WO2022068270A1 - 裂缝变化监测装置、方法、存储介质及处理器 - Google Patents

裂缝变化监测装置、方法、存储介质及处理器 Download PDF

Info

Publication number
WO2022068270A1
WO2022068270A1 PCT/CN2021/100690 CN2021100690W WO2022068270A1 WO 2022068270 A1 WO2022068270 A1 WO 2022068270A1 CN 2021100690 W CN2021100690 W CN 2021100690W WO 2022068270 A1 WO2022068270 A1 WO 2022068270A1
Authority
WO
WIPO (PCT)
Prior art keywords
crack
change monitoring
measurement
temperature
width
Prior art date
Application number
PCT/CN2021/100690
Other languages
English (en)
French (fr)
Inventor
戚务昌
巨占岳
徐家齐
Original Assignee
威海华菱光电股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 威海华菱光电股份有限公司 filed Critical 威海华菱光电股份有限公司
Publication of WO2022068270A1 publication Critical patent/WO2022068270A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/022Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness by means of tv-camera scanning
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/14Measuring arrangements characterised by the use of optical techniques for measuring distance or clearance between spaced objects or spaced apertures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • G01B21/02Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring length, width, or thickness
    • G01B21/04Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring length, width, or thickness by measuring coordinates of points
    • G01B21/045Correction of measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K13/00Thermometers specially adapted for specific purposes

Definitions

  • the present application relates to the technical field of crack detection, and in particular, to a crack change monitoring device, method, storage medium and processor.
  • concrete As a material used in various concrete buildings such as buildings, iron bridges, and tunnels, concrete is more and more widely used. As the service life of concrete increases, concrete buildings will develop cracks, and the infiltration of rainwater will make the cracks of concrete buildings worse, resulting in the reduction of the strength of concrete buildings, so concrete buildings must be maintained. When to maintain a concrete building can only be determined by frequently grasping the state of cracks in the concrete building.
  • the main purpose of the present application is to provide a crack change monitoring device, method, storage medium and processor, so as to reduce the influence of ambient temperature on the measurement result of the crack width, so as to obtain accurate measurement results.
  • a crack change monitoring device comprising: a box body, the box body has a detection surface, and the detection surface is fitted at the position to be detected; a measurement sensor is located in the box body, The detection end of the measurement sensor is set towards the detection surface; the temperature sensor is used to detect the ambient temperature at the location to be detected in real time; the crack change monitoring part is connected to both the measurement sensor and the temperature sensor, and the crack change monitoring part can receive the environment detected by the temperature sensor temperature, when the ambient temperature received by the crack change monitoring part is within the first preset temperature range, the crack change monitoring part receives the first width change data of the crack at the to-be-detected position detected by the measurement sensor, and calculates according to the temperature compensation coefficient Correcting the first width change data of the crack to obtain the second width change data of the crack at the position to be detected, and storing the second width change data of the crack; an output device, the output device is connected to the crack change monitoring part , and output by at
  • the crack change monitoring part includes: a control unit connected to the measurement sensor, the temperature sensor and the output device, and the control unit controls the action of the measurement sensor according to the ambient temperature detected by the temperature sensor; a first memory for storing The first preset temperature range is stored, and the first memory is connected with the control unit; the calculation unit is connected with the control unit and the measurement sensor, and the calculation unit is used to calculate and correct the first width change data of the crack to obtain the crack The second width change data of the crack; the second memory is connected with the control unit, the arithmetic unit and the output device, and the second memory is used for storing the second width change data of the crack.
  • the crack change monitoring part further comprises: a clock unit for timing, the clock unit is connected with the control unit; a third memory for storing the first test time, the third memory is connected with the control unit connected, the control unit receives the ambient temperature detected by the temperature sensor at the first test time.
  • the crack change monitoring part further includes a fourth memory for storing the temperature compensation coefficient, and the fourth memory is connected with the calculation unit.
  • the output device includes a wireless control portion that receives and transmits the second width variation data of the crack.
  • the wireless control part includes: a wireless network; a wireless control body, the wireless control body receives the second width variation data of the crack; an antenna, the antenna is connected with the wireless control body, and the antenna connects the second width of the crack through the wireless network Change data is sent out.
  • the output device further includes a database
  • the database stores the second width change data of the crack sent by the wireless control part
  • the computer terminal analyzes the second width change data of the crack, when the second width change data of the crack in the database is When the change data exceeds the warning value, the computer terminal will issue a prompt.
  • the computer terminal includes at least one of a display, a buzzer, and an alarm indicator.
  • a crack change monitoring method wherein the above-mentioned crack change monitoring device is used to monitor cracks, and the crack change monitoring method includes: before monitoring the crack, the crack change monitoring device is fixed on the crack On the wall where it is located, make the detection surface of the box of the crack change monitoring device fit on the wall, and make the scanning path of the measurement sensor of the crack change monitoring device perpendicular to the extension direction of the crack; turn on the power, monitor the crack change
  • the device automatically performs the initialization setting process, and stores the temperature compensation coefficient, the first preset temperature range and the first test time into the memory in the crack change monitoring part to complete the initialization setting; the temperature sensor is used to detect the ambient temperature at the wall in real time.
  • the crack change monitoring device is in the testing phase of the crack, the crack change monitoring part obtains the ambient temperature at the wall detected by the temperature sensor, and when the ambient temperature at the wall is within the first preset temperature range, the measurement sensor is activated to make the measurement
  • the sensor scans the width of the crack according to the preset conditions, and sends the result to the calculation unit of the crack change monitoring section; the calculation unit of the crack change monitoring section calculates and corrects the data detected by the measurement sensor according to the temperature compensation coefficient, and will correct
  • the data is sent to the computer terminal, and then the crack change monitoring device goes to the standby state again.
  • the initial setting process includes: within a first preset period, measuring the width of the crack and the ambient temperature at the wall according to a first preset time interval, and recording the measurement time, the temperature of the crack under the measurement time
  • the first width change data and the ambient temperature at the wall under the measurement time obtain the temperature compensation coefficient, the first measurement temperature range and the first measurement time; determine the first measurement temperature range and the first storage in the crack change monitoring part
  • the first preset temperature range is formed in the device, if not, the first measurement temperature range is stored in the first memory to form the first preset temperature range, and the first measurement time is stored in the third memory
  • the first test time is formed, and the initialization setting is completed.
  • the testing stage of the crack includes a judging step, and the judging step includes: at the first test time, judging whether the ambient temperature at the wall is within a first preset temperature range, and if so, executing activating the measurement sensor steps, if not, perform the self-correction step.
  • the self-calibration step includes: within a second preset period, measuring the ambient temperature at the wall surface according to a second preset time interval, and recording the measurement time and the ambient temperature at the wall surface during the measurement time ; Obtain the second measurement temperature range and the second measurement time; determine whether the second measurement temperature range is consistent with the first preset temperature range stored in the first memory in the crack change monitoring part, and if so, the second The measurement time is stored in the third memory in the crack change monitoring part to form the first test time, and the first preset temperature range stored in the first memory is retained; if not, the second measurement temperature range is stored.
  • a storage medium stores a program, wherein the above-mentioned crack change monitoring method is executed when the program is run.
  • a processor processor for running a program, wherein the above-mentioned fracture variation monitoring method is executed when the program is executed.
  • the measuring sensor is used to measure the width of the wall crack;
  • the crack change monitoring device is attached to the position to be detected through the detection surface of the box, and the crack at the position to be detected is measured;
  • the crack change monitoring part receives the ambient temperature detected by the temperature sensor, and determine whether the ambient temperature is within the first preset temperature range, and when the ambient temperature is within the first preset temperature range, the crack change monitoring unit controls the measurement sensor to measure the width of the crack, and obtain the first width change data of the crack detected by the measuring sensor, and then the crack change monitoring part corrects the first width change data according to the temperature compensation coefficient, so as to correct the deviation of the measurement result of the crack width caused by the ambient temperature , thereby reducing the influence of the ambient temperature on the measurement result of the crack width, the crack change monitoring part stores the corrected second width change data of the crack, and the second width change data is output by the output device, so as to obtain accurate Measurement result; through the above correction of the first width change data of the crack, the deviation of the measurement result of
  • FIG. 1 shows a schematic diagram of a crack change monitoring device installed on a bridge girder according to an embodiment of the crack change monitoring device of the present application
  • FIG. 2 shows a schematic diagram of the connection of a measurement sensor, a temperature sensor, a crack change monitoring part and an output device of the crack change monitoring device of FIG. 1;
  • FIG. 3 shows a flow chart of an embodiment of a fracture variation monitoring method according to the present application
  • Fig. 4 shows the flow chart of the initial setting process of the crack change monitoring method of Fig. 3;
  • Fig. 5 shows the change law diagram of temperature in one day in the initialization setting process of Fig. 4;
  • Fig. 6 shows the change law diagram of crack width with time and temperature in the initial setting process of Fig. 4;
  • Fig. 7 shows the trend diagram of a crack width as a function of temperature during the initial setting process of Fig. 4;
  • Fig. 8 shows another trend graph of crack width as a function of temperature during the initial setup process of Fig. 4;
  • FIG. 9 is a flowchart showing the judgment steps of the test stage of the crack change monitoring method of FIG. 3;
  • Fig. 10 shows a specific flow chart of the crack change monitoring method of Fig. 3;
  • FIG. 11 shows a flowchart of the self-calibration steps of the fracture variation monitoring method of FIG. 10.
  • FIG. 12 shows a schematic structural diagram of an embodiment of a crack change monitoring device according to the present application.
  • the present application and the embodiments of the present application provide a self-calibrating crack change monitoring device, a crack change monitoring method, a storage medium and a processor, which can The deviation caused by the measurement result of the crack width is corrected to reduce the influence of the ambient temperature on the measurement result of the crack width, so as to obtain an accurate measurement result.
  • the crack change monitoring device includes a box body 10 , a measurement sensor 20 , a temperature sensor, a crack change monitoring part 40 and an output device 50 , and the box body 10 has a detection surface for detecting The surface fit is arranged at the position to be detected, the measurement sensor 20 is located in the box body 10, the detection end of the measurement sensor 20 is arranged towards the detection surface, the temperature sensor is arranged in the box body 10, and the temperature sensor is used for real-time detection at the position to be detected.
  • both the measurement sensor 20 and the temperature sensor are connected to the crack change monitoring part 40, and the crack change monitoring part 40 can receive the ambient temperature detected by the temperature sensor, when the ambient temperature received by the crack change monitoring part 40 is in the first preset temperature range
  • the crack change monitoring part 40 receives the first width change data of the crack at the position to be detected detected by the measurement sensor 20, and corrects the first width change data of the crack according to the temperature compensation coefficient, so as to obtain the first width change data of the crack at the position to be detected.
  • the second width change data of the crack is stored, and the output device 50 is connected to the crack change monitoring part 40 to output through at least one of display, storage record, and alarm.
  • the measurement sensor 20 is used to measure the width of the wall crack; the crack change monitoring device is attached to the position to be detected through the detection surface of the box 10, and the crack at the position to be detected is measured; the crack change monitoring part 40 receives The ambient temperature detected by the temperature sensor determines whether the ambient temperature is within the first preset temperature range. When the ambient temperature is within the first preset temperature range, the crack change monitoring unit 40 controls the measurement sensor 20 to measure the width of the crack. Measure and obtain the first width change data of the crack detected by the measurement sensor 20, and then, the crack change monitoring part 40 corrects the first width change data according to the temperature compensation coefficient, so as to correct the measurement result of the crack width caused by the ambient temperature. Therefore, the influence of the ambient temperature on the measurement result of the crack width is reduced.
  • the crack change monitoring unit 40 stores the corrected second width change data of the crack, and the second width change data is sent to the output device 50. output, so as to obtain accurate measurement results; through the above correction of the first width change data of the crack, the deviation of the measurement result of the crack width caused by the ambient temperature is corrected, which weakens the influence of the ambient temperature on the measurement result of the crack width. Therefore, accurate measurement results can be obtained.
  • the crack change monitoring device further includes a fixing structure and a light source 30 , the box body 10 is installed at the position to be detected by the fixing structure, and the light source 30 is arranged in the box body 10 and faces the detection surface There are multiple light sources 30, and at least one light source 30 is provided on the upper and lower sides of the measurement sensor 20, respectively.
  • the light source 30 is an LED light source that emits visible and/or invisible light.
  • LED light sources with wavelengths in the visible light band, such as red light, green light, blue light, etc., can be selected.
  • infrared light and ultraviolet light LED light source can read the detailed state of the crack groove more aggressively.
  • the crack change monitoring device in the embodiment of the present application is an electronic monitoring device, which can realize real-time monitoring of wall cracks.
  • the crack change monitoring unit 40 includes a control unit, a first memory, an arithmetic unit and a second memory.
  • the measurement sensor 20 , the temperature sensor and the output device 50 are all connected to the control unit 50 .
  • the unit is connected, and the control unit controls the action of the measurement sensor 20 according to the ambient temperature detected by the temperature sensor; the first memory is used to store the first preset temperature range, and the first memory is connected with the control unit; the control unit and the measurement sensor 20 are both is connected with the calculation unit, and the calculation unit is used to calculate and correct the first width variation data of the crack to obtain the second width variation data of the crack; the control unit, the calculation unit and the output device 50 are all connected with the second memory, The second memory is used to store the second width variation data of the crack.
  • the first memory is used to save the determined temperature range suitable for the current measurement, that is, the first preset temperature range; after measuring the current ambient temperature, the system will confirm whether the current ambient temperature is in the first storage.
  • the calculation unit is used to perform corresponding processing on the data of the crack width measured by the measuring sensor 20, such as the conversion of the crack width, the calibration of itself, and the calibration of the crack with temperature changes
  • the second memory is used to temporarily store the data waiting to be sent, that is, the second width change data of the crack; the control unit realizes the control of the function of each unit, the control of the action sequence of each unit, and whether to perform The judgment of self-calibration is required; the control unit obtains the ambient temperature detected by the temperature sensor, and judges whether the ambient temperature is within the first preset temperature range stored in the first memory according to the ambient temperature, when the ambient temperature When in the first preset temperature range, the control unit controls the measurement sensor 20, so that the measurement sensor 20 measures the width of the crack
  • the data is calculated and corrected to obtain the second width change data, so as to achieve the purpose of correcting the deviation of the measurement result of the crack width due to the ambient temperature, and the second width change data of the crack is stored in the second memory.
  • the control unit controls the output device 50 to output the second width variation data of the crack, so as to obtain an accurate measurement result.
  • the crack change monitoring part 40 further includes a clock unit and a third memory, the clock unit is used for timing, the clock unit is connected with the control unit, and the third memory is used for storage At the first test time, the third memory is connected to the control unit, and the control unit receives the ambient temperature detected by the temperature sensor at the first test time.
  • the clock unit is always in a working state, and is used to determine the actual time when the crack change monitoring device is detected; the third memory is used to save the determined first test time;
  • the control unit first reads the value of the temperature sensor to confirm the current ambient temperature; the control unit obtains the actual time in real time through the clock unit, and when the actual time reaches the first test time, the control device receives the temperature the ambient temperature detected by the sensor, and determine whether the ambient temperature is within the first preset temperature range, if the ambient temperature is within the first preset temperature range, the control unit controls the measurement sensor 20 to detect the first width change data of the crack, By controlling the detection time and ambient temperature, the accuracy of crack width detection is improved, which is beneficial to obtain accurate measurement results.
  • the crack change monitoring unit 40 further includes a fourth memory for storing the temperature compensation coefficient, and the fourth memory is connected to the calculation unit.
  • the fourth memory is used to save the measurement data and temperature compensation coefficients of cracks changing with temperature. Walls with different uses or different materials have different rules for cracks changing with temperature. It is obtained from the data collected automatically; when the calculation unit calculates the first width change data of the crack, the calculation unit can correct the first width change data of the crack according to the temperature compensation coefficient to obtain the second width change data of the crack, thereby The deviation of the measurement result of the crack width caused by the ambient temperature is corrected, the influence of the ambient temperature on the measurement result of the crack width is weakened, and the accurate measurement result is obtained.
  • the output device 50 includes a wireless control unit 51, and the wireless control unit 51 receives and transmits the second width variation data of the crack.
  • the output device 50 is used to send the measurement data (that is, the second width change data of the crack) to the computer terminal 53; after the calculation unit calculates and corrects the first width change data of the crack, the second width change data of the crack is obtained.
  • the second width change data are stored in the second memory, and the second width change data of the slit in the second memory can be sent out through the wireless control unit 51 .
  • the wireless control unit 51 includes a wireless network 511, a wireless control body 512 and an antenna 513, the wireless control body 512 receives the second width variation data of the crack, the antenna 513 is connected to the wireless control body 512, and The antenna 513 transmits the second width change data of the crack to the outside through the wireless network 511 , so that the wireless control unit 51 can receive and transmit the second width change data of the crack.
  • the wireless network 511 is a wireless wide area network.
  • the wireless network 511 is a low power consumption wide area wireless network.
  • the output device 50 further includes a database 52.
  • the database 52 stores the second width change data of the crack sent by the wireless control unit 51.
  • the computer terminal 53 analyzes the second width change data of the crack. When the second width variation data exceeds the warning value, the computer terminal 53 issues a prompt.
  • the database 52 can receive the second width change data of the crack sent by the wireless control unit 51 and store the second width change data of the crack, and the data stored in the database 52 can be analyzed and analyzed through the computer terminal 53. Monitoring, when the change data of the second width of the crack exceeds the warning value, the computer terminal 53 can give an alarm to give a prompt.
  • the computer terminal 53 includes at least one of a display, a buzzer, and an alarm indicator to analyze and monitor the data stored in the database 52 .
  • the computer terminal 53 is used for receiving the second width variation data of the crack sent by the output device 50 .
  • the data transmission between the output device 50 and the computer terminal 53 can be wired, such as USB, or directly connected to the display, or wireless, such as Bluetooth, WiFi and other short-range wireless methods, or via the Internet of Things ( LOT) or communication network to the cloud platform, etc.
  • LOT Internet of Things
  • the self-calibrating wall crack change monitoring device in the embodiment of the present application is an automatic detection device. As long as the power is turned on, all calibration and measurement will be completed automatically without human intervention, and will be based on changes in ambient temperature. , automatically calibrate and correct the crack width data to ensure the accuracy of the measured crack width data.
  • the present application and the embodiments of the present application also provide a method for monitoring fracture changes.
  • the crack change monitoring method adopts the above-mentioned crack change monitoring device to monitor cracks
  • the crack change monitoring method includes: before monitoring the crack, the crack change monitoring device is fixed in the crack On the wall where it is located, make the detection surface of the box 10 of the crack change monitoring device fit on the wall, and make the scanning path of the measurement sensor 20 of the crack change monitoring device perpendicular to the extension direction of the crack;
  • the change monitoring device automatically performs the initialization setting process, and stores the temperature compensation coefficient, the first preset temperature range and the first test time into the corresponding memory in the crack change monitoring part 40 to complete the initialization setting; real-time detection by using a temperature sensor
  • the crack change monitoring device performs the crack test phase
  • the crack change monitoring unit 40 obtains the ambient temperature at the wall detected by the temperature sensor, and when the ambient temperature at the wall is within the first preset temperature range , start the measurement sensor 20, make the measurement sensor 20 scan the width of the crack according to preset
  • the crack is monitored by the crack change monitoring device, and the scanning path of the measurement sensor 20 is perpendicular to the extension direction of the crack, so that the crack can be easily monitored, and the detection effect of the crack is better and more accurate;
  • the temperature compensation coefficient, the first preset temperature range and the first test time corresponding to the cracks on the wall can be obtained, and the temperature compensation coefficient, the first preset temperature range and the first test time can be stored in the corresponding It is convenient for subsequent measurement of cracks and correction of crack width data;
  • the crack change monitoring unit 40 acquires the ambient temperature at the wall detected by the temperature sensor, and when the ambient temperature is at the first preset When the temperature is within the range, the measurement sensor 20 is started to measure the width of the crack, and the calculation unit is used to calculate and correct the width data of the crack to obtain accurate measurement results;
  • the correction can correct the deviation of the measurement result of the crack width caused by the ambient temperature, weaken the influence of the ambient temperature on the measurement result of the crack width, so as
  • the initialization setting process includes measuring the width of the crack and the ambient temperature at the wall according to the first preset time interval within the first preset period, and recording the measurement time, The first width change data of the crack under the measurement time and the ambient temperature at the wall under the measurement time; the calculation unit analyzes the recorded data to obtain the temperature compensation coefficient, the first measurement temperature range and the first measurement time ; Determine whether the first measurement temperature range is consistent with the default temperature range stored in the first memory in the crack change monitoring part 40, and if so, store the first measurement time in the third crack change monitoring part 40.
  • a first test time is formed in the memory, and the above-mentioned default temperature range is retained in the first memory to form a first preset temperature range, if not, the first measurement temperature range is stored in the first memory
  • the first preset temperature range is formed, and the first measurement time is stored in the third memory to form the first test time, and the initialization setting process is completed.
  • the crack change monitoring device After the crack change monitoring device is powered on or is forcibly reset, it will first automatically enter the initialization self-calibration procedure, that is, the above-mentioned initialization setting process. Specifically, within the first preset period, with the first preset time interval as the time interval, the width of the crack and the ambient temperature at the wall surface are measured multiple times, and multiple measurement times corresponding to the multiple measurement times are obtained.
  • the preset ie In the above-mentioned first preset period, taking the first preset time interval as the time interval, the width of the crack and the ambient temperature at the wall are measured multiple times
  • the above-mentioned default temperature range is a boot default value stored in the first memory of the crack change monitoring device, and by judging whether the first measurement temperature range is within the default temperature range, determine the first A preset temperature range and a first test time, when the first measurement temperature range is within the default temperature range, the default temperature range continues to be retained in the first memory to form the first preset temperature range, and only the first measurement temperature range is The time is stored in the third memory in the crack change monitoring part 40 to form the first test time.
  • the first measurement temperature range When the first measurement temperature range is not within the default temperature range, the first measurement temperature range needs to be stored in the first memory.
  • the first preset temperature range is formed in the storage, and the first measurement time is stored in the third storage to form the first test time, thereby completing the initialization setting process.
  • first preset period refers to a period of time, such as 72 hours
  • first preset time interval refers to a certain time interval, such as 30 minutes. That is to say, the above-mentioned “in the first preset period, measure the width of the crack and the ambient temperature at the wall according to the first preset time interval” refers to within a period of time, with a certain period of time as the time interval Measure the width of the crack and the ambient temperature at the wall multiple times. For example, within the range of 72 hours, measure the width of the crack and the ambient temperature at the wall every 30 minutes. The width data of the plurality of cracks corresponding to the plurality of measurement times and the ambient temperatures at the plurality of wall surfaces corresponding to the plurality of measurement times.
  • the initialization self-calibration measurement procedure (that is, the above-mentioned initialization setting process) requires repeated data measurements within a period of time to determine the variation law of the ambient temperature and the crack width within this period of time. Variation with temperature.
  • the measurement time length (that is, the above-mentioned first preset period) can usually be set as required.
  • the measurement time length set in the embodiment of the present application is 72 hours, and the time interval (that is, the above-mentioned first preset time interval) can be set according to the amount of data to be recorded.
  • the measurement time length and time interval are set in the program, and the test will be automatically performed according to the measurement time length and time interval after the machine is turned on.
  • the data of temperature and crack width including the measurement time will be saved, and the calculation unit will analyze and calculate the above data according to preset conditions. For example, a time length of 24 hours (specifically shown in FIG. 5 ) in which the temperature changes are relatively regular can be selected to divide the temperature regions.
  • the ambient temperature can be divided into 5 temperature zones: 0°C ⁇ 10°C(I), 10°C ⁇ 20°C(II), 20°C ⁇ 30°C(III), 30°C ⁇ 40°C °C(IV), 40°C ⁇ 50°C(V), among them, 20°C ⁇ 30°C in Zone III is the most suitable temperature range for electronic equipment, and it is also the most common temperature range in the natural environment, so when choosing the first When the temperature range is preset, this range can be preferentially selected (the factory default temperature range of the first memory can be set to this range).
  • FIG. 5 shows an example of a temperature change curve measured in a 24-hour time range starting from 10 am, and the time length of each temperature region is shown in Table 1.
  • the temperature range of zone III (20°C to 30°C) is included, so 20°C to 30°C is preferably selected as the next first measurement temperature range selected for this calibration measurement.
  • there are two change times of temperature zone III namely 17:30 ⁇ 23:00 and 6:00 ⁇ 10:30, and the longer time interval 17:30 ⁇ 23:00 is selected for this time.
  • the time range of the selected first measurement time within this time range, select the time point 19:30 corresponding to the intermediate temperature of 25°C as the next first measurement time selected for this calibration measurement.
  • the first measurement temperature range For some extreme applications, such as winter in relatively cold areas, only a period of time during the day when the temperature is above zero, and the rest of the time is below zero, only this local temperature range above zero can be selected as the first measurement temperature range , such as 0°C ⁇ 5°C.
  • the first measurement time selects the time point at which the highest temperature occurs in this range, such as 2:00 pm.
  • the first measurement temperature range selects the temperature zone with a relatively long occurrence time, and the first measurement time selects the time point at which the middle temperature of the temperature zone occurs.
  • the temperature during the day is generally above 50°C, and the minimum temperature at night may also be above 45°C.
  • the temperature range that can be selected is relatively low
  • the temperature range, such as 45°C to 50°C takes the temperature range with relatively low temperature as the first measurement temperature range, and the first measurement time selects the time point when the low temperature appears in this range, such as 2:00 in the morning.
  • the first measurement temperature range selects the temperature zone with a relatively long occurrence time
  • the first measurement time selects the time point at which the middle temperature of the temperature zone occurs.
  • the first memory and the third memory usually save a boot default value.
  • This default value is usually the preferred value according to most use environments, and can also be based on specific use areas. As well as seasonal values, but no matter what value is saved, the program will perform field measurements on the spot after power-on for correction and confirmation.
  • the width of the crack and the ambient temperature at the wall are measured, and the measurement time, the first width change data of the crack at the measurement time, and the environment at the wall at the measurement time are recorded
  • the step of temperature not only the ambient temperature at a certain measurement time (that is, a certain moment), but also the crack width at the measurement time should be measured, and according to the pre-set first preset cycle and first preset
  • the time interval measures the crack width and ambient temperature at the same time, and these data are stored in the fourth memory.
  • Figure 6 shows a data curve of wall cracks as a function of time and temperature. It can be seen from Figure 6 that the crack width value corresponding to the low temperature place is large, and the crack width value corresponding to the high temperature place is small.
  • the crack width is inversely proportional to the change in temperature.
  • This kind of crack on the building changes very slowly with time.
  • the crack width itself does not change, but only because of the temperature difference, the crack width changes with temperature.
  • the variation range of the crack width is about 200um, which is almost double the variation. If the temperature variation range is larger, the variation range of the fracture width will also increase. It can be seen that the change of crack width with temperature is very obvious. Only by analyzing the change law of crack width and temperature can the influence of temperature on crack width be eliminated and the effective value of the actual change of crack can be measured.
  • Fig. 7 shows the trend graph of the crack width as a function of temperature tested in a low temperature period. From these scattered points, a curve of crack width as a function of temperature can be obtained, as shown by the dotted line in Fig. 7, as can be seen from Fig. 7 , as the temperature increases, the width of the cracks becomes relatively smaller, which is due to the expansion of the wall with the increase of temperature, resulting in the relative reduction of the gap of the cracks.
  • the temperature compensation coefficients at different temperatures can be obtained according to the crack change law curve, and the temperature compensation coefficients can be stored in the fourth memory. For example, if 25°C is used as the standard, the crack width values measured at different temperatures can be converted into standard values at 25°C, so as to eliminate the influence of temperature on the change of crack width.
  • Figure 8 shows the trend diagram of the crack width of another wall tested in a high temperature period as a function of temperature.
  • the basic change law is basically the same as the change law of crack width and temperature in Figure 7 Consistent. Therefore, the variation law of the low temperature period can also be deduced from the values measured in the high temperature period.
  • the temperature compensation coefficient of the measured crack width of the wall as a function of temperature is obtained.
  • the system After completing the initialization and setting process, the system enters a standby state and waits for the arrival of the first test time stored in the third memory.
  • the above-mentioned “judging whether the first measurement temperature range is consistent with the default temperature range stored in the first memory in the crack change monitoring part 40" refers to judging whether the first measurement temperature range is in the crack change range.
  • the first measured temperature range is consistent with the default temperature range stored in the first memory in the crack change monitoring part 40, which may refer to the first measurement temperature range.
  • the measurement temperature range completely coincides with the default temperature range or the first measurement temperature range is within the default temperature range and smaller than the default temperature range.
  • the testing stage of the crack includes a judging step, and the judging step includes judging whether the ambient temperature at the wall is within the first preset temperature range under the first test time, and if so , the step of activating the measurement sensor 20 is performed, and if not, the step of self-calibration is performed.
  • the calculation unit of the crack change monitoring unit 40 can correct the crack width according to the temperature compensation coefficient, so as to obtain accurate measurement results .
  • the width of the crack can be measured by the measuring sensor 20, and the crack width can be measured according to the temperature compensation coefficient.
  • the width is corrected to obtain accurate measurement results; if the ambient temperature at the wall is not within the first preset temperature range at the first test time, the first preset temperature range and the A test time is corrected to obtain a first preset temperature range and a first test time that can more accurately reflect the wall and the ambient temperature at the wall, until the ambient temperature at the wall is within the first preset temperature range , and then start the measurement sensor 20 to measure the width of the crack to obtain an accurate measurement result.
  • the self-calibration step includes measuring the ambient temperature at the wall surface according to the second preset time interval within the second preset period, and recording a plurality of measurement times and The ambient temperature at multiple walls at each measurement time corresponding to the multiple measurement times; the calculation unit analyzes the recorded data to obtain the second measurement temperature range and the second measurement time; determine the second measurement temperature range and Whether the first preset temperature range stored in the first memory in the crack change monitoring part 40 matches, and if so, the second measurement time is stored in the third memory in the crack change monitoring part 40 to form the first test time, and keep the first preset temperature range stored in the first memory, if not, store the second measurement temperature range in the first memory to form the first preset temperature range, and The second measurement time is stored in the third memory to form the first test time; according to the first preset temperature range and the first test time formed above, the crack change monitoring part 40 in the test stage of the crack is repeatedly performed to obtain the temperature
  • the first preset temperature range and the first test time are corrected, and the first preset temperature range and the first test time that can more accurately reflect the wall surface and the ambient temperature at the wall surface are obtained , which helps to obtain accurate crack width measurement results; in the second preset period, with the second preset time interval as the time interval, the ambient temperature at the wall is measured multiple times to obtain multiple measurement times and The ambient temperature at multiple walls corresponding to multiple measurement times, and record the above data, and analyze the above data through the calculation unit, the second measurement temperature range and the second measurement time can be obtained.
  • the first preset temperature range and the first test time can be re-determined, and when the second measurement temperature range is within the first preset temperature range, stored in the first memory
  • second preset period and second preset time interval have the same meaning as the above-mentioned “first preset period” and “first preset time interval”, here No longer.
  • specific time values of the "second preset period” and “first preset period” and the “second preset time interval” and “first preset time interval” can be set to same or different.
  • Figure 10 shows the monitoring method to be performed after the next first test time.
  • the cycle is carried out according to the first test time saved in the third memory, and the first test time saved in the third memory is a certain time in the day. Its cycle period is 24 hours.
  • an ambient temperature measurement is first performed to determine whether the current ambient temperature is still within the first preset temperature range stored in the first memory. If the actually measured ambient temperature is within the first preset temperature range stored in the first memory, the system enters a normal measurement procedure and starts the measurement sensor 20 to measure, otherwise it enters into a self-calibration step.
  • the first preset temperature range stored in the first memory is 20°C to 30°C.
  • the ambient temperature is stored in the first preset temperature range in the first memory. If the measured ambient temperature exceeds the first preset temperature range stored in the first memory, for example, the actual measured ambient temperature is 32°C, the system enters the self-calibration step.
  • the normal measurement procedure is the most common and most basic function of the wall crack change monitoring device of the embodiment of the present application.
  • the measurement sensor 20 After entering the measurement procedure, the measurement sensor 20 starts to work to measure the width of the crack, as shown in FIG. 10 .
  • Commonly used measurement sensors for measuring width 20 line array CCD (Charge Coupled Device) sensor and contact image sensor (CIS (Contact Image Sensor)), etc. Both line array CCD sensor and contact image sensor (CIS) can measure the crack width. Take measurements.
  • a contact image sensor (CIS) is used as the measurement sensor 20.
  • the width of one pixel is 21um, that is to say, the measurement resolution is 21um, and usually the width when cracks appear is 0.1 mm, and when the crack width exceeds 0.2mm, real-time monitoring is required, and the crack also has a width of about 5 pixels when the crack width is 0.1mm. Therefore, the resolution of CIS can meet the requirements of wall crack measurement.
  • the crack can be calculated by the reflection output size of the wall and the number of pixels with lower output. width.
  • the data scanned by the measurement sensor 20 needs to be corrected after analog-to-digital conversion.
  • the data correction also needs to correct the temperature characteristics of the measured wall.
  • the variation characteristics of wall cracks with temperature that is, the above-mentioned temperature compensation coefficient, also need to be measured on site.
  • the temperature compensation coefficient of wall cracks has been measured in the initial setting process after the crack change monitoring device is turned on or after reset, and the temperature compensation coefficients of various temperatures are saved in the fourth memory, according to the current test environment. Select the corresponding temperature compensation coefficient to correct the measured crack width.
  • the corrected crack width data, the measured ambient temperature data corresponding to the crack width data, and the test time corresponding to the crack width data are used as the measurement data for this time. , sent to the second memory, and then sent to the computer terminal 53 through the output device 50 to complete the current measurement, and enter the standby state to wait for the arrival of the next first test time.
  • the self-calibration step is entered, and the working process of the self-calibration step is shown in FIG. 11 .
  • the self-calibration process is similar to the initial setting process, except that there is no need to measure the temperature compensation coefficient of the crack width changing with temperature, and only the change of ambient temperature can be measured and calibrated.
  • the measurement time length of self-calibration (that is, the above-mentioned second preset period) can usually be set as required, which can be the same as or different from the first preset period of the initialization setting process.
  • the second preset period is 24 hours, and the second preset time interval can be set according to the amount of data to be recorded. For example, it can be set to 30 minutes, that is, the test is performed every 30 minutes.
  • the second preset period and the second preset time interval are also set in the program, and the test will be automatically performed according to the second preset period and the second preset time interval during the working process.
  • the program After the measurement of the set second preset period and the second preset time interval, similar to the initial setting process, the program will reselect the first preset temperature range and the first test time, save and then enter the standby state, waiting for The arrival of the newly set next first test time.
  • the wall crack change monitoring device and the crack change monitoring method in the embodiments of the present application realize the automatic calibration (correction) of the change law of the measured wall cracks with temperature, and can automatically adjust and select a suitable test.
  • Time not only ensures that the wall crack change monitoring device can choose a more suitable time to measure at any time in harsh wild environments, thereby reducing unnecessary human intervention and greatly reducing management costs, but also greatly improving the accuracy of the measured data. sex.
  • the crack change monitoring device enters a routine operation procedure. First, the crack change monitoring device enters a standby state, some functions of the crack change monitoring device are automatically powered off, and the clock unit of the crack change monitoring unit 40 automatically enters a timing state.
  • the crack change monitoring part 40 receives the ambient temperature at the wall detected by the temperature sensor, and when the ambient temperature at the wall is within the first preset temperature range, starts the measurement sensor 20 to make the measurement sensor 20 scan the width of the crack according to the preset conditions, and send the result to the calculation unit of the crack change monitoring part 40, the calculation unit calculates and corrects the data detected by the measurement sensor 20, and sends the corrected data to the computer terminal 53 , and then the crack change monitoring device goes to the standby state again.
  • the computer terminal 53 determines that the transmitted data is abnormal, it can call the crack change monitoring device at any time. After receiving the call signal, the crack change monitoring device will return to the working state again, and measure the width of the crack again. The result is sent to the computer terminal 53 again.
  • the present application and the embodiments of the present application further provide a storage medium, where a program is stored in the storage medium, wherein the above-mentioned crack change monitoring method is executed when the program is run.
  • the storage medium is used to store the program, and when the program is run, the cracks can be monitored by the above-mentioned crack change monitoring method.
  • the present application and the embodiments of the present application further provide a processor, which is used for running a program, wherein the above-mentioned fracture change monitoring method is executed when the program is run.
  • the processor is used to run the program, and when the program is run, the cracks can be monitored by the above-mentioned crack change monitoring method.
  • the crack change monitoring device When a new crack appears on the wall, the crack change monitoring device, the crack change monitoring method, the storage medium and the processor of the present application can also be used to monitor the crack.
  • the measurement sensor is used to measure the width of the wall crack
  • the crack change monitoring device is attached to the position to be detected through the detection surface of the box.
  • the crack change monitoring part receives the ambient temperature detected by the temperature sensor, and determines whether the ambient temperature is within the first preset temperature range, and when the ambient temperature is within the first preset temperature range , the crack change monitoring part controls the measurement sensor to measure the width of the crack, and obtains the first width change data of the crack detected by the measurement sensor, and then the crack change monitoring part corrects the first width change data according to the temperature compensation coefficient to Correct the deviation caused by the ambient temperature to the measurement result of the crack width, thereby weakening the influence of the ambient temperature on the measurement result of the crack width.
  • the crack change monitoring unit stores the corrected second width change data of the crack.
  • the second width change data is outputted by the output device, so as to obtain accurate measurement results; through the above correction of the first width change data of the crack, the deviation of the measurement result of the crack width caused by the ambient temperature is corrected, which weakens the The influence of ambient temperature on the measurement results of crack width, thus enabling accurate measurement results.

Abstract

一种裂缝变化监测装置、方法、存储介质及处理器。裂缝变化监测装置包括:箱体(10),具有检测面;测量传感器(20),测量传感器(20)的检测端朝向检测面设置;温度传感器,用于实时检测环境温度;裂缝变化监测部(40),裂缝变化监测部(40)能够接收温度传感器检测的环境温度,当裂缝变化监测部(40)接收到的环境温度处于第一预设温度范围内时,裂缝变化监测部(40)接收测量传感器(20)检测到的裂缝的第一宽度变化数据,并根据温度补偿系数对裂缝的第一宽度变化数据进行修正,以得到裂缝的第二宽度变化数据,并存贮;输出装置(50),与裂缝变化监测部(40)连接。裂缝变化监测装置能够减弱环境温度对裂缝宽度的测量结果的影响,从而获得准确的测量结果。

Description

裂缝变化监测装置、方法、存储介质及处理器
本申请要求于2020年09月30日提交至中国国家知识产权局、申请号为202011066086.X、发明名称为“裂缝变化监测装置、方法、存储介质及处理器”的专利申请的优先权。
技术领域
本申请涉及裂缝检测技术领域,具体而言,涉及一种裂缝变化监测装置、方法、存储介质及处理器。
背景技术
混凝土作为楼房、铁桥、隧道等各种混凝土建筑物使用的材料,其应用越来越广泛。随着混凝土使用年限的增加,混凝土建筑物会产生裂缝,并且由于雨水的渗入会使混凝土建筑物的裂缝更加恶化,导致混凝土建筑物的强度降低,因此必须对混凝土建筑物进行维护。何时对混凝土建筑物进行维护则需要通过经常对混凝土建筑物的裂缝的状态进行把握才能确定。
目前,对混凝土建筑物上的裂缝进行检查时,作业人员需要到现场使用刻度尺直接测量裂缝的宽度或者使用数字相机对裂缝进行现场拍照,之后将测量结果带回管理中心进行分析才能确定是否需要进行相应的维护。当然,近年来随着技术的发展也有通过无线技术对桥梁、隧道等建筑物的裂缝进行监控的方法。
但是,不管是通过哪种方法对裂缝进行测量,都是在自然环境中对裂缝进行的检测。而自然环境中温度是不断变化的,如不同地区的温度差异、昼夜的温度差异、季节的温度差异等都有几十度的显著温度差异。由于裂缝的宽度是随温度的变化而变化的,因此如此明显的温度差异对裂缝的检测精度会带来很大的不确定性。因此,需要提供一种裂缝变化监测装置,以减弱环境温度对裂缝宽度的测量结果的影响。
发明内容
本申请的主要目的在于提供一种裂缝变化监测装置、方法、存储介质及处理器,以减弱环境温度对裂缝宽度的测量结果的影响,从而获得准确的测量结果。
为了实现上述目的,根据本申请的一个方面,提供了一种裂缝变化监测装置,包括:箱体,箱体具有检测面,检测面贴合设置在待检测位置处;测量传感器,位于箱体内,测量传感器的检测端朝向检测面设置;温度传感器,用于实时检测待检测位置处的环境温度;裂缝变化监测部,与测量传感器和温度传感器均连接,裂缝变化监测部能够接收温度传感器检测的环境温度,当裂缝变化监测部接收到的环境温度处于第一预设温度范围内时,裂缝变化监测部接收测量传感器检测到的待检测位置处的裂缝的第一宽度变化数据,并根据温度补偿系数对裂缝的第一宽度变化数据进行修正,以得到待检测位置处的裂缝的第二宽度变化数据, 并对裂缝的第二宽度变化数据进行存贮;输出装置,输出装置与裂缝变化监测部连接,以通过显示、存贮记录、报警的至少一种方式进行输出。
在一些实施例中,裂缝变化监测部包括:控制单元,与测量传感器、温度传感器以及输出装置均连接,控制单元根据温度传感器检测的环境温度控制测量传感器动作;第一存贮器,用于存贮第一预设温度范围,第一存贮器与控制单元连接;演算单元,与控制单元和测量传感器均连接,演算单元用于对裂缝的第一宽度变化数据进行演算和修正,以得到裂缝的第二宽度变化数据;第二存贮器,与控制单元、演算单元和输出装置均连接,第二存贮器用于存贮裂缝的第二宽度变化数据。
在一些实施例中,裂缝变化监测部还包括:时钟单元,用于计时,时钟单元与控制单元连接;第三存贮器,用于存贮第一测试时间,第三存贮器与控制单元连接,控制单元接收温度传感器在第一测试时间下检测到的环境温度。
在一些实施例中,裂缝变化监测部还包括用于存贮温度补偿系数的第四存贮器,第四存贮器与演算单元连接。
在一些实施例中,输出装置包括无线控制部,无线控制部接收并发送裂缝的第二宽度变化数据。
在一些实施例中,无线控制部包括:无线网络;无线控制本体,无线控制本体接收裂缝的第二宽度变化数据;天线,天线与无线控制本体连接,且天线通过无线网络将裂缝的第二宽度变化数据向外发送。
在一些实施例中,输出装置还包括数据库,数据库存贮无线控制部发送的裂缝的第二宽度变化数据,电脑终端对裂缝的第二宽度变化数据进行分析,当数据库中的裂缝的第二宽度变化数据超出预警值时,电脑终端发出提示。
在一些实施例中,电脑终端包括显示器、蜂鸣报警器和报警指示灯中的至少一种。
根据本申请的另一方面,提供了一种裂缝变化监测方法,采用上述的裂缝变化监测装置对裂缝进行监测,裂缝变化监测方法包括:在对裂缝进行监测前,将裂缝变化监测装置固定在裂缝所在的墙面上,并使裂缝变化监测装置的箱体的检测面贴合在墙面上,且使裂缝变化监测装置的测量传感器的扫描路径垂直于裂缝的延伸方向;开启电源,裂缝变化监测装置自动进行初始化设置过程,将温度补偿系数、第一预设温度范围和第一测试时间存入裂缝变化监测部内的存贮器中,完成初始化设置;利用温度传感器实时检测墙面处的环境温度;裂缝变化监测装置进行裂缝的测试阶段,裂缝变化监测部获取温度传感器检测的墙面处的环境温度,在墙面处的环境温度处于第一预设温度范围内时,启动测量传感器,使测量传感器按预设条件对裂缝的宽度进行扫描,并将结果发送至裂缝变化监测部的演算单元;裂缝变化监测部的演算单元根据温度补偿系数对测量传感器检测的数据进行演算和修正,并将修正的数据发给电脑终端,而后裂缝变化监测装置再次进行到待机状态。
在一些实施例中,初始化设置过程包括:在第一预设周期内,按照第一预设时间间隔测 量裂缝的宽度和墙面处的环境温度,并记录测量时间、在测量时间下的裂缝的第一宽度变化数据以及在测量时间下的墙面处的环境温度;获取温度补偿系数、第一测量温度范围以及第一测量时间;判断第一测量温度范围与裂缝变化监测部内的第一存贮器中存贮的默认温度范围是否相符,如果是,则将第一测量时间存入裂缝变化监测部内的第三存贮器中形成第一测试时间,并将默认温度范围保留在第一存贮器中形成第一预设温度范围,如果否,则将第一测量温度范围存入第一存贮器中形成第一预设温度范围,并将第一测量时间存入第三存贮器中形成第一测试时间,完成初始化设置。
在一些实施例中,裂缝的测试阶段包括判断步骤,判断步骤包括:在第一测试时间下,判断墙面处的环境温度是否处于第一预设温度范围内,如果是,则执行启动测量传感器的步骤,如果否,则执行自校正步骤。
在一些实施例中,自校正步骤包括:在第二预设周期内,按照第二预设时间间隔测量墙面处的环境温度,并记录测量时间以及在测量时间下的墙面处的环境温度;获取第二测量温度范围以及第二测量时间;判断第二测量温度范围与裂缝变化监测部内的第一存贮器中存贮的第一预设温度范围是否相符,如果是,则将第二测量时间存入裂缝变化监测部内的第三存贮器中形成第一测试时间,并保留第一存贮器中存贮的第一预设温度范围,如果否,则将第二测量温度范围存入第一存贮器中形成第一预设温度范围,并将第二测量时间存入第三存贮器中形成第一测试时间;根据上述形成的第一预设温度范围和第一测试时间,重复执行裂缝的测试阶段中的裂缝变化监测部获取温度传感器检测的墙面处的环境温度的步骤和判断步骤。
根据本申请的另一方面,提供了一种存储介质,存储介质存储有程序,其中,程序被运行时执行上述的裂缝变化监测方法。
根据本申请的另一方面,提供了一种处理器处理器用于运行程序,其中,程序被运行时执行上述的裂缝变化监测方法。
应用本申请的技术方案,测量传感器用于测量墙体裂缝的宽度;裂缝变化监测装置通过箱体的检测面贴合在待检测位置处,对待检测位置处的裂缝进行测量;裂缝变化监测部接收温度传感器检测的环境温度,并判断该环境温度是否处于第一预设温度范围内,当该环境温度处于第一预设温度范围内时,裂缝变化监测部控制测量传感器对裂缝的宽度进行测量,并获取测量传感器检测的裂缝的第一宽度变化数据,之后,裂缝变化监测部根据温度补偿系数对该第一宽度变化数据进行修正,以对由于环境温度给裂缝宽度的测量结果造成的偏差进行校正,从而减弱了环境温度对裂缝宽度的测量结果的影响,裂缝变化监测部对经过修正后的裂缝的第二宽度变化数据进行存贮,该第二宽度变化数据经输出装置输出,从而获得准确的测量结果;通过上述对裂缝的第一宽度变化数据的修正,对由于环境温度给裂缝宽度的测量结果造成的偏差进行了校正,减弱了环境温度对裂缝宽度的测量结果的影响,因而能够获得准确的测量结果。
附图说明
构成本申请的一部分的说明书附图用来提供对本申请的进一步理解,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1示出了根据本申请的裂缝变化监测装置的实施例的裂缝变化监测装置安装在桥桁上的示意图;
图2示出了图1的裂缝变化监测装置的测量传感器、温度传感器、裂缝变化监测部及输出装置连接的示意图;
图3示出了根据本申请的裂缝变化监测方法的实施例的流程图;
图4示出了图3的裂缝变化监测方法的初始化设置过程的流程图;
图5示出了图4的初始化设置过程中的一天中温度的变化规律图;
图6示出了图4的初始化设置过程中裂缝宽度随时间及温度的变化规律图;
图7示出了图4的初始化设置过程中的一个裂缝宽度随温度变化的趋势图;
图8示出了图4的初始化设置过程中的另一裂缝宽度随温度变化的趋势图;
图9示出了图3的裂缝变化监测方法的测试阶段的判断步骤的流程图;
图10示出了图3的裂缝变化监测方法的具体流程图;
图11示出了图10的裂缝变化监测方法的自校正步骤的流程图;以及
图12示出了根据本申请的裂缝变化监测装置的实施例的结构示意图。
其中,上述附图包括以下附图标记:
10、箱体;20、测量传感器;30、光源;40、裂缝变化监测部;50、输出装置;51、无线控制部;511、无线网络;512、无线控制本体;513、天线;52、数据库;53、电脑终端。
具体实施方式
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本申请。
需要指出的是,除非另有指明,本申请使用的所有技术和科学术语具有与本申请所属技术领域的普通技术人员通常理解的相同含义。
在本申请中,在未作相反说明的情况下,使用的方位词如“上、下、顶、底”通常是针对附图所示的方向而言的,或者是针对部件本身在竖直、垂直或重力方向上而言的;同样地,为便于理解和描述,“内、外”是指相对于各部件本身的轮廓的内、外,但上述方位词并不用于限制本申请。
对于桥梁、隧道等混凝土建筑物,在出现裂缝之后,为了确保安全,都要对裂缝进行监 测,但这些监测环境基本都是野外的自然环境,如图1示出了将本申请的实施例的自校准墙体裂缝变化监测装置安装在桥桁上的实施例。在自然环境中温度随地域不同、季节不同以及昼夜时间不同都会有很大变化,而温度的不同会对裂缝的测量结果造成很大的影响,因此在这种自然环境下使用裂缝变化监测装置时,需要对环境温度给裂缝的测量结果造成的偏差进行校正,才能得到准确的测量结果。针对温度对裂缝的测量结果带来影响的问题,本申请及本申请的实施例提供了一种可以自校准的裂缝变化监测装置、裂缝变化监测方法、存储介质及处理器,能够对由于环境温度给裂缝宽度的测量结果造成的偏差进行校正,以减弱环境温度对裂缝宽度的测量结果的影响,从而获得准确的测量结果。
如图1和图2所示,本申请的实施例中,裂缝变化监测装置包括箱体10、测量传感器20、温度传感器、裂缝变化监测部40以及输出装置50,箱体10具有检测面,检测面贴合设置在待检测位置处,测量传感器20位于箱体10内,测量传感器20的检测端朝向检测面设置,温度传感器设置在箱体10内,温度传感器用于实时检测待检测位置处的环境温度;测量传感器20和温度传感器均与裂缝变化监测部40连接,裂缝变化监测部40能够接收温度传感器检测的环境温度,当裂缝变化监测部40接收到的环境温度处于第一预设温度范围内时,裂缝变化监测部40接收测量传感器20检测到的待检测位置处的裂缝的第一宽度变化数据,并根据温度补偿系数对裂缝的第一宽度变化数据进行修正,以得到待检测位置处的裂缝的第二宽度变化数据,并对裂缝的第二宽度变化数据进行存贮,输出装置50与裂缝变化监测部40连接,以通过显示、存贮记录、报警的至少一种方式进行输出。
上述设置中,测量传感器20用于测量墙体裂缝的宽度;裂缝变化监测装置通过箱体10的检测面贴合在待检测位置处,对待检测位置处的裂缝进行测量;裂缝变化监测部40接收温度传感器检测的环境温度,并判断该环境温度是否处于第一预设温度范围内,当该环境温度处于第一预设温度范围内时,裂缝变化监测部40控制测量传感器20对裂缝的宽度进行测量,并获取测量传感器20检测的裂缝的第一宽度变化数据,之后,裂缝变化监测部40根据温度补偿系数对该第一宽度变化数据进行修正,以对由于环境温度给裂缝宽度的测量结果造成的偏差进行校正,从而减弱了环境温度对裂缝宽度的测量结果的影响,裂缝变化监测部40对经过修正后的裂缝的第二宽度变化数据进行存贮,该第二宽度变化数据经输出装置50输出,从而获得准确的测量结果;通过上述对裂缝的第一宽度变化数据的修正,对由于环境温度给裂缝宽度的测量结果造成的偏差进行了校正,减弱了环境温度对裂缝宽度的测量结果的影响,因而能够获得准确的测量结果。
如图12所示,本申请的实施例中,裂缝变化监测装置还包括固定结构和光源30,箱体10通过固定结构安装在待检测位置处,光源30设置在箱体10内且朝向检测面设置,光源30为多个,且测量传感器20的上下两侧分别至少设置有一个光源30,光源30照射待检测位置处的墙面和裂缝,方便测量传感器20对裂缝进行测量。
在一个实施方式中,光源30为LED光源,LED光源发射可见光和/或不可见光。在通常的监测过程中,可以选择波长在可见光带域的LED光源,例如红光、绿光、蓝光等。而在某些特殊的场合下使用红外光、紫外光的LED光源可以更加强袭的读取裂缝沟槽的详细状态。
本申请的实施例中裂缝变化监测装置为电子监测设备,能够实现对于墙壁裂缝的实时监测。
如图2所示,本申请的实施例中,裂缝变化监测部40包括控制单元、第一存贮器、演算单元和第二存贮器,测量传感器20、温度传感器以及输出装置50均与控制单元连接,控制单元根据温度传感器检测的环境温度控制测量传感器20动作;第一存贮器用于存贮第一预设温度范围,第一存贮器与控制单元连接;控制单元和测量传感器20均与演算单元连接,演算单元用于对裂缝的第一宽度变化数据进行演算和修正,以得到裂缝的第二宽度变化数据;控制单元、演算单元和输出装置50均与第二存贮器连接,第二存贮器用于存贮裂缝的第二宽度变化数据。
上述设置中,第一存贮器用于保存确定好的适合于当前测量的温度范围,即第一预设温度范围;在测量出当前环境温度后,系统会确认当前环境温度是否处在第一存贮器中保存的第一预设温度范围之内;演算单元用于对测量传感器20测量的裂缝宽度的数据进行相应的处理,如裂缝宽度的换算,自身的校准,裂缝随温度变化的校准(修正)等;第二存贮器用于临时贮存等待发送的数据,也就是裂缝的第二宽度变化数据;控制单元实现各单元功能的控制、各单元动作顺序的控制以及根据测量的环境温度进行是否需要进行自校正的判断;控制单元获取温度传感器检测的环境温度,并根据该环境温度判断该环境温度是否处于存贮在第一存贮器中的第一预设温度范围内,当该环境温度处于第一预设温度范围内时,控制单元控制测量传感器20,使测量传感器20对裂缝的宽度进行测量,以获得裂缝的第一宽度变化数据,控制单元控制演算单元对裂缝的第一宽度变化数据进行演算和修正,得到第二宽度变化数据,从而实现对由于环境温度给裂缝宽度的测量结果造成的偏差进行校正的目的,裂缝的第二宽度变化数据存贮在第二存贮器内,控制单元控制输出装置50将裂缝的第二宽度变化数据输出,从而获得准确的测量结果。
如图2所示,本申请的实施例中,裂缝变化监测部40还包括时钟单元和第三存贮器,时钟单元用于计时,时钟单元与控制单元连接,第三存贮器用于存贮第一测试时间,第三存贮器与控制单元连接,控制单元接收温度传感器在第一测试时间下检测到的环境温度。
上述设置中,时钟单元总是处于工作状态,用于确定裂缝变化监测装置检测时所处的实际时间;第三存贮器用于保存确定好的第一测试时间;在达到第三存贮器保存的第一测量时间点时,控制单元首先读取温度传感器的数值,用于确认当前的环境温度;控制单元通过时钟单元实时获知实际时间,当实际时间达到第一测试时间时,控制装置接收温度传感器检测的环境温度,并判断该环境温度是否处于第一预设温度范围内,如果该环境温度处于第一预设温度范围内,则控制单元控制测量传感器20检测裂缝的第一宽度变化数据,通过对检测的时间和环境温度的控制,提高了对裂缝宽度检测的准确性,有利于获得准确的测量结果。
如图2所示,本申请的实施例中,裂缝变化监测部40还包括用于存贮温度补偿系数的第四存贮器,第四存贮器与演算单元连接。第四存贮器用于保存裂缝随温度变化的测量数据及温度补偿系数,各种不同用途或不同材质的墙体,其裂缝随温度变化的规律不同,所以上述的温度补偿系数通常是通过在现场自动采集的数据得到的;当演算单元对裂缝的第一宽度变 化数据进行演算时,演算单元根据温度补偿系数能够对裂缝的第一宽度变化数据进行修正,得到裂缝的第二宽度变化数据,从而对由于环境温度给裂缝宽度的测量结果造成的偏差进行校正,减弱环境温度对裂缝宽度的测量结果的影响,进而获得准确的测量结果。
具体地,本申请的实施例中,输出装置50包括无线控制部51,无线控制部51接收并发送裂缝的第二宽度变化数据。输出装置50用于将测量数据(即裂缝的第二宽度变化数据)发送至电脑终端53;演算单元对裂缝的第一宽度变化数据进行演算和修正后,得到裂缝的第二宽度变化数据,第二宽度变化数据存贮到第二存贮器中,第二存贮器中的裂缝的第二宽度变化数据能够通过无线控制部51向外发送。
具体地,本申请的实施例中,无线控制部51包括无线网络511、无线控制本体512和天线513,无线控制本体512接收裂缝的第二宽度变化数据,天线513与无线控制本体512连接,且天线513通过无线网络511将裂缝的第二宽度变化数据向外发送,从而实现了无线控制部51能够接收并发送裂缝的第二宽度变化数据的功能。在一个实施方式中,无线网络511为无线广域网。在一个实施方式中,本申请的实施例中,无线网络511为低功耗广域无线网络。
具体地,输出装置50还包括数据库52,数据库52存贮无线控制部51发送的裂缝的第二宽度变化数据,电脑终端53对裂缝的第二宽度变化数据进行分析,当数据库52中的裂缝的第二宽度变化数据超出预警值时,电脑终端53发出提示。上述设置中,数据库52能够接收无线控制部51发送的裂缝的第二宽度变化数据并对裂缝的第二宽度变化数据进行存贮,通过电脑终端53可以对数据库52中存贮的数据进行分析和监测,当裂缝的第二宽度变化数据超出预警值时,电脑终端53可以报警以进行提示。在一个实施方式中,电脑终端53包括显示器、蜂鸣报警器和报警指示灯中的至少一种,以对数据库52中存贮的数据进行分析和监测。电脑终端53用于接收输出装置50发送的裂缝的第二宽度变化数据。输出装置50与电脑终端53之间的数据发送可以是有线方式的,如USB方式,或者直接连接显示器,也可以是无线方式的,如蓝牙、WiFi等近距离无线方式,或者是经物联网(LOT)或通讯网络传送到云平台等方式。
本申请的实施例中的自校准墙体裂缝变化监测装置是一种自动检测设备,只要接通电源,所有的校准和测量都会自动完成,不需要人的干预,并且会根据周围环境温度的变化,自动对裂缝的宽度数据进行校准修正,确保测量的裂缝宽度数据的准确性。
本申请及本申请的实施例还提供了一种裂缝变化监测方法。
如图3所示,本申请的实施例中,裂缝变化监测方法采用上述的裂缝变化监测装置对裂缝进行监测,裂缝变化监测方法包括:在对裂缝进行监测前,将裂缝变化监测装置固定在裂缝所在的墙面上,并使裂缝变化监测装置的箱体10的检测面贴合在墙面上,且使裂缝变化监测装置的测量传感器20的扫描路径垂直于裂缝的延伸方向;开启电源,裂缝变化监测装置自动进行初始化设置过程,将温度补偿系数、第一预设温度范围和第一测试时间存入裂缝变化监测部40内的相应的存贮器中,完成初始化设置;利用温度传感器实时检测墙面处的环境温度;裂缝变化监测装置进行裂缝的测试阶段,裂缝变化监测部40获取温度传感器检测的墙面 处的环境温度,在墙面处的环境温度处于第一预设温度范围内时,启动测量传感器20,使测量传感器20按预设条件对裂缝的宽度进行扫描,并将结果发送至裂缝变化监测部40的演算单元;裂缝变化监测部40的演算单元根据温度补偿系数对测量传感器20检测的数据进行演算和修正,并将修正的数据发给电脑终端53,而后裂缝变化监测装置再次进行到待机状态。
上述设置中,通过裂缝变化监测装置对裂缝进行监测,且使测量传感器20的扫描路径垂直于裂缝的延伸方向,能够方便地对裂缝进行监测,且对裂缝的检测效果更好、更准确;通过初始化设置过程,能够获得与该墙面的裂缝对应的温度补偿系数、第一预设温度范围以及第一测试时间,并将温度补偿系数、第一预设温度范围以及第一测试时间存入相应的存贮器中,方便后续对裂缝的测量和对裂缝的宽度数据进行修正;在测试阶段,裂缝变化监测部40获取温度传感器检测的墙面处的环境温度,当环境温度处于第一预设温度范围内时,启动测量传感器20对裂缝的宽度进行测量,并通过演算单元对裂缝的宽度数据进行演算和修正,获得准确的测量结果;演算单元根据温度补偿系数对上述的裂缝的宽度数据进行修正,能够对由于环境温度给裂缝宽度的测量结果造成的偏差进行校正,减弱环境温度对裂缝宽度的测量结果的影响,从而获得准确的测量结果;修正的数据发送至电脑终端53,通过电脑终端53对修正的数据进行分析和监测;之后裂缝变化监测装置进入待机状态,等待下一次对裂缝进行测量。通过对环境温度的实时测量以及对裂缝随环境温度的变化规律的分析,自动生成准确的适用于当前墙体裂缝材质的温度补偿系数,自动选择合理的测量时间进行裂缝宽度的测量,能够得到准确的裂缝宽度测量值。
如图4所示,本申请的实施例中,初始化设置过程包括在第一预设周期内,按照第一预设时间间隔测量裂缝的宽度和墙面处的环境温度,并记录测量时间、在该测量时间下的裂缝的第一宽度变化数据以及在该测量时间下的墙面处的环境温度;演算单元对记录的数据进行分析,得到温度补偿系数、第一测量温度范围以及第一测量时间;判断第一测量温度范围与裂缝变化监测部40内的第一存贮器中存贮的默认温度范围是否相符,如果是,则将第一测量时间存入裂缝变化监测部40内的第三存贮器中形成第一测试时间,并将上述默认温度范围保留在第一存贮器中形成第一预设温度范围,如果否,则将第一测量温度范围存入第一存贮器中形成第一预设温度范围,并将第一测量时间存入第三存贮器中形成第一测试时间,完成初始化设置过程。
裂缝变化监测装置上电后或被强制复位时,首先会自动进入初始化自校准程序,也就是上述的初始化设置过程。具体地,在第一预设周期内,以第一预设时间间隔为时间间隔,对裂缝的宽度和墙面处的环境温度进行多次测量,得到多个测量时间、与多个测量时间对应的多个裂缝的第一宽度变化数据以及与多个测量时间对应的多个墙面处的环境温度,并记录上述数据;上述测量过程中,在测量裂缝宽度的同时,也测量当前的环境温度,将测量的数据,连同测量时的时间一起保存到相应的存贮器中;上述数据的测量要根据需求和确保准确性进行多次,每次的数据都进行保存;根据预先设定(即上述的在第一预设周期内,以第一预设时间间隔为时间间隔,对裂缝的宽度和墙面处的环境温度进行多次测量)判断是否完成测量,完成测量后对测量记录的数据进行分析,没有完成测量时等待下一个时刻继续进行测量;测量完成后,通过演算单元对上述数据进行分析,可以得到温度补偿系数、第一测量温度范围 和第一测量时间;温度补偿系数被存贮至第四存贮器;上述的默认温度范围为裂缝变化监测装置的第一存贮器中存贮的一个开机默认值,通过判断第一测量温度范围是否处于该默认温度范围内,确定第一预设温度范围和第一测试时间,当第一测量温度范围处于默认温度范围内时,该默认温度范围继续保留在第一存贮器中形成第一预设温度范围,只将第一测量时间存入裂缝变化监测部40内的第三存贮器中形成第一测试时间,当第一测量温度范围不处于该默认温度范围内时,则需将第一测量温度范围存入第一存贮器中形成第一预设温度范围,并将第一测量时间存入第三存贮器中形成第一测试时间,从而完成初始化设置过程。
需要说明的是,上述的“第一预设周期”指的是一段时间,比如72小时,上述的“第一预设时间间隔”指的是以一定时间为时间间隔,比如以30分钟为时间间隔;也就是说,上述的“在第一预设周期内,按照第一预设时间间隔测量裂缝的宽度和墙面处的环境温度”指的是在一段时间内,以一定时间为时间间隔多次测量裂缝的宽度和墙面处的环境温度,比如,在72小时范围内,每隔30分钟测量一次裂缝的宽度和墙面处的环境温度,这样,可以得到多个测量时间、与多个测量时间相对应的多个裂缝的宽度数据以及与多个测量时间相对应的多个墙面处的环境温度。
需要说明的是,初始化自校准测量程序(也就是上述的初始化设置过程)要求在一个时间段之内反复进行多次数据测量,以确定在这一时间段之内环境温度的变化规律及裂缝宽度随温度的变化规律。测量时间长度(也就是上述的第一预设周期)通常可以根据需要进行设定,本申请的实施例中设定的测量时间长度为72小时,时间间隔(也就是上述的第一预设时间间隔)可根据需要记录的数据的多少进行设置,如设置为30分钟即每隔30分钟测试一次。测量时间长度和时间间隔是在程序内部设置好的,开机后会自动按该测量时间长度和时间间隔进行测试。
本申请的实施例中,经过72小时的测量之后,包括测量时间在内的温度及裂缝宽度的数据都会保存下来,演算单元会对上述数据按预设条件进行分析计算。比如,可以选择其中温度变化比较规则的24小时(具体如图5所示)的时间长度进行温度区域划分,图5中各温度区域的时间长度统计表如表1所示。根据电子设备对测量环境的要求,可将环境温度分成5个温度区域:0℃~10℃(Ⅰ)、10℃~20℃(Ⅱ)、20℃~30℃(Ⅲ)、30℃~40℃(Ⅳ)、40℃~50℃(Ⅴ),其中,区域Ⅲ的20℃~30℃是最适合于电子设备工作的温度范围,也是自然环境中出现最多的温度范围,所以在选择第一预设温度范围时可优先选择这一范围(可以将第一存贮器的出厂默认温度范围设定为这个范围)。
代码 温度范围 时间长度(小时) 区间
0℃~10℃ 0.0  
10℃~20℃ 7.0 23:00~6:00
20℃~30℃ 5.5 17:30~23:00
20℃~30℃ 4.5 6:00~10:30
30℃~40℃ 7.0 10:30~17:30
40℃~50℃ 0.0  
表1
一天中的温度变化范围随地区以及季节的不同而不同,所以要实地测量才能计算出切合实际的温度补偿系数。图5示出了从上午10时开始的24小时时间长度范围内实测的温度变化曲线的实施例,其各温度区域的时间长度如表1所示。在这一温度变化曲线中,包含区域Ⅲ的温度范围(20℃~30℃),所以优先选择20℃~30℃作为本次校准测量选取的下一次的第一测量温度范围。而在该温度曲线中有两处温度区域Ⅲ的变化时间,即17:30~23:00和6:00~10:30,选择时间比较长的时间区间17:30~23:00为本次选择的第一测量时间的时间范围,在这个时间范围内,选择中间温度25℃所对应的时间点19:30为本次校准测量选取的下一次的第一测量时间。
对于一些极端的应用场合,如比较寒冷的地区的冬季,只有白天的一段时间温度为零上,其余时间全部在零度以下,则只能选择零上的这一局部温度范围作为第一测量温度范围,如0℃~5℃。第一测量时间选择在这一范围内最高温度出现的时间点,如下午2点。其它的只有Ⅰ区和Ⅱ区的温度范围出现时,第一测量温度范围选择出现时间比较长的温度区域,第一测量时间选择该温度区域的中间温度出现的时间点。
而对于比较炎热的地区的夏季以及使用场合比较特殊的密闭场合,白天温度一般在50℃以上,晚上最低温度也可能在45℃以上,这种情况下可选择的温度范围为相对温度较低的温度范围,如45℃~50℃,以相对温度较低的温度范围作为第一测量温度范围,第一测量时间则选择在这一范围内低温出现的时间点,如凌晨2点。其它的只有Ⅳ区和Ⅴ区的温度范围出现时,第一测量温度范围选择出现时间比较长的温度区域,第一测量时间则选择该温度区域的中间温度出现的时间点。
裂缝变化监测装置初次开启时,第一存贮器和第三存贮器通常都会保存一个开机默认值,这个默认值通常是根据大多数的使用环境优选的值,也可以是根据具体的使用地区以及季节经常出现的值,但不论保存的是什么值,开机后程序都会再实地进行现场测量以进行修正和确认。
在图4的初始化设置过程的测量裂缝的宽度和墙面处的环境温度,并记录测量时间、在该测量时间下的裂缝的第一宽度变化数据以及在该测量时间下的墙面处的环境温度的步骤中,不仅要测量某一测量时间(即某一时刻)的环境温度,还要测量该测量时间下的裂缝宽度,并且按照事先设定好的第一预设周期和第一预设时间间隔对同一时刻下的裂缝宽度和环境温度进行测量,这些数据保存至第四存贮器中。图6示出了一个墙体裂缝随时间及温度变化的数据曲线图,从图6中可以看出,温度低的地方对应的裂缝宽度值大,温度高的地方对应的裂缝宽度值小,也就是说裂缝宽度与温度的变化成反比。建筑物上的这种裂缝随时间的变化是非常缓慢的,对于几天之内的测量数据,可以认为裂缝宽度本身并没有发生变化,而只是由于温度的不同,裂缝宽度随温度发生的变化,从图6中可以看出裂缝宽度的变化幅度大约有200um,差不多是一倍的变化量,如果温度变化范围更大的话,裂缝宽度的变化范围也还会增大。可见裂缝宽度随温度的变化是非常明显的,只有通过分析裂缝宽度与温度的变化规律,才可以消除温度对裂缝宽度的影响,才能测量出裂缝实际变化的有效值。
图7示出了在一低温时段测试的裂缝宽度随温度变化的趋势图,从这些散点中可以得到 一条裂缝宽度随温度变化的曲线,如图7中的虚线,从图7中可以看出,随着温度的升高,裂缝的宽度相对变小了,这是由于随着温度的升高,墙体发生膨胀,导致裂缝的间隙相对缩小了。
由于测量季节的原因,这个散点图中只有30℃以下的温度数据,但同一种墙体随温度的变化规律基本上是一致的,因此裂缝随温度的变化可以看成是线性变化,根据这些散点通过线性回归分析方法可以得到一条温度从0℃到50℃的裂缝宽度与温度的整个温度变化范围内的裂缝变化规律曲线;其中,如图7中所示,反映裂缝宽度与温度之间关系的裂缝变化规律曲线的斜率即为本申请的实施例中的温度补偿系数。
根据这一裂缝变化规律曲线可以得到不同温度下的温度补偿系数,并将该温度补偿系数保存到第四存贮器中。例如,如果以25℃为标准时,可以将不同温度下测得的裂缝宽度值都换算成25℃时的标准值,从而消除温度对裂缝宽度变化产生的影响。
图8示出了在一高温时段测试的另一个墙面的裂缝宽度随温度变化的趋势图,虽然裂缝所在墙体的材质不同,但基本变化规律与图7的裂缝宽度与温度的变化规律基本一致。因此从高温时段测量的数值也可以推出低温时段的变化规律。
图4中的演算单元对记录的数据进行分析的步骤之后,得到了测量的墙体的裂缝宽度随温度变化的温度补偿系数。同时需要判断目前第一存贮器中保存的开机默认温度范围是否与本次测试分析得到的第一测量温度范围相符。如果相符,则目前第一存贮器中保存的开机默认温度范围不需要改变,该默认温度范围形成第一预设温度范围,只需重新保存本次测量选择的新的测量时刻(即第一测量时间)形成第一测试时间即可,如果不相符,则先重新保存本次测量选取的第一测量温度范围形成第一预设温度范围,再重新保存本次测量选择的新的测量时刻(即第一测量时间)形成第一测试时间,完成初始化设置过程后系统进入待机状态,等待第三存贮器中保存的第一测试时间的到来。
需要说明的是,上述的“判断第一测量温度范围与裂缝变化监测部40内的第一存贮器中存贮的默认温度范围是否相符”指的是判断第一测量温度范围是否处于裂缝变化监测部40内的第一存贮器中存贮的默认温度范围之内,第一测量温度范围与裂缝变化监测部40内的第一存贮器中存贮的默认温度范围相符可以指第一测量温度范围与该默认温度范围完全重合或者第一测量温度范围位于该默认温度范围之内且小于该默认温度范围。
如图9所示,本申请的实施例中,裂缝的测试阶段包括判断步骤,判断步骤包括在第一测试时间下,判断墙面处的环境温度是否处于第一预设温度范围内,如果是,则执行启动测量传感器20的步骤,如果否,则执行自校正步骤。在第一测试时间下,当墙面处的环境温度处于第一预设温度范围内时,裂缝变化监测部40的演算单元可以根据温度补偿系数对裂缝的宽度进行修正,从而获得准确的测量结果。因此,通过上述判断步骤,在第一测试时间下,当墙面处的环境温度处于第一预设温度范围内,可以通过测量传感器20对裂缝的宽度进行测量,并根据温度补偿系数对裂缝的宽度进行修正,从而获得准确的测量结果;如果在第一测试时间下,墙面处的环境温度不处于第一预设温度范围内,则需要通过自校正步骤对第一预 设温度范围和第一测试时间进行校正,获得更能准确反映该墙面和该墙面处的环境温度的第一预设温度范围和第一测试时间,直到墙面处的环境温度处于第一预设温度范围内,之后启动测量传感器20,对裂缝的宽度进行测量,获得准确的测量结果。
如图10和图11所示,本申请的实施例中,自校正步骤包括在第二预设周期内,按照第二预设时间间隔测量墙面处的环境温度,并记录多个测量时间以及与多个测量时间对应的在各测量时间下的多个墙面处的环境温度;演算单元对记录的数据进行分析,得到第二测量温度范围以及第二测量时间;判断第二测量温度范围与裂缝变化监测部40内的第一存贮器中存贮的第一预设温度范围是否相符,如果是,则将第二测量时间存入裂缝变化监测部40内的第三存贮器中形成第一测试时间,并保留第一存贮器中存贮的第一预设温度范围,如果否,则将第二测量温度范围存入第一存贮器中形成第一预设温度范围,并将第二测量时间存入第三存贮器中形成第一测试时间;根据上述形成的第一预设温度范围和第一测试时间,重复执行裂缝的测试阶段中的裂缝变化监测部40获取温度传感器检测的墙面处的环境温度的步骤和判断步骤。
通过上述自校正步骤,对第一预设温度范围和第一测试时间进行了校正,获得更能准确反映该墙面和该墙面处的环境温度的第一预设温度范围和第一测试时间,有助于获得准确的裂缝宽度的测量结果;在第二预设周期内,以第二预设时间间隔为时间间隔,对墙面处的环境温度进行多次测量,得到多个测量时间以及与多个测量时间对应的多个墙面处的环境温度,并记录上述数据,通过演算单元对上述数据进行分析,可以得到第二测量温度范围和第二测量时间,通过判断第二测量温度范围是否处于第一预设温度范围内,可以重新确定第一预设温度范围和第一测试时间,当第二测量温度范围处于第一预设温度范围内时,存贮在第一存贮器中的第一预设温度范围仍然保留在第一存贮器中,不需要更新,只需要将第二测量时间存入第三存贮器中形成第一测试时间,当第二测量温度范围不处于第一预设温度范围内时,则需要将第二测量温度范围存入第一存贮器中形成第一预设温度范围,并将第二测量时间存入第三存贮器中形成第一测试时间,完成对第一预设温度范围和第一测试时间的更新,并根据新的第一预设温度范围和第一测试时间重新进行裂缝的测试阶段中的裂缝变化监测部40获取温度传感器检测的墙面处的环境温度的步骤和判断步骤。
需要说明的是,上述的“第二预设周期”和“第二预设时间间隔”与上述的“第一预设周期”和“第一预设时间间隔”的指代含义相同,此处不再赘述。当然,可以根据实际情况和实际需要,将“第二预设周期”和“第一预设周期”以及“第二预设时间间隔”和“第一预设时间间隔”的具体时间值设置为相同或者不同。
需要说明的是,上述的“判断第二测量温度范围与裂缝变化监测部40内的第一存贮器中存贮的第一预设温度范围是否相符”的指代含义与上述的“判断第一测量温度范围与裂缝变化监测部40内的第一存贮器中存贮的默认温度范围是否相符”的指代含义相同,此处不再赘述。
图10示出了在下一个第一测试时间到来后,要进行的监测方法。从待机过程到第一测试时间到来,是按照第三存贮器中保存的第一测试时间进行循环的,第三存贮器中保存的第一 测试时间保存的是一天中的某一个时刻,其循环周期为24小时。在第一测试时间到来后首先要进行一次环境温度测量,判断目前的环境温度是否还处于第一存贮器中保存的第一预设温度范围之内。如果实际测量的环境温度在第一存贮器中保存的第一预设温度范围之内,则系统进入正常测量程序,启动测量传感器20进行测量,否则进入自校正步骤。例如第一存贮器中保存的第一预设温度范围是20℃~30℃,如果实际测量的环境温度为28℃,这个环境温度在第一存贮器中保存的第一预设温度范围之内,则系统进入正常测量程序,如果实测环境温度超出第一存贮器中保存的第一预设温度范围,如实际测量的环境温度为32℃,则进入自校正步骤。
正常测量程序是本申请的实施例的墙体裂缝变化监测装置的最常用和最基本的功能,进入测量程序后,测量传感器20开始工作,对裂缝的宽度进行测量,如图10所示。常用的测量宽度的测量传感器20有线阵CCD(Charge Coupled Device)传感器和接触式图像传感器(CIS(Contact Image Sensor))等,线阵CCD传感器和接触式图像传感器(CIS)等都可以对裂缝宽度进行测量。本申请的实施例中使用接触式图像传感器(CIS)作为测量传感器20,其分辨率为1200DPI时,一个像素的宽度为21um,也就是说测量分辨率为21um,通常裂缝出现时的宽度为0.1mm左右,而裂缝宽度超过0.2mm时就需要实时监测,裂缝在0.1mm宽度时也有大约5个像素的宽度。所以CIS的分辨率能够满足墙体裂缝测量的要求。测量时开启CIS内部光源照射裂缝然后对裂缝进行扫描,因为裂缝处与正常墙体相比对光的反射率低,所以通过对墙体的反射输出大小以及输出较低像素的数量可以计算出裂缝的宽度。
测量传感器20扫描的数据经模数转换后需要进行数据补正。数据补正除了对测量传感器20自身的温度特性进行补正外(对测量传感器20自身的温度特性进行补正的技术属于现有技术,此处不再描述),还需要对测量墙体的温度特性进行补正,以便输出标准的裂缝宽度数据。不同材质的墙体,其随温度的热胀冷缩的变化规律也不相同,因此墙体裂缝的随温度的变化特性,也就是上述的温度补偿系数也需要现场测量。
墙体裂缝的温度补偿系数在裂缝变化监测装置开机后或复位后的初始化设置过程中已经进行测量,并在第四存贮器中保存了各种温度的温度补偿系数,根据当前测试时的环境温度选择相应的温度补偿系数对测量的裂缝宽度进行修正,修正好的裂缝宽度数据、测量的与该裂缝宽度数据对应的环境温度数据以及与该裂缝宽度数据对应的测试时间,作为本次测量数据,发送至第二存贮器,然后经输出装置50发送到电脑终端53后完成本次测量,进入待机状态等待下一个第一测试时间的到来。
在图10的流程图中,如果实际测量的环境温度超出第一存贮器中保存的第一预设温度范围,则进入自校正步骤,自校正步骤的工作过程如图11所示。自校正过程与初始化设置过程类似,只是不需要再对裂缝宽度随温度变化的温度补偿系数进行测量,只对环境温度的变化进行测量校准即可。
自校正的测量时间长度(也就是上述的第二预设周期)通常可以根据需要进行设定,可以与初始化设置过程的第一预设周期相同,也可以不同,本申请的实施例中设定的第二预设周期为24小时,第二预设时间间隔可根据需要记录的数据的多少进行设置,如可以设置为30 分钟即每隔30分钟测试一次。第二预设周期和第二预设时间间隔也是在程序内部设置好的,工作过程中会自动按第二预设周期和第二预设时间间隔进行测试。
经过设定的第二预设周期和第二预设时间间隔的测量之后,与初始化设置过程类似,程序会重新选择第一预设温度范围及第一测试时间并进行保存之后进入待机状态,等待新设定的下一个第一测试时间的到来。
综上所述,本申请的实施例中墙体裂缝变化监测装置和裂缝变化监测方法,实现了对所测量墙体的裂缝随温度变化规律的自动校准(补正)以及能够自动调整选择适合的测试时间,不仅保障了在野外恶劣环境下墙体裂缝变化监测装置能随时选择比较适合的时刻进行测量,从而减少不必要的人为的干预,大大降低管理成本,同时也大大提高了测量的数据的准确性。
在一些实施例中,裂缝变化监测装置进入常规作业程序中,首先,裂缝变化监测装置进入待机状态,裂缝变化监测装置的部分功能会自动断电,裂缝变化监测部40的时钟单元自动进入计时状态,达到第一测试时间后,裂缝变化监测部40接收温度传感器检测的墙面处的环境温度,在墙面处的环境温度处于第一预设温度范围内时,启动测量传感器20,使测量传感器20按预设条件对裂缝的宽度进行扫描,并将结果发送至裂缝变化监测部40的演算单元,演算单元对测量传感器20检测的数据进行演算和修正,并将修正的数据发给电脑终端53,而后裂缝变化监测装置再次进行到待机状态。
在一些实施例中,如果电脑终端53判断发送数据异常,可以随时呼叫裂缝变化监测装置,裂缝变化监测装置收到呼叫信号后会再次恢复到工作状态,并再次进行裂缝的宽度测量,并将测量结果再次发给电脑终端53。
本申请及本申请的实施例还提供了一种存储介质,存储介质存储有程序,其中,程序被运行时执行上述的裂缝变化监测方法。上述设置中,存储介质用于存储程序,当运行该程序时,可以通过上述的裂缝变化监测方法对裂缝进行监测。
本申请及本申请的实施例还提供了一种处理器,处理器用于运行程序,其中,程序被运行时执行上述的裂缝变化监测方法。上述设置中,处理器用于运行程序,当运行该程序时,可以通过上述的裂缝变化监测方法对裂缝进行监测。
当墙面出现新的裂缝时,也可以利用本申请的裂缝变化监测装置、裂缝变化监测方法、存储介质及处理器对裂缝进行监测。
从以上的描述中,可以看出,本申请上述的实施例实现了如下技术效果:测量传感器用于测量墙体裂缝的宽度;裂缝变化监测装置通过箱体的检测面贴合在待检测位置处,对待检测位置处的裂缝进行测量;裂缝变化监测部接收温度传感器检测的环境温度,并判断该环境温度是否处于第一预设温度范围内,当该环境温度处于第一预设温度范围内时,裂缝变化监测部控制测量传感器对裂缝的宽度进行测量,并获取测量传感器检测的裂缝的第一宽度变化数据,之后,裂缝变化监测部根据温度补偿系数对该第一宽度变化数据进行修正,以对由于环境温度给裂缝宽度的测量结果造成的偏差进行校正,从而减弱了环境温度对裂缝宽度的测 量结果的影响,裂缝变化监测部对经过修正后的裂缝的第二宽度变化数据进行存贮,该第二宽度变化数据经输出装置输出,从而获得准确的测量结果;通过上述对裂缝的第一宽度变化数据的修正,对由于环境温度给裂缝宽度的测量结果造成的偏差进行了校正,减弱了环境温度对裂缝宽度的测量结果的影响,因而能够获得准确的测量结果。
显然,上述所描述的实施例仅仅是本申请一部分的实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本申请保护的范围。
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本申请的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、工作、器件、组件和/或它们的组合。
需要说明的是,本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本申请的实施方式能够以除了在这里图示或描述的那些以外的顺序实施。
以上所述仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (14)

  1. 一种裂缝变化监测装置,其特征在于,包括:
    箱体(10),所述箱体(10)具有检测面,所述检测面贴合设置在待检测位置处;
    测量传感器(20),位于所述箱体(10)内,所述测量传感器(20)的检测端朝向所述检测面设置;
    温度传感器,用于实时检测所述待检测位置处的环境温度;
    裂缝变化监测部(40),与所述测量传感器(20)和所述温度传感器均连接,所述裂缝变化监测部(40)能够接收所述温度传感器检测的所述环境温度,当所述裂缝变化监测部(40)接收到的所述环境温度处于第一预设温度范围内时,所述裂缝变化监测部(40)接收所述测量传感器(20)检测到的所述待检测位置处的裂缝的第一宽度变化数据,并根据温度补偿系数对所述裂缝的所述第一宽度变化数据进行修正,以得到所述待检测位置处的所述裂缝的第二宽度变化数据,并对所述裂缝的所述第二宽度变化数据进行存贮;
    输出装置(50),所述输出装置(50)与所述裂缝变化监测部(40)连接,以通过显示、存贮记录、报警的至少一种方式进行输出。
  2. 根据权利要求1所述的裂缝变化监测装置,其特征在于,所述裂缝变化监测部(40)包括:
    控制单元,与所述测量传感器(20)、所述温度传感器以及所述输出装置(50)均连接,所述控制单元根据所述温度传感器检测的环境温度控制所述测量传感器(20)动作;
    第一存贮器,用于存贮第一预设温度范围,所述第一存贮器与所述控制单元连接;
    演算单元,与所述控制单元和所述测量传感器(20)均连接,所述演算单元用于对所述裂缝的所述第一宽度变化数据进行演算和修正,以得到所述裂缝的所述第二宽度变化数据;
    第二存贮器,与所述控制单元、所述演算单元和所述输出装置(50)均连接,所述第二存贮器用于存贮所述裂缝的所述第二宽度变化数据。
  3. 根据权利要求2所述的裂缝变化监测装置,其特征在于,所述裂缝变化监测部(40)还包括:
    时钟单元,用于计时,所述时钟单元与所述控制单元连接;
    第三存贮器,用于存贮第一测试时间,所述第三存贮器与所述控制单元连接,所述控制单元接收所述温度传感器在所述第一测试时间下检测到的所述环境温度。
  4. 根据权利要求2所述的裂缝变化监测装置,其特征在于,所述裂缝变化监测部(40)还包括用于存贮温度补偿系数的第四存贮器,所述第四存贮器与所述演算单元连接。
  5. 根据权利要求1至4中任一项所述的裂缝变化监测装置,其特征在于,所述输出装置(50)包括无线控制部(51),所述无线控制部(51)接收并发送所述裂缝的所述第二宽度变化数据。
  6. 根据权利要求5所述的裂缝变化监测装置,其特征在于,所述无线控制部(51)包括:
    无线网络(511);
    无线控制本体(512),所述无线控制本体(512)接收所述裂缝的所述第二宽度变化数据;
    天线(513),所述天线(513)与所述无线控制本体(512)连接,且所述天线(513)通过所述无线网络(511)将所述裂缝的所述第二宽度变化数据向外发送。
  7. 根据权利要求5所述的裂缝变化监测装置,其特征在于,所述输出装置(50)还包括数据库(52),所述数据库(52)存贮所述无线控制部(51)发送的所述裂缝的所述第二宽度变化数据,电脑终端(53)对所述裂缝的所述第二宽度变化数据进行分析,当所述数据库(52)中的所述裂缝的所述第二宽度变化数据超出预警值时,所述电脑终端(53)发出提示。
  8. 根据权利要求7所述的裂缝变化监测装置,其特征在于,所述电脑终端(53)包括显示器、蜂鸣报警器和报警指示灯中的至少一种。
  9. 一种裂缝变化监测方法,其特征在于,采用权利要求1至8中任一项所述的裂缝变化监测装置对裂缝进行监测,所述裂缝变化监测方法包括:
    在对裂缝进行监测前,将所述裂缝变化监测装置固定在所述裂缝所在的墙面上,并使所述裂缝变化监测装置的箱体(10)的检测面贴合在所述墙面上,且使所述裂缝变化监测装置的测量传感器(20)的扫描路径垂直于所述裂缝的延伸方向;
    开启电源,所述裂缝变化监测装置自动进行初始化设置过程,将温度补偿系数、第一预设温度范围和第一测试时间存入裂缝变化监测部(40)内的存贮器中,完成初始化设置;
    利用温度传感器实时检测所述墙面处的环境温度;
    所述裂缝变化监测装置进行所述裂缝的测试阶段,裂缝变化监测部(40)获取温度传感器检测的所述墙面处的环境温度,在所述墙面处的环境温度处于所述第一预设温度范围内时,启动所述测量传感器(20),使所述测量传感器(20)按预设条件对所述裂缝的宽度进行扫描,并将结果发送至所述裂缝变化监测部(40)的演算单元;
    所述裂缝变化监测部(40)的演算单元根据温度补偿系数对所述测量传感器(20)检测的数据进行演算和修正,并将修正的数据发给电脑终端(53),而后所述裂缝变化监测装置再次进行到待机状态。
  10. 根据权利要求9所述的裂缝变化监测方法,其特征在于,所述初始化设置过程包括:
    在第一预设周期内,按照第一预设时间间隔测量所述裂缝的宽度和所述墙面处的环境温度,并记录测量时间、在所述测量时间下的所述裂缝的第一宽度变化数据以及在所 述测量时间下的所述墙面处的环境温度;
    获取所述温度补偿系数、第一测量温度范围以及第一测量时间;
    判断所述第一测量温度范围与所述裂缝变化监测部(40)内的第一存贮器中存贮的默认温度范围是否相符,如果是,则将所述第一测量时间存入所述裂缝变化监测部(40)内的第三存贮器中形成所述第一测试时间,并将所述默认温度范围保留在所述第一存贮器中形成所述第一预设温度范围,如果否,则将所述第一测量温度范围存入所述第一存贮器中形成所述第一预设温度范围,并将所述第一测量时间存入所述第三存贮器中形成所述第一测试时间,完成初始化设置。
  11. 根据权利要求9所述的裂缝变化监测方法,其特征在于,所述裂缝的测试阶段包括判断步骤,所述判断步骤包括:在所述第一测试时间下,判断所述墙面处的环境温度是否处于所述第一预设温度范围内,如果是,则执行启动所述测量传感器(20)的步骤,如果否,则执行自校正步骤。
  12. 根据权利要求11所述的裂缝变化监测方法,其特征在于,所述自校正步骤包括:
    在第二预设周期内,按照第二预设时间间隔测量所述墙面处的环境温度,并记录测量时间以及在所述测量时间下的所述墙面处的环境温度;
    获取第二测量温度范围以及第二测量时间;
    判断所述第二测量温度范围与所述裂缝变化监测部(40)内的第一存贮器中存贮的所述第一预设温度范围是否相符,如果是,则将所述第二测量时间存入所述裂缝变化监测部(40)内的第三存贮器中形成所述第一测试时间,并保留所述第一存贮器中存贮的所述第一预设温度范围,如果否,则将所述第二测量温度范围存入所述第一存贮器中形成所述第一预设温度范围,并将所述第二测量时间存入所述第三存贮器中形成所述第一测试时间;
    根据所述第一预设温度范围和所述第一测试时间,重复执行所述裂缝的测试阶段中的裂缝变化监测部(40)获取温度传感器检测的所述墙面处的环境温度的步骤和所述判断步骤。
  13. 一种存储介质,其特征在于,所述存储介质存储有程序,其中,所述程序被运行时执行权利要求9至12中任一项所述的裂缝变化监测方法。
  14. 一种处理器,其特征在于,所述处理器用于运行程序,其中,所述程序被运行时执行权利要求9至12中任一项所述的裂缝变化监测方法。
PCT/CN2021/100690 2020-09-30 2021-06-17 裂缝变化监测装置、方法、存储介质及处理器 WO2022068270A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011066086.XA CN112229333A (zh) 2020-09-30 2020-09-30 裂缝变化监测装置、方法、存储介质及处理器
CN202011066086.X 2020-09-30

Publications (1)

Publication Number Publication Date
WO2022068270A1 true WO2022068270A1 (zh) 2022-04-07

Family

ID=74120535

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/100690 WO2022068270A1 (zh) 2020-09-30 2021-06-17 裂缝变化监测装置、方法、存储介质及处理器

Country Status (2)

Country Link
CN (1) CN112229333A (zh)
WO (1) WO2022068270A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112229333A (zh) * 2020-09-30 2021-01-15 威海华菱光电股份有限公司 裂缝变化监测装置、方法、存储介质及处理器
CN114384073B (zh) * 2021-11-30 2023-08-04 杭州申昊科技股份有限公司 一种地铁隧道裂纹检测方法及系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102759337A (zh) * 2012-04-28 2012-10-31 中国神华能源股份有限公司 一种井工开采工作面动态裂缝的监测方法
US20170038307A1 (en) * 2014-04-16 2017-02-09 Nec Corporation Information processing device, information processing method and medium
CN109579709A (zh) * 2018-12-25 2019-04-05 陕西圆周率文教科技有限公司 一种不可移动文物裂缝监测装置及方法
CN109946296A (zh) * 2019-03-01 2019-06-28 威海华菱光电股份有限公司 裂缝变化监测装置及裂缝变化监测方法
CN111650207A (zh) * 2020-05-29 2020-09-11 威海华菱光电股份有限公司 焊接裂缝检测设备及方法、系统
CN112229333A (zh) * 2020-09-30 2021-01-15 威海华菱光电股份有限公司 裂缝变化监测装置、方法、存储介质及处理器

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5593157B2 (ja) * 2010-08-10 2014-09-17 株式会社ソーキ 亀裂変位計測システム
CN203116893U (zh) * 2013-03-22 2013-08-07 交通运输部公路科学研究所 一种正交异性钢桥面板隐蔽焊缝应力监测装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102759337A (zh) * 2012-04-28 2012-10-31 中国神华能源股份有限公司 一种井工开采工作面动态裂缝的监测方法
US20170038307A1 (en) * 2014-04-16 2017-02-09 Nec Corporation Information processing device, information processing method and medium
CN109579709A (zh) * 2018-12-25 2019-04-05 陕西圆周率文教科技有限公司 一种不可移动文物裂缝监测装置及方法
CN109946296A (zh) * 2019-03-01 2019-06-28 威海华菱光电股份有限公司 裂缝变化监测装置及裂缝变化监测方法
CN111650207A (zh) * 2020-05-29 2020-09-11 威海华菱光电股份有限公司 焊接裂缝检测设备及方法、系统
CN112229333A (zh) * 2020-09-30 2021-01-15 威海华菱光电股份有限公司 裂缝变化监测装置、方法、存储介质及处理器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TANG, YUDA; HUAN, ZHIYONG; HUANG, GUOWEI: "Intelligent Crack Monitoring System Design", PUBLIC COMMUNICATION OF SCIENCE & TECHNOLOGY, vol. 2011, no. 22, 30 November 2011 (2011-11-30), pages 149, 161, XP009535710, ISSN: 1674-6708 *

Also Published As

Publication number Publication date
CN112229333A (zh) 2021-01-15

Similar Documents

Publication Publication Date Title
WO2022068270A1 (zh) 裂缝变化监测装置、方法、存储介质及处理器
WO2020177165A1 (zh) 裂缝变化监测装置及裂缝变化监测方法
García-Diego et al. Microclimate monitoring by multivariate statistical control: The renaissance frescoes of the Cathedral of Valencia (Spain)
US5816703A (en) Method of detecting defects of a structure
CN108827158B (zh) 一种大跨径桥梁主塔偏位激光监测装置及方法
KR101628955B1 (ko) 롤 자세정보검출장치 및 그 측정방법
PL373803A1 (en) Analytical system and method for measuring and controlling a production process
CN113251933A (zh) 一种用于基坑表面位移监测的自动化图像位移测量系统
CN111504506A (zh) 混凝土测温系统
CN117057679B (zh) 一种基于数据处理的水泥基保温板安装质量管控系统
RU2019122828A (ru) Способ и система выявления и контроля зон изменения напряженно-деформированного состояния строительных конструкций
Tanesi et al. Effect of coefficient of thermal expansion test variability on concrete pavement performance as predicted by mechanistic-empirical pavement design guide
Krakhmal’ny et al. New system of monitoring of a condition of cracks of small reinforced concrete bridge constructions
CN215952766U (zh) 一种混凝土拌和物出机口温度实时监测系统
KR20090082763A (ko) 적설량 측정장치 및 방법
CN113593212A (zh) 一种基于远程控制的道路性能智能监测系统
CN209485275U (zh) 一种基于数字图像处理技术的裂缝动态变化传感器
CN203719793U (zh) 一种水泥回转窑温度场在线检测装置
CN205002735U (zh) 一种具有全景拍摄和测量功能的工程检测飞行器
CN102062795B (zh) 处理具有与温度有关的欧姆阻抗的测量元件的所测量欧姆阻抗的方法
CN211696498U (zh) 一种用于古建筑文物保护的巡检专用装置
CN103438992A (zh) 一种带有自动定位功能的照度计
Žnidarič et al. Detection of delaminated and cracked concrete with unmanned aerial vehicles
CN216211503U (zh) 一种基于远程控制的道路性能智能监测系统
CN111157055A (zh) 一种用于古建筑文物保护的巡检专用装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21873932

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21873932

Country of ref document: EP

Kind code of ref document: A1