WO2022068278A1 - 多拖多多联机的外机通信方法及多拖多多联机 - Google Patents

多拖多多联机的外机通信方法及多拖多多联机 Download PDF

Info

Publication number
WO2022068278A1
WO2022068278A1 PCT/CN2021/101825 CN2021101825W WO2022068278A1 WO 2022068278 A1 WO2022068278 A1 WO 2022068278A1 CN 2021101825 W CN2021101825 W CN 2021101825W WO 2022068278 A1 WO2022068278 A1 WO 2022068278A1
Authority
WO
WIPO (PCT)
Prior art keywords
communication
level
task
error rate
internal
Prior art date
Application number
PCT/CN2021/101825
Other languages
English (en)
French (fr)
Inventor
禚百田
时斌
程绍江
张锐钢
王军
高玉辉
Original Assignee
青岛海尔空调电子有限公司
青岛海尔空调器有限总公司
海尔智家股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔空调电子有限公司, 青岛海尔空调器有限总公司, 海尔智家股份有限公司 filed Critical 青岛海尔空调电子有限公司
Publication of WO2022068278A1 publication Critical patent/WO2022068278A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0003Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station characterised by a split arrangement, wherein parts of the air-conditioning system, e.g. evaporator and condenser, are in separately located units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/32Responding to malfunctions or emergencies
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/56Remote control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/64Electronic processing using pre-stored data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/88Electrical aspects, e.g. circuits

Definitions

  • the invention belongs to the technical field of air conditioners, and in particular provides a multi-trailer, multi-multiple-connection outdoor unit communication method and a multi-trailer, multi-multiple connection.
  • multi-connection is divided into two types: one-to-multiple and multiple-to-multi.
  • one-to-multiple means that one external machine works with multiple internal machines set in parallel with each other, and multiple-to-multiple means to be connected in parallel with each other.
  • the multiple external units set up and the multiple internal units set up in parallel work together.
  • an external unit is usually selected as the master control external unit.
  • the master control external unit communicates with each internal unit and external unit, and uses the same or different communication protocols to communicate and interact. , to transmit control commands or data.
  • the number of multi-connected internal machines is large.
  • the more the main control external machine is connected to the internal machine the larger the amount of communication data, the slower the execution of various processing tasks in the program, which affects the real-time tasks of communication, and is prone to communication.
  • the timing of receiving and sending data, etc. Mistakes lead to misjudgments.
  • the more the number of internal machines the more interference is introduced, which further reduces the reliability of communication quality.
  • the communication quality and speed between the main control external machine and the internal machine are improved by improving the hardware design method, such as using a faster communication chip with strong anti-interference, and a program main chip.
  • one aspect of the present invention provides a multi-driving, multi-connecting, external unit communication method.
  • a multi-trailer, multi-multiple online communication method for external units wherein the multi-trailer, multi-multiple online includes an external communication task and an internal task, and the external communication task refers to the communication between the main control external unit and the sub-external unit of the multi-trailer, multi-multiple online.
  • Communication task the internal task refers to the task processed by the sub-external machine itself, and the internal task includes at least a zero-level task, and it is characterized in that the external machine communication method includes the following steps: S1.
  • the average communication error rate threshold includes a first average communication error rate threshold r avgs1
  • the maximum communication error rate threshold includes a first maximum communication error rate threshold r maxs1 and the second maximum communication bit error rate threshold r maxs2 , and r maxs1 ⁇ r maxs2
  • the step S3 determines that the internal The level of the task is level 0, and the step S4 executes the first communication strategy, wherein the first communication strategy refers to running at least one round of the program in one communication cycle, and each round of the program includes one of the external The communication task and all the zero-level tasks
  • the comparison result in step S2 is r avg ⁇ r avgs1 and r maxs1 ⁇ r max ⁇ r maxs2
  • the step S3 determines that the level of
  • the average communication error rate threshold includes a first average communication error rate threshold r avgs1 and a second average communication error rate threshold r avgs2 , and r avgs1 ⁇ r avgs2 , so
  • the maximum communication error rate threshold includes the first maximum communication error rate threshold r maxs1 ; when the comparison result in step S2 is: r avgs1 ⁇ ravg ⁇ r avgs2 and r max ⁇ r maxs1 , the step S3 determines The level of the internal task is level 1, and the second communication strategy is executed in the step S4; when the comparison result in the step S2 is: r avg ⁇ r avgs2 and r max ⁇ r maxs1 , the step S3 It is determined that the level of the internal task is level 2, and the step S4 executes the second communication strategy;
  • the maximum communication error rate threshold further includes a second communication error rate threshold r maxs2 , and r maxs1 ⁇ r maxs2 ; when the comparison result in step S2 is: r avgs1 ⁇ r avg ⁇ r avgs2 and r maxs1 ⁇ r max ⁇ r maxs2 , the step S3 determines that the level of the internal task is level 2, and the step S4 executes the second communication strategy; when the step S2 When the comparison result of r avgs1 ⁇ r avg ⁇ r avgs2 and r max ⁇ r maxs2 , the step S3 determines that the level of the internal task is level 3, and the step S4 executes the second communication strategy; When the comparison result of the step S2 is: r avg ⁇ r avgs2 , and r maxs1 ⁇ r max ⁇ r maxs2 ;
  • the step S4 includes the following steps: dismantling at least one of the zero-level tasks into multiple one-level tasks. level subtasks; form the first level subtasks and the undisassembled zero level tasks into a new internal task; execute a second communication strategy; the second communication strategy refers to running multiple rounds of programs in one communication cycle, Each round of the procedure includes one external communication task, one of the first-level subtasks, and the zero-level task that is not disassembled.
  • the step S4 includes the following steps: at least disassemble a zero-level task into a plurality of first-level sub-tasks. task, continue to disassemble at least one of the first-level subtasks into multiple second-level subtasks; the second-level subtask, the undisassembled first-level subtask and the undisassembled zero-level task are composed of New internal task: execute the second communication strategy; the second communication strategy refers to running multiple rounds of programs in one communication cycle, each round of the program includes an external communication task, the dismantled zero-level task A sub-task and the zero-level task that is not disassembled.
  • the step S4 includes the following steps: disassembling at least one of the zero-level tasks into multiple one-level tasks.
  • the zero-level task that is not disassembled, the first-level subtask that is not disassembled, and the second-level subtask that is not disassembled form a new internal task: execute the second communication strategy; the second communication strategy It refers to running multiple rounds of programs in one communication cycle, and each round of the program includes an external communication task, a subtask of the disassembled zero-level task, and the undisassembled zero-level task.
  • the external device communication method further includes the following steps: S5, keep running with the current communication strategy for a preset duration and then return to the step S1.
  • the step S5 is to keep running with the current communication strategy for 5 minutes and then return to the step S1.
  • the multi-trailer, multi-multiple connection includes an external communication task and an internal task
  • the external communication task refers to the connection between the main control external unit and the sub-outdoor unit of the multi-trailer, multi-multiple connection.
  • the internal task refers to the task processed by the sub-external machine itself, and the internal task includes at least one zero-level task, and it is characterized in that, the external machine communication method includes the following steps: S1.
  • the relationship between the average communication bit error rate r avg and the maximum communication bit error rate r max of the internal machine and the respective corresponding thresholds is compared, and then the sub-unit is determined according to the comparison result.
  • the level of the internal tasks of the external machine and then choose to execute the three different communication strategies according to different levels.
  • the level of the internal task level is positively related to the average communication bit error rate and the maximum communication bit error rate of the internal machine, and then divided into layers.
  • Solve higher-level internal tasks to form multiple sub-tasks increase the number of external communication tasks in a communication cycle, and speed up the external machine communication speed between the main control external machine and the sub-external machine. The faster the external machine communication speed can be indirectly It can speed up the communication speed between internal and external machines and improve its communication quality.
  • the present invention also provides a multi-to-multi-multiple connection, one main control external unit and multiple sub external units, the main control external unit and the sub external units are communicated and connected by the above-mentioned external unit communication method.
  • Fig. 1 is the main step flow chart of the multi-to-multi-multi-connected external machine communication method of the present invention
  • FIG. 2 is a detailed step flow chart of an embodiment of the multi-to-multi-multi-connected external machine communication method of the present invention
  • FIG. 3 is a detailed flow chart of steps of another embodiment of the multi-to-multi-multi-connect external machine communication method of the present invention.
  • one-to-many multi-connection includes a main control external unit and multiple indoor units arranged in parallel with each other
  • multi-to-multi-multiple connection includes multiple external units connected in parallel with each other and multiple indoor units in parallel, and one external unit is selected as the main unit.
  • control external unit in order to facilitate the distinction and concise expression, this article refers to other external units except the main control external unit as sub-external units.
  • the main control external unit is connected to the internal unit and the sub-outdoor unit through communication, and the two interact through the same or different communication protocols, and transmit control instructions or data to each other.
  • the communication speed and quality between the main control external unit and the sub-outdoor unit will also affect the communication speed and quality between the main control external unit and the internal unit, especially when the number of sub-outdoor units is large, the master-control external unit and the sub-outdoor unit
  • the communication between the two will slow down the communication speed between the main control external unit and the internal unit, and reduce the communication quality between the two.
  • the communication tasks between the main control external unit and the sub-outdoor unit in the multi-to-multi-multiple connection usually include external communication tasks and internal tasks.
  • the external communication task refers to the communication task between the main control external machine and the sub-external machine, for example: some functional function combinations executed between the main control external machine and the sub-external machine to realize mutual communication, such as the function of receiving data, sending data function, communication state transition function, etc.
  • Internal tasks refer to functions that have nothing to do with communication and do not need to communicate with the outside world, but are only some functional functions handled by the external machine itself, such as: fault alarm processing, digital tube display, key operation, dial code selection, wind speed adjustment, operation mode judgment, sensor detection, etc.
  • the external communication task is I
  • the internal task includes three zero-level tasks, which respectively include A, B And C, between the main control external machine and the sub-external machine, run the program according to the first communication strategy
  • the first communication strategy refers to at least one round of program running in a communication cycle
  • the described program in each round includes an external communication task I and all Level 0 mission.
  • the communication cycle refers to the time taken by the external communication task and the internal task to complete at least one round of communication
  • the zero-level task refers to the internal task before dismantling.
  • the first communication strategy is to run the program in the following order: I-A-B-C-I-A-B-C . . .
  • the present invention Provides a multi-towing, multi-connection external machine communication method, which indirectly speeds up the communication speed between the main control external machine and the internal machine by improving the communication speed and communication quality between the main control external machine and the sub-outdoor machine, and improves the its communication quality.
  • the multi-connected external machine communication method of the present invention mainly includes the following steps:
  • the main control external machine is the main transmitter, and the internal machine responds after receiving the correct data from the main control external machine, otherwise it will not respond.
  • the master control external unit After receiving the correct response data from the internal unit, the master control external unit will reply the receiving OK signal to the internal unit, and the internal unit will stop sending the response after receiving this signal. If the OK signal from the master external unit is not received, the internal unit will continue to send responses until the maximum number of sending times is reached.
  • the internal reason is mainly that the internal machine has too many internal tasks.
  • the external reason means that the communication between the main control external unit and the sub-external unit interferes with the communication bus of the main control external unit.
  • the program sends and receives data according to the normal timing, the bus data error is caused by the interference, and the internal unit cannot receive the main control.
  • the correct data of the external unit does not respond.
  • the internal unit responds after receiving the correct data from the main control external unit, but the main control external unit cannot receive the correct response data from the internal unit and cannot reply to receive the OK signal, resulting in the internal unit trying to send multiple times.
  • the maximum sending times of the internal unit is limited to 100 times
  • the main control external unit still cannot receive the data of the internal unit normally within these 100 times
  • the internal unit will give up the opportunity to send data in this round.
  • these 100 invalid communications occupy communication resources, which greatly reduces the quality and speed of internal and external communication.
  • the communication quality and speed between the main control external unit and the internal unit are measured by the communication bit error rate.
  • the relationship between the average communication bit error rate r avg and the maximum communication bit error rate r max of the internal machine and the respective corresponding thresholds is compared, and then the sub-unit is determined according to the comparison result.
  • the level of the internal task of the external machine and then choose to execute the three different communication strategies according to different levels.
  • the level of the internal task level is positively related to the average communication bit error rate and the maximum communication bit error rate of the internal machine.
  • Higher-level internal tasks form multiple sub-tasks, increase the number of external communication tasks in one communication cycle, and speed up the external machine communication speed between the main control external machine and the sub-external machine.
  • the improvement of the external machine communication speed can indirectly speed up The communication speed between internal and external machines improves the communication quality.
  • FIG. 2 is a flow chart of the detailed steps of Embodiment 1 of the multi-towing, multi-connection, external machine communication method of the present invention
  • FIG. 3 is a detailed step flow of the second embodiment of the multi-towing, multi-connection, external machine communication method of the present invention. picture.
  • the communication tasks between the main control external machine and the sub-external machine in this embodiment include external communication task I and internal tasks, and the internal task includes a zero-level task A.
  • the multi-connection internal and external communication method includes the following steps:
  • the determination method specifically includes the following steps:
  • S10 Acquire the total number of communications A and the number of successful communications a between the master control external machine and the internal machine in one communication cycle.
  • the total number of communications A refers to the total number of times the master control external unit sends an internal unit
  • the number of successful communications a refers to the number of times that the master control external unit can correctly receive and reply the OK signal after the internal unit only responds normally once.
  • the communication error rate of the internal unit is:
  • n the total number of internal units
  • ri the communication bit error rate of the i -th internal unit.
  • step S2 After determining the average communication bit error rate r avg and the maximum communication bit error rate r max of the internal unit in step S1, enter step S2 to compare the average communication bit error rate r avg and the average communication bit error rate threshold, and the maximum communication bit error rate The size relationship between the rate rmax and the maximum communication bit error rate threshold.
  • two average communication bit error rate thresholds are set, that is, the first average communication bit error rate threshold r avgs1 and the second average communication bit error rate threshold r avgs2 , and r avgs1 ⁇ r avgs2 .
  • this embodiment sets two maximum communication bit error rate thresholds, namely the first maximum communication bit error rate threshold r maxs1 and the second maximum communication bit error rate threshold r maxs2 , and r maxs1 ⁇ r maxs2 . It should be noted that the specific numbers of the average communication bit error rate threshold and the maximum communication bit error rate threshold can be adjusted by those skilled in the art according to actual needs.
  • the specific values of the average communication bit error rate threshold and the maximum communication bit error rate threshold depend on the installation and operation environment of the multi-connection, etc., and are set by those skilled in the art according to the actual situation.
  • the first average communication bit error rate threshold r is avgs1 is 5%
  • the second average communication error rate threshold r avgs2 is 10%
  • the first maximum communication error rate threshold r maxs1 is 15%
  • the second maximum communication error rate threshold r maxs2 is 20%.
  • step S2 specifically includes the following steps:
  • step S20 determine whether the average communication bit error rate r avg is less than the first average communication bit error rate r avgs1 , if so, go to step S21, otherwise go to step S23;
  • step S21 determine whether the maximum communication error rate r max is less than the first maximum communication error rate threshold r maxs1 , if so, perform step S30 to determine that the level of the internal task is level 0, otherwise, perform step S22;
  • step S22 Determine whether the maximum communication error rate r max is less than the second maximum communication error rate threshold r maxs2 , if so, perform step S31 to determine that the level of the internal task is level 1, otherwise perform step S32 to determine that the level of the internal task is level 2.
  • step S20 When the judgment result of step S20 is that the average communication bit error rate r avg is not less than the first average communication bit error rate r avgs1 , that is, r avg ⁇ r avgs1 , step S23 is executed.
  • Step S23 Determine whether the average communication bit error rate r avg is smaller than the first average communication bit error rate threshold r avgs1 , if so (ie r avgs1 ⁇ r avg ⁇ r avgs2 ), execute step S24, otherwise (ie r avg ⁇ r avgs2 ) then execute step S24 Step S26 is performed.
  • step S24 Determine whether the maximum communication error rate r max is less than the first maximum communication error rate threshold r maxs1 , if so (ie r max ⁇ r maxs1 ), then perform step S31 to determine that the level of the internal task is level 1, otherwise (ie r max ⁇ r maxs1 ), step S22 is executed.
  • step S25 Determine whether the maximum communication bit error rate r max is less than the second maximum communication bit error rate threshold r maxs2 , if (r maxs1 ⁇ r max ⁇ r maxs2 ), perform step S32 to determine that the level of the internal task is level 2, if not (r maxs1 ⁇ r max ⁇ r maxs2 ) max ⁇ r maxs2 ), then step S33 is executed to determine that the level of the internal task is level 3.
  • step S26 is executed.
  • step S26 Determine whether the maximum communication error rate r max is less than the first maximum communication error rate threshold r maxs1 , if so (ie r max ⁇ r maxs1 ), then perform step S32 to determine that the level of the internal task is level 2, otherwise (ie r max ⁇ r maxs1 ), step S27 is executed.
  • step S27 Determine whether the maximum communication error rate r max is less than the second maximum communication error rate threshold r maxs2 , if so (ie r maxs1 ⁇ r max ⁇ r maxs2 ), then perform step S33 to determine that the level of the internal task is level 3, if not ( That is, r max ⁇ r maxs2 ), then step S34 is executed to determine that the level of the internal task is level 4.
  • step S4 is executed, and the first communication strategy is selectively executed according to the level of the internal task, or the zero-level task is hierarchically disassembled into multiple subtasks to form a new internal task, and then the second communication strategy is executed. communication strategy, or implement a third communication strategy.
  • step S4 specifically includes the following steps:
  • the first communication strategy refers to executing at least one round of procedures in one communication cycle, and each round of procedures includes one external communication task and all zero-level tasks.
  • the first communication strategy is to run the program in the following order: I-A-I-A . . .
  • step S4 specifically includes the following steps:
  • step S4 specifically includes the following steps:
  • Step S43 is performed after the secondary subtask and the undisassembled primary subtask are formed into a new internal task, that is, a second communication strategy is used.
  • the second communication strategy includes running multiple rounds of programs in one communication cycle, and each round of the program Including an external communication task and a first-level subtask or a second-level subtask of the zero-level task after dismantling.
  • the internal task A is disassembled into two first-level subtasks A1 and A2 in step S321, and then the first-level subtask A1 is disassembled into two second-level subtasks A11 and A12, and then A11 is identified in step S322 , A12 and A2 are the second new internal tasks, and finally run the program in the order of I-A11-I-A2-I-A12-I-A11-I-A2-I-A12... according to the second communication strategy.
  • step S4 specifically includes the following steps:
  • Step S43 is executed after the third-level subtask, the undisassembled first-level subtask and the undisassembled second-level subtask are formed into a new internal task, that is, the second communication strategy is executed, and the second communication strategy is included in one communication cycle.
  • Multiple rounds of programs are run inside, and each round of programs includes an external communication task and a first-level subtask, a second-level subtask or a third-level subtask of the dismantled zero-level task.
  • the internal task A is disassembled into two first-level subtasks A1 and A2 in step S46, the first-level subtask A1 is disassembled into two second-level subtasks A11 and A12, and the second-level subtasks are disassembled continuously.
  • A11 is two third-level subtasks A111 and A112, and then in step S47, A111, A112, A12 and A2 are identified as new internal tasks, and finally according to the second communication strategy, I-A111-I-A2-I-A12-I -A112-I-A111-I-A2... run the program sequentially.
  • step S37 the number of layers of task dismantling is related to the function implemented by the program. The finer the disassembly, the shorter the running time of each subtask, but the more complicated the program design is. Therefore, in order to speed up the communication speed and reduce the difficulty of program design A balance is achieved so that the communication cost between the main control external machine and the sub-external machine is within a controllable range.
  • the level of the internal task is determined to be level 4, it is no longer necessary to form a new internal tasks, but directly execute step S37.
  • the third communication task includes running at least one round of programs in one communication cycle, and each round of the program includes multiple external communication tasks and all zero-level tasks.
  • the highest level of the internal task is limited to level 4, and when the level of the internal task is determined to be level 4, the means of directly increasing the number of operations of the external communication task in the normal communication strategy realizes the speed up
  • the purpose of improving the communication quality between internal and external machines is to avoid the problem of too much difficulty in program design caused by too many dismantling levels, so as to achieve a balance between speeding up communication speed, improving communication quality and controlling costs.
  • the multi-to-multi-multi-connected external machine communication method of this embodiment further includes the following steps:
  • step S5 Return to step S10 after running with the current communication strategy for a preset duration.
  • step S5 the external unit communication method
  • step S10 is returned to step S10 after running with the current communication strategy for 5 minutes.
  • those skilled in the art can set the value according to actual needs.
  • Embodiment 2 is a diagrammatic representation of Embodiment 1:
  • the difference between the second embodiment is that the number of zero-level tasks in the internal tasks is increased, so that the specific content of step S4 is different from that of the first embodiment, and the content of the remaining steps is completely the same as that of the first embodiment. Therefore, in order to keep the text concise, only the difference points will be described in detail below with reference to FIG. 3 , and the same points will not be repeated.
  • S4' is used to represent the corresponding step S4 in the first embodiment.
  • the internal tasks in this embodiment include multiple zero-level tasks, which may specifically be a first zero-level task A, a second zero-level task B, and a third zero-level task C.
  • the first zero-level task A is sensor detection
  • the second zero-level task B is the wind speed adjustment
  • the third zero-level task C is the operation mode judgment. It should be noted that the above three zero-level tasks are listed here for the convenience of illustration only. Those skilled in the art The number of zero-level tasks in the internal tasks and the specific content of each zero-level task can be set according to the actual situation, and the external tasks are still represented by I.
  • step S4' specifically includes the following steps:
  • the first communication strategy refers to executing at least one round of procedures in one communication cycle, and each round of procedures includes one external communication task and all zero-level tasks.
  • the running sequence of the first communication strategy in this embodiment is: I-A-B-C-I-A-B-C . . .
  • step S4' specifically includes the following steps:
  • the second communication strategy refers to running multiple rounds of programs in one communication cycle, and each round of programs includes an external communication task, an undisassembled zero-level task and a disassembled zero-level task.
  • a first-level subtask refers to running multiple rounds of programs in one communication cycle, and each round of programs includes an external communication task, an undisassembled zero-level task and a disassembled zero-level task.
  • step S311 the first zero-level task A is disassembled into two first-level subtasks A1 and A2, and the second zero-level task B is disassembled into three first-level subtasks B1, B2 and B3, step S312
  • the first-level subtasks A1, A2, B1, B2, and B3 and the undisassembled third-level zero-level task C are identified as the first new internal task, and then the programs are run in the following order according to the second communication strategy:
  • step S4' specifically includes the following steps:
  • step S45' after forming the second-level subtask, the undisassembled first-level subtask and the zero-level task into a new internal task, perform step S43', that is, the second communication task, which includes running multiple rounds of programs in one communication cycle.
  • the program includes an external communication task, an undisassembled zero-level task, and a first-level subtask or a second-level subtask of the disassembled zero-level task.
  • step S321' the internal task A is disassembled into two first-level subtasks A1 and A2, the second zero-level task B is disassembled into three first-level subtasks B1, B2 and B3, and then a second level of subtask B is disassembled.
  • the first-level subtask A1 is three second-level subtasks A11, A12 and A13
  • the first-level subtask B2 is disassembled into two second-level subtasks B21 and B22
  • A11, A12, A13, A2, B1 are identified in step S322
  • B21, B22, B3 and C are the second new internal tasks, and finally run the programs in the following order according to the second communication strategy:
  • step S4' specifically includes the following steps:
  • step S47' after the third-level subtask, the undisassembled zero-level task, the first-level subtask and the second-level subtask are formed into a third new internal task, perform step S43', that is, the second communication task, which is included in one communication cycle
  • step S43' that is, the second communication task, which is included in one communication cycle
  • Multiple rounds of programs are run inside, and each round of programs includes an external communication task, an undisassembled zero-level task, and a first-level subtask, a second-level subtask or a third-level subtask of the disassembled zero-level task.
  • step S46' the first zero-level task A is disassembled into two first-level subtasks A1 and A2
  • the second zero-level task B is disassembled into three first-level subtasks B1, B2 and B3, and then Disassemble the first-level subtask A1 into three second-level subtasks A11, A12 and A13, disassemble the first-level subtask B2 into two second-level subtasks B21 and B22, and continue to disassemble the second-level subtask A11 into two three-level subtasks.
  • step S4' specifically includes the following steps:
  • the third communication strategy includes running at least one round of procedures in one communication cycle, and each round of procedures includes multiple external communication tasks and all zero-level tasks.
  • the programs are run in the following order according to the third communication strategy: I-I-...-I-A-B-C-I-I-...-I-A-B-C....
  • the present invention also provides a multi-to-multi-multiple connection
  • the multi-to-multi-multiple connection includes a main control external unit and a plurality of sub-outdoor units, and the main-control external unit and the plurality of sub-outdoor units pass through the above-mentioned external units Communication method Communication connection.
  • the basic functional components and working principles constituting the multi-to-multi-multiple connection are basically the same as those of the prior art, and those skilled in the art can fully implement them based on the prior art, so they are not repeated herein.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Human Computer Interaction (AREA)
  • Communication Control (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

本发明涉及空调技术领域,具体提供了一种多拖多多联机的外机通信方法及多拖多多联机,旨在解决现有其内外机通信速度慢、质量差的问题。该方法包括:确定内机的平均通信误码率和最大通信误码率;比较平均通信误码率和平均通信误码率阈值,以及最大通信误码率和最大通信误码率阈值之间的大小关系;根据比较结果确定内部任务的等级;根据等级选择性的执行第一通信策略,或者分层拆解零级任务为多个子任务组成新内部任务后再执行第二通信策略,或者执行第三通信策略。该方法分层拆解较高等级的内部任务,增加一个通信周期内外部通信任务的运行次数,加快外机通信速度,外机通信速度的改善可以间接的加快内外机之间的通信速度,提高其通信质量。

Description

多拖多多联机的外机通信方法及多拖多多联机 技术领域
本发明属于空调技术领域,具体提供一种多拖多多联机的外机通信方法及多拖多多联机。
背景技术
根据内外机数量不同,多联机分为一拖多和多拖多两种类型,其中一拖多是指一个外机和相互并联设置的多个内机配合工作,而多拖多是指相互并联设置的多个外机和相互并联设置的多个内机配合工作。不论是一拖多还是多拖多多联机,通常都会选取一个外机作为主控外机,该主控外机与每个内机和外机都通信连接,利用相同或不同的通信协议来通信交互,以传输控制指令或数据。
多联机的内机数量很多,主控外机连接内机数量越多,通信数据量越大,程序中各种处理任务执行速度越慢,影响了通信实时任务,容易出现通信接收发送数据时序等错误导致误判。另外,内机数量越多,引入的干扰越多,使通信质量可靠性进一步降低。
目前,通过改进硬件设计的方法来改善主控外机和内机之间的通信质量和速度,比如使用抗干扰强的速度更快的通信芯片、程序主芯片等。
但是,采用更换抗干扰强的速度更快的各种芯片,一方面增加了硬件设计成本,另一方面软件要根据不同的硬件同步调整,可能造成不同的硬件无法兼容用在同一个系统中的问题。
有鉴于此,本领域技术人员亟待另辟蹊径,来解决现有多拖多多联机的主控外机和内机之间通信速度慢、质量差的问题。
发明内容
为了解决现有多拖多多联机的主控外机和内机之间通信速度慢、质量差的问题,本发明一方面提供了一种多拖多多联机的外机通信方法。
一种多拖多多联机的外机通信方法,所述多拖多多联机包括外部通信任务和内部任务,所述外部通信任务是指所述多拖多多联机的主控外机和子外机之间的通信任务,所述内部任务是指所述子外机自身处理的任务,所述内部任务至少包括一个零级任务,其特征在于,所述外机通信方法包括如下步骤:S1、确定所述多拖多多联机的内机的平均通信误码率r avg和最大通信误码率r max;S2、比较所述平均通信误码率r avg和平均通信误码率阈值,以及所述最大通信误码率r max和最大通信误码率阈值之间的大小关系;S3、根据所述平均通信误码率r avg和所述最大通信误码率r max的比较结果确定所述内部任务的等级;S4、根据所述内部任务的等级选择性的执行所述第一通信策略,或者分层拆解所述零级任务为多个子任务组成新内部任务后再执行第二通信策略,或者执行第三通信策略。
上述外机通信方法的一优选方案中,所述平均通信误码率阈值包括第一平均通信误码率阈值r avgs1,所述最大通信误码率阈值包括第一最大通信误码率阈值r maxs1和第二最大通信误码率阈值r maxs2,并且r maxs1<r maxs2;当所述步骤S2的比较结果为r avg<r avgs1,并且r max<r maxs1时,所述步骤S3确定所述内部任务的等级为0级,所述步骤S4执行所述第一通信策略,其中,所述第一通信策略是指在一个通信周期内至少运行一轮程序,每轮所述程序包括一个所述外部通信任务和所有所述零级任务;当所述步骤S2的比较结果为r avg<r avgs1,并且r maxs1≤r max<r maxs2时,所述步骤S3确定所述内部任务的等级为1级,所述步骤S4执行所述第二通信策略;当所述步骤S2的比较结果为r avg<r avgs1,并且r max≥r maxs2时,所述步骤S3确定所述内部任务的等级为2级,所述步骤S4执行所述第二通信策略。
上述外机通信方法的一优选方案中,所述平均通信误码率阈值包括第一平均通信误码率阈值r avgs1和第二平均通信误码率阈值r avgs2,并且r avgs1<r avgs2,所述最大通信误码率阈值包括第一最大通信误码率阈值r maxs1;当所述步骤S2的比较结果为:r avgs1ravg<r avgs2,并且r max<r maxs1时,所述步骤S3确定所述内部任务的等级为1级,所述步骤S4执行所述第二通信策略;当所述步骤S2的比较结果 为:r avg≥r avgs2,并且r max<r maxs1时,所述步骤S3确定所述内部任务的等级为2级,所述步骤S4执行所述第二通信策略;
上述外机通信方法的一优选方案中,所述最大通信误码率阈值还包括第二通信误码率阈值r maxs2,并且r maxs1<r maxs2;当所述步骤S2的比较结果为:r avgs1≤r avg<r avgs2,并且r maxs1≤r max<r maxs2时,所述步骤S3确定所述内部任务的等级为2级,所述步骤S4执行所述第二通信策略;当所述步骤S2的比较结果为r avgs1≤r avg<r avgs2,并且r max≥r maxs2时,所述步骤S3确定所述内部任务的等级为3级,所述步骤S4执行所述第二通信策略;当所述步骤S2的比较结果为:r avg≥r avgs2,并且r maxs1≤r max<r maxs2时,所述步骤S3确定所述内部任务的等级为3级,所述步骤S4执行所述第二通信策略;当所述步骤S2的比较结果为:r avg≥r avgs2,并且r max≥r maxs2时,所述步骤S3确定所述内部任务的等级为4级,所述步骤S4执行第三通信策略,其中,所述第三通信策略是指在一个通信周期内至少运行一轮程序,每轮所述程序包括多个外部通信任务和所述零级任务。
上述外机通信方法的一优选方案中,当所述步骤S3中确定所述内部任务的等级为1级时,所述步骤S4包括如下步骤:至少拆解一个所述零级任务为多个一级子任务;将所述一级子任务和未拆解的所述零级任务组成新内部任务;执行第二通信策略;所述第二通信策略是指在一个通信周期内运行多轮程序,每轮所述程序包括一个外部通信任务、一个所述一级子任务和未拆解的所述零级任务。
上述外机通信方法的一优选方案中,当所述步骤S3中确定所述内部任务的等级为2级时,所述步骤S4包括如下步骤:至少拆解一个零级任务为多个一级子任务,继续至少拆解一个所述一级子任务为多个二级子任务;将所述二级子任务、未拆解的所述一级子任务和未拆解的所述零级任务组成新内部任务:执行所述第二通信策略;所述第二通信策略是指在一个通信周期内运行多轮程序,每轮所述程序包括一个外部通信任务、拆解的所述零级任务的一个子任务和未拆解的所述零级任务。
上述外机通信方法的一优选方案中,当所述步骤S3中确定所述内部任务的等级为3级时,所述步骤S4包括如下步骤:至少拆 解一个所述零级任务为多个一级子任务,继续至少拆解一个所述一级子任务为多个二级子任务,再继续至少拆解一个所述二级子任务为多个三级子任务;将所述三级子任务、未拆解的所述零级任务、未拆解所述一级子任务和未拆解的所述二级子任务组成新内部任务:执行所述第二通信策略;所述第二通信策略是指在一个通信周期内运行多轮程序,每轮所述程序包括一个外部通信任务、拆解的所述零级任务的一个子任务和未拆解的所述零级任务。
上述外机通信方法的一优选方案中,在所述步骤S4之后,所述外机通信方法还包括如下步骤:S5、保持以当前通信策略运行预设时长后返回所述步骤S1。
上述外机通信方法的一优选方案中,所述步骤S5具体为保持以当前通信策略运行5分钟后返回所述步骤S1
本发明的多拖多多联机的外机通信方法,所述多拖多多联机包括外部通信任务和内部任务,所述外部通信任务是指所述多拖多多联机的主控外机和子外机之间的通信任务,所述内部任务是指所述子外机自身处理的任务,所述内部任务至少包括一个零级任务,其特征在于,所述外机通信方法包括如下步骤:S1、确定所述多拖多多联机的内机的平均通信误码率r avg和最大通信误码率r max;S2、比较所述平均通信误码率r avg和平均通信误码率阈值,以及所述最大通信误码率r max和最大通信误码率阈值之间的大小关系;S3、根据所述平均通信误码率r avg和所述最大通信误码率r max的比较结果确定所述内部任务的等级;S4、根据所述内部任务的等级选择性的执行第一通信策略,或者分层拆解所述零级任务为多个子任务组成新内部任务后再执行第二通信策略,或者执行第三通信策略。
该多拖多多联机的外机通信方法,通过分别比较内机的平均通信误码率r avg和最大通信误码率r max与各自对应地阈值之间的大小关系,再根据比较结果来确定子外机的内部任务的等级,然后根据不同等级来选择执行三者不同通信策略,内部任务等级的高低与内机的平均通信误码率和最大通信误码率的大小正相关,然后分层拆解较高等级的内部任务形成多个子任务,增加在一个通信周期内外部通信任务的运行次数,加快主控外机和子外机之间的外机通信速度,外机通 信速度的较快可以间接的加快内外机之间的通信速度,提高其通信质量。
另一方面,本发明还提供一种多拖多多联机,一个主控外机和多个子外机,所述主控外机和所述子外机通过如上所述的外机通信方法通信连接。
需要说明的是,本发明的多拖多多联机具有上述外机通信方法的所有技术效果,本领域技术人员根据前面表述可以毫无疑义的获知,故而本文在此不再赘述。
附图说明
图1是本发明的多拖多多联机的外机通信方法的主要步骤流程图;
图2是本发明的多拖多多联机的外机通信方法的一实施例的详细步骤流程图;
图3是本发明的多拖多多联机的外机通信方法的另一实施例的详细步骤流程图。
具体实施方式
下面参照附图来描述本发明的优选实施方式。本领域技术人员应当理解的是,这些实施方式仅仅用于解释本发明的技术原理,并非旨在限制本发明的保护范围。
在本申请的描述中,术语“第一”、“第二”等仅用于描述目的,而不能理解为指示或暗示相对重要性。
众所周知,根据外机数量不同,多联机分为一拖多多联机和多拖多多联机。其中,一拖多多联机包括一个主控外机和相互并联设置的多个内机,多拖多多联机包括相互并联的多个外机和相互并联的多个内机,并且选取一个外机作为主控外机,为了便于区分和表述简洁,本文将除主控外机之外的其他外机称为子外机。不论是一拖多多联机还是多拖多多联机,主控外机与内机和子外机均通信连接,两者通过相同或不同的通信协议进行交互,相互之间传输控制指令或数据。主控外机和子外机之间的通信速度和质量也会影响到主控外机和 内机之间的通信速度和质量,尤其是当子外机数量比较多时,主控外机和子外机之间的通信将会减慢主控外机和内机之间的通信速度,降低两者之间的通信质量。下面详细说明主控外机和子外机之间现有的外机通信方法。
多拖多多联机的主控外机和子外机之间的通信任务通常包括外部通信任务和内部任务。其中,外部通信任务是指主控外机和子外机之间的通信任务,例如:主控外机和子外机之间为实现互相通信执行的一些功能函数组合体,如接收数据函数、发送数据函数、通信状态转换函数等。内部任务是指跟通信无关,不需要跟外界通信,仅是子外机自身处理的一些功能函数,如:故障报警处理、数码管显示、按键操作、拨码选择、风速调整、运转模式判断、传感器检测等。
为了便于理解,下面举例来说明多拖多多联机的主控外机和子外机之间的通信方法:例如,外部通信任务为I,内部任务包括三个零级任务,其分别为包括A、B和C,主控外机和子外机之间按照第一通信策略运行程序,第一通信策略是指在一个通信周期内至少运行一轮程序,每轮所述程序包括一个外部通信任务I和所有零级任务。其中,通信周期是指外部通信任务和内部任务至少完成一轮通信所用的时间,零级任务是指未进行拆解处理前的内部任务。举例来说,第一通信策略是按照如下顺序运行程序:I-A-B-C-I-A-B-C……。
如前文中所述,多拖多多联机的子外机数量越多,在一定程度上减缓主控外机和内机之间的通信速度,降低它们两者之间的通信质量,为此本发明提供了一种多拖多多联机的外机通信方法,通过改善主控外机和子外机之间的通信速度和通信质量,来间接的加快主控外机和内机之间的通信速度,提高其通信质量。
参见图1,本发明的多联机的外机通信方法主要包括如下步骤:
S1、确定多拖多多联机的内机的平均通信误码率r avg和最大通信误码率r max
在多联机的内外机通信中,主控外机为主发,内机收到主控外机的正确数据后进行应答,否则不进行应答。主控外机接收到内机的正确应答数据后会给内机回复接收OK信号,内机收到这个信号 后停止发送应答。如果收不到主控外机回复的这个OK信号,内机就会持续发送应答,直到达到最大发送次数为止。
造成内机持续发送应答,但没收到主控外机回复OK信号有内部原因和外部原因,内部原因主要是内机的内部任务过多等,对此本文不做详细评述。而外部原因是指主控外机和子外机的通信对主控外机的通信总线产生干扰,虽然程序按正常时序发送接收数据,但由于干扰导致总线数据错误,出现内机接收不到主控外机的正确数据,不进行应答。或者内机接收到主控外机的正确数据后进行应答了,但主控外机接收不到内机的正确应答数据无法回复接收OK信号,导致内机尝试多次发送。比如:限定内机的最大发送次数是100次,则在这100次内主控外机仍无法正常接收该内机数据时,该内机放弃本轮发送数据机会。但这100次无效通信占用了通信资源,极大降低了内外机通信的质量和速度。目前,通过通信误码率这一指标来衡量主控外机和内机之间的通信质量和速度。
S2、比较平均通信误码率r avg和平均通信误码率阈值,以及最大通信误码率r max和最大通信误码率阈值之间的大小关系;
S3、根据平均通信误码率r avg和最大通信误码率r max的比较结果确定子外机的内部任务的等级;
S4、根据内部任务的等级选择性的执行第一通信策略,或者分层拆解零级任务为多个子任务组成新内部任务后再执行第二通信策略,或者执行第三通信策略。
该多拖多多联机的外机通信方法,通过分别比较内机的平均通信误码率r avg和最大通信误码率r max与各自对应地阈值之间的大小关系,再根据比较结果来确定子外机的内部任务的等级,然后根据不同等级来选择执行三者不同通信策略,内部任务等级的高低与内机的平均通信误码率和最大通信误码率的大小正相关,分层拆解较高等级的内部任务形成多个子任务,增加在一个通信周期内外部通信任务的运行次数,加快主控外机和子外机之间的外机通信速度,外机通信速度的改善可以间接的加快内外机之间的通信速度,提高其通信质量。
为了便于更好地理解,下面结合图2和3,以两个实施例来详细说明本发明的多拖多多联机的外机通信方法。其中,图2是本 发明的多拖多多联机的外机通信方法的实施例一的详细步骤流程图,图3是本发明的多拖多多联机的外机通信方法的实施例二的详细步骤流程图。
实施例一:
假设本实施例中多拖多多联机的主控外机和子外机之间的通信任务包括外部通信任为I和内部任务,内部任务包括一个零级任务A。
该多联机的内外机通信方法包括如下步骤:
S1、确定多拖多多联机的内机的平均通信误码率r avg和最大通信误码率r max。其确定方法具体包括如下步骤:
S10、获取一个通信周期内主控外机和内机之间的总通信次数A和成功通信次数a。
其中,总通信次数A是指主控外机给一个内机发送的总次数,成功通信次数a是指内机只进行一次正常应答后主控外机就能正确接受并且回复OK信号的次数。
S11、根据如下公式计算内机的通信误码率r:
Figure PCTCN2021101825-appb-000001
例如:假设主控外机和一个内机之间的总通信次数为80次,成功通信次数为76次,其它情况是内机不发送或多次发送,该内机的通信误码率为:
Figure PCTCN2021101825-appb-000002
S12、根据如下公式计算内机的平均通信误码率r avg
Figure PCTCN2021101825-appb-000003
其中,n代表内机的总台数,r i代表第i台内机的通信误码率。
S13、比较n台内机的通信误码率r的大小关系后得到最大通信误码率r max
在步骤S1中确定了内机的平均通信误码率r avg和最大通信误码率r max后进入步骤S2,比较平均通信误码率r avg和平均通信误 码率阈值,以及最大通信误码率r max和最大通信误码率阈值之间的大小关系。
本实施例中设置了两个平均通信误码率阈值,即第一平均通信误码率阈值r avgs1和第二平均通信误码率阈值r avgs2,并且r avgs1<r avgs2。同样,本实施例设置了两个最大通信误码率阈值,即第一最大通信误码率阈值r maxs1和第二最大通信误码率阈值r maxs2,并且r maxs1<r maxs2。需要说明都是,平均通信误码率阈值和最大通信误码率阈值的具体个数本领域技术人员可根据实际需要调整。
另外,平均通信误码率阈值和最大通信误码率阈值具体数值取决于多联机的安装运行环境等,本领域技术人员根据实际情况设定,本实施例中第一平均通信误码率阈值r avgs1为5%,第二平均通信误码率阈值r avgs2为10%,第一最大通信误码率阈值r maxs1为15%,第二最大通信误码率阈值r maxs2为20%。
本实施例中步骤S2具体包括如下步骤:
S20、判断平均通信误码率r avg是否小于第一平均通信误码率r avgs1,若是执行步骤S21,否则执行步骤S23;
S21、判断最大通信误码率r max是否小于第一最大通信误码率阈值r maxs1,若是则执行步骤S30确定内部任务的等级为0级,否则执行步骤S22;
S22、判断最大通信误码率r max是否小于第二最大通信误码率阈值r maxs2,若是则执行步骤S31确定内部任务的等级为1级,否则执行步骤S32确定内部任务的等级为2级。
当步骤S20的判断结果是平均通信误码率r avg不小于第一平均通信误码率r avgs1,即r avg≥r avgs1时,执行步骤S23。
S23、判断平均通信误码率r avg是否小于第一平均通信误码率阈值r avgs1,若是(即r avgs1≤r avg<r avgs2)则执行步骤S24,否(即r avg≥r avgs2)则执行步骤S26。
S24、判断最大通信误码率r max是否小于第一最大通信误码率阈值r maxs1,若是(即r max<r maxs1)则执行步骤S31确定内部任务的等级为1级,否(即r max≥r maxs1)则执行步骤S22。
S25、判断最大通信误码率r max是否小于第二最大通信误码率阈值r maxs2,若是(r maxs1≤r max<r maxs2)则执行步骤S32确定内部任务的等级为2级,否(r max≥r maxs2)则执行步骤S33确定内部任务的等级为3级。
如前所述,当步骤S23的判断结果是平均通信误码率r avg不小于第一平均通信误码率r avgs2,即r avg≥r avgs2时,执行步骤S26。
S26、判断最大通信误码率r max是否小于第一最大通信误码率阈值r maxs1,若是(即r max<r maxs1)则执行步骤S32确定内部任务的等级为2级,否(即r max≥r maxs1)则执行步骤S27。
S27、判断最大通信误码率r max是否小于第二最大通信误码率阈值r maxs2,若是(即r maxs1≤r max<r maxs2)则执行步骤S33确定内部任务的等级为3级,否(即r max≥r maxs2)则执行步骤S34确定内部任务的等级为4级。
当步骤S3确定了内部任务的等级后则执行步骤S4,根据内部任务的等级选择性的执行第一通信策略,或者分层拆解零级任务为多个子任务组成新内部任务后再执行第二通信策略,或者执行第三通信策略。
本实施例中,当内部任务的等级为0级时,步骤S4具体包括如下步骤:
S40、执行第一通信策略。第一通信策略是指在一个通信周期内至少执行一轮程序,每轮程序包括一个外部通信任务和所有零级任务。举例来说:第一通信策略是按照如下顺序运行程序:I-A-I-A……。
当内部任务的等级为1级时,步骤S4具体包括如下步骤:
S41、拆解零级任务A为多个一级子任务;
S42、将多个一级子任务组成新内部任务;
S43、使用第二通信策略,第二通信策略是指在一个通信周期内运行多轮程序,每轮程序包括一个外部通信任务和一个一级子任务。
举例来说,假设步骤S41中拆解内部任务A为两个一级子任务A1和A2,步骤S42中认定A1和A2为新内部任务,然后按照第二通信策略以I-A1-I-A2-I-A1……的顺序运行程序。
当内部任务的等级为2级时,步骤S4具体包括如下步骤:
S44、拆解零级任务A为多个一级子任务,继续至少拆解一个一级子任务为多个二级子任务;
S45、将二级子任务和未拆解的一级子任务组成新内部任务后执行步骤S43,即使用第二通信策略,第二通信策略包括在一个通信周期内运行多轮程序,每轮程序包括一个外部通信任务和拆解后零级任务的一个一级子任务或一个二级子任务。
举例来说,假设步骤S321中拆解内部任务A为两个一级子任务A1和A2,再拆解一级子任务A1为两个二级子任务A11和A12,然后在步骤S322中认定A11、A12和A2为第二新内部任务,最后按照第二通信策略以I-A11-I-A2-I-A12-I-A11-I-A2-I-A12……的顺序运行程序。
当内部任务的等级为2级时,步骤S4具体包括如下步骤:
S46、拆解零级任务A为多个一级子任务,再至少拆解一个一级子任务为多个二级子任务,继续至少拆解一个二级子任务为多个三级子任务;
S47、将三级子任务和未拆解的一级子任务和未拆解的二级子任务组成新内部任务后执行步骤S43,即执行第二通信策略,第二通信策略包括在一个通信周期内运行多轮程序,每轮程序包括一个外部通信任务和拆解后零级任务的一个一级子任务、一个二级子任务或者一个三级子任务。
举例来说,假设步骤S46中拆解内部任务A为两个一级子任务A1和A2,再拆解一级子任务A1为两个二级子任务A11和A12,继续拆解二级子任务A11为两个三级子任务A111和A112,然后在步骤S47中认定A111、A112、A12和A2为新内部任务,最后按照第二通信策略以I-A111-I-A2-I-A12-I-A112-I-A111-I-A2……的顺序运行程序。
需要说明的是,任务拆解层数与程序实现的功能有关,拆解越细每个子任务运行耗时越短,但程序设计实现越复杂,因此为了在加快通信速度和降低程序设计难度之间取得平衡,以使主控外机和子外机之间的通信成本处于可控范围内,本实施例中当确定内部任务的等级为4级时,不再通过分层拆解方式来形成新的内部任务,而是直接执行步骤S37。
S37、执行第三通信任务。第三通信任务包括在一个通信周期内至少运行一轮程序,每轮程序包括多个外部通信任务和所有零级任务。
举例来说,如果r≥r set4时,按照I-I-……-I-A-I-I-……-I-A……的顺序执行程序。
另外,本实施例的外机通信方法中限定了内部任务的最高等级为4级,当确定内部任务的等级为4级时直接在正常通信策略中增加外部通信任务的运行次数的手段,实现加快内外机通信速度,提高通信质量的目的,以避免拆解层级过多造成程序设计难度过大的问题,以便在加快通信速度、提高通信质量和控制成本之间达到一个平衡。
继续参见图2,在步骤S4后,本实施例的多拖多多联机的外机通信方法还包括如下步骤:
S5、以当前通信策略运行预设时长后返回步骤S10。
在实际运转中,由于安装环境和子外机机型差异等原因,每台内机的误码率可能都不一样,因此内部任务的等级也各不相同,增设步骤S5后,该外机通信方法可以动态调整子外机的内部任务的等级,以便更好地适应多联机的使用及安装情况。本实施例中,以当前通信策略运行5分钟后返回步骤S10,当然,本领域技术人员可以根据实际需求来设定该数值。
实施例二:
与实施例一相比,实施例二的区别点在于增加了内部任务中零级任务的数量,使其中步骤S4的具体内容和实施例一的步骤S4不同,其余步骤的内容与实施例一完全相同,因此,为了保持文本简 洁,下面结合图3仅对区别点加以详细说明,相同点不再赘述。另外,为了便于区分,实施例二中用S4'表示实施例一中与之对应的步骤S4。
本实施例中的内部任务包括多个零级任务,具体可以为第一零级任务A、第二零级任务B和第三零级任务C,例如:第一零级任务A为传感器检测,第二零级任务B为风速调整,第三零级任务C为运转模式判断,需要说明的是,本文在此仅是为了便于说明示例性等列出上述三个零级任务,本领域技术人员可以根据实际来设定内部任务中零级任务的个数以及每个零级任务所指代的具体内容,外部任务仍用I表示。
本实施例中,当内部任务的等级为0级时,步骤S4'具体包括如下步骤:
S40'、执行第一通信策略。第一通信策略是指在一个通信周期内至少执行一轮程序,每轮程序包括一个外部通信任务和所有零级任务。举例来说,本实施例中第一通信策略运行顺序为:I-A-B-C-I-A-B-C……。
当内部任务的等级为1级时,步骤S4'具体包括如下步骤:
S41'、至少拆解内部任务的一个零级任务为多个一级子任务;
S42'、将多个一级子任务和未拆解的零级任务组成新内部任务;
S43'、使用第二通信策略,第二通信策略是指在一个通信周期内运行多轮程序,每轮程序包括一个外部通信任务、未拆解的零级任务和拆解后的零级任务的一个一级子任务。
举例来说,假设步骤S311中拆解第一零级任务A为两个一级子任务A1和A2,拆解第二零级任务B为三个一级子任务B1、B2和B3,步骤S312中认定一级子任务A1、A2、B1、B2和B3以及未拆解的第三零级任务C为第一新内部任务,然后按照第二通信策略以如下顺序运行程序:
I—A1—B1—C
—I—A2—B2—C
—I—A1—B3—C…。
当内部任务的等级为2级时,步骤S4'具体包括如下步骤:
S44'、至少拆解一个零级任务为多个一级子任务,再至少拆解一个一级子任务为多个二级子任务;
S45'、将二级子任务和未拆解的一级子任务和零级任务组成新内部任务后执行步骤S43',即第二通信任务,其包括一个通信周期内运行多轮程序,每轮程序包括一个外部通信任务、未拆解的零级任务和拆解后的零级任务的一个一级子任务或者一个二级子任务。
举例来说,假设步骤S321'中拆解内部任务A为两个一级子任务A1和A2,拆解第二零级任务B为三个一级子任务B1、B2和B3,再拆解一级子任务A1为三个二级子任务A11、A12和A13,拆解一级子任务B2为两个二级子任务B21和B22,然后在步骤S322中认定A11、A12、A13、A2、B1、B21、B22、B3和C为第二新内部任务,最后按照第二通信策略以如下顺序运行程序:
I—A11—B1—C
—I—A2—B21—C
—I—A12—B3—C
—I—A2—B1—C
—I—A13—B22—C
—I—A2—B3—C
…。
当内部任务的等级为3级时,步骤S4'具体包括如下步骤:
S46'、至少拆解一个零级任务为多个一级子任务,再至少拆解一个一级子任务为多个二级子任务,继续至少拆解一个二级子任务为多个三级子任务;
S47'、将三级子任务和未拆解的零级任务、一级子任务和二级子任务组成第三新内部任务后执行步骤S43',即第二通信任务,器包括在一个通信周期内运行多轮程序,每轮程序包括一个外部通信任务、未拆解的零级任务和拆解后的零级任务的一个一级子任务、一个二级子任务或者一个三级子任务。
举例来说,假设步骤S46'中拆解第一零级任务A为两个一级子任务A1和A2,拆解第二零级任务B为三个一级子任务B1、B2 和B3,再拆解一级子任务A1为三个二级子任务A11、A12和A13,拆解一级子任务B2为两个二级子任务B21和B22,继续拆解二级子任务A11为两个三级子任务A111和A112,然后在步骤S47'中认定A111、A112、A113、A12、A13、A2、B1、B21、B22、B3和C为第二新内部任务,最后按照第二通信策略以如下顺序运行程序:
I—A111—B1—C
—I—A2—B21—C
—I—A12—B3—C
—I—A112—B1—C
—I—A2—B1—C
—I—A13—B22—C
—I—A2—B3—C
…。
当内部任务的等级为4级时,步骤S4'具体包括如下步骤:
S48'、执行第三通信策略。第三通信策略包括在一个通信周期内运行至少一轮程序,每轮程序包括多个外部通信任务和所有零级任务。
举例来说,按照第三通信策略以如下顺序运行程序:I-I-……-I-A-B-C-I-I-……-I-A-B-C……。
除了上述外机通信方法外,本发明还提供一种多拖多多联机,该多拖多多联机包括主控外机和多个子外机,该主控外机和多个子外机通过上述的外机通信方法通信连接。需要说明的是,构成多拖多多联机的基本功能部件及工作原理与现有技术基本相同,本领域的技术人员基于现有技术完全可以实现,故本文不再赘述。
至此,已经结合附图所示的优选实施方式描述了本发明的技术方案,但是,本领域技术人员容易理解的是,本发明的保护范围显然不局限于这些具体实施方式。在不偏离本发明的原理的前提下,本领域技术人员可以对相关技术特征作出等同的更改或替换,这些更改或替换之后的技术方案都将落入本发明的保护范围之内。

Claims (10)

  1. 一种多拖多多联机的外机通信方法,所述多拖多多联机包括外部通信任务和内部任务,所述外部通信任务是指所述多拖多多联机的主控外机和子外机之间的通信任务,所述内部任务是指所述子外机自身处理的任务,所述内部任务至少包括一个零级任务,其特征在于,所述外机通信方法包括如下步骤:
    S1、确定所述多拖多多联机的内机的平均通信误码率r avg和最大通信误码率r max
    S2、比较所述平均通信误码率r avg和平均通信误码率阈值,以及所述最大通信误码率r max和最大通信误码率阈值之间的大小关系;
    S3、根据所述平均通信误码率r avg和所述最大通信误码率r max的比较结果确定所述内部任务的等级;
    S4、根据所述内部任务的等级选择性的执行第一通信策略,或者分层拆解所述零级任务为多个子任务组成新内部任务后再执行第二通信策略,或者执行第三通信策略。
  2. 根据权利要求1所述的外机通信方法,其特征在于,所述平均通信误码率阈值包括第一平均通信误码率阈值r avgs1,所述最大通信误码率阈值包括第一最大通信误码率阈值r maxs1和第二最大通信误码率阈值r maxs2,并且r maxs1<r maxs2
    当所述步骤S2的比较结果为r avg<r avgs1,并且r max<r maxs1时,所述步骤S3确定所述内部任务的等级为0级,所述步骤S4执行所述第一通信策略,其中,所述第一通信策略是指在一个通信周期内至少运行一轮程序,每轮所述程序包括一个所述外部通信任务和所有所述零级任务;
    当所述步骤S2的比较结果为r avg<r avgs1,并且r maxs1≤r max<r maxs2时,所述步骤S3确定所述内部任务的等级为1级,所述步骤S4执行所述第二通信策略;
    当所述步骤S2的比较结果为r avg<r avgs1,并且r max≥r maxs2时,所述步骤S3确定所述内部任务的等级为2级,所述步骤S4执行所述第二通信策略。
  3. 根据权利要求1所述的外机通信方法,其特征在于,所述平均通信误码率阈值包括第一平均通信误码率阈值r avgs1和第二平均通信误码率阈值r avgs2,并且r avgs1<r avgs2,所述最大通信误码率阈值包括第一最大通信误码率阈值r maxs1
    当所述步骤S2的比较结果为:r avgs1≤r avg<r avgs2,并且r max<r maxs1时,所述步骤S3确定所述内部任务的等级为1级,所述步骤S4执行所述第二通信策略;
    当所述步骤S2的比较结果为:r avg≥r avgs2,并且r max<r maxs1时,所述步骤S3确定所述内部任务的等级为2级,所述步骤S4执行所述第二通信策略。
  4. 根据权利要求3所述的外机通信方法,其特征在于,所述最大通信误码率阈值还包括第二通信误码率阈值r maxs2,并且r maxs1<r maxs2
    当所述步骤S2的比较结果为:r avgs1≤r avg<r avgs2,并且r maxs1≤r max<r maxs2时,所述步骤S3确定所述内部任务的等级为2级,所述步骤S4执行所述第二通信策略;
    当所述步骤S2的比较结果为r avgs1≤r avg<r avgs2,并且r max≥r maxs2时,所述步骤S3确定所述内部任务的等级为3级,所述步骤S4执行所述第二通信策略;
    当所述步骤S2的比较结果为:r avg≥r avgs2,并且r maxs1≤r max<r maxs2时,所述步骤S3确定所述内部任务的等级为3级,所述步骤S4执行所述第二通信策略;
    当所述步骤S2的比较结果为:r avg≥r avgs2,并且r max≥r maxs2时,所述步骤S3确定所述内部任务的等级为4级,所述步骤S4执行所述第三通信策略,其中,所述第三通信策略是指在一个通信周期内至少运行一轮程序,每轮所述程序包括多个外部通信任务和所述零级任务。
  5. 根据权利要求2至4中任一项所述的外机通信方法,其特征在于,当所述步骤S3中确定所述内部任务的等级为1级时,所述步骤S4包括如 下步骤:
    至少拆解一个所述零级任务为多个一级子任务;
    将所述一级子任务和未拆解的所述零级任务组成新内部任务;
    执行第二通信策略;
    所述第二通信策略是指在一个通信周期内运行多轮程序,每轮所述程序包括一个外部通信任务、一个所述一级子任务和未拆解的所述零级任务。
  6. 根据权利要求2至4中任一项所述的外机通信方法,其特征在于,当所述步骤S3中确定所述内部任务的等级为2级时,所述步骤S4包括如下步骤:
    至少拆解一个零级任务为多个一级子任务,继续至少拆解一个所述一级子任务为多个二级子任务;
    将所述二级子任务、未拆解的所述一级子任务和未拆解的所述零级任务组成新内部任务:
    执行所述第二通信策略;
    所述第二通信策略是指在一个通信周期内运行多轮程序,每轮所述程序包括一个外部通信任务、拆解的所述零级任务的一个子任务和未拆解的所述零级任务。
  7. 根据权利要求2至4中任一项所述的外机通信方法,其特征在于,当所述步骤S3中确定所述内部任务的等级为3级时,所述步骤S4包括如下步骤:
    至少拆解一个所述零级任务为多个一级子任务,继续至少拆解一个所述一级子任务为多个二级子任务,再继续至少拆解一个所述二级子任务为多个三级子任务;
    将所述三级子任务、未拆解的所述零级任务、未拆解所述一级子任务和未拆解的所述二级子任务组成新内部任务:
    执行所述第二通信策略;
    所述第二通信策略是指在一个通信周期内运行多轮程序,每轮所述程序包括一个外部通信任务、拆解的所述零级任务的一个子任务和 未拆解的所述零级任务。
  8. 根据权利要求1至4中任一项所述的外机通信方法,其特征在于,在所述步骤S4之后,所述外机通信方法还包括如下步骤:
    S5、保持以当前通信策略运行预设时长后返回所述步骤S1。
  9. 根据权利要求8所述的外机通信方法,其特征在于,所述步骤S5具体为保持以当前通信策略运行5分钟后返回所述步骤S1。
  10. 一种多拖多多联机,其包括一个主控外机和多个子外机,其特征在于,所述主控外机和所述子外机通过权利要求1至9中任一项所述的外机通信方法通信连接。
PCT/CN2021/101825 2020-11-23 2021-06-23 多拖多多联机的外机通信方法及多拖多多联机 WO2022068278A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011321293.5 2020-11-23
CN202011321293.5A CN112611016B (zh) 2020-11-23 2020-11-23 多拖多多联机的外机通信方法及多拖多多联机

Publications (1)

Publication Number Publication Date
WO2022068278A1 true WO2022068278A1 (zh) 2022-04-07

Family

ID=75225320

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/101825 WO2022068278A1 (zh) 2020-11-23 2021-06-23 多拖多多联机的外机通信方法及多拖多多联机

Country Status (2)

Country Link
CN (1) CN112611016B (zh)
WO (1) WO2022068278A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112611016B (zh) * 2020-11-23 2023-01-31 青岛海尔空调电子有限公司 多拖多多联机的外机通信方法及多拖多多联机
CN115102669B (zh) * 2022-06-24 2024-04-26 珠海格力电器股份有限公司 多联机空调系统网络通信方法、装置及多联机空调系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106452671A (zh) * 2016-09-28 2017-02-22 青岛海尔空调电子有限公司 多联机内外机通信方法
CN106453019A (zh) * 2016-09-12 2017-02-22 青岛海尔空调电子有限公司 一种多联机内外机通信方法
US20170307239A1 (en) * 2016-04-25 2017-10-26 Emerson Climate Technologies Retail Solutions, Inc. Location-based information retrieval, viewing, and diagnostics for refrigeration, hvac, and other building systems
CN110500700A (zh) * 2019-08-20 2019-11-26 海信(山东)空调有限公司 一种控制方法、控制器及控制系统
CN112611016A (zh) * 2020-11-23 2021-04-06 青岛海尔空调电子有限公司 多拖多多联机的外机通信方法及多拖多多联机

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105729491B (zh) * 2016-04-01 2018-09-04 纳恩博(北京)科技有限公司 机器人任务的执行方法、装置及系统
CN205747348U (zh) * 2016-06-14 2016-11-30 珠海格力电器股份有限公司 空调器通信数据的处理系统及空调器
CN108488914A (zh) * 2018-04-13 2018-09-04 珠海格力电器股份有限公司 空调机组、空调机组的操作方法和装置
CN110838990A (zh) * 2018-08-17 2020-02-25 上海诺基亚贝尔股份有限公司 一种在c-ran中对层1进行加速的方法和装置
CN109343967A (zh) * 2018-12-03 2019-02-15 咪付(广西)网络技术有限公司 一种分布式计算系统及计算方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170307239A1 (en) * 2016-04-25 2017-10-26 Emerson Climate Technologies Retail Solutions, Inc. Location-based information retrieval, viewing, and diagnostics for refrigeration, hvac, and other building systems
CN106453019A (zh) * 2016-09-12 2017-02-22 青岛海尔空调电子有限公司 一种多联机内外机通信方法
CN106452671A (zh) * 2016-09-28 2017-02-22 青岛海尔空调电子有限公司 多联机内外机通信方法
CN110500700A (zh) * 2019-08-20 2019-11-26 海信(山东)空调有限公司 一种控制方法、控制器及控制系统
CN112611016A (zh) * 2020-11-23 2021-04-06 青岛海尔空调电子有限公司 多拖多多联机的外机通信方法及多拖多多联机

Also Published As

Publication number Publication date
CN112611016B (zh) 2023-01-31
CN112611016A (zh) 2021-04-06

Similar Documents

Publication Publication Date Title
WO2022068278A1 (zh) 多拖多多联机的外机通信方法及多拖多多联机
WO2021233475A1 (zh) 多联机的内外机通信方法及多联机
WO2020140649A1 (zh) 区块链智能合约管理方法与装置、电子设备、存储介质
CN107864071B (zh) 一种面向主动安全的数据动态采集方法、装置及系统
CN106843170B (zh) 基于令牌的任务调度方法
CN103856337B (zh) 资源占用率获取方法、提供方法、系统及服务器
CN105389214A (zh) 一种监控方法及系统
CN106452671A (zh) 多联机内外机通信方法
CN107332707B (zh) 一种sdn网络测量数据的采集方法和装置
WO2017016025A1 (zh) 一种室内环境监控方法及物联网终端
CN106657212A (zh) 自助终端状态监控方法及系统
WO2021012510A1 (zh) Cpu使用率自适应调整方法、装置、终端及存储介质
CN107181780A (zh) 通信通道处理方法和系统
CN106441349B (zh) 基于计步器消息的伪造消息判定方法及装置
CN106453019A (zh) 一种多联机内外机通信方法
US20230066178A1 (en) Ai intelligentialization based on signaling interaction
CN112596892A (zh) 多节点边缘计算设备的数据交互方法和系统
CN106776252B (zh) 一种评价gpu性能的方法及装置
CN102216909A (zh) 一种网络处理器和网络处理器所存程序的诊断方法
CN111858458B (zh) 一种互联通道的调整方法、装置、系统、设备和介质
CN106878112B (zh) 一种网关控制器、数据传输方法及装置
CN107147719A (zh) 一种硬件更新方法、主节点、从节点以及服务器集群
CN106869247B (zh) 一种提高管网漏失控制效率的方法及系统
CN112596924B (zh) 物联网中台服务端应用程序远程过程调用方法和系统
TWI642285B (zh) 網路交換機的主機狀態偵測方法與系統

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21873940

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21873940

Country of ref document: EP

Kind code of ref document: A1