以经由上游IAB基站告知IAB基站并且使得该IAB基站的下游设备中的部分或全部连接到工作负荷较低的邻近IAB基站。
在操作6中,IAB donor基站向将要唤醒的一个或多个邻近IAB基站发送唤醒信息,并且该一个或多个邻近IAB基站从休眠状态转换为唤醒状态。为了减少信令交互和由此产生的延迟,唤醒信息可以通过休眠IAB基站和IAB donor基站的中央单元之间的F1接口进行传输。IAB基站在接收到第四信息之后,在操作7中向其下游设备发送RRC重配置信息,使得下游设备在操作8中执行与邻近IAB基站的随机接入过程。
应该理解的是,IAB基站可以通知其全部下游设备进行RRC重配置。可替代地,IAB基站也可以随机地或根据特定准则(例如,与该下游设备的业务量超过特定阈值)选择一部分下游设备进行RRC重配置。
还应该理解的是,如果第四信息中仅包括指示将要唤醒一个或多个邻近IAB基站的肯定指示,那么下游设备可以随机地搜索或根据特定准则(例如,根据SNR值)找到合适的邻近IAB基站,并连接到该邻近IAB基站。如果第二信息中还包括IAB基站的将要唤醒的一个或多个邻近IAB基站的具体信息,那么IAB基站可以将该具体信息转发给其下游设备。下游设备基于该具体信息,可以更加有针对性地和更快速地连接到刚刚被唤醒的且能够为自己提供较高通信质量的邻近IAB基站。
在IAB基站的下游设备完成随机接入过程后,在操作9中与新连接的邻近IAB基站进行RRC重配置,然后在操作10中向IAB基站发送RRC重配置完成信息。
应该理解的是,IAB donor基站也可以在唤醒邻近IAB基站后,直接向IAB基站 的下游设备发送指示已经唤醒了邻近IAB基站的信息(以及可选地,唤醒的邻近IAB基站的标识符的信息),以使下游设备根据需要连接到邻近IAB基站。应该注意的是,在这种情况下,可以省去IAB基站和下游设备之间的RRC重配置过程(即可以省去操作7、9-10)。可选地,在这种情况下,用于传输第四信息的操作(即操作4和5)也可以省去。
应该理解的是,图7B中仅示出了IAB基站具有一个上游IAB基站的示例,实际上可以具有多个层级的上游IAB基站,因此IAB基站和IAB donor基站之间的第一信息和第二信息的可以经由中间的多个层级的上游IAB基站来传输。
在上述用于基站的休眠的第一示例和第二示例中,出于便于阐述的目的,介绍了第一基站101为IAB基站和第二基站102为IAB donor基站的示例。然而,应该理解的是,第一基站101和第二基站102实际上也可以是其他任何适当类型的基站。
根据本公开提出的用于基站的唤醒的机制,可以在第一基站检测到自己的工作负荷较高的情况下向第二基站请求唤醒邻近基站,第二基站根据本地存储或可访问的第一基站的邻近基站的休眠状态来确定是否将唤醒一个或多个邻近基站。在唤醒一个或多个邻近基站后,第一基站服务的终端设备和/或下游基站中的部分或全部可以连接到至少一个邻近基站,缓解了第一基站的过重的工作负担。
在传统的终端设备唤醒机制中,终端设备在检测到自身存在上行业务需求时可以触发自身的唤醒。然而,该唤醒机制无法直接应用于本公开中的基站唤醒。这是因为在终端设备检测到自身存在上行业务需求并且其最邻近的基站处于休眠状态的情况下,本着节能的原则,终端设备将直接连接到其他邻近基站来进行通信,并不会主动请求唤醒处于休眠状态的基站。另一方面,在传统的终端设备唤醒机制中,可以由基站等上游设备或网络通过网络寻呼等方式唤醒终端设备,这种方法也不适用于本公开中的基站唤醒。漫无目的的网络寻呼将耗费大量时间和资源,效率过低。根据本公开的基站休眠机制,第一基站发送请求唤醒邻近基站的请求后有助于精准地定位需要唤醒基站的区域,使得第二基站能够迅速唤醒一个或多个邻近基站来缓解第一基站的过载和拥塞问题。
根据本公开的实施例,第一基站主动请求唤醒邻近的休眠基站的处理是高效和省时的。如果第一基站仅将工作负荷的值发送给第二基站,第二基站并不会主动判断和确定该信息是定期上报的信息还是请求唤醒邻近基站的信息。请求唤醒信息的发送有助于 第二基站有针对性地查询第一基站的邻近休眠基站和判断要唤醒哪个(或哪些)邻近基站。此外,每个基站对于工作负荷的承受能力可能不同,即不同基站发送过载和拥塞的标准可能不同,因此由第一基站根据自身的工作负荷来判断是否需要请求唤醒邻近基站以分担其工作负荷更加准确和合理。
信令示例
图8示出了根据本公开实施例的用于基站的休眠和唤醒的传输帧的示例的示意图。
如图8所示,第一基站向第二基站发送的用于指示请求休眠的请求休眠信息以及用于请求唤醒其他邻近基站的请求唤醒信息可以被包括在现有的传输帧中的业务负载信息(Legacy Traffic Load Information)字段中。作为示例,可以在业务负载信息字段增加1比特来表示请求休眠信息,当第一基站检测到其工作负荷较低(例如,低于第一阈值时),可以将该比特的值设置为1以指示请求休眠,否则该比特的值设置为0。类似地,可以在业务负载信息字段再增加1比特来表示请求唤醒信息,当第一基站检测到其来自终端设备和/或其他基站的工作负荷较高(例如,高于第二阈值时),可以将该比特的值设置为1以指示请求唤醒处于休眠状态的邻近基站,否则该比特的值设置为0。
应该理解的是,上述请求休眠信息和请求唤醒信息也可以被包括在传输帧的其他字段中。可替代地,在一些实施例中,请求休眠信息和请求唤醒信息也可以占用更多的比特,或者占用原字段中的空闲比特。
本公开提出的用于基站的休眠和唤醒机制使得第一基站能够根据检测到的自身的工作负荷来确定是否请求休眠或请求唤醒其他邻近基站。第二基站根据全局的基站工作负荷状态和休眠状态等信息来辅助判断是否允许第一基站休眠或唤醒第一基站的一个或多个邻近基站。可以看出,上述处理有助于第二基站有针对性地查询信息并且做出判断,使得休眠和唤醒过程非常高效和省时。此外,在第一基站接收到允许其休眠的情况下,可以通知其所服务的终端设备和/或下游基站及时连接到适当的邻近基站,能够减少通信中断,保证稳定良好的通信服务质量。本公开提出的机制也允许不同的基站根据自身的承受能力判断工作负荷是否过轻或过重,具有较大的灵活性和多样性。此外,在NR通信系统中允许利用F1接口代替传统的RRC连接来传输唤醒信息可以进一步减少传输的信令数目的产生的延迟,从而缩短了总唤醒时间。
示例性方法
图9示出了根据本公开实施例的用于第一基站的示例方法900的流程图。该方法可以由系统100中的基站101(或更具体地,电子设备200)执行。如图9所示,该方法900可以包括检测第一基站的第一指标(方框S901);响应于检测到的第一指标指示第一基站的工作负荷低于第一阈值,向第二基站发送第一信息,其中第一信息包括用于指示第一基站请求休眠的信息(方框S902);以及从第二基站接收针对第一信息的第二信息,其中第二信息指示是否允许第一基站休眠(方框S903)。该方法的详细示例操作可以参考上文关于第一基站101(或更具体地,电子设备200)的操作描述,此处不再重复。
图10示出了根据本公开实施例的用于第二基站的示例方法1000的流程图。该方法可以由系统100中的基站102(或更具体地,电子设备300)执行。如图10所示,该方法1000可以包括从第一基站接收第一信息,其中第一信息是第一基站响应于检测到第一基站的第一指标指示第一基站的工作负荷低于第一阈值而发送的,并且其中第一信息包括用于指示第一基站请求休眠的信息(方框S1001);向第一基站发送针对第一信息的第二信息,其中第二信息指示是否允许第一基站休眠(方框S1002。该方法的详细示例操作可以参考上文关于第二基站102(或更具体地,电子设备300)的操作描述,此处不再重复。
本公开的方案可以以如下的示例方式实施。
条款1、一种用于第一基站的电子设备,所述电子设备包括处理电路,所述处理电路被配置为:
检测第一基站的第一指标;
响应于检测到的第一指标指示第一基站的工作负荷低于第一阈值,向第二基站发送第一信息,其中第一信息包括用于指示第一基站请求休眠的信息;以及
从第二基站接收针对第一信息的第二信息,其中第二信息指示是否允许第一基站休眠。
条款2、根据条款1所述的电子设备,其中第二信息还包括第一基站的一个或多个邻近基站的列表。
条款3、根据条款1或2所述的电子设备,所述处理电路还被配置为:
响应于接收到第二信息以及第二信息指示允许第一基站休眠,向第一基站所服务的终端设备和/或子基站通知连接到第一基站的一个或多个邻近基站。
条款4、根据条款1或2所述的电子设备,其中第二信息至少基于第一基站的一个或多个邻近基站的工作负荷状态。
条款5、根据条款1所述的电子设备,所述处理电路还被配置为:
响应于检测到的第一指标指示第一基站的工作负荷高于第二阈值,向第二基站发送第三信息,其中第三信息包括用于指示请求唤醒第一基站的一个或多个邻近基站的信息;以及
从第二基站接收针对第三信息的第四信息,其中第四信息指示将要唤醒的一个或多个邻近基站。
条款6、根据条款5所述的电子设备,所述处理电路还被配置为:
响应于接收到第四信息,向第一基站所服务的一个或多个终端设备和/或子基站发送将要唤醒的一个或多个邻近基站的信息,以使一个或多个终端设备和/或子基站连接到至少一个邻近基站。
条款7、根据条款5所述的电子设备,其中:
第二信息至少基于第一基站的一个或多个邻近基站的工作负荷低于第三阈值,第二信息指示允许第一基站休眠;以及/或者
第四信息至少基于第一基站的一个或多个邻近基站的休眠状态。
条款8、根据条款3所述的电子设备,其中第一指标包括第一基站的业务量和/或第一基站的功耗。
条款9、根据条款1所述的电子设备,其中第一基站包括集成接入和回传(IAB)基站,并且第二基站包括IAB施主(IAB donor)基站。
条款10、一种用于第二基站的电子设备,所述电子设备包括处理电路,所述处理电路被配置为:
从第一基站接收第一信息,其中第一信息是第一基站响应于检测到第一基站的第一指标指示第一基站的工作负荷低于第一阈值而发送的,并且其中第一信息包括用于指示 第一基站请求休眠的信息;以及
向第一基站发送针对第一信息的第二信息,其中第二信息指示是否允许第一基站休眠。
条款11、根据条款10所述的电子设备,其中第二信息还包括第一基站的一个或多个邻近基站的列表。
条款12、根据条款10或11所述的电子设备,其中第二信息至少基于第一基站的一个或多个邻近基站的工作负荷状态。
条款13、根据条款10所述的电子设备,所述处理电路还被配置为:
从第一基站接收第三信息,其中第三信息是第一基站响应于检测到第一指标指示第一基站的工作负荷高于第二阈值而发送的,并且其中第三信息包括用于指示第一基站请求唤醒第一基站的一个或多个邻近基站的信息;以及
向第一基站发送针对第三信息的第四信息,其中第四信息指示将要唤醒的一个或多个邻近基站。
条款14、根据条款13所述的电子设备,其中:
第二信息至少基于第一基站的一个或多个邻近基站的工作负荷低于第三阈值,第二信息指示允许第一基站休眠;以及/或者
第四信息至少基于第一基站的一个或多个邻近基站的休眠状态。
条款15、根据条款10所述的电子设备,其中第一指标包括第一基站的业务量和/或第一基站的功耗。
条款16、根据条款10所述的电子设备,其中第一基站包括集成接入和回传(IAB)基站,并且第二基站包括IAB施主(IAB donor)基站。
条款17、一种用于第一基站的方法,所述方法包括:
检测第一基站的第一指标;
响应于检测到的第一指标指示第一基站的工作负荷低于第一阈值,向第二基站发送第一信息,其中第一信息包括用于指示第一基站请求休眠的信息;以及
从第二基站接收针对第一信息的第二信息,其中第二信息指示是否允许第一基站休眠。
条款18、一种用于第二基站的方法,所述方法包括:
从第一基站接收第一信息,其中第一信息是第一基站响应于检测到第一基站的第一指标指示第一基站的工作负荷低于第一阈值而发送的,并且其中第一信息包括用于指示第一基站请求休眠的信息;以及
向第一基站发送针对第一信息的第二信息,其中第二信息指示是否允许第一基站休眠。
条款19、一种存储有一个或多个指令的计算机可读存储介质,所述一个或多个指令在由电子设备的一个或多个处理器执行时使该电子设备执行根据条款17或18所述的方法。
条款20、一种用于无线通信的装置,包括用于执行根据条款17或18所述的方法的单元。
应该指出,上述的应用实例仅仅是示例性的。本公开的实施例在上述应用实例中还可以任何其它适当的方式执行,仍可实现本公开的实施例所获得的有利效果。而且,本公开的实施例同样可应用于其它类似的应用实例,仍可实现本公开的实施例所获得的有利效果。
应该理解的是,根据本公开实施例的机器可读存储介质或程序产品中的机器可执行指令可以被配置为执行与上述设备和方法实施例相应的操作。当参考上述设备和方法实施例时,机器可读存储介质或程序产品的实施例对于本领域技术人员而言是明晰的,因此不再重复描述。用于承载或包括上述机器可执行指令的机器可读存储介质和程序产品也落在本公开的范围内。这样的存储介质可以包括但不限于软盘、光盘、磁光盘、存储卡、存储棒等等。
另外,应该理解的是,上述系列处理和设备也可以通过软件和/或固件实现。在通过软件和/或固件实现的情况下,从存储介质或网络向具有专用硬件结构的计算机,例如图11所示的通用个人计算机1100安装构成该软件的程序,该计算机在安装有各种程序时,能够执行各种功能等等。图11是示出作为本公开的实施例中可采用的信息处理设备的个人计算机的示例结构的框图。在一个例子中,该个人计算机可以对应于根据本公开的上述示例性终端设备。
在图11中,中央处理单元(CPU)1101根据只读存储器(ROM)1102中存储的程序或从存储部分1108加载到随机存取存储器(RAM)1103的程序执行各种处理。在RAM 1103中,也根据需要存储当CPU 1101执行各种处理等时所需的数据。
CPU 1101、ROM 1102和RAM 1103经由总线1104彼此连接。输入/输出接口1105也连接到总线1104。
下述部件连接到输入/输出接口1105:输入部分1106,包括键盘、鼠标等;输出部分1107,包括显示器,比如阴极射线管(CRT)、液晶显示器(LCD)等,和扬声器等;存储部分1108,包括硬盘等;和通信部分1109,包括网络接口卡比如LAN卡、调制解调器等。通信部分1109经由网络比如因特网执行通信处理。
根据需要,驱动器1110也连接到输入/输出接口1105。可拆卸介质1111比如磁盘、光盘、磁光盘、半导体存储器等等根据需要被安装在驱动器1110上,使得从中读出的计算机程序根据需要被安装到存储部分1108中。
在通过软件实现上述系列处理的情况下,从网络比如因特网或存储介质比如可拆卸介质1111安装构成软件的程序。
本领域技术人员应当理解,这种存储介质不局限于图11所示的其中存储有程序、与设备相分离地分发以向用户提供程序的可拆卸介质1111。可拆卸介质1111的例子包含磁盘(包含软盘(注册商标))、光盘(包含光盘只读存储器(CD-ROM)和数字通用盘(DVD))、磁光盘(包含迷你盘(MD)(注册商标))和半导体存储器。或者,存储介质可以是ROM 1102、存储部分1108中包含的硬盘等等,其中存有程序,并且与包含它们的设备一起被分发给用户。
本公开的技术能够应用于各种产品。
例如,根据本公开的实施例的电子设备200和300可以被实现为各种控制设备/基站或者被包含在各种控制设备/基站中,而如图9和/或图10所示的方法也可由各种控制设备/基站实现。
例如,本公开中提到的控制设备/基站可以被实现为任何类型的基站,例如演进型节点B(gNB),诸如宏gNB和小gNB。小gNB可以为覆盖比宏小区小的小区的gNB,诸如微微gNB、微gNB和家庭(毫微微)gNB。代替地,基站可以被实现为任何其他 类型的基站,诸如NodeB和基站收发台(Base Transceiver Station,BTS)。基站可以包括:被配置为控制无线通信的主体(也称为基站设备);以及设置在与主体不同的地方的一个或多个远程无线头端(Remote Radio Head,RRH)。另外,下面将描述的各种类型的终端均可以通过暂时地或半持久性地执行基站功能而作为基站工作。
例如,本公开中提到的终端设备在一些示例中也称为用户设备,可以被实现为移动终端(诸如智能电话、平板个人计算机(PC)、笔记本式PC、便携式游戏终端、便携式/加密狗型移动路由器和数字摄像装置)或者车载终端(诸如汽车导航设备)。用户设备还可以被实现为执行机器对机器(M2M)通信的终端(也称为机器类型通信(MTC)终端)。此外,用户设备可以为安装在上述终端中的每个终端上的无线通信模块(诸如包括单个晶片的集成电路模块)。在一些情况下,用户设备可以使用多种无线通信技术进行通信。例如,用户设备可以被配置为使用GSM、UMTS、CDMA2000、WiMAX、LTE、LTE-A、WLAN、NR、蓝牙等中的两者或更多者进行通信。在一些情况下,用户设备也可以被配置为仅使用一种无线通信技术进行通信。
以下将参照图12至图15描述根据本公开的示例。
关于基站的示例
应该理解的是,本公开中的基站一词具有其通常含义的全部广度,并且至少包括被用于作为无线通信系统或无线电系统的一部分以便于通信的无线通信站。基站的例子可以例如是但不限于以下:基站可以是GSM系统中的基站收发信机(BTS)和基站控制器(BSC)中的一者或两者,可以是WCDMA系统中的无线电网络控制器(RNC)和Node B中的一者或两者,可以是LTE和LTE-Advanced系统中的eNB,或者可以是未来通信系统中对应的网络节点(例如可能在5G通信系统中出现的gNB,eLTE eNB等等)。本公开的基站中的部分功能也可以实现为在D2D、M2M以及V2V通信场景下对通信具有控制功能的实体,或者实现为在认知无线电通信场景下起频谱协调作用的实体。
第一示例
图12是示出可以应用本公开内容的技术的基站(本图中以gNB作为示例)的示意性配置的第一示例的框图。gNB 1200包括多个天线1210以及基站设备1220。基站设备 1220和每个天线1210可以经由RF线缆彼此连接。在一种实现方式中,此处的gNB1200(或基站设备1220)可以对应于上述基站101和102(或更具体地,电子设备200和300)。
天线1210中的每一个均包括单个或多个天线元件(诸如包括在多输入多输出(MIMO)天线中的多个天线元件),并且用于基站设备1220发送和接收无线信号。如图12所示,gNB 1200可以包括多个天线1210。例如,多个天线1210可以与gNB 1200使用的多个频段兼容。
基站设备1220包括控制器1221、存储器1222、网络接口1223以及无线通信接口1225。
控制器1221可以为例如CPU或DSP,并且操作基站设备1220的较高层的各种功能。例如,控制器1221根据由无线通信接口1225处理的信号中的数据来生成数据分组,并经由网络接口1223来传递所生成的分组。控制器1221可以对来自多个基带处理器的数据进行捆绑以生成捆绑分组,并传递所生成的捆绑分组。控制器1221可以具有执行如下控制的逻辑功能:该控制诸如为无线资源控制、无线承载控制、移动性管理、接纳控制和调度。该控制可以结合附近的gNB或核心网节点来执行。存储器1222包括RAM和ROM,并且存储由控制器1221执行的程序和各种类型的控制数据(诸如终端列表、传输功率数据以及调度数据)。
网络接口1223为用于将基站设备1220连接至核心网1224的通信接口。控制器1221可以经由网络接口1223而与核心网节点或另外的gNB进行通信。在此情况下,gNB 1200与核心网节点或其他gNB可以通过逻辑接口(诸如S1接口和X2接口)而彼此连接。网络接口1223还可以为有线通信接口或用于无线回传线路的无线通信接口。如果网络接口1223为无线通信接口,则与由无线通信接口1225使用的频段相比,网络接口1223可以使用较高频段用于无线通信。
无线通信接口1225支持任何蜂窝通信方案(诸如长期演进(LTE)和LTE-先进),并且经由天线1210来提供到位于gNB 1200的小区中的终端的无线连接。无线通信接口1225通常可以包括例如基带(BB)处理器1226和RF电路1227。BB处理器1226可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行层(例如L1、介质访问控制(MAC)、无线链路控制(RLC)和分组数据汇聚协议(PDCP))的各种类型的信号处 理。代替控制器1221,BB处理器1226可以具有上述逻辑功能的一部分或全部。BB处理器1226可以为存储通信控制程序的存储器,或者为包括被配置为执行程序的处理器和相关电路的模块。更新程序可以使BB处理器1226的功能改变。该模块可以为插入到基站设备1220的槽中的卡或刀片。可替代地,该模块也可以为安装在卡或刀片上的芯片。同时,RF电路1227可以包括例如混频器、滤波器和放大器,并且经由天线1210来传送和接收无线信号。虽然图12示出一个RF电路1227与一根天线1210连接的示例,但是本公开并不限于该图示,而是一个RF电路1227可以同时连接多根天线1210。
如图12所示,无线通信接口1225可以包括多个BB处理器1226。例如,多个BB处理器1226可以与gNB 1200使用的多个频段兼容。如图12所示,无线通信接口1225可以包括多个RF电路1227。例如,多个RF电路1227可以与多个天线元件兼容。虽然图12示出其中无线通信接口1225包括多个BB处理器1226和多个RF电路1227的示例,但是无线通信接口1225也可以包括单个BB处理器1226或单个RF电路1227。
第二示例
图13是示出可以应用本公开内容的技术的基站(本图中以gNB作为示例)的示意性配置的第二示例的框图。gNB 1330包括多个天线1340、基站设备1350和RRH 1360。RRH 1360和每个天线1340可以经由RF线缆而彼此连接。基站设备1350和RRH 1360可以经由诸如光纤线缆的高速线路而彼此连接。在一种实现方式中,此处的gNB 1330(或基站设备1350)可以对应于上述基站101和102(或更具体地,电子设备200和300)。
天线1340中的每一个均包括单个或多个天线元件(诸如包括在MIMO天线中的多个天线元件)并且用于RRH 1360发送和接收无线信号。如图13所示,gNB 1330可以包括多个天线1340。例如,多个天线1340可以与gNB 1330使用的多个频段兼容。
基站设备1350包括控制器1351、存储器1352、网络接口1353、无线通信接口1355以及连接接口1357。控制器1351、存储器1352和网络接口1353与参照图12描述的控制器1221、存储器1222和网络接口1223相同。
无线通信接口1355支持任何蜂窝通信方案(诸如LTE和LTE-先进),并且经由RRH 1360和天线1340来提供到位于与RRH 1360对应的扇区中的终端的无线通信。无 线通信接口1355通常可以包括例如BB处理器1356。除了BB处理器1356经由连接接口1357连接到RRH 1360的RF电路1364之外,BB处理器1356与参照图12描述的BB处理器1226相同。如图13所示,无线通信接口1355可以包括多个BB处理器1356。例如,多个BB处理器1356可以与gNB 1330使用的多个频段兼容。虽然图13示出其中无线通信接口1355包括多个BB处理器1356的示例,但是无线通信接口1355也可以包括单个BB处理器1356。
连接接口1357为用于将基站设备1350(无线通信接口1355)连接至RRH 1360的接口。连接接口1357还可以为用于将基站设备1350(无线通信接口1355)连接至RRH 1360的上述高速线路中的通信的通信模块。
RRH 1360包括连接接口1361和无线通信接口1363。
连接接口1361为用于将RRH 1360(无线通信接口1363)连接至基站设备1350的接口。连接接口1361还可以为用于上述高速线路中的通信的通信模块。
无线通信接口1363经由天线1340来传送和接收无线信号。无线通信接口1363通常可以包括例如RF电路1364。RF电路1364可以包括例如混频器、滤波器和放大器,并且经由天线1340来传送和接收无线信号。虽然图13示出一个RF电路1364与一根天线1340连接的示例,但是本公开并不限于该图示,而是一个RF电路1364可以同时连接多根天线1340。
如图13所示,无线通信接口1363可以包括多个RF电路1364。例如,多个RF电路1364可以支持多个天线元件。虽然图13示出其中无线通信接口1363包括多个RF电路1364的示例,但是无线通信接口1363也可以包括单个RF电路1364。
关于用户设备的示例
第一示例
图14是示出可以应用本公开内容的技术的智能电话1400的示意性配置的示例的框图。智能电话1400包括处理器1401、存储器1402、存储装置1403、外部连接接口1404、摄像装置1406、传感器1407、麦克风1408、输入装置1409、显示装置1410、扬声器1411、无线通信接口1412、一个或多个天线开关1415、一个或多个天线1416、总线1417、电池1418以及辅助控制器1419。在一种实现方式中,此处的智能电话1400 (或处理器1401)可以对应于上述终端设备103。
处理器1401可以为例如CPU或片上系统(SoC),并且控制智能电话1400的应用层和另外层的功能。存储器1402包括RAM和ROM,并且存储数据和由处理器1401执行的程序。存储装置1403可以包括存储介质,诸如半导体存储器和硬盘。外部连接接口1404为用于将外部装置(诸如存储卡和通用串行总线(USB)装置)连接至智能电话1400的接口。
摄像装置1406包括图像传感器(诸如电荷耦合器件(CCD)和互补金属氧化物半导体(CMOS)),并且生成捕获图像。传感器1407可以包括一组传感器,诸如测量传感器、陀螺仪传感器、地磁传感器和加速度传感器。麦克风1408将输入到智能电话1400的声音转换为音频信号。输入装置1409包括例如被配置为检测显示装置1410的屏幕上的触摸的触摸传感器、小键盘、键盘、按钮或开关,并且接收从用户输入的操作或信息。显示装置1410包括屏幕(诸如液晶显示器(LCD)和有机发光二极管(OLED)显示器),并且显示智能电话1400的输出图像。扬声器1411将从智能电话1400输出的音频信号转换为声音。
无线通信接口1412支持任何蜂窝通信方案(诸如LTE和LTE-先进),并且执行无线通信。无线通信接口1412通常可以包括例如BB处理器1413和RF电路1414。BB处理器1413可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行用于无线通信的各种类型的信号处理。同时,RF电路1414可以包括例如混频器、滤波器和放大器,并且经由天线1416来传送和接收无线信号。无线通信接口1412可以为其上集成有BB处理器1413和RF电路1414的一个芯片模块。如图14所示,无线通信接口1412可以包括多个BB处理器1413和多个RF电路1414。虽然图14示出其中无线通信接口1412包括多个BB处理器1413和多个RF电路1414的示例,但是无线通信接口1412也可以包括单个BB处理器1413或单个RF电路1414。
此外,除了蜂窝通信方案之外,无线通信接口1412可以支持另外类型的无线通信方案,诸如短距离无线通信方案、近场通信方案和无线局域网(LAN)方案。在此情况下,无线通信接口1412可以包括针对每种无线通信方案的BB处理器1413和RF电路1414。
天线开关1415中的每一个在包括在无线通信接口1412中的多个电路(例如用于 不同的无线通信方案的电路)之间切换天线1416的连接目的地。
天线1416中的每一个均包括单个或多个天线元件(诸如包括在MIMO天线中的多个天线元件),并且用于无线通信接口1412传送和接收无线信号。如图14所示,智能电话1400可以包括多个天线1416。虽然图14示出其中智能电话1400包括多个天线1416的示例,但是智能电话1400也可以包括单个天线1416。
此外,智能电话1400可以包括针对每种无线通信方案的天线1416。在此情况下,天线开关1415可以从智能电话1400的配置中省略。
总线1417将处理器1401、存储器1402、存储装置1403、外部连接接口1404、摄像装置1406、传感器1407、麦克风1408、输入装置1409、显示装置1410、扬声器1411、无线通信接口1412以及辅助控制器1419彼此连接。电池1418经由馈线向图14所示的智能电话1400的各个块提供电力,馈线在图中被部分地示为虚线。辅助控制器1419例如在睡眠模式下操作智能电话1400的最小必需功能。
第二示例
图15是示出可以应用本公开内容的技术的汽车导航设备1520的示意性配置的示例的框图。汽车导航设备1520包括处理器1521、存储器1522、全球定位系统(GPS)模块1524、传感器1525、数据接口1526、内容播放器1527、存储介质接口1528、输入装置1529、显示装置1530、扬声器1531、无线通信接口1533、一个或多个天线开关1536、一个或多个天线1537以及电池1538。在一种实现方式中,此处的汽车导航设备1520(或处理器1521)可以对应于上述终端设备103。
处理器1521可以为例如CPU或SoC,并且控制汽车导航设备1520的导航功能和另外的功能。存储器1522包括RAM和ROM,并且存储数据和由处理器1521执行的程序。
GPS模块1524使用从GPS卫星接收的GPS信号来测量汽车导航设备1520的位置(诸如纬度、经度和高度)。传感器1525可以包括一组传感器,诸如陀螺仪传感器、地磁传感器和空气压力传感器。数据接口1526经由未示出的终端而连接到例如车载网络1541,并且获取由车辆生成的数据(诸如车速数据)。
内容播放器1527再现存储在存储介质(诸如CD和DVD)中的内容,该存储介质 被插入到存储介质接口1528中。输入装置1529包括例如被配置为检测显示装置1530的屏幕上的触摸的触摸传感器、按钮或开关,并且接收从用户输入的操作或信息。显示装置1530包括诸如LCD或OLED显示器的屏幕,并且显示导航功能的图像或再现的内容。扬声器1531输出导航功能的声音或再现的内容。
无线通信接口1533支持任何蜂窝通信方案(诸如LTE和LTE-先进),并且执行无线通信。无线通信接口1533通常可以包括例如BB处理器1534和RF电路1535。BB处理器1534可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行用于无线通信的各种类型的信号处理。同时,RF电路1535可以包括例如混频器、滤波器和放大器,并且经由天线1537来传送和接收无线信号。无线通信接口1533还可以为其上集成有BB处理器1534和RF电路1535的一个芯片模块。如图15所示,无线通信接口1533可以包括多个BB处理器1534和多个RF电路1535。虽然图15示出其中无线通信接口1533包括多个BB处理器1534和多个RF电路1535的示例,但是无线通信接口1533也可以包括单个BB处理器1534或单个RF电路1535。
此外,除了蜂窝通信方案之外,无线通信接口1533可以支持另外类型的无线通信方案,诸如短距离无线通信方案、近场通信方案和无线LAN方案。在此情况下,针对每种无线通信方案,无线通信接口1533可以包括BB处理器1534和RF电路1535。
天线开关1536中的每一个在包括在无线通信接口1533中的多个电路(诸如用于不同的无线通信方案的电路)之间切换天线1537的连接目的地。
天线1537中的每一个均包括单个或多个天线元件(诸如包括在MIMO天线中的多个天线元件),并且用于无线通信接口1533传送和接收无线信号。如图15所示,汽车导航设备1520可以包括多个天线1537。虽然图15示出其中汽车导航设备1520包括多个天线1537的示例,但是汽车导航设备1520也可以包括单个天线1537。
此外,汽车导航设备1520可以包括针对每种无线通信方案的天线1537。在此情况下,天线开关1536可以从汽车导航设备1520的配置中省略。
电池1538经由馈线向图15所示的汽车导航设备1520的各个块提供电力,馈线在图中被部分地示为虚线。电池1538累积从车辆提供的电力。
本公开内容的技术也可以被实现为包括汽车导航设备1520、车载网络1541以及车 辆模块1542中的一个或多个块的车载系统(或车辆)1540。车辆模块1542生成车辆数据(诸如车速、发动机速度和故障信息),并且将所生成的数据输出至车载网络1541。
以上参照附图描述了本公开的示例性实施例,但是本公开当然不限于以上示例。本领域技术人员可在所附权利要求的范围内得到各种变更和修改,并且应理解这些变更和修改自然将落入本公开的技术范围内。
例如,在以上实施例中包括在一个单元中的多个功能可以由分开的装置来实现。替选地,在以上实施例中由多个单元实现的多个功能可分别由分开的装置来实现。另外,以上功能之一可由多个单元来实现。无需说,这样的配置包括在本公开的技术范围内。
在该说明书中,流程图中所描述的步骤不仅包括以所述顺序按时间序列执行的处理,而且包括并行地或单独地而不是必须按时间序列执行的处理。此外,甚至在按时间序列处理的步骤中,无需说,也可以适当地改变该顺序。
虽然已经详细说明了本公开及其优点,但是应当理解在不脱离由所附的权利要求所限定的本公开的精神和范围的情况下可以进行各种改变、替代和变换。而且,本公开实施例的术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。

Claims (20)

  1. 一种用于第一基站的电子设备,所述电子设备包括处理电路,所述处理电路被配置为:
    检测第一基站的第一指标;
    响应于检测到的第一指标指示第一基站的工作负荷低于第一阈值,向第二基站发送第一信息,其中第一信息包括用于指示第一基站请求休眠的信息;以及
    从第二基站接收针对第一信息的第二信息,其中第二信息指示是否允许第一基站休眠。
  2. 根据权利要求1所述的电子设备,其中第二信息还包括第一基站的一个或多个邻近基站的列表。
  3. 根据权利要求1或2所述的电子设备,所述处理电路还被配置为:
    响应于接收到第二信息以及第二信息指示允许第一基站休眠,向第一基站所服务的终端设备和/或子基站通知连接到第一基站的一个或多个邻近基站。
  4. 根据权利要求1或2所述的电子设备,其中第二信息至少基于第一基站的一个或多个邻近基站的工作负荷状态。
  5. 根据权利要求1所述的电子设备,所述处理电路还被配置为:
    响应于检测到的第一指标指示第一基站的工作负荷高于第二阈值,向第二基站发送第三信息,其中第三信息包括用于指示请求唤醒第一基站的一个或多个邻近基站的信息;以及
    从第二基站接收针对第三信息的第四信息,其中第四信息指示将要唤醒的一个或多个邻近基站。
  6. 根据权利要求5所述的电子设备,所述处理电路还被配置为:
    响应于接收到第四信息,向第一基站所服务的一个或多个终端设备和/或子基站发送 将要唤醒的一个或多个邻近基站的信息,以使一个或多个终端设备和/或子基站连接到至少一个邻近基站。
  7. 根据权利要求5所述的电子设备,其中:
    第二信息至少基于第一基站的一个或多个邻近基站的工作负荷低于第三阈值,第二信息指示允许第一基站休眠;以及/或者
    第四信息至少基于第一基站的一个或多个邻近基站的休眠状态。
  8. 根据权利要求1所述的电子设备,其中第一指标包括第一基站的业务量和/或第一基站的功耗。
  9. 根据权利要求1所述的电子设备,其中第一基站包括集成接入和回传(IAB)基站,并且第二基站包括IAB施主(IAB donor)基站。
  10. 一种用于第二基站的电子设备,所述电子设备包括处理电路,所述处理电路被配置为:
    从第一基站接收第一信息,其中第一信息是第一基站响应于检测到第一基站的第一指标指示第一基站的工作负荷低于第一阈值而发送的,并且其中第一信息包括用于指示第一基站请求休眠的信息;以及
    向第一基站发送针对第一信息的第二信息,其中第二信息指示是否允许第一基站休眠。
  11. 根据权利要求10所述的电子设备,其中第二信息还包括第一基站的一个或多个邻近基站的列表。
  12. 根据权利要求10或11所述的电子设备,其中第二信息至少基于第一基站的一个或多个邻近基站的工作负荷状态。
  13. 根据权利要求10所述的电子设备,所述处理电路还被配置为:
    从第一基站接收第三信息,其中第三信息是第一基站响应于检测到第一指标指示第一基站的工作负荷高于第二阈值而发送的,并且其中第三信息包括用于指示第一基站请求唤醒第一基站的一个或多个邻近基站的信息;以及
    向第一基站发送针对第三信息的第四信息,其中第四信息指示将要唤醒的一个或多个邻近基站。
  14. 根据权利要求13所述的电子设备,其中:
    第二信息至少基于第一基站的一个或多个邻近基站的工作负荷低于第三阈值,第二信息指示允许第一基站休眠;以及/或者
    第四信息至少基于第一基站的一个或多个邻近基站的休眠状态。
  15. 根据权利要求10所述的电子设备,其中第一指标包括第一基站的业务量和/或第一基站的功耗。
  16. 根据权利要求10所述的电子设备,其中第一基站包括集成接入和回传(IAB)基站,并且第二基站包括IAB施主(IAB donor)基站。
  17. 一种用于第一基站的方法,所述方法包括:
    检测第一基站的第一指标;
    响应于检测到的第一指标指示第一基站的工作负荷低于第一阈值,向第二基站发送第一信息,其中第一信息包括用于指示第一基站请求休眠的信息;以及
    从第二基站接收针对第一信息的第二信息,其中第二信息指示是否允许第一基站休眠。
  18. 一种用于第二基站的方法,所述方法包括:
    从第一基站接收第一信息,其中第一信息是第一基站响应于检测到第一基站的第一指标指示第一基站的工作负荷低于第一阈值而发送的,并且其中第一信息包括用于指示第一基站请求休眠的信息;以及
    向第一基站发送针对第一信息的第二信息,其中第二信息指示是否允许第一基站休 眠。
  19. 一种存储有一个或多个指令的计算机可读存储介质,所述一个或多个指令在由电子设备的一个或多个处理器执行时使该电子设备执行根据权利要求17或18所述的方法。
  20. 一种用于无线通信的装置,包括用于执行根据权利要求17或18所述的方法的单元。
PCT/CN2021/120864 2020-09-29 2021-09-27 用于基站的休眠和唤醒的电子设备、方法和存储介质 WO2022068759A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US18/042,459 US20230328643A1 (en) 2020-09-29 2021-09-27 Electronic device, method and storage medium for sleep and wake-up of base station
JP2023519783A JP2023543483A (ja) 2020-09-29 2021-09-27 基地局のスリープ及びウェイクアップに用いられる電子機器、方法、及び記憶媒体
EP21874419.1A EP4207875A4 (en) 2020-09-29 2021-09-27 ELECTRONIC DEVICE FOR WAKE-UP AND SLEEP OF A BASE STATION, AND METHOD AND STORAGE MEDIUM
KR1020237009289A KR20230075416A (ko) 2020-09-29 2021-09-27 기지국의 슬립 및 웨이크-업을 위한 전자 디바이스, 방법 및 저장 매체
CN202180066212.8A CN116250284A (zh) 2020-09-29 2021-09-27 用于基站的休眠和唤醒的电子设备、方法和存储介质

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011052695.XA CN114339900A (zh) 2020-09-29 2020-09-29 用于基站的休眠和唤醒的电子设备、方法和存储介质
CN202011052695.X 2020-09-29

Publications (1)

Publication Number Publication Date
WO2022068759A1 true WO2022068759A1 (zh) 2022-04-07

Family

ID=80949715

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/120864 WO2022068759A1 (zh) 2020-09-29 2021-09-27 用于基站的休眠和唤醒的电子设备、方法和存储介质

Country Status (6)

Country Link
US (1) US20230328643A1 (zh)
EP (1) EP4207875A4 (zh)
JP (1) JP2023543483A (zh)
KR (1) KR20230075416A (zh)
CN (2) CN114339900A (zh)
WO (1) WO2022068759A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024060044A1 (en) * 2022-09-21 2024-03-28 Apple Inc. Mac behavior and rrc configuration for ul wakeup signal
WO2024103314A1 (zh) * 2022-11-16 2024-05-23 北京小米移动软件有限公司 一种唤醒网络设备的方法、装置、设备及可读存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104113901A (zh) * 2010-10-19 2014-10-22 中国移动通信集团公司 网络节能系统、网络节能方法以及相关装置
CN104202800A (zh) * 2014-07-09 2014-12-10 京信通信系统(中国)有限公司 一种家庭基站节能方法、装置及系统
CN104885520A (zh) * 2012-10-29 2015-09-02 中兴通讯(美国)公司 在无线通信系统中支持基站进入和退出休眠模式
CN109792685A (zh) * 2016-09-29 2019-05-21 英国电讯有限公司 蜂窝电信网络
WO2020056749A1 (en) * 2018-09-21 2020-03-26 Lenovo (Beijing) Limited Method and apparatus for integrated access and backhaul node selection

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102065448A (zh) * 2011-01-06 2011-05-18 大唐移动通信设备有限公司 一种覆盖区域补偿、恢复的方法及装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104113901A (zh) * 2010-10-19 2014-10-22 中国移动通信集团公司 网络节能系统、网络节能方法以及相关装置
CN104885520A (zh) * 2012-10-29 2015-09-02 中兴通讯(美国)公司 在无线通信系统中支持基站进入和退出休眠模式
CN104202800A (zh) * 2014-07-09 2014-12-10 京信通信系统(中国)有限公司 一种家庭基站节能方法、装置及系统
CN109792685A (zh) * 2016-09-29 2019-05-21 英国电讯有限公司 蜂窝电信网络
WO2020056749A1 (en) * 2018-09-21 2020-03-26 Lenovo (Beijing) Limited Method and apparatus for integrated access and backhaul node selection

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4207875A4 *

Also Published As

Publication number Publication date
CN114339900A (zh) 2022-04-12
EP4207875A1 (en) 2023-07-05
US20230328643A1 (en) 2023-10-12
EP4207875A4 (en) 2024-03-06
CN116250284A (zh) 2023-06-09
KR20230075416A (ko) 2023-05-31
JP2023543483A (ja) 2023-10-16

Similar Documents

Publication Publication Date Title
WO2018171580A1 (zh) 用于无线通信的电子装置以及无线通信方法
JP2023078319A (ja) 端末装置、無線通信装置、無線通信方法及びコンピュータプログラム
JP6851822B2 (ja) 装置
US9832701B2 (en) Radio communication apparatus, radio communication method, communication control apparatus, and communication control method to switch operation mode based on failure of handover
US10813020B2 (en) Communication control apparatus, communication control method, radio communication system and terminal
WO2022068759A1 (zh) 用于基站的休眠和唤醒的电子设备、方法和存储介质
WO2020020050A1 (zh) 用于无线通信的电子设备和方法、计算机可读存储介质
TW201717690A (zh) 藉由機器型通信使用者設備用於由演進型節點b提供之無線單元的選擇性連接
WO2021223711A1 (zh) 用于无线电链路测量的电子设备、方法和存储介质
WO2016119674A1 (zh) 通信设备和通信方法
EP3550875B1 (en) Devices in wireless communication system
JP2017509241A (ja) デバイス間検出プロトコルを通じたセル検出及びウェイクアップ
JP6209898B2 (ja) 通信制御装置、通信制御方法及び端末装置
WO2022017303A1 (zh) 用于无线通信系统的电子设备、方法和存储介质
US10880893B2 (en) Transmission of discovery signal in small cells while in off state
WO2022253062A1 (zh) 基站、电子设备、通信方法和存储介质
WO2022183636A1 (zh) 用户设备、电子设备、无线通信方法和存储介质
WO2024051391A1 (zh) 一种通信的方法和通信装置
WO2022268011A1 (zh) 用于无线通信系统的电子设备、方法和存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21874419

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023519783

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021874419

Country of ref document: EP

Effective date: 20230331

NENP Non-entry into the national phase

Ref country code: DE